1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2015, The Linux Foundation. All rights reserved.
3  */
4 
5 #include <linux/delay.h>
6 #include <linux/highmem.h>
7 #include <linux/io.h>
8 #include <linux/iopoll.h>
9 #include <linux/module.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/slab.h>
12 #include <linux/scatterlist.h>
13 #include <linux/platform_device.h>
14 #include <linux/ktime.h>
15 
16 #include <linux/mmc/mmc.h>
17 #include <linux/mmc/host.h>
18 #include <linux/mmc/card.h>
19 
20 #include "cqhci.h"
21 
22 #define DCMD_SLOT 31
23 #define NUM_SLOTS 32
24 
25 struct cqhci_slot {
26 	struct mmc_request *mrq;
27 	unsigned int flags;
28 #define CQHCI_EXTERNAL_TIMEOUT	BIT(0)
29 #define CQHCI_COMPLETED		BIT(1)
30 #define CQHCI_HOST_CRC		BIT(2)
31 #define CQHCI_HOST_TIMEOUT	BIT(3)
32 #define CQHCI_HOST_OTHER	BIT(4)
33 };
34 
get_desc(struct cqhci_host * cq_host,u8 tag)35 static inline u8 *get_desc(struct cqhci_host *cq_host, u8 tag)
36 {
37 	return cq_host->desc_base + (tag * cq_host->slot_sz);
38 }
39 
get_link_desc(struct cqhci_host * cq_host,u8 tag)40 static inline u8 *get_link_desc(struct cqhci_host *cq_host, u8 tag)
41 {
42 	u8 *desc = get_desc(cq_host, tag);
43 
44 	return desc + cq_host->task_desc_len;
45 }
46 
get_trans_desc_dma(struct cqhci_host * cq_host,u8 tag)47 static inline dma_addr_t get_trans_desc_dma(struct cqhci_host *cq_host, u8 tag)
48 {
49 	return cq_host->trans_desc_dma_base +
50 		(cq_host->mmc->max_segs * tag *
51 		 cq_host->trans_desc_len);
52 }
53 
get_trans_desc(struct cqhci_host * cq_host,u8 tag)54 static inline u8 *get_trans_desc(struct cqhci_host *cq_host, u8 tag)
55 {
56 	return cq_host->trans_desc_base +
57 		(cq_host->trans_desc_len * cq_host->mmc->max_segs * tag);
58 }
59 
setup_trans_desc(struct cqhci_host * cq_host,u8 tag)60 static void setup_trans_desc(struct cqhci_host *cq_host, u8 tag)
61 {
62 	u8 *link_temp;
63 	dma_addr_t trans_temp;
64 
65 	link_temp = get_link_desc(cq_host, tag);
66 	trans_temp = get_trans_desc_dma(cq_host, tag);
67 
68 	memset(link_temp, 0, cq_host->link_desc_len);
69 	if (cq_host->link_desc_len > 8)
70 		*(link_temp + 8) = 0;
71 
72 	if (tag == DCMD_SLOT && (cq_host->mmc->caps2 & MMC_CAP2_CQE_DCMD)) {
73 		*link_temp = CQHCI_VALID(0) | CQHCI_ACT(0) | CQHCI_END(1);
74 		return;
75 	}
76 
77 	*link_temp = CQHCI_VALID(1) | CQHCI_ACT(0x6) | CQHCI_END(0);
78 
79 	if (cq_host->dma64) {
80 		__le64 *data_addr = (__le64 __force *)(link_temp + 4);
81 
82 		data_addr[0] = cpu_to_le64(trans_temp);
83 	} else {
84 		__le32 *data_addr = (__le32 __force *)(link_temp + 4);
85 
86 		data_addr[0] = cpu_to_le32(trans_temp);
87 	}
88 }
89 
cqhci_set_irqs(struct cqhci_host * cq_host,u32 set)90 static void cqhci_set_irqs(struct cqhci_host *cq_host, u32 set)
91 {
92 	cqhci_writel(cq_host, set, CQHCI_ISTE);
93 	cqhci_writel(cq_host, set, CQHCI_ISGE);
94 }
95 
96 #define DRV_NAME "cqhci"
97 
98 #define CQHCI_DUMP(f, x...) \
99 	pr_err("%s: " DRV_NAME ": " f, mmc_hostname(mmc), ## x)
100 
cqhci_dumpregs(struct cqhci_host * cq_host)101 static void cqhci_dumpregs(struct cqhci_host *cq_host)
102 {
103 	struct mmc_host *mmc = cq_host->mmc;
104 
105 	CQHCI_DUMP("============ CQHCI REGISTER DUMP ===========\n");
106 
107 	CQHCI_DUMP("Caps:      0x%08x | Version:  0x%08x\n",
108 		   cqhci_readl(cq_host, CQHCI_CAP),
109 		   cqhci_readl(cq_host, CQHCI_VER));
110 	CQHCI_DUMP("Config:    0x%08x | Control:  0x%08x\n",
111 		   cqhci_readl(cq_host, CQHCI_CFG),
112 		   cqhci_readl(cq_host, CQHCI_CTL));
113 	CQHCI_DUMP("Int stat:  0x%08x | Int enab: 0x%08x\n",
114 		   cqhci_readl(cq_host, CQHCI_IS),
115 		   cqhci_readl(cq_host, CQHCI_ISTE));
116 	CQHCI_DUMP("Int sig:   0x%08x | Int Coal: 0x%08x\n",
117 		   cqhci_readl(cq_host, CQHCI_ISGE),
118 		   cqhci_readl(cq_host, CQHCI_IC));
119 	CQHCI_DUMP("TDL base:  0x%08x | TDL up32: 0x%08x\n",
120 		   cqhci_readl(cq_host, CQHCI_TDLBA),
121 		   cqhci_readl(cq_host, CQHCI_TDLBAU));
122 	CQHCI_DUMP("Doorbell:  0x%08x | TCN:      0x%08x\n",
123 		   cqhci_readl(cq_host, CQHCI_TDBR),
124 		   cqhci_readl(cq_host, CQHCI_TCN));
125 	CQHCI_DUMP("Dev queue: 0x%08x | Dev Pend: 0x%08x\n",
126 		   cqhci_readl(cq_host, CQHCI_DQS),
127 		   cqhci_readl(cq_host, CQHCI_DPT));
128 	CQHCI_DUMP("Task clr:  0x%08x | SSC1:     0x%08x\n",
129 		   cqhci_readl(cq_host, CQHCI_TCLR),
130 		   cqhci_readl(cq_host, CQHCI_SSC1));
131 	CQHCI_DUMP("SSC2:      0x%08x | DCMD rsp: 0x%08x\n",
132 		   cqhci_readl(cq_host, CQHCI_SSC2),
133 		   cqhci_readl(cq_host, CQHCI_CRDCT));
134 	CQHCI_DUMP("RED mask:  0x%08x | TERRI:    0x%08x\n",
135 		   cqhci_readl(cq_host, CQHCI_RMEM),
136 		   cqhci_readl(cq_host, CQHCI_TERRI));
137 	CQHCI_DUMP("Resp idx:  0x%08x | Resp arg: 0x%08x\n",
138 		   cqhci_readl(cq_host, CQHCI_CRI),
139 		   cqhci_readl(cq_host, CQHCI_CRA));
140 
141 	if (cq_host->ops->dumpregs)
142 		cq_host->ops->dumpregs(mmc);
143 	else
144 		CQHCI_DUMP(": ===========================================\n");
145 }
146 
147 /*
148  * The allocated descriptor table for task, link & transfer descritors
149  * looks like:
150  * |----------|
151  * |task desc |  |->|----------|
152  * |----------|  |  |trans desc|
153  * |link desc-|->|  |----------|
154  * |----------|          .
155  *      .                .
156  *  no. of slots      max-segs
157  *      .           |----------|
158  * |----------|
159  * The idea here is to create the [task+trans] table and mark & point the
160  * link desc to the transfer desc table on a per slot basis.
161  */
cqhci_host_alloc_tdl(struct cqhci_host * cq_host)162 static int cqhci_host_alloc_tdl(struct cqhci_host *cq_host)
163 {
164 	int i = 0;
165 
166 	/* task descriptor can be 64/128 bit irrespective of arch */
167 	if (cq_host->caps & CQHCI_TASK_DESC_SZ_128) {
168 		cqhci_writel(cq_host, cqhci_readl(cq_host, CQHCI_CFG) |
169 			       CQHCI_TASK_DESC_SZ, CQHCI_CFG);
170 		cq_host->task_desc_len = 16;
171 	} else {
172 		cq_host->task_desc_len = 8;
173 	}
174 
175 	/*
176 	 * 96 bits length of transfer desc instead of 128 bits which means
177 	 * ADMA would expect next valid descriptor at the 96th bit
178 	 * or 128th bit
179 	 */
180 	if (cq_host->dma64) {
181 		if (cq_host->quirks & CQHCI_QUIRK_SHORT_TXFR_DESC_SZ)
182 			cq_host->trans_desc_len = 12;
183 		else
184 			cq_host->trans_desc_len = 16;
185 		cq_host->link_desc_len = 16;
186 	} else {
187 		cq_host->trans_desc_len = 8;
188 		cq_host->link_desc_len = 8;
189 	}
190 
191 	/* total size of a slot: 1 task & 1 transfer (link) */
192 	cq_host->slot_sz = cq_host->task_desc_len + cq_host->link_desc_len;
193 
194 	cq_host->desc_size = cq_host->slot_sz * cq_host->num_slots;
195 
196 	cq_host->data_size = cq_host->trans_desc_len * cq_host->mmc->max_segs *
197 		cq_host->mmc->cqe_qdepth;
198 
199 	pr_debug("%s: cqhci: desc_size: %zu data_sz: %zu slot-sz: %d\n",
200 		 mmc_hostname(cq_host->mmc), cq_host->desc_size, cq_host->data_size,
201 		 cq_host->slot_sz);
202 
203 	/*
204 	 * allocate a dma-mapped chunk of memory for the descriptors
205 	 * allocate a dma-mapped chunk of memory for link descriptors
206 	 * setup each link-desc memory offset per slot-number to
207 	 * the descriptor table.
208 	 */
209 	cq_host->desc_base = dmam_alloc_coherent(mmc_dev(cq_host->mmc),
210 						 cq_host->desc_size,
211 						 &cq_host->desc_dma_base,
212 						 GFP_KERNEL);
213 	if (!cq_host->desc_base)
214 		return -ENOMEM;
215 
216 	cq_host->trans_desc_base = dmam_alloc_coherent(mmc_dev(cq_host->mmc),
217 					      cq_host->data_size,
218 					      &cq_host->trans_desc_dma_base,
219 					      GFP_KERNEL);
220 	if (!cq_host->trans_desc_base) {
221 		dmam_free_coherent(mmc_dev(cq_host->mmc), cq_host->desc_size,
222 				   cq_host->desc_base,
223 				   cq_host->desc_dma_base);
224 		cq_host->desc_base = NULL;
225 		cq_host->desc_dma_base = 0;
226 		return -ENOMEM;
227 	}
228 
229 	pr_debug("%s: cqhci: desc-base: 0x%p trans-base: 0x%p\n desc_dma 0x%llx trans_dma: 0x%llx\n",
230 		 mmc_hostname(cq_host->mmc), cq_host->desc_base, cq_host->trans_desc_base,
231 		(unsigned long long)cq_host->desc_dma_base,
232 		(unsigned long long)cq_host->trans_desc_dma_base);
233 
234 	for (; i < (cq_host->num_slots); i++)
235 		setup_trans_desc(cq_host, i);
236 
237 	return 0;
238 }
239 
__cqhci_enable(struct cqhci_host * cq_host)240 static void __cqhci_enable(struct cqhci_host *cq_host)
241 {
242 	struct mmc_host *mmc = cq_host->mmc;
243 	u32 cqcfg;
244 
245 	cqcfg = cqhci_readl(cq_host, CQHCI_CFG);
246 
247 	/* Configuration must not be changed while enabled */
248 	if (cqcfg & CQHCI_ENABLE) {
249 		cqcfg &= ~CQHCI_ENABLE;
250 		cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
251 	}
252 
253 	cqcfg &= ~(CQHCI_DCMD | CQHCI_TASK_DESC_SZ);
254 
255 	if (mmc->caps2 & MMC_CAP2_CQE_DCMD)
256 		cqcfg |= CQHCI_DCMD;
257 
258 	if (cq_host->caps & CQHCI_TASK_DESC_SZ_128)
259 		cqcfg |= CQHCI_TASK_DESC_SZ;
260 
261 	cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
262 
263 	cqhci_writel(cq_host, lower_32_bits(cq_host->desc_dma_base),
264 		     CQHCI_TDLBA);
265 	cqhci_writel(cq_host, upper_32_bits(cq_host->desc_dma_base),
266 		     CQHCI_TDLBAU);
267 
268 	cqhci_writel(cq_host, cq_host->rca, CQHCI_SSC2);
269 
270 	cqhci_set_irqs(cq_host, 0);
271 
272 	cqcfg |= CQHCI_ENABLE;
273 
274 	cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
275 
276 	mmc->cqe_on = true;
277 
278 	if (cq_host->ops->enable)
279 		cq_host->ops->enable(mmc);
280 
281 	/* Ensure all writes are done before interrupts are enabled */
282 	wmb();
283 
284 	cqhci_set_irqs(cq_host, CQHCI_IS_MASK);
285 
286 	cq_host->activated = true;
287 }
288 
__cqhci_disable(struct cqhci_host * cq_host)289 static void __cqhci_disable(struct cqhci_host *cq_host)
290 {
291 	u32 cqcfg;
292 
293 	cqcfg = cqhci_readl(cq_host, CQHCI_CFG);
294 	cqcfg &= ~CQHCI_ENABLE;
295 	cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
296 
297 	cq_host->mmc->cqe_on = false;
298 
299 	cq_host->activated = false;
300 }
301 
cqhci_deactivate(struct mmc_host * mmc)302 int cqhci_deactivate(struct mmc_host *mmc)
303 {
304 	struct cqhci_host *cq_host = mmc->cqe_private;
305 
306 	if (cq_host->enabled && cq_host->activated)
307 		__cqhci_disable(cq_host);
308 
309 	return 0;
310 }
311 EXPORT_SYMBOL(cqhci_deactivate);
312 
cqhci_resume(struct mmc_host * mmc)313 int cqhci_resume(struct mmc_host *mmc)
314 {
315 	/* Re-enable is done upon first request */
316 	return 0;
317 }
318 EXPORT_SYMBOL(cqhci_resume);
319 
cqhci_enable(struct mmc_host * mmc,struct mmc_card * card)320 static int cqhci_enable(struct mmc_host *mmc, struct mmc_card *card)
321 {
322 	struct cqhci_host *cq_host = mmc->cqe_private;
323 	int err;
324 
325 	if (!card->ext_csd.cmdq_en)
326 		return -EINVAL;
327 
328 	if (cq_host->enabled)
329 		return 0;
330 
331 	cq_host->rca = card->rca;
332 
333 	err = cqhci_host_alloc_tdl(cq_host);
334 	if (err) {
335 		pr_err("%s: Failed to enable CQE, error %d\n",
336 		       mmc_hostname(mmc), err);
337 		return err;
338 	}
339 
340 	__cqhci_enable(cq_host);
341 
342 	cq_host->enabled = true;
343 
344 #ifdef DEBUG
345 	cqhci_dumpregs(cq_host);
346 #endif
347 	return 0;
348 }
349 
350 /* CQHCI is idle and should halt immediately, so set a small timeout */
351 #define CQHCI_OFF_TIMEOUT 100
352 
cqhci_read_ctl(struct cqhci_host * cq_host)353 static u32 cqhci_read_ctl(struct cqhci_host *cq_host)
354 {
355 	return cqhci_readl(cq_host, CQHCI_CTL);
356 }
357 
cqhci_off(struct mmc_host * mmc)358 static void cqhci_off(struct mmc_host *mmc)
359 {
360 	struct cqhci_host *cq_host = mmc->cqe_private;
361 	u32 reg;
362 	int err;
363 
364 	if (!cq_host->enabled || !mmc->cqe_on || cq_host->recovery_halt)
365 		return;
366 
367 	if (cq_host->ops->disable)
368 		cq_host->ops->disable(mmc, false);
369 
370 	cqhci_writel(cq_host, CQHCI_HALT, CQHCI_CTL);
371 
372 	err = readx_poll_timeout(cqhci_read_ctl, cq_host, reg,
373 				 reg & CQHCI_HALT, 0, CQHCI_OFF_TIMEOUT);
374 	if (err < 0)
375 		pr_err("%s: cqhci: CQE stuck on\n", mmc_hostname(mmc));
376 	else
377 		pr_debug("%s: cqhci: CQE off\n", mmc_hostname(mmc));
378 
379 	if (cq_host->ops->post_disable)
380 		cq_host->ops->post_disable(mmc);
381 
382 	mmc->cqe_on = false;
383 }
384 
cqhci_disable(struct mmc_host * mmc)385 static void cqhci_disable(struct mmc_host *mmc)
386 {
387 	struct cqhci_host *cq_host = mmc->cqe_private;
388 
389 	if (!cq_host->enabled)
390 		return;
391 
392 	cqhci_off(mmc);
393 
394 	__cqhci_disable(cq_host);
395 
396 	dmam_free_coherent(mmc_dev(mmc), cq_host->data_size,
397 			   cq_host->trans_desc_base,
398 			   cq_host->trans_desc_dma_base);
399 
400 	dmam_free_coherent(mmc_dev(mmc), cq_host->desc_size,
401 			   cq_host->desc_base,
402 			   cq_host->desc_dma_base);
403 
404 	cq_host->trans_desc_base = NULL;
405 	cq_host->desc_base = NULL;
406 
407 	cq_host->enabled = false;
408 }
409 
cqhci_prep_task_desc(struct mmc_request * mrq,u64 * data,bool intr)410 static void cqhci_prep_task_desc(struct mmc_request *mrq,
411 					u64 *data, bool intr)
412 {
413 	u32 req_flags = mrq->data->flags;
414 
415 	*data = CQHCI_VALID(1) |
416 		CQHCI_END(1) |
417 		CQHCI_INT(intr) |
418 		CQHCI_ACT(0x5) |
419 		CQHCI_FORCED_PROG(!!(req_flags & MMC_DATA_FORCED_PRG)) |
420 		CQHCI_DATA_TAG(!!(req_flags & MMC_DATA_DAT_TAG)) |
421 		CQHCI_DATA_DIR(!!(req_flags & MMC_DATA_READ)) |
422 		CQHCI_PRIORITY(!!(req_flags & MMC_DATA_PRIO)) |
423 		CQHCI_QBAR(!!(req_flags & MMC_DATA_QBR)) |
424 		CQHCI_REL_WRITE(!!(req_flags & MMC_DATA_REL_WR)) |
425 		CQHCI_BLK_COUNT(mrq->data->blocks) |
426 		CQHCI_BLK_ADDR((u64)mrq->data->blk_addr);
427 
428 	pr_debug("%s: cqhci: tag %d task descriptor 0x%016llx\n",
429 		 mmc_hostname(mrq->host), mrq->tag, (unsigned long long)*data);
430 }
431 
cqhci_dma_map(struct mmc_host * host,struct mmc_request * mrq)432 static int cqhci_dma_map(struct mmc_host *host, struct mmc_request *mrq)
433 {
434 	int sg_count;
435 	struct mmc_data *data = mrq->data;
436 
437 	if (!data)
438 		return -EINVAL;
439 
440 	sg_count = dma_map_sg(mmc_dev(host), data->sg,
441 			      data->sg_len,
442 			      (data->flags & MMC_DATA_WRITE) ?
443 			      DMA_TO_DEVICE : DMA_FROM_DEVICE);
444 	if (!sg_count) {
445 		pr_err("%s: sg-len: %d\n", __func__, data->sg_len);
446 		return -ENOMEM;
447 	}
448 
449 	return sg_count;
450 }
451 
cqhci_set_tran_desc(u8 * desc,dma_addr_t addr,int len,bool end,bool dma64)452 static void cqhci_set_tran_desc(u8 *desc, dma_addr_t addr, int len, bool end,
453 				bool dma64)
454 {
455 	__le32 *attr = (__le32 __force *)desc;
456 
457 	*attr = (CQHCI_VALID(1) |
458 		 CQHCI_END(end ? 1 : 0) |
459 		 CQHCI_INT(0) |
460 		 CQHCI_ACT(0x4) |
461 		 CQHCI_DAT_LENGTH(len));
462 
463 	if (dma64) {
464 		__le64 *dataddr = (__le64 __force *)(desc + 4);
465 
466 		dataddr[0] = cpu_to_le64(addr);
467 	} else {
468 		__le32 *dataddr = (__le32 __force *)(desc + 4);
469 
470 		dataddr[0] = cpu_to_le32(addr);
471 	}
472 }
473 
cqhci_prep_tran_desc(struct mmc_request * mrq,struct cqhci_host * cq_host,int tag)474 static int cqhci_prep_tran_desc(struct mmc_request *mrq,
475 			       struct cqhci_host *cq_host, int tag)
476 {
477 	struct mmc_data *data = mrq->data;
478 	int i, sg_count, len;
479 	bool end = false;
480 	bool dma64 = cq_host->dma64;
481 	dma_addr_t addr;
482 	u8 *desc;
483 	struct scatterlist *sg;
484 
485 	sg_count = cqhci_dma_map(mrq->host, mrq);
486 	if (sg_count < 0) {
487 		pr_err("%s: %s: unable to map sg lists, %d\n",
488 				mmc_hostname(mrq->host), __func__, sg_count);
489 		return sg_count;
490 	}
491 
492 	desc = get_trans_desc(cq_host, tag);
493 
494 	for_each_sg(data->sg, sg, sg_count, i) {
495 		addr = sg_dma_address(sg);
496 		len = sg_dma_len(sg);
497 
498 		if ((i+1) == sg_count)
499 			end = true;
500 		cqhci_set_tran_desc(desc, addr, len, end, dma64);
501 		desc += cq_host->trans_desc_len;
502 	}
503 
504 	return 0;
505 }
506 
cqhci_prep_dcmd_desc(struct mmc_host * mmc,struct mmc_request * mrq)507 static void cqhci_prep_dcmd_desc(struct mmc_host *mmc,
508 				   struct mmc_request *mrq)
509 {
510 	u64 *task_desc = NULL;
511 	u64 data = 0;
512 	u8 resp_type;
513 	u8 *desc;
514 	__le64 *dataddr;
515 	struct cqhci_host *cq_host = mmc->cqe_private;
516 	u8 timing;
517 
518 	if (!(mrq->cmd->flags & MMC_RSP_PRESENT)) {
519 		resp_type = 0x0;
520 		timing = 0x1;
521 	} else {
522 		if (mrq->cmd->flags & MMC_RSP_R1B) {
523 			resp_type = 0x3;
524 			timing = 0x0;
525 		} else {
526 			resp_type = 0x2;
527 			timing = 0x1;
528 		}
529 	}
530 
531 	task_desc = (__le64 __force *)get_desc(cq_host, cq_host->dcmd_slot);
532 	memset(task_desc, 0, cq_host->task_desc_len);
533 	data |= (CQHCI_VALID(1) |
534 		 CQHCI_END(1) |
535 		 CQHCI_INT(1) |
536 		 CQHCI_QBAR(1) |
537 		 CQHCI_ACT(0x5) |
538 		 CQHCI_CMD_INDEX(mrq->cmd->opcode) |
539 		 CQHCI_CMD_TIMING(timing) | CQHCI_RESP_TYPE(resp_type));
540 	if (cq_host->ops->update_dcmd_desc)
541 		cq_host->ops->update_dcmd_desc(mmc, mrq, &data);
542 	*task_desc |= data;
543 	desc = (u8 *)task_desc;
544 	pr_debug("%s: cqhci: dcmd: cmd: %d timing: %d resp: %d\n",
545 		 mmc_hostname(mmc), mrq->cmd->opcode, timing, resp_type);
546 	dataddr = (__le64 __force *)(desc + 4);
547 	dataddr[0] = cpu_to_le64((u64)mrq->cmd->arg);
548 
549 }
550 
cqhci_post_req(struct mmc_host * host,struct mmc_request * mrq)551 static void cqhci_post_req(struct mmc_host *host, struct mmc_request *mrq)
552 {
553 	struct mmc_data *data = mrq->data;
554 
555 	if (data) {
556 		dma_unmap_sg(mmc_dev(host), data->sg, data->sg_len,
557 			     (data->flags & MMC_DATA_READ) ?
558 			     DMA_FROM_DEVICE : DMA_TO_DEVICE);
559 	}
560 }
561 
cqhci_tag(struct mmc_request * mrq)562 static inline int cqhci_tag(struct mmc_request *mrq)
563 {
564 	return mrq->cmd ? DCMD_SLOT : mrq->tag;
565 }
566 
cqhci_request(struct mmc_host * mmc,struct mmc_request * mrq)567 static int cqhci_request(struct mmc_host *mmc, struct mmc_request *mrq)
568 {
569 	int err = 0;
570 	u64 data = 0;
571 	u64 *task_desc = NULL;
572 	int tag = cqhci_tag(mrq);
573 	struct cqhci_host *cq_host = mmc->cqe_private;
574 	unsigned long flags;
575 
576 	if (!cq_host->enabled) {
577 		pr_err("%s: cqhci: not enabled\n", mmc_hostname(mmc));
578 		return -EINVAL;
579 	}
580 
581 	/* First request after resume has to re-enable */
582 	if (!cq_host->activated)
583 		__cqhci_enable(cq_host);
584 
585 	if (!mmc->cqe_on) {
586 		if (cq_host->ops->pre_enable)
587 			cq_host->ops->pre_enable(mmc);
588 
589 		cqhci_writel(cq_host, 0, CQHCI_CTL);
590 		mmc->cqe_on = true;
591 		pr_debug("%s: cqhci: CQE on\n", mmc_hostname(mmc));
592 		if (cqhci_readl(cq_host, CQHCI_CTL) && CQHCI_HALT) {
593 			pr_err("%s: cqhci: CQE failed to exit halt state\n",
594 			       mmc_hostname(mmc));
595 		}
596 		if (cq_host->ops->enable)
597 			cq_host->ops->enable(mmc);
598 	}
599 
600 	if (mrq->data) {
601 		task_desc = (__le64 __force *)get_desc(cq_host, tag);
602 		cqhci_prep_task_desc(mrq, &data, 1);
603 		*task_desc = cpu_to_le64(data);
604 		err = cqhci_prep_tran_desc(mrq, cq_host, tag);
605 		if (err) {
606 			pr_err("%s: cqhci: failed to setup tx desc: %d\n",
607 			       mmc_hostname(mmc), err);
608 			return err;
609 		}
610 	} else {
611 		cqhci_prep_dcmd_desc(mmc, mrq);
612 	}
613 
614 	spin_lock_irqsave(&cq_host->lock, flags);
615 
616 	if (cq_host->recovery_halt) {
617 		err = -EBUSY;
618 		goto out_unlock;
619 	}
620 
621 	cq_host->slot[tag].mrq = mrq;
622 	cq_host->slot[tag].flags = 0;
623 
624 	cq_host->qcnt += 1;
625 	/* Make sure descriptors are ready before ringing the doorbell */
626 	wmb();
627 	cqhci_writel(cq_host, 1 << tag, CQHCI_TDBR);
628 	if (!(cqhci_readl(cq_host, CQHCI_TDBR) & (1 << tag)))
629 		pr_debug("%s: cqhci: doorbell not set for tag %d\n",
630 			 mmc_hostname(mmc), tag);
631 out_unlock:
632 	spin_unlock_irqrestore(&cq_host->lock, flags);
633 
634 	if (err)
635 		cqhci_post_req(mmc, mrq);
636 
637 	return err;
638 }
639 
cqhci_recovery_needed(struct mmc_host * mmc,struct mmc_request * mrq,bool notify)640 static void cqhci_recovery_needed(struct mmc_host *mmc, struct mmc_request *mrq,
641 				  bool notify)
642 {
643 	struct cqhci_host *cq_host = mmc->cqe_private;
644 
645 	if (!cq_host->recovery_halt) {
646 		cq_host->recovery_halt = true;
647 		pr_debug("%s: cqhci: recovery needed\n", mmc_hostname(mmc));
648 		wake_up(&cq_host->wait_queue);
649 		if (notify && mrq->recovery_notifier)
650 			mrq->recovery_notifier(mrq);
651 	}
652 }
653 
cqhci_error_flags(int error1,int error2)654 static unsigned int cqhci_error_flags(int error1, int error2)
655 {
656 	int error = error1 ? error1 : error2;
657 
658 	switch (error) {
659 	case -EILSEQ:
660 		return CQHCI_HOST_CRC;
661 	case -ETIMEDOUT:
662 		return CQHCI_HOST_TIMEOUT;
663 	default:
664 		return CQHCI_HOST_OTHER;
665 	}
666 }
667 
cqhci_error_irq(struct mmc_host * mmc,u32 status,int cmd_error,int data_error)668 static void cqhci_error_irq(struct mmc_host *mmc, u32 status, int cmd_error,
669 			    int data_error)
670 {
671 	struct cqhci_host *cq_host = mmc->cqe_private;
672 	struct cqhci_slot *slot;
673 	u32 terri;
674 	int tag;
675 
676 	spin_lock(&cq_host->lock);
677 
678 	terri = cqhci_readl(cq_host, CQHCI_TERRI);
679 
680 	pr_debug("%s: cqhci: error IRQ status: 0x%08x cmd error %d data error %d TERRI: 0x%08x\n",
681 		 mmc_hostname(mmc), status, cmd_error, data_error, terri);
682 
683 	/* Forget about errors when recovery has already been triggered */
684 	if (cq_host->recovery_halt)
685 		goto out_unlock;
686 
687 	if (!cq_host->qcnt) {
688 		WARN_ONCE(1, "%s: cqhci: error when idle. IRQ status: 0x%08x cmd error %d data error %d TERRI: 0x%08x\n",
689 			  mmc_hostname(mmc), status, cmd_error, data_error,
690 			  terri);
691 		goto out_unlock;
692 	}
693 
694 	if (CQHCI_TERRI_C_VALID(terri)) {
695 		tag = CQHCI_TERRI_C_TASK(terri);
696 		slot = &cq_host->slot[tag];
697 		if (slot->mrq) {
698 			slot->flags = cqhci_error_flags(cmd_error, data_error);
699 			cqhci_recovery_needed(mmc, slot->mrq, true);
700 		}
701 	}
702 
703 	if (CQHCI_TERRI_D_VALID(terri)) {
704 		tag = CQHCI_TERRI_D_TASK(terri);
705 		slot = &cq_host->slot[tag];
706 		if (slot->mrq) {
707 			slot->flags = cqhci_error_flags(data_error, cmd_error);
708 			cqhci_recovery_needed(mmc, slot->mrq, true);
709 		}
710 	}
711 
712 	if (!cq_host->recovery_halt) {
713 		/*
714 		 * The only way to guarantee forward progress is to mark at
715 		 * least one task in error, so if none is indicated, pick one.
716 		 */
717 		for (tag = 0; tag < NUM_SLOTS; tag++) {
718 			slot = &cq_host->slot[tag];
719 			if (!slot->mrq)
720 				continue;
721 			slot->flags = cqhci_error_flags(data_error, cmd_error);
722 			cqhci_recovery_needed(mmc, slot->mrq, true);
723 			break;
724 		}
725 	}
726 
727 out_unlock:
728 	spin_unlock(&cq_host->lock);
729 }
730 
cqhci_finish_mrq(struct mmc_host * mmc,unsigned int tag)731 static void cqhci_finish_mrq(struct mmc_host *mmc, unsigned int tag)
732 {
733 	struct cqhci_host *cq_host = mmc->cqe_private;
734 	struct cqhci_slot *slot = &cq_host->slot[tag];
735 	struct mmc_request *mrq = slot->mrq;
736 	struct mmc_data *data;
737 
738 	if (!mrq) {
739 		WARN_ONCE(1, "%s: cqhci: spurious TCN for tag %d\n",
740 			  mmc_hostname(mmc), tag);
741 		return;
742 	}
743 
744 	/* No completions allowed during recovery */
745 	if (cq_host->recovery_halt) {
746 		slot->flags |= CQHCI_COMPLETED;
747 		return;
748 	}
749 
750 	slot->mrq = NULL;
751 
752 	cq_host->qcnt -= 1;
753 
754 	data = mrq->data;
755 	if (data) {
756 		if (data->error)
757 			data->bytes_xfered = 0;
758 		else
759 			data->bytes_xfered = data->blksz * data->blocks;
760 	}
761 
762 	mmc_cqe_request_done(mmc, mrq);
763 }
764 
cqhci_irq(struct mmc_host * mmc,u32 intmask,int cmd_error,int data_error)765 irqreturn_t cqhci_irq(struct mmc_host *mmc, u32 intmask, int cmd_error,
766 		      int data_error)
767 {
768 	u32 status;
769 	unsigned long tag = 0, comp_status;
770 	struct cqhci_host *cq_host = mmc->cqe_private;
771 
772 	status = cqhci_readl(cq_host, CQHCI_IS);
773 	cqhci_writel(cq_host, status, CQHCI_IS);
774 
775 	pr_debug("%s: cqhci: IRQ status: 0x%08x\n", mmc_hostname(mmc), status);
776 
777 	if ((status & CQHCI_IS_RED) || cmd_error || data_error)
778 		cqhci_error_irq(mmc, status, cmd_error, data_error);
779 
780 	if (status & CQHCI_IS_TCC) {
781 		/* read TCN and complete the request */
782 		comp_status = cqhci_readl(cq_host, CQHCI_TCN);
783 		cqhci_writel(cq_host, comp_status, CQHCI_TCN);
784 		pr_debug("%s: cqhci: TCN: 0x%08lx\n",
785 			 mmc_hostname(mmc), comp_status);
786 
787 		spin_lock(&cq_host->lock);
788 
789 		for_each_set_bit(tag, &comp_status, cq_host->num_slots) {
790 			/* complete the corresponding mrq */
791 			pr_debug("%s: cqhci: completing tag %lu\n",
792 				 mmc_hostname(mmc), tag);
793 			cqhci_finish_mrq(mmc, tag);
794 		}
795 
796 		if (cq_host->waiting_for_idle && !cq_host->qcnt) {
797 			cq_host->waiting_for_idle = false;
798 			wake_up(&cq_host->wait_queue);
799 		}
800 
801 		spin_unlock(&cq_host->lock);
802 	}
803 
804 	if (status & CQHCI_IS_TCL)
805 		wake_up(&cq_host->wait_queue);
806 
807 	if (status & CQHCI_IS_HAC)
808 		wake_up(&cq_host->wait_queue);
809 
810 	return IRQ_HANDLED;
811 }
812 EXPORT_SYMBOL(cqhci_irq);
813 
cqhci_is_idle(struct cqhci_host * cq_host,int * ret)814 static bool cqhci_is_idle(struct cqhci_host *cq_host, int *ret)
815 {
816 	unsigned long flags;
817 	bool is_idle;
818 
819 	spin_lock_irqsave(&cq_host->lock, flags);
820 	is_idle = !cq_host->qcnt || cq_host->recovery_halt;
821 	*ret = cq_host->recovery_halt ? -EBUSY : 0;
822 	cq_host->waiting_for_idle = !is_idle;
823 	spin_unlock_irqrestore(&cq_host->lock, flags);
824 
825 	return is_idle;
826 }
827 
cqhci_wait_for_idle(struct mmc_host * mmc)828 static int cqhci_wait_for_idle(struct mmc_host *mmc)
829 {
830 	struct cqhci_host *cq_host = mmc->cqe_private;
831 	int ret;
832 
833 	wait_event(cq_host->wait_queue, cqhci_is_idle(cq_host, &ret));
834 
835 	return ret;
836 }
837 
cqhci_timeout(struct mmc_host * mmc,struct mmc_request * mrq,bool * recovery_needed)838 static bool cqhci_timeout(struct mmc_host *mmc, struct mmc_request *mrq,
839 			  bool *recovery_needed)
840 {
841 	struct cqhci_host *cq_host = mmc->cqe_private;
842 	int tag = cqhci_tag(mrq);
843 	struct cqhci_slot *slot = &cq_host->slot[tag];
844 	unsigned long flags;
845 	bool timed_out;
846 
847 	spin_lock_irqsave(&cq_host->lock, flags);
848 	timed_out = slot->mrq == mrq;
849 	if (timed_out) {
850 		slot->flags |= CQHCI_EXTERNAL_TIMEOUT;
851 		cqhci_recovery_needed(mmc, mrq, false);
852 		*recovery_needed = cq_host->recovery_halt;
853 	}
854 	spin_unlock_irqrestore(&cq_host->lock, flags);
855 
856 	if (timed_out) {
857 		pr_err("%s: cqhci: timeout for tag %d\n",
858 		       mmc_hostname(mmc), tag);
859 		cqhci_dumpregs(cq_host);
860 	}
861 
862 	return timed_out;
863 }
864 
cqhci_tasks_cleared(struct cqhci_host * cq_host)865 static bool cqhci_tasks_cleared(struct cqhci_host *cq_host)
866 {
867 	return !(cqhci_readl(cq_host, CQHCI_CTL) & CQHCI_CLEAR_ALL_TASKS);
868 }
869 
cqhci_clear_all_tasks(struct mmc_host * mmc,unsigned int timeout)870 static bool cqhci_clear_all_tasks(struct mmc_host *mmc, unsigned int timeout)
871 {
872 	struct cqhci_host *cq_host = mmc->cqe_private;
873 	bool ret;
874 	u32 ctl;
875 
876 	cqhci_set_irqs(cq_host, CQHCI_IS_TCL);
877 
878 	ctl = cqhci_readl(cq_host, CQHCI_CTL);
879 	ctl |= CQHCI_CLEAR_ALL_TASKS;
880 	cqhci_writel(cq_host, ctl, CQHCI_CTL);
881 
882 	wait_event_timeout(cq_host->wait_queue, cqhci_tasks_cleared(cq_host),
883 			   msecs_to_jiffies(timeout) + 1);
884 
885 	cqhci_set_irqs(cq_host, 0);
886 
887 	ret = cqhci_tasks_cleared(cq_host);
888 
889 	if (!ret)
890 		pr_debug("%s: cqhci: Failed to clear tasks\n",
891 			 mmc_hostname(mmc));
892 
893 	return ret;
894 }
895 
cqhci_halted(struct cqhci_host * cq_host)896 static bool cqhci_halted(struct cqhci_host *cq_host)
897 {
898 	return cqhci_readl(cq_host, CQHCI_CTL) & CQHCI_HALT;
899 }
900 
cqhci_halt(struct mmc_host * mmc,unsigned int timeout)901 static bool cqhci_halt(struct mmc_host *mmc, unsigned int timeout)
902 {
903 	struct cqhci_host *cq_host = mmc->cqe_private;
904 	bool ret;
905 	u32 ctl;
906 
907 	if (cqhci_halted(cq_host))
908 		return true;
909 
910 	cqhci_set_irqs(cq_host, CQHCI_IS_HAC);
911 
912 	ctl = cqhci_readl(cq_host, CQHCI_CTL);
913 	ctl |= CQHCI_HALT;
914 	cqhci_writel(cq_host, ctl, CQHCI_CTL);
915 
916 	wait_event_timeout(cq_host->wait_queue, cqhci_halted(cq_host),
917 			   msecs_to_jiffies(timeout) + 1);
918 
919 	cqhci_set_irqs(cq_host, 0);
920 
921 	ret = cqhci_halted(cq_host);
922 
923 	if (!ret)
924 		pr_debug("%s: cqhci: Failed to halt\n", mmc_hostname(mmc));
925 
926 	return ret;
927 }
928 
929 /*
930  * After halting we expect to be able to use the command line. We interpret the
931  * failure to halt to mean the data lines might still be in use (and the upper
932  * layers will need to send a STOP command), so we set the timeout based on a
933  * generous command timeout.
934  */
935 #define CQHCI_START_HALT_TIMEOUT	5
936 
cqhci_recovery_start(struct mmc_host * mmc)937 static void cqhci_recovery_start(struct mmc_host *mmc)
938 {
939 	struct cqhci_host *cq_host = mmc->cqe_private;
940 
941 	pr_debug("%s: cqhci: %s\n", mmc_hostname(mmc), __func__);
942 
943 	WARN_ON(!cq_host->recovery_halt);
944 
945 	cqhci_halt(mmc, CQHCI_START_HALT_TIMEOUT);
946 
947 	if (cq_host->ops->disable)
948 		cq_host->ops->disable(mmc, true);
949 
950 	mmc->cqe_on = false;
951 }
952 
cqhci_error_from_flags(unsigned int flags)953 static int cqhci_error_from_flags(unsigned int flags)
954 {
955 	if (!flags)
956 		return 0;
957 
958 	/* CRC errors might indicate re-tuning so prefer to report that */
959 	if (flags & CQHCI_HOST_CRC)
960 		return -EILSEQ;
961 
962 	if (flags & (CQHCI_EXTERNAL_TIMEOUT | CQHCI_HOST_TIMEOUT))
963 		return -ETIMEDOUT;
964 
965 	return -EIO;
966 }
967 
cqhci_recover_mrq(struct cqhci_host * cq_host,unsigned int tag)968 static void cqhci_recover_mrq(struct cqhci_host *cq_host, unsigned int tag)
969 {
970 	struct cqhci_slot *slot = &cq_host->slot[tag];
971 	struct mmc_request *mrq = slot->mrq;
972 	struct mmc_data *data;
973 
974 	if (!mrq)
975 		return;
976 
977 	slot->mrq = NULL;
978 
979 	cq_host->qcnt -= 1;
980 
981 	data = mrq->data;
982 	if (data) {
983 		data->bytes_xfered = 0;
984 		data->error = cqhci_error_from_flags(slot->flags);
985 	} else {
986 		mrq->cmd->error = cqhci_error_from_flags(slot->flags);
987 	}
988 
989 	mmc_cqe_request_done(cq_host->mmc, mrq);
990 }
991 
cqhci_recover_mrqs(struct cqhci_host * cq_host)992 static void cqhci_recover_mrqs(struct cqhci_host *cq_host)
993 {
994 	int i;
995 
996 	for (i = 0; i < cq_host->num_slots; i++)
997 		cqhci_recover_mrq(cq_host, i);
998 }
999 
1000 /*
1001  * By now the command and data lines should be unused so there is no reason for
1002  * CQHCI to take a long time to halt, but if it doesn't halt there could be
1003  * problems clearing tasks, so be generous.
1004  */
1005 #define CQHCI_FINISH_HALT_TIMEOUT	20
1006 
1007 /* CQHCI could be expected to clear it's internal state pretty quickly */
1008 #define CQHCI_CLEAR_TIMEOUT		20
1009 
cqhci_recovery_finish(struct mmc_host * mmc)1010 static void cqhci_recovery_finish(struct mmc_host *mmc)
1011 {
1012 	struct cqhci_host *cq_host = mmc->cqe_private;
1013 	unsigned long flags;
1014 	u32 cqcfg;
1015 	bool ok;
1016 
1017 	pr_debug("%s: cqhci: %s\n", mmc_hostname(mmc), __func__);
1018 
1019 	WARN_ON(!cq_host->recovery_halt);
1020 
1021 	ok = cqhci_halt(mmc, CQHCI_FINISH_HALT_TIMEOUT);
1022 
1023 	if (!cqhci_clear_all_tasks(mmc, CQHCI_CLEAR_TIMEOUT))
1024 		ok = false;
1025 
1026 	/*
1027 	 * The specification contradicts itself, by saying that tasks cannot be
1028 	 * cleared if CQHCI does not halt, but if CQHCI does not halt, it should
1029 	 * be disabled/re-enabled, but not to disable before clearing tasks.
1030 	 * Have a go anyway.
1031 	 */
1032 	if (!ok) {
1033 		pr_debug("%s: cqhci: disable / re-enable\n", mmc_hostname(mmc));
1034 		cqcfg = cqhci_readl(cq_host, CQHCI_CFG);
1035 		cqcfg &= ~CQHCI_ENABLE;
1036 		cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
1037 		cqcfg |= CQHCI_ENABLE;
1038 		cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
1039 		/* Be sure that there are no tasks */
1040 		ok = cqhci_halt(mmc, CQHCI_FINISH_HALT_TIMEOUT);
1041 		if (!cqhci_clear_all_tasks(mmc, CQHCI_CLEAR_TIMEOUT))
1042 			ok = false;
1043 		WARN_ON(!ok);
1044 	}
1045 
1046 	cqhci_recover_mrqs(cq_host);
1047 
1048 	WARN_ON(cq_host->qcnt);
1049 
1050 	spin_lock_irqsave(&cq_host->lock, flags);
1051 	cq_host->qcnt = 0;
1052 	cq_host->recovery_halt = false;
1053 	mmc->cqe_on = false;
1054 	spin_unlock_irqrestore(&cq_host->lock, flags);
1055 
1056 	/* Ensure all writes are done before interrupts are re-enabled */
1057 	wmb();
1058 
1059 	cqhci_writel(cq_host, CQHCI_IS_HAC | CQHCI_IS_TCL, CQHCI_IS);
1060 
1061 	cqhci_set_irqs(cq_host, CQHCI_IS_MASK);
1062 
1063 	pr_debug("%s: cqhci: recovery done\n", mmc_hostname(mmc));
1064 }
1065 
1066 static const struct mmc_cqe_ops cqhci_cqe_ops = {
1067 	.cqe_enable = cqhci_enable,
1068 	.cqe_disable = cqhci_disable,
1069 	.cqe_request = cqhci_request,
1070 	.cqe_post_req = cqhci_post_req,
1071 	.cqe_off = cqhci_off,
1072 	.cqe_wait_for_idle = cqhci_wait_for_idle,
1073 	.cqe_timeout = cqhci_timeout,
1074 	.cqe_recovery_start = cqhci_recovery_start,
1075 	.cqe_recovery_finish = cqhci_recovery_finish,
1076 };
1077 
cqhci_pltfm_init(struct platform_device * pdev)1078 struct cqhci_host *cqhci_pltfm_init(struct platform_device *pdev)
1079 {
1080 	struct cqhci_host *cq_host;
1081 	struct resource *cqhci_memres = NULL;
1082 
1083 	/* check and setup CMDQ interface */
1084 	cqhci_memres = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1085 						   "cqhci");
1086 	if (!cqhci_memres) {
1087 		dev_dbg(&pdev->dev, "CMDQ not supported\n");
1088 		return ERR_PTR(-EINVAL);
1089 	}
1090 
1091 	cq_host = devm_kzalloc(&pdev->dev, sizeof(*cq_host), GFP_KERNEL);
1092 	if (!cq_host)
1093 		return ERR_PTR(-ENOMEM);
1094 	cq_host->mmio = devm_ioremap(&pdev->dev,
1095 				     cqhci_memres->start,
1096 				     resource_size(cqhci_memres));
1097 	if (!cq_host->mmio) {
1098 		dev_err(&pdev->dev, "failed to remap cqhci regs\n");
1099 		return ERR_PTR(-EBUSY);
1100 	}
1101 	dev_dbg(&pdev->dev, "CMDQ ioremap: done\n");
1102 
1103 	return cq_host;
1104 }
1105 EXPORT_SYMBOL(cqhci_pltfm_init);
1106 
cqhci_ver_major(struct cqhci_host * cq_host)1107 static unsigned int cqhci_ver_major(struct cqhci_host *cq_host)
1108 {
1109 	return CQHCI_VER_MAJOR(cqhci_readl(cq_host, CQHCI_VER));
1110 }
1111 
cqhci_ver_minor(struct cqhci_host * cq_host)1112 static unsigned int cqhci_ver_minor(struct cqhci_host *cq_host)
1113 {
1114 	u32 ver = cqhci_readl(cq_host, CQHCI_VER);
1115 
1116 	return CQHCI_VER_MINOR1(ver) * 10 + CQHCI_VER_MINOR2(ver);
1117 }
1118 
cqhci_init(struct cqhci_host * cq_host,struct mmc_host * mmc,bool dma64)1119 int cqhci_init(struct cqhci_host *cq_host, struct mmc_host *mmc,
1120 	      bool dma64)
1121 {
1122 	int err;
1123 
1124 	cq_host->dma64 = dma64;
1125 	cq_host->mmc = mmc;
1126 	cq_host->mmc->cqe_private = cq_host;
1127 
1128 	cq_host->num_slots = NUM_SLOTS;
1129 	cq_host->dcmd_slot = DCMD_SLOT;
1130 
1131 	mmc->cqe_ops = &cqhci_cqe_ops;
1132 
1133 	mmc->cqe_qdepth = NUM_SLOTS;
1134 	if (mmc->caps2 & MMC_CAP2_CQE_DCMD)
1135 		mmc->cqe_qdepth -= 1;
1136 
1137 	cq_host->slot = devm_kcalloc(mmc_dev(mmc), cq_host->num_slots,
1138 				     sizeof(*cq_host->slot), GFP_KERNEL);
1139 	if (!cq_host->slot) {
1140 		err = -ENOMEM;
1141 		goto out_err;
1142 	}
1143 
1144 	spin_lock_init(&cq_host->lock);
1145 
1146 	init_completion(&cq_host->halt_comp);
1147 	init_waitqueue_head(&cq_host->wait_queue);
1148 
1149 	pr_info("%s: CQHCI version %u.%02u\n",
1150 		mmc_hostname(mmc), cqhci_ver_major(cq_host),
1151 		cqhci_ver_minor(cq_host));
1152 
1153 	return 0;
1154 
1155 out_err:
1156 	pr_err("%s: CQHCI version %u.%02u failed to initialize, error %d\n",
1157 	       mmc_hostname(mmc), cqhci_ver_major(cq_host),
1158 	       cqhci_ver_minor(cq_host), err);
1159 	return err;
1160 }
1161 EXPORT_SYMBOL(cqhci_init);
1162 
1163 MODULE_AUTHOR("Venkat Gopalakrishnan <venkatg@codeaurora.org>");
1164 MODULE_DESCRIPTION("Command Queue Host Controller Interface driver");
1165 MODULE_LICENSE("GPL v2");
1166