1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * cros_ec_sensors_core - Common function for Chrome OS EC sensor driver.
4 *
5 * Copyright (C) 2016 Google, Inc
6 */
7
8 #include <linux/delay.h>
9 #include <linux/device.h>
10 #include <linux/iio/buffer.h>
11 #include <linux/iio/common/cros_ec_sensors_core.h>
12 #include <linux/iio/iio.h>
13 #include <linux/iio/kfifo_buf.h>
14 #include <linux/iio/sysfs.h>
15 #include <linux/iio/trigger.h>
16 #include <linux/iio/trigger_consumer.h>
17 #include <linux/iio/triggered_buffer.h>
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/platform_data/cros_ec_commands.h>
22 #include <linux/platform_data/cros_ec_proto.h>
23 #include <linux/platform_data/cros_ec_sensorhub.h>
24 #include <linux/platform_device.h>
25
26 /*
27 * Hard coded to the first device to support sensor fifo. The EC has a 2048
28 * byte fifo and will trigger an interrupt when fifo is 2/3 full.
29 */
30 #define CROS_EC_FIFO_SIZE (2048 * 2 / 3)
31
cros_ec_get_host_cmd_version_mask(struct cros_ec_device * ec_dev,u16 cmd_offset,u16 cmd,u32 * mask)32 static int cros_ec_get_host_cmd_version_mask(struct cros_ec_device *ec_dev,
33 u16 cmd_offset, u16 cmd, u32 *mask)
34 {
35 int ret;
36 struct {
37 struct cros_ec_command msg;
38 union {
39 struct ec_params_get_cmd_versions params;
40 struct ec_response_get_cmd_versions resp;
41 };
42 } __packed buf = {
43 .msg = {
44 .command = EC_CMD_GET_CMD_VERSIONS + cmd_offset,
45 .insize = sizeof(struct ec_response_get_cmd_versions),
46 .outsize = sizeof(struct ec_params_get_cmd_versions)
47 },
48 .params = {.cmd = cmd}
49 };
50
51 ret = cros_ec_cmd_xfer_status(ec_dev, &buf.msg);
52 if (ret >= 0)
53 *mask = buf.resp.version_mask;
54 return ret;
55 }
56
get_default_min_max_freq(enum motionsensor_type type,u32 * min_freq,u32 * max_freq,u32 * max_fifo_events)57 static void get_default_min_max_freq(enum motionsensor_type type,
58 u32 *min_freq,
59 u32 *max_freq,
60 u32 *max_fifo_events)
61 {
62 /*
63 * We don't know fifo size, set to size previously used by older
64 * hardware.
65 */
66 *max_fifo_events = CROS_EC_FIFO_SIZE;
67
68 switch (type) {
69 case MOTIONSENSE_TYPE_ACCEL:
70 *min_freq = 12500;
71 *max_freq = 100000;
72 break;
73 case MOTIONSENSE_TYPE_GYRO:
74 *min_freq = 25000;
75 *max_freq = 100000;
76 break;
77 case MOTIONSENSE_TYPE_MAG:
78 *min_freq = 5000;
79 *max_freq = 25000;
80 break;
81 case MOTIONSENSE_TYPE_PROX:
82 case MOTIONSENSE_TYPE_LIGHT:
83 *min_freq = 100;
84 *max_freq = 50000;
85 break;
86 case MOTIONSENSE_TYPE_BARO:
87 *min_freq = 250;
88 *max_freq = 20000;
89 break;
90 case MOTIONSENSE_TYPE_ACTIVITY:
91 default:
92 *min_freq = 0;
93 *max_freq = 0;
94 break;
95 }
96 }
97
cros_ec_sensor_set_ec_rate(struct cros_ec_sensors_core_state * st,int rate)98 static int cros_ec_sensor_set_ec_rate(struct cros_ec_sensors_core_state *st,
99 int rate)
100 {
101 int ret;
102
103 if (rate > U16_MAX)
104 rate = U16_MAX;
105
106 mutex_lock(&st->cmd_lock);
107 st->param.cmd = MOTIONSENSE_CMD_EC_RATE;
108 st->param.ec_rate.data = rate;
109 ret = cros_ec_motion_send_host_cmd(st, 0);
110 mutex_unlock(&st->cmd_lock);
111 return ret;
112 }
113
cros_ec_sensor_set_report_latency(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)114 static ssize_t cros_ec_sensor_set_report_latency(struct device *dev,
115 struct device_attribute *attr,
116 const char *buf, size_t len)
117 {
118 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
119 struct cros_ec_sensors_core_state *st = iio_priv(indio_dev);
120 int integer, fract, ret;
121 int latency;
122
123 ret = iio_str_to_fixpoint(buf, 100000, &integer, &fract);
124 if (ret)
125 return ret;
126
127 /* EC rate is in ms. */
128 latency = integer * 1000 + fract / 1000;
129 ret = cros_ec_sensor_set_ec_rate(st, latency);
130 if (ret < 0)
131 return ret;
132
133 return len;
134 }
135
cros_ec_sensor_get_report_latency(struct device * dev,struct device_attribute * attr,char * buf)136 static ssize_t cros_ec_sensor_get_report_latency(struct device *dev,
137 struct device_attribute *attr,
138 char *buf)
139 {
140 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
141 struct cros_ec_sensors_core_state *st = iio_priv(indio_dev);
142 int latency, ret;
143
144 mutex_lock(&st->cmd_lock);
145 st->param.cmd = MOTIONSENSE_CMD_EC_RATE;
146 st->param.ec_rate.data = EC_MOTION_SENSE_NO_VALUE;
147
148 ret = cros_ec_motion_send_host_cmd(st, 0);
149 latency = st->resp->ec_rate.ret;
150 mutex_unlock(&st->cmd_lock);
151 if (ret < 0)
152 return ret;
153
154 return sprintf(buf, "%d.%06u\n",
155 latency / 1000,
156 (latency % 1000) * 1000);
157 }
158
159 static IIO_DEVICE_ATTR(hwfifo_timeout, 0644,
160 cros_ec_sensor_get_report_latency,
161 cros_ec_sensor_set_report_latency, 0);
162
hwfifo_watermark_max_show(struct device * dev,struct device_attribute * attr,char * buf)163 static ssize_t hwfifo_watermark_max_show(struct device *dev,
164 struct device_attribute *attr,
165 char *buf)
166 {
167 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
168 struct cros_ec_sensors_core_state *st = iio_priv(indio_dev);
169
170 return sprintf(buf, "%d\n", st->fifo_max_event_count);
171 }
172
173 static IIO_DEVICE_ATTR_RO(hwfifo_watermark_max, 0);
174
175 static const struct attribute *cros_ec_sensor_fifo_attributes[] = {
176 &iio_dev_attr_hwfifo_timeout.dev_attr.attr,
177 &iio_dev_attr_hwfifo_watermark_max.dev_attr.attr,
178 NULL,
179 };
180
cros_ec_sensors_push_data(struct iio_dev * indio_dev,s16 * data,s64 timestamp)181 int cros_ec_sensors_push_data(struct iio_dev *indio_dev,
182 s16 *data,
183 s64 timestamp)
184 {
185 struct cros_ec_sensors_core_state *st = iio_priv(indio_dev);
186 s16 *out;
187 s64 delta;
188 unsigned int i;
189
190 /*
191 * Ignore samples if the buffer is not set: it is needed if the ODR is
192 * set but the buffer is not enabled yet.
193 */
194 if (!iio_buffer_enabled(indio_dev))
195 return 0;
196
197 out = (s16 *)st->samples;
198 for_each_set_bit(i,
199 indio_dev->active_scan_mask,
200 indio_dev->masklength) {
201 *out = data[i];
202 out++;
203 }
204
205 if (iio_device_get_clock(indio_dev) != CLOCK_BOOTTIME)
206 delta = iio_get_time_ns(indio_dev) - cros_ec_get_time_ns();
207 else
208 delta = 0;
209
210 iio_push_to_buffers_with_timestamp(indio_dev, st->samples,
211 timestamp + delta);
212
213 return 0;
214 }
215 EXPORT_SYMBOL_GPL(cros_ec_sensors_push_data);
216
cros_ec_sensors_core_clean(void * arg)217 static void cros_ec_sensors_core_clean(void *arg)
218 {
219 struct platform_device *pdev = (struct platform_device *)arg;
220 struct cros_ec_sensorhub *sensor_hub =
221 dev_get_drvdata(pdev->dev.parent);
222 struct iio_dev *indio_dev = platform_get_drvdata(pdev);
223 struct cros_ec_sensors_core_state *st = iio_priv(indio_dev);
224 u8 sensor_num = st->param.info.sensor_num;
225
226 cros_ec_sensorhub_unregister_push_data(sensor_hub, sensor_num);
227 }
228
229 /**
230 * cros_ec_sensors_core_init() - basic initialization of the core structure
231 * @pdev: platform device created for the sensor
232 * @indio_dev: iio device structure of the device
233 * @physical_device: true if the device refers to a physical device
234 * @trigger_capture: function pointer to call buffer is triggered,
235 * for backward compatibility.
236 *
237 * Return: 0 on success, -errno on failure.
238 */
cros_ec_sensors_core_init(struct platform_device * pdev,struct iio_dev * indio_dev,bool physical_device,cros_ec_sensors_capture_t trigger_capture)239 int cros_ec_sensors_core_init(struct platform_device *pdev,
240 struct iio_dev *indio_dev,
241 bool physical_device,
242 cros_ec_sensors_capture_t trigger_capture)
243 {
244 struct device *dev = &pdev->dev;
245 struct cros_ec_sensors_core_state *state = iio_priv(indio_dev);
246 struct cros_ec_sensorhub *sensor_hub = dev_get_drvdata(dev->parent);
247 struct cros_ec_dev *ec = sensor_hub->ec;
248 struct cros_ec_sensor_platform *sensor_platform = dev_get_platdata(dev);
249 u32 ver_mask, temp;
250 int frequencies[ARRAY_SIZE(state->frequencies) / 2] = { 0 };
251 int ret, i;
252
253 platform_set_drvdata(pdev, indio_dev);
254
255 state->ec = ec->ec_dev;
256 state->msg = devm_kzalloc(&pdev->dev,
257 max((u16)sizeof(struct ec_params_motion_sense),
258 state->ec->max_response), GFP_KERNEL);
259 if (!state->msg)
260 return -ENOMEM;
261
262 state->resp = (struct ec_response_motion_sense *)state->msg->data;
263
264 mutex_init(&state->cmd_lock);
265
266 ret = cros_ec_get_host_cmd_version_mask(state->ec,
267 ec->cmd_offset,
268 EC_CMD_MOTION_SENSE_CMD,
269 &ver_mask);
270 if (ret < 0)
271 return ret;
272
273 /* Set up the host command structure. */
274 state->msg->version = fls(ver_mask) - 1;
275 state->msg->command = EC_CMD_MOTION_SENSE_CMD + ec->cmd_offset;
276 state->msg->outsize = sizeof(struct ec_params_motion_sense);
277
278 indio_dev->name = pdev->name;
279
280 if (physical_device) {
281 enum motionsensor_location loc;
282
283 state->param.cmd = MOTIONSENSE_CMD_INFO;
284 state->param.info.sensor_num = sensor_platform->sensor_num;
285 ret = cros_ec_motion_send_host_cmd(state, 0);
286 if (ret) {
287 dev_warn(dev, "Can not access sensor info\n");
288 return ret;
289 }
290 state->type = state->resp->info.type;
291 loc = state->resp->info.location;
292 if (loc == MOTIONSENSE_LOC_BASE)
293 indio_dev->label = "accel-base";
294 else if (loc == MOTIONSENSE_LOC_LID)
295 indio_dev->label = "accel-display";
296 else if (loc == MOTIONSENSE_LOC_CAMERA)
297 indio_dev->label = "accel-camera";
298
299 /* Set sign vector, only used for backward compatibility. */
300 memset(state->sign, 1, CROS_EC_SENSOR_MAX_AXIS);
301
302 for (i = CROS_EC_SENSOR_X; i < CROS_EC_SENSOR_MAX_AXIS; i++)
303 state->calib[i].scale = MOTION_SENSE_DEFAULT_SCALE;
304
305 /* 0 is a correct value used to stop the device */
306 if (state->msg->version < 3) {
307 get_default_min_max_freq(state->resp->info.type,
308 &frequencies[1],
309 &frequencies[2],
310 &state->fifo_max_event_count);
311 } else {
312 if (state->resp->info_3.max_frequency == 0) {
313 get_default_min_max_freq(state->resp->info.type,
314 &frequencies[1],
315 &frequencies[2],
316 &temp);
317 } else {
318 frequencies[1] = state->resp->info_3.min_frequency;
319 frequencies[2] = state->resp->info_3.max_frequency;
320 }
321 state->fifo_max_event_count = state->resp->info_3.fifo_max_event_count;
322 }
323 for (i = 0; i < ARRAY_SIZE(frequencies); i++) {
324 state->frequencies[2 * i] = frequencies[i] / 1000;
325 state->frequencies[2 * i + 1] =
326 (frequencies[i] % 1000) * 1000;
327 }
328
329 if (cros_ec_check_features(ec, EC_FEATURE_MOTION_SENSE_FIFO)) {
330 /*
331 * Create a software buffer, feed by the EC FIFO.
332 * We can not use trigger here, as events are generated
333 * as soon as sample_frequency is set.
334 */
335 ret = devm_iio_kfifo_buffer_setup_ext(dev, indio_dev, NULL,
336 cros_ec_sensor_fifo_attributes);
337 if (ret)
338 return ret;
339
340 /* Timestamp coming from FIFO are in ns since boot. */
341 ret = iio_device_set_clock(indio_dev, CLOCK_BOOTTIME);
342 if (ret)
343 return ret;
344
345 } else {
346 /*
347 * The only way to get samples in buffer is to set a
348 * software trigger (systrig, hrtimer).
349 */
350 ret = devm_iio_triggered_buffer_setup(dev, indio_dev,
351 NULL, trigger_capture, NULL);
352 if (ret)
353 return ret;
354 }
355 }
356
357 return 0;
358 }
359 EXPORT_SYMBOL_GPL(cros_ec_sensors_core_init);
360
361 /**
362 * cros_ec_sensors_core_register() - Register callback to FIFO and IIO when
363 * sensor is ready.
364 * It must be called at the end of the sensor probe routine.
365 * @dev: device created for the sensor
366 * @indio_dev: iio device structure of the device
367 * @push_data: function to call when cros_ec_sensorhub receives
368 * a sample for that sensor.
369 *
370 * Return: 0 on success, -errno on failure.
371 */
cros_ec_sensors_core_register(struct device * dev,struct iio_dev * indio_dev,cros_ec_sensorhub_push_data_cb_t push_data)372 int cros_ec_sensors_core_register(struct device *dev,
373 struct iio_dev *indio_dev,
374 cros_ec_sensorhub_push_data_cb_t push_data)
375 {
376 struct cros_ec_sensor_platform *sensor_platform = dev_get_platdata(dev);
377 struct cros_ec_sensorhub *sensor_hub = dev_get_drvdata(dev->parent);
378 struct platform_device *pdev = to_platform_device(dev);
379 struct cros_ec_dev *ec = sensor_hub->ec;
380 int ret;
381
382 ret = devm_iio_device_register(dev, indio_dev);
383 if (ret)
384 return ret;
385
386 if (!push_data ||
387 !cros_ec_check_features(ec, EC_FEATURE_MOTION_SENSE_FIFO))
388 return 0;
389
390 ret = cros_ec_sensorhub_register_push_data(
391 sensor_hub, sensor_platform->sensor_num,
392 indio_dev, push_data);
393 if (ret)
394 return ret;
395
396 return devm_add_action_or_reset(
397 dev, cros_ec_sensors_core_clean, pdev);
398 }
399 EXPORT_SYMBOL_GPL(cros_ec_sensors_core_register);
400
401 /**
402 * cros_ec_motion_send_host_cmd() - send motion sense host command
403 * @state: pointer to state information for device
404 * @opt_length: optional length to reduce the response size, useful on the data
405 * path. Otherwise, the maximal allowed response size is used
406 *
407 * When called, the sub-command is assumed to be set in param->cmd.
408 *
409 * Return: 0 on success, -errno on failure.
410 */
cros_ec_motion_send_host_cmd(struct cros_ec_sensors_core_state * state,u16 opt_length)411 int cros_ec_motion_send_host_cmd(struct cros_ec_sensors_core_state *state,
412 u16 opt_length)
413 {
414 int ret;
415
416 if (opt_length)
417 state->msg->insize = min(opt_length, state->ec->max_response);
418 else
419 state->msg->insize = state->ec->max_response;
420
421 memcpy(state->msg->data, &state->param, sizeof(state->param));
422
423 ret = cros_ec_cmd_xfer_status(state->ec, state->msg);
424 if (ret < 0)
425 return ret;
426
427 if (ret &&
428 state->resp != (struct ec_response_motion_sense *)state->msg->data)
429 memcpy(state->resp, state->msg->data, ret);
430
431 return 0;
432 }
433 EXPORT_SYMBOL_GPL(cros_ec_motion_send_host_cmd);
434
cros_ec_sensors_calibrate(struct iio_dev * indio_dev,uintptr_t private,const struct iio_chan_spec * chan,const char * buf,size_t len)435 static ssize_t cros_ec_sensors_calibrate(struct iio_dev *indio_dev,
436 uintptr_t private, const struct iio_chan_spec *chan,
437 const char *buf, size_t len)
438 {
439 struct cros_ec_sensors_core_state *st = iio_priv(indio_dev);
440 int ret, i;
441 bool calibrate;
442
443 ret = kstrtobool(buf, &calibrate);
444 if (ret < 0)
445 return ret;
446 if (!calibrate)
447 return -EINVAL;
448
449 mutex_lock(&st->cmd_lock);
450 st->param.cmd = MOTIONSENSE_CMD_PERFORM_CALIB;
451 ret = cros_ec_motion_send_host_cmd(st, 0);
452 if (ret != 0) {
453 dev_warn(&indio_dev->dev, "Unable to calibrate sensor\n");
454 } else {
455 /* Save values */
456 for (i = CROS_EC_SENSOR_X; i < CROS_EC_SENSOR_MAX_AXIS; i++)
457 st->calib[i].offset = st->resp->perform_calib.offset[i];
458 }
459 mutex_unlock(&st->cmd_lock);
460
461 return ret ? ret : len;
462 }
463
cros_ec_sensors_id(struct iio_dev * indio_dev,uintptr_t private,const struct iio_chan_spec * chan,char * buf)464 static ssize_t cros_ec_sensors_id(struct iio_dev *indio_dev,
465 uintptr_t private,
466 const struct iio_chan_spec *chan, char *buf)
467 {
468 struct cros_ec_sensors_core_state *st = iio_priv(indio_dev);
469
470 return snprintf(buf, PAGE_SIZE, "%d\n", st->param.info.sensor_num);
471 }
472
473 const struct iio_chan_spec_ext_info cros_ec_sensors_ext_info[] = {
474 {
475 .name = "calibrate",
476 .shared = IIO_SHARED_BY_ALL,
477 .write = cros_ec_sensors_calibrate
478 },
479 {
480 .name = "id",
481 .shared = IIO_SHARED_BY_ALL,
482 .read = cros_ec_sensors_id
483 },
484 { },
485 };
486 EXPORT_SYMBOL_GPL(cros_ec_sensors_ext_info);
487
488 /**
489 * cros_ec_sensors_idx_to_reg - convert index into offset in shared memory
490 * @st: pointer to state information for device
491 * @idx: sensor index (should be element of enum sensor_index)
492 *
493 * Return: address to read at
494 */
cros_ec_sensors_idx_to_reg(struct cros_ec_sensors_core_state * st,unsigned int idx)495 static unsigned int cros_ec_sensors_idx_to_reg(
496 struct cros_ec_sensors_core_state *st,
497 unsigned int idx)
498 {
499 /*
500 * When using LPC interface, only space for 2 Accel and one Gyro.
501 * First halfword of MOTIONSENSE_TYPE_ACCEL is used by angle.
502 */
503 if (st->type == MOTIONSENSE_TYPE_ACCEL)
504 return EC_MEMMAP_ACC_DATA + sizeof(u16) *
505 (1 + idx + st->param.info.sensor_num *
506 CROS_EC_SENSOR_MAX_AXIS);
507
508 return EC_MEMMAP_GYRO_DATA + sizeof(u16) * idx;
509 }
510
cros_ec_sensors_cmd_read_u8(struct cros_ec_device * ec,unsigned int offset,u8 * dest)511 static int cros_ec_sensors_cmd_read_u8(struct cros_ec_device *ec,
512 unsigned int offset, u8 *dest)
513 {
514 return ec->cmd_readmem(ec, offset, 1, dest);
515 }
516
cros_ec_sensors_cmd_read_u16(struct cros_ec_device * ec,unsigned int offset,u16 * dest)517 static int cros_ec_sensors_cmd_read_u16(struct cros_ec_device *ec,
518 unsigned int offset, u16 *dest)
519 {
520 __le16 tmp;
521 int ret = ec->cmd_readmem(ec, offset, 2, &tmp);
522
523 if (ret >= 0)
524 *dest = le16_to_cpu(tmp);
525
526 return ret;
527 }
528
529 /**
530 * cros_ec_sensors_read_until_not_busy() - read until is not busy
531 *
532 * @st: pointer to state information for device
533 *
534 * Read from EC status byte until it reads not busy.
535 * Return: 8-bit status if ok, -errno on failure.
536 */
cros_ec_sensors_read_until_not_busy(struct cros_ec_sensors_core_state * st)537 static int cros_ec_sensors_read_until_not_busy(
538 struct cros_ec_sensors_core_state *st)
539 {
540 struct cros_ec_device *ec = st->ec;
541 u8 status;
542 int ret, attempts = 0;
543
544 ret = cros_ec_sensors_cmd_read_u8(ec, EC_MEMMAP_ACC_STATUS, &status);
545 if (ret < 0)
546 return ret;
547
548 while (status & EC_MEMMAP_ACC_STATUS_BUSY_BIT) {
549 /* Give up after enough attempts, return error. */
550 if (attempts++ >= 50)
551 return -EIO;
552
553 /* Small delay every so often. */
554 if (attempts % 5 == 0)
555 msleep(25);
556
557 ret = cros_ec_sensors_cmd_read_u8(ec, EC_MEMMAP_ACC_STATUS,
558 &status);
559 if (ret < 0)
560 return ret;
561 }
562
563 return status;
564 }
565
566 /**
567 * cros_ec_sensors_read_data_unsafe() - read acceleration data from EC shared memory
568 * @indio_dev: pointer to IIO device
569 * @scan_mask: bitmap of the sensor indices to scan
570 * @data: location to store data
571 *
572 * This is the unsafe function for reading the EC data. It does not guarantee
573 * that the EC will not modify the data as it is being read in.
574 *
575 * Return: 0 on success, -errno on failure.
576 */
cros_ec_sensors_read_data_unsafe(struct iio_dev * indio_dev,unsigned long scan_mask,s16 * data)577 static int cros_ec_sensors_read_data_unsafe(struct iio_dev *indio_dev,
578 unsigned long scan_mask, s16 *data)
579 {
580 struct cros_ec_sensors_core_state *st = iio_priv(indio_dev);
581 struct cros_ec_device *ec = st->ec;
582 unsigned int i;
583 int ret;
584
585 /* Read all sensors enabled in scan_mask. Each value is 2 bytes. */
586 for_each_set_bit(i, &scan_mask, indio_dev->masklength) {
587 ret = cros_ec_sensors_cmd_read_u16(ec,
588 cros_ec_sensors_idx_to_reg(st, i),
589 data);
590 if (ret < 0)
591 return ret;
592
593 *data *= st->sign[i];
594 data++;
595 }
596
597 return 0;
598 }
599
600 /**
601 * cros_ec_sensors_read_lpc() - read acceleration data from EC shared memory.
602 * @indio_dev: pointer to IIO device.
603 * @scan_mask: bitmap of the sensor indices to scan.
604 * @data: location to store data.
605 *
606 * Note: this is the safe function for reading the EC data. It guarantees
607 * that the data sampled was not modified by the EC while being read.
608 *
609 * Return: 0 on success, -errno on failure.
610 */
cros_ec_sensors_read_lpc(struct iio_dev * indio_dev,unsigned long scan_mask,s16 * data)611 int cros_ec_sensors_read_lpc(struct iio_dev *indio_dev,
612 unsigned long scan_mask, s16 *data)
613 {
614 struct cros_ec_sensors_core_state *st = iio_priv(indio_dev);
615 struct cros_ec_device *ec = st->ec;
616 u8 samp_id = 0xff, status = 0;
617 int ret, attempts = 0;
618
619 /*
620 * Continually read all data from EC until the status byte after
621 * all reads reflects that the EC is not busy and the sample id
622 * matches the sample id from before all reads. This guarantees
623 * that data read in was not modified by the EC while reading.
624 */
625 while ((status & (EC_MEMMAP_ACC_STATUS_BUSY_BIT |
626 EC_MEMMAP_ACC_STATUS_SAMPLE_ID_MASK)) != samp_id) {
627 /* If we have tried to read too many times, return error. */
628 if (attempts++ >= 5)
629 return -EIO;
630
631 /* Read status byte until EC is not busy. */
632 ret = cros_ec_sensors_read_until_not_busy(st);
633 if (ret < 0)
634 return ret;
635
636 /*
637 * Store the current sample id so that we can compare to the
638 * sample id after reading the data.
639 */
640 samp_id = ret & EC_MEMMAP_ACC_STATUS_SAMPLE_ID_MASK;
641
642 /* Read all EC data, format it, and store it into data. */
643 ret = cros_ec_sensors_read_data_unsafe(indio_dev, scan_mask,
644 data);
645 if (ret < 0)
646 return ret;
647
648 /* Read status byte. */
649 ret = cros_ec_sensors_cmd_read_u8(ec, EC_MEMMAP_ACC_STATUS,
650 &status);
651 if (ret < 0)
652 return ret;
653 }
654
655 return 0;
656 }
657 EXPORT_SYMBOL_GPL(cros_ec_sensors_read_lpc);
658
659 /**
660 * cros_ec_sensors_read_cmd() - retrieve data using the EC command protocol
661 * @indio_dev: pointer to IIO device
662 * @scan_mask: bitmap of the sensor indices to scan
663 * @data: location to store data
664 *
665 * Return: 0 on success, -errno on failure.
666 */
cros_ec_sensors_read_cmd(struct iio_dev * indio_dev,unsigned long scan_mask,s16 * data)667 int cros_ec_sensors_read_cmd(struct iio_dev *indio_dev,
668 unsigned long scan_mask, s16 *data)
669 {
670 struct cros_ec_sensors_core_state *st = iio_priv(indio_dev);
671 int ret;
672 unsigned int i;
673
674 /* Read all sensor data through a command. */
675 st->param.cmd = MOTIONSENSE_CMD_DATA;
676 ret = cros_ec_motion_send_host_cmd(st, sizeof(st->resp->data));
677 if (ret != 0) {
678 dev_warn(&indio_dev->dev, "Unable to read sensor data\n");
679 return ret;
680 }
681
682 for_each_set_bit(i, &scan_mask, indio_dev->masklength) {
683 *data = st->resp->data.data[i];
684 data++;
685 }
686
687 return 0;
688 }
689 EXPORT_SYMBOL_GPL(cros_ec_sensors_read_cmd);
690
691 /**
692 * cros_ec_sensors_capture() - the trigger handler function
693 * @irq: the interrupt number.
694 * @p: a pointer to the poll function.
695 *
696 * On a trigger event occurring, if the pollfunc is attached then this
697 * handler is called as a threaded interrupt (and hence may sleep). It
698 * is responsible for grabbing data from the device and pushing it into
699 * the associated buffer.
700 *
701 * Return: IRQ_HANDLED
702 */
cros_ec_sensors_capture(int irq,void * p)703 irqreturn_t cros_ec_sensors_capture(int irq, void *p)
704 {
705 struct iio_poll_func *pf = p;
706 struct iio_dev *indio_dev = pf->indio_dev;
707 struct cros_ec_sensors_core_state *st = iio_priv(indio_dev);
708 int ret;
709
710 mutex_lock(&st->cmd_lock);
711
712 /* Clear capture data. */
713 memset(st->samples, 0, indio_dev->scan_bytes);
714
715 /* Read data based on which channels are enabled in scan mask. */
716 ret = st->read_ec_sensors_data(indio_dev,
717 *(indio_dev->active_scan_mask),
718 (s16 *)st->samples);
719 if (ret < 0)
720 goto done;
721
722 iio_push_to_buffers_with_timestamp(indio_dev, st->samples,
723 iio_get_time_ns(indio_dev));
724
725 done:
726 /*
727 * Tell the core we are done with this trigger and ready for the
728 * next one.
729 */
730 iio_trigger_notify_done(indio_dev->trig);
731
732 mutex_unlock(&st->cmd_lock);
733
734 return IRQ_HANDLED;
735 }
736 EXPORT_SYMBOL_GPL(cros_ec_sensors_capture);
737
738 /**
739 * cros_ec_sensors_core_read() - function to request a value from the sensor
740 * @st: pointer to state information for device
741 * @chan: channel specification structure table
742 * @val: will contain one element making up the returned value
743 * @val2: will contain another element making up the returned value
744 * @mask: specifies which values to be requested
745 *
746 * Return: the type of value returned by the device
747 */
cros_ec_sensors_core_read(struct cros_ec_sensors_core_state * st,struct iio_chan_spec const * chan,int * val,int * val2,long mask)748 int cros_ec_sensors_core_read(struct cros_ec_sensors_core_state *st,
749 struct iio_chan_spec const *chan,
750 int *val, int *val2, long mask)
751 {
752 int ret, frequency;
753
754 switch (mask) {
755 case IIO_CHAN_INFO_SAMP_FREQ:
756 st->param.cmd = MOTIONSENSE_CMD_SENSOR_ODR;
757 st->param.sensor_odr.data =
758 EC_MOTION_SENSE_NO_VALUE;
759
760 ret = cros_ec_motion_send_host_cmd(st, 0);
761 if (ret)
762 break;
763
764 frequency = st->resp->sensor_odr.ret;
765 *val = frequency / 1000;
766 *val2 = (frequency % 1000) * 1000;
767 ret = IIO_VAL_INT_PLUS_MICRO;
768 break;
769 default:
770 ret = -EINVAL;
771 break;
772 }
773
774 return ret;
775 }
776 EXPORT_SYMBOL_GPL(cros_ec_sensors_core_read);
777
778 /**
779 * cros_ec_sensors_core_read_avail() - get available values
780 * @indio_dev: pointer to state information for device
781 * @chan: channel specification structure table
782 * @vals: list of available values
783 * @type: type of data returned
784 * @length: number of data returned in the array
785 * @mask: specifies which values to be requested
786 *
787 * Return: an error code, IIO_AVAIL_RANGE or IIO_AVAIL_LIST
788 */
cros_ec_sensors_core_read_avail(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,const int ** vals,int * type,int * length,long mask)789 int cros_ec_sensors_core_read_avail(struct iio_dev *indio_dev,
790 struct iio_chan_spec const *chan,
791 const int **vals,
792 int *type,
793 int *length,
794 long mask)
795 {
796 struct cros_ec_sensors_core_state *state = iio_priv(indio_dev);
797
798 switch (mask) {
799 case IIO_CHAN_INFO_SAMP_FREQ:
800 *length = ARRAY_SIZE(state->frequencies);
801 *vals = (const int *)&state->frequencies;
802 *type = IIO_VAL_INT_PLUS_MICRO;
803 return IIO_AVAIL_LIST;
804 }
805
806 return -EINVAL;
807 }
808 EXPORT_SYMBOL_GPL(cros_ec_sensors_core_read_avail);
809
810 /**
811 * cros_ec_sensors_core_write() - function to write a value to the sensor
812 * @st: pointer to state information for device
813 * @chan: channel specification structure table
814 * @val: first part of value to write
815 * @val2: second part of value to write
816 * @mask: specifies which values to write
817 *
818 * Return: the type of value returned by the device
819 */
cros_ec_sensors_core_write(struct cros_ec_sensors_core_state * st,struct iio_chan_spec const * chan,int val,int val2,long mask)820 int cros_ec_sensors_core_write(struct cros_ec_sensors_core_state *st,
821 struct iio_chan_spec const *chan,
822 int val, int val2, long mask)
823 {
824 int ret, frequency;
825
826 switch (mask) {
827 case IIO_CHAN_INFO_SAMP_FREQ:
828 frequency = val * 1000 + val2 / 1000;
829 st->param.cmd = MOTIONSENSE_CMD_SENSOR_ODR;
830 st->param.sensor_odr.data = frequency;
831
832 /* Always roundup, so caller gets at least what it asks for. */
833 st->param.sensor_odr.roundup = 1;
834
835 ret = cros_ec_motion_send_host_cmd(st, 0);
836 break;
837 default:
838 ret = -EINVAL;
839 break;
840 }
841 return ret;
842 }
843 EXPORT_SYMBOL_GPL(cros_ec_sensors_core_write);
844
cros_ec_sensors_resume(struct device * dev)845 static int __maybe_unused cros_ec_sensors_resume(struct device *dev)
846 {
847 struct iio_dev *indio_dev = dev_get_drvdata(dev);
848 struct cros_ec_sensors_core_state *st = iio_priv(indio_dev);
849 int ret = 0;
850
851 if (st->range_updated) {
852 mutex_lock(&st->cmd_lock);
853 st->param.cmd = MOTIONSENSE_CMD_SENSOR_RANGE;
854 st->param.sensor_range.data = st->curr_range;
855 st->param.sensor_range.roundup = 1;
856 ret = cros_ec_motion_send_host_cmd(st, 0);
857 mutex_unlock(&st->cmd_lock);
858 }
859 return ret;
860 }
861
862 SIMPLE_DEV_PM_OPS(cros_ec_sensors_pm_ops, NULL, cros_ec_sensors_resume);
863 EXPORT_SYMBOL_GPL(cros_ec_sensors_pm_ops);
864
865 MODULE_DESCRIPTION("ChromeOS EC sensor hub core functions");
866 MODULE_LICENSE("GPL v2");
867