1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2015, The Linux Foundation. All rights reserved.
3 */
4
5 #include <linux/delay.h>
6 #include <linux/highmem.h>
7 #include <linux/io.h>
8 #include <linux/iopoll.h>
9 #include <linux/module.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/slab.h>
12 #include <linux/scatterlist.h>
13 #include <linux/platform_device.h>
14 #include <linux/ktime.h>
15
16 #include <linux/mmc/mmc.h>
17 #include <linux/mmc/host.h>
18 #include <linux/mmc/card.h>
19
20 #include "cqhci.h"
21
22 #define DCMD_SLOT 31
23 #define NUM_SLOTS 32
24
25 struct cqhci_slot {
26 struct mmc_request *mrq;
27 unsigned int flags;
28 #define CQHCI_EXTERNAL_TIMEOUT BIT(0)
29 #define CQHCI_COMPLETED BIT(1)
30 #define CQHCI_HOST_CRC BIT(2)
31 #define CQHCI_HOST_TIMEOUT BIT(3)
32 #define CQHCI_HOST_OTHER BIT(4)
33 };
34
get_desc(struct cqhci_host * cq_host,u8 tag)35 static inline u8 *get_desc(struct cqhci_host *cq_host, u8 tag)
36 {
37 return cq_host->desc_base + (tag * cq_host->slot_sz);
38 }
39
get_link_desc(struct cqhci_host * cq_host,u8 tag)40 static inline u8 *get_link_desc(struct cqhci_host *cq_host, u8 tag)
41 {
42 u8 *desc = get_desc(cq_host, tag);
43
44 return desc + cq_host->task_desc_len;
45 }
46
get_trans_desc_dma(struct cqhci_host * cq_host,u8 tag)47 static inline dma_addr_t get_trans_desc_dma(struct cqhci_host *cq_host, u8 tag)
48 {
49 return cq_host->trans_desc_dma_base +
50 (cq_host->mmc->max_segs * tag *
51 cq_host->trans_desc_len);
52 }
53
get_trans_desc(struct cqhci_host * cq_host,u8 tag)54 static inline u8 *get_trans_desc(struct cqhci_host *cq_host, u8 tag)
55 {
56 return cq_host->trans_desc_base +
57 (cq_host->trans_desc_len * cq_host->mmc->max_segs * tag);
58 }
59
setup_trans_desc(struct cqhci_host * cq_host,u8 tag)60 static void setup_trans_desc(struct cqhci_host *cq_host, u8 tag)
61 {
62 u8 *link_temp;
63 dma_addr_t trans_temp;
64
65 link_temp = get_link_desc(cq_host, tag);
66 trans_temp = get_trans_desc_dma(cq_host, tag);
67
68 memset(link_temp, 0, cq_host->link_desc_len);
69 if (cq_host->link_desc_len > 8)
70 *(link_temp + 8) = 0;
71
72 if (tag == DCMD_SLOT && (cq_host->mmc->caps2 & MMC_CAP2_CQE_DCMD)) {
73 *link_temp = CQHCI_VALID(0) | CQHCI_ACT(0) | CQHCI_END(1);
74 return;
75 }
76
77 *link_temp = CQHCI_VALID(1) | CQHCI_ACT(0x6) | CQHCI_END(0);
78
79 if (cq_host->dma64) {
80 __le64 *data_addr = (__le64 __force *)(link_temp + 4);
81
82 data_addr[0] = cpu_to_le64(trans_temp);
83 } else {
84 __le32 *data_addr = (__le32 __force *)(link_temp + 4);
85
86 data_addr[0] = cpu_to_le32(trans_temp);
87 }
88 }
89
cqhci_set_irqs(struct cqhci_host * cq_host,u32 set)90 static void cqhci_set_irqs(struct cqhci_host *cq_host, u32 set)
91 {
92 cqhci_writel(cq_host, set, CQHCI_ISTE);
93 cqhci_writel(cq_host, set, CQHCI_ISGE);
94 }
95
96 #define DRV_NAME "cqhci"
97
98 #define CQHCI_DUMP(f, x...) \
99 pr_err("%s: " DRV_NAME ": " f, mmc_hostname(mmc), ## x)
100
cqhci_dumpregs(struct cqhci_host * cq_host)101 static void cqhci_dumpregs(struct cqhci_host *cq_host)
102 {
103 struct mmc_host *mmc = cq_host->mmc;
104
105 CQHCI_DUMP("============ CQHCI REGISTER DUMP ===========\n");
106
107 CQHCI_DUMP("Caps: 0x%08x | Version: 0x%08x\n",
108 cqhci_readl(cq_host, CQHCI_CAP),
109 cqhci_readl(cq_host, CQHCI_VER));
110 CQHCI_DUMP("Config: 0x%08x | Control: 0x%08x\n",
111 cqhci_readl(cq_host, CQHCI_CFG),
112 cqhci_readl(cq_host, CQHCI_CTL));
113 CQHCI_DUMP("Int stat: 0x%08x | Int enab: 0x%08x\n",
114 cqhci_readl(cq_host, CQHCI_IS),
115 cqhci_readl(cq_host, CQHCI_ISTE));
116 CQHCI_DUMP("Int sig: 0x%08x | Int Coal: 0x%08x\n",
117 cqhci_readl(cq_host, CQHCI_ISGE),
118 cqhci_readl(cq_host, CQHCI_IC));
119 CQHCI_DUMP("TDL base: 0x%08x | TDL up32: 0x%08x\n",
120 cqhci_readl(cq_host, CQHCI_TDLBA),
121 cqhci_readl(cq_host, CQHCI_TDLBAU));
122 CQHCI_DUMP("Doorbell: 0x%08x | TCN: 0x%08x\n",
123 cqhci_readl(cq_host, CQHCI_TDBR),
124 cqhci_readl(cq_host, CQHCI_TCN));
125 CQHCI_DUMP("Dev queue: 0x%08x | Dev Pend: 0x%08x\n",
126 cqhci_readl(cq_host, CQHCI_DQS),
127 cqhci_readl(cq_host, CQHCI_DPT));
128 CQHCI_DUMP("Task clr: 0x%08x | SSC1: 0x%08x\n",
129 cqhci_readl(cq_host, CQHCI_TCLR),
130 cqhci_readl(cq_host, CQHCI_SSC1));
131 CQHCI_DUMP("SSC2: 0x%08x | DCMD rsp: 0x%08x\n",
132 cqhci_readl(cq_host, CQHCI_SSC2),
133 cqhci_readl(cq_host, CQHCI_CRDCT));
134 CQHCI_DUMP("RED mask: 0x%08x | TERRI: 0x%08x\n",
135 cqhci_readl(cq_host, CQHCI_RMEM),
136 cqhci_readl(cq_host, CQHCI_TERRI));
137 CQHCI_DUMP("Resp idx: 0x%08x | Resp arg: 0x%08x\n",
138 cqhci_readl(cq_host, CQHCI_CRI),
139 cqhci_readl(cq_host, CQHCI_CRA));
140
141 if (cq_host->ops->dumpregs)
142 cq_host->ops->dumpregs(mmc);
143 else
144 CQHCI_DUMP(": ===========================================\n");
145 }
146
147 /*
148 * The allocated descriptor table for task, link & transfer descritors
149 * looks like:
150 * |----------|
151 * |task desc | |->|----------|
152 * |----------| | |trans desc|
153 * |link desc-|->| |----------|
154 * |----------| .
155 * . .
156 * no. of slots max-segs
157 * . |----------|
158 * |----------|
159 * The idea here is to create the [task+trans] table and mark & point the
160 * link desc to the transfer desc table on a per slot basis.
161 */
cqhci_host_alloc_tdl(struct cqhci_host * cq_host)162 static int cqhci_host_alloc_tdl(struct cqhci_host *cq_host)
163 {
164 int i = 0;
165
166 /* task descriptor can be 64/128 bit irrespective of arch */
167 if (cq_host->caps & CQHCI_TASK_DESC_SZ_128) {
168 cqhci_writel(cq_host, cqhci_readl(cq_host, CQHCI_CFG) |
169 CQHCI_TASK_DESC_SZ, CQHCI_CFG);
170 cq_host->task_desc_len = 16;
171 } else {
172 cq_host->task_desc_len = 8;
173 }
174
175 /*
176 * 96 bits length of transfer desc instead of 128 bits which means
177 * ADMA would expect next valid descriptor at the 96th bit
178 * or 128th bit
179 */
180 if (cq_host->dma64) {
181 if (cq_host->quirks & CQHCI_QUIRK_SHORT_TXFR_DESC_SZ)
182 cq_host->trans_desc_len = 12;
183 else
184 cq_host->trans_desc_len = 16;
185 cq_host->link_desc_len = 16;
186 } else {
187 cq_host->trans_desc_len = 8;
188 cq_host->link_desc_len = 8;
189 }
190
191 /* total size of a slot: 1 task & 1 transfer (link) */
192 cq_host->slot_sz = cq_host->task_desc_len + cq_host->link_desc_len;
193
194 cq_host->desc_size = cq_host->slot_sz * cq_host->num_slots;
195
196 cq_host->data_size = cq_host->trans_desc_len * cq_host->mmc->max_segs *
197 cq_host->mmc->cqe_qdepth;
198
199 pr_debug("%s: cqhci: desc_size: %zu data_sz: %zu slot-sz: %d\n",
200 mmc_hostname(cq_host->mmc), cq_host->desc_size, cq_host->data_size,
201 cq_host->slot_sz);
202
203 /*
204 * allocate a dma-mapped chunk of memory for the descriptors
205 * allocate a dma-mapped chunk of memory for link descriptors
206 * setup each link-desc memory offset per slot-number to
207 * the descriptor table.
208 */
209 cq_host->desc_base = dmam_alloc_coherent(mmc_dev(cq_host->mmc),
210 cq_host->desc_size,
211 &cq_host->desc_dma_base,
212 GFP_KERNEL);
213 if (!cq_host->desc_base)
214 return -ENOMEM;
215
216 cq_host->trans_desc_base = dmam_alloc_coherent(mmc_dev(cq_host->mmc),
217 cq_host->data_size,
218 &cq_host->trans_desc_dma_base,
219 GFP_KERNEL);
220 if (!cq_host->trans_desc_base) {
221 dmam_free_coherent(mmc_dev(cq_host->mmc), cq_host->desc_size,
222 cq_host->desc_base,
223 cq_host->desc_dma_base);
224 cq_host->desc_base = NULL;
225 cq_host->desc_dma_base = 0;
226 return -ENOMEM;
227 }
228
229 pr_debug("%s: cqhci: desc-base: 0x%p trans-base: 0x%p\n desc_dma 0x%llx trans_dma: 0x%llx\n",
230 mmc_hostname(cq_host->mmc), cq_host->desc_base, cq_host->trans_desc_base,
231 (unsigned long long)cq_host->desc_dma_base,
232 (unsigned long long)cq_host->trans_desc_dma_base);
233
234 for (; i < (cq_host->num_slots); i++)
235 setup_trans_desc(cq_host, i);
236
237 return 0;
238 }
239
__cqhci_enable(struct cqhci_host * cq_host)240 static void __cqhci_enable(struct cqhci_host *cq_host)
241 {
242 struct mmc_host *mmc = cq_host->mmc;
243 u32 cqcfg;
244
245 cqcfg = cqhci_readl(cq_host, CQHCI_CFG);
246
247 /* Configuration must not be changed while enabled */
248 if (cqcfg & CQHCI_ENABLE) {
249 cqcfg &= ~CQHCI_ENABLE;
250 cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
251 }
252
253 cqcfg &= ~(CQHCI_DCMD | CQHCI_TASK_DESC_SZ);
254
255 if (mmc->caps2 & MMC_CAP2_CQE_DCMD)
256 cqcfg |= CQHCI_DCMD;
257
258 if (cq_host->caps & CQHCI_TASK_DESC_SZ_128)
259 cqcfg |= CQHCI_TASK_DESC_SZ;
260
261 cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
262
263 cqhci_writel(cq_host, lower_32_bits(cq_host->desc_dma_base),
264 CQHCI_TDLBA);
265 cqhci_writel(cq_host, upper_32_bits(cq_host->desc_dma_base),
266 CQHCI_TDLBAU);
267
268 cqhci_writel(cq_host, cq_host->rca, CQHCI_SSC2);
269
270 cqhci_set_irqs(cq_host, 0);
271
272 cqcfg |= CQHCI_ENABLE;
273
274 cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
275
276 mmc->cqe_on = true;
277
278 if (cq_host->ops->enable)
279 cq_host->ops->enable(mmc);
280
281 /* Ensure all writes are done before interrupts are enabled */
282 wmb();
283
284 cqhci_set_irqs(cq_host, CQHCI_IS_MASK);
285
286 cq_host->activated = true;
287 }
288
__cqhci_disable(struct cqhci_host * cq_host)289 static void __cqhci_disable(struct cqhci_host *cq_host)
290 {
291 u32 cqcfg;
292
293 cqcfg = cqhci_readl(cq_host, CQHCI_CFG);
294 cqcfg &= ~CQHCI_ENABLE;
295 cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
296
297 cq_host->mmc->cqe_on = false;
298
299 cq_host->activated = false;
300 }
301
cqhci_deactivate(struct mmc_host * mmc)302 int cqhci_deactivate(struct mmc_host *mmc)
303 {
304 struct cqhci_host *cq_host = mmc->cqe_private;
305
306 if (cq_host->enabled && cq_host->activated)
307 __cqhci_disable(cq_host);
308
309 return 0;
310 }
311 EXPORT_SYMBOL(cqhci_deactivate);
312
cqhci_resume(struct mmc_host * mmc)313 int cqhci_resume(struct mmc_host *mmc)
314 {
315 /* Re-enable is done upon first request */
316 return 0;
317 }
318 EXPORT_SYMBOL(cqhci_resume);
319
cqhci_enable(struct mmc_host * mmc,struct mmc_card * card)320 static int cqhci_enable(struct mmc_host *mmc, struct mmc_card *card)
321 {
322 struct cqhci_host *cq_host = mmc->cqe_private;
323 int err;
324
325 if (!card->ext_csd.cmdq_en)
326 return -EINVAL;
327
328 if (cq_host->enabled)
329 return 0;
330
331 cq_host->rca = card->rca;
332
333 err = cqhci_host_alloc_tdl(cq_host);
334 if (err) {
335 pr_err("%s: Failed to enable CQE, error %d\n",
336 mmc_hostname(mmc), err);
337 return err;
338 }
339
340 __cqhci_enable(cq_host);
341
342 cq_host->enabled = true;
343
344 #ifdef DEBUG
345 cqhci_dumpregs(cq_host);
346 #endif
347 return 0;
348 }
349
350 /* CQHCI is idle and should halt immediately, so set a small timeout */
351 #define CQHCI_OFF_TIMEOUT 100
352
cqhci_read_ctl(struct cqhci_host * cq_host)353 static u32 cqhci_read_ctl(struct cqhci_host *cq_host)
354 {
355 return cqhci_readl(cq_host, CQHCI_CTL);
356 }
357
cqhci_off(struct mmc_host * mmc)358 static void cqhci_off(struct mmc_host *mmc)
359 {
360 struct cqhci_host *cq_host = mmc->cqe_private;
361 u32 reg;
362 int err;
363
364 if (!cq_host->enabled || !mmc->cqe_on || cq_host->recovery_halt)
365 return;
366
367 if (cq_host->ops->disable)
368 cq_host->ops->disable(mmc, false);
369
370 cqhci_writel(cq_host, CQHCI_HALT, CQHCI_CTL);
371
372 err = readx_poll_timeout(cqhci_read_ctl, cq_host, reg,
373 reg & CQHCI_HALT, 0, CQHCI_OFF_TIMEOUT);
374 if (err < 0)
375 pr_err("%s: cqhci: CQE stuck on\n", mmc_hostname(mmc));
376 else
377 pr_debug("%s: cqhci: CQE off\n", mmc_hostname(mmc));
378
379 if (cq_host->ops->post_disable)
380 cq_host->ops->post_disable(mmc);
381
382 mmc->cqe_on = false;
383 }
384
cqhci_disable(struct mmc_host * mmc)385 static void cqhci_disable(struct mmc_host *mmc)
386 {
387 struct cqhci_host *cq_host = mmc->cqe_private;
388
389 if (!cq_host->enabled)
390 return;
391
392 cqhci_off(mmc);
393
394 __cqhci_disable(cq_host);
395
396 dmam_free_coherent(mmc_dev(mmc), cq_host->data_size,
397 cq_host->trans_desc_base,
398 cq_host->trans_desc_dma_base);
399
400 dmam_free_coherent(mmc_dev(mmc), cq_host->desc_size,
401 cq_host->desc_base,
402 cq_host->desc_dma_base);
403
404 cq_host->trans_desc_base = NULL;
405 cq_host->desc_base = NULL;
406
407 cq_host->enabled = false;
408 }
409
cqhci_prep_task_desc(struct mmc_request * mrq,u64 * data,bool intr)410 static void cqhci_prep_task_desc(struct mmc_request *mrq,
411 u64 *data, bool intr)
412 {
413 u32 req_flags = mrq->data->flags;
414
415 *data = CQHCI_VALID(1) |
416 CQHCI_END(1) |
417 CQHCI_INT(intr) |
418 CQHCI_ACT(0x5) |
419 CQHCI_FORCED_PROG(!!(req_flags & MMC_DATA_FORCED_PRG)) |
420 CQHCI_DATA_TAG(!!(req_flags & MMC_DATA_DAT_TAG)) |
421 CQHCI_DATA_DIR(!!(req_flags & MMC_DATA_READ)) |
422 CQHCI_PRIORITY(!!(req_flags & MMC_DATA_PRIO)) |
423 CQHCI_QBAR(!!(req_flags & MMC_DATA_QBR)) |
424 CQHCI_REL_WRITE(!!(req_flags & MMC_DATA_REL_WR)) |
425 CQHCI_BLK_COUNT(mrq->data->blocks) |
426 CQHCI_BLK_ADDR((u64)mrq->data->blk_addr);
427
428 pr_debug("%s: cqhci: tag %d task descriptor 0x%016llx\n",
429 mmc_hostname(mrq->host), mrq->tag, (unsigned long long)*data);
430 }
431
cqhci_dma_map(struct mmc_host * host,struct mmc_request * mrq)432 static int cqhci_dma_map(struct mmc_host *host, struct mmc_request *mrq)
433 {
434 int sg_count;
435 struct mmc_data *data = mrq->data;
436
437 if (!data)
438 return -EINVAL;
439
440 sg_count = dma_map_sg(mmc_dev(host), data->sg,
441 data->sg_len,
442 (data->flags & MMC_DATA_WRITE) ?
443 DMA_TO_DEVICE : DMA_FROM_DEVICE);
444 if (!sg_count) {
445 pr_err("%s: sg-len: %d\n", __func__, data->sg_len);
446 return -ENOMEM;
447 }
448
449 return sg_count;
450 }
451
cqhci_set_tran_desc(u8 * desc,dma_addr_t addr,int len,bool end,bool dma64)452 static void cqhci_set_tran_desc(u8 *desc, dma_addr_t addr, int len, bool end,
453 bool dma64)
454 {
455 __le32 *attr = (__le32 __force *)desc;
456
457 *attr = (CQHCI_VALID(1) |
458 CQHCI_END(end ? 1 : 0) |
459 CQHCI_INT(0) |
460 CQHCI_ACT(0x4) |
461 CQHCI_DAT_LENGTH(len));
462
463 if (dma64) {
464 __le64 *dataddr = (__le64 __force *)(desc + 4);
465
466 dataddr[0] = cpu_to_le64(addr);
467 } else {
468 __le32 *dataddr = (__le32 __force *)(desc + 4);
469
470 dataddr[0] = cpu_to_le32(addr);
471 }
472 }
473
cqhci_prep_tran_desc(struct mmc_request * mrq,struct cqhci_host * cq_host,int tag)474 static int cqhci_prep_tran_desc(struct mmc_request *mrq,
475 struct cqhci_host *cq_host, int tag)
476 {
477 struct mmc_data *data = mrq->data;
478 int i, sg_count, len;
479 bool end = false;
480 bool dma64 = cq_host->dma64;
481 dma_addr_t addr;
482 u8 *desc;
483 struct scatterlist *sg;
484
485 sg_count = cqhci_dma_map(mrq->host, mrq);
486 if (sg_count < 0) {
487 pr_err("%s: %s: unable to map sg lists, %d\n",
488 mmc_hostname(mrq->host), __func__, sg_count);
489 return sg_count;
490 }
491
492 desc = get_trans_desc(cq_host, tag);
493
494 for_each_sg(data->sg, sg, sg_count, i) {
495 addr = sg_dma_address(sg);
496 len = sg_dma_len(sg);
497
498 if ((i+1) == sg_count)
499 end = true;
500 cqhci_set_tran_desc(desc, addr, len, end, dma64);
501 desc += cq_host->trans_desc_len;
502 }
503
504 return 0;
505 }
506
cqhci_prep_dcmd_desc(struct mmc_host * mmc,struct mmc_request * mrq)507 static void cqhci_prep_dcmd_desc(struct mmc_host *mmc,
508 struct mmc_request *mrq)
509 {
510 u64 *task_desc = NULL;
511 u64 data = 0;
512 u8 resp_type;
513 u8 *desc;
514 __le64 *dataddr;
515 struct cqhci_host *cq_host = mmc->cqe_private;
516 u8 timing;
517
518 if (!(mrq->cmd->flags & MMC_RSP_PRESENT)) {
519 resp_type = 0x0;
520 timing = 0x1;
521 } else {
522 if (mrq->cmd->flags & MMC_RSP_R1B) {
523 resp_type = 0x3;
524 timing = 0x0;
525 } else {
526 resp_type = 0x2;
527 timing = 0x1;
528 }
529 }
530
531 task_desc = (__le64 __force *)get_desc(cq_host, cq_host->dcmd_slot);
532 memset(task_desc, 0, cq_host->task_desc_len);
533 data |= (CQHCI_VALID(1) |
534 CQHCI_END(1) |
535 CQHCI_INT(1) |
536 CQHCI_QBAR(1) |
537 CQHCI_ACT(0x5) |
538 CQHCI_CMD_INDEX(mrq->cmd->opcode) |
539 CQHCI_CMD_TIMING(timing) | CQHCI_RESP_TYPE(resp_type));
540 if (cq_host->ops->update_dcmd_desc)
541 cq_host->ops->update_dcmd_desc(mmc, mrq, &data);
542 *task_desc |= data;
543 desc = (u8 *)task_desc;
544 pr_debug("%s: cqhci: dcmd: cmd: %d timing: %d resp: %d\n",
545 mmc_hostname(mmc), mrq->cmd->opcode, timing, resp_type);
546 dataddr = (__le64 __force *)(desc + 4);
547 dataddr[0] = cpu_to_le64((u64)mrq->cmd->arg);
548
549 }
550
cqhci_post_req(struct mmc_host * host,struct mmc_request * mrq)551 static void cqhci_post_req(struct mmc_host *host, struct mmc_request *mrq)
552 {
553 struct mmc_data *data = mrq->data;
554
555 if (data) {
556 dma_unmap_sg(mmc_dev(host), data->sg, data->sg_len,
557 (data->flags & MMC_DATA_READ) ?
558 DMA_FROM_DEVICE : DMA_TO_DEVICE);
559 }
560 }
561
cqhci_tag(struct mmc_request * mrq)562 static inline int cqhci_tag(struct mmc_request *mrq)
563 {
564 return mrq->cmd ? DCMD_SLOT : mrq->tag;
565 }
566
cqhci_request(struct mmc_host * mmc,struct mmc_request * mrq)567 static int cqhci_request(struct mmc_host *mmc, struct mmc_request *mrq)
568 {
569 int err = 0;
570 u64 data = 0;
571 u64 *task_desc = NULL;
572 int tag = cqhci_tag(mrq);
573 struct cqhci_host *cq_host = mmc->cqe_private;
574 unsigned long flags;
575
576 if (!cq_host->enabled) {
577 pr_err("%s: cqhci: not enabled\n", mmc_hostname(mmc));
578 return -EINVAL;
579 }
580
581 /* First request after resume has to re-enable */
582 if (!cq_host->activated)
583 __cqhci_enable(cq_host);
584
585 if (!mmc->cqe_on) {
586 if (cq_host->ops->pre_enable)
587 cq_host->ops->pre_enable(mmc);
588
589 cqhci_writel(cq_host, 0, CQHCI_CTL);
590 mmc->cqe_on = true;
591 pr_debug("%s: cqhci: CQE on\n", mmc_hostname(mmc));
592 if (cqhci_readl(cq_host, CQHCI_CTL) && CQHCI_HALT) {
593 pr_err("%s: cqhci: CQE failed to exit halt state\n",
594 mmc_hostname(mmc));
595 }
596 if (cq_host->ops->enable)
597 cq_host->ops->enable(mmc);
598 }
599
600 if (mrq->data) {
601 task_desc = (__le64 __force *)get_desc(cq_host, tag);
602 cqhci_prep_task_desc(mrq, &data, 1);
603 *task_desc = cpu_to_le64(data);
604 err = cqhci_prep_tran_desc(mrq, cq_host, tag);
605 if (err) {
606 pr_err("%s: cqhci: failed to setup tx desc: %d\n",
607 mmc_hostname(mmc), err);
608 return err;
609 }
610 } else {
611 cqhci_prep_dcmd_desc(mmc, mrq);
612 }
613
614 spin_lock_irqsave(&cq_host->lock, flags);
615
616 if (cq_host->recovery_halt) {
617 err = -EBUSY;
618 goto out_unlock;
619 }
620
621 cq_host->slot[tag].mrq = mrq;
622 cq_host->slot[tag].flags = 0;
623
624 cq_host->qcnt += 1;
625 /* Make sure descriptors are ready before ringing the doorbell */
626 wmb();
627 cqhci_writel(cq_host, 1 << tag, CQHCI_TDBR);
628 if (!(cqhci_readl(cq_host, CQHCI_TDBR) & (1 << tag)))
629 pr_debug("%s: cqhci: doorbell not set for tag %d\n",
630 mmc_hostname(mmc), tag);
631 out_unlock:
632 spin_unlock_irqrestore(&cq_host->lock, flags);
633
634 if (err)
635 cqhci_post_req(mmc, mrq);
636
637 return err;
638 }
639
cqhci_recovery_needed(struct mmc_host * mmc,struct mmc_request * mrq,bool notify)640 static void cqhci_recovery_needed(struct mmc_host *mmc, struct mmc_request *mrq,
641 bool notify)
642 {
643 struct cqhci_host *cq_host = mmc->cqe_private;
644
645 if (!cq_host->recovery_halt) {
646 cq_host->recovery_halt = true;
647 pr_debug("%s: cqhci: recovery needed\n", mmc_hostname(mmc));
648 wake_up(&cq_host->wait_queue);
649 if (notify && mrq->recovery_notifier)
650 mrq->recovery_notifier(mrq);
651 }
652 }
653
cqhci_error_flags(int error1,int error2)654 static unsigned int cqhci_error_flags(int error1, int error2)
655 {
656 int error = error1 ? error1 : error2;
657
658 switch (error) {
659 case -EILSEQ:
660 return CQHCI_HOST_CRC;
661 case -ETIMEDOUT:
662 return CQHCI_HOST_TIMEOUT;
663 default:
664 return CQHCI_HOST_OTHER;
665 }
666 }
667
cqhci_error_irq(struct mmc_host * mmc,u32 status,int cmd_error,int data_error)668 static void cqhci_error_irq(struct mmc_host *mmc, u32 status, int cmd_error,
669 int data_error)
670 {
671 struct cqhci_host *cq_host = mmc->cqe_private;
672 struct cqhci_slot *slot;
673 u32 terri;
674 int tag;
675
676 spin_lock(&cq_host->lock);
677
678 terri = cqhci_readl(cq_host, CQHCI_TERRI);
679
680 pr_debug("%s: cqhci: error IRQ status: 0x%08x cmd error %d data error %d TERRI: 0x%08x\n",
681 mmc_hostname(mmc), status, cmd_error, data_error, terri);
682
683 /* Forget about errors when recovery has already been triggered */
684 if (cq_host->recovery_halt)
685 goto out_unlock;
686
687 if (!cq_host->qcnt) {
688 WARN_ONCE(1, "%s: cqhci: error when idle. IRQ status: 0x%08x cmd error %d data error %d TERRI: 0x%08x\n",
689 mmc_hostname(mmc), status, cmd_error, data_error,
690 terri);
691 goto out_unlock;
692 }
693
694 if (CQHCI_TERRI_C_VALID(terri)) {
695 tag = CQHCI_TERRI_C_TASK(terri);
696 slot = &cq_host->slot[tag];
697 if (slot->mrq) {
698 slot->flags = cqhci_error_flags(cmd_error, data_error);
699 cqhci_recovery_needed(mmc, slot->mrq, true);
700 }
701 }
702
703 if (CQHCI_TERRI_D_VALID(terri)) {
704 tag = CQHCI_TERRI_D_TASK(terri);
705 slot = &cq_host->slot[tag];
706 if (slot->mrq) {
707 slot->flags = cqhci_error_flags(data_error, cmd_error);
708 cqhci_recovery_needed(mmc, slot->mrq, true);
709 }
710 }
711
712 if (!cq_host->recovery_halt) {
713 /*
714 * The only way to guarantee forward progress is to mark at
715 * least one task in error, so if none is indicated, pick one.
716 */
717 for (tag = 0; tag < NUM_SLOTS; tag++) {
718 slot = &cq_host->slot[tag];
719 if (!slot->mrq)
720 continue;
721 slot->flags = cqhci_error_flags(data_error, cmd_error);
722 cqhci_recovery_needed(mmc, slot->mrq, true);
723 break;
724 }
725 }
726
727 out_unlock:
728 spin_unlock(&cq_host->lock);
729 }
730
cqhci_finish_mrq(struct mmc_host * mmc,unsigned int tag)731 static void cqhci_finish_mrq(struct mmc_host *mmc, unsigned int tag)
732 {
733 struct cqhci_host *cq_host = mmc->cqe_private;
734 struct cqhci_slot *slot = &cq_host->slot[tag];
735 struct mmc_request *mrq = slot->mrq;
736 struct mmc_data *data;
737
738 if (!mrq) {
739 WARN_ONCE(1, "%s: cqhci: spurious TCN for tag %d\n",
740 mmc_hostname(mmc), tag);
741 return;
742 }
743
744 /* No completions allowed during recovery */
745 if (cq_host->recovery_halt) {
746 slot->flags |= CQHCI_COMPLETED;
747 return;
748 }
749
750 slot->mrq = NULL;
751
752 cq_host->qcnt -= 1;
753
754 data = mrq->data;
755 if (data) {
756 if (data->error)
757 data->bytes_xfered = 0;
758 else
759 data->bytes_xfered = data->blksz * data->blocks;
760 }
761
762 mmc_cqe_request_done(mmc, mrq);
763 }
764
cqhci_irq(struct mmc_host * mmc,u32 intmask,int cmd_error,int data_error)765 irqreturn_t cqhci_irq(struct mmc_host *mmc, u32 intmask, int cmd_error,
766 int data_error)
767 {
768 u32 status;
769 unsigned long tag = 0, comp_status;
770 struct cqhci_host *cq_host = mmc->cqe_private;
771
772 status = cqhci_readl(cq_host, CQHCI_IS);
773 cqhci_writel(cq_host, status, CQHCI_IS);
774
775 pr_debug("%s: cqhci: IRQ status: 0x%08x\n", mmc_hostname(mmc), status);
776
777 if ((status & CQHCI_IS_RED) || cmd_error || data_error)
778 cqhci_error_irq(mmc, status, cmd_error, data_error);
779
780 if (status & CQHCI_IS_TCC) {
781 /* read TCN and complete the request */
782 comp_status = cqhci_readl(cq_host, CQHCI_TCN);
783 cqhci_writel(cq_host, comp_status, CQHCI_TCN);
784 pr_debug("%s: cqhci: TCN: 0x%08lx\n",
785 mmc_hostname(mmc), comp_status);
786
787 spin_lock(&cq_host->lock);
788
789 for_each_set_bit(tag, &comp_status, cq_host->num_slots) {
790 /* complete the corresponding mrq */
791 pr_debug("%s: cqhci: completing tag %lu\n",
792 mmc_hostname(mmc), tag);
793 cqhci_finish_mrq(mmc, tag);
794 }
795
796 if (cq_host->waiting_for_idle && !cq_host->qcnt) {
797 cq_host->waiting_for_idle = false;
798 wake_up(&cq_host->wait_queue);
799 }
800
801 spin_unlock(&cq_host->lock);
802 }
803
804 if (status & CQHCI_IS_TCL)
805 wake_up(&cq_host->wait_queue);
806
807 if (status & CQHCI_IS_HAC)
808 wake_up(&cq_host->wait_queue);
809
810 return IRQ_HANDLED;
811 }
812 EXPORT_SYMBOL(cqhci_irq);
813
cqhci_is_idle(struct cqhci_host * cq_host,int * ret)814 static bool cqhci_is_idle(struct cqhci_host *cq_host, int *ret)
815 {
816 unsigned long flags;
817 bool is_idle;
818
819 spin_lock_irqsave(&cq_host->lock, flags);
820 is_idle = !cq_host->qcnt || cq_host->recovery_halt;
821 *ret = cq_host->recovery_halt ? -EBUSY : 0;
822 cq_host->waiting_for_idle = !is_idle;
823 spin_unlock_irqrestore(&cq_host->lock, flags);
824
825 return is_idle;
826 }
827
cqhci_wait_for_idle(struct mmc_host * mmc)828 static int cqhci_wait_for_idle(struct mmc_host *mmc)
829 {
830 struct cqhci_host *cq_host = mmc->cqe_private;
831 int ret;
832
833 wait_event(cq_host->wait_queue, cqhci_is_idle(cq_host, &ret));
834
835 return ret;
836 }
837
cqhci_timeout(struct mmc_host * mmc,struct mmc_request * mrq,bool * recovery_needed)838 static bool cqhci_timeout(struct mmc_host *mmc, struct mmc_request *mrq,
839 bool *recovery_needed)
840 {
841 struct cqhci_host *cq_host = mmc->cqe_private;
842 int tag = cqhci_tag(mrq);
843 struct cqhci_slot *slot = &cq_host->slot[tag];
844 unsigned long flags;
845 bool timed_out;
846
847 spin_lock_irqsave(&cq_host->lock, flags);
848 timed_out = slot->mrq == mrq;
849 if (timed_out) {
850 slot->flags |= CQHCI_EXTERNAL_TIMEOUT;
851 cqhci_recovery_needed(mmc, mrq, false);
852 *recovery_needed = cq_host->recovery_halt;
853 }
854 spin_unlock_irqrestore(&cq_host->lock, flags);
855
856 if (timed_out) {
857 pr_err("%s: cqhci: timeout for tag %d\n",
858 mmc_hostname(mmc), tag);
859 cqhci_dumpregs(cq_host);
860 }
861
862 return timed_out;
863 }
864
cqhci_tasks_cleared(struct cqhci_host * cq_host)865 static bool cqhci_tasks_cleared(struct cqhci_host *cq_host)
866 {
867 return !(cqhci_readl(cq_host, CQHCI_CTL) & CQHCI_CLEAR_ALL_TASKS);
868 }
869
cqhci_clear_all_tasks(struct mmc_host * mmc,unsigned int timeout)870 static bool cqhci_clear_all_tasks(struct mmc_host *mmc, unsigned int timeout)
871 {
872 struct cqhci_host *cq_host = mmc->cqe_private;
873 bool ret;
874 u32 ctl;
875
876 cqhci_set_irqs(cq_host, CQHCI_IS_TCL);
877
878 ctl = cqhci_readl(cq_host, CQHCI_CTL);
879 ctl |= CQHCI_CLEAR_ALL_TASKS;
880 cqhci_writel(cq_host, ctl, CQHCI_CTL);
881
882 wait_event_timeout(cq_host->wait_queue, cqhci_tasks_cleared(cq_host),
883 msecs_to_jiffies(timeout) + 1);
884
885 cqhci_set_irqs(cq_host, 0);
886
887 ret = cqhci_tasks_cleared(cq_host);
888
889 if (!ret)
890 pr_debug("%s: cqhci: Failed to clear tasks\n",
891 mmc_hostname(mmc));
892
893 return ret;
894 }
895
cqhci_halted(struct cqhci_host * cq_host)896 static bool cqhci_halted(struct cqhci_host *cq_host)
897 {
898 return cqhci_readl(cq_host, CQHCI_CTL) & CQHCI_HALT;
899 }
900
cqhci_halt(struct mmc_host * mmc,unsigned int timeout)901 static bool cqhci_halt(struct mmc_host *mmc, unsigned int timeout)
902 {
903 struct cqhci_host *cq_host = mmc->cqe_private;
904 bool ret;
905 u32 ctl;
906
907 if (cqhci_halted(cq_host))
908 return true;
909
910 cqhci_set_irqs(cq_host, CQHCI_IS_HAC);
911
912 ctl = cqhci_readl(cq_host, CQHCI_CTL);
913 ctl |= CQHCI_HALT;
914 cqhci_writel(cq_host, ctl, CQHCI_CTL);
915
916 wait_event_timeout(cq_host->wait_queue, cqhci_halted(cq_host),
917 msecs_to_jiffies(timeout) + 1);
918
919 cqhci_set_irqs(cq_host, 0);
920
921 ret = cqhci_halted(cq_host);
922
923 if (!ret)
924 pr_debug("%s: cqhci: Failed to halt\n", mmc_hostname(mmc));
925
926 return ret;
927 }
928
929 /*
930 * After halting we expect to be able to use the command line. We interpret the
931 * failure to halt to mean the data lines might still be in use (and the upper
932 * layers will need to send a STOP command), so we set the timeout based on a
933 * generous command timeout.
934 */
935 #define CQHCI_START_HALT_TIMEOUT 5
936
cqhci_recovery_start(struct mmc_host * mmc)937 static void cqhci_recovery_start(struct mmc_host *mmc)
938 {
939 struct cqhci_host *cq_host = mmc->cqe_private;
940
941 pr_debug("%s: cqhci: %s\n", mmc_hostname(mmc), __func__);
942
943 WARN_ON(!cq_host->recovery_halt);
944
945 cqhci_halt(mmc, CQHCI_START_HALT_TIMEOUT);
946
947 if (cq_host->ops->disable)
948 cq_host->ops->disable(mmc, true);
949
950 mmc->cqe_on = false;
951 }
952
cqhci_error_from_flags(unsigned int flags)953 static int cqhci_error_from_flags(unsigned int flags)
954 {
955 if (!flags)
956 return 0;
957
958 /* CRC errors might indicate re-tuning so prefer to report that */
959 if (flags & CQHCI_HOST_CRC)
960 return -EILSEQ;
961
962 if (flags & (CQHCI_EXTERNAL_TIMEOUT | CQHCI_HOST_TIMEOUT))
963 return -ETIMEDOUT;
964
965 return -EIO;
966 }
967
cqhci_recover_mrq(struct cqhci_host * cq_host,unsigned int tag)968 static void cqhci_recover_mrq(struct cqhci_host *cq_host, unsigned int tag)
969 {
970 struct cqhci_slot *slot = &cq_host->slot[tag];
971 struct mmc_request *mrq = slot->mrq;
972 struct mmc_data *data;
973
974 if (!mrq)
975 return;
976
977 slot->mrq = NULL;
978
979 cq_host->qcnt -= 1;
980
981 data = mrq->data;
982 if (data) {
983 data->bytes_xfered = 0;
984 data->error = cqhci_error_from_flags(slot->flags);
985 } else {
986 mrq->cmd->error = cqhci_error_from_flags(slot->flags);
987 }
988
989 mmc_cqe_request_done(cq_host->mmc, mrq);
990 }
991
cqhci_recover_mrqs(struct cqhci_host * cq_host)992 static void cqhci_recover_mrqs(struct cqhci_host *cq_host)
993 {
994 int i;
995
996 for (i = 0; i < cq_host->num_slots; i++)
997 cqhci_recover_mrq(cq_host, i);
998 }
999
1000 /*
1001 * By now the command and data lines should be unused so there is no reason for
1002 * CQHCI to take a long time to halt, but if it doesn't halt there could be
1003 * problems clearing tasks, so be generous.
1004 */
1005 #define CQHCI_FINISH_HALT_TIMEOUT 20
1006
1007 /* CQHCI could be expected to clear it's internal state pretty quickly */
1008 #define CQHCI_CLEAR_TIMEOUT 20
1009
cqhci_recovery_finish(struct mmc_host * mmc)1010 static void cqhci_recovery_finish(struct mmc_host *mmc)
1011 {
1012 struct cqhci_host *cq_host = mmc->cqe_private;
1013 unsigned long flags;
1014 u32 cqcfg;
1015 bool ok;
1016
1017 pr_debug("%s: cqhci: %s\n", mmc_hostname(mmc), __func__);
1018
1019 WARN_ON(!cq_host->recovery_halt);
1020
1021 ok = cqhci_halt(mmc, CQHCI_FINISH_HALT_TIMEOUT);
1022
1023 if (!cqhci_clear_all_tasks(mmc, CQHCI_CLEAR_TIMEOUT))
1024 ok = false;
1025
1026 /*
1027 * The specification contradicts itself, by saying that tasks cannot be
1028 * cleared if CQHCI does not halt, but if CQHCI does not halt, it should
1029 * be disabled/re-enabled, but not to disable before clearing tasks.
1030 * Have a go anyway.
1031 */
1032 if (!ok) {
1033 pr_debug("%s: cqhci: disable / re-enable\n", mmc_hostname(mmc));
1034 cqcfg = cqhci_readl(cq_host, CQHCI_CFG);
1035 cqcfg &= ~CQHCI_ENABLE;
1036 cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
1037 cqcfg |= CQHCI_ENABLE;
1038 cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
1039 /* Be sure that there are no tasks */
1040 ok = cqhci_halt(mmc, CQHCI_FINISH_HALT_TIMEOUT);
1041 if (!cqhci_clear_all_tasks(mmc, CQHCI_CLEAR_TIMEOUT))
1042 ok = false;
1043 WARN_ON(!ok);
1044 }
1045
1046 cqhci_recover_mrqs(cq_host);
1047
1048 WARN_ON(cq_host->qcnt);
1049
1050 spin_lock_irqsave(&cq_host->lock, flags);
1051 cq_host->qcnt = 0;
1052 cq_host->recovery_halt = false;
1053 mmc->cqe_on = false;
1054 spin_unlock_irqrestore(&cq_host->lock, flags);
1055
1056 /* Ensure all writes are done before interrupts are re-enabled */
1057 wmb();
1058
1059 cqhci_writel(cq_host, CQHCI_IS_HAC | CQHCI_IS_TCL, CQHCI_IS);
1060
1061 cqhci_set_irqs(cq_host, CQHCI_IS_MASK);
1062
1063 pr_debug("%s: cqhci: recovery done\n", mmc_hostname(mmc));
1064 }
1065
1066 static const struct mmc_cqe_ops cqhci_cqe_ops = {
1067 .cqe_enable = cqhci_enable,
1068 .cqe_disable = cqhci_disable,
1069 .cqe_request = cqhci_request,
1070 .cqe_post_req = cqhci_post_req,
1071 .cqe_off = cqhci_off,
1072 .cqe_wait_for_idle = cqhci_wait_for_idle,
1073 .cqe_timeout = cqhci_timeout,
1074 .cqe_recovery_start = cqhci_recovery_start,
1075 .cqe_recovery_finish = cqhci_recovery_finish,
1076 };
1077
cqhci_pltfm_init(struct platform_device * pdev)1078 struct cqhci_host *cqhci_pltfm_init(struct platform_device *pdev)
1079 {
1080 struct cqhci_host *cq_host;
1081 struct resource *cqhci_memres = NULL;
1082
1083 /* check and setup CMDQ interface */
1084 cqhci_memres = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1085 "cqhci");
1086 if (!cqhci_memres) {
1087 dev_dbg(&pdev->dev, "CMDQ not supported\n");
1088 return ERR_PTR(-EINVAL);
1089 }
1090
1091 cq_host = devm_kzalloc(&pdev->dev, sizeof(*cq_host), GFP_KERNEL);
1092 if (!cq_host)
1093 return ERR_PTR(-ENOMEM);
1094 cq_host->mmio = devm_ioremap(&pdev->dev,
1095 cqhci_memres->start,
1096 resource_size(cqhci_memres));
1097 if (!cq_host->mmio) {
1098 dev_err(&pdev->dev, "failed to remap cqhci regs\n");
1099 return ERR_PTR(-EBUSY);
1100 }
1101 dev_dbg(&pdev->dev, "CMDQ ioremap: done\n");
1102
1103 return cq_host;
1104 }
1105 EXPORT_SYMBOL(cqhci_pltfm_init);
1106
cqhci_ver_major(struct cqhci_host * cq_host)1107 static unsigned int cqhci_ver_major(struct cqhci_host *cq_host)
1108 {
1109 return CQHCI_VER_MAJOR(cqhci_readl(cq_host, CQHCI_VER));
1110 }
1111
cqhci_ver_minor(struct cqhci_host * cq_host)1112 static unsigned int cqhci_ver_minor(struct cqhci_host *cq_host)
1113 {
1114 u32 ver = cqhci_readl(cq_host, CQHCI_VER);
1115
1116 return CQHCI_VER_MINOR1(ver) * 10 + CQHCI_VER_MINOR2(ver);
1117 }
1118
cqhci_init(struct cqhci_host * cq_host,struct mmc_host * mmc,bool dma64)1119 int cqhci_init(struct cqhci_host *cq_host, struct mmc_host *mmc,
1120 bool dma64)
1121 {
1122 int err;
1123
1124 cq_host->dma64 = dma64;
1125 cq_host->mmc = mmc;
1126 cq_host->mmc->cqe_private = cq_host;
1127
1128 cq_host->num_slots = NUM_SLOTS;
1129 cq_host->dcmd_slot = DCMD_SLOT;
1130
1131 mmc->cqe_ops = &cqhci_cqe_ops;
1132
1133 mmc->cqe_qdepth = NUM_SLOTS;
1134 if (mmc->caps2 & MMC_CAP2_CQE_DCMD)
1135 mmc->cqe_qdepth -= 1;
1136
1137 cq_host->slot = devm_kcalloc(mmc_dev(mmc), cq_host->num_slots,
1138 sizeof(*cq_host->slot), GFP_KERNEL);
1139 if (!cq_host->slot) {
1140 err = -ENOMEM;
1141 goto out_err;
1142 }
1143
1144 spin_lock_init(&cq_host->lock);
1145
1146 init_completion(&cq_host->halt_comp);
1147 init_waitqueue_head(&cq_host->wait_queue);
1148
1149 pr_info("%s: CQHCI version %u.%02u\n",
1150 mmc_hostname(mmc), cqhci_ver_major(cq_host),
1151 cqhci_ver_minor(cq_host));
1152
1153 return 0;
1154
1155 out_err:
1156 pr_err("%s: CQHCI version %u.%02u failed to initialize, error %d\n",
1157 mmc_hostname(mmc), cqhci_ver_major(cq_host),
1158 cqhci_ver_minor(cq_host), err);
1159 return err;
1160 }
1161 EXPORT_SYMBOL(cqhci_init);
1162
1163 MODULE_AUTHOR("Venkat Gopalakrishnan <venkatg@codeaurora.org>");
1164 MODULE_DESCRIPTION("Command Queue Host Controller Interface driver");
1165 MODULE_LICENSE("GPL v2");
1166