1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * SMP initialisation and IPI support
4 * Based on arch/arm/kernel/smp.c
5 *
6 * Copyright (C) 2012 ARM Ltd.
7 */
8
9 #include <linux/acpi.h>
10 #include <linux/arm_sdei.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/hotplug.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/interrupt.h>
18 #include <linux/cache.h>
19 #include <linux/profile.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/err.h>
23 #include <linux/cpu.h>
24 #include <linux/smp.h>
25 #include <linux/seq_file.h>
26 #include <linux/irq.h>
27 #include <linux/irqchip/arm-gic-v3.h>
28 #include <linux/percpu.h>
29 #include <linux/clockchips.h>
30 #include <linux/completion.h>
31 #include <linux/of.h>
32 #include <linux/irq_work.h>
33 #include <linux/kernel_stat.h>
34 #include <linux/kexec.h>
35 #include <linux/kvm_host.h>
36
37 #include <asm/alternative.h>
38 #include <asm/atomic.h>
39 #include <asm/cacheflush.h>
40 #include <asm/cpu.h>
41 #include <asm/cputype.h>
42 #include <asm/cpu_ops.h>
43 #include <asm/daifflags.h>
44 #include <asm/kvm_mmu.h>
45 #include <asm/mmu_context.h>
46 #include <asm/numa.h>
47 #include <asm/processor.h>
48 #include <asm/smp_plat.h>
49 #include <asm/sections.h>
50 #include <asm/tlbflush.h>
51 #include <asm/ptrace.h>
52 #include <asm/virt.h>
53
54 #include <trace/events/ipi.h>
55
56 DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number);
57 EXPORT_PER_CPU_SYMBOL(cpu_number);
58
59 /*
60 * as from 2.5, kernels no longer have an init_tasks structure
61 * so we need some other way of telling a new secondary core
62 * where to place its SVC stack
63 */
64 struct secondary_data secondary_data;
65 /* Number of CPUs which aren't online, but looping in kernel text. */
66 static int cpus_stuck_in_kernel;
67
68 enum ipi_msg_type {
69 IPI_RESCHEDULE,
70 IPI_CALL_FUNC,
71 IPI_CPU_STOP,
72 IPI_CPU_CRASH_STOP,
73 IPI_TIMER,
74 IPI_IRQ_WORK,
75 IPI_WAKEUP,
76 NR_IPI
77 };
78
79 static int ipi_irq_base __read_mostly;
80 static int nr_ipi __read_mostly = NR_IPI;
81 static struct irq_desc *ipi_desc[NR_IPI] __read_mostly;
82
83 static void ipi_setup(int cpu);
84
85 #ifdef CONFIG_HOTPLUG_CPU
86 static void ipi_teardown(int cpu);
87 static int op_cpu_kill(unsigned int cpu);
88 #else
op_cpu_kill(unsigned int cpu)89 static inline int op_cpu_kill(unsigned int cpu)
90 {
91 return -ENOSYS;
92 }
93 #endif
94
95
96 /*
97 * Boot a secondary CPU, and assign it the specified idle task.
98 * This also gives us the initial stack to use for this CPU.
99 */
boot_secondary(unsigned int cpu,struct task_struct * idle)100 static int boot_secondary(unsigned int cpu, struct task_struct *idle)
101 {
102 const struct cpu_operations *ops = get_cpu_ops(cpu);
103
104 if (ops->cpu_boot)
105 return ops->cpu_boot(cpu);
106
107 return -EOPNOTSUPP;
108 }
109
110 static DECLARE_COMPLETION(cpu_running);
111
__cpu_up(unsigned int cpu,struct task_struct * idle)112 int __cpu_up(unsigned int cpu, struct task_struct *idle)
113 {
114 int ret;
115 long status;
116
117 /*
118 * We need to tell the secondary core where to find its stack and the
119 * page tables.
120 */
121 secondary_data.task = idle;
122 update_cpu_boot_status(CPU_MMU_OFF);
123
124 /* Now bring the CPU into our world */
125 ret = boot_secondary(cpu, idle);
126 if (ret) {
127 pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
128 return ret;
129 }
130
131 /*
132 * CPU was successfully started, wait for it to come online or
133 * time out.
134 */
135 wait_for_completion_timeout(&cpu_running,
136 msecs_to_jiffies(5000));
137 if (cpu_online(cpu))
138 return 0;
139
140 pr_crit("CPU%u: failed to come online\n", cpu);
141 secondary_data.task = NULL;
142 status = READ_ONCE(secondary_data.status);
143 if (status == CPU_MMU_OFF)
144 status = READ_ONCE(__early_cpu_boot_status);
145
146 switch (status & CPU_BOOT_STATUS_MASK) {
147 default:
148 pr_err("CPU%u: failed in unknown state : 0x%lx\n",
149 cpu, status);
150 cpus_stuck_in_kernel++;
151 break;
152 case CPU_KILL_ME:
153 if (!op_cpu_kill(cpu)) {
154 pr_crit("CPU%u: died during early boot\n", cpu);
155 break;
156 }
157 pr_crit("CPU%u: may not have shut down cleanly\n", cpu);
158 fallthrough;
159 case CPU_STUCK_IN_KERNEL:
160 pr_crit("CPU%u: is stuck in kernel\n", cpu);
161 if (status & CPU_STUCK_REASON_52_BIT_VA)
162 pr_crit("CPU%u: does not support 52-bit VAs\n", cpu);
163 if (status & CPU_STUCK_REASON_NO_GRAN) {
164 pr_crit("CPU%u: does not support %luK granule\n",
165 cpu, PAGE_SIZE / SZ_1K);
166 }
167 cpus_stuck_in_kernel++;
168 break;
169 case CPU_PANIC_KERNEL:
170 panic("CPU%u detected unsupported configuration\n", cpu);
171 }
172
173 return -EIO;
174 }
175
init_gic_priority_masking(void)176 static void init_gic_priority_masking(void)
177 {
178 u32 cpuflags;
179
180 if (WARN_ON(!gic_enable_sre()))
181 return;
182
183 cpuflags = read_sysreg(daif);
184
185 WARN_ON(!(cpuflags & PSR_I_BIT));
186 WARN_ON(!(cpuflags & PSR_F_BIT));
187
188 gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
189 }
190
191 /*
192 * This is the secondary CPU boot entry. We're using this CPUs
193 * idle thread stack, but a set of temporary page tables.
194 */
secondary_start_kernel(void)195 asmlinkage notrace void secondary_start_kernel(void)
196 {
197 u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
198 struct mm_struct *mm = &init_mm;
199 const struct cpu_operations *ops;
200 unsigned int cpu = smp_processor_id();
201
202 /*
203 * All kernel threads share the same mm context; grab a
204 * reference and switch to it.
205 */
206 mmgrab(mm);
207 current->active_mm = mm;
208
209 /*
210 * TTBR0 is only used for the identity mapping at this stage. Make it
211 * point to zero page to avoid speculatively fetching new entries.
212 */
213 cpu_uninstall_idmap();
214
215 if (system_uses_irq_prio_masking())
216 init_gic_priority_masking();
217
218 rcu_cpu_starting(cpu);
219 trace_hardirqs_off();
220
221 /*
222 * If the system has established the capabilities, make sure
223 * this CPU ticks all of those. If it doesn't, the CPU will
224 * fail to come online.
225 */
226 check_local_cpu_capabilities();
227
228 ops = get_cpu_ops(cpu);
229 if (ops->cpu_postboot)
230 ops->cpu_postboot();
231
232 /*
233 * Log the CPU info before it is marked online and might get read.
234 */
235 cpuinfo_store_cpu();
236 store_cpu_topology(cpu);
237
238 /*
239 * Enable GIC and timers.
240 */
241 notify_cpu_starting(cpu);
242
243 ipi_setup(cpu);
244
245 numa_add_cpu(cpu);
246
247 /*
248 * OK, now it's safe to let the boot CPU continue. Wait for
249 * the CPU migration code to notice that the CPU is online
250 * before we continue.
251 */
252 pr_info("CPU%u: Booted secondary processor 0x%010lx [0x%08x]\n",
253 cpu, (unsigned long)mpidr,
254 read_cpuid_id());
255 update_cpu_boot_status(CPU_BOOT_SUCCESS);
256 set_cpu_online(cpu, true);
257 complete(&cpu_running);
258
259 local_daif_restore(DAIF_PROCCTX);
260
261 /*
262 * OK, it's off to the idle thread for us
263 */
264 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
265 }
266
267 #ifdef CONFIG_HOTPLUG_CPU
op_cpu_disable(unsigned int cpu)268 static int op_cpu_disable(unsigned int cpu)
269 {
270 const struct cpu_operations *ops = get_cpu_ops(cpu);
271
272 /*
273 * If we don't have a cpu_die method, abort before we reach the point
274 * of no return. CPU0 may not have an cpu_ops, so test for it.
275 */
276 if (!ops || !ops->cpu_die)
277 return -EOPNOTSUPP;
278
279 /*
280 * We may need to abort a hot unplug for some other mechanism-specific
281 * reason.
282 */
283 if (ops->cpu_disable)
284 return ops->cpu_disable(cpu);
285
286 return 0;
287 }
288
289 /*
290 * __cpu_disable runs on the processor to be shutdown.
291 */
__cpu_disable(void)292 int __cpu_disable(void)
293 {
294 unsigned int cpu = smp_processor_id();
295 int ret;
296
297 ret = op_cpu_disable(cpu);
298 if (ret)
299 return ret;
300
301 remove_cpu_topology(cpu);
302 numa_remove_cpu(cpu);
303
304 /*
305 * Take this CPU offline. Once we clear this, we can't return,
306 * and we must not schedule until we're ready to give up the cpu.
307 */
308 set_cpu_online(cpu, false);
309 ipi_teardown(cpu);
310
311 /*
312 * OK - migrate IRQs away from this CPU
313 */
314 irq_migrate_all_off_this_cpu();
315
316 return 0;
317 }
318
op_cpu_kill(unsigned int cpu)319 static int op_cpu_kill(unsigned int cpu)
320 {
321 const struct cpu_operations *ops = get_cpu_ops(cpu);
322
323 /*
324 * If we have no means of synchronising with the dying CPU, then assume
325 * that it is really dead. We can only wait for an arbitrary length of
326 * time and hope that it's dead, so let's skip the wait and just hope.
327 */
328 if (!ops->cpu_kill)
329 return 0;
330
331 return ops->cpu_kill(cpu);
332 }
333
334 /*
335 * Called on the thread which is asking for a CPU to be shutdown after the
336 * shutdown completed.
337 */
arch_cpuhp_cleanup_dead_cpu(unsigned int cpu)338 void arch_cpuhp_cleanup_dead_cpu(unsigned int cpu)
339 {
340 int err;
341
342 pr_debug("CPU%u: shutdown\n", cpu);
343
344 /*
345 * Now that the dying CPU is beyond the point of no return w.r.t.
346 * in-kernel synchronisation, try to get the firwmare to help us to
347 * verify that it has really left the kernel before we consider
348 * clobbering anything it might still be using.
349 */
350 err = op_cpu_kill(cpu);
351 if (err)
352 pr_warn("CPU%d may not have shut down cleanly: %d\n", cpu, err);
353 }
354
355 /*
356 * Called from the idle thread for the CPU which has been shutdown.
357 *
358 */
cpu_die(void)359 void __noreturn cpu_die(void)
360 {
361 unsigned int cpu = smp_processor_id();
362 const struct cpu_operations *ops = get_cpu_ops(cpu);
363
364 idle_task_exit();
365
366 local_daif_mask();
367
368 /* Tell cpuhp_bp_sync_dead() that this CPU is now safe to dispose of */
369 cpuhp_ap_report_dead();
370
371 /*
372 * Actually shutdown the CPU. This must never fail. The specific hotplug
373 * mechanism must perform all required cache maintenance to ensure that
374 * no dirty lines are lost in the process of shutting down the CPU.
375 */
376 ops->cpu_die(cpu);
377
378 BUG();
379 }
380 #endif
381
__cpu_try_die(int cpu)382 static void __cpu_try_die(int cpu)
383 {
384 #ifdef CONFIG_HOTPLUG_CPU
385 const struct cpu_operations *ops = get_cpu_ops(cpu);
386
387 if (ops && ops->cpu_die)
388 ops->cpu_die(cpu);
389 #endif
390 }
391
392 /*
393 * Kill the calling secondary CPU, early in bringup before it is turned
394 * online.
395 */
cpu_die_early(void)396 void __noreturn cpu_die_early(void)
397 {
398 int cpu = smp_processor_id();
399
400 pr_crit("CPU%d: will not boot\n", cpu);
401
402 /* Mark this CPU absent */
403 set_cpu_present(cpu, 0);
404 rcu_report_dead(cpu);
405
406 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
407 update_cpu_boot_status(CPU_KILL_ME);
408 __cpu_try_die(cpu);
409 }
410
411 update_cpu_boot_status(CPU_STUCK_IN_KERNEL);
412
413 cpu_park_loop();
414 }
415
hyp_mode_check(void)416 static void __init hyp_mode_check(void)
417 {
418 if (is_hyp_mode_available())
419 pr_info("CPU: All CPU(s) started at EL2\n");
420 else if (is_hyp_mode_mismatched())
421 WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC,
422 "CPU: CPUs started in inconsistent modes");
423 else
424 pr_info("CPU: All CPU(s) started at EL1\n");
425 if (IS_ENABLED(CONFIG_KVM) && !is_kernel_in_hyp_mode()) {
426 kvm_compute_layout();
427 kvm_apply_hyp_relocations();
428 }
429 }
430
smp_cpus_done(unsigned int max_cpus)431 void __init smp_cpus_done(unsigned int max_cpus)
432 {
433 pr_info("SMP: Total of %d processors activated.\n", num_online_cpus());
434 setup_cpu_features();
435 hyp_mode_check();
436 apply_alternatives_all();
437 mark_linear_text_alias_ro();
438 }
439
smp_prepare_boot_cpu(void)440 void __init smp_prepare_boot_cpu(void)
441 {
442 /*
443 * The runtime per-cpu areas have been allocated by
444 * setup_per_cpu_areas(), and CPU0's boot time per-cpu area will be
445 * freed shortly, so we must move over to the runtime per-cpu area.
446 */
447 set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
448 cpuinfo_store_boot_cpu();
449
450 /*
451 * We now know enough about the boot CPU to apply the
452 * alternatives that cannot wait until interrupt handling
453 * and/or scheduling is enabled.
454 */
455 apply_boot_alternatives();
456
457 /* Conditionally switch to GIC PMR for interrupt masking */
458 if (system_uses_irq_prio_masking())
459 init_gic_priority_masking();
460
461 kasan_init_hw_tags();
462 }
463
464 /*
465 * Duplicate MPIDRs are a recipe for disaster. Scan all initialized
466 * entries and check for duplicates. If any is found just ignore the
467 * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid
468 * matching valid MPIDR values.
469 */
is_mpidr_duplicate(unsigned int cpu,u64 hwid)470 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid)
471 {
472 unsigned int i;
473
474 for (i = 1; (i < cpu) && (i < NR_CPUS); i++)
475 if (cpu_logical_map(i) == hwid)
476 return true;
477 return false;
478 }
479
480 /*
481 * Initialize cpu operations for a logical cpu and
482 * set it in the possible mask on success
483 */
smp_cpu_setup(int cpu)484 static int __init smp_cpu_setup(int cpu)
485 {
486 const struct cpu_operations *ops;
487
488 if (init_cpu_ops(cpu))
489 return -ENODEV;
490
491 ops = get_cpu_ops(cpu);
492 if (ops->cpu_init(cpu))
493 return -ENODEV;
494
495 set_cpu_possible(cpu, true);
496
497 return 0;
498 }
499
500 static bool bootcpu_valid __initdata;
501 static unsigned int cpu_count = 1;
502
503 #ifdef CONFIG_ACPI
504 static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS];
505
acpi_cpu_get_madt_gicc(int cpu)506 struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu)
507 {
508 return &cpu_madt_gicc[cpu];
509 }
510 EXPORT_SYMBOL_GPL(acpi_cpu_get_madt_gicc);
511
512 /*
513 * acpi_map_gic_cpu_interface - parse processor MADT entry
514 *
515 * Carry out sanity checks on MADT processor entry and initialize
516 * cpu_logical_map on success
517 */
518 static void __init
acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt * processor)519 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor)
520 {
521 u64 hwid = processor->arm_mpidr;
522
523 if (!(processor->flags & ACPI_MADT_ENABLED)) {
524 pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid);
525 return;
526 }
527
528 if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) {
529 pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid);
530 return;
531 }
532
533 if (is_mpidr_duplicate(cpu_count, hwid)) {
534 pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid);
535 return;
536 }
537
538 /* Check if GICC structure of boot CPU is available in the MADT */
539 if (cpu_logical_map(0) == hwid) {
540 if (bootcpu_valid) {
541 pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n",
542 hwid);
543 return;
544 }
545 bootcpu_valid = true;
546 cpu_madt_gicc[0] = *processor;
547 return;
548 }
549
550 if (cpu_count >= NR_CPUS)
551 return;
552
553 /* map the logical cpu id to cpu MPIDR */
554 set_cpu_logical_map(cpu_count, hwid);
555
556 cpu_madt_gicc[cpu_count] = *processor;
557
558 /*
559 * Set-up the ACPI parking protocol cpu entries
560 * while initializing the cpu_logical_map to
561 * avoid parsing MADT entries multiple times for
562 * nothing (ie a valid cpu_logical_map entry should
563 * contain a valid parking protocol data set to
564 * initialize the cpu if the parking protocol is
565 * the only available enable method).
566 */
567 acpi_set_mailbox_entry(cpu_count, processor);
568
569 cpu_count++;
570 }
571
572 static int __init
acpi_parse_gic_cpu_interface(union acpi_subtable_headers * header,const unsigned long end)573 acpi_parse_gic_cpu_interface(union acpi_subtable_headers *header,
574 const unsigned long end)
575 {
576 struct acpi_madt_generic_interrupt *processor;
577
578 processor = (struct acpi_madt_generic_interrupt *)header;
579 if (BAD_MADT_GICC_ENTRY(processor, end))
580 return -EINVAL;
581
582 acpi_table_print_madt_entry(&header->common);
583
584 acpi_map_gic_cpu_interface(processor);
585
586 return 0;
587 }
588
acpi_parse_and_init_cpus(void)589 static void __init acpi_parse_and_init_cpus(void)
590 {
591 int i;
592
593 /*
594 * do a walk of MADT to determine how many CPUs
595 * we have including disabled CPUs, and get information
596 * we need for SMP init.
597 */
598 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
599 acpi_parse_gic_cpu_interface, 0);
600
601 /*
602 * In ACPI, SMP and CPU NUMA information is provided in separate
603 * static tables, namely the MADT and the SRAT.
604 *
605 * Thus, it is simpler to first create the cpu logical map through
606 * an MADT walk and then map the logical cpus to their node ids
607 * as separate steps.
608 */
609 acpi_map_cpus_to_nodes();
610
611 for (i = 0; i < nr_cpu_ids; i++)
612 early_map_cpu_to_node(i, acpi_numa_get_nid(i));
613 }
614 #else
615 #define acpi_parse_and_init_cpus(...) do { } while (0)
616 #endif
617
618 /*
619 * Enumerate the possible CPU set from the device tree and build the
620 * cpu logical map array containing MPIDR values related to logical
621 * cpus. Assumes that cpu_logical_map(0) has already been initialized.
622 */
of_parse_and_init_cpus(void)623 static void __init of_parse_and_init_cpus(void)
624 {
625 struct device_node *dn;
626
627 for_each_of_cpu_node(dn) {
628 u64 hwid = of_get_cpu_hwid(dn, 0);
629
630 if (hwid & ~MPIDR_HWID_BITMASK)
631 goto next;
632
633 if (is_mpidr_duplicate(cpu_count, hwid)) {
634 pr_err("%pOF: duplicate cpu reg properties in the DT\n",
635 dn);
636 goto next;
637 }
638
639 /*
640 * The numbering scheme requires that the boot CPU
641 * must be assigned logical id 0. Record it so that
642 * the logical map built from DT is validated and can
643 * be used.
644 */
645 if (hwid == cpu_logical_map(0)) {
646 if (bootcpu_valid) {
647 pr_err("%pOF: duplicate boot cpu reg property in DT\n",
648 dn);
649 goto next;
650 }
651
652 bootcpu_valid = true;
653 early_map_cpu_to_node(0, of_node_to_nid(dn));
654
655 /*
656 * cpu_logical_map has already been
657 * initialized and the boot cpu doesn't need
658 * the enable-method so continue without
659 * incrementing cpu.
660 */
661 continue;
662 }
663
664 if (cpu_count >= NR_CPUS)
665 goto next;
666
667 pr_debug("cpu logical map 0x%llx\n", hwid);
668 set_cpu_logical_map(cpu_count, hwid);
669
670 early_map_cpu_to_node(cpu_count, of_node_to_nid(dn));
671 next:
672 cpu_count++;
673 }
674 }
675
676 /*
677 * Enumerate the possible CPU set from the device tree or ACPI and build the
678 * cpu logical map array containing MPIDR values related to logical
679 * cpus. Assumes that cpu_logical_map(0) has already been initialized.
680 */
smp_init_cpus(void)681 void __init smp_init_cpus(void)
682 {
683 int i;
684
685 if (acpi_disabled)
686 of_parse_and_init_cpus();
687 else
688 acpi_parse_and_init_cpus();
689
690 if (cpu_count > nr_cpu_ids)
691 pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n",
692 cpu_count, nr_cpu_ids);
693
694 if (!bootcpu_valid) {
695 pr_err("missing boot CPU MPIDR, not enabling secondaries\n");
696 return;
697 }
698
699 /*
700 * We need to set the cpu_logical_map entries before enabling
701 * the cpus so that cpu processor description entries (DT cpu nodes
702 * and ACPI MADT entries) can be retrieved by matching the cpu hwid
703 * with entries in cpu_logical_map while initializing the cpus.
704 * If the cpu set-up fails, invalidate the cpu_logical_map entry.
705 */
706 for (i = 1; i < nr_cpu_ids; i++) {
707 if (cpu_logical_map(i) != INVALID_HWID) {
708 if (smp_cpu_setup(i))
709 set_cpu_logical_map(i, INVALID_HWID);
710 }
711 }
712 }
713
smp_prepare_cpus(unsigned int max_cpus)714 void __init smp_prepare_cpus(unsigned int max_cpus)
715 {
716 const struct cpu_operations *ops;
717 int err;
718 unsigned int cpu;
719 unsigned int this_cpu;
720
721 init_cpu_topology();
722
723 this_cpu = smp_processor_id();
724 store_cpu_topology(this_cpu);
725 numa_store_cpu_info(this_cpu);
726 numa_add_cpu(this_cpu);
727
728 /*
729 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set
730 * secondary CPUs present.
731 */
732 if (max_cpus == 0)
733 return;
734
735 /*
736 * Initialise the present map (which describes the set of CPUs
737 * actually populated at the present time) and release the
738 * secondaries from the bootloader.
739 */
740 for_each_possible_cpu(cpu) {
741
742 per_cpu(cpu_number, cpu) = cpu;
743
744 if (cpu == smp_processor_id())
745 continue;
746
747 ops = get_cpu_ops(cpu);
748 if (!ops)
749 continue;
750
751 err = ops->cpu_prepare(cpu);
752 if (err)
753 continue;
754
755 set_cpu_present(cpu, true);
756 numa_store_cpu_info(cpu);
757 }
758 }
759
760 static const char *ipi_types[NR_IPI] __tracepoint_string = {
761 [IPI_RESCHEDULE] = "Rescheduling interrupts",
762 [IPI_CALL_FUNC] = "Function call interrupts",
763 [IPI_CPU_STOP] = "CPU stop interrupts",
764 [IPI_CPU_CRASH_STOP] = "CPU stop (for crash dump) interrupts",
765 [IPI_TIMER] = "Timer broadcast interrupts",
766 [IPI_IRQ_WORK] = "IRQ work interrupts",
767 [IPI_WAKEUP] = "CPU wake-up interrupts",
768 };
769
770 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr);
771
772 unsigned long irq_err_count;
773
arch_show_interrupts(struct seq_file * p,int prec)774 int arch_show_interrupts(struct seq_file *p, int prec)
775 {
776 unsigned int cpu, i;
777
778 for (i = 0; i < NR_IPI; i++) {
779 seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i,
780 prec >= 4 ? " " : "");
781 for_each_online_cpu(cpu)
782 seq_printf(p, "%10u ", irq_desc_kstat_cpu(ipi_desc[i], cpu));
783 seq_printf(p, " %s\n", ipi_types[i]);
784 }
785
786 seq_printf(p, "%*s: %10lu\n", prec, "Err", irq_err_count);
787 return 0;
788 }
789
arch_send_call_function_ipi_mask(const struct cpumask * mask)790 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
791 {
792 smp_cross_call(mask, IPI_CALL_FUNC);
793 }
794
arch_send_call_function_single_ipi(int cpu)795 void arch_send_call_function_single_ipi(int cpu)
796 {
797 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
798 }
799
800 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
arch_send_wakeup_ipi_mask(const struct cpumask * mask)801 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
802 {
803 smp_cross_call(mask, IPI_WAKEUP);
804 }
805 #endif
806
807 #ifdef CONFIG_IRQ_WORK
arch_irq_work_raise(void)808 void arch_irq_work_raise(void)
809 {
810 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
811 }
812 #endif
813
local_cpu_stop(void)814 static void __noreturn local_cpu_stop(void)
815 {
816 set_cpu_online(smp_processor_id(), false);
817
818 local_daif_mask();
819 sdei_mask_local_cpu();
820 cpu_park_loop();
821 }
822
823 /*
824 * We need to implement panic_smp_self_stop() for parallel panic() calls, so
825 * that cpu_online_mask gets correctly updated and smp_send_stop() can skip
826 * CPUs that have already stopped themselves.
827 */
panic_smp_self_stop(void)828 void __noreturn panic_smp_self_stop(void)
829 {
830 local_cpu_stop();
831 }
832
833 #ifdef CONFIG_KEXEC_CORE
834 static atomic_t waiting_for_crash_ipi = ATOMIC_INIT(0);
835 #endif
836
ipi_cpu_crash_stop(unsigned int cpu,struct pt_regs * regs)837 static void __noreturn ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs)
838 {
839 #ifdef CONFIG_KEXEC_CORE
840 crash_save_cpu(regs, cpu);
841
842 atomic_dec(&waiting_for_crash_ipi);
843
844 local_irq_disable();
845 sdei_mask_local_cpu();
846
847 if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
848 __cpu_try_die(cpu);
849
850 /* just in case */
851 cpu_park_loop();
852 #else
853 BUG();
854 #endif
855 }
856
857 /*
858 * Main handler for inter-processor interrupts
859 */
do_handle_IPI(int ipinr)860 static void do_handle_IPI(int ipinr)
861 {
862 unsigned int cpu = smp_processor_id();
863
864 if ((unsigned)ipinr < NR_IPI)
865 trace_ipi_entry(ipi_types[ipinr]);
866
867 switch (ipinr) {
868 case IPI_RESCHEDULE:
869 scheduler_ipi();
870 break;
871
872 case IPI_CALL_FUNC:
873 generic_smp_call_function_interrupt();
874 break;
875
876 case IPI_CPU_STOP:
877 local_cpu_stop();
878 break;
879
880 case IPI_CPU_CRASH_STOP:
881 if (IS_ENABLED(CONFIG_KEXEC_CORE)) {
882 ipi_cpu_crash_stop(cpu, get_irq_regs());
883
884 unreachable();
885 }
886 break;
887
888 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
889 case IPI_TIMER:
890 tick_receive_broadcast();
891 break;
892 #endif
893
894 #ifdef CONFIG_IRQ_WORK
895 case IPI_IRQ_WORK:
896 irq_work_run();
897 break;
898 #endif
899
900 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
901 case IPI_WAKEUP:
902 WARN_ONCE(!acpi_parking_protocol_valid(cpu),
903 "CPU%u: Wake-up IPI outside the ACPI parking protocol\n",
904 cpu);
905 break;
906 #endif
907
908 default:
909 pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr);
910 break;
911 }
912
913 if ((unsigned)ipinr < NR_IPI)
914 trace_ipi_exit(ipi_types[ipinr]);
915 }
916
ipi_handler(int irq,void * data)917 static irqreturn_t ipi_handler(int irq, void *data)
918 {
919 do_handle_IPI(irq - ipi_irq_base);
920 return IRQ_HANDLED;
921 }
922
smp_cross_call(const struct cpumask * target,unsigned int ipinr)923 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
924 {
925 trace_ipi_raise(target, ipi_types[ipinr]);
926 __ipi_send_mask(ipi_desc[ipinr], target);
927 }
928
ipi_setup(int cpu)929 static void ipi_setup(int cpu)
930 {
931 int i;
932
933 if (WARN_ON_ONCE(!ipi_irq_base))
934 return;
935
936 for (i = 0; i < nr_ipi; i++)
937 enable_percpu_irq(ipi_irq_base + i, 0);
938 }
939
940 #ifdef CONFIG_HOTPLUG_CPU
ipi_teardown(int cpu)941 static void ipi_teardown(int cpu)
942 {
943 int i;
944
945 if (WARN_ON_ONCE(!ipi_irq_base))
946 return;
947
948 for (i = 0; i < nr_ipi; i++)
949 disable_percpu_irq(ipi_irq_base + i);
950 }
951 #endif
952
set_smp_ipi_range(int ipi_base,int n)953 void __init set_smp_ipi_range(int ipi_base, int n)
954 {
955 int i;
956
957 WARN_ON(n < NR_IPI);
958 nr_ipi = min(n, NR_IPI);
959
960 for (i = 0; i < nr_ipi; i++) {
961 int err;
962
963 err = request_percpu_irq(ipi_base + i, ipi_handler,
964 "IPI", &cpu_number);
965 WARN_ON(err);
966
967 ipi_desc[i] = irq_to_desc(ipi_base + i);
968 irq_set_status_flags(ipi_base + i, IRQ_HIDDEN);
969 }
970
971 ipi_irq_base = ipi_base;
972
973 /* Setup the boot CPU immediately */
974 ipi_setup(smp_processor_id());
975 }
976
arch_smp_send_reschedule(int cpu)977 void arch_smp_send_reschedule(int cpu)
978 {
979 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
980 }
981
982 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
tick_broadcast(const struct cpumask * mask)983 void tick_broadcast(const struct cpumask *mask)
984 {
985 smp_cross_call(mask, IPI_TIMER);
986 }
987 #endif
988
989 /*
990 * The number of CPUs online, not counting this CPU (which may not be
991 * fully online and so not counted in num_online_cpus()).
992 */
num_other_online_cpus(void)993 static inline unsigned int num_other_online_cpus(void)
994 {
995 unsigned int this_cpu_online = cpu_online(smp_processor_id());
996
997 return num_online_cpus() - this_cpu_online;
998 }
999
smp_send_stop(void)1000 void smp_send_stop(void)
1001 {
1002 unsigned long timeout;
1003
1004 if (num_other_online_cpus()) {
1005 cpumask_t mask;
1006
1007 cpumask_copy(&mask, cpu_online_mask);
1008 cpumask_clear_cpu(smp_processor_id(), &mask);
1009
1010 if (system_state <= SYSTEM_RUNNING)
1011 pr_crit("SMP: stopping secondary CPUs\n");
1012 smp_cross_call(&mask, IPI_CPU_STOP);
1013 }
1014
1015 /* Wait up to one second for other CPUs to stop */
1016 timeout = USEC_PER_SEC;
1017 while (num_other_online_cpus() && timeout--)
1018 udelay(1);
1019
1020 if (num_other_online_cpus())
1021 pr_warn("SMP: failed to stop secondary CPUs %*pbl\n",
1022 cpumask_pr_args(cpu_online_mask));
1023
1024 sdei_mask_local_cpu();
1025 }
1026
1027 #ifdef CONFIG_KEXEC_CORE
crash_smp_send_stop(void)1028 void crash_smp_send_stop(void)
1029 {
1030 static int cpus_stopped;
1031 cpumask_t mask;
1032 unsigned long timeout;
1033
1034 /*
1035 * This function can be called twice in panic path, but obviously
1036 * we execute this only once.
1037 */
1038 if (cpus_stopped)
1039 return;
1040
1041 cpus_stopped = 1;
1042
1043 /*
1044 * If this cpu is the only one alive at this point in time, online or
1045 * not, there are no stop messages to be sent around, so just back out.
1046 */
1047 if (num_other_online_cpus() == 0)
1048 goto skip_ipi;
1049
1050 cpumask_copy(&mask, cpu_online_mask);
1051 cpumask_clear_cpu(smp_processor_id(), &mask);
1052
1053 atomic_set(&waiting_for_crash_ipi, num_other_online_cpus());
1054
1055 pr_crit("SMP: stopping secondary CPUs\n");
1056 smp_cross_call(&mask, IPI_CPU_CRASH_STOP);
1057
1058 /* Wait up to one second for other CPUs to stop */
1059 timeout = USEC_PER_SEC;
1060 while ((atomic_read(&waiting_for_crash_ipi) > 0) && timeout--)
1061 udelay(1);
1062
1063 if (atomic_read(&waiting_for_crash_ipi) > 0)
1064 pr_warn("SMP: failed to stop secondary CPUs %*pbl\n",
1065 cpumask_pr_args(&mask));
1066
1067 skip_ipi:
1068 sdei_mask_local_cpu();
1069 sdei_handler_abort();
1070 }
1071
smp_crash_stop_failed(void)1072 bool smp_crash_stop_failed(void)
1073 {
1074 return (atomic_read(&waiting_for_crash_ipi) > 0);
1075 }
1076 #endif
1077
have_cpu_die(void)1078 static bool have_cpu_die(void)
1079 {
1080 #ifdef CONFIG_HOTPLUG_CPU
1081 int any_cpu = raw_smp_processor_id();
1082 const struct cpu_operations *ops = get_cpu_ops(any_cpu);
1083
1084 if (ops && ops->cpu_die)
1085 return true;
1086 #endif
1087 return false;
1088 }
1089
cpus_are_stuck_in_kernel(void)1090 bool cpus_are_stuck_in_kernel(void)
1091 {
1092 bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die());
1093
1094 return !!cpus_stuck_in_kernel || smp_spin_tables ||
1095 is_protected_kvm_enabled();
1096 }
1097