1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright 2008 Michael Ellerman, IBM Corporation.
4 */
5
6 #include <linux/kprobes.h>
7 #include <linux/mmu_context.h>
8 #include <linux/random.h>
9 #include <linux/vmalloc.h>
10 #include <linux/init.h>
11 #include <linux/cpuhotplug.h>
12 #include <linux/uaccess.h>
13 #include <linux/jump_label.h>
14
15 #include <asm/debug.h>
16 #include <asm/pgalloc.h>
17 #include <asm/tlb.h>
18 #include <asm/tlbflush.h>
19 #include <asm/page.h>
20 #include <asm/code-patching.h>
21 #include <asm/inst.h>
22
__patch_instruction(u32 * exec_addr,ppc_inst_t instr,u32 * patch_addr)23 static int __patch_instruction(u32 *exec_addr, ppc_inst_t instr, u32 *patch_addr)
24 {
25 if (!ppc_inst_prefixed(instr)) {
26 u32 val = ppc_inst_val(instr);
27
28 __put_kernel_nofault(patch_addr, &val, u32, failed);
29 } else {
30 u64 val = ppc_inst_as_ulong(instr);
31
32 __put_kernel_nofault(patch_addr, &val, u64, failed);
33 }
34
35 asm ("dcbst 0, %0; sync; icbi 0,%1; sync; isync" :: "r" (patch_addr),
36 "r" (exec_addr));
37
38 return 0;
39
40 failed:
41 return -EPERM;
42 }
43
raw_patch_instruction(u32 * addr,ppc_inst_t instr)44 int raw_patch_instruction(u32 *addr, ppc_inst_t instr)
45 {
46 return __patch_instruction(addr, instr, addr);
47 }
48
49 struct patch_context {
50 union {
51 struct vm_struct *area;
52 struct mm_struct *mm;
53 };
54 unsigned long addr;
55 pte_t *pte;
56 };
57
58 static DEFINE_PER_CPU(struct patch_context, cpu_patching_context);
59
60 static int map_patch_area(void *addr, unsigned long text_poke_addr);
61 static void unmap_patch_area(unsigned long addr);
62
mm_patch_enabled(void)63 static bool mm_patch_enabled(void)
64 {
65 return IS_ENABLED(CONFIG_SMP) && radix_enabled();
66 }
67
68 /*
69 * The following applies for Radix MMU. Hash MMU has different requirements,
70 * and so is not supported.
71 *
72 * Changing mm requires context synchronising instructions on both sides of
73 * the context switch, as well as a hwsync between the last instruction for
74 * which the address of an associated storage access was translated using
75 * the current context.
76 *
77 * switch_mm_irqs_off() performs an isync after the context switch. It is
78 * the responsibility of the caller to perform the CSI and hwsync before
79 * starting/stopping the temp mm.
80 */
start_using_temp_mm(struct mm_struct * temp_mm)81 static struct mm_struct *start_using_temp_mm(struct mm_struct *temp_mm)
82 {
83 struct mm_struct *orig_mm = current->active_mm;
84
85 lockdep_assert_irqs_disabled();
86 switch_mm_irqs_off(orig_mm, temp_mm, current);
87
88 WARN_ON(!mm_is_thread_local(temp_mm));
89
90 suspend_breakpoints();
91 return orig_mm;
92 }
93
stop_using_temp_mm(struct mm_struct * temp_mm,struct mm_struct * orig_mm)94 static void stop_using_temp_mm(struct mm_struct *temp_mm,
95 struct mm_struct *orig_mm)
96 {
97 lockdep_assert_irqs_disabled();
98 switch_mm_irqs_off(temp_mm, orig_mm, current);
99 restore_breakpoints();
100 }
101
text_area_cpu_up(unsigned int cpu)102 static int text_area_cpu_up(unsigned int cpu)
103 {
104 struct vm_struct *area;
105 unsigned long addr;
106 int err;
107
108 area = get_vm_area(PAGE_SIZE, VM_ALLOC);
109 if (!area) {
110 WARN_ONCE(1, "Failed to create text area for cpu %d\n",
111 cpu);
112 return -1;
113 }
114
115 // Map/unmap the area to ensure all page tables are pre-allocated
116 addr = (unsigned long)area->addr;
117 err = map_patch_area(empty_zero_page, addr);
118 if (err)
119 return err;
120
121 unmap_patch_area(addr);
122
123 this_cpu_write(cpu_patching_context.area, area);
124 this_cpu_write(cpu_patching_context.addr, addr);
125 this_cpu_write(cpu_patching_context.pte, virt_to_kpte(addr));
126
127 return 0;
128 }
129
text_area_cpu_down(unsigned int cpu)130 static int text_area_cpu_down(unsigned int cpu)
131 {
132 free_vm_area(this_cpu_read(cpu_patching_context.area));
133 this_cpu_write(cpu_patching_context.area, NULL);
134 this_cpu_write(cpu_patching_context.addr, 0);
135 this_cpu_write(cpu_patching_context.pte, NULL);
136 return 0;
137 }
138
put_patching_mm(struct mm_struct * mm,unsigned long patching_addr)139 static void put_patching_mm(struct mm_struct *mm, unsigned long patching_addr)
140 {
141 struct mmu_gather tlb;
142
143 tlb_gather_mmu(&tlb, mm);
144 free_pgd_range(&tlb, patching_addr, patching_addr + PAGE_SIZE, 0, 0);
145 mmput(mm);
146 }
147
text_area_cpu_up_mm(unsigned int cpu)148 static int text_area_cpu_up_mm(unsigned int cpu)
149 {
150 struct mm_struct *mm;
151 unsigned long addr;
152 pte_t *pte;
153 spinlock_t *ptl;
154
155 mm = mm_alloc();
156 if (WARN_ON(!mm))
157 goto fail_no_mm;
158
159 /*
160 * Choose a random page-aligned address from the interval
161 * [PAGE_SIZE .. DEFAULT_MAP_WINDOW - PAGE_SIZE].
162 * The lower address bound is PAGE_SIZE to avoid the zero-page.
163 */
164 addr = (1 + (get_random_long() % (DEFAULT_MAP_WINDOW / PAGE_SIZE - 2))) << PAGE_SHIFT;
165
166 /*
167 * PTE allocation uses GFP_KERNEL which means we need to
168 * pre-allocate the PTE here because we cannot do the
169 * allocation during patching when IRQs are disabled.
170 *
171 * Using get_locked_pte() to avoid open coding, the lock
172 * is unnecessary.
173 */
174 pte = get_locked_pte(mm, addr, &ptl);
175 if (!pte)
176 goto fail_no_pte;
177 pte_unmap_unlock(pte, ptl);
178
179 this_cpu_write(cpu_patching_context.mm, mm);
180 this_cpu_write(cpu_patching_context.addr, addr);
181
182 return 0;
183
184 fail_no_pte:
185 put_patching_mm(mm, addr);
186 fail_no_mm:
187 return -ENOMEM;
188 }
189
text_area_cpu_down_mm(unsigned int cpu)190 static int text_area_cpu_down_mm(unsigned int cpu)
191 {
192 put_patching_mm(this_cpu_read(cpu_patching_context.mm),
193 this_cpu_read(cpu_patching_context.addr));
194
195 this_cpu_write(cpu_patching_context.mm, NULL);
196 this_cpu_write(cpu_patching_context.addr, 0);
197
198 return 0;
199 }
200
201 static __ro_after_init DEFINE_STATIC_KEY_FALSE(poking_init_done);
202
poking_init(void)203 void __init poking_init(void)
204 {
205 int ret;
206
207 if (!IS_ENABLED(CONFIG_STRICT_KERNEL_RWX))
208 return;
209
210 if (mm_patch_enabled())
211 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
212 "powerpc/text_poke_mm:online",
213 text_area_cpu_up_mm,
214 text_area_cpu_down_mm);
215 else
216 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
217 "powerpc/text_poke:online",
218 text_area_cpu_up,
219 text_area_cpu_down);
220
221 /* cpuhp_setup_state returns >= 0 on success */
222 if (WARN_ON(ret < 0))
223 return;
224
225 static_branch_enable(&poking_init_done);
226 }
227
get_patch_pfn(void * addr)228 static unsigned long get_patch_pfn(void *addr)
229 {
230 if (IS_ENABLED(CONFIG_MODULES) && is_vmalloc_or_module_addr(addr))
231 return vmalloc_to_pfn(addr);
232 else
233 return __pa_symbol(addr) >> PAGE_SHIFT;
234 }
235
236 /*
237 * This can be called for kernel text or a module.
238 */
map_patch_area(void * addr,unsigned long text_poke_addr)239 static int map_patch_area(void *addr, unsigned long text_poke_addr)
240 {
241 unsigned long pfn = get_patch_pfn(addr);
242
243 return map_kernel_page(text_poke_addr, (pfn << PAGE_SHIFT), PAGE_KERNEL);
244 }
245
unmap_patch_area(unsigned long addr)246 static void unmap_patch_area(unsigned long addr)
247 {
248 pte_t *ptep;
249 pmd_t *pmdp;
250 pud_t *pudp;
251 p4d_t *p4dp;
252 pgd_t *pgdp;
253
254 pgdp = pgd_offset_k(addr);
255 if (WARN_ON(pgd_none(*pgdp)))
256 return;
257
258 p4dp = p4d_offset(pgdp, addr);
259 if (WARN_ON(p4d_none(*p4dp)))
260 return;
261
262 pudp = pud_offset(p4dp, addr);
263 if (WARN_ON(pud_none(*pudp)))
264 return;
265
266 pmdp = pmd_offset(pudp, addr);
267 if (WARN_ON(pmd_none(*pmdp)))
268 return;
269
270 ptep = pte_offset_kernel(pmdp, addr);
271 if (WARN_ON(pte_none(*ptep)))
272 return;
273
274 /*
275 * In hash, pte_clear flushes the tlb, in radix, we have to
276 */
277 pte_clear(&init_mm, addr, ptep);
278 flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
279 }
280
__do_patch_instruction_mm(u32 * addr,ppc_inst_t instr)281 static int __do_patch_instruction_mm(u32 *addr, ppc_inst_t instr)
282 {
283 int err;
284 u32 *patch_addr;
285 unsigned long text_poke_addr;
286 pte_t *pte;
287 unsigned long pfn = get_patch_pfn(addr);
288 struct mm_struct *patching_mm;
289 struct mm_struct *orig_mm;
290 spinlock_t *ptl;
291
292 patching_mm = __this_cpu_read(cpu_patching_context.mm);
293 text_poke_addr = __this_cpu_read(cpu_patching_context.addr);
294 patch_addr = (u32 *)(text_poke_addr + offset_in_page(addr));
295
296 pte = get_locked_pte(patching_mm, text_poke_addr, &ptl);
297 if (!pte)
298 return -ENOMEM;
299
300 __set_pte_at(patching_mm, text_poke_addr, pte, pfn_pte(pfn, PAGE_KERNEL), 0);
301
302 /* order PTE update before use, also serves as the hwsync */
303 asm volatile("ptesync": : :"memory");
304
305 /* order context switch after arbitrary prior code */
306 isync();
307
308 orig_mm = start_using_temp_mm(patching_mm);
309
310 err = __patch_instruction(addr, instr, patch_addr);
311
312 /* hwsync performed by __patch_instruction (sync) if successful */
313 if (err)
314 mb(); /* sync */
315
316 /* context synchronisation performed by __patch_instruction (isync or exception) */
317 stop_using_temp_mm(patching_mm, orig_mm);
318
319 pte_clear(patching_mm, text_poke_addr, pte);
320 /*
321 * ptesync to order PTE update before TLB invalidation done
322 * by radix__local_flush_tlb_page_psize (in _tlbiel_va)
323 */
324 local_flush_tlb_page_psize(patching_mm, text_poke_addr, mmu_virtual_psize);
325
326 pte_unmap_unlock(pte, ptl);
327
328 return err;
329 }
330
__do_patch_instruction(u32 * addr,ppc_inst_t instr)331 static int __do_patch_instruction(u32 *addr, ppc_inst_t instr)
332 {
333 int err;
334 u32 *patch_addr;
335 unsigned long text_poke_addr;
336 pte_t *pte;
337 unsigned long pfn = get_patch_pfn(addr);
338
339 text_poke_addr = (unsigned long)__this_cpu_read(cpu_patching_context.addr) & PAGE_MASK;
340 patch_addr = (u32 *)(text_poke_addr + offset_in_page(addr));
341
342 pte = __this_cpu_read(cpu_patching_context.pte);
343 __set_pte_at(&init_mm, text_poke_addr, pte, pfn_pte(pfn, PAGE_KERNEL), 0);
344 /* See ptesync comment in radix__set_pte_at() */
345 if (radix_enabled())
346 asm volatile("ptesync": : :"memory");
347
348 err = __patch_instruction(addr, instr, patch_addr);
349
350 pte_clear(&init_mm, text_poke_addr, pte);
351 flush_tlb_kernel_range(text_poke_addr, text_poke_addr + PAGE_SIZE);
352
353 return err;
354 }
355
patch_instruction(u32 * addr,ppc_inst_t instr)356 int patch_instruction(u32 *addr, ppc_inst_t instr)
357 {
358 int err;
359 unsigned long flags;
360
361 /*
362 * During early early boot patch_instruction is called
363 * when text_poke_area is not ready, but we still need
364 * to allow patching. We just do the plain old patching
365 */
366 if (!IS_ENABLED(CONFIG_STRICT_KERNEL_RWX) ||
367 !static_branch_likely(&poking_init_done))
368 return raw_patch_instruction(addr, instr);
369
370 local_irq_save(flags);
371 if (mm_patch_enabled())
372 err = __do_patch_instruction_mm(addr, instr);
373 else
374 err = __do_patch_instruction(addr, instr);
375 local_irq_restore(flags);
376
377 return err;
378 }
379 NOKPROBE_SYMBOL(patch_instruction);
380
patch_branch(u32 * addr,unsigned long target,int flags)381 int patch_branch(u32 *addr, unsigned long target, int flags)
382 {
383 ppc_inst_t instr;
384
385 if (create_branch(&instr, addr, target, flags))
386 return -ERANGE;
387
388 return patch_instruction(addr, instr);
389 }
390
391 /*
392 * Helper to check if a given instruction is a conditional branch
393 * Derived from the conditional checks in analyse_instr()
394 */
is_conditional_branch(ppc_inst_t instr)395 bool is_conditional_branch(ppc_inst_t instr)
396 {
397 unsigned int opcode = ppc_inst_primary_opcode(instr);
398
399 if (opcode == 16) /* bc, bca, bcl, bcla */
400 return true;
401 if (opcode == 19) {
402 switch ((ppc_inst_val(instr) >> 1) & 0x3ff) {
403 case 16: /* bclr, bclrl */
404 case 528: /* bcctr, bcctrl */
405 case 560: /* bctar, bctarl */
406 return true;
407 }
408 }
409 return false;
410 }
411 NOKPROBE_SYMBOL(is_conditional_branch);
412
create_cond_branch(ppc_inst_t * instr,const u32 * addr,unsigned long target,int flags)413 int create_cond_branch(ppc_inst_t *instr, const u32 *addr,
414 unsigned long target, int flags)
415 {
416 long offset;
417
418 offset = target;
419 if (! (flags & BRANCH_ABSOLUTE))
420 offset = offset - (unsigned long)addr;
421
422 /* Check we can represent the target in the instruction format */
423 if (!is_offset_in_cond_branch_range(offset))
424 return 1;
425
426 /* Mask out the flags and target, so they don't step on each other. */
427 *instr = ppc_inst(0x40000000 | (flags & 0x3FF0003) | (offset & 0xFFFC));
428
429 return 0;
430 }
431
instr_is_relative_branch(ppc_inst_t instr)432 int instr_is_relative_branch(ppc_inst_t instr)
433 {
434 if (ppc_inst_val(instr) & BRANCH_ABSOLUTE)
435 return 0;
436
437 return instr_is_branch_iform(instr) || instr_is_branch_bform(instr);
438 }
439
instr_is_relative_link_branch(ppc_inst_t instr)440 int instr_is_relative_link_branch(ppc_inst_t instr)
441 {
442 return instr_is_relative_branch(instr) && (ppc_inst_val(instr) & BRANCH_SET_LINK);
443 }
444
branch_iform_target(const u32 * instr)445 static unsigned long branch_iform_target(const u32 *instr)
446 {
447 signed long imm;
448
449 imm = ppc_inst_val(ppc_inst_read(instr)) & 0x3FFFFFC;
450
451 /* If the top bit of the immediate value is set this is negative */
452 if (imm & 0x2000000)
453 imm -= 0x4000000;
454
455 if ((ppc_inst_val(ppc_inst_read(instr)) & BRANCH_ABSOLUTE) == 0)
456 imm += (unsigned long)instr;
457
458 return (unsigned long)imm;
459 }
460
branch_bform_target(const u32 * instr)461 static unsigned long branch_bform_target(const u32 *instr)
462 {
463 signed long imm;
464
465 imm = ppc_inst_val(ppc_inst_read(instr)) & 0xFFFC;
466
467 /* If the top bit of the immediate value is set this is negative */
468 if (imm & 0x8000)
469 imm -= 0x10000;
470
471 if ((ppc_inst_val(ppc_inst_read(instr)) & BRANCH_ABSOLUTE) == 0)
472 imm += (unsigned long)instr;
473
474 return (unsigned long)imm;
475 }
476
branch_target(const u32 * instr)477 unsigned long branch_target(const u32 *instr)
478 {
479 if (instr_is_branch_iform(ppc_inst_read(instr)))
480 return branch_iform_target(instr);
481 else if (instr_is_branch_bform(ppc_inst_read(instr)))
482 return branch_bform_target(instr);
483
484 return 0;
485 }
486
translate_branch(ppc_inst_t * instr,const u32 * dest,const u32 * src)487 int translate_branch(ppc_inst_t *instr, const u32 *dest, const u32 *src)
488 {
489 unsigned long target;
490 target = branch_target(src);
491
492 if (instr_is_branch_iform(ppc_inst_read(src)))
493 return create_branch(instr, dest, target,
494 ppc_inst_val(ppc_inst_read(src)));
495 else if (instr_is_branch_bform(ppc_inst_read(src)))
496 return create_cond_branch(instr, dest, target,
497 ppc_inst_val(ppc_inst_read(src)));
498
499 return 1;
500 }
501