1 /*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version 2
5 * of the License, or (at your option) any later version.
6 *
7 * This program is distributed in the hope that it will be useful,
8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
10 * GNU General Public License for more details.
11 *
12 * You should have received a copy of the GNU General Public License
13 * along with this program; if not, write to the Free Software
14 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
15 *
16 * Copyright (C) 2000, 2001 Kanoj Sarcar
17 * Copyright (C) 2000, 2001 Ralf Baechle
18 * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
19 * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
20 */
21 #include <linux/cache.h>
22 #include <linux/delay.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/smp.h>
26 #include <linux/spinlock.h>
27 #include <linux/threads.h>
28 #include <linux/export.h>
29 #include <linux/time.h>
30 #include <linux/timex.h>
31 #include <linux/sched/mm.h>
32 #include <linux/cpumask.h>
33 #include <linux/cpu.h>
34 #include <linux/err.h>
35 #include <linux/ftrace.h>
36 #include <linux/irqdomain.h>
37 #include <linux/of.h>
38 #include <linux/of_irq.h>
39
40 #include <linux/atomic.h>
41 #include <asm/cpu.h>
42 #include <asm/processor.h>
43 #include <asm/idle.h>
44 #include <asm/r4k-timer.h>
45 #include <asm/mips-cps.h>
46 #include <asm/mmu_context.h>
47 #include <asm/time.h>
48 #include <asm/setup.h>
49 #include <asm/maar.h>
50
51 int __cpu_number_map[CONFIG_MIPS_NR_CPU_NR_MAP]; /* Map physical to logical */
52 EXPORT_SYMBOL(__cpu_number_map);
53
54 int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */
55 EXPORT_SYMBOL(__cpu_logical_map);
56
57 /* Number of TCs (or siblings in Intel speak) per CPU core */
58 int smp_num_siblings = 1;
59 EXPORT_SYMBOL(smp_num_siblings);
60
61 /* representing the TCs (or siblings in Intel speak) of each logical CPU */
62 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
63 EXPORT_SYMBOL(cpu_sibling_map);
64
65 /* representing the core map of multi-core chips of each logical CPU */
66 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
67 EXPORT_SYMBOL(cpu_core_map);
68
69 static DECLARE_COMPLETION(cpu_starting);
70 static DECLARE_COMPLETION(cpu_running);
71
72 /*
73 * A logcal cpu mask containing only one VPE per core to
74 * reduce the number of IPIs on large MT systems.
75 */
76 cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly;
77 EXPORT_SYMBOL(cpu_foreign_map);
78
79 /* representing cpus for which sibling maps can be computed */
80 static cpumask_t cpu_sibling_setup_map;
81
82 /* representing cpus for which core maps can be computed */
83 static cpumask_t cpu_core_setup_map;
84
85 cpumask_t cpu_coherent_mask;
86
87 #ifdef CONFIG_GENERIC_IRQ_IPI
88 static struct irq_desc *call_desc;
89 static struct irq_desc *sched_desc;
90 #endif
91
set_cpu_sibling_map(int cpu)92 static inline void set_cpu_sibling_map(int cpu)
93 {
94 int i;
95
96 cpumask_set_cpu(cpu, &cpu_sibling_setup_map);
97
98 if (smp_num_siblings > 1) {
99 for_each_cpu(i, &cpu_sibling_setup_map) {
100 if (cpus_are_siblings(cpu, i)) {
101 cpumask_set_cpu(i, &cpu_sibling_map[cpu]);
102 cpumask_set_cpu(cpu, &cpu_sibling_map[i]);
103 }
104 }
105 } else
106 cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]);
107 }
108
set_cpu_core_map(int cpu)109 static inline void set_cpu_core_map(int cpu)
110 {
111 int i;
112
113 cpumask_set_cpu(cpu, &cpu_core_setup_map);
114
115 for_each_cpu(i, &cpu_core_setup_map) {
116 if (cpu_data[cpu].package == cpu_data[i].package) {
117 cpumask_set_cpu(i, &cpu_core_map[cpu]);
118 cpumask_set_cpu(cpu, &cpu_core_map[i]);
119 }
120 }
121 }
122
123 /*
124 * Calculate a new cpu_foreign_map mask whenever a
125 * new cpu appears or disappears.
126 */
calculate_cpu_foreign_map(void)127 void calculate_cpu_foreign_map(void)
128 {
129 int i, k, core_present;
130 cpumask_t temp_foreign_map;
131
132 /* Re-calculate the mask */
133 cpumask_clear(&temp_foreign_map);
134 for_each_online_cpu(i) {
135 core_present = 0;
136 for_each_cpu(k, &temp_foreign_map)
137 if (cpus_are_siblings(i, k))
138 core_present = 1;
139 if (!core_present)
140 cpumask_set_cpu(i, &temp_foreign_map);
141 }
142
143 for_each_online_cpu(i)
144 cpumask_andnot(&cpu_foreign_map[i],
145 &temp_foreign_map, &cpu_sibling_map[i]);
146 }
147
148 const struct plat_smp_ops *mp_ops;
149 EXPORT_SYMBOL(mp_ops);
150
register_smp_ops(const struct plat_smp_ops * ops)151 void register_smp_ops(const struct plat_smp_ops *ops)
152 {
153 if (mp_ops)
154 printk(KERN_WARNING "Overriding previously set SMP ops\n");
155
156 mp_ops = ops;
157 }
158
159 #ifdef CONFIG_GENERIC_IRQ_IPI
mips_smp_send_ipi_single(int cpu,unsigned int action)160 void mips_smp_send_ipi_single(int cpu, unsigned int action)
161 {
162 mips_smp_send_ipi_mask(cpumask_of(cpu), action);
163 }
164
mips_smp_send_ipi_mask(const struct cpumask * mask,unsigned int action)165 void mips_smp_send_ipi_mask(const struct cpumask *mask, unsigned int action)
166 {
167 unsigned long flags;
168 unsigned int core;
169 int cpu;
170
171 local_irq_save(flags);
172
173 switch (action) {
174 case SMP_CALL_FUNCTION:
175 __ipi_send_mask(call_desc, mask);
176 break;
177
178 case SMP_RESCHEDULE_YOURSELF:
179 __ipi_send_mask(sched_desc, mask);
180 break;
181
182 default:
183 BUG();
184 }
185
186 if (mips_cpc_present()) {
187 for_each_cpu(cpu, mask) {
188 if (cpus_are_siblings(cpu, smp_processor_id()))
189 continue;
190
191 core = cpu_core(&cpu_data[cpu]);
192
193 while (!cpumask_test_cpu(cpu, &cpu_coherent_mask)) {
194 mips_cm_lock_other_cpu(cpu, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
195 mips_cpc_lock_other(core);
196 write_cpc_co_cmd(CPC_Cx_CMD_PWRUP);
197 mips_cpc_unlock_other();
198 mips_cm_unlock_other();
199 }
200 }
201 }
202
203 local_irq_restore(flags);
204 }
205
206
ipi_resched_interrupt(int irq,void * dev_id)207 static irqreturn_t ipi_resched_interrupt(int irq, void *dev_id)
208 {
209 scheduler_ipi();
210
211 return IRQ_HANDLED;
212 }
213
ipi_call_interrupt(int irq,void * dev_id)214 static irqreturn_t ipi_call_interrupt(int irq, void *dev_id)
215 {
216 generic_smp_call_function_interrupt();
217
218 return IRQ_HANDLED;
219 }
220
221 static struct irqaction irq_resched = {
222 .handler = ipi_resched_interrupt,
223 .flags = IRQF_PERCPU,
224 .name = "IPI resched"
225 };
226
227 static struct irqaction irq_call = {
228 .handler = ipi_call_interrupt,
229 .flags = IRQF_PERCPU,
230 .name = "IPI call"
231 };
232
smp_ipi_init_one(unsigned int virq,struct irqaction * action)233 static void smp_ipi_init_one(unsigned int virq,
234 struct irqaction *action)
235 {
236 int ret;
237
238 irq_set_handler(virq, handle_percpu_irq);
239 ret = setup_irq(virq, action);
240 BUG_ON(ret);
241 }
242
243 static unsigned int call_virq, sched_virq;
244
mips_smp_ipi_allocate(const struct cpumask * mask)245 int mips_smp_ipi_allocate(const struct cpumask *mask)
246 {
247 int virq;
248 struct irq_domain *ipidomain;
249 struct device_node *node;
250
251 node = of_irq_find_parent(of_root);
252 ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
253
254 /*
255 * Some platforms have half DT setup. So if we found irq node but
256 * didn't find an ipidomain, try to search for one that is not in the
257 * DT.
258 */
259 if (node && !ipidomain)
260 ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
261
262 /*
263 * There are systems which use IPI IRQ domains, but only have one
264 * registered when some runtime condition is met. For example a Malta
265 * kernel may include support for GIC & CPU interrupt controller IPI
266 * IRQ domains, but if run on a system with no GIC & no MT ASE then
267 * neither will be supported or registered.
268 *
269 * We only have a problem if we're actually using multiple CPUs so fail
270 * loudly if that is the case. Otherwise simply return, skipping IPI
271 * setup, if we're running with only a single CPU.
272 */
273 if (!ipidomain) {
274 BUG_ON(num_present_cpus() > 1);
275 return 0;
276 }
277
278 virq = irq_reserve_ipi(ipidomain, mask);
279 BUG_ON(!virq);
280 if (!call_virq)
281 call_virq = virq;
282
283 virq = irq_reserve_ipi(ipidomain, mask);
284 BUG_ON(!virq);
285 if (!sched_virq)
286 sched_virq = virq;
287
288 if (irq_domain_is_ipi_per_cpu(ipidomain)) {
289 int cpu;
290
291 for_each_cpu(cpu, mask) {
292 smp_ipi_init_one(call_virq + cpu, &irq_call);
293 smp_ipi_init_one(sched_virq + cpu, &irq_resched);
294 }
295 } else {
296 smp_ipi_init_one(call_virq, &irq_call);
297 smp_ipi_init_one(sched_virq, &irq_resched);
298 }
299
300 return 0;
301 }
302
mips_smp_ipi_free(const struct cpumask * mask)303 int mips_smp_ipi_free(const struct cpumask *mask)
304 {
305 struct irq_domain *ipidomain;
306 struct device_node *node;
307
308 node = of_irq_find_parent(of_root);
309 ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
310
311 /*
312 * Some platforms have half DT setup. So if we found irq node but
313 * didn't find an ipidomain, try to search for one that is not in the
314 * DT.
315 */
316 if (node && !ipidomain)
317 ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
318
319 BUG_ON(!ipidomain);
320
321 if (irq_domain_is_ipi_per_cpu(ipidomain)) {
322 int cpu;
323
324 for_each_cpu(cpu, mask) {
325 remove_irq(call_virq + cpu, &irq_call);
326 remove_irq(sched_virq + cpu, &irq_resched);
327 }
328 }
329 irq_destroy_ipi(call_virq, mask);
330 irq_destroy_ipi(sched_virq, mask);
331 return 0;
332 }
333
334
mips_smp_ipi_init(void)335 static int __init mips_smp_ipi_init(void)
336 {
337 if (num_possible_cpus() == 1)
338 return 0;
339
340 mips_smp_ipi_allocate(cpu_possible_mask);
341
342 call_desc = irq_to_desc(call_virq);
343 sched_desc = irq_to_desc(sched_virq);
344
345 return 0;
346 }
347 early_initcall(mips_smp_ipi_init);
348 #endif
349
350 /*
351 * First C code run on the secondary CPUs after being started up by
352 * the master.
353 */
start_secondary(void)354 asmlinkage void start_secondary(void)
355 {
356 unsigned int cpu;
357
358 cpu_probe();
359 per_cpu_trap_init(false);
360 mips_clockevent_init();
361 mp_ops->init_secondary();
362 cpu_report();
363 maar_init();
364
365 /*
366 * XXX parity protection should be folded in here when it's converted
367 * to an option instead of something based on .cputype
368 */
369
370 calibrate_delay();
371 preempt_disable();
372 cpu = smp_processor_id();
373 cpu_data[cpu].udelay_val = loops_per_jiffy;
374
375 cpumask_set_cpu(cpu, &cpu_coherent_mask);
376 notify_cpu_starting(cpu);
377
378 /* Notify boot CPU that we're starting & ready to sync counters */
379 complete(&cpu_starting);
380
381 synchronise_count_slave(cpu);
382
383 /* The CPU is running and counters synchronised, now mark it online */
384 set_cpu_online(cpu, true);
385
386 set_cpu_sibling_map(cpu);
387 set_cpu_core_map(cpu);
388
389 calculate_cpu_foreign_map();
390
391 /*
392 * Notify boot CPU that we're up & online and it can safely return
393 * from __cpu_up
394 */
395 complete(&cpu_running);
396
397 /*
398 * irq will be enabled in ->smp_finish(), enabling it too early
399 * is dangerous.
400 */
401 WARN_ON_ONCE(!irqs_disabled());
402 mp_ops->smp_finish();
403
404 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
405 }
406
stop_this_cpu(void * dummy)407 static void stop_this_cpu(void *dummy)
408 {
409 /*
410 * Remove this CPU:
411 */
412
413 set_cpu_online(smp_processor_id(), false);
414 calculate_cpu_foreign_map();
415 local_irq_disable();
416 while (1);
417 }
418
smp_send_stop(void)419 void smp_send_stop(void)
420 {
421 smp_call_function(stop_this_cpu, NULL, 0);
422 }
423
smp_cpus_done(unsigned int max_cpus)424 void __init smp_cpus_done(unsigned int max_cpus)
425 {
426 }
427
428 /* called from main before smp_init() */
smp_prepare_cpus(unsigned int max_cpus)429 void __init smp_prepare_cpus(unsigned int max_cpus)
430 {
431 init_new_context(current, &init_mm);
432 current_thread_info()->cpu = 0;
433 mp_ops->prepare_cpus(max_cpus);
434 set_cpu_sibling_map(0);
435 set_cpu_core_map(0);
436 calculate_cpu_foreign_map();
437 #ifndef CONFIG_HOTPLUG_CPU
438 init_cpu_present(cpu_possible_mask);
439 #endif
440 cpumask_copy(&cpu_coherent_mask, cpu_possible_mask);
441 }
442
443 /* preload SMP state for boot cpu */
smp_prepare_boot_cpu(void)444 void smp_prepare_boot_cpu(void)
445 {
446 set_cpu_possible(0, true);
447 set_cpu_online(0, true);
448 }
449
__cpu_up(unsigned int cpu,struct task_struct * tidle)450 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
451 {
452 int err;
453
454 err = mp_ops->boot_secondary(cpu, tidle);
455 if (err)
456 return err;
457
458 /* Wait for CPU to start and be ready to sync counters */
459 if (!wait_for_completion_timeout(&cpu_starting,
460 msecs_to_jiffies(1000))) {
461 pr_crit("CPU%u: failed to start\n", cpu);
462 return -EIO;
463 }
464
465 synchronise_count_master(cpu);
466
467 /* Wait for CPU to finish startup & mark itself online before return */
468 wait_for_completion(&cpu_running);
469 return 0;
470 }
471
472 /* Not really SMP stuff ... */
setup_profiling_timer(unsigned int multiplier)473 int setup_profiling_timer(unsigned int multiplier)
474 {
475 return 0;
476 }
477
flush_tlb_all_ipi(void * info)478 static void flush_tlb_all_ipi(void *info)
479 {
480 local_flush_tlb_all();
481 }
482
flush_tlb_all(void)483 void flush_tlb_all(void)
484 {
485 on_each_cpu(flush_tlb_all_ipi, NULL, 1);
486 }
487
flush_tlb_mm_ipi(void * mm)488 static void flush_tlb_mm_ipi(void *mm)
489 {
490 local_flush_tlb_mm((struct mm_struct *)mm);
491 }
492
493 /*
494 * Special Variant of smp_call_function for use by TLB functions:
495 *
496 * o No return value
497 * o collapses to normal function call on UP kernels
498 * o collapses to normal function call on systems with a single shared
499 * primary cache.
500 */
smp_on_other_tlbs(void (* func)(void * info),void * info)501 static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
502 {
503 smp_call_function(func, info, 1);
504 }
505
smp_on_each_tlb(void (* func)(void * info),void * info)506 static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
507 {
508 preempt_disable();
509
510 smp_on_other_tlbs(func, info);
511 func(info);
512
513 preempt_enable();
514 }
515
516 /*
517 * The following tlb flush calls are invoked when old translations are
518 * being torn down, or pte attributes are changing. For single threaded
519 * address spaces, a new context is obtained on the current cpu, and tlb
520 * context on other cpus are invalidated to force a new context allocation
521 * at switch_mm time, should the mm ever be used on other cpus. For
522 * multithreaded address spaces, intercpu interrupts have to be sent.
523 * Another case where intercpu interrupts are required is when the target
524 * mm might be active on another cpu (eg debuggers doing the flushes on
525 * behalf of debugees, kswapd stealing pages from another process etc).
526 * Kanoj 07/00.
527 */
528
flush_tlb_mm(struct mm_struct * mm)529 void flush_tlb_mm(struct mm_struct *mm)
530 {
531 preempt_disable();
532
533 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
534 smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
535 } else {
536 unsigned int cpu;
537
538 for_each_online_cpu(cpu) {
539 if (cpu != smp_processor_id() && cpu_context(cpu, mm))
540 cpu_context(cpu, mm) = 0;
541 }
542 }
543 local_flush_tlb_mm(mm);
544
545 preempt_enable();
546 }
547
548 struct flush_tlb_data {
549 struct vm_area_struct *vma;
550 unsigned long addr1;
551 unsigned long addr2;
552 };
553
flush_tlb_range_ipi(void * info)554 static void flush_tlb_range_ipi(void *info)
555 {
556 struct flush_tlb_data *fd = info;
557
558 local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
559 }
560
flush_tlb_range(struct vm_area_struct * vma,unsigned long start,unsigned long end)561 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
562 {
563 struct mm_struct *mm = vma->vm_mm;
564
565 preempt_disable();
566 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
567 struct flush_tlb_data fd = {
568 .vma = vma,
569 .addr1 = start,
570 .addr2 = end,
571 };
572
573 smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
574 } else {
575 unsigned int cpu;
576 int exec = vma->vm_flags & VM_EXEC;
577
578 for_each_online_cpu(cpu) {
579 /*
580 * flush_cache_range() will only fully flush icache if
581 * the VMA is executable, otherwise we must invalidate
582 * ASID without it appearing to has_valid_asid() as if
583 * mm has been completely unused by that CPU.
584 */
585 if (cpu != smp_processor_id() && cpu_context(cpu, mm))
586 cpu_context(cpu, mm) = !exec;
587 }
588 }
589 local_flush_tlb_range(vma, start, end);
590 preempt_enable();
591 }
592
flush_tlb_kernel_range_ipi(void * info)593 static void flush_tlb_kernel_range_ipi(void *info)
594 {
595 struct flush_tlb_data *fd = info;
596
597 local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
598 }
599
flush_tlb_kernel_range(unsigned long start,unsigned long end)600 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
601 {
602 struct flush_tlb_data fd = {
603 .addr1 = start,
604 .addr2 = end,
605 };
606
607 on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
608 }
609
flush_tlb_page_ipi(void * info)610 static void flush_tlb_page_ipi(void *info)
611 {
612 struct flush_tlb_data *fd = info;
613
614 local_flush_tlb_page(fd->vma, fd->addr1);
615 }
616
flush_tlb_page(struct vm_area_struct * vma,unsigned long page)617 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
618 {
619 preempt_disable();
620 if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
621 struct flush_tlb_data fd = {
622 .vma = vma,
623 .addr1 = page,
624 };
625
626 smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
627 } else {
628 unsigned int cpu;
629
630 for_each_online_cpu(cpu) {
631 /*
632 * flush_cache_page() only does partial flushes, so
633 * invalidate ASID without it appearing to
634 * has_valid_asid() as if mm has been completely unused
635 * by that CPU.
636 */
637 if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
638 cpu_context(cpu, vma->vm_mm) = 1;
639 }
640 }
641 local_flush_tlb_page(vma, page);
642 preempt_enable();
643 }
644
flush_tlb_one_ipi(void * info)645 static void flush_tlb_one_ipi(void *info)
646 {
647 unsigned long vaddr = (unsigned long) info;
648
649 local_flush_tlb_one(vaddr);
650 }
651
flush_tlb_one(unsigned long vaddr)652 void flush_tlb_one(unsigned long vaddr)
653 {
654 smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
655 }
656
657 EXPORT_SYMBOL(flush_tlb_page);
658 EXPORT_SYMBOL(flush_tlb_one);
659
660 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
661
662 static DEFINE_PER_CPU(atomic_t, tick_broadcast_count);
663 static DEFINE_PER_CPU(call_single_data_t, tick_broadcast_csd);
664
tick_broadcast(const struct cpumask * mask)665 void tick_broadcast(const struct cpumask *mask)
666 {
667 atomic_t *count;
668 call_single_data_t *csd;
669 int cpu;
670
671 for_each_cpu(cpu, mask) {
672 count = &per_cpu(tick_broadcast_count, cpu);
673 csd = &per_cpu(tick_broadcast_csd, cpu);
674
675 if (atomic_inc_return(count) == 1)
676 smp_call_function_single_async(cpu, csd);
677 }
678 }
679
tick_broadcast_callee(void * info)680 static void tick_broadcast_callee(void *info)
681 {
682 int cpu = smp_processor_id();
683 tick_receive_broadcast();
684 atomic_set(&per_cpu(tick_broadcast_count, cpu), 0);
685 }
686
tick_broadcast_init(void)687 static int __init tick_broadcast_init(void)
688 {
689 call_single_data_t *csd;
690 int cpu;
691
692 for (cpu = 0; cpu < NR_CPUS; cpu++) {
693 csd = &per_cpu(tick_broadcast_csd, cpu);
694 csd->func = tick_broadcast_callee;
695 }
696
697 return 0;
698 }
699 early_initcall(tick_broadcast_init);
700
701 #endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */
702