1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * SMP initialisation and IPI support
4 * Based on arch/arm/kernel/smp.c
5 *
6 * Copyright (C) 2012 ARM Ltd.
7 */
8
9 #include <linux/acpi.h>
10 #include <linux/arm_sdei.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/hotplug.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/interrupt.h>
18 #include <linux/cache.h>
19 #include <linux/profile.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/err.h>
23 #include <linux/cpu.h>
24 #include <linux/smp.h>
25 #include <linux/seq_file.h>
26 #include <linux/irq.h>
27 #include <linux/irqchip/arm-gic-v3.h>
28 #include <linux/percpu.h>
29 #include <linux/clockchips.h>
30 #include <linux/completion.h>
31 #include <linux/of.h>
32 #include <linux/irq_work.h>
33 #include <linux/kernel_stat.h>
34 #include <linux/kexec.h>
35 #include <linux/kvm_host.h>
36
37 #include <asm/alternative.h>
38 #include <asm/atomic.h>
39 #include <asm/cacheflush.h>
40 #include <asm/cpu.h>
41 #include <asm/cputype.h>
42 #include <asm/cpu_ops.h>
43 #include <asm/daifflags.h>
44 #include <asm/kvm_mmu.h>
45 #include <asm/mmu_context.h>
46 #include <asm/numa.h>
47 #include <asm/processor.h>
48 #include <asm/smp_plat.h>
49 #include <asm/sections.h>
50 #include <asm/tlbflush.h>
51 #include <asm/ptrace.h>
52 #include <asm/virt.h>
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/ipi.h>
56
57 DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number);
58 EXPORT_PER_CPU_SYMBOL(cpu_number);
59
60 /*
61 * as from 2.5, kernels no longer have an init_tasks structure
62 * so we need some other way of telling a new secondary core
63 * where to place its SVC stack
64 */
65 struct secondary_data secondary_data;
66 /* Number of CPUs which aren't online, but looping in kernel text. */
67 static int cpus_stuck_in_kernel;
68
69 enum ipi_msg_type {
70 IPI_RESCHEDULE,
71 IPI_CALL_FUNC,
72 IPI_CPU_STOP,
73 IPI_CPU_CRASH_STOP,
74 IPI_TIMER,
75 IPI_IRQ_WORK,
76 IPI_WAKEUP,
77 NR_IPI
78 };
79
80 static int ipi_irq_base __read_mostly;
81 static int nr_ipi __read_mostly = NR_IPI;
82 static struct irq_desc *ipi_desc[NR_IPI] __read_mostly;
83
84 static void ipi_setup(int cpu);
85
86 #ifdef CONFIG_HOTPLUG_CPU
87 static void ipi_teardown(int cpu);
88 static int op_cpu_kill(unsigned int cpu);
89 #else
op_cpu_kill(unsigned int cpu)90 static inline int op_cpu_kill(unsigned int cpu)
91 {
92 return -ENOSYS;
93 }
94 #endif
95
96
97 /*
98 * Boot a secondary CPU, and assign it the specified idle task.
99 * This also gives us the initial stack to use for this CPU.
100 */
boot_secondary(unsigned int cpu,struct task_struct * idle)101 static int boot_secondary(unsigned int cpu, struct task_struct *idle)
102 {
103 const struct cpu_operations *ops = get_cpu_ops(cpu);
104
105 if (ops->cpu_boot)
106 return ops->cpu_boot(cpu);
107
108 return -EOPNOTSUPP;
109 }
110
111 static DECLARE_COMPLETION(cpu_running);
112
__cpu_up(unsigned int cpu,struct task_struct * idle)113 int __cpu_up(unsigned int cpu, struct task_struct *idle)
114 {
115 int ret;
116 long status;
117
118 /*
119 * We need to tell the secondary core where to find its stack and the
120 * page tables.
121 */
122 secondary_data.task = idle;
123 update_cpu_boot_status(CPU_MMU_OFF);
124
125 /* Now bring the CPU into our world */
126 ret = boot_secondary(cpu, idle);
127 if (ret) {
128 pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
129 return ret;
130 }
131
132 /*
133 * CPU was successfully started, wait for it to come online or
134 * time out.
135 */
136 wait_for_completion_timeout(&cpu_running,
137 msecs_to_jiffies(5000));
138 if (cpu_online(cpu))
139 return 0;
140
141 pr_crit("CPU%u: failed to come online\n", cpu);
142 secondary_data.task = NULL;
143 status = READ_ONCE(secondary_data.status);
144 if (status == CPU_MMU_OFF)
145 status = READ_ONCE(__early_cpu_boot_status);
146
147 switch (status & CPU_BOOT_STATUS_MASK) {
148 default:
149 pr_err("CPU%u: failed in unknown state : 0x%lx\n",
150 cpu, status);
151 cpus_stuck_in_kernel++;
152 break;
153 case CPU_KILL_ME:
154 if (!op_cpu_kill(cpu)) {
155 pr_crit("CPU%u: died during early boot\n", cpu);
156 break;
157 }
158 pr_crit("CPU%u: may not have shut down cleanly\n", cpu);
159 fallthrough;
160 case CPU_STUCK_IN_KERNEL:
161 pr_crit("CPU%u: is stuck in kernel\n", cpu);
162 if (status & CPU_STUCK_REASON_52_BIT_VA)
163 pr_crit("CPU%u: does not support 52-bit VAs\n", cpu);
164 if (status & CPU_STUCK_REASON_NO_GRAN) {
165 pr_crit("CPU%u: does not support %luK granule\n",
166 cpu, PAGE_SIZE / SZ_1K);
167 }
168 cpus_stuck_in_kernel++;
169 break;
170 case CPU_PANIC_KERNEL:
171 panic("CPU%u detected unsupported configuration\n", cpu);
172 }
173
174 return -EIO;
175 }
176
init_gic_priority_masking(void)177 static void init_gic_priority_masking(void)
178 {
179 u32 cpuflags;
180
181 if (WARN_ON(!gic_enable_sre()))
182 return;
183
184 cpuflags = read_sysreg(daif);
185
186 WARN_ON(!(cpuflags & PSR_I_BIT));
187 WARN_ON(!(cpuflags & PSR_F_BIT));
188
189 gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
190 }
191
192 /*
193 * This is the secondary CPU boot entry. We're using this CPUs
194 * idle thread stack, but a set of temporary page tables.
195 */
secondary_start_kernel(void)196 asmlinkage notrace void secondary_start_kernel(void)
197 {
198 u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
199 struct mm_struct *mm = &init_mm;
200 const struct cpu_operations *ops;
201 unsigned int cpu = smp_processor_id();
202
203 /*
204 * All kernel threads share the same mm context; grab a
205 * reference and switch to it.
206 */
207 mmgrab(mm);
208 current->active_mm = mm;
209
210 /*
211 * TTBR0 is only used for the identity mapping at this stage. Make it
212 * point to zero page to avoid speculatively fetching new entries.
213 */
214 cpu_uninstall_idmap();
215
216 if (system_uses_irq_prio_masking())
217 init_gic_priority_masking();
218
219 rcu_cpu_starting(cpu);
220 trace_hardirqs_off();
221
222 /*
223 * If the system has established the capabilities, make sure
224 * this CPU ticks all of those. If it doesn't, the CPU will
225 * fail to come online.
226 */
227 check_local_cpu_capabilities();
228
229 ops = get_cpu_ops(cpu);
230 if (ops->cpu_postboot)
231 ops->cpu_postboot();
232
233 /*
234 * Log the CPU info before it is marked online and might get read.
235 */
236 cpuinfo_store_cpu();
237
238 /*
239 * Enable GIC and timers.
240 */
241 notify_cpu_starting(cpu);
242
243 ipi_setup(cpu);
244
245 store_cpu_topology(cpu);
246 numa_add_cpu(cpu);
247
248 /*
249 * OK, now it's safe to let the boot CPU continue. Wait for
250 * the CPU migration code to notice that the CPU is online
251 * before we continue.
252 */
253 pr_info("CPU%u: Booted secondary processor 0x%010lx [0x%08x]\n",
254 cpu, (unsigned long)mpidr,
255 read_cpuid_id());
256 update_cpu_boot_status(CPU_BOOT_SUCCESS);
257 set_cpu_online(cpu, true);
258 complete(&cpu_running);
259
260 local_daif_restore(DAIF_PROCCTX);
261
262 /*
263 * OK, it's off to the idle thread for us
264 */
265 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
266 }
267
268 #ifdef CONFIG_HOTPLUG_CPU
op_cpu_disable(unsigned int cpu)269 static int op_cpu_disable(unsigned int cpu)
270 {
271 const struct cpu_operations *ops = get_cpu_ops(cpu);
272
273 /*
274 * If we don't have a cpu_die method, abort before we reach the point
275 * of no return. CPU0 may not have an cpu_ops, so test for it.
276 */
277 if (!ops || !ops->cpu_die)
278 return -EOPNOTSUPP;
279
280 /*
281 * We may need to abort a hot unplug for some other mechanism-specific
282 * reason.
283 */
284 if (ops->cpu_disable)
285 return ops->cpu_disable(cpu);
286
287 return 0;
288 }
289
290 /*
291 * __cpu_disable runs on the processor to be shutdown.
292 */
__cpu_disable(void)293 int __cpu_disable(void)
294 {
295 unsigned int cpu = smp_processor_id();
296 int ret;
297
298 ret = op_cpu_disable(cpu);
299 if (ret)
300 return ret;
301
302 remove_cpu_topology(cpu);
303 numa_remove_cpu(cpu);
304
305 /*
306 * Take this CPU offline. Once we clear this, we can't return,
307 * and we must not schedule until we're ready to give up the cpu.
308 */
309 set_cpu_online(cpu, false);
310 ipi_teardown(cpu);
311
312 /*
313 * OK - migrate IRQs away from this CPU
314 */
315 irq_migrate_all_off_this_cpu();
316
317 return 0;
318 }
319
op_cpu_kill(unsigned int cpu)320 static int op_cpu_kill(unsigned int cpu)
321 {
322 const struct cpu_operations *ops = get_cpu_ops(cpu);
323
324 /*
325 * If we have no means of synchronising with the dying CPU, then assume
326 * that it is really dead. We can only wait for an arbitrary length of
327 * time and hope that it's dead, so let's skip the wait and just hope.
328 */
329 if (!ops->cpu_kill)
330 return 0;
331
332 return ops->cpu_kill(cpu);
333 }
334
335 /*
336 * called on the thread which is asking for a CPU to be shutdown -
337 * waits until shutdown has completed, or it is timed out.
338 */
__cpu_die(unsigned int cpu)339 void __cpu_die(unsigned int cpu)
340 {
341 int err;
342
343 if (!cpu_wait_death(cpu, 5)) {
344 pr_crit("CPU%u: cpu didn't die\n", cpu);
345 return;
346 }
347 pr_debug("CPU%u: shutdown\n", cpu);
348
349 /*
350 * Now that the dying CPU is beyond the point of no return w.r.t.
351 * in-kernel synchronisation, try to get the firwmare to help us to
352 * verify that it has really left the kernel before we consider
353 * clobbering anything it might still be using.
354 */
355 err = op_cpu_kill(cpu);
356 if (err)
357 pr_warn("CPU%d may not have shut down cleanly: %d\n", cpu, err);
358 }
359
360 /*
361 * Called from the idle thread for the CPU which has been shutdown.
362 *
363 */
cpu_die(void)364 void cpu_die(void)
365 {
366 unsigned int cpu = smp_processor_id();
367 const struct cpu_operations *ops = get_cpu_ops(cpu);
368
369 idle_task_exit();
370
371 local_daif_mask();
372
373 /* Tell __cpu_die() that this CPU is now safe to dispose of */
374 (void)cpu_report_death();
375
376 /*
377 * Actually shutdown the CPU. This must never fail. The specific hotplug
378 * mechanism must perform all required cache maintenance to ensure that
379 * no dirty lines are lost in the process of shutting down the CPU.
380 */
381 ops->cpu_die(cpu);
382
383 BUG();
384 }
385 #endif
386
__cpu_try_die(int cpu)387 static void __cpu_try_die(int cpu)
388 {
389 #ifdef CONFIG_HOTPLUG_CPU
390 const struct cpu_operations *ops = get_cpu_ops(cpu);
391
392 if (ops && ops->cpu_die)
393 ops->cpu_die(cpu);
394 #endif
395 }
396
397 /*
398 * Kill the calling secondary CPU, early in bringup before it is turned
399 * online.
400 */
cpu_die_early(void)401 void cpu_die_early(void)
402 {
403 int cpu = smp_processor_id();
404
405 pr_crit("CPU%d: will not boot\n", cpu);
406
407 /* Mark this CPU absent */
408 set_cpu_present(cpu, 0);
409 rcu_report_dead(cpu);
410
411 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
412 update_cpu_boot_status(CPU_KILL_ME);
413 __cpu_try_die(cpu);
414 }
415
416 update_cpu_boot_status(CPU_STUCK_IN_KERNEL);
417
418 cpu_park_loop();
419 }
420
hyp_mode_check(void)421 static void __init hyp_mode_check(void)
422 {
423 if (is_hyp_mode_available())
424 pr_info("CPU: All CPU(s) started at EL2\n");
425 else if (is_hyp_mode_mismatched())
426 WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC,
427 "CPU: CPUs started in inconsistent modes");
428 else
429 pr_info("CPU: All CPU(s) started at EL1\n");
430 if (IS_ENABLED(CONFIG_KVM) && !is_kernel_in_hyp_mode()) {
431 kvm_compute_layout();
432 kvm_apply_hyp_relocations();
433 }
434 }
435
smp_cpus_done(unsigned int max_cpus)436 void __init smp_cpus_done(unsigned int max_cpus)
437 {
438 pr_info("SMP: Total of %d processors activated.\n", num_online_cpus());
439 setup_cpu_features();
440 hyp_mode_check();
441 apply_alternatives_all();
442 mark_linear_text_alias_ro();
443 }
444
smp_prepare_boot_cpu(void)445 void __init smp_prepare_boot_cpu(void)
446 {
447 /*
448 * The runtime per-cpu areas have been allocated by
449 * setup_per_cpu_areas(), and CPU0's boot time per-cpu area will be
450 * freed shortly, so we must move over to the runtime per-cpu area.
451 */
452 set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
453 cpuinfo_store_boot_cpu();
454
455 /*
456 * We now know enough about the boot CPU to apply the
457 * alternatives that cannot wait until interrupt handling
458 * and/or scheduling is enabled.
459 */
460 apply_boot_alternatives();
461
462 /* Conditionally switch to GIC PMR for interrupt masking */
463 if (system_uses_irq_prio_masking())
464 init_gic_priority_masking();
465
466 kasan_init_hw_tags();
467 }
468
of_get_cpu_mpidr(struct device_node * dn)469 static u64 __init of_get_cpu_mpidr(struct device_node *dn)
470 {
471 const __be32 *cell;
472 u64 hwid;
473
474 /*
475 * A cpu node with missing "reg" property is
476 * considered invalid to build a cpu_logical_map
477 * entry.
478 */
479 cell = of_get_property(dn, "reg", NULL);
480 if (!cell) {
481 pr_err("%pOF: missing reg property\n", dn);
482 return INVALID_HWID;
483 }
484
485 hwid = of_read_number(cell, of_n_addr_cells(dn));
486 /*
487 * Non affinity bits must be set to 0 in the DT
488 */
489 if (hwid & ~MPIDR_HWID_BITMASK) {
490 pr_err("%pOF: invalid reg property\n", dn);
491 return INVALID_HWID;
492 }
493 return hwid;
494 }
495
496 /*
497 * Duplicate MPIDRs are a recipe for disaster. Scan all initialized
498 * entries and check for duplicates. If any is found just ignore the
499 * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid
500 * matching valid MPIDR values.
501 */
is_mpidr_duplicate(unsigned int cpu,u64 hwid)502 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid)
503 {
504 unsigned int i;
505
506 for (i = 1; (i < cpu) && (i < NR_CPUS); i++)
507 if (cpu_logical_map(i) == hwid)
508 return true;
509 return false;
510 }
511
512 /*
513 * Initialize cpu operations for a logical cpu and
514 * set it in the possible mask on success
515 */
smp_cpu_setup(int cpu)516 static int __init smp_cpu_setup(int cpu)
517 {
518 const struct cpu_operations *ops;
519
520 if (init_cpu_ops(cpu))
521 return -ENODEV;
522
523 ops = get_cpu_ops(cpu);
524 if (ops->cpu_init(cpu))
525 return -ENODEV;
526
527 set_cpu_possible(cpu, true);
528
529 return 0;
530 }
531
532 static bool bootcpu_valid __initdata;
533 static unsigned int cpu_count = 1;
534
535 #ifdef CONFIG_ACPI
536 static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS];
537
acpi_cpu_get_madt_gicc(int cpu)538 struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu)
539 {
540 return &cpu_madt_gicc[cpu];
541 }
542
543 /*
544 * acpi_map_gic_cpu_interface - parse processor MADT entry
545 *
546 * Carry out sanity checks on MADT processor entry and initialize
547 * cpu_logical_map on success
548 */
549 static void __init
acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt * processor)550 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor)
551 {
552 u64 hwid = processor->arm_mpidr;
553
554 if (!(processor->flags & ACPI_MADT_ENABLED)) {
555 pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid);
556 return;
557 }
558
559 if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) {
560 pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid);
561 return;
562 }
563
564 if (is_mpidr_duplicate(cpu_count, hwid)) {
565 pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid);
566 return;
567 }
568
569 /* Check if GICC structure of boot CPU is available in the MADT */
570 if (cpu_logical_map(0) == hwid) {
571 if (bootcpu_valid) {
572 pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n",
573 hwid);
574 return;
575 }
576 bootcpu_valid = true;
577 cpu_madt_gicc[0] = *processor;
578 return;
579 }
580
581 if (cpu_count >= NR_CPUS)
582 return;
583
584 /* map the logical cpu id to cpu MPIDR */
585 set_cpu_logical_map(cpu_count, hwid);
586
587 cpu_madt_gicc[cpu_count] = *processor;
588
589 /*
590 * Set-up the ACPI parking protocol cpu entries
591 * while initializing the cpu_logical_map to
592 * avoid parsing MADT entries multiple times for
593 * nothing (ie a valid cpu_logical_map entry should
594 * contain a valid parking protocol data set to
595 * initialize the cpu if the parking protocol is
596 * the only available enable method).
597 */
598 acpi_set_mailbox_entry(cpu_count, processor);
599
600 cpu_count++;
601 }
602
603 static int __init
acpi_parse_gic_cpu_interface(union acpi_subtable_headers * header,const unsigned long end)604 acpi_parse_gic_cpu_interface(union acpi_subtable_headers *header,
605 const unsigned long end)
606 {
607 struct acpi_madt_generic_interrupt *processor;
608
609 processor = (struct acpi_madt_generic_interrupt *)header;
610 if (BAD_MADT_GICC_ENTRY(processor, end))
611 return -EINVAL;
612
613 acpi_table_print_madt_entry(&header->common);
614
615 acpi_map_gic_cpu_interface(processor);
616
617 return 0;
618 }
619
acpi_parse_and_init_cpus(void)620 static void __init acpi_parse_and_init_cpus(void)
621 {
622 int i;
623
624 /*
625 * do a walk of MADT to determine how many CPUs
626 * we have including disabled CPUs, and get information
627 * we need for SMP init.
628 */
629 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
630 acpi_parse_gic_cpu_interface, 0);
631
632 /*
633 * In ACPI, SMP and CPU NUMA information is provided in separate
634 * static tables, namely the MADT and the SRAT.
635 *
636 * Thus, it is simpler to first create the cpu logical map through
637 * an MADT walk and then map the logical cpus to their node ids
638 * as separate steps.
639 */
640 acpi_map_cpus_to_nodes();
641
642 for (i = 0; i < nr_cpu_ids; i++)
643 early_map_cpu_to_node(i, acpi_numa_get_nid(i));
644 }
645 #else
646 #define acpi_parse_and_init_cpus(...) do { } while (0)
647 #endif
648
649 /*
650 * Enumerate the possible CPU set from the device tree and build the
651 * cpu logical map array containing MPIDR values related to logical
652 * cpus. Assumes that cpu_logical_map(0) has already been initialized.
653 */
of_parse_and_init_cpus(void)654 static void __init of_parse_and_init_cpus(void)
655 {
656 struct device_node *dn;
657
658 for_each_of_cpu_node(dn) {
659 u64 hwid = of_get_cpu_mpidr(dn);
660
661 if (hwid == INVALID_HWID)
662 goto next;
663
664 if (is_mpidr_duplicate(cpu_count, hwid)) {
665 pr_err("%pOF: duplicate cpu reg properties in the DT\n",
666 dn);
667 goto next;
668 }
669
670 /*
671 * The numbering scheme requires that the boot CPU
672 * must be assigned logical id 0. Record it so that
673 * the logical map built from DT is validated and can
674 * be used.
675 */
676 if (hwid == cpu_logical_map(0)) {
677 if (bootcpu_valid) {
678 pr_err("%pOF: duplicate boot cpu reg property in DT\n",
679 dn);
680 goto next;
681 }
682
683 bootcpu_valid = true;
684 early_map_cpu_to_node(0, of_node_to_nid(dn));
685
686 /*
687 * cpu_logical_map has already been
688 * initialized and the boot cpu doesn't need
689 * the enable-method so continue without
690 * incrementing cpu.
691 */
692 continue;
693 }
694
695 if (cpu_count >= NR_CPUS)
696 goto next;
697
698 pr_debug("cpu logical map 0x%llx\n", hwid);
699 set_cpu_logical_map(cpu_count, hwid);
700
701 early_map_cpu_to_node(cpu_count, of_node_to_nid(dn));
702 next:
703 cpu_count++;
704 }
705 }
706
707 /*
708 * Enumerate the possible CPU set from the device tree or ACPI and build the
709 * cpu logical map array containing MPIDR values related to logical
710 * cpus. Assumes that cpu_logical_map(0) has already been initialized.
711 */
smp_init_cpus(void)712 void __init smp_init_cpus(void)
713 {
714 int i;
715
716 if (acpi_disabled)
717 of_parse_and_init_cpus();
718 else
719 acpi_parse_and_init_cpus();
720
721 if (cpu_count > nr_cpu_ids)
722 pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n",
723 cpu_count, nr_cpu_ids);
724
725 if (!bootcpu_valid) {
726 pr_err("missing boot CPU MPIDR, not enabling secondaries\n");
727 return;
728 }
729
730 /*
731 * We need to set the cpu_logical_map entries before enabling
732 * the cpus so that cpu processor description entries (DT cpu nodes
733 * and ACPI MADT entries) can be retrieved by matching the cpu hwid
734 * with entries in cpu_logical_map while initializing the cpus.
735 * If the cpu set-up fails, invalidate the cpu_logical_map entry.
736 */
737 for (i = 1; i < nr_cpu_ids; i++) {
738 if (cpu_logical_map(i) != INVALID_HWID) {
739 if (smp_cpu_setup(i))
740 set_cpu_logical_map(i, INVALID_HWID);
741 }
742 }
743 }
744
smp_prepare_cpus(unsigned int max_cpus)745 void __init smp_prepare_cpus(unsigned int max_cpus)
746 {
747 const struct cpu_operations *ops;
748 int err;
749 unsigned int cpu;
750 unsigned int this_cpu;
751
752 init_cpu_topology();
753
754 this_cpu = smp_processor_id();
755 store_cpu_topology(this_cpu);
756 numa_store_cpu_info(this_cpu);
757 numa_add_cpu(this_cpu);
758
759 /*
760 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set
761 * secondary CPUs present.
762 */
763 if (max_cpus == 0)
764 return;
765
766 /*
767 * Initialise the present map (which describes the set of CPUs
768 * actually populated at the present time) and release the
769 * secondaries from the bootloader.
770 */
771 for_each_possible_cpu(cpu) {
772
773 per_cpu(cpu_number, cpu) = cpu;
774
775 if (cpu == smp_processor_id())
776 continue;
777
778 ops = get_cpu_ops(cpu);
779 if (!ops)
780 continue;
781
782 err = ops->cpu_prepare(cpu);
783 if (err)
784 continue;
785
786 set_cpu_present(cpu, true);
787 numa_store_cpu_info(cpu);
788 }
789 }
790
791 static const char *ipi_types[NR_IPI] __tracepoint_string = {
792 [IPI_RESCHEDULE] = "Rescheduling interrupts",
793 [IPI_CALL_FUNC] = "Function call interrupts",
794 [IPI_CPU_STOP] = "CPU stop interrupts",
795 [IPI_CPU_CRASH_STOP] = "CPU stop (for crash dump) interrupts",
796 [IPI_TIMER] = "Timer broadcast interrupts",
797 [IPI_IRQ_WORK] = "IRQ work interrupts",
798 [IPI_WAKEUP] = "CPU wake-up interrupts",
799 };
800
801 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr);
802
803 unsigned long irq_err_count;
804
arch_show_interrupts(struct seq_file * p,int prec)805 int arch_show_interrupts(struct seq_file *p, int prec)
806 {
807 unsigned int cpu, i;
808
809 for (i = 0; i < NR_IPI; i++) {
810 seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i,
811 prec >= 4 ? " " : "");
812 for_each_online_cpu(cpu)
813 seq_printf(p, "%10u ", irq_desc_kstat_cpu(ipi_desc[i], cpu));
814 seq_printf(p, " %s\n", ipi_types[i]);
815 }
816
817 seq_printf(p, "%*s: %10lu\n", prec, "Err", irq_err_count);
818 return 0;
819 }
820
arch_send_call_function_ipi_mask(const struct cpumask * mask)821 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
822 {
823 smp_cross_call(mask, IPI_CALL_FUNC);
824 }
825
arch_send_call_function_single_ipi(int cpu)826 void arch_send_call_function_single_ipi(int cpu)
827 {
828 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
829 }
830
831 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
arch_send_wakeup_ipi_mask(const struct cpumask * mask)832 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
833 {
834 smp_cross_call(mask, IPI_WAKEUP);
835 }
836 #endif
837
838 #ifdef CONFIG_IRQ_WORK
arch_irq_work_raise(void)839 void arch_irq_work_raise(void)
840 {
841 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
842 }
843 #endif
844
local_cpu_stop(void)845 static void local_cpu_stop(void)
846 {
847 set_cpu_online(smp_processor_id(), false);
848
849 local_daif_mask();
850 sdei_mask_local_cpu();
851 cpu_park_loop();
852 }
853
854 /*
855 * We need to implement panic_smp_self_stop() for parallel panic() calls, so
856 * that cpu_online_mask gets correctly updated and smp_send_stop() can skip
857 * CPUs that have already stopped themselves.
858 */
panic_smp_self_stop(void)859 void panic_smp_self_stop(void)
860 {
861 local_cpu_stop();
862 }
863
864 #ifdef CONFIG_KEXEC_CORE
865 static atomic_t waiting_for_crash_ipi = ATOMIC_INIT(0);
866 #endif
867
ipi_cpu_crash_stop(unsigned int cpu,struct pt_regs * regs)868 static void ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs)
869 {
870 #ifdef CONFIG_KEXEC_CORE
871 crash_save_cpu(regs, cpu);
872
873 atomic_dec(&waiting_for_crash_ipi);
874
875 local_irq_disable();
876 sdei_mask_local_cpu();
877
878 if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
879 __cpu_try_die(cpu);
880
881 /* just in case */
882 cpu_park_loop();
883 #endif
884 }
885
886 /*
887 * Main handler for inter-processor interrupts
888 */
do_handle_IPI(int ipinr)889 static void do_handle_IPI(int ipinr)
890 {
891 unsigned int cpu = smp_processor_id();
892
893 if ((unsigned)ipinr < NR_IPI)
894 trace_ipi_entry_rcuidle(ipi_types[ipinr]);
895
896 switch (ipinr) {
897 case IPI_RESCHEDULE:
898 scheduler_ipi();
899 break;
900
901 case IPI_CALL_FUNC:
902 generic_smp_call_function_interrupt();
903 break;
904
905 case IPI_CPU_STOP:
906 local_cpu_stop();
907 break;
908
909 case IPI_CPU_CRASH_STOP:
910 if (IS_ENABLED(CONFIG_KEXEC_CORE)) {
911 ipi_cpu_crash_stop(cpu, get_irq_regs());
912
913 unreachable();
914 }
915 break;
916
917 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
918 case IPI_TIMER:
919 tick_receive_broadcast();
920 break;
921 #endif
922
923 #ifdef CONFIG_IRQ_WORK
924 case IPI_IRQ_WORK:
925 irq_work_run();
926 break;
927 #endif
928
929 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
930 case IPI_WAKEUP:
931 WARN_ONCE(!acpi_parking_protocol_valid(cpu),
932 "CPU%u: Wake-up IPI outside the ACPI parking protocol\n",
933 cpu);
934 break;
935 #endif
936
937 default:
938 pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr);
939 break;
940 }
941
942 if ((unsigned)ipinr < NR_IPI)
943 trace_ipi_exit_rcuidle(ipi_types[ipinr]);
944 }
945
ipi_handler(int irq,void * data)946 static irqreturn_t ipi_handler(int irq, void *data)
947 {
948 do_handle_IPI(irq - ipi_irq_base);
949 return IRQ_HANDLED;
950 }
951
smp_cross_call(const struct cpumask * target,unsigned int ipinr)952 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
953 {
954 trace_ipi_raise(target, ipi_types[ipinr]);
955 __ipi_send_mask(ipi_desc[ipinr], target);
956 }
957
ipi_setup(int cpu)958 static void ipi_setup(int cpu)
959 {
960 int i;
961
962 if (WARN_ON_ONCE(!ipi_irq_base))
963 return;
964
965 for (i = 0; i < nr_ipi; i++)
966 enable_percpu_irq(ipi_irq_base + i, 0);
967 }
968
969 #ifdef CONFIG_HOTPLUG_CPU
ipi_teardown(int cpu)970 static void ipi_teardown(int cpu)
971 {
972 int i;
973
974 if (WARN_ON_ONCE(!ipi_irq_base))
975 return;
976
977 for (i = 0; i < nr_ipi; i++)
978 disable_percpu_irq(ipi_irq_base + i);
979 }
980 #endif
981
set_smp_ipi_range(int ipi_base,int n)982 void __init set_smp_ipi_range(int ipi_base, int n)
983 {
984 int i;
985
986 WARN_ON(n < NR_IPI);
987 nr_ipi = min(n, NR_IPI);
988
989 for (i = 0; i < nr_ipi; i++) {
990 int err;
991
992 err = request_percpu_irq(ipi_base + i, ipi_handler,
993 "IPI", &cpu_number);
994 WARN_ON(err);
995
996 ipi_desc[i] = irq_to_desc(ipi_base + i);
997 irq_set_status_flags(ipi_base + i, IRQ_HIDDEN);
998 }
999
1000 ipi_irq_base = ipi_base;
1001
1002 /* Setup the boot CPU immediately */
1003 ipi_setup(smp_processor_id());
1004 }
1005
smp_send_reschedule(int cpu)1006 void smp_send_reschedule(int cpu)
1007 {
1008 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
1009 }
1010
1011 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
tick_broadcast(const struct cpumask * mask)1012 void tick_broadcast(const struct cpumask *mask)
1013 {
1014 smp_cross_call(mask, IPI_TIMER);
1015 }
1016 #endif
1017
1018 /*
1019 * The number of CPUs online, not counting this CPU (which may not be
1020 * fully online and so not counted in num_online_cpus()).
1021 */
num_other_online_cpus(void)1022 static inline unsigned int num_other_online_cpus(void)
1023 {
1024 unsigned int this_cpu_online = cpu_online(smp_processor_id());
1025
1026 return num_online_cpus() - this_cpu_online;
1027 }
1028
smp_send_stop(void)1029 void smp_send_stop(void)
1030 {
1031 unsigned long timeout;
1032
1033 if (num_other_online_cpus()) {
1034 cpumask_t mask;
1035
1036 cpumask_copy(&mask, cpu_online_mask);
1037 cpumask_clear_cpu(smp_processor_id(), &mask);
1038
1039 if (system_state <= SYSTEM_RUNNING)
1040 pr_crit("SMP: stopping secondary CPUs\n");
1041 smp_cross_call(&mask, IPI_CPU_STOP);
1042 }
1043
1044 /* Wait up to one second for other CPUs to stop */
1045 timeout = USEC_PER_SEC;
1046 while (num_other_online_cpus() && timeout--)
1047 udelay(1);
1048
1049 if (num_other_online_cpus())
1050 pr_warn("SMP: failed to stop secondary CPUs %*pbl\n",
1051 cpumask_pr_args(cpu_online_mask));
1052
1053 sdei_mask_local_cpu();
1054 }
1055
1056 #ifdef CONFIG_KEXEC_CORE
crash_smp_send_stop(void)1057 void crash_smp_send_stop(void)
1058 {
1059 static int cpus_stopped;
1060 cpumask_t mask;
1061 unsigned long timeout;
1062
1063 /*
1064 * This function can be called twice in panic path, but obviously
1065 * we execute this only once.
1066 */
1067 if (cpus_stopped)
1068 return;
1069
1070 cpus_stopped = 1;
1071
1072 /*
1073 * If this cpu is the only one alive at this point in time, online or
1074 * not, there are no stop messages to be sent around, so just back out.
1075 */
1076 if (num_other_online_cpus() == 0) {
1077 sdei_mask_local_cpu();
1078 return;
1079 }
1080
1081 cpumask_copy(&mask, cpu_online_mask);
1082 cpumask_clear_cpu(smp_processor_id(), &mask);
1083
1084 atomic_set(&waiting_for_crash_ipi, num_other_online_cpus());
1085
1086 pr_crit("SMP: stopping secondary CPUs\n");
1087 smp_cross_call(&mask, IPI_CPU_CRASH_STOP);
1088
1089 /* Wait up to one second for other CPUs to stop */
1090 timeout = USEC_PER_SEC;
1091 while ((atomic_read(&waiting_for_crash_ipi) > 0) && timeout--)
1092 udelay(1);
1093
1094 if (atomic_read(&waiting_for_crash_ipi) > 0)
1095 pr_warn("SMP: failed to stop secondary CPUs %*pbl\n",
1096 cpumask_pr_args(&mask));
1097
1098 sdei_mask_local_cpu();
1099 }
1100
smp_crash_stop_failed(void)1101 bool smp_crash_stop_failed(void)
1102 {
1103 return (atomic_read(&waiting_for_crash_ipi) > 0);
1104 }
1105 #endif
1106
1107 /*
1108 * not supported here
1109 */
setup_profiling_timer(unsigned int multiplier)1110 int setup_profiling_timer(unsigned int multiplier)
1111 {
1112 return -EINVAL;
1113 }
1114
have_cpu_die(void)1115 static bool have_cpu_die(void)
1116 {
1117 #ifdef CONFIG_HOTPLUG_CPU
1118 int any_cpu = raw_smp_processor_id();
1119 const struct cpu_operations *ops = get_cpu_ops(any_cpu);
1120
1121 if (ops && ops->cpu_die)
1122 return true;
1123 #endif
1124 return false;
1125 }
1126
cpus_are_stuck_in_kernel(void)1127 bool cpus_are_stuck_in_kernel(void)
1128 {
1129 bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die());
1130
1131 return !!cpus_stuck_in_kernel || smp_spin_tables;
1132 }
1133