1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * Scatterlist Cryptographic API.
4 *
5 * Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
6 * Copyright (c) 2002 David S. Miller (davem@redhat.com)
7 * Copyright (c) 2005 Herbert Xu <herbert@gondor.apana.org.au>
8 *
9 * Portions derived from Cryptoapi, by Alexander Kjeldaas <astor@fast.no>
10 * and Nettle, by Niels Möller.
11 */
12 #ifndef _LINUX_CRYPTO_H
13 #define _LINUX_CRYPTO_H
14
15 #include <linux/atomic.h>
16 #include <linux/kernel.h>
17 #include <linux/list.h>
18 #include <linux/bug.h>
19 #include <linux/refcount.h>
20 #include <linux/slab.h>
21 #include <linux/completion.h>
22
23 /*
24 * Autoloaded crypto modules should only use a prefixed name to avoid allowing
25 * arbitrary modules to be loaded. Loading from userspace may still need the
26 * unprefixed names, so retains those aliases as well.
27 * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3
28 * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro
29 * expands twice on the same line. Instead, use a separate base name for the
30 * alias.
31 */
32 #define MODULE_ALIAS_CRYPTO(name) \
33 __MODULE_INFO(alias, alias_userspace, name); \
34 __MODULE_INFO(alias, alias_crypto, "crypto-" name)
35
36 /*
37 * Algorithm masks and types.
38 */
39 #define CRYPTO_ALG_TYPE_MASK 0x0000000f
40 #define CRYPTO_ALG_TYPE_CIPHER 0x00000001
41 #define CRYPTO_ALG_TYPE_COMPRESS 0x00000002
42 #define CRYPTO_ALG_TYPE_AEAD 0x00000003
43 #define CRYPTO_ALG_TYPE_SKCIPHER 0x00000005
44 #define CRYPTO_ALG_TYPE_KPP 0x00000008
45 #define CRYPTO_ALG_TYPE_ACOMPRESS 0x0000000a
46 #define CRYPTO_ALG_TYPE_SCOMPRESS 0x0000000b
47 #define CRYPTO_ALG_TYPE_RNG 0x0000000c
48 #define CRYPTO_ALG_TYPE_AKCIPHER 0x0000000d
49 #define CRYPTO_ALG_TYPE_HASH 0x0000000e
50 #define CRYPTO_ALG_TYPE_SHASH 0x0000000e
51 #define CRYPTO_ALG_TYPE_AHASH 0x0000000f
52
53 #define CRYPTO_ALG_TYPE_HASH_MASK 0x0000000e
54 #define CRYPTO_ALG_TYPE_AHASH_MASK 0x0000000e
55 #define CRYPTO_ALG_TYPE_ACOMPRESS_MASK 0x0000000e
56
57 #define CRYPTO_ALG_LARVAL 0x00000010
58 #define CRYPTO_ALG_DEAD 0x00000020
59 #define CRYPTO_ALG_DYING 0x00000040
60 #define CRYPTO_ALG_ASYNC 0x00000080
61
62 /*
63 * Set if the algorithm (or an algorithm which it uses) requires another
64 * algorithm of the same type to handle corner cases.
65 */
66 #define CRYPTO_ALG_NEED_FALLBACK 0x00000100
67
68 /*
69 * Set if the algorithm has passed automated run-time testing. Note that
70 * if there is no run-time testing for a given algorithm it is considered
71 * to have passed.
72 */
73
74 #define CRYPTO_ALG_TESTED 0x00000400
75
76 /*
77 * Set if the algorithm is an instance that is built from templates.
78 */
79 #define CRYPTO_ALG_INSTANCE 0x00000800
80
81 /* Set this bit if the algorithm provided is hardware accelerated but
82 * not available to userspace via instruction set or so.
83 */
84 #define CRYPTO_ALG_KERN_DRIVER_ONLY 0x00001000
85
86 /*
87 * Mark a cipher as a service implementation only usable by another
88 * cipher and never by a normal user of the kernel crypto API
89 */
90 #define CRYPTO_ALG_INTERNAL 0x00002000
91
92 /*
93 * Set if the algorithm has a ->setkey() method but can be used without
94 * calling it first, i.e. there is a default key.
95 */
96 #define CRYPTO_ALG_OPTIONAL_KEY 0x00004000
97
98 /*
99 * Don't trigger module loading
100 */
101 #define CRYPTO_NOLOAD 0x00008000
102
103 /*
104 * The algorithm may allocate memory during request processing, i.e. during
105 * encryption, decryption, or hashing. Users can request an algorithm with this
106 * flag unset if they can't handle memory allocation failures.
107 *
108 * This flag is currently only implemented for algorithms of type "skcipher",
109 * "aead", "ahash", "shash", and "cipher". Algorithms of other types might not
110 * have this flag set even if they allocate memory.
111 *
112 * In some edge cases, algorithms can allocate memory regardless of this flag.
113 * To avoid these cases, users must obey the following usage constraints:
114 * skcipher:
115 * - The IV buffer and all scatterlist elements must be aligned to the
116 * algorithm's alignmask.
117 * - If the data were to be divided into chunks of size
118 * crypto_skcipher_walksize() (with any remainder going at the end), no
119 * chunk can cross a page boundary or a scatterlist element boundary.
120 * aead:
121 * - The IV buffer and all scatterlist elements must be aligned to the
122 * algorithm's alignmask.
123 * - The first scatterlist element must contain all the associated data,
124 * and its pages must be !PageHighMem.
125 * - If the plaintext/ciphertext were to be divided into chunks of size
126 * crypto_aead_walksize() (with the remainder going at the end), no chunk
127 * can cross a page boundary or a scatterlist element boundary.
128 * ahash:
129 * - The result buffer must be aligned to the algorithm's alignmask.
130 * - crypto_ahash_finup() must not be used unless the algorithm implements
131 * ->finup() natively.
132 */
133 #define CRYPTO_ALG_ALLOCATES_MEMORY 0x00010000
134
135 /*
136 * Transform masks and values (for crt_flags).
137 */
138 #define CRYPTO_TFM_NEED_KEY 0x00000001
139
140 #define CRYPTO_TFM_REQ_MASK 0x000fff00
141 #define CRYPTO_TFM_REQ_FORBID_WEAK_KEYS 0x00000100
142 #define CRYPTO_TFM_REQ_MAY_SLEEP 0x00000200
143 #define CRYPTO_TFM_REQ_MAY_BACKLOG 0x00000400
144
145 /*
146 * Miscellaneous stuff.
147 */
148 #define CRYPTO_MAX_ALG_NAME 128
149
150 /*
151 * The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual
152 * declaration) is used to ensure that the crypto_tfm context structure is
153 * aligned correctly for the given architecture so that there are no alignment
154 * faults for C data types. In particular, this is required on platforms such
155 * as arm where pointers are 32-bit aligned but there are data types such as
156 * u64 which require 64-bit alignment.
157 */
158 #define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN
159
160 #define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN)))
161
162 struct scatterlist;
163 struct crypto_async_request;
164 struct crypto_tfm;
165 struct crypto_type;
166
167 typedef void (*crypto_completion_t)(struct crypto_async_request *req, int err);
168
169 /**
170 * DOC: Block Cipher Context Data Structures
171 *
172 * These data structures define the operating context for each block cipher
173 * type.
174 */
175
176 struct crypto_async_request {
177 struct list_head list;
178 crypto_completion_t complete;
179 void *data;
180 struct crypto_tfm *tfm;
181
182 u32 flags;
183 };
184
185 /**
186 * DOC: Block Cipher Algorithm Definitions
187 *
188 * These data structures define modular crypto algorithm implementations,
189 * managed via crypto_register_alg() and crypto_unregister_alg().
190 */
191
192 /**
193 * struct cipher_alg - single-block symmetric ciphers definition
194 * @cia_min_keysize: Minimum key size supported by the transformation. This is
195 * the smallest key length supported by this transformation
196 * algorithm. This must be set to one of the pre-defined
197 * values as this is not hardware specific. Possible values
198 * for this field can be found via git grep "_MIN_KEY_SIZE"
199 * include/crypto/
200 * @cia_max_keysize: Maximum key size supported by the transformation. This is
201 * the largest key length supported by this transformation
202 * algorithm. This must be set to one of the pre-defined values
203 * as this is not hardware specific. Possible values for this
204 * field can be found via git grep "_MAX_KEY_SIZE"
205 * include/crypto/
206 * @cia_setkey: Set key for the transformation. This function is used to either
207 * program a supplied key into the hardware or store the key in the
208 * transformation context for programming it later. Note that this
209 * function does modify the transformation context. This function
210 * can be called multiple times during the existence of the
211 * transformation object, so one must make sure the key is properly
212 * reprogrammed into the hardware. This function is also
213 * responsible for checking the key length for validity.
214 * @cia_encrypt: Encrypt a single block. This function is used to encrypt a
215 * single block of data, which must be @cra_blocksize big. This
216 * always operates on a full @cra_blocksize and it is not possible
217 * to encrypt a block of smaller size. The supplied buffers must
218 * therefore also be at least of @cra_blocksize size. Both the
219 * input and output buffers are always aligned to @cra_alignmask.
220 * In case either of the input or output buffer supplied by user
221 * of the crypto API is not aligned to @cra_alignmask, the crypto
222 * API will re-align the buffers. The re-alignment means that a
223 * new buffer will be allocated, the data will be copied into the
224 * new buffer, then the processing will happen on the new buffer,
225 * then the data will be copied back into the original buffer and
226 * finally the new buffer will be freed. In case a software
227 * fallback was put in place in the @cra_init call, this function
228 * might need to use the fallback if the algorithm doesn't support
229 * all of the key sizes. In case the key was stored in
230 * transformation context, the key might need to be re-programmed
231 * into the hardware in this function. This function shall not
232 * modify the transformation context, as this function may be
233 * called in parallel with the same transformation object.
234 * @cia_decrypt: Decrypt a single block. This is a reverse counterpart to
235 * @cia_encrypt, and the conditions are exactly the same.
236 *
237 * All fields are mandatory and must be filled.
238 */
239 struct cipher_alg {
240 unsigned int cia_min_keysize;
241 unsigned int cia_max_keysize;
242 int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key,
243 unsigned int keylen);
244 void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
245 void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
246 };
247
248 /**
249 * struct compress_alg - compression/decompression algorithm
250 * @coa_compress: Compress a buffer of specified length, storing the resulting
251 * data in the specified buffer. Return the length of the
252 * compressed data in dlen.
253 * @coa_decompress: Decompress the source buffer, storing the uncompressed
254 * data in the specified buffer. The length of the data is
255 * returned in dlen.
256 *
257 * All fields are mandatory.
258 */
259 struct compress_alg {
260 int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src,
261 unsigned int slen, u8 *dst, unsigned int *dlen);
262 int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src,
263 unsigned int slen, u8 *dst, unsigned int *dlen);
264 };
265
266 #ifdef CONFIG_CRYPTO_STATS
267 /*
268 * struct crypto_istat_aead - statistics for AEAD algorithm
269 * @encrypt_cnt: number of encrypt requests
270 * @encrypt_tlen: total data size handled by encrypt requests
271 * @decrypt_cnt: number of decrypt requests
272 * @decrypt_tlen: total data size handled by decrypt requests
273 * @err_cnt: number of error for AEAD requests
274 */
275 struct crypto_istat_aead {
276 atomic64_t encrypt_cnt;
277 atomic64_t encrypt_tlen;
278 atomic64_t decrypt_cnt;
279 atomic64_t decrypt_tlen;
280 atomic64_t err_cnt;
281 };
282
283 /*
284 * struct crypto_istat_akcipher - statistics for akcipher algorithm
285 * @encrypt_cnt: number of encrypt requests
286 * @encrypt_tlen: total data size handled by encrypt requests
287 * @decrypt_cnt: number of decrypt requests
288 * @decrypt_tlen: total data size handled by decrypt requests
289 * @verify_cnt: number of verify operation
290 * @sign_cnt: number of sign requests
291 * @err_cnt: number of error for akcipher requests
292 */
293 struct crypto_istat_akcipher {
294 atomic64_t encrypt_cnt;
295 atomic64_t encrypt_tlen;
296 atomic64_t decrypt_cnt;
297 atomic64_t decrypt_tlen;
298 atomic64_t verify_cnt;
299 atomic64_t sign_cnt;
300 atomic64_t err_cnt;
301 };
302
303 /*
304 * struct crypto_istat_cipher - statistics for cipher algorithm
305 * @encrypt_cnt: number of encrypt requests
306 * @encrypt_tlen: total data size handled by encrypt requests
307 * @decrypt_cnt: number of decrypt requests
308 * @decrypt_tlen: total data size handled by decrypt requests
309 * @err_cnt: number of error for cipher requests
310 */
311 struct crypto_istat_cipher {
312 atomic64_t encrypt_cnt;
313 atomic64_t encrypt_tlen;
314 atomic64_t decrypt_cnt;
315 atomic64_t decrypt_tlen;
316 atomic64_t err_cnt;
317 };
318
319 /*
320 * struct crypto_istat_compress - statistics for compress algorithm
321 * @compress_cnt: number of compress requests
322 * @compress_tlen: total data size handled by compress requests
323 * @decompress_cnt: number of decompress requests
324 * @decompress_tlen: total data size handled by decompress requests
325 * @err_cnt: number of error for compress requests
326 */
327 struct crypto_istat_compress {
328 atomic64_t compress_cnt;
329 atomic64_t compress_tlen;
330 atomic64_t decompress_cnt;
331 atomic64_t decompress_tlen;
332 atomic64_t err_cnt;
333 };
334
335 /*
336 * struct crypto_istat_hash - statistics for has algorithm
337 * @hash_cnt: number of hash requests
338 * @hash_tlen: total data size hashed
339 * @err_cnt: number of error for hash requests
340 */
341 struct crypto_istat_hash {
342 atomic64_t hash_cnt;
343 atomic64_t hash_tlen;
344 atomic64_t err_cnt;
345 };
346
347 /*
348 * struct crypto_istat_kpp - statistics for KPP algorithm
349 * @setsecret_cnt: number of setsecrey operation
350 * @generate_public_key_cnt: number of generate_public_key operation
351 * @compute_shared_secret_cnt: number of compute_shared_secret operation
352 * @err_cnt: number of error for KPP requests
353 */
354 struct crypto_istat_kpp {
355 atomic64_t setsecret_cnt;
356 atomic64_t generate_public_key_cnt;
357 atomic64_t compute_shared_secret_cnt;
358 atomic64_t err_cnt;
359 };
360
361 /*
362 * struct crypto_istat_rng: statistics for RNG algorithm
363 * @generate_cnt: number of RNG generate requests
364 * @generate_tlen: total data size of generated data by the RNG
365 * @seed_cnt: number of times the RNG was seeded
366 * @err_cnt: number of error for RNG requests
367 */
368 struct crypto_istat_rng {
369 atomic64_t generate_cnt;
370 atomic64_t generate_tlen;
371 atomic64_t seed_cnt;
372 atomic64_t err_cnt;
373 };
374 #endif /* CONFIG_CRYPTO_STATS */
375
376 #define cra_cipher cra_u.cipher
377 #define cra_compress cra_u.compress
378
379 /**
380 * struct crypto_alg - definition of a cryptograpic cipher algorithm
381 * @cra_flags: Flags describing this transformation. See include/linux/crypto.h
382 * CRYPTO_ALG_* flags for the flags which go in here. Those are
383 * used for fine-tuning the description of the transformation
384 * algorithm.
385 * @cra_blocksize: Minimum block size of this transformation. The size in bytes
386 * of the smallest possible unit which can be transformed with
387 * this algorithm. The users must respect this value.
388 * In case of HASH transformation, it is possible for a smaller
389 * block than @cra_blocksize to be passed to the crypto API for
390 * transformation, in case of any other transformation type, an
391 * error will be returned upon any attempt to transform smaller
392 * than @cra_blocksize chunks.
393 * @cra_ctxsize: Size of the operational context of the transformation. This
394 * value informs the kernel crypto API about the memory size
395 * needed to be allocated for the transformation context.
396 * @cra_alignmask: Alignment mask for the input and output data buffer. The data
397 * buffer containing the input data for the algorithm must be
398 * aligned to this alignment mask. The data buffer for the
399 * output data must be aligned to this alignment mask. Note that
400 * the Crypto API will do the re-alignment in software, but
401 * only under special conditions and there is a performance hit.
402 * The re-alignment happens at these occasions for different
403 * @cra_u types: cipher -- For both input data and output data
404 * buffer; ahash -- For output hash destination buf; shash --
405 * For output hash destination buf.
406 * This is needed on hardware which is flawed by design and
407 * cannot pick data from arbitrary addresses.
408 * @cra_priority: Priority of this transformation implementation. In case
409 * multiple transformations with same @cra_name are available to
410 * the Crypto API, the kernel will use the one with highest
411 * @cra_priority.
412 * @cra_name: Generic name (usable by multiple implementations) of the
413 * transformation algorithm. This is the name of the transformation
414 * itself. This field is used by the kernel when looking up the
415 * providers of particular transformation.
416 * @cra_driver_name: Unique name of the transformation provider. This is the
417 * name of the provider of the transformation. This can be any
418 * arbitrary value, but in the usual case, this contains the
419 * name of the chip or provider and the name of the
420 * transformation algorithm.
421 * @cra_type: Type of the cryptographic transformation. This is a pointer to
422 * struct crypto_type, which implements callbacks common for all
423 * transformation types. There are multiple options, such as
424 * &crypto_skcipher_type, &crypto_ahash_type, &crypto_rng_type.
425 * This field might be empty. In that case, there are no common
426 * callbacks. This is the case for: cipher, compress, shash.
427 * @cra_u: Callbacks implementing the transformation. This is a union of
428 * multiple structures. Depending on the type of transformation selected
429 * by @cra_type and @cra_flags above, the associated structure must be
430 * filled with callbacks. This field might be empty. This is the case
431 * for ahash, shash.
432 * @cra_init: Initialize the cryptographic transformation object. This function
433 * is used to initialize the cryptographic transformation object.
434 * This function is called only once at the instantiation time, right
435 * after the transformation context was allocated. In case the
436 * cryptographic hardware has some special requirements which need to
437 * be handled by software, this function shall check for the precise
438 * requirement of the transformation and put any software fallbacks
439 * in place.
440 * @cra_exit: Deinitialize the cryptographic transformation object. This is a
441 * counterpart to @cra_init, used to remove various changes set in
442 * @cra_init.
443 * @cra_u.cipher: Union member which contains a single-block symmetric cipher
444 * definition. See @struct @cipher_alg.
445 * @cra_u.compress: Union member which contains a (de)compression algorithm.
446 * See @struct @compress_alg.
447 * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE
448 * @cra_list: internally used
449 * @cra_users: internally used
450 * @cra_refcnt: internally used
451 * @cra_destroy: internally used
452 *
453 * @stats: union of all possible crypto_istat_xxx structures
454 * @stats.aead: statistics for AEAD algorithm
455 * @stats.akcipher: statistics for akcipher algorithm
456 * @stats.cipher: statistics for cipher algorithm
457 * @stats.compress: statistics for compress algorithm
458 * @stats.hash: statistics for hash algorithm
459 * @stats.rng: statistics for rng algorithm
460 * @stats.kpp: statistics for KPP algorithm
461 *
462 * The struct crypto_alg describes a generic Crypto API algorithm and is common
463 * for all of the transformations. Any variable not documented here shall not
464 * be used by a cipher implementation as it is internal to the Crypto API.
465 */
466 struct crypto_alg {
467 struct list_head cra_list;
468 struct list_head cra_users;
469
470 u32 cra_flags;
471 unsigned int cra_blocksize;
472 unsigned int cra_ctxsize;
473 unsigned int cra_alignmask;
474
475 int cra_priority;
476 refcount_t cra_refcnt;
477
478 char cra_name[CRYPTO_MAX_ALG_NAME];
479 char cra_driver_name[CRYPTO_MAX_ALG_NAME];
480
481 const struct crypto_type *cra_type;
482
483 union {
484 struct cipher_alg cipher;
485 struct compress_alg compress;
486 } cra_u;
487
488 int (*cra_init)(struct crypto_tfm *tfm);
489 void (*cra_exit)(struct crypto_tfm *tfm);
490 void (*cra_destroy)(struct crypto_alg *alg);
491
492 struct module *cra_module;
493
494 #ifdef CONFIG_CRYPTO_STATS
495 union {
496 struct crypto_istat_aead aead;
497 struct crypto_istat_akcipher akcipher;
498 struct crypto_istat_cipher cipher;
499 struct crypto_istat_compress compress;
500 struct crypto_istat_hash hash;
501 struct crypto_istat_rng rng;
502 struct crypto_istat_kpp kpp;
503 } stats;
504 #endif /* CONFIG_CRYPTO_STATS */
505
506 } CRYPTO_MINALIGN_ATTR;
507
508 #ifdef CONFIG_CRYPTO_STATS
509 void crypto_stats_init(struct crypto_alg *alg);
510 void crypto_stats_get(struct crypto_alg *alg);
511 void crypto_stats_aead_encrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret);
512 void crypto_stats_aead_decrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret);
513 void crypto_stats_ahash_update(unsigned int nbytes, int ret, struct crypto_alg *alg);
514 void crypto_stats_ahash_final(unsigned int nbytes, int ret, struct crypto_alg *alg);
515 void crypto_stats_akcipher_encrypt(unsigned int src_len, int ret, struct crypto_alg *alg);
516 void crypto_stats_akcipher_decrypt(unsigned int src_len, int ret, struct crypto_alg *alg);
517 void crypto_stats_akcipher_sign(int ret, struct crypto_alg *alg);
518 void crypto_stats_akcipher_verify(int ret, struct crypto_alg *alg);
519 void crypto_stats_compress(unsigned int slen, int ret, struct crypto_alg *alg);
520 void crypto_stats_decompress(unsigned int slen, int ret, struct crypto_alg *alg);
521 void crypto_stats_kpp_set_secret(struct crypto_alg *alg, int ret);
522 void crypto_stats_kpp_generate_public_key(struct crypto_alg *alg, int ret);
523 void crypto_stats_kpp_compute_shared_secret(struct crypto_alg *alg, int ret);
524 void crypto_stats_rng_seed(struct crypto_alg *alg, int ret);
525 void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen, int ret);
526 void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg);
527 void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg);
528 #else
crypto_stats_init(struct crypto_alg * alg)529 static inline void crypto_stats_init(struct crypto_alg *alg)
530 {}
crypto_stats_get(struct crypto_alg * alg)531 static inline void crypto_stats_get(struct crypto_alg *alg)
532 {}
crypto_stats_aead_encrypt(unsigned int cryptlen,struct crypto_alg * alg,int ret)533 static inline void crypto_stats_aead_encrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret)
534 {}
crypto_stats_aead_decrypt(unsigned int cryptlen,struct crypto_alg * alg,int ret)535 static inline void crypto_stats_aead_decrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret)
536 {}
crypto_stats_ahash_update(unsigned int nbytes,int ret,struct crypto_alg * alg)537 static inline void crypto_stats_ahash_update(unsigned int nbytes, int ret, struct crypto_alg *alg)
538 {}
crypto_stats_ahash_final(unsigned int nbytes,int ret,struct crypto_alg * alg)539 static inline void crypto_stats_ahash_final(unsigned int nbytes, int ret, struct crypto_alg *alg)
540 {}
crypto_stats_akcipher_encrypt(unsigned int src_len,int ret,struct crypto_alg * alg)541 static inline void crypto_stats_akcipher_encrypt(unsigned int src_len, int ret, struct crypto_alg *alg)
542 {}
crypto_stats_akcipher_decrypt(unsigned int src_len,int ret,struct crypto_alg * alg)543 static inline void crypto_stats_akcipher_decrypt(unsigned int src_len, int ret, struct crypto_alg *alg)
544 {}
crypto_stats_akcipher_sign(int ret,struct crypto_alg * alg)545 static inline void crypto_stats_akcipher_sign(int ret, struct crypto_alg *alg)
546 {}
crypto_stats_akcipher_verify(int ret,struct crypto_alg * alg)547 static inline void crypto_stats_akcipher_verify(int ret, struct crypto_alg *alg)
548 {}
crypto_stats_compress(unsigned int slen,int ret,struct crypto_alg * alg)549 static inline void crypto_stats_compress(unsigned int slen, int ret, struct crypto_alg *alg)
550 {}
crypto_stats_decompress(unsigned int slen,int ret,struct crypto_alg * alg)551 static inline void crypto_stats_decompress(unsigned int slen, int ret, struct crypto_alg *alg)
552 {}
crypto_stats_kpp_set_secret(struct crypto_alg * alg,int ret)553 static inline void crypto_stats_kpp_set_secret(struct crypto_alg *alg, int ret)
554 {}
crypto_stats_kpp_generate_public_key(struct crypto_alg * alg,int ret)555 static inline void crypto_stats_kpp_generate_public_key(struct crypto_alg *alg, int ret)
556 {}
crypto_stats_kpp_compute_shared_secret(struct crypto_alg * alg,int ret)557 static inline void crypto_stats_kpp_compute_shared_secret(struct crypto_alg *alg, int ret)
558 {}
crypto_stats_rng_seed(struct crypto_alg * alg,int ret)559 static inline void crypto_stats_rng_seed(struct crypto_alg *alg, int ret)
560 {}
crypto_stats_rng_generate(struct crypto_alg * alg,unsigned int dlen,int ret)561 static inline void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen, int ret)
562 {}
crypto_stats_skcipher_encrypt(unsigned int cryptlen,int ret,struct crypto_alg * alg)563 static inline void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg)
564 {}
crypto_stats_skcipher_decrypt(unsigned int cryptlen,int ret,struct crypto_alg * alg)565 static inline void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg)
566 {}
567 #endif
568 /*
569 * A helper struct for waiting for completion of async crypto ops
570 */
571 struct crypto_wait {
572 struct completion completion;
573 int err;
574 };
575
576 /*
577 * Macro for declaring a crypto op async wait object on stack
578 */
579 #define DECLARE_CRYPTO_WAIT(_wait) \
580 struct crypto_wait _wait = { \
581 COMPLETION_INITIALIZER_ONSTACK((_wait).completion), 0 }
582
583 /*
584 * Async ops completion helper functioons
585 */
586 void crypto_req_done(struct crypto_async_request *req, int err);
587
crypto_wait_req(int err,struct crypto_wait * wait)588 static inline int crypto_wait_req(int err, struct crypto_wait *wait)
589 {
590 switch (err) {
591 case -EINPROGRESS:
592 case -EBUSY:
593 wait_for_completion(&wait->completion);
594 reinit_completion(&wait->completion);
595 err = wait->err;
596 break;
597 }
598
599 return err;
600 }
601
crypto_init_wait(struct crypto_wait * wait)602 static inline void crypto_init_wait(struct crypto_wait *wait)
603 {
604 init_completion(&wait->completion);
605 }
606
607 /*
608 * Algorithm registration interface.
609 */
610 int crypto_register_alg(struct crypto_alg *alg);
611 void crypto_unregister_alg(struct crypto_alg *alg);
612 int crypto_register_algs(struct crypto_alg *algs, int count);
613 void crypto_unregister_algs(struct crypto_alg *algs, int count);
614
615 /*
616 * Algorithm query interface.
617 */
618 int crypto_has_alg(const char *name, u32 type, u32 mask);
619
620 /*
621 * Transforms: user-instantiated objects which encapsulate algorithms
622 * and core processing logic. Managed via crypto_alloc_*() and
623 * crypto_free_*(), as well as the various helpers below.
624 */
625
626 struct crypto_tfm {
627
628 u32 crt_flags;
629
630 int node;
631
632 void (*exit)(struct crypto_tfm *tfm);
633
634 struct crypto_alg *__crt_alg;
635
636 void *__crt_ctx[] CRYPTO_MINALIGN_ATTR;
637 };
638
639 struct crypto_cipher {
640 struct crypto_tfm base;
641 };
642
643 struct crypto_comp {
644 struct crypto_tfm base;
645 };
646
647 enum {
648 CRYPTOA_UNSPEC,
649 CRYPTOA_ALG,
650 CRYPTOA_TYPE,
651 CRYPTOA_U32,
652 __CRYPTOA_MAX,
653 };
654
655 #define CRYPTOA_MAX (__CRYPTOA_MAX - 1)
656
657 /* Maximum number of (rtattr) parameters for each template. */
658 #define CRYPTO_MAX_ATTRS 32
659
660 struct crypto_attr_alg {
661 char name[CRYPTO_MAX_ALG_NAME];
662 };
663
664 struct crypto_attr_type {
665 u32 type;
666 u32 mask;
667 };
668
669 struct crypto_attr_u32 {
670 u32 num;
671 };
672
673 /*
674 * Transform user interface.
675 */
676
677 struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask);
678 void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm);
679
crypto_free_tfm(struct crypto_tfm * tfm)680 static inline void crypto_free_tfm(struct crypto_tfm *tfm)
681 {
682 return crypto_destroy_tfm(tfm, tfm);
683 }
684
685 int alg_test(const char *driver, const char *alg, u32 type, u32 mask);
686
687 /*
688 * Transform helpers which query the underlying algorithm.
689 */
crypto_tfm_alg_name(struct crypto_tfm * tfm)690 static inline const char *crypto_tfm_alg_name(struct crypto_tfm *tfm)
691 {
692 return tfm->__crt_alg->cra_name;
693 }
694
crypto_tfm_alg_driver_name(struct crypto_tfm * tfm)695 static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm)
696 {
697 return tfm->__crt_alg->cra_driver_name;
698 }
699
crypto_tfm_alg_priority(struct crypto_tfm * tfm)700 static inline int crypto_tfm_alg_priority(struct crypto_tfm *tfm)
701 {
702 return tfm->__crt_alg->cra_priority;
703 }
704
crypto_tfm_alg_type(struct crypto_tfm * tfm)705 static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm)
706 {
707 return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK;
708 }
709
crypto_tfm_alg_blocksize(struct crypto_tfm * tfm)710 static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm)
711 {
712 return tfm->__crt_alg->cra_blocksize;
713 }
714
crypto_tfm_alg_alignmask(struct crypto_tfm * tfm)715 static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm)
716 {
717 return tfm->__crt_alg->cra_alignmask;
718 }
719
crypto_tfm_get_flags(struct crypto_tfm * tfm)720 static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm)
721 {
722 return tfm->crt_flags;
723 }
724
crypto_tfm_set_flags(struct crypto_tfm * tfm,u32 flags)725 static inline void crypto_tfm_set_flags(struct crypto_tfm *tfm, u32 flags)
726 {
727 tfm->crt_flags |= flags;
728 }
729
crypto_tfm_clear_flags(struct crypto_tfm * tfm,u32 flags)730 static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags)
731 {
732 tfm->crt_flags &= ~flags;
733 }
734
crypto_tfm_ctx(struct crypto_tfm * tfm)735 static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm)
736 {
737 return tfm->__crt_ctx;
738 }
739
crypto_tfm_ctx_alignment(void)740 static inline unsigned int crypto_tfm_ctx_alignment(void)
741 {
742 struct crypto_tfm *tfm;
743 return __alignof__(tfm->__crt_ctx);
744 }
745
746 /**
747 * DOC: Single Block Cipher API
748 *
749 * The single block cipher API is used with the ciphers of type
750 * CRYPTO_ALG_TYPE_CIPHER (listed as type "cipher" in /proc/crypto).
751 *
752 * Using the single block cipher API calls, operations with the basic cipher
753 * primitive can be implemented. These cipher primitives exclude any block
754 * chaining operations including IV handling.
755 *
756 * The purpose of this single block cipher API is to support the implementation
757 * of templates or other concepts that only need to perform the cipher operation
758 * on one block at a time. Templates invoke the underlying cipher primitive
759 * block-wise and process either the input or the output data of these cipher
760 * operations.
761 */
762
__crypto_cipher_cast(struct crypto_tfm * tfm)763 static inline struct crypto_cipher *__crypto_cipher_cast(struct crypto_tfm *tfm)
764 {
765 return (struct crypto_cipher *)tfm;
766 }
767
768 /**
769 * crypto_alloc_cipher() - allocate single block cipher handle
770 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
771 * single block cipher
772 * @type: specifies the type of the cipher
773 * @mask: specifies the mask for the cipher
774 *
775 * Allocate a cipher handle for a single block cipher. The returned struct
776 * crypto_cipher is the cipher handle that is required for any subsequent API
777 * invocation for that single block cipher.
778 *
779 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
780 * of an error, PTR_ERR() returns the error code.
781 */
crypto_alloc_cipher(const char * alg_name,u32 type,u32 mask)782 static inline struct crypto_cipher *crypto_alloc_cipher(const char *alg_name,
783 u32 type, u32 mask)
784 {
785 type &= ~CRYPTO_ALG_TYPE_MASK;
786 type |= CRYPTO_ALG_TYPE_CIPHER;
787 mask |= CRYPTO_ALG_TYPE_MASK;
788
789 return __crypto_cipher_cast(crypto_alloc_base(alg_name, type, mask));
790 }
791
crypto_cipher_tfm(struct crypto_cipher * tfm)792 static inline struct crypto_tfm *crypto_cipher_tfm(struct crypto_cipher *tfm)
793 {
794 return &tfm->base;
795 }
796
797 /**
798 * crypto_free_cipher() - zeroize and free the single block cipher handle
799 * @tfm: cipher handle to be freed
800 */
crypto_free_cipher(struct crypto_cipher * tfm)801 static inline void crypto_free_cipher(struct crypto_cipher *tfm)
802 {
803 crypto_free_tfm(crypto_cipher_tfm(tfm));
804 }
805
806 /**
807 * crypto_has_cipher() - Search for the availability of a single block cipher
808 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
809 * single block cipher
810 * @type: specifies the type of the cipher
811 * @mask: specifies the mask for the cipher
812 *
813 * Return: true when the single block cipher is known to the kernel crypto API;
814 * false otherwise
815 */
crypto_has_cipher(const char * alg_name,u32 type,u32 mask)816 static inline int crypto_has_cipher(const char *alg_name, u32 type, u32 mask)
817 {
818 type &= ~CRYPTO_ALG_TYPE_MASK;
819 type |= CRYPTO_ALG_TYPE_CIPHER;
820 mask |= CRYPTO_ALG_TYPE_MASK;
821
822 return crypto_has_alg(alg_name, type, mask);
823 }
824
825 /**
826 * crypto_cipher_blocksize() - obtain block size for cipher
827 * @tfm: cipher handle
828 *
829 * The block size for the single block cipher referenced with the cipher handle
830 * tfm is returned. The caller may use that information to allocate appropriate
831 * memory for the data returned by the encryption or decryption operation
832 *
833 * Return: block size of cipher
834 */
crypto_cipher_blocksize(struct crypto_cipher * tfm)835 static inline unsigned int crypto_cipher_blocksize(struct crypto_cipher *tfm)
836 {
837 return crypto_tfm_alg_blocksize(crypto_cipher_tfm(tfm));
838 }
839
crypto_cipher_alignmask(struct crypto_cipher * tfm)840 static inline unsigned int crypto_cipher_alignmask(struct crypto_cipher *tfm)
841 {
842 return crypto_tfm_alg_alignmask(crypto_cipher_tfm(tfm));
843 }
844
crypto_cipher_get_flags(struct crypto_cipher * tfm)845 static inline u32 crypto_cipher_get_flags(struct crypto_cipher *tfm)
846 {
847 return crypto_tfm_get_flags(crypto_cipher_tfm(tfm));
848 }
849
crypto_cipher_set_flags(struct crypto_cipher * tfm,u32 flags)850 static inline void crypto_cipher_set_flags(struct crypto_cipher *tfm,
851 u32 flags)
852 {
853 crypto_tfm_set_flags(crypto_cipher_tfm(tfm), flags);
854 }
855
crypto_cipher_clear_flags(struct crypto_cipher * tfm,u32 flags)856 static inline void crypto_cipher_clear_flags(struct crypto_cipher *tfm,
857 u32 flags)
858 {
859 crypto_tfm_clear_flags(crypto_cipher_tfm(tfm), flags);
860 }
861
862 /**
863 * crypto_cipher_setkey() - set key for cipher
864 * @tfm: cipher handle
865 * @key: buffer holding the key
866 * @keylen: length of the key in bytes
867 *
868 * The caller provided key is set for the single block cipher referenced by the
869 * cipher handle.
870 *
871 * Note, the key length determines the cipher type. Many block ciphers implement
872 * different cipher modes depending on the key size, such as AES-128 vs AES-192
873 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
874 * is performed.
875 *
876 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
877 */
878 int crypto_cipher_setkey(struct crypto_cipher *tfm,
879 const u8 *key, unsigned int keylen);
880
881 /**
882 * crypto_cipher_encrypt_one() - encrypt one block of plaintext
883 * @tfm: cipher handle
884 * @dst: points to the buffer that will be filled with the ciphertext
885 * @src: buffer holding the plaintext to be encrypted
886 *
887 * Invoke the encryption operation of one block. The caller must ensure that
888 * the plaintext and ciphertext buffers are at least one block in size.
889 */
890 void crypto_cipher_encrypt_one(struct crypto_cipher *tfm,
891 u8 *dst, const u8 *src);
892
893 /**
894 * crypto_cipher_decrypt_one() - decrypt one block of ciphertext
895 * @tfm: cipher handle
896 * @dst: points to the buffer that will be filled with the plaintext
897 * @src: buffer holding the ciphertext to be decrypted
898 *
899 * Invoke the decryption operation of one block. The caller must ensure that
900 * the plaintext and ciphertext buffers are at least one block in size.
901 */
902 void crypto_cipher_decrypt_one(struct crypto_cipher *tfm,
903 u8 *dst, const u8 *src);
904
__crypto_comp_cast(struct crypto_tfm * tfm)905 static inline struct crypto_comp *__crypto_comp_cast(struct crypto_tfm *tfm)
906 {
907 return (struct crypto_comp *)tfm;
908 }
909
crypto_alloc_comp(const char * alg_name,u32 type,u32 mask)910 static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name,
911 u32 type, u32 mask)
912 {
913 type &= ~CRYPTO_ALG_TYPE_MASK;
914 type |= CRYPTO_ALG_TYPE_COMPRESS;
915 mask |= CRYPTO_ALG_TYPE_MASK;
916
917 return __crypto_comp_cast(crypto_alloc_base(alg_name, type, mask));
918 }
919
crypto_comp_tfm(struct crypto_comp * tfm)920 static inline struct crypto_tfm *crypto_comp_tfm(struct crypto_comp *tfm)
921 {
922 return &tfm->base;
923 }
924
crypto_free_comp(struct crypto_comp * tfm)925 static inline void crypto_free_comp(struct crypto_comp *tfm)
926 {
927 crypto_free_tfm(crypto_comp_tfm(tfm));
928 }
929
crypto_has_comp(const char * alg_name,u32 type,u32 mask)930 static inline int crypto_has_comp(const char *alg_name, u32 type, u32 mask)
931 {
932 type &= ~CRYPTO_ALG_TYPE_MASK;
933 type |= CRYPTO_ALG_TYPE_COMPRESS;
934 mask |= CRYPTO_ALG_TYPE_MASK;
935
936 return crypto_has_alg(alg_name, type, mask);
937 }
938
crypto_comp_name(struct crypto_comp * tfm)939 static inline const char *crypto_comp_name(struct crypto_comp *tfm)
940 {
941 return crypto_tfm_alg_name(crypto_comp_tfm(tfm));
942 }
943
944 int crypto_comp_compress(struct crypto_comp *tfm,
945 const u8 *src, unsigned int slen,
946 u8 *dst, unsigned int *dlen);
947
948 int crypto_comp_decompress(struct crypto_comp *tfm,
949 const u8 *src, unsigned int slen,
950 u8 *dst, unsigned int *dlen);
951
952 #endif /* _LINUX_CRYPTO_H */
953
954