1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Contains CPU feature definitions
4 *
5 * Copyright (C) 2015 ARM Ltd.
6 *
7 * A note for the weary kernel hacker: the code here is confusing and hard to
8 * follow! That's partly because it's solving a nasty problem, but also because
9 * there's a little bit of over-abstraction that tends to obscure what's going
10 * on behind a maze of helper functions and macros.
11 *
12 * The basic problem is that hardware folks have started gluing together CPUs
13 * with distinct architectural features; in some cases even creating SoCs where
14 * user-visible instructions are available only on a subset of the available
15 * cores. We try to address this by snapshotting the feature registers of the
16 * boot CPU and comparing these with the feature registers of each secondary
17 * CPU when bringing them up. If there is a mismatch, then we update the
18 * snapshot state to indicate the lowest-common denominator of the feature,
19 * known as the "safe" value. This snapshot state can be queried to view the
20 * "sanitised" value of a feature register.
21 *
22 * The sanitised register values are used to decide which capabilities we
23 * have in the system. These may be in the form of traditional "hwcaps"
24 * advertised to userspace or internal "cpucaps" which are used to configure
25 * things like alternative patching and static keys. While a feature mismatch
26 * may result in a TAINT_CPU_OUT_OF_SPEC kernel taint, a capability mismatch
27 * may prevent a CPU from being onlined at all.
28 *
29 * Some implementation details worth remembering:
30 *
31 * - Mismatched features are *always* sanitised to a "safe" value, which
32 * usually indicates that the feature is not supported.
33 *
34 * - A mismatched feature marked with FTR_STRICT will cause a "SANITY CHECK"
35 * warning when onlining an offending CPU and the kernel will be tainted
36 * with TAINT_CPU_OUT_OF_SPEC.
37 *
38 * - Features marked as FTR_VISIBLE have their sanitised value visible to
39 * userspace. FTR_VISIBLE features in registers that are only visible
40 * to EL0 by trapping *must* have a corresponding HWCAP so that late
41 * onlining of CPUs cannot lead to features disappearing at runtime.
42 *
43 * - A "feature" is typically a 4-bit register field. A "capability" is the
44 * high-level description derived from the sanitised field value.
45 *
46 * - Read the Arm ARM (DDI 0487F.a) section D13.1.3 ("Principles of the ID
47 * scheme for fields in ID registers") to understand when feature fields
48 * may be signed or unsigned (FTR_SIGNED and FTR_UNSIGNED accordingly).
49 *
50 * - KVM exposes its own view of the feature registers to guest operating
51 * systems regardless of FTR_VISIBLE. This is typically driven from the
52 * sanitised register values to allow virtual CPUs to be migrated between
53 * arbitrary physical CPUs, but some features not present on the host are
54 * also advertised and emulated. Look at sys_reg_descs[] for the gory
55 * details.
56 *
57 * - If the arm64_ftr_bits[] for a register has a missing field, then this
58 * field is treated as STRICT RES0, including for read_sanitised_ftr_reg().
59 * This is stronger than FTR_HIDDEN and can be used to hide features from
60 * KVM guests.
61 */
62
63 #define pr_fmt(fmt) "CPU features: " fmt
64
65 #include <linux/bsearch.h>
66 #include <linux/cpumask.h>
67 #include <linux/crash_dump.h>
68 #include <linux/sort.h>
69 #include <linux/stop_machine.h>
70 #include <linux/types.h>
71 #include <linux/mm.h>
72 #include <linux/cpu.h>
73 #include <asm/cpu.h>
74 #include <asm/cpufeature.h>
75 #include <asm/cpu_ops.h>
76 #include <asm/fpsimd.h>
77 #include <asm/mmu_context.h>
78 #include <asm/mte.h>
79 #include <asm/processor.h>
80 #include <asm/sysreg.h>
81 #include <asm/traps.h>
82 #include <asm/virt.h>
83
84 /* Kernel representation of AT_HWCAP and AT_HWCAP2 */
85 static unsigned long elf_hwcap __read_mostly;
86
87 #ifdef CONFIG_COMPAT
88 #define COMPAT_ELF_HWCAP_DEFAULT \
89 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
90 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
91 COMPAT_HWCAP_TLS|COMPAT_HWCAP_IDIV|\
92 COMPAT_HWCAP_LPAE)
93 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
94 unsigned int compat_elf_hwcap2 __read_mostly;
95 #endif
96
97 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
98 EXPORT_SYMBOL(cpu_hwcaps);
99 static struct arm64_cpu_capabilities const __ro_after_init *cpu_hwcaps_ptrs[ARM64_NCAPS];
100
101 /* Need also bit for ARM64_CB_PATCH */
102 DECLARE_BITMAP(boot_capabilities, ARM64_NPATCHABLE);
103
104 bool arm64_use_ng_mappings = false;
105 EXPORT_SYMBOL(arm64_use_ng_mappings);
106
107 /*
108 * Flag to indicate if we have computed the system wide
109 * capabilities based on the boot time active CPUs. This
110 * will be used to determine if a new booting CPU should
111 * go through the verification process to make sure that it
112 * supports the system capabilities, without using a hotplug
113 * notifier. This is also used to decide if we could use
114 * the fast path for checking constant CPU caps.
115 */
116 DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready);
117 EXPORT_SYMBOL(arm64_const_caps_ready);
finalize_system_capabilities(void)118 static inline void finalize_system_capabilities(void)
119 {
120 static_branch_enable(&arm64_const_caps_ready);
121 }
122
dump_cpu_features(void)123 void dump_cpu_features(void)
124 {
125 /* file-wide pr_fmt adds "CPU features: " prefix */
126 pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps);
127 }
128
129 DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
130 EXPORT_SYMBOL(cpu_hwcap_keys);
131
132 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
133 { \
134 .sign = SIGNED, \
135 .visible = VISIBLE, \
136 .strict = STRICT, \
137 .type = TYPE, \
138 .shift = SHIFT, \
139 .width = WIDTH, \
140 .safe_val = SAFE_VAL, \
141 }
142
143 /* Define a feature with unsigned values */
144 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
145 __ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
146
147 /* Define a feature with a signed value */
148 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
149 __ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
150
151 #define ARM64_FTR_END \
152 { \
153 .width = 0, \
154 }
155
156 /* meta feature for alternatives */
157 static bool __maybe_unused
158 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused);
159
160 static void cpu_enable_cnp(struct arm64_cpu_capabilities const *cap);
161
162 static bool __system_matches_cap(unsigned int n);
163
164 /*
165 * NOTE: Any changes to the visibility of features should be kept in
166 * sync with the documentation of the CPU feature register ABI.
167 */
168 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
169 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RNDR_SHIFT, 4, 0),
170 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_TLB_SHIFT, 4, 0),
171 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_TS_SHIFT, 4, 0),
172 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_FHM_SHIFT, 4, 0),
173 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_DP_SHIFT, 4, 0),
174 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM4_SHIFT, 4, 0),
175 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM3_SHIFT, 4, 0),
176 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA3_SHIFT, 4, 0),
177 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
178 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
179 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
180 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
181 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
182 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
183 ARM64_FTR_END,
184 };
185
186 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
187 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_I8MM_SHIFT, 4, 0),
188 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DGH_SHIFT, 4, 0),
189 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_BF16_SHIFT, 4, 0),
190 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_SPECRES_SHIFT, 4, 0),
191 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_SB_SHIFT, 4, 0),
192 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FRINTTS_SHIFT, 4, 0),
193 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
194 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_GPI_SHIFT, 4, 0),
195 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
196 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_GPA_SHIFT, 4, 0),
197 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_LRCPC_SHIFT, 4, 0),
198 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FCMA_SHIFT, 4, 0),
199 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_JSCVT_SHIFT, 4, 0),
200 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
201 FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_API_SHIFT, 4, 0),
202 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
203 FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_APA_SHIFT, 4, 0),
204 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DPB_SHIFT, 4, 0),
205 ARM64_FTR_END,
206 };
207
208 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
209 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV3_SHIFT, 4, 0),
210 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV2_SHIFT, 4, 0),
211 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_DIT_SHIFT, 4, 0),
212 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_AMU_SHIFT, 4, 0),
213 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_MPAM_SHIFT, 4, 0),
214 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SEL2_SHIFT, 4, 0),
215 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
216 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SVE_SHIFT, 4, 0),
217 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_RAS_SHIFT, 4, 0),
218 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_GIC_SHIFT, 4, 0),
219 S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
220 S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
221 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL3_SHIFT, 4, 0),
222 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL2_SHIFT, 4, 0),
223 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
224 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
225 ARM64_FTR_END,
226 };
227
228 static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = {
229 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_MPAMFRAC_SHIFT, 4, 0),
230 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_RASFRAC_SHIFT, 4, 0),
231 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_MTE),
232 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_MTE_SHIFT, 4, ID_AA64PFR1_MTE_NI),
233 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR1_SSBS_SHIFT, 4, ID_AA64PFR1_SSBS_PSTATE_NI),
234 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_BTI),
235 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_BT_SHIFT, 4, 0),
236 ARM64_FTR_END,
237 };
238
239 static const struct arm64_ftr_bits ftr_id_aa64zfr0[] = {
240 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
241 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_F64MM_SHIFT, 4, 0),
242 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
243 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_F32MM_SHIFT, 4, 0),
244 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
245 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_I8MM_SHIFT, 4, 0),
246 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
247 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SM4_SHIFT, 4, 0),
248 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
249 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SHA3_SHIFT, 4, 0),
250 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
251 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_BF16_SHIFT, 4, 0),
252 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
253 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_BITPERM_SHIFT, 4, 0),
254 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
255 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_AES_SHIFT, 4, 0),
256 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
257 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SVEVER_SHIFT, 4, 0),
258 ARM64_FTR_END,
259 };
260
261 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
262 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ECV_SHIFT, 4, 0),
263 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_FGT_SHIFT, 4, 0),
264 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EXS_SHIFT, 4, 0),
265 /*
266 * Page size not being supported at Stage-2 is not fatal. You
267 * just give up KVM if PAGE_SIZE isn't supported there. Go fix
268 * your favourite nesting hypervisor.
269 *
270 * There is a small corner case where the hypervisor explicitly
271 * advertises a given granule size at Stage-2 (value 2) on some
272 * vCPUs, and uses the fallback to Stage-1 (value 0) for other
273 * vCPUs. Although this is not forbidden by the architecture, it
274 * indicates that the hypervisor is being silly (or buggy).
275 *
276 * We make no effort to cope with this and pretend that if these
277 * fields are inconsistent across vCPUs, then it isn't worth
278 * trying to bring KVM up.
279 */
280 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_2_SHIFT, 4, 1),
281 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_2_SHIFT, 4, 1),
282 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_2_SHIFT, 4, 1),
283 /*
284 * We already refuse to boot CPUs that don't support our configured
285 * page size, so we can only detect mismatches for a page size other
286 * than the one we're currently using. Unfortunately, SoCs like this
287 * exist in the wild so, even though we don't like it, we'll have to go
288 * along with it and treat them as non-strict.
289 */
290 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
291 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
292 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
293
294 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
295 /* Linux shouldn't care about secure memory */
296 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
297 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
298 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
299 /*
300 * Differing PARange is fine as long as all peripherals and memory are mapped
301 * within the minimum PARange of all CPUs
302 */
303 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
304 ARM64_FTR_END,
305 };
306
307 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
308 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_ETS_SHIFT, 4, 0),
309 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_TWED_SHIFT, 4, 0),
310 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_XNX_SHIFT, 4, 0),
311 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_AA64MMFR1_SPECSEI_SHIFT, 4, 0),
312 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
313 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
314 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
315 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
316 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
317 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
318 ARM64_FTR_END,
319 };
320
321 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
322 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_E0PD_SHIFT, 4, 0),
323 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EVT_SHIFT, 4, 0),
324 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_BBM_SHIFT, 4, 0),
325 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_TTL_SHIFT, 4, 0),
326 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_FWB_SHIFT, 4, 0),
327 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IDS_SHIFT, 4, 0),
328 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_AT_SHIFT, 4, 0),
329 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_ST_SHIFT, 4, 0),
330 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_NV_SHIFT, 4, 0),
331 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CCIDX_SHIFT, 4, 0),
332 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
333 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
334 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
335 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
336 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
337 ARM64_FTR_END,
338 };
339
340 static const struct arm64_ftr_bits ftr_ctr[] = {
341 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */
342 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DIC_SHIFT, 1, 1),
343 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IDC_SHIFT, 1, 1),
344 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_CWG_SHIFT, 4, 0),
345 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_ERG_SHIFT, 4, 0),
346 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DMINLINE_SHIFT, 4, 1),
347 /*
348 * Linux can handle differing I-cache policies. Userspace JITs will
349 * make use of *minLine.
350 * If we have differing I-cache policies, report it as the weakest - VIPT.
351 */
352 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, CTR_L1IP_SHIFT, 2, ICACHE_POLICY_VIPT), /* L1Ip */
353 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IMINLINE_SHIFT, 4, 0),
354 ARM64_FTR_END,
355 };
356
357 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
358 .name = "SYS_CTR_EL0",
359 .ftr_bits = ftr_ctr
360 };
361
362 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
363 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_INNERSHR_SHIFT, 4, 0xf),
364 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_FCSE_SHIFT, 4, 0),
365 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_MMFR0_AUXREG_SHIFT, 4, 0),
366 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_TCM_SHIFT, 4, 0),
367 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_SHARELVL_SHIFT, 4, 0),
368 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_OUTERSHR_SHIFT, 4, 0xf),
369 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_PMSA_SHIFT, 4, 0),
370 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_VMSA_SHIFT, 4, 0),
371 ARM64_FTR_END,
372 };
373
374 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
375 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_DOUBLELOCK_SHIFT, 4, 0),
376 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0),
377 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
378 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
379 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
380 /*
381 * We can instantiate multiple PMU instances with different levels
382 * of support.
383 */
384 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
385 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
386 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
387 ARM64_FTR_END,
388 };
389
390 static const struct arm64_ftr_bits ftr_mvfr2[] = {
391 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_FPMISC_SHIFT, 4, 0),
392 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_SIMDMISC_SHIFT, 4, 0),
393 ARM64_FTR_END,
394 };
395
396 static const struct arm64_ftr_bits ftr_dczid[] = {
397 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, DCZID_DZP_SHIFT, 1, 1),
398 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, DCZID_BS_SHIFT, 4, 0),
399 ARM64_FTR_END,
400 };
401
402 static const struct arm64_ftr_bits ftr_id_isar0[] = {
403 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_DIVIDE_SHIFT, 4, 0),
404 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_DEBUG_SHIFT, 4, 0),
405 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_COPROC_SHIFT, 4, 0),
406 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_CMPBRANCH_SHIFT, 4, 0),
407 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_BITFIELD_SHIFT, 4, 0),
408 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_BITCOUNT_SHIFT, 4, 0),
409 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_SWAP_SHIFT, 4, 0),
410 ARM64_FTR_END,
411 };
412
413 static const struct arm64_ftr_bits ftr_id_isar5[] = {
414 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_RDM_SHIFT, 4, 0),
415 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_CRC32_SHIFT, 4, 0),
416 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA2_SHIFT, 4, 0),
417 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA1_SHIFT, 4, 0),
418 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_AES_SHIFT, 4, 0),
419 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SEVL_SHIFT, 4, 0),
420 ARM64_FTR_END,
421 };
422
423 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
424 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EVT_SHIFT, 4, 0),
425 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_CCIDX_SHIFT, 4, 0),
426 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_LSM_SHIFT, 4, 0),
427 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_HPDS_SHIFT, 4, 0),
428 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_CNP_SHIFT, 4, 0),
429 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_XNX_SHIFT, 4, 0),
430 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_AC2_SHIFT, 4, 0),
431
432 /*
433 * SpecSEI = 1 indicates that the PE might generate an SError on an
434 * external abort on speculative read. It is safe to assume that an
435 * SError might be generated than it will not be. Hence it has been
436 * classified as FTR_HIGHER_SAFE.
437 */
438 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_MMFR4_SPECSEI_SHIFT, 4, 0),
439 ARM64_FTR_END,
440 };
441
442 static const struct arm64_ftr_bits ftr_id_isar4[] = {
443 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SWP_FRAC_SHIFT, 4, 0),
444 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_PSR_M_SHIFT, 4, 0),
445 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SYNCH_PRIM_FRAC_SHIFT, 4, 0),
446 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_BARRIER_SHIFT, 4, 0),
447 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SMC_SHIFT, 4, 0),
448 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_WRITEBACK_SHIFT, 4, 0),
449 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_WITHSHIFTS_SHIFT, 4, 0),
450 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_UNPRIV_SHIFT, 4, 0),
451 ARM64_FTR_END,
452 };
453
454 static const struct arm64_ftr_bits ftr_id_mmfr5[] = {
455 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR5_ETS_SHIFT, 4, 0),
456 ARM64_FTR_END,
457 };
458
459 static const struct arm64_ftr_bits ftr_id_isar6[] = {
460 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_I8MM_SHIFT, 4, 0),
461 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_BF16_SHIFT, 4, 0),
462 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_SPECRES_SHIFT, 4, 0),
463 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_SB_SHIFT, 4, 0),
464 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_FHM_SHIFT, 4, 0),
465 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_DP_SHIFT, 4, 0),
466 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_JSCVT_SHIFT, 4, 0),
467 ARM64_FTR_END,
468 };
469
470 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
471 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_DIT_SHIFT, 4, 0),
472 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR0_CSV2_SHIFT, 4, 0),
473 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE3_SHIFT, 4, 0),
474 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE2_SHIFT, 4, 0),
475 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE1_SHIFT, 4, 0),
476 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE0_SHIFT, 4, 0),
477 ARM64_FTR_END,
478 };
479
480 static const struct arm64_ftr_bits ftr_id_pfr1[] = {
481 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_GIC_SHIFT, 4, 0),
482 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_VIRT_FRAC_SHIFT, 4, 0),
483 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_SEC_FRAC_SHIFT, 4, 0),
484 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_GENTIMER_SHIFT, 4, 0),
485 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_VIRTUALIZATION_SHIFT, 4, 0),
486 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_MPROGMOD_SHIFT, 4, 0),
487 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_SECURITY_SHIFT, 4, 0),
488 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_PROGMOD_SHIFT, 4, 0),
489 ARM64_FTR_END,
490 };
491
492 static const struct arm64_ftr_bits ftr_id_pfr2[] = {
493 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_SSBS_SHIFT, 4, 0),
494 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_CSV3_SHIFT, 4, 0),
495 ARM64_FTR_END,
496 };
497
498 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
499 /* [31:28] TraceFilt */
500 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_PERFMON_SHIFT, 4, 0xf),
501 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MPROFDBG_SHIFT, 4, 0),
502 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MMAPTRC_SHIFT, 4, 0),
503 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPTRC_SHIFT, 4, 0),
504 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MMAPDBG_SHIFT, 4, 0),
505 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPSDBG_SHIFT, 4, 0),
506 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPDBG_SHIFT, 4, 0),
507 ARM64_FTR_END,
508 };
509
510 static const struct arm64_ftr_bits ftr_id_dfr1[] = {
511 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR1_MTPMU_SHIFT, 4, 0),
512 ARM64_FTR_END,
513 };
514
515 static const struct arm64_ftr_bits ftr_zcr[] = {
516 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE,
517 ZCR_ELx_LEN_SHIFT, ZCR_ELx_LEN_SIZE, 0), /* LEN */
518 ARM64_FTR_END,
519 };
520
521 /*
522 * Common ftr bits for a 32bit register with all hidden, strict
523 * attributes, with 4bit feature fields and a default safe value of
524 * 0. Covers the following 32bit registers:
525 * id_isar[1-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
526 */
527 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
528 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
529 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
530 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
531 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
532 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
533 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
534 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
535 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
536 ARM64_FTR_END,
537 };
538
539 /* Table for a single 32bit feature value */
540 static const struct arm64_ftr_bits ftr_single32[] = {
541 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
542 ARM64_FTR_END,
543 };
544
545 static const struct arm64_ftr_bits ftr_raz[] = {
546 ARM64_FTR_END,
547 };
548
549 #define ARM64_FTR_REG(id, table) { \
550 .sys_id = id, \
551 .reg = &(struct arm64_ftr_reg){ \
552 .name = #id, \
553 .ftr_bits = &((table)[0]), \
554 }}
555
556 static const struct __ftr_reg_entry {
557 u32 sys_id;
558 struct arm64_ftr_reg *reg;
559 } arm64_ftr_regs[] = {
560
561 /* Op1 = 0, CRn = 0, CRm = 1 */
562 ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
563 ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_id_pfr1),
564 ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
565 ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
566 ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
567 ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
568 ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
569
570 /* Op1 = 0, CRn = 0, CRm = 2 */
571 ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_id_isar0),
572 ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
573 ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
574 ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
575 ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_id_isar4),
576 ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
577 ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
578 ARM64_FTR_REG(SYS_ID_ISAR6_EL1, ftr_id_isar6),
579
580 /* Op1 = 0, CRn = 0, CRm = 3 */
581 ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
582 ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
583 ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
584 ARM64_FTR_REG(SYS_ID_PFR2_EL1, ftr_id_pfr2),
585 ARM64_FTR_REG(SYS_ID_DFR1_EL1, ftr_id_dfr1),
586 ARM64_FTR_REG(SYS_ID_MMFR5_EL1, ftr_id_mmfr5),
587
588 /* Op1 = 0, CRn = 0, CRm = 4 */
589 ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
590 ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1),
591 ARM64_FTR_REG(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0),
592
593 /* Op1 = 0, CRn = 0, CRm = 5 */
594 ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
595 ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
596
597 /* Op1 = 0, CRn = 0, CRm = 6 */
598 ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
599 ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1),
600
601 /* Op1 = 0, CRn = 0, CRm = 7 */
602 ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
603 ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
604 ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
605
606 /* Op1 = 0, CRn = 1, CRm = 2 */
607 ARM64_FTR_REG(SYS_ZCR_EL1, ftr_zcr),
608
609 /* Op1 = 3, CRn = 0, CRm = 0 */
610 { SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
611 ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
612
613 /* Op1 = 3, CRn = 14, CRm = 0 */
614 ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
615 };
616
search_cmp_ftr_reg(const void * id,const void * regp)617 static int search_cmp_ftr_reg(const void *id, const void *regp)
618 {
619 return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
620 }
621
622 /*
623 * get_arm64_ftr_reg_nowarn - Looks up a feature register entry using
624 * its sys_reg() encoding. With the array arm64_ftr_regs sorted in the
625 * ascending order of sys_id, we use binary search to find a matching
626 * entry.
627 *
628 * returns - Upon success, matching ftr_reg entry for id.
629 * - NULL on failure. It is upto the caller to decide
630 * the impact of a failure.
631 */
get_arm64_ftr_reg_nowarn(u32 sys_id)632 static struct arm64_ftr_reg *get_arm64_ftr_reg_nowarn(u32 sys_id)
633 {
634 const struct __ftr_reg_entry *ret;
635
636 ret = bsearch((const void *)(unsigned long)sys_id,
637 arm64_ftr_regs,
638 ARRAY_SIZE(arm64_ftr_regs),
639 sizeof(arm64_ftr_regs[0]),
640 search_cmp_ftr_reg);
641 if (ret)
642 return ret->reg;
643 return NULL;
644 }
645
646 /*
647 * get_arm64_ftr_reg - Looks up a feature register entry using
648 * its sys_reg() encoding. This calls get_arm64_ftr_reg_nowarn().
649 *
650 * returns - Upon success, matching ftr_reg entry for id.
651 * - NULL on failure but with an WARN_ON().
652 */
get_arm64_ftr_reg(u32 sys_id)653 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
654 {
655 struct arm64_ftr_reg *reg;
656
657 reg = get_arm64_ftr_reg_nowarn(sys_id);
658
659 /*
660 * Requesting a non-existent register search is an error. Warn
661 * and let the caller handle it.
662 */
663 WARN_ON(!reg);
664 return reg;
665 }
666
arm64_ftr_set_value(const struct arm64_ftr_bits * ftrp,s64 reg,s64 ftr_val)667 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
668 s64 ftr_val)
669 {
670 u64 mask = arm64_ftr_mask(ftrp);
671
672 reg &= ~mask;
673 reg |= (ftr_val << ftrp->shift) & mask;
674 return reg;
675 }
676
arm64_ftr_safe_value(const struct arm64_ftr_bits * ftrp,s64 new,s64 cur)677 static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
678 s64 cur)
679 {
680 s64 ret = 0;
681
682 switch (ftrp->type) {
683 case FTR_EXACT:
684 ret = ftrp->safe_val;
685 break;
686 case FTR_LOWER_SAFE:
687 ret = new < cur ? new : cur;
688 break;
689 case FTR_HIGHER_OR_ZERO_SAFE:
690 if (!cur || !new)
691 break;
692 fallthrough;
693 case FTR_HIGHER_SAFE:
694 ret = new > cur ? new : cur;
695 break;
696 default:
697 BUG();
698 }
699
700 return ret;
701 }
702
sort_ftr_regs(void)703 static void __init sort_ftr_regs(void)
704 {
705 unsigned int i;
706
707 for (i = 0; i < ARRAY_SIZE(arm64_ftr_regs); i++) {
708 const struct arm64_ftr_reg *ftr_reg = arm64_ftr_regs[i].reg;
709 const struct arm64_ftr_bits *ftr_bits = ftr_reg->ftr_bits;
710 unsigned int j = 0;
711
712 /*
713 * Features here must be sorted in descending order with respect
714 * to their shift values and should not overlap with each other.
715 */
716 for (; ftr_bits->width != 0; ftr_bits++, j++) {
717 unsigned int width = ftr_reg->ftr_bits[j].width;
718 unsigned int shift = ftr_reg->ftr_bits[j].shift;
719 unsigned int prev_shift;
720
721 WARN((shift + width) > 64,
722 "%s has invalid feature at shift %d\n",
723 ftr_reg->name, shift);
724
725 /*
726 * Skip the first feature. There is nothing to
727 * compare against for now.
728 */
729 if (j == 0)
730 continue;
731
732 prev_shift = ftr_reg->ftr_bits[j - 1].shift;
733 WARN((shift + width) > prev_shift,
734 "%s has feature overlap at shift %d\n",
735 ftr_reg->name, shift);
736 }
737
738 /*
739 * Skip the first register. There is nothing to
740 * compare against for now.
741 */
742 if (i == 0)
743 continue;
744 /*
745 * Registers here must be sorted in ascending order with respect
746 * to sys_id for subsequent binary search in get_arm64_ftr_reg()
747 * to work correctly.
748 */
749 BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
750 }
751 }
752
753 /*
754 * Initialise the CPU feature register from Boot CPU values.
755 * Also initiliases the strict_mask for the register.
756 * Any bits that are not covered by an arm64_ftr_bits entry are considered
757 * RES0 for the system-wide value, and must strictly match.
758 */
init_cpu_ftr_reg(u32 sys_reg,u64 new)759 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
760 {
761 u64 val = 0;
762 u64 strict_mask = ~0x0ULL;
763 u64 user_mask = 0;
764 u64 valid_mask = 0;
765
766 const struct arm64_ftr_bits *ftrp;
767 struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
768
769 if (!reg)
770 return;
771
772 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
773 u64 ftr_mask = arm64_ftr_mask(ftrp);
774 s64 ftr_new = arm64_ftr_value(ftrp, new);
775
776 val = arm64_ftr_set_value(ftrp, val, ftr_new);
777
778 valid_mask |= ftr_mask;
779 if (!ftrp->strict)
780 strict_mask &= ~ftr_mask;
781 if (ftrp->visible)
782 user_mask |= ftr_mask;
783 else
784 reg->user_val = arm64_ftr_set_value(ftrp,
785 reg->user_val,
786 ftrp->safe_val);
787 }
788
789 val &= valid_mask;
790
791 reg->sys_val = val;
792 reg->strict_mask = strict_mask;
793 reg->user_mask = user_mask;
794 }
795
796 extern const struct arm64_cpu_capabilities arm64_errata[];
797 static const struct arm64_cpu_capabilities arm64_features[];
798
799 static void __init
init_cpu_hwcaps_indirect_list_from_array(const struct arm64_cpu_capabilities * caps)800 init_cpu_hwcaps_indirect_list_from_array(const struct arm64_cpu_capabilities *caps)
801 {
802 for (; caps->matches; caps++) {
803 if (WARN(caps->capability >= ARM64_NCAPS,
804 "Invalid capability %d\n", caps->capability))
805 continue;
806 if (WARN(cpu_hwcaps_ptrs[caps->capability],
807 "Duplicate entry for capability %d\n",
808 caps->capability))
809 continue;
810 cpu_hwcaps_ptrs[caps->capability] = caps;
811 }
812 }
813
init_cpu_hwcaps_indirect_list(void)814 static void __init init_cpu_hwcaps_indirect_list(void)
815 {
816 init_cpu_hwcaps_indirect_list_from_array(arm64_features);
817 init_cpu_hwcaps_indirect_list_from_array(arm64_errata);
818 }
819
820 static void __init setup_boot_cpu_capabilities(void);
821
init_cpu_features(struct cpuinfo_arm64 * info)822 void __init init_cpu_features(struct cpuinfo_arm64 *info)
823 {
824 /* Before we start using the tables, make sure it is sorted */
825 sort_ftr_regs();
826
827 init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
828 init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
829 init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
830 init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
831 init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
832 init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
833 init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
834 init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
835 init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
836 init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
837 init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
838 init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
839 init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
840
841 if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
842 init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
843 init_cpu_ftr_reg(SYS_ID_DFR1_EL1, info->reg_id_dfr1);
844 init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
845 init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
846 init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
847 init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
848 init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
849 init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
850 init_cpu_ftr_reg(SYS_ID_ISAR6_EL1, info->reg_id_isar6);
851 init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
852 init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
853 init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
854 init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
855 init_cpu_ftr_reg(SYS_ID_MMFR4_EL1, info->reg_id_mmfr4);
856 init_cpu_ftr_reg(SYS_ID_MMFR5_EL1, info->reg_id_mmfr5);
857 init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
858 init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
859 init_cpu_ftr_reg(SYS_ID_PFR2_EL1, info->reg_id_pfr2);
860 init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
861 init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
862 init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
863 }
864
865 if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
866 init_cpu_ftr_reg(SYS_ZCR_EL1, info->reg_zcr);
867 sve_init_vq_map();
868 }
869
870 /*
871 * Initialize the indirect array of CPU hwcaps capabilities pointers
872 * before we handle the boot CPU below.
873 */
874 init_cpu_hwcaps_indirect_list();
875
876 /*
877 * Detect and enable early CPU capabilities based on the boot CPU,
878 * after we have initialised the CPU feature infrastructure.
879 */
880 setup_boot_cpu_capabilities();
881 }
882
update_cpu_ftr_reg(struct arm64_ftr_reg * reg,u64 new)883 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
884 {
885 const struct arm64_ftr_bits *ftrp;
886
887 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
888 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
889 s64 ftr_new = arm64_ftr_value(ftrp, new);
890
891 if (ftr_cur == ftr_new)
892 continue;
893 /* Find a safe value */
894 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
895 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
896 }
897
898 }
899
check_update_ftr_reg(u32 sys_id,int cpu,u64 val,u64 boot)900 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
901 {
902 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
903
904 if (!regp)
905 return 0;
906
907 update_cpu_ftr_reg(regp, val);
908 if ((boot & regp->strict_mask) == (val & regp->strict_mask))
909 return 0;
910 pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
911 regp->name, boot, cpu, val);
912 return 1;
913 }
914
relax_cpu_ftr_reg(u32 sys_id,int field)915 static void relax_cpu_ftr_reg(u32 sys_id, int field)
916 {
917 const struct arm64_ftr_bits *ftrp;
918 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
919
920 if (!regp)
921 return;
922
923 for (ftrp = regp->ftr_bits; ftrp->width; ftrp++) {
924 if (ftrp->shift == field) {
925 regp->strict_mask &= ~arm64_ftr_mask(ftrp);
926 break;
927 }
928 }
929
930 /* Bogus field? */
931 WARN_ON(!ftrp->width);
932 }
933
update_32bit_cpu_features(int cpu,struct cpuinfo_arm64 * info,struct cpuinfo_arm64 * boot)934 static int update_32bit_cpu_features(int cpu, struct cpuinfo_arm64 *info,
935 struct cpuinfo_arm64 *boot)
936 {
937 int taint = 0;
938 u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
939
940 /*
941 * If we don't have AArch32 at all then skip the checks entirely
942 * as the register values may be UNKNOWN and we're not going to be
943 * using them for anything.
944 */
945 if (!id_aa64pfr0_32bit_el0(pfr0))
946 return taint;
947
948 /*
949 * If we don't have AArch32 at EL1, then relax the strictness of
950 * EL1-dependent register fields to avoid spurious sanity check fails.
951 */
952 if (!id_aa64pfr0_32bit_el1(pfr0)) {
953 relax_cpu_ftr_reg(SYS_ID_ISAR4_EL1, ID_ISAR4_SMC_SHIFT);
954 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_VIRT_FRAC_SHIFT);
955 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_SEC_FRAC_SHIFT);
956 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_VIRTUALIZATION_SHIFT);
957 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_SECURITY_SHIFT);
958 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_PROGMOD_SHIFT);
959 }
960
961 taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
962 info->reg_id_dfr0, boot->reg_id_dfr0);
963 taint |= check_update_ftr_reg(SYS_ID_DFR1_EL1, cpu,
964 info->reg_id_dfr1, boot->reg_id_dfr1);
965 taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
966 info->reg_id_isar0, boot->reg_id_isar0);
967 taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
968 info->reg_id_isar1, boot->reg_id_isar1);
969 taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
970 info->reg_id_isar2, boot->reg_id_isar2);
971 taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
972 info->reg_id_isar3, boot->reg_id_isar3);
973 taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
974 info->reg_id_isar4, boot->reg_id_isar4);
975 taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
976 info->reg_id_isar5, boot->reg_id_isar5);
977 taint |= check_update_ftr_reg(SYS_ID_ISAR6_EL1, cpu,
978 info->reg_id_isar6, boot->reg_id_isar6);
979
980 /*
981 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
982 * ACTLR formats could differ across CPUs and therefore would have to
983 * be trapped for virtualization anyway.
984 */
985 taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
986 info->reg_id_mmfr0, boot->reg_id_mmfr0);
987 taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
988 info->reg_id_mmfr1, boot->reg_id_mmfr1);
989 taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
990 info->reg_id_mmfr2, boot->reg_id_mmfr2);
991 taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
992 info->reg_id_mmfr3, boot->reg_id_mmfr3);
993 taint |= check_update_ftr_reg(SYS_ID_MMFR4_EL1, cpu,
994 info->reg_id_mmfr4, boot->reg_id_mmfr4);
995 taint |= check_update_ftr_reg(SYS_ID_MMFR5_EL1, cpu,
996 info->reg_id_mmfr5, boot->reg_id_mmfr5);
997 taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
998 info->reg_id_pfr0, boot->reg_id_pfr0);
999 taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
1000 info->reg_id_pfr1, boot->reg_id_pfr1);
1001 taint |= check_update_ftr_reg(SYS_ID_PFR2_EL1, cpu,
1002 info->reg_id_pfr2, boot->reg_id_pfr2);
1003 taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
1004 info->reg_mvfr0, boot->reg_mvfr0);
1005 taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
1006 info->reg_mvfr1, boot->reg_mvfr1);
1007 taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
1008 info->reg_mvfr2, boot->reg_mvfr2);
1009
1010 return taint;
1011 }
1012
1013 /*
1014 * Update system wide CPU feature registers with the values from a
1015 * non-boot CPU. Also performs SANITY checks to make sure that there
1016 * aren't any insane variations from that of the boot CPU.
1017 */
update_cpu_features(int cpu,struct cpuinfo_arm64 * info,struct cpuinfo_arm64 * boot)1018 void update_cpu_features(int cpu,
1019 struct cpuinfo_arm64 *info,
1020 struct cpuinfo_arm64 *boot)
1021 {
1022 int taint = 0;
1023
1024 /*
1025 * The kernel can handle differing I-cache policies, but otherwise
1026 * caches should look identical. Userspace JITs will make use of
1027 * *minLine.
1028 */
1029 taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
1030 info->reg_ctr, boot->reg_ctr);
1031
1032 /*
1033 * Userspace may perform DC ZVA instructions. Mismatched block sizes
1034 * could result in too much or too little memory being zeroed if a
1035 * process is preempted and migrated between CPUs.
1036 */
1037 taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
1038 info->reg_dczid, boot->reg_dczid);
1039
1040 /* If different, timekeeping will be broken (especially with KVM) */
1041 taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
1042 info->reg_cntfrq, boot->reg_cntfrq);
1043
1044 /*
1045 * The kernel uses self-hosted debug features and expects CPUs to
1046 * support identical debug features. We presently need CTX_CMPs, WRPs,
1047 * and BRPs to be identical.
1048 * ID_AA64DFR1 is currently RES0.
1049 */
1050 taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
1051 info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
1052 taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
1053 info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
1054 /*
1055 * Even in big.LITTLE, processors should be identical instruction-set
1056 * wise.
1057 */
1058 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
1059 info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
1060 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
1061 info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
1062
1063 /*
1064 * Differing PARange support is fine as long as all peripherals and
1065 * memory are mapped within the minimum PARange of all CPUs.
1066 * Linux should not care about secure memory.
1067 */
1068 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
1069 info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
1070 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
1071 info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
1072 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
1073 info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
1074
1075 taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
1076 info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
1077 taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
1078 info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
1079
1080 taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
1081 info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
1082
1083 if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
1084 taint |= check_update_ftr_reg(SYS_ZCR_EL1, cpu,
1085 info->reg_zcr, boot->reg_zcr);
1086
1087 /* Probe vector lengths, unless we already gave up on SVE */
1088 if (id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
1089 !system_capabilities_finalized())
1090 sve_update_vq_map();
1091 }
1092
1093 /*
1094 * This relies on a sanitised view of the AArch64 ID registers
1095 * (e.g. SYS_ID_AA64PFR0_EL1), so we call it last.
1096 */
1097 taint |= update_32bit_cpu_features(cpu, info, boot);
1098
1099 /*
1100 * Mismatched CPU features are a recipe for disaster. Don't even
1101 * pretend to support them.
1102 */
1103 if (taint) {
1104 pr_warn_once("Unsupported CPU feature variation detected.\n");
1105 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1106 }
1107 }
1108
read_sanitised_ftr_reg(u32 id)1109 u64 read_sanitised_ftr_reg(u32 id)
1110 {
1111 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
1112
1113 if (!regp)
1114 return 0;
1115 return regp->sys_val;
1116 }
1117 EXPORT_SYMBOL_GPL(read_sanitised_ftr_reg);
1118
1119 #define read_sysreg_case(r) \
1120 case r: return read_sysreg_s(r)
1121
1122 /*
1123 * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
1124 * Read the system register on the current CPU
1125 */
__read_sysreg_by_encoding(u32 sys_id)1126 static u64 __read_sysreg_by_encoding(u32 sys_id)
1127 {
1128 switch (sys_id) {
1129 read_sysreg_case(SYS_ID_PFR0_EL1);
1130 read_sysreg_case(SYS_ID_PFR1_EL1);
1131 read_sysreg_case(SYS_ID_PFR2_EL1);
1132 read_sysreg_case(SYS_ID_DFR0_EL1);
1133 read_sysreg_case(SYS_ID_DFR1_EL1);
1134 read_sysreg_case(SYS_ID_MMFR0_EL1);
1135 read_sysreg_case(SYS_ID_MMFR1_EL1);
1136 read_sysreg_case(SYS_ID_MMFR2_EL1);
1137 read_sysreg_case(SYS_ID_MMFR3_EL1);
1138 read_sysreg_case(SYS_ID_MMFR4_EL1);
1139 read_sysreg_case(SYS_ID_MMFR5_EL1);
1140 read_sysreg_case(SYS_ID_ISAR0_EL1);
1141 read_sysreg_case(SYS_ID_ISAR1_EL1);
1142 read_sysreg_case(SYS_ID_ISAR2_EL1);
1143 read_sysreg_case(SYS_ID_ISAR3_EL1);
1144 read_sysreg_case(SYS_ID_ISAR4_EL1);
1145 read_sysreg_case(SYS_ID_ISAR5_EL1);
1146 read_sysreg_case(SYS_ID_ISAR6_EL1);
1147 read_sysreg_case(SYS_MVFR0_EL1);
1148 read_sysreg_case(SYS_MVFR1_EL1);
1149 read_sysreg_case(SYS_MVFR2_EL1);
1150
1151 read_sysreg_case(SYS_ID_AA64PFR0_EL1);
1152 read_sysreg_case(SYS_ID_AA64PFR1_EL1);
1153 read_sysreg_case(SYS_ID_AA64ZFR0_EL1);
1154 read_sysreg_case(SYS_ID_AA64DFR0_EL1);
1155 read_sysreg_case(SYS_ID_AA64DFR1_EL1);
1156 read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
1157 read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
1158 read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
1159 read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
1160 read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
1161
1162 read_sysreg_case(SYS_CNTFRQ_EL0);
1163 read_sysreg_case(SYS_CTR_EL0);
1164 read_sysreg_case(SYS_DCZID_EL0);
1165
1166 default:
1167 BUG();
1168 return 0;
1169 }
1170 }
1171
1172 #include <linux/irqchip/arm-gic-v3.h>
1173
1174 static bool
feature_matches(u64 reg,const struct arm64_cpu_capabilities * entry)1175 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
1176 {
1177 int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
1178
1179 return val >= entry->min_field_value;
1180 }
1181
1182 static bool
has_cpuid_feature(const struct arm64_cpu_capabilities * entry,int scope)1183 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
1184 {
1185 u64 val;
1186
1187 WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
1188 if (scope == SCOPE_SYSTEM)
1189 val = read_sanitised_ftr_reg(entry->sys_reg);
1190 else
1191 val = __read_sysreg_by_encoding(entry->sys_reg);
1192
1193 return feature_matches(val, entry);
1194 }
1195
has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities * entry,int scope)1196 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
1197 {
1198 bool has_sre;
1199
1200 if (!has_cpuid_feature(entry, scope))
1201 return false;
1202
1203 has_sre = gic_enable_sre();
1204 if (!has_sre)
1205 pr_warn_once("%s present but disabled by higher exception level\n",
1206 entry->desc);
1207
1208 return has_sre;
1209 }
1210
has_no_hw_prefetch(const struct arm64_cpu_capabilities * entry,int __unused)1211 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
1212 {
1213 u32 midr = read_cpuid_id();
1214
1215 /* Cavium ThunderX pass 1.x and 2.x */
1216 return midr_is_cpu_model_range(midr, MIDR_THUNDERX,
1217 MIDR_CPU_VAR_REV(0, 0),
1218 MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
1219 }
1220
has_no_fpsimd(const struct arm64_cpu_capabilities * entry,int __unused)1221 static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
1222 {
1223 u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1224
1225 return cpuid_feature_extract_signed_field(pfr0,
1226 ID_AA64PFR0_FP_SHIFT) < 0;
1227 }
1228
has_cache_idc(const struct arm64_cpu_capabilities * entry,int scope)1229 static bool has_cache_idc(const struct arm64_cpu_capabilities *entry,
1230 int scope)
1231 {
1232 u64 ctr;
1233
1234 if (scope == SCOPE_SYSTEM)
1235 ctr = arm64_ftr_reg_ctrel0.sys_val;
1236 else
1237 ctr = read_cpuid_effective_cachetype();
1238
1239 return ctr & BIT(CTR_IDC_SHIFT);
1240 }
1241
cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities * __unused)1242 static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities *__unused)
1243 {
1244 /*
1245 * If the CPU exposes raw CTR_EL0.IDC = 0, while effectively
1246 * CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses
1247 * to the CTR_EL0 on this CPU and emulate it with the real/safe
1248 * value.
1249 */
1250 if (!(read_cpuid_cachetype() & BIT(CTR_IDC_SHIFT)))
1251 sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0);
1252 }
1253
has_cache_dic(const struct arm64_cpu_capabilities * entry,int scope)1254 static bool has_cache_dic(const struct arm64_cpu_capabilities *entry,
1255 int scope)
1256 {
1257 u64 ctr;
1258
1259 if (scope == SCOPE_SYSTEM)
1260 ctr = arm64_ftr_reg_ctrel0.sys_val;
1261 else
1262 ctr = read_cpuid_cachetype();
1263
1264 return ctr & BIT(CTR_DIC_SHIFT);
1265 }
1266
1267 static bool __maybe_unused
has_useable_cnp(const struct arm64_cpu_capabilities * entry,int scope)1268 has_useable_cnp(const struct arm64_cpu_capabilities *entry, int scope)
1269 {
1270 /*
1271 * Kdump isn't guaranteed to power-off all secondary CPUs, CNP
1272 * may share TLB entries with a CPU stuck in the crashed
1273 * kernel.
1274 */
1275 if (is_kdump_kernel())
1276 return false;
1277
1278 return has_cpuid_feature(entry, scope);
1279 }
1280
1281 /*
1282 * This check is triggered during the early boot before the cpufeature
1283 * is initialised. Checking the status on the local CPU allows the boot
1284 * CPU to detect the need for non-global mappings and thus avoiding a
1285 * pagetable re-write after all the CPUs are booted. This check will be
1286 * anyway run on individual CPUs, allowing us to get the consistent
1287 * state once the SMP CPUs are up and thus make the switch to non-global
1288 * mappings if required.
1289 */
kaslr_requires_kpti(void)1290 bool kaslr_requires_kpti(void)
1291 {
1292 if (!IS_ENABLED(CONFIG_RANDOMIZE_BASE))
1293 return false;
1294
1295 /*
1296 * E0PD does a similar job to KPTI so can be used instead
1297 * where available.
1298 */
1299 if (IS_ENABLED(CONFIG_ARM64_E0PD)) {
1300 u64 mmfr2 = read_sysreg_s(SYS_ID_AA64MMFR2_EL1);
1301 if (cpuid_feature_extract_unsigned_field(mmfr2,
1302 ID_AA64MMFR2_E0PD_SHIFT))
1303 return false;
1304 }
1305
1306 /*
1307 * Systems affected by Cavium erratum 24756 are incompatible
1308 * with KPTI.
1309 */
1310 if (IS_ENABLED(CONFIG_CAVIUM_ERRATUM_27456)) {
1311 extern const struct midr_range cavium_erratum_27456_cpus[];
1312
1313 if (is_midr_in_range_list(read_cpuid_id(),
1314 cavium_erratum_27456_cpus))
1315 return false;
1316 }
1317
1318 return kaslr_offset() > 0;
1319 }
1320
1321 static bool __meltdown_safe = true;
1322 static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
1323
unmap_kernel_at_el0(const struct arm64_cpu_capabilities * entry,int scope)1324 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
1325 int scope)
1326 {
1327 /* List of CPUs that are not vulnerable and don't need KPTI */
1328 static const struct midr_range kpti_safe_list[] = {
1329 MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
1330 MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
1331 MIDR_ALL_VERSIONS(MIDR_BRAHMA_B53),
1332 MIDR_ALL_VERSIONS(MIDR_CORTEX_A35),
1333 MIDR_ALL_VERSIONS(MIDR_CORTEX_A53),
1334 MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
1335 MIDR_ALL_VERSIONS(MIDR_CORTEX_A57),
1336 MIDR_ALL_VERSIONS(MIDR_CORTEX_A72),
1337 MIDR_ALL_VERSIONS(MIDR_CORTEX_A73),
1338 MIDR_ALL_VERSIONS(MIDR_HISI_TSV110),
1339 MIDR_ALL_VERSIONS(MIDR_NVIDIA_CARMEL),
1340 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_GOLD),
1341 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_SILVER),
1342 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_3XX_SILVER),
1343 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_4XX_SILVER),
1344 { /* sentinel */ }
1345 };
1346 char const *str = "kpti command line option";
1347 bool meltdown_safe;
1348
1349 meltdown_safe = is_midr_in_range_list(read_cpuid_id(), kpti_safe_list);
1350
1351 /* Defer to CPU feature registers */
1352 if (has_cpuid_feature(entry, scope))
1353 meltdown_safe = true;
1354
1355 if (!meltdown_safe)
1356 __meltdown_safe = false;
1357
1358 /*
1359 * For reasons that aren't entirely clear, enabling KPTI on Cavium
1360 * ThunderX leads to apparent I-cache corruption of kernel text, which
1361 * ends as well as you might imagine. Don't even try.
1362 */
1363 if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
1364 str = "ARM64_WORKAROUND_CAVIUM_27456";
1365 __kpti_forced = -1;
1366 }
1367
1368 /* Useful for KASLR robustness */
1369 if (kaslr_requires_kpti()) {
1370 if (!__kpti_forced) {
1371 str = "KASLR";
1372 __kpti_forced = 1;
1373 }
1374 }
1375
1376 if (cpu_mitigations_off() && !__kpti_forced) {
1377 str = "mitigations=off";
1378 __kpti_forced = -1;
1379 }
1380
1381 if (!IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0)) {
1382 pr_info_once("kernel page table isolation disabled by kernel configuration\n");
1383 return false;
1384 }
1385
1386 /* Forced? */
1387 if (__kpti_forced) {
1388 pr_info_once("kernel page table isolation forced %s by %s\n",
1389 __kpti_forced > 0 ? "ON" : "OFF", str);
1390 return __kpti_forced > 0;
1391 }
1392
1393 return !meltdown_safe;
1394 }
1395
1396 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
1397 static void
kpti_install_ng_mappings(const struct arm64_cpu_capabilities * __unused)1398 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
1399 {
1400 typedef void (kpti_remap_fn)(int, int, phys_addr_t);
1401 extern kpti_remap_fn idmap_kpti_install_ng_mappings;
1402 kpti_remap_fn *remap_fn;
1403
1404 int cpu = smp_processor_id();
1405
1406 /*
1407 * We don't need to rewrite the page-tables if either we've done
1408 * it already or we have KASLR enabled and therefore have not
1409 * created any global mappings at all.
1410 */
1411 if (arm64_use_ng_mappings)
1412 return;
1413
1414 remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings);
1415
1416 cpu_install_idmap();
1417 remap_fn(cpu, num_online_cpus(), __pa_symbol(swapper_pg_dir));
1418 cpu_uninstall_idmap();
1419
1420 if (!cpu)
1421 arm64_use_ng_mappings = true;
1422
1423 return;
1424 }
1425 #else
1426 static void
kpti_install_ng_mappings(const struct arm64_cpu_capabilities * __unused)1427 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
1428 {
1429 }
1430 #endif /* CONFIG_UNMAP_KERNEL_AT_EL0 */
1431
parse_kpti(char * str)1432 static int __init parse_kpti(char *str)
1433 {
1434 bool enabled;
1435 int ret = strtobool(str, &enabled);
1436
1437 if (ret)
1438 return ret;
1439
1440 __kpti_forced = enabled ? 1 : -1;
1441 return 0;
1442 }
1443 early_param("kpti", parse_kpti);
1444
1445 #ifdef CONFIG_ARM64_HW_AFDBM
__cpu_enable_hw_dbm(void)1446 static inline void __cpu_enable_hw_dbm(void)
1447 {
1448 u64 tcr = read_sysreg(tcr_el1) | TCR_HD;
1449
1450 write_sysreg(tcr, tcr_el1);
1451 isb();
1452 local_flush_tlb_all();
1453 }
1454
cpu_has_broken_dbm(void)1455 static bool cpu_has_broken_dbm(void)
1456 {
1457 /* List of CPUs which have broken DBM support. */
1458 static const struct midr_range cpus[] = {
1459 #ifdef CONFIG_ARM64_ERRATUM_1024718
1460 MIDR_RANGE(MIDR_CORTEX_A55, 0, 0, 1, 0), // A55 r0p0 -r1p0
1461 /* Kryo4xx Silver (rdpe => r1p0) */
1462 MIDR_REV(MIDR_QCOM_KRYO_4XX_SILVER, 0xd, 0xe),
1463 #endif
1464 {},
1465 };
1466
1467 return is_midr_in_range_list(read_cpuid_id(), cpus);
1468 }
1469
cpu_can_use_dbm(const struct arm64_cpu_capabilities * cap)1470 static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap)
1471 {
1472 return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) &&
1473 !cpu_has_broken_dbm();
1474 }
1475
cpu_enable_hw_dbm(struct arm64_cpu_capabilities const * cap)1476 static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap)
1477 {
1478 if (cpu_can_use_dbm(cap))
1479 __cpu_enable_hw_dbm();
1480 }
1481
has_hw_dbm(const struct arm64_cpu_capabilities * cap,int __unused)1482 static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap,
1483 int __unused)
1484 {
1485 static bool detected = false;
1486 /*
1487 * DBM is a non-conflicting feature. i.e, the kernel can safely
1488 * run a mix of CPUs with and without the feature. So, we
1489 * unconditionally enable the capability to allow any late CPU
1490 * to use the feature. We only enable the control bits on the
1491 * CPU, if it actually supports.
1492 *
1493 * We have to make sure we print the "feature" detection only
1494 * when at least one CPU actually uses it. So check if this CPU
1495 * can actually use it and print the message exactly once.
1496 *
1497 * This is safe as all CPUs (including secondary CPUs - due to the
1498 * LOCAL_CPU scope - and the hotplugged CPUs - via verification)
1499 * goes through the "matches" check exactly once. Also if a CPU
1500 * matches the criteria, it is guaranteed that the CPU will turn
1501 * the DBM on, as the capability is unconditionally enabled.
1502 */
1503 if (!detected && cpu_can_use_dbm(cap)) {
1504 detected = true;
1505 pr_info("detected: Hardware dirty bit management\n");
1506 }
1507
1508 return true;
1509 }
1510
1511 #endif
1512
1513 #ifdef CONFIG_ARM64_AMU_EXTN
1514
1515 /*
1516 * The "amu_cpus" cpumask only signals that the CPU implementation for the
1517 * flagged CPUs supports the Activity Monitors Unit (AMU) but does not provide
1518 * information regarding all the events that it supports. When a CPU bit is
1519 * set in the cpumask, the user of this feature can only rely on the presence
1520 * of the 4 fixed counters for that CPU. But this does not guarantee that the
1521 * counters are enabled or access to these counters is enabled by code
1522 * executed at higher exception levels (firmware).
1523 */
1524 static struct cpumask amu_cpus __read_mostly;
1525
cpu_has_amu_feat(int cpu)1526 bool cpu_has_amu_feat(int cpu)
1527 {
1528 return cpumask_test_cpu(cpu, &amu_cpus);
1529 }
1530
1531 /* Initialize the use of AMU counters for frequency invariance */
1532 extern void init_cpu_freq_invariance_counters(void);
1533
cpu_amu_enable(struct arm64_cpu_capabilities const * cap)1534 static void cpu_amu_enable(struct arm64_cpu_capabilities const *cap)
1535 {
1536 if (has_cpuid_feature(cap, SCOPE_LOCAL_CPU)) {
1537 pr_info("detected CPU%d: Activity Monitors Unit (AMU)\n",
1538 smp_processor_id());
1539 cpumask_set_cpu(smp_processor_id(), &amu_cpus);
1540 init_cpu_freq_invariance_counters();
1541 }
1542 }
1543
has_amu(const struct arm64_cpu_capabilities * cap,int __unused)1544 static bool has_amu(const struct arm64_cpu_capabilities *cap,
1545 int __unused)
1546 {
1547 /*
1548 * The AMU extension is a non-conflicting feature: the kernel can
1549 * safely run a mix of CPUs with and without support for the
1550 * activity monitors extension. Therefore, unconditionally enable
1551 * the capability to allow any late CPU to use the feature.
1552 *
1553 * With this feature unconditionally enabled, the cpu_enable
1554 * function will be called for all CPUs that match the criteria,
1555 * including secondary and hotplugged, marking this feature as
1556 * present on that respective CPU. The enable function will also
1557 * print a detection message.
1558 */
1559
1560 return true;
1561 }
1562 #endif
1563
1564 #ifdef CONFIG_ARM64_VHE
runs_at_el2(const struct arm64_cpu_capabilities * entry,int __unused)1565 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
1566 {
1567 return is_kernel_in_hyp_mode();
1568 }
1569
cpu_copy_el2regs(const struct arm64_cpu_capabilities * __unused)1570 static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused)
1571 {
1572 /*
1573 * Copy register values that aren't redirected by hardware.
1574 *
1575 * Before code patching, we only set tpidr_el1, all CPUs need to copy
1576 * this value to tpidr_el2 before we patch the code. Once we've done
1577 * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
1578 * do anything here.
1579 */
1580 if (!alternative_is_applied(ARM64_HAS_VIRT_HOST_EXTN))
1581 write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
1582 }
1583 #endif
1584
cpu_has_fwb(const struct arm64_cpu_capabilities * __unused)1585 static void cpu_has_fwb(const struct arm64_cpu_capabilities *__unused)
1586 {
1587 u64 val = read_sysreg_s(SYS_CLIDR_EL1);
1588
1589 /* Check that CLIDR_EL1.LOU{U,IS} are both 0 */
1590 WARN_ON(val & (7 << 27 | 7 << 21));
1591 }
1592
1593 #ifdef CONFIG_ARM64_PAN
cpu_enable_pan(const struct arm64_cpu_capabilities * __unused)1594 static void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused)
1595 {
1596 /*
1597 * We modify PSTATE. This won't work from irq context as the PSTATE
1598 * is discarded once we return from the exception.
1599 */
1600 WARN_ON_ONCE(in_interrupt());
1601
1602 sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0);
1603 asm(SET_PSTATE_PAN(1));
1604 }
1605 #endif /* CONFIG_ARM64_PAN */
1606
1607 #ifdef CONFIG_ARM64_RAS_EXTN
cpu_clear_disr(const struct arm64_cpu_capabilities * __unused)1608 static void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
1609 {
1610 /* Firmware may have left a deferred SError in this register. */
1611 write_sysreg_s(0, SYS_DISR_EL1);
1612 }
1613 #endif /* CONFIG_ARM64_RAS_EXTN */
1614
1615 #ifdef CONFIG_ARM64_PTR_AUTH
has_address_auth_cpucap(const struct arm64_cpu_capabilities * entry,int scope)1616 static bool has_address_auth_cpucap(const struct arm64_cpu_capabilities *entry, int scope)
1617 {
1618 int boot_val, sec_val;
1619
1620 /* We don't expect to be called with SCOPE_SYSTEM */
1621 WARN_ON(scope == SCOPE_SYSTEM);
1622 /*
1623 * The ptr-auth feature levels are not intercompatible with lower
1624 * levels. Hence we must match ptr-auth feature level of the secondary
1625 * CPUs with that of the boot CPU. The level of boot cpu is fetched
1626 * from the sanitised register whereas direct register read is done for
1627 * the secondary CPUs.
1628 * The sanitised feature state is guaranteed to match that of the
1629 * boot CPU as a mismatched secondary CPU is parked before it gets
1630 * a chance to update the state, with the capability.
1631 */
1632 boot_val = cpuid_feature_extract_field(read_sanitised_ftr_reg(entry->sys_reg),
1633 entry->field_pos, entry->sign);
1634 if (scope & SCOPE_BOOT_CPU)
1635 return boot_val >= entry->min_field_value;
1636 /* Now check for the secondary CPUs with SCOPE_LOCAL_CPU scope */
1637 sec_val = cpuid_feature_extract_field(__read_sysreg_by_encoding(entry->sys_reg),
1638 entry->field_pos, entry->sign);
1639 return sec_val == boot_val;
1640 }
1641
has_address_auth_metacap(const struct arm64_cpu_capabilities * entry,int scope)1642 static bool has_address_auth_metacap(const struct arm64_cpu_capabilities *entry,
1643 int scope)
1644 {
1645 return has_address_auth_cpucap(cpu_hwcaps_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH], scope) ||
1646 has_address_auth_cpucap(cpu_hwcaps_ptrs[ARM64_HAS_ADDRESS_AUTH_IMP_DEF], scope);
1647 }
1648
has_generic_auth(const struct arm64_cpu_capabilities * entry,int __unused)1649 static bool has_generic_auth(const struct arm64_cpu_capabilities *entry,
1650 int __unused)
1651 {
1652 return __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH) ||
1653 __system_matches_cap(ARM64_HAS_GENERIC_AUTH_IMP_DEF);
1654 }
1655 #endif /* CONFIG_ARM64_PTR_AUTH */
1656
1657 #ifdef CONFIG_ARM64_E0PD
cpu_enable_e0pd(struct arm64_cpu_capabilities const * cap)1658 static void cpu_enable_e0pd(struct arm64_cpu_capabilities const *cap)
1659 {
1660 if (this_cpu_has_cap(ARM64_HAS_E0PD))
1661 sysreg_clear_set(tcr_el1, 0, TCR_E0PD1);
1662 }
1663 #endif /* CONFIG_ARM64_E0PD */
1664
1665 #ifdef CONFIG_ARM64_PSEUDO_NMI
1666 static bool enable_pseudo_nmi;
1667
early_enable_pseudo_nmi(char * p)1668 static int __init early_enable_pseudo_nmi(char *p)
1669 {
1670 return strtobool(p, &enable_pseudo_nmi);
1671 }
1672 early_param("irqchip.gicv3_pseudo_nmi", early_enable_pseudo_nmi);
1673
can_use_gic_priorities(const struct arm64_cpu_capabilities * entry,int scope)1674 static bool can_use_gic_priorities(const struct arm64_cpu_capabilities *entry,
1675 int scope)
1676 {
1677 return enable_pseudo_nmi && has_useable_gicv3_cpuif(entry, scope);
1678 }
1679 #endif
1680
1681 #ifdef CONFIG_ARM64_BTI
bti_enable(const struct arm64_cpu_capabilities * __unused)1682 static void bti_enable(const struct arm64_cpu_capabilities *__unused)
1683 {
1684 /*
1685 * Use of X16/X17 for tail-calls and trampolines that jump to
1686 * function entry points using BR is a requirement for
1687 * marking binaries with GNU_PROPERTY_AARCH64_FEATURE_1_BTI.
1688 * So, be strict and forbid other BRs using other registers to
1689 * jump onto a PACIxSP instruction:
1690 */
1691 sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_BT0 | SCTLR_EL1_BT1);
1692 isb();
1693 }
1694 #endif /* CONFIG_ARM64_BTI */
1695
1696 #ifdef CONFIG_ARM64_MTE
cpu_enable_mte(struct arm64_cpu_capabilities const * cap)1697 static void cpu_enable_mte(struct arm64_cpu_capabilities const *cap)
1698 {
1699 static bool cleared_zero_page = false;
1700
1701 /*
1702 * Clear the tags in the zero page. This needs to be done via the
1703 * linear map which has the Tagged attribute.
1704 */
1705 if (!cleared_zero_page) {
1706 cleared_zero_page = true;
1707 mte_clear_page_tags(lm_alias(empty_zero_page));
1708 }
1709 }
1710 #endif /* CONFIG_ARM64_MTE */
1711
1712 /* Internal helper functions to match cpu capability type */
1713 static bool
cpucap_late_cpu_optional(const struct arm64_cpu_capabilities * cap)1714 cpucap_late_cpu_optional(const struct arm64_cpu_capabilities *cap)
1715 {
1716 return !!(cap->type & ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU);
1717 }
1718
1719 static bool
cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities * cap)1720 cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities *cap)
1721 {
1722 return !!(cap->type & ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU);
1723 }
1724
1725 static bool
cpucap_panic_on_conflict(const struct arm64_cpu_capabilities * cap)1726 cpucap_panic_on_conflict(const struct arm64_cpu_capabilities *cap)
1727 {
1728 return !!(cap->type & ARM64_CPUCAP_PANIC_ON_CONFLICT);
1729 }
1730
1731 static const struct arm64_cpu_capabilities arm64_features[] = {
1732 {
1733 .desc = "GIC system register CPU interface",
1734 .capability = ARM64_HAS_SYSREG_GIC_CPUIF,
1735 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
1736 .matches = has_useable_gicv3_cpuif,
1737 .sys_reg = SYS_ID_AA64PFR0_EL1,
1738 .field_pos = ID_AA64PFR0_GIC_SHIFT,
1739 .sign = FTR_UNSIGNED,
1740 .min_field_value = 1,
1741 },
1742 #ifdef CONFIG_ARM64_PAN
1743 {
1744 .desc = "Privileged Access Never",
1745 .capability = ARM64_HAS_PAN,
1746 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1747 .matches = has_cpuid_feature,
1748 .sys_reg = SYS_ID_AA64MMFR1_EL1,
1749 .field_pos = ID_AA64MMFR1_PAN_SHIFT,
1750 .sign = FTR_UNSIGNED,
1751 .min_field_value = 1,
1752 .cpu_enable = cpu_enable_pan,
1753 },
1754 #endif /* CONFIG_ARM64_PAN */
1755 #ifdef CONFIG_ARM64_LSE_ATOMICS
1756 {
1757 .desc = "LSE atomic instructions",
1758 .capability = ARM64_HAS_LSE_ATOMICS,
1759 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1760 .matches = has_cpuid_feature,
1761 .sys_reg = SYS_ID_AA64ISAR0_EL1,
1762 .field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
1763 .sign = FTR_UNSIGNED,
1764 .min_field_value = 2,
1765 },
1766 #endif /* CONFIG_ARM64_LSE_ATOMICS */
1767 {
1768 .desc = "Software prefetching using PRFM",
1769 .capability = ARM64_HAS_NO_HW_PREFETCH,
1770 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1771 .matches = has_no_hw_prefetch,
1772 },
1773 #ifdef CONFIG_ARM64_UAO
1774 {
1775 .desc = "User Access Override",
1776 .capability = ARM64_HAS_UAO,
1777 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1778 .matches = has_cpuid_feature,
1779 .sys_reg = SYS_ID_AA64MMFR2_EL1,
1780 .field_pos = ID_AA64MMFR2_UAO_SHIFT,
1781 .min_field_value = 1,
1782 /*
1783 * We rely on stop_machine() calling uao_thread_switch() to set
1784 * UAO immediately after patching.
1785 */
1786 },
1787 #endif /* CONFIG_ARM64_UAO */
1788 #ifdef CONFIG_ARM64_PAN
1789 {
1790 .capability = ARM64_ALT_PAN_NOT_UAO,
1791 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1792 .matches = cpufeature_pan_not_uao,
1793 },
1794 #endif /* CONFIG_ARM64_PAN */
1795 #ifdef CONFIG_ARM64_VHE
1796 {
1797 .desc = "Virtualization Host Extensions",
1798 .capability = ARM64_HAS_VIRT_HOST_EXTN,
1799 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
1800 .matches = runs_at_el2,
1801 .cpu_enable = cpu_copy_el2regs,
1802 },
1803 #endif /* CONFIG_ARM64_VHE */
1804 {
1805 .desc = "32-bit EL0 Support",
1806 .capability = ARM64_HAS_32BIT_EL0,
1807 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1808 .matches = has_cpuid_feature,
1809 .sys_reg = SYS_ID_AA64PFR0_EL1,
1810 .sign = FTR_UNSIGNED,
1811 .field_pos = ID_AA64PFR0_EL0_SHIFT,
1812 .min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
1813 },
1814 #ifdef CONFIG_KVM
1815 {
1816 .desc = "32-bit EL1 Support",
1817 .capability = ARM64_HAS_32BIT_EL1,
1818 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1819 .matches = has_cpuid_feature,
1820 .sys_reg = SYS_ID_AA64PFR0_EL1,
1821 .sign = FTR_UNSIGNED,
1822 .field_pos = ID_AA64PFR0_EL1_SHIFT,
1823 .min_field_value = ID_AA64PFR0_EL1_32BIT_64BIT,
1824 },
1825 #endif
1826 {
1827 .desc = "Kernel page table isolation (KPTI)",
1828 .capability = ARM64_UNMAP_KERNEL_AT_EL0,
1829 .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
1830 /*
1831 * The ID feature fields below are used to indicate that
1832 * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
1833 * more details.
1834 */
1835 .sys_reg = SYS_ID_AA64PFR0_EL1,
1836 .field_pos = ID_AA64PFR0_CSV3_SHIFT,
1837 .min_field_value = 1,
1838 .matches = unmap_kernel_at_el0,
1839 .cpu_enable = kpti_install_ng_mappings,
1840 },
1841 {
1842 /* FP/SIMD is not implemented */
1843 .capability = ARM64_HAS_NO_FPSIMD,
1844 .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
1845 .min_field_value = 0,
1846 .matches = has_no_fpsimd,
1847 },
1848 #ifdef CONFIG_ARM64_PMEM
1849 {
1850 .desc = "Data cache clean to Point of Persistence",
1851 .capability = ARM64_HAS_DCPOP,
1852 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1853 .matches = has_cpuid_feature,
1854 .sys_reg = SYS_ID_AA64ISAR1_EL1,
1855 .field_pos = ID_AA64ISAR1_DPB_SHIFT,
1856 .min_field_value = 1,
1857 },
1858 {
1859 .desc = "Data cache clean to Point of Deep Persistence",
1860 .capability = ARM64_HAS_DCPODP,
1861 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1862 .matches = has_cpuid_feature,
1863 .sys_reg = SYS_ID_AA64ISAR1_EL1,
1864 .sign = FTR_UNSIGNED,
1865 .field_pos = ID_AA64ISAR1_DPB_SHIFT,
1866 .min_field_value = 2,
1867 },
1868 #endif
1869 #ifdef CONFIG_ARM64_SVE
1870 {
1871 .desc = "Scalable Vector Extension",
1872 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1873 .capability = ARM64_SVE,
1874 .sys_reg = SYS_ID_AA64PFR0_EL1,
1875 .sign = FTR_UNSIGNED,
1876 .field_pos = ID_AA64PFR0_SVE_SHIFT,
1877 .min_field_value = ID_AA64PFR0_SVE,
1878 .matches = has_cpuid_feature,
1879 .cpu_enable = sve_kernel_enable,
1880 },
1881 #endif /* CONFIG_ARM64_SVE */
1882 #ifdef CONFIG_ARM64_RAS_EXTN
1883 {
1884 .desc = "RAS Extension Support",
1885 .capability = ARM64_HAS_RAS_EXTN,
1886 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1887 .matches = has_cpuid_feature,
1888 .sys_reg = SYS_ID_AA64PFR0_EL1,
1889 .sign = FTR_UNSIGNED,
1890 .field_pos = ID_AA64PFR0_RAS_SHIFT,
1891 .min_field_value = ID_AA64PFR0_RAS_V1,
1892 .cpu_enable = cpu_clear_disr,
1893 },
1894 #endif /* CONFIG_ARM64_RAS_EXTN */
1895 #ifdef CONFIG_ARM64_AMU_EXTN
1896 {
1897 /*
1898 * The feature is enabled by default if CONFIG_ARM64_AMU_EXTN=y.
1899 * Therefore, don't provide .desc as we don't want the detection
1900 * message to be shown until at least one CPU is detected to
1901 * support the feature.
1902 */
1903 .capability = ARM64_HAS_AMU_EXTN,
1904 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1905 .matches = has_amu,
1906 .sys_reg = SYS_ID_AA64PFR0_EL1,
1907 .sign = FTR_UNSIGNED,
1908 .field_pos = ID_AA64PFR0_AMU_SHIFT,
1909 .min_field_value = ID_AA64PFR0_AMU,
1910 .cpu_enable = cpu_amu_enable,
1911 },
1912 #endif /* CONFIG_ARM64_AMU_EXTN */
1913 {
1914 .desc = "Data cache clean to the PoU not required for I/D coherence",
1915 .capability = ARM64_HAS_CACHE_IDC,
1916 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1917 .matches = has_cache_idc,
1918 .cpu_enable = cpu_emulate_effective_ctr,
1919 },
1920 {
1921 .desc = "Instruction cache invalidation not required for I/D coherence",
1922 .capability = ARM64_HAS_CACHE_DIC,
1923 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1924 .matches = has_cache_dic,
1925 },
1926 {
1927 .desc = "Stage-2 Force Write-Back",
1928 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1929 .capability = ARM64_HAS_STAGE2_FWB,
1930 .sys_reg = SYS_ID_AA64MMFR2_EL1,
1931 .sign = FTR_UNSIGNED,
1932 .field_pos = ID_AA64MMFR2_FWB_SHIFT,
1933 .min_field_value = 1,
1934 .matches = has_cpuid_feature,
1935 .cpu_enable = cpu_has_fwb,
1936 },
1937 {
1938 .desc = "ARMv8.4 Translation Table Level",
1939 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1940 .capability = ARM64_HAS_ARMv8_4_TTL,
1941 .sys_reg = SYS_ID_AA64MMFR2_EL1,
1942 .sign = FTR_UNSIGNED,
1943 .field_pos = ID_AA64MMFR2_TTL_SHIFT,
1944 .min_field_value = 1,
1945 .matches = has_cpuid_feature,
1946 },
1947 {
1948 .desc = "TLB range maintenance instructions",
1949 .capability = ARM64_HAS_TLB_RANGE,
1950 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1951 .matches = has_cpuid_feature,
1952 .sys_reg = SYS_ID_AA64ISAR0_EL1,
1953 .field_pos = ID_AA64ISAR0_TLB_SHIFT,
1954 .sign = FTR_UNSIGNED,
1955 .min_field_value = ID_AA64ISAR0_TLB_RANGE,
1956 },
1957 #ifdef CONFIG_ARM64_HW_AFDBM
1958 {
1959 /*
1960 * Since we turn this on always, we don't want the user to
1961 * think that the feature is available when it may not be.
1962 * So hide the description.
1963 *
1964 * .desc = "Hardware pagetable Dirty Bit Management",
1965 *
1966 */
1967 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1968 .capability = ARM64_HW_DBM,
1969 .sys_reg = SYS_ID_AA64MMFR1_EL1,
1970 .sign = FTR_UNSIGNED,
1971 .field_pos = ID_AA64MMFR1_HADBS_SHIFT,
1972 .min_field_value = 2,
1973 .matches = has_hw_dbm,
1974 .cpu_enable = cpu_enable_hw_dbm,
1975 },
1976 #endif
1977 {
1978 .desc = "CRC32 instructions",
1979 .capability = ARM64_HAS_CRC32,
1980 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1981 .matches = has_cpuid_feature,
1982 .sys_reg = SYS_ID_AA64ISAR0_EL1,
1983 .field_pos = ID_AA64ISAR0_CRC32_SHIFT,
1984 .min_field_value = 1,
1985 },
1986 {
1987 .desc = "Speculative Store Bypassing Safe (SSBS)",
1988 .capability = ARM64_SSBS,
1989 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1990 .matches = has_cpuid_feature,
1991 .sys_reg = SYS_ID_AA64PFR1_EL1,
1992 .field_pos = ID_AA64PFR1_SSBS_SHIFT,
1993 .sign = FTR_UNSIGNED,
1994 .min_field_value = ID_AA64PFR1_SSBS_PSTATE_ONLY,
1995 },
1996 #ifdef CONFIG_ARM64_CNP
1997 {
1998 .desc = "Common not Private translations",
1999 .capability = ARM64_HAS_CNP,
2000 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2001 .matches = has_useable_cnp,
2002 .sys_reg = SYS_ID_AA64MMFR2_EL1,
2003 .sign = FTR_UNSIGNED,
2004 .field_pos = ID_AA64MMFR2_CNP_SHIFT,
2005 .min_field_value = 1,
2006 .cpu_enable = cpu_enable_cnp,
2007 },
2008 #endif
2009 {
2010 .desc = "Speculation barrier (SB)",
2011 .capability = ARM64_HAS_SB,
2012 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2013 .matches = has_cpuid_feature,
2014 .sys_reg = SYS_ID_AA64ISAR1_EL1,
2015 .field_pos = ID_AA64ISAR1_SB_SHIFT,
2016 .sign = FTR_UNSIGNED,
2017 .min_field_value = 1,
2018 },
2019 #ifdef CONFIG_ARM64_PTR_AUTH
2020 {
2021 .desc = "Address authentication (architected algorithm)",
2022 .capability = ARM64_HAS_ADDRESS_AUTH_ARCH,
2023 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2024 .sys_reg = SYS_ID_AA64ISAR1_EL1,
2025 .sign = FTR_UNSIGNED,
2026 .field_pos = ID_AA64ISAR1_APA_SHIFT,
2027 .min_field_value = ID_AA64ISAR1_APA_ARCHITECTED,
2028 .matches = has_address_auth_cpucap,
2029 },
2030 {
2031 .desc = "Address authentication (IMP DEF algorithm)",
2032 .capability = ARM64_HAS_ADDRESS_AUTH_IMP_DEF,
2033 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2034 .sys_reg = SYS_ID_AA64ISAR1_EL1,
2035 .sign = FTR_UNSIGNED,
2036 .field_pos = ID_AA64ISAR1_API_SHIFT,
2037 .min_field_value = ID_AA64ISAR1_API_IMP_DEF,
2038 .matches = has_address_auth_cpucap,
2039 },
2040 {
2041 .capability = ARM64_HAS_ADDRESS_AUTH,
2042 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2043 .matches = has_address_auth_metacap,
2044 },
2045 {
2046 .desc = "Generic authentication (architected algorithm)",
2047 .capability = ARM64_HAS_GENERIC_AUTH_ARCH,
2048 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2049 .sys_reg = SYS_ID_AA64ISAR1_EL1,
2050 .sign = FTR_UNSIGNED,
2051 .field_pos = ID_AA64ISAR1_GPA_SHIFT,
2052 .min_field_value = ID_AA64ISAR1_GPA_ARCHITECTED,
2053 .matches = has_cpuid_feature,
2054 },
2055 {
2056 .desc = "Generic authentication (IMP DEF algorithm)",
2057 .capability = ARM64_HAS_GENERIC_AUTH_IMP_DEF,
2058 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2059 .sys_reg = SYS_ID_AA64ISAR1_EL1,
2060 .sign = FTR_UNSIGNED,
2061 .field_pos = ID_AA64ISAR1_GPI_SHIFT,
2062 .min_field_value = ID_AA64ISAR1_GPI_IMP_DEF,
2063 .matches = has_cpuid_feature,
2064 },
2065 {
2066 .capability = ARM64_HAS_GENERIC_AUTH,
2067 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2068 .matches = has_generic_auth,
2069 },
2070 #endif /* CONFIG_ARM64_PTR_AUTH */
2071 #ifdef CONFIG_ARM64_PSEUDO_NMI
2072 {
2073 /*
2074 * Depends on having GICv3
2075 */
2076 .desc = "IRQ priority masking",
2077 .capability = ARM64_HAS_IRQ_PRIO_MASKING,
2078 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2079 .matches = can_use_gic_priorities,
2080 .sys_reg = SYS_ID_AA64PFR0_EL1,
2081 .field_pos = ID_AA64PFR0_GIC_SHIFT,
2082 .sign = FTR_UNSIGNED,
2083 .min_field_value = 1,
2084 },
2085 #endif
2086 #ifdef CONFIG_ARM64_E0PD
2087 {
2088 .desc = "E0PD",
2089 .capability = ARM64_HAS_E0PD,
2090 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2091 .sys_reg = SYS_ID_AA64MMFR2_EL1,
2092 .sign = FTR_UNSIGNED,
2093 .field_pos = ID_AA64MMFR2_E0PD_SHIFT,
2094 .matches = has_cpuid_feature,
2095 .min_field_value = 1,
2096 .cpu_enable = cpu_enable_e0pd,
2097 },
2098 #endif
2099 #ifdef CONFIG_ARCH_RANDOM
2100 {
2101 .desc = "Random Number Generator",
2102 .capability = ARM64_HAS_RNG,
2103 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2104 .matches = has_cpuid_feature,
2105 .sys_reg = SYS_ID_AA64ISAR0_EL1,
2106 .field_pos = ID_AA64ISAR0_RNDR_SHIFT,
2107 .sign = FTR_UNSIGNED,
2108 .min_field_value = 1,
2109 },
2110 #endif
2111 #ifdef CONFIG_ARM64_BTI
2112 {
2113 .desc = "Branch Target Identification",
2114 .capability = ARM64_BTI,
2115 #ifdef CONFIG_ARM64_BTI_KERNEL
2116 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2117 #else
2118 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2119 #endif
2120 .matches = has_cpuid_feature,
2121 .cpu_enable = bti_enable,
2122 .sys_reg = SYS_ID_AA64PFR1_EL1,
2123 .field_pos = ID_AA64PFR1_BT_SHIFT,
2124 .min_field_value = ID_AA64PFR1_BT_BTI,
2125 .sign = FTR_UNSIGNED,
2126 },
2127 #endif
2128 #ifdef CONFIG_ARM64_MTE
2129 {
2130 .desc = "Memory Tagging Extension",
2131 .capability = ARM64_MTE,
2132 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2133 .matches = has_cpuid_feature,
2134 .sys_reg = SYS_ID_AA64PFR1_EL1,
2135 .field_pos = ID_AA64PFR1_MTE_SHIFT,
2136 .min_field_value = ID_AA64PFR1_MTE,
2137 .sign = FTR_UNSIGNED,
2138 .cpu_enable = cpu_enable_mte,
2139 },
2140 #endif /* CONFIG_ARM64_MTE */
2141 {},
2142 };
2143
2144 #define HWCAP_CPUID_MATCH(reg, field, s, min_value) \
2145 .matches = has_cpuid_feature, \
2146 .sys_reg = reg, \
2147 .field_pos = field, \
2148 .sign = s, \
2149 .min_field_value = min_value,
2150
2151 #define __HWCAP_CAP(name, cap_type, cap) \
2152 .desc = name, \
2153 .type = ARM64_CPUCAP_SYSTEM_FEATURE, \
2154 .hwcap_type = cap_type, \
2155 .hwcap = cap, \
2156
2157 #define HWCAP_CAP(reg, field, s, min_value, cap_type, cap) \
2158 { \
2159 __HWCAP_CAP(#cap, cap_type, cap) \
2160 HWCAP_CPUID_MATCH(reg, field, s, min_value) \
2161 }
2162
2163 #define HWCAP_MULTI_CAP(list, cap_type, cap) \
2164 { \
2165 __HWCAP_CAP(#cap, cap_type, cap) \
2166 .matches = cpucap_multi_entry_cap_matches, \
2167 .match_list = list, \
2168 }
2169
2170 #define HWCAP_CAP_MATCH(match, cap_type, cap) \
2171 { \
2172 __HWCAP_CAP(#cap, cap_type, cap) \
2173 .matches = match, \
2174 }
2175
2176 #ifdef CONFIG_ARM64_PTR_AUTH
2177 static const struct arm64_cpu_capabilities ptr_auth_hwcap_addr_matches[] = {
2178 {
2179 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_APA_SHIFT,
2180 FTR_UNSIGNED, ID_AA64ISAR1_APA_ARCHITECTED)
2181 },
2182 {
2183 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_API_SHIFT,
2184 FTR_UNSIGNED, ID_AA64ISAR1_API_IMP_DEF)
2185 },
2186 {},
2187 };
2188
2189 static const struct arm64_cpu_capabilities ptr_auth_hwcap_gen_matches[] = {
2190 {
2191 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_GPA_SHIFT,
2192 FTR_UNSIGNED, ID_AA64ISAR1_GPA_ARCHITECTED)
2193 },
2194 {
2195 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_GPI_SHIFT,
2196 FTR_UNSIGNED, ID_AA64ISAR1_GPI_IMP_DEF)
2197 },
2198 {},
2199 };
2200 #endif
2201
2202 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
2203 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_PMULL),
2204 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_AES),
2205 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA1),
2206 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA2),
2207 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_SHA512),
2208 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_CRC32),
2209 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ATOMICS),
2210 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RDM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDRDM),
2211 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA3),
2212 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM3),
2213 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM4_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM4),
2214 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_DP_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDDP),
2215 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_FHM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDFHM),
2216 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FLAGM),
2217 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_FLAGM2),
2218 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RNDR_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_RNG),
2219 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_FP),
2220 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FPHP),
2221 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_ASIMD),
2222 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDHP),
2223 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_DIT_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DIT),
2224 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DCPOP),
2225 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_DCPODP),
2226 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_JSCVT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_JSCVT),
2227 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FCMA_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FCMA),
2228 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_LRCPC),
2229 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ILRCPC),
2230 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FRINTTS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FRINT),
2231 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_SB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SB),
2232 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_BF16_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_BF16),
2233 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DGH_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DGH),
2234 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_I8MM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_I8MM),
2235 HWCAP_CAP(SYS_ID_AA64MMFR2_EL1, ID_AA64MMFR2_AT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_USCAT),
2236 #ifdef CONFIG_ARM64_SVE
2237 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_SVE_SHIFT, FTR_UNSIGNED, ID_AA64PFR0_SVE, CAP_HWCAP, KERNEL_HWCAP_SVE),
2238 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SVEVER_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SVEVER_SVE2, CAP_HWCAP, KERNEL_HWCAP_SVE2),
2239 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_AES_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_AES, CAP_HWCAP, KERNEL_HWCAP_SVEAES),
2240 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_AES_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_AES_PMULL, CAP_HWCAP, KERNEL_HWCAP_SVEPMULL),
2241 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_BITPERM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_BITPERM, CAP_HWCAP, KERNEL_HWCAP_SVEBITPERM),
2242 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_BF16_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_BF16, CAP_HWCAP, KERNEL_HWCAP_SVEBF16),
2243 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SHA3_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SHA3, CAP_HWCAP, KERNEL_HWCAP_SVESHA3),
2244 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SM4_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SM4, CAP_HWCAP, KERNEL_HWCAP_SVESM4),
2245 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_I8MM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_I8MM, CAP_HWCAP, KERNEL_HWCAP_SVEI8MM),
2246 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_F32MM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_F32MM, CAP_HWCAP, KERNEL_HWCAP_SVEF32MM),
2247 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_F64MM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_F64MM, CAP_HWCAP, KERNEL_HWCAP_SVEF64MM),
2248 #endif
2249 HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_SSBS_SHIFT, FTR_UNSIGNED, ID_AA64PFR1_SSBS_PSTATE_INSNS, CAP_HWCAP, KERNEL_HWCAP_SSBS),
2250 #ifdef CONFIG_ARM64_BTI
2251 HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_BT_SHIFT, FTR_UNSIGNED, ID_AA64PFR1_BT_BTI, CAP_HWCAP, KERNEL_HWCAP_BTI),
2252 #endif
2253 #ifdef CONFIG_ARM64_PTR_AUTH
2254 HWCAP_MULTI_CAP(ptr_auth_hwcap_addr_matches, CAP_HWCAP, KERNEL_HWCAP_PACA),
2255 HWCAP_MULTI_CAP(ptr_auth_hwcap_gen_matches, CAP_HWCAP, KERNEL_HWCAP_PACG),
2256 #endif
2257 #ifdef CONFIG_ARM64_MTE
2258 HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_MTE_SHIFT, FTR_UNSIGNED, ID_AA64PFR1_MTE, CAP_HWCAP, KERNEL_HWCAP_MTE),
2259 #endif /* CONFIG_ARM64_MTE */
2260 {},
2261 };
2262
2263 #ifdef CONFIG_COMPAT
compat_has_neon(const struct arm64_cpu_capabilities * cap,int scope)2264 static bool compat_has_neon(const struct arm64_cpu_capabilities *cap, int scope)
2265 {
2266 /*
2267 * Check that all of MVFR1_EL1.{SIMDSP, SIMDInt, SIMDLS} are available,
2268 * in line with that of arm32 as in vfp_init(). We make sure that the
2269 * check is future proof, by making sure value is non-zero.
2270 */
2271 u32 mvfr1;
2272
2273 WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
2274 if (scope == SCOPE_SYSTEM)
2275 mvfr1 = read_sanitised_ftr_reg(SYS_MVFR1_EL1);
2276 else
2277 mvfr1 = read_sysreg_s(SYS_MVFR1_EL1);
2278
2279 return cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDSP_SHIFT) &&
2280 cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDINT_SHIFT) &&
2281 cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDLS_SHIFT);
2282 }
2283 #endif
2284
2285 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
2286 #ifdef CONFIG_COMPAT
2287 HWCAP_CAP_MATCH(compat_has_neon, CAP_COMPAT_HWCAP, COMPAT_HWCAP_NEON),
2288 HWCAP_CAP(SYS_MVFR1_EL1, MVFR1_SIMDFMAC_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv4),
2289 /* Arm v8 mandates MVFR0.FPDP == {0, 2}. So, piggy back on this for the presence of VFP support */
2290 HWCAP_CAP(SYS_MVFR0_EL1, MVFR0_FPDP_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFP),
2291 HWCAP_CAP(SYS_MVFR0_EL1, MVFR0_FPDP_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv3),
2292 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
2293 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
2294 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
2295 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
2296 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
2297 #endif
2298 {},
2299 };
2300
cap_set_elf_hwcap(const struct arm64_cpu_capabilities * cap)2301 static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
2302 {
2303 switch (cap->hwcap_type) {
2304 case CAP_HWCAP:
2305 cpu_set_feature(cap->hwcap);
2306 break;
2307 #ifdef CONFIG_COMPAT
2308 case CAP_COMPAT_HWCAP:
2309 compat_elf_hwcap |= (u32)cap->hwcap;
2310 break;
2311 case CAP_COMPAT_HWCAP2:
2312 compat_elf_hwcap2 |= (u32)cap->hwcap;
2313 break;
2314 #endif
2315 default:
2316 WARN_ON(1);
2317 break;
2318 }
2319 }
2320
2321 /* Check if we have a particular HWCAP enabled */
cpus_have_elf_hwcap(const struct arm64_cpu_capabilities * cap)2322 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
2323 {
2324 bool rc;
2325
2326 switch (cap->hwcap_type) {
2327 case CAP_HWCAP:
2328 rc = cpu_have_feature(cap->hwcap);
2329 break;
2330 #ifdef CONFIG_COMPAT
2331 case CAP_COMPAT_HWCAP:
2332 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
2333 break;
2334 case CAP_COMPAT_HWCAP2:
2335 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
2336 break;
2337 #endif
2338 default:
2339 WARN_ON(1);
2340 rc = false;
2341 }
2342
2343 return rc;
2344 }
2345
setup_elf_hwcaps(const struct arm64_cpu_capabilities * hwcaps)2346 static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
2347 {
2348 /* We support emulation of accesses to CPU ID feature registers */
2349 cpu_set_named_feature(CPUID);
2350 for (; hwcaps->matches; hwcaps++)
2351 if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps)))
2352 cap_set_elf_hwcap(hwcaps);
2353 }
2354
update_cpu_capabilities(u16 scope_mask)2355 static void update_cpu_capabilities(u16 scope_mask)
2356 {
2357 int i;
2358 const struct arm64_cpu_capabilities *caps;
2359
2360 scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
2361 for (i = 0; i < ARM64_NCAPS; i++) {
2362 caps = cpu_hwcaps_ptrs[i];
2363 if (!caps || !(caps->type & scope_mask) ||
2364 cpus_have_cap(caps->capability) ||
2365 !caps->matches(caps, cpucap_default_scope(caps)))
2366 continue;
2367
2368 if (caps->desc)
2369 pr_info("detected: %s\n", caps->desc);
2370 cpus_set_cap(caps->capability);
2371
2372 if ((scope_mask & SCOPE_BOOT_CPU) && (caps->type & SCOPE_BOOT_CPU))
2373 set_bit(caps->capability, boot_capabilities);
2374 }
2375 }
2376
2377 /*
2378 * Enable all the available capabilities on this CPU. The capabilities
2379 * with BOOT_CPU scope are handled separately and hence skipped here.
2380 */
cpu_enable_non_boot_scope_capabilities(void * __unused)2381 static int cpu_enable_non_boot_scope_capabilities(void *__unused)
2382 {
2383 int i;
2384 u16 non_boot_scope = SCOPE_ALL & ~SCOPE_BOOT_CPU;
2385
2386 for_each_available_cap(i) {
2387 const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[i];
2388
2389 if (WARN_ON(!cap))
2390 continue;
2391
2392 if (!(cap->type & non_boot_scope))
2393 continue;
2394
2395 if (cap->cpu_enable)
2396 cap->cpu_enable(cap);
2397 }
2398 return 0;
2399 }
2400
2401 /*
2402 * Run through the enabled capabilities and enable() it on all active
2403 * CPUs
2404 */
enable_cpu_capabilities(u16 scope_mask)2405 static void __init enable_cpu_capabilities(u16 scope_mask)
2406 {
2407 int i;
2408 const struct arm64_cpu_capabilities *caps;
2409 bool boot_scope;
2410
2411 scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
2412 boot_scope = !!(scope_mask & SCOPE_BOOT_CPU);
2413
2414 for (i = 0; i < ARM64_NCAPS; i++) {
2415 unsigned int num;
2416
2417 caps = cpu_hwcaps_ptrs[i];
2418 if (!caps || !(caps->type & scope_mask))
2419 continue;
2420 num = caps->capability;
2421 if (!cpus_have_cap(num))
2422 continue;
2423
2424 /* Ensure cpus_have_const_cap(num) works */
2425 static_branch_enable(&cpu_hwcap_keys[num]);
2426
2427 if (boot_scope && caps->cpu_enable)
2428 /*
2429 * Capabilities with SCOPE_BOOT_CPU scope are finalised
2430 * before any secondary CPU boots. Thus, each secondary
2431 * will enable the capability as appropriate via
2432 * check_local_cpu_capabilities(). The only exception is
2433 * the boot CPU, for which the capability must be
2434 * enabled here. This approach avoids costly
2435 * stop_machine() calls for this case.
2436 */
2437 caps->cpu_enable(caps);
2438 }
2439
2440 /*
2441 * For all non-boot scope capabilities, use stop_machine()
2442 * as it schedules the work allowing us to modify PSTATE,
2443 * instead of on_each_cpu() which uses an IPI, giving us a
2444 * PSTATE that disappears when we return.
2445 */
2446 if (!boot_scope)
2447 stop_machine(cpu_enable_non_boot_scope_capabilities,
2448 NULL, cpu_online_mask);
2449 }
2450
2451 /*
2452 * Run through the list of capabilities to check for conflicts.
2453 * If the system has already detected a capability, take necessary
2454 * action on this CPU.
2455 */
verify_local_cpu_caps(u16 scope_mask)2456 static void verify_local_cpu_caps(u16 scope_mask)
2457 {
2458 int i;
2459 bool cpu_has_cap, system_has_cap;
2460 const struct arm64_cpu_capabilities *caps;
2461
2462 scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
2463
2464 for (i = 0; i < ARM64_NCAPS; i++) {
2465 caps = cpu_hwcaps_ptrs[i];
2466 if (!caps || !(caps->type & scope_mask))
2467 continue;
2468
2469 cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU);
2470 system_has_cap = cpus_have_cap(caps->capability);
2471
2472 if (system_has_cap) {
2473 /*
2474 * Check if the new CPU misses an advertised feature,
2475 * which is not safe to miss.
2476 */
2477 if (!cpu_has_cap && !cpucap_late_cpu_optional(caps))
2478 break;
2479 /*
2480 * We have to issue cpu_enable() irrespective of
2481 * whether the CPU has it or not, as it is enabeld
2482 * system wide. It is upto the call back to take
2483 * appropriate action on this CPU.
2484 */
2485 if (caps->cpu_enable)
2486 caps->cpu_enable(caps);
2487 } else {
2488 /*
2489 * Check if the CPU has this capability if it isn't
2490 * safe to have when the system doesn't.
2491 */
2492 if (cpu_has_cap && !cpucap_late_cpu_permitted(caps))
2493 break;
2494 }
2495 }
2496
2497 if (i < ARM64_NCAPS) {
2498 pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
2499 smp_processor_id(), caps->capability,
2500 caps->desc, system_has_cap, cpu_has_cap);
2501
2502 if (cpucap_panic_on_conflict(caps))
2503 cpu_panic_kernel();
2504 else
2505 cpu_die_early();
2506 }
2507 }
2508
2509 /*
2510 * Check for CPU features that are used in early boot
2511 * based on the Boot CPU value.
2512 */
check_early_cpu_features(void)2513 static void check_early_cpu_features(void)
2514 {
2515 verify_cpu_asid_bits();
2516
2517 verify_local_cpu_caps(SCOPE_BOOT_CPU);
2518 }
2519
2520 static void
verify_local_elf_hwcaps(const struct arm64_cpu_capabilities * caps)2521 verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
2522 {
2523
2524 for (; caps->matches; caps++)
2525 if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
2526 pr_crit("CPU%d: missing HWCAP: %s\n",
2527 smp_processor_id(), caps->desc);
2528 cpu_die_early();
2529 }
2530 }
2531
verify_sve_features(void)2532 static void verify_sve_features(void)
2533 {
2534 u64 safe_zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
2535 u64 zcr = read_zcr_features();
2536
2537 unsigned int safe_len = safe_zcr & ZCR_ELx_LEN_MASK;
2538 unsigned int len = zcr & ZCR_ELx_LEN_MASK;
2539
2540 if (len < safe_len || sve_verify_vq_map()) {
2541 pr_crit("CPU%d: SVE: vector length support mismatch\n",
2542 smp_processor_id());
2543 cpu_die_early();
2544 }
2545
2546 /* Add checks on other ZCR bits here if necessary */
2547 }
2548
verify_hyp_capabilities(void)2549 static void verify_hyp_capabilities(void)
2550 {
2551 u64 safe_mmfr1, mmfr0, mmfr1;
2552 int parange, ipa_max;
2553 unsigned int safe_vmid_bits, vmid_bits;
2554
2555 if (!IS_ENABLED(CONFIG_KVM) || !IS_ENABLED(CONFIG_KVM_ARM_HOST))
2556 return;
2557
2558 safe_mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
2559 mmfr0 = read_cpuid(ID_AA64MMFR0_EL1);
2560 mmfr1 = read_cpuid(ID_AA64MMFR1_EL1);
2561
2562 /* Verify VMID bits */
2563 safe_vmid_bits = get_vmid_bits(safe_mmfr1);
2564 vmid_bits = get_vmid_bits(mmfr1);
2565 if (vmid_bits < safe_vmid_bits) {
2566 pr_crit("CPU%d: VMID width mismatch\n", smp_processor_id());
2567 cpu_die_early();
2568 }
2569
2570 /* Verify IPA range */
2571 parange = cpuid_feature_extract_unsigned_field(mmfr0,
2572 ID_AA64MMFR0_PARANGE_SHIFT);
2573 ipa_max = id_aa64mmfr0_parange_to_phys_shift(parange);
2574 if (ipa_max < get_kvm_ipa_limit()) {
2575 pr_crit("CPU%d: IPA range mismatch\n", smp_processor_id());
2576 cpu_die_early();
2577 }
2578 }
2579
2580 /*
2581 * Run through the enabled system capabilities and enable() it on this CPU.
2582 * The capabilities were decided based on the available CPUs at the boot time.
2583 * Any new CPU should match the system wide status of the capability. If the
2584 * new CPU doesn't have a capability which the system now has enabled, we
2585 * cannot do anything to fix it up and could cause unexpected failures. So
2586 * we park the CPU.
2587 */
verify_local_cpu_capabilities(void)2588 static void verify_local_cpu_capabilities(void)
2589 {
2590 /*
2591 * The capabilities with SCOPE_BOOT_CPU are checked from
2592 * check_early_cpu_features(), as they need to be verified
2593 * on all secondary CPUs.
2594 */
2595 verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU);
2596
2597 verify_local_elf_hwcaps(arm64_elf_hwcaps);
2598
2599 if (system_supports_32bit_el0())
2600 verify_local_elf_hwcaps(compat_elf_hwcaps);
2601
2602 if (system_supports_sve())
2603 verify_sve_features();
2604
2605 if (is_hyp_mode_available())
2606 verify_hyp_capabilities();
2607 }
2608
check_local_cpu_capabilities(void)2609 void check_local_cpu_capabilities(void)
2610 {
2611 /*
2612 * All secondary CPUs should conform to the early CPU features
2613 * in use by the kernel based on boot CPU.
2614 */
2615 check_early_cpu_features();
2616
2617 /*
2618 * If we haven't finalised the system capabilities, this CPU gets
2619 * a chance to update the errata work arounds and local features.
2620 * Otherwise, this CPU should verify that it has all the system
2621 * advertised capabilities.
2622 */
2623 if (!system_capabilities_finalized())
2624 update_cpu_capabilities(SCOPE_LOCAL_CPU);
2625 else
2626 verify_local_cpu_capabilities();
2627 }
2628
setup_boot_cpu_capabilities(void)2629 static void __init setup_boot_cpu_capabilities(void)
2630 {
2631 /* Detect capabilities with either SCOPE_BOOT_CPU or SCOPE_LOCAL_CPU */
2632 update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU);
2633 /* Enable the SCOPE_BOOT_CPU capabilities alone right away */
2634 enable_cpu_capabilities(SCOPE_BOOT_CPU);
2635 }
2636
this_cpu_has_cap(unsigned int n)2637 bool this_cpu_has_cap(unsigned int n)
2638 {
2639 if (!WARN_ON(preemptible()) && n < ARM64_NCAPS) {
2640 const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n];
2641
2642 if (cap)
2643 return cap->matches(cap, SCOPE_LOCAL_CPU);
2644 }
2645
2646 return false;
2647 }
2648
2649 /*
2650 * This helper function is used in a narrow window when,
2651 * - The system wide safe registers are set with all the SMP CPUs and,
2652 * - The SYSTEM_FEATURE cpu_hwcaps may not have been set.
2653 * In all other cases cpus_have_{const_}cap() should be used.
2654 */
__system_matches_cap(unsigned int n)2655 static bool __system_matches_cap(unsigned int n)
2656 {
2657 if (n < ARM64_NCAPS) {
2658 const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n];
2659
2660 if (cap)
2661 return cap->matches(cap, SCOPE_SYSTEM);
2662 }
2663 return false;
2664 }
2665
cpu_set_feature(unsigned int num)2666 void cpu_set_feature(unsigned int num)
2667 {
2668 WARN_ON(num >= MAX_CPU_FEATURES);
2669 elf_hwcap |= BIT(num);
2670 }
2671 EXPORT_SYMBOL_GPL(cpu_set_feature);
2672
cpu_have_feature(unsigned int num)2673 bool cpu_have_feature(unsigned int num)
2674 {
2675 WARN_ON(num >= MAX_CPU_FEATURES);
2676 return elf_hwcap & BIT(num);
2677 }
2678 EXPORT_SYMBOL_GPL(cpu_have_feature);
2679
cpu_get_elf_hwcap(void)2680 unsigned long cpu_get_elf_hwcap(void)
2681 {
2682 /*
2683 * We currently only populate the first 32 bits of AT_HWCAP. Please
2684 * note that for userspace compatibility we guarantee that bits 62
2685 * and 63 will always be returned as 0.
2686 */
2687 return lower_32_bits(elf_hwcap);
2688 }
2689
cpu_get_elf_hwcap2(void)2690 unsigned long cpu_get_elf_hwcap2(void)
2691 {
2692 return upper_32_bits(elf_hwcap);
2693 }
2694
setup_system_capabilities(void)2695 static void __init setup_system_capabilities(void)
2696 {
2697 /*
2698 * We have finalised the system-wide safe feature
2699 * registers, finalise the capabilities that depend
2700 * on it. Also enable all the available capabilities,
2701 * that are not enabled already.
2702 */
2703 update_cpu_capabilities(SCOPE_SYSTEM);
2704 enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU);
2705 }
2706
setup_cpu_features(void)2707 void __init setup_cpu_features(void)
2708 {
2709 u32 cwg;
2710
2711 setup_system_capabilities();
2712 setup_elf_hwcaps(arm64_elf_hwcaps);
2713
2714 if (system_supports_32bit_el0())
2715 setup_elf_hwcaps(compat_elf_hwcaps);
2716
2717 if (system_uses_ttbr0_pan())
2718 pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
2719
2720 sve_setup();
2721 minsigstksz_setup();
2722
2723 /* Advertise that we have computed the system capabilities */
2724 finalize_system_capabilities();
2725
2726 /*
2727 * Check for sane CTR_EL0.CWG value.
2728 */
2729 cwg = cache_type_cwg();
2730 if (!cwg)
2731 pr_warn("No Cache Writeback Granule information, assuming %d\n",
2732 ARCH_DMA_MINALIGN);
2733 }
2734
2735 static bool __maybe_unused
cpufeature_pan_not_uao(const struct arm64_cpu_capabilities * entry,int __unused)2736 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
2737 {
2738 return (__system_matches_cap(ARM64_HAS_PAN) && !__system_matches_cap(ARM64_HAS_UAO));
2739 }
2740
cpu_enable_cnp(struct arm64_cpu_capabilities const * cap)2741 static void __maybe_unused cpu_enable_cnp(struct arm64_cpu_capabilities const *cap)
2742 {
2743 cpu_replace_ttbr1(lm_alias(swapper_pg_dir));
2744 }
2745
2746 /*
2747 * We emulate only the following system register space.
2748 * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
2749 * See Table C5-6 System instruction encodings for System register accesses,
2750 * ARMv8 ARM(ARM DDI 0487A.f) for more details.
2751 */
is_emulated(u32 id)2752 static inline bool __attribute_const__ is_emulated(u32 id)
2753 {
2754 return (sys_reg_Op0(id) == 0x3 &&
2755 sys_reg_CRn(id) == 0x0 &&
2756 sys_reg_Op1(id) == 0x0 &&
2757 (sys_reg_CRm(id) == 0 ||
2758 ((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7))));
2759 }
2760
2761 /*
2762 * With CRm == 0, reg should be one of :
2763 * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
2764 */
emulate_id_reg(u32 id,u64 * valp)2765 static inline int emulate_id_reg(u32 id, u64 *valp)
2766 {
2767 switch (id) {
2768 case SYS_MIDR_EL1:
2769 *valp = read_cpuid_id();
2770 break;
2771 case SYS_MPIDR_EL1:
2772 *valp = SYS_MPIDR_SAFE_VAL;
2773 break;
2774 case SYS_REVIDR_EL1:
2775 /* IMPLEMENTATION DEFINED values are emulated with 0 */
2776 *valp = 0;
2777 break;
2778 default:
2779 return -EINVAL;
2780 }
2781
2782 return 0;
2783 }
2784
emulate_sys_reg(u32 id,u64 * valp)2785 static int emulate_sys_reg(u32 id, u64 *valp)
2786 {
2787 struct arm64_ftr_reg *regp;
2788
2789 if (!is_emulated(id))
2790 return -EINVAL;
2791
2792 if (sys_reg_CRm(id) == 0)
2793 return emulate_id_reg(id, valp);
2794
2795 regp = get_arm64_ftr_reg_nowarn(id);
2796 if (regp)
2797 *valp = arm64_ftr_reg_user_value(regp);
2798 else
2799 /*
2800 * The untracked registers are either IMPLEMENTATION DEFINED
2801 * (e.g, ID_AFR0_EL1) or reserved RAZ.
2802 */
2803 *valp = 0;
2804 return 0;
2805 }
2806
do_emulate_mrs(struct pt_regs * regs,u32 sys_reg,u32 rt)2807 int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt)
2808 {
2809 int rc;
2810 u64 val;
2811
2812 rc = emulate_sys_reg(sys_reg, &val);
2813 if (!rc) {
2814 pt_regs_write_reg(regs, rt, val);
2815 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
2816 }
2817 return rc;
2818 }
2819
emulate_mrs(struct pt_regs * regs,u32 insn)2820 static int emulate_mrs(struct pt_regs *regs, u32 insn)
2821 {
2822 u32 sys_reg, rt;
2823
2824 /*
2825 * sys_reg values are defined as used in mrs/msr instruction.
2826 * shift the imm value to get the encoding.
2827 */
2828 sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
2829 rt = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
2830 return do_emulate_mrs(regs, sys_reg, rt);
2831 }
2832
2833 static struct undef_hook mrs_hook = {
2834 .instr_mask = 0xfff00000,
2835 .instr_val = 0xd5300000,
2836 .pstate_mask = PSR_AA32_MODE_MASK,
2837 .pstate_val = PSR_MODE_EL0t,
2838 .fn = emulate_mrs,
2839 };
2840
enable_mrs_emulation(void)2841 static int __init enable_mrs_emulation(void)
2842 {
2843 register_undef_hook(&mrs_hook);
2844 return 0;
2845 }
2846
2847 core_initcall(enable_mrs_emulation);
2848
cpu_show_meltdown(struct device * dev,struct device_attribute * attr,char * buf)2849 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr,
2850 char *buf)
2851 {
2852 if (__meltdown_safe)
2853 return sprintf(buf, "Not affected\n");
2854
2855 if (arm64_kernel_unmapped_at_el0())
2856 return sprintf(buf, "Mitigation: PTI\n");
2857
2858 return sprintf(buf, "Vulnerable\n");
2859 }
2860