1 /*
2  * SMP initialisation and IPI support
3  * Based on arch/arm/kernel/smp.c
4  *
5  * Copyright (C) 2012 ARM Ltd.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include <linux/acpi.h>
21 #include <linux/arm_sdei.h>
22 #include <linux/delay.h>
23 #include <linux/init.h>
24 #include <linux/spinlock.h>
25 #include <linux/sched/mm.h>
26 #include <linux/sched/hotplug.h>
27 #include <linux/sched/task_stack.h>
28 #include <linux/interrupt.h>
29 #include <linux/cache.h>
30 #include <linux/profile.h>
31 #include <linux/errno.h>
32 #include <linux/mm.h>
33 #include <linux/err.h>
34 #include <linux/cpu.h>
35 #include <linux/smp.h>
36 #include <linux/seq_file.h>
37 #include <linux/irq.h>
38 #include <linux/percpu.h>
39 #include <linux/clockchips.h>
40 #include <linux/completion.h>
41 #include <linux/of.h>
42 #include <linux/irq_work.h>
43 #include <linux/kexec.h>
44 
45 #include <asm/alternative.h>
46 #include <asm/atomic.h>
47 #include <asm/cacheflush.h>
48 #include <asm/cpu.h>
49 #include <asm/cputype.h>
50 #include <asm/cpu_ops.h>
51 #include <asm/daifflags.h>
52 #include <asm/mmu_context.h>
53 #include <asm/numa.h>
54 #include <asm/pgtable.h>
55 #include <asm/pgalloc.h>
56 #include <asm/processor.h>
57 #include <asm/smp_plat.h>
58 #include <asm/sections.h>
59 #include <asm/tlbflush.h>
60 #include <asm/ptrace.h>
61 #include <asm/virt.h>
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/ipi.h>
65 
66 DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number);
67 EXPORT_PER_CPU_SYMBOL(cpu_number);
68 
69 /*
70  * as from 2.5, kernels no longer have an init_tasks structure
71  * so we need some other way of telling a new secondary core
72  * where to place its SVC stack
73  */
74 struct secondary_data secondary_data;
75 /* Number of CPUs which aren't online, but looping in kernel text. */
76 int cpus_stuck_in_kernel;
77 
78 enum ipi_msg_type {
79 	IPI_RESCHEDULE,
80 	IPI_CALL_FUNC,
81 	IPI_CPU_STOP,
82 	IPI_CPU_CRASH_STOP,
83 	IPI_TIMER,
84 	IPI_IRQ_WORK,
85 	IPI_WAKEUP
86 };
87 
88 #ifdef CONFIG_HOTPLUG_CPU
89 static int op_cpu_kill(unsigned int cpu);
90 #else
op_cpu_kill(unsigned int cpu)91 static inline int op_cpu_kill(unsigned int cpu)
92 {
93 	return -ENOSYS;
94 }
95 #endif
96 
97 
98 /*
99  * Boot a secondary CPU, and assign it the specified idle task.
100  * This also gives us the initial stack to use for this CPU.
101  */
boot_secondary(unsigned int cpu,struct task_struct * idle)102 static int boot_secondary(unsigned int cpu, struct task_struct *idle)
103 {
104 	if (cpu_ops[cpu]->cpu_boot)
105 		return cpu_ops[cpu]->cpu_boot(cpu);
106 
107 	return -EOPNOTSUPP;
108 }
109 
110 static DECLARE_COMPLETION(cpu_running);
111 
__cpu_up(unsigned int cpu,struct task_struct * idle)112 int __cpu_up(unsigned int cpu, struct task_struct *idle)
113 {
114 	int ret;
115 	long status;
116 
117 	/*
118 	 * We need to tell the secondary core where to find its stack and the
119 	 * page tables.
120 	 */
121 	secondary_data.task = idle;
122 	secondary_data.stack = task_stack_page(idle) + THREAD_SIZE;
123 	update_cpu_boot_status(CPU_MMU_OFF);
124 	__flush_dcache_area(&secondary_data, sizeof(secondary_data));
125 
126 	/*
127 	 * Now bring the CPU into our world.
128 	 */
129 	ret = boot_secondary(cpu, idle);
130 	if (ret == 0) {
131 		/*
132 		 * CPU was successfully started, wait for it to come online or
133 		 * time out.
134 		 */
135 		wait_for_completion_timeout(&cpu_running,
136 					    msecs_to_jiffies(1000));
137 
138 		if (!cpu_online(cpu)) {
139 			pr_crit("CPU%u: failed to come online\n", cpu);
140 			ret = -EIO;
141 		}
142 	} else {
143 		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
144 	}
145 
146 	secondary_data.task = NULL;
147 	secondary_data.stack = NULL;
148 	status = READ_ONCE(secondary_data.status);
149 	if (ret && status) {
150 
151 		if (status == CPU_MMU_OFF)
152 			status = READ_ONCE(__early_cpu_boot_status);
153 
154 		switch (status) {
155 		default:
156 			pr_err("CPU%u: failed in unknown state : 0x%lx\n",
157 					cpu, status);
158 			break;
159 		case CPU_KILL_ME:
160 			if (!op_cpu_kill(cpu)) {
161 				pr_crit("CPU%u: died during early boot\n", cpu);
162 				break;
163 			}
164 			/* Fall through */
165 			pr_crit("CPU%u: may not have shut down cleanly\n", cpu);
166 		case CPU_STUCK_IN_KERNEL:
167 			pr_crit("CPU%u: is stuck in kernel\n", cpu);
168 			cpus_stuck_in_kernel++;
169 			break;
170 		case CPU_PANIC_KERNEL:
171 			panic("CPU%u detected unsupported configuration\n", cpu);
172 		}
173 	}
174 
175 	return ret;
176 }
177 
178 /*
179  * This is the secondary CPU boot entry.  We're using this CPUs
180  * idle thread stack, but a set of temporary page tables.
181  */
secondary_start_kernel(void)182 asmlinkage notrace void secondary_start_kernel(void)
183 {
184 	u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
185 	struct mm_struct *mm = &init_mm;
186 	unsigned int cpu;
187 
188 	cpu = task_cpu(current);
189 	set_my_cpu_offset(per_cpu_offset(cpu));
190 
191 	/*
192 	 * All kernel threads share the same mm context; grab a
193 	 * reference and switch to it.
194 	 */
195 	mmgrab(mm);
196 	current->active_mm = mm;
197 
198 	/*
199 	 * TTBR0 is only used for the identity mapping at this stage. Make it
200 	 * point to zero page to avoid speculatively fetching new entries.
201 	 */
202 	cpu_uninstall_idmap();
203 
204 	preempt_disable();
205 	trace_hardirqs_off();
206 
207 	/*
208 	 * If the system has established the capabilities, make sure
209 	 * this CPU ticks all of those. If it doesn't, the CPU will
210 	 * fail to come online.
211 	 */
212 	check_local_cpu_capabilities();
213 
214 	if (cpu_ops[cpu]->cpu_postboot)
215 		cpu_ops[cpu]->cpu_postboot();
216 
217 	/*
218 	 * Log the CPU info before it is marked online and might get read.
219 	 */
220 	cpuinfo_store_cpu();
221 
222 	/*
223 	 * Enable GIC and timers.
224 	 */
225 	notify_cpu_starting(cpu);
226 
227 	store_cpu_topology(cpu);
228 	numa_add_cpu(cpu);
229 
230 	/*
231 	 * OK, now it's safe to let the boot CPU continue.  Wait for
232 	 * the CPU migration code to notice that the CPU is online
233 	 * before we continue.
234 	 */
235 	pr_info("CPU%u: Booted secondary processor 0x%010lx [0x%08x]\n",
236 					 cpu, (unsigned long)mpidr,
237 					 read_cpuid_id());
238 	update_cpu_boot_status(CPU_BOOT_SUCCESS);
239 	set_cpu_online(cpu, true);
240 	complete(&cpu_running);
241 
242 	local_daif_restore(DAIF_PROCCTX);
243 
244 	/*
245 	 * OK, it's off to the idle thread for us
246 	 */
247 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
248 }
249 
250 #ifdef CONFIG_HOTPLUG_CPU
op_cpu_disable(unsigned int cpu)251 static int op_cpu_disable(unsigned int cpu)
252 {
253 	/*
254 	 * If we don't have a cpu_die method, abort before we reach the point
255 	 * of no return. CPU0 may not have an cpu_ops, so test for it.
256 	 */
257 	if (!cpu_ops[cpu] || !cpu_ops[cpu]->cpu_die)
258 		return -EOPNOTSUPP;
259 
260 	/*
261 	 * We may need to abort a hot unplug for some other mechanism-specific
262 	 * reason.
263 	 */
264 	if (cpu_ops[cpu]->cpu_disable)
265 		return cpu_ops[cpu]->cpu_disable(cpu);
266 
267 	return 0;
268 }
269 
270 /*
271  * __cpu_disable runs on the processor to be shutdown.
272  */
__cpu_disable(void)273 int __cpu_disable(void)
274 {
275 	unsigned int cpu = smp_processor_id();
276 	int ret;
277 
278 	ret = op_cpu_disable(cpu);
279 	if (ret)
280 		return ret;
281 
282 	remove_cpu_topology(cpu);
283 	numa_remove_cpu(cpu);
284 
285 	/*
286 	 * Take this CPU offline.  Once we clear this, we can't return,
287 	 * and we must not schedule until we're ready to give up the cpu.
288 	 */
289 	set_cpu_online(cpu, false);
290 
291 	/*
292 	 * OK - migrate IRQs away from this CPU
293 	 */
294 	irq_migrate_all_off_this_cpu();
295 
296 	return 0;
297 }
298 
op_cpu_kill(unsigned int cpu)299 static int op_cpu_kill(unsigned int cpu)
300 {
301 	/*
302 	 * If we have no means of synchronising with the dying CPU, then assume
303 	 * that it is really dead. We can only wait for an arbitrary length of
304 	 * time and hope that it's dead, so let's skip the wait and just hope.
305 	 */
306 	if (!cpu_ops[cpu]->cpu_kill)
307 		return 0;
308 
309 	return cpu_ops[cpu]->cpu_kill(cpu);
310 }
311 
312 /*
313  * called on the thread which is asking for a CPU to be shutdown -
314  * waits until shutdown has completed, or it is timed out.
315  */
__cpu_die(unsigned int cpu)316 void __cpu_die(unsigned int cpu)
317 {
318 	int err;
319 
320 	if (!cpu_wait_death(cpu, 5)) {
321 		pr_crit("CPU%u: cpu didn't die\n", cpu);
322 		return;
323 	}
324 	pr_notice("CPU%u: shutdown\n", cpu);
325 
326 	/*
327 	 * Now that the dying CPU is beyond the point of no return w.r.t.
328 	 * in-kernel synchronisation, try to get the firwmare to help us to
329 	 * verify that it has really left the kernel before we consider
330 	 * clobbering anything it might still be using.
331 	 */
332 	err = op_cpu_kill(cpu);
333 	if (err)
334 		pr_warn("CPU%d may not have shut down cleanly: %d\n",
335 			cpu, err);
336 }
337 
338 /*
339  * Called from the idle thread for the CPU which has been shutdown.
340  *
341  */
cpu_die(void)342 void cpu_die(void)
343 {
344 	unsigned int cpu = smp_processor_id();
345 
346 	idle_task_exit();
347 
348 	local_daif_mask();
349 
350 	/* Tell __cpu_die() that this CPU is now safe to dispose of */
351 	(void)cpu_report_death();
352 
353 	/*
354 	 * Actually shutdown the CPU. This must never fail. The specific hotplug
355 	 * mechanism must perform all required cache maintenance to ensure that
356 	 * no dirty lines are lost in the process of shutting down the CPU.
357 	 */
358 	cpu_ops[cpu]->cpu_die(cpu);
359 
360 	BUG();
361 }
362 #endif
363 
364 /*
365  * Kill the calling secondary CPU, early in bringup before it is turned
366  * online.
367  */
cpu_die_early(void)368 void cpu_die_early(void)
369 {
370 	int cpu = smp_processor_id();
371 
372 	pr_crit("CPU%d: will not boot\n", cpu);
373 
374 	/* Mark this CPU absent */
375 	set_cpu_present(cpu, 0);
376 
377 #ifdef CONFIG_HOTPLUG_CPU
378 	update_cpu_boot_status(CPU_KILL_ME);
379 	/* Check if we can park ourselves */
380 	if (cpu_ops[cpu] && cpu_ops[cpu]->cpu_die)
381 		cpu_ops[cpu]->cpu_die(cpu);
382 #endif
383 	update_cpu_boot_status(CPU_STUCK_IN_KERNEL);
384 
385 	cpu_park_loop();
386 }
387 
hyp_mode_check(void)388 static void __init hyp_mode_check(void)
389 {
390 	if (is_hyp_mode_available())
391 		pr_info("CPU: All CPU(s) started at EL2\n");
392 	else if (is_hyp_mode_mismatched())
393 		WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC,
394 			   "CPU: CPUs started in inconsistent modes");
395 	else
396 		pr_info("CPU: All CPU(s) started at EL1\n");
397 }
398 
smp_cpus_done(unsigned int max_cpus)399 void __init smp_cpus_done(unsigned int max_cpus)
400 {
401 	pr_info("SMP: Total of %d processors activated.\n", num_online_cpus());
402 	setup_cpu_features();
403 	hyp_mode_check();
404 	apply_alternatives_all();
405 	mark_linear_text_alias_ro();
406 }
407 
smp_prepare_boot_cpu(void)408 void __init smp_prepare_boot_cpu(void)
409 {
410 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
411 	/*
412 	 * Initialise the static keys early as they may be enabled by the
413 	 * cpufeature code.
414 	 */
415 	jump_label_init();
416 	cpuinfo_store_boot_cpu();
417 }
418 
of_get_cpu_mpidr(struct device_node * dn)419 static u64 __init of_get_cpu_mpidr(struct device_node *dn)
420 {
421 	const __be32 *cell;
422 	u64 hwid;
423 
424 	/*
425 	 * A cpu node with missing "reg" property is
426 	 * considered invalid to build a cpu_logical_map
427 	 * entry.
428 	 */
429 	cell = of_get_property(dn, "reg", NULL);
430 	if (!cell) {
431 		pr_err("%pOF: missing reg property\n", dn);
432 		return INVALID_HWID;
433 	}
434 
435 	hwid = of_read_number(cell, of_n_addr_cells(dn));
436 	/*
437 	 * Non affinity bits must be set to 0 in the DT
438 	 */
439 	if (hwid & ~MPIDR_HWID_BITMASK) {
440 		pr_err("%pOF: invalid reg property\n", dn);
441 		return INVALID_HWID;
442 	}
443 	return hwid;
444 }
445 
446 /*
447  * Duplicate MPIDRs are a recipe for disaster. Scan all initialized
448  * entries and check for duplicates. If any is found just ignore the
449  * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid
450  * matching valid MPIDR values.
451  */
is_mpidr_duplicate(unsigned int cpu,u64 hwid)452 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid)
453 {
454 	unsigned int i;
455 
456 	for (i = 1; (i < cpu) && (i < NR_CPUS); i++)
457 		if (cpu_logical_map(i) == hwid)
458 			return true;
459 	return false;
460 }
461 
462 /*
463  * Initialize cpu operations for a logical cpu and
464  * set it in the possible mask on success
465  */
smp_cpu_setup(int cpu)466 static int __init smp_cpu_setup(int cpu)
467 {
468 	if (cpu_read_ops(cpu))
469 		return -ENODEV;
470 
471 	if (cpu_ops[cpu]->cpu_init(cpu))
472 		return -ENODEV;
473 
474 	set_cpu_possible(cpu, true);
475 
476 	return 0;
477 }
478 
479 static bool bootcpu_valid __initdata;
480 static unsigned int cpu_count = 1;
481 
482 #ifdef CONFIG_ACPI
483 static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS];
484 
acpi_cpu_get_madt_gicc(int cpu)485 struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu)
486 {
487 	return &cpu_madt_gicc[cpu];
488 }
489 
490 /*
491  * acpi_map_gic_cpu_interface - parse processor MADT entry
492  *
493  * Carry out sanity checks on MADT processor entry and initialize
494  * cpu_logical_map on success
495  */
496 static void __init
acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt * processor)497 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor)
498 {
499 	u64 hwid = processor->arm_mpidr;
500 
501 	if (!(processor->flags & ACPI_MADT_ENABLED)) {
502 		pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid);
503 		return;
504 	}
505 
506 	if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) {
507 		pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid);
508 		return;
509 	}
510 
511 	if (is_mpidr_duplicate(cpu_count, hwid)) {
512 		pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid);
513 		return;
514 	}
515 
516 	/* Check if GICC structure of boot CPU is available in the MADT */
517 	if (cpu_logical_map(0) == hwid) {
518 		if (bootcpu_valid) {
519 			pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n",
520 			       hwid);
521 			return;
522 		}
523 		bootcpu_valid = true;
524 		cpu_madt_gicc[0] = *processor;
525 		return;
526 	}
527 
528 	if (cpu_count >= NR_CPUS)
529 		return;
530 
531 	/* map the logical cpu id to cpu MPIDR */
532 	cpu_logical_map(cpu_count) = hwid;
533 
534 	cpu_madt_gicc[cpu_count] = *processor;
535 
536 	/*
537 	 * Set-up the ACPI parking protocol cpu entries
538 	 * while initializing the cpu_logical_map to
539 	 * avoid parsing MADT entries multiple times for
540 	 * nothing (ie a valid cpu_logical_map entry should
541 	 * contain a valid parking protocol data set to
542 	 * initialize the cpu if the parking protocol is
543 	 * the only available enable method).
544 	 */
545 	acpi_set_mailbox_entry(cpu_count, processor);
546 
547 	cpu_count++;
548 }
549 
550 static int __init
acpi_parse_gic_cpu_interface(struct acpi_subtable_header * header,const unsigned long end)551 acpi_parse_gic_cpu_interface(struct acpi_subtable_header *header,
552 			     const unsigned long end)
553 {
554 	struct acpi_madt_generic_interrupt *processor;
555 
556 	processor = (struct acpi_madt_generic_interrupt *)header;
557 	if (BAD_MADT_GICC_ENTRY(processor, end))
558 		return -EINVAL;
559 
560 	acpi_table_print_madt_entry(header);
561 
562 	acpi_map_gic_cpu_interface(processor);
563 
564 	return 0;
565 }
566 
acpi_parse_and_init_cpus(void)567 static void __init acpi_parse_and_init_cpus(void)
568 {
569 	int i;
570 
571 	/*
572 	 * do a walk of MADT to determine how many CPUs
573 	 * we have including disabled CPUs, and get information
574 	 * we need for SMP init.
575 	 */
576 	acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
577 				      acpi_parse_gic_cpu_interface, 0);
578 
579 	/*
580 	 * In ACPI, SMP and CPU NUMA information is provided in separate
581 	 * static tables, namely the MADT and the SRAT.
582 	 *
583 	 * Thus, it is simpler to first create the cpu logical map through
584 	 * an MADT walk and then map the logical cpus to their node ids
585 	 * as separate steps.
586 	 */
587 	acpi_map_cpus_to_nodes();
588 
589 	for (i = 0; i < nr_cpu_ids; i++)
590 		early_map_cpu_to_node(i, acpi_numa_get_nid(i));
591 }
592 #else
593 #define acpi_parse_and_init_cpus(...)	do { } while (0)
594 #endif
595 
596 /*
597  * Enumerate the possible CPU set from the device tree and build the
598  * cpu logical map array containing MPIDR values related to logical
599  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
600  */
of_parse_and_init_cpus(void)601 static void __init of_parse_and_init_cpus(void)
602 {
603 	struct device_node *dn;
604 
605 	for_each_node_by_type(dn, "cpu") {
606 		u64 hwid = of_get_cpu_mpidr(dn);
607 
608 		if (hwid == INVALID_HWID)
609 			goto next;
610 
611 		if (is_mpidr_duplicate(cpu_count, hwid)) {
612 			pr_err("%pOF: duplicate cpu reg properties in the DT\n",
613 				dn);
614 			goto next;
615 		}
616 
617 		/*
618 		 * The numbering scheme requires that the boot CPU
619 		 * must be assigned logical id 0. Record it so that
620 		 * the logical map built from DT is validated and can
621 		 * be used.
622 		 */
623 		if (hwid == cpu_logical_map(0)) {
624 			if (bootcpu_valid) {
625 				pr_err("%pOF: duplicate boot cpu reg property in DT\n",
626 					dn);
627 				goto next;
628 			}
629 
630 			bootcpu_valid = true;
631 			early_map_cpu_to_node(0, of_node_to_nid(dn));
632 
633 			/*
634 			 * cpu_logical_map has already been
635 			 * initialized and the boot cpu doesn't need
636 			 * the enable-method so continue without
637 			 * incrementing cpu.
638 			 */
639 			continue;
640 		}
641 
642 		if (cpu_count >= NR_CPUS)
643 			goto next;
644 
645 		pr_debug("cpu logical map 0x%llx\n", hwid);
646 		cpu_logical_map(cpu_count) = hwid;
647 
648 		early_map_cpu_to_node(cpu_count, of_node_to_nid(dn));
649 next:
650 		cpu_count++;
651 	}
652 }
653 
654 /*
655  * Enumerate the possible CPU set from the device tree or ACPI and build the
656  * cpu logical map array containing MPIDR values related to logical
657  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
658  */
smp_init_cpus(void)659 void __init smp_init_cpus(void)
660 {
661 	int i;
662 
663 	if (acpi_disabled)
664 		of_parse_and_init_cpus();
665 	else
666 		acpi_parse_and_init_cpus();
667 
668 	if (cpu_count > nr_cpu_ids)
669 		pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n",
670 			cpu_count, nr_cpu_ids);
671 
672 	if (!bootcpu_valid) {
673 		pr_err("missing boot CPU MPIDR, not enabling secondaries\n");
674 		return;
675 	}
676 
677 	/*
678 	 * We need to set the cpu_logical_map entries before enabling
679 	 * the cpus so that cpu processor description entries (DT cpu nodes
680 	 * and ACPI MADT entries) can be retrieved by matching the cpu hwid
681 	 * with entries in cpu_logical_map while initializing the cpus.
682 	 * If the cpu set-up fails, invalidate the cpu_logical_map entry.
683 	 */
684 	for (i = 1; i < nr_cpu_ids; i++) {
685 		if (cpu_logical_map(i) != INVALID_HWID) {
686 			if (smp_cpu_setup(i))
687 				cpu_logical_map(i) = INVALID_HWID;
688 		}
689 	}
690 }
691 
smp_prepare_cpus(unsigned int max_cpus)692 void __init smp_prepare_cpus(unsigned int max_cpus)
693 {
694 	int err;
695 	unsigned int cpu;
696 	unsigned int this_cpu;
697 
698 	init_cpu_topology();
699 
700 	this_cpu = smp_processor_id();
701 	store_cpu_topology(this_cpu);
702 	numa_store_cpu_info(this_cpu);
703 	numa_add_cpu(this_cpu);
704 
705 	/*
706 	 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set
707 	 * secondary CPUs present.
708 	 */
709 	if (max_cpus == 0)
710 		return;
711 
712 	/*
713 	 * Initialise the present map (which describes the set of CPUs
714 	 * actually populated at the present time) and release the
715 	 * secondaries from the bootloader.
716 	 */
717 	for_each_possible_cpu(cpu) {
718 
719 		per_cpu(cpu_number, cpu) = cpu;
720 
721 		if (cpu == smp_processor_id())
722 			continue;
723 
724 		if (!cpu_ops[cpu])
725 			continue;
726 
727 		err = cpu_ops[cpu]->cpu_prepare(cpu);
728 		if (err)
729 			continue;
730 
731 		set_cpu_present(cpu, true);
732 		numa_store_cpu_info(cpu);
733 	}
734 }
735 
736 void (*__smp_cross_call)(const struct cpumask *, unsigned int);
737 
set_smp_cross_call(void (* fn)(const struct cpumask *,unsigned int))738 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
739 {
740 	__smp_cross_call = fn;
741 }
742 
743 static const char *ipi_types[NR_IPI] __tracepoint_string = {
744 #define S(x,s)	[x] = s
745 	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
746 	S(IPI_CALL_FUNC, "Function call interrupts"),
747 	S(IPI_CPU_STOP, "CPU stop interrupts"),
748 	S(IPI_CPU_CRASH_STOP, "CPU stop (for crash dump) interrupts"),
749 	S(IPI_TIMER, "Timer broadcast interrupts"),
750 	S(IPI_IRQ_WORK, "IRQ work interrupts"),
751 	S(IPI_WAKEUP, "CPU wake-up interrupts"),
752 };
753 
smp_cross_call(const struct cpumask * target,unsigned int ipinr)754 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
755 {
756 	trace_ipi_raise(target, ipi_types[ipinr]);
757 	__smp_cross_call(target, ipinr);
758 }
759 
show_ipi_list(struct seq_file * p,int prec)760 void show_ipi_list(struct seq_file *p, int prec)
761 {
762 	unsigned int cpu, i;
763 
764 	for (i = 0; i < NR_IPI; i++) {
765 		seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i,
766 			   prec >= 4 ? " " : "");
767 		for_each_online_cpu(cpu)
768 			seq_printf(p, "%10u ",
769 				   __get_irq_stat(cpu, ipi_irqs[i]));
770 		seq_printf(p, "      %s\n", ipi_types[i]);
771 	}
772 }
773 
smp_irq_stat_cpu(unsigned int cpu)774 u64 smp_irq_stat_cpu(unsigned int cpu)
775 {
776 	u64 sum = 0;
777 	int i;
778 
779 	for (i = 0; i < NR_IPI; i++)
780 		sum += __get_irq_stat(cpu, ipi_irqs[i]);
781 
782 	return sum;
783 }
784 
arch_send_call_function_ipi_mask(const struct cpumask * mask)785 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
786 {
787 	smp_cross_call(mask, IPI_CALL_FUNC);
788 }
789 
arch_send_call_function_single_ipi(int cpu)790 void arch_send_call_function_single_ipi(int cpu)
791 {
792 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
793 }
794 
795 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
arch_send_wakeup_ipi_mask(const struct cpumask * mask)796 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
797 {
798 	smp_cross_call(mask, IPI_WAKEUP);
799 }
800 #endif
801 
802 #ifdef CONFIG_IRQ_WORK
arch_irq_work_raise(void)803 void arch_irq_work_raise(void)
804 {
805 	if (__smp_cross_call)
806 		smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
807 }
808 #endif
809 
810 /*
811  * ipi_cpu_stop - handle IPI from smp_send_stop()
812  */
ipi_cpu_stop(unsigned int cpu)813 static void ipi_cpu_stop(unsigned int cpu)
814 {
815 	set_cpu_online(cpu, false);
816 
817 	local_daif_mask();
818 	sdei_mask_local_cpu();
819 
820 	while (1)
821 		cpu_relax();
822 }
823 
824 #ifdef CONFIG_KEXEC_CORE
825 static atomic_t waiting_for_crash_ipi = ATOMIC_INIT(0);
826 #endif
827 
ipi_cpu_crash_stop(unsigned int cpu,struct pt_regs * regs)828 static void ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs)
829 {
830 #ifdef CONFIG_KEXEC_CORE
831 	crash_save_cpu(regs, cpu);
832 
833 	atomic_dec(&waiting_for_crash_ipi);
834 
835 	local_irq_disable();
836 	sdei_mask_local_cpu();
837 
838 #ifdef CONFIG_HOTPLUG_CPU
839 	if (cpu_ops[cpu]->cpu_die)
840 		cpu_ops[cpu]->cpu_die(cpu);
841 #endif
842 
843 	/* just in case */
844 	cpu_park_loop();
845 #endif
846 }
847 
848 /*
849  * Main handler for inter-processor interrupts
850  */
handle_IPI(int ipinr,struct pt_regs * regs)851 void handle_IPI(int ipinr, struct pt_regs *regs)
852 {
853 	unsigned int cpu = smp_processor_id();
854 	struct pt_regs *old_regs = set_irq_regs(regs);
855 
856 	if ((unsigned)ipinr < NR_IPI) {
857 		trace_ipi_entry_rcuidle(ipi_types[ipinr]);
858 		__inc_irq_stat(cpu, ipi_irqs[ipinr]);
859 	}
860 
861 	switch (ipinr) {
862 	case IPI_RESCHEDULE:
863 		scheduler_ipi();
864 		break;
865 
866 	case IPI_CALL_FUNC:
867 		irq_enter();
868 		generic_smp_call_function_interrupt();
869 		irq_exit();
870 		break;
871 
872 	case IPI_CPU_STOP:
873 		irq_enter();
874 		ipi_cpu_stop(cpu);
875 		irq_exit();
876 		break;
877 
878 	case IPI_CPU_CRASH_STOP:
879 		if (IS_ENABLED(CONFIG_KEXEC_CORE)) {
880 			irq_enter();
881 			ipi_cpu_crash_stop(cpu, regs);
882 
883 			unreachable();
884 		}
885 		break;
886 
887 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
888 	case IPI_TIMER:
889 		irq_enter();
890 		tick_receive_broadcast();
891 		irq_exit();
892 		break;
893 #endif
894 
895 #ifdef CONFIG_IRQ_WORK
896 	case IPI_IRQ_WORK:
897 		irq_enter();
898 		irq_work_run();
899 		irq_exit();
900 		break;
901 #endif
902 
903 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
904 	case IPI_WAKEUP:
905 		WARN_ONCE(!acpi_parking_protocol_valid(cpu),
906 			  "CPU%u: Wake-up IPI outside the ACPI parking protocol\n",
907 			  cpu);
908 		break;
909 #endif
910 
911 	default:
912 		pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr);
913 		break;
914 	}
915 
916 	if ((unsigned)ipinr < NR_IPI)
917 		trace_ipi_exit_rcuidle(ipi_types[ipinr]);
918 	set_irq_regs(old_regs);
919 }
920 
smp_send_reschedule(int cpu)921 void smp_send_reschedule(int cpu)
922 {
923 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
924 }
925 
926 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
tick_broadcast(const struct cpumask * mask)927 void tick_broadcast(const struct cpumask *mask)
928 {
929 	smp_cross_call(mask, IPI_TIMER);
930 }
931 #endif
932 
smp_send_stop(void)933 void smp_send_stop(void)
934 {
935 	unsigned long timeout;
936 
937 	if (num_online_cpus() > 1) {
938 		cpumask_t mask;
939 
940 		cpumask_copy(&mask, cpu_online_mask);
941 		cpumask_clear_cpu(smp_processor_id(), &mask);
942 
943 		if (system_state <= SYSTEM_RUNNING)
944 			pr_crit("SMP: stopping secondary CPUs\n");
945 		smp_cross_call(&mask, IPI_CPU_STOP);
946 	}
947 
948 	/* Wait up to one second for other CPUs to stop */
949 	timeout = USEC_PER_SEC;
950 	while (num_online_cpus() > 1 && timeout--)
951 		udelay(1);
952 
953 	if (num_online_cpus() > 1)
954 		pr_warning("SMP: failed to stop secondary CPUs %*pbl\n",
955 			   cpumask_pr_args(cpu_online_mask));
956 
957 	sdei_mask_local_cpu();
958 }
959 
960 #ifdef CONFIG_KEXEC_CORE
crash_smp_send_stop(void)961 void crash_smp_send_stop(void)
962 {
963 	static int cpus_stopped;
964 	cpumask_t mask;
965 	unsigned long timeout;
966 
967 	/*
968 	 * This function can be called twice in panic path, but obviously
969 	 * we execute this only once.
970 	 */
971 	if (cpus_stopped)
972 		return;
973 
974 	cpus_stopped = 1;
975 
976 	if (num_online_cpus() == 1) {
977 		sdei_mask_local_cpu();
978 		return;
979 	}
980 
981 	cpumask_copy(&mask, cpu_online_mask);
982 	cpumask_clear_cpu(smp_processor_id(), &mask);
983 
984 	atomic_set(&waiting_for_crash_ipi, num_online_cpus() - 1);
985 
986 	pr_crit("SMP: stopping secondary CPUs\n");
987 	smp_cross_call(&mask, IPI_CPU_CRASH_STOP);
988 
989 	/* Wait up to one second for other CPUs to stop */
990 	timeout = USEC_PER_SEC;
991 	while ((atomic_read(&waiting_for_crash_ipi) > 0) && timeout--)
992 		udelay(1);
993 
994 	if (atomic_read(&waiting_for_crash_ipi) > 0)
995 		pr_warning("SMP: failed to stop secondary CPUs %*pbl\n",
996 			   cpumask_pr_args(&mask));
997 
998 	sdei_mask_local_cpu();
999 }
1000 
smp_crash_stop_failed(void)1001 bool smp_crash_stop_failed(void)
1002 {
1003 	return (atomic_read(&waiting_for_crash_ipi) > 0);
1004 }
1005 #endif
1006 
1007 /*
1008  * not supported here
1009  */
setup_profiling_timer(unsigned int multiplier)1010 int setup_profiling_timer(unsigned int multiplier)
1011 {
1012 	return -EINVAL;
1013 }
1014 
have_cpu_die(void)1015 static bool have_cpu_die(void)
1016 {
1017 #ifdef CONFIG_HOTPLUG_CPU
1018 	int any_cpu = raw_smp_processor_id();
1019 
1020 	if (cpu_ops[any_cpu] && cpu_ops[any_cpu]->cpu_die)
1021 		return true;
1022 #endif
1023 	return false;
1024 }
1025 
cpus_are_stuck_in_kernel(void)1026 bool cpus_are_stuck_in_kernel(void)
1027 {
1028 	bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die());
1029 
1030 	return !!cpus_stuck_in_kernel || smp_spin_tables;
1031 }
1032