1 /*
2 * Based on arch/arm/mm/fault.c
3 *
4 * Copyright (C) 1995 Linus Torvalds
5 * Copyright (C) 1995-2004 Russell King
6 * Copyright (C) 2012 ARM Ltd.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program. If not, see <http://www.gnu.org/licenses/>.
19 */
20
21 #include <linux/extable.h>
22 #include <linux/signal.h>
23 #include <linux/mm.h>
24 #include <linux/hardirq.h>
25 #include <linux/init.h>
26 #include <linux/kprobes.h>
27 #include <linux/uaccess.h>
28 #include <linux/page-flags.h>
29 #include <linux/sched/signal.h>
30 #include <linux/sched/debug.h>
31 #include <linux/highmem.h>
32 #include <linux/perf_event.h>
33 #include <linux/preempt.h>
34 #include <linux/hugetlb.h>
35
36 #include <asm/bug.h>
37 #include <asm/cmpxchg.h>
38 #include <asm/cpufeature.h>
39 #include <asm/exception.h>
40 #include <asm/debug-monitors.h>
41 #include <asm/esr.h>
42 #include <asm/sysreg.h>
43 #include <asm/system_misc.h>
44 #include <asm/pgtable.h>
45 #include <asm/tlbflush.h>
46 #include <asm/traps.h>
47
48 #include <acpi/ghes.h>
49
50 struct fault_info {
51 int (*fn)(unsigned long addr, unsigned int esr,
52 struct pt_regs *regs);
53 int sig;
54 int code;
55 const char *name;
56 };
57
58 static const struct fault_info fault_info[];
59
esr_to_fault_info(unsigned int esr)60 static inline const struct fault_info *esr_to_fault_info(unsigned int esr)
61 {
62 return fault_info + (esr & 63);
63 }
64
65 #ifdef CONFIG_KPROBES
notify_page_fault(struct pt_regs * regs,unsigned int esr)66 static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr)
67 {
68 int ret = 0;
69
70 /* kprobe_running() needs smp_processor_id() */
71 if (!user_mode(regs)) {
72 preempt_disable();
73 if (kprobe_running() && kprobe_fault_handler(regs, esr))
74 ret = 1;
75 preempt_enable();
76 }
77
78 return ret;
79 }
80 #else
notify_page_fault(struct pt_regs * regs,unsigned int esr)81 static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr)
82 {
83 return 0;
84 }
85 #endif
86
data_abort_decode(unsigned int esr)87 static void data_abort_decode(unsigned int esr)
88 {
89 pr_alert("Data abort info:\n");
90
91 if (esr & ESR_ELx_ISV) {
92 pr_alert(" Access size = %u byte(s)\n",
93 1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT));
94 pr_alert(" SSE = %lu, SRT = %lu\n",
95 (esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT,
96 (esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT);
97 pr_alert(" SF = %lu, AR = %lu\n",
98 (esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT,
99 (esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT);
100 } else {
101 pr_alert(" ISV = 0, ISS = 0x%08lx\n", esr & ESR_ELx_ISS_MASK);
102 }
103
104 pr_alert(" CM = %lu, WnR = %lu\n",
105 (esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT,
106 (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT);
107 }
108
mem_abort_decode(unsigned int esr)109 static void mem_abort_decode(unsigned int esr)
110 {
111 pr_alert("Mem abort info:\n");
112
113 pr_alert(" ESR = 0x%08x\n", esr);
114 pr_alert(" Exception class = %s, IL = %u bits\n",
115 esr_get_class_string(esr),
116 (esr & ESR_ELx_IL) ? 32 : 16);
117 pr_alert(" SET = %lu, FnV = %lu\n",
118 (esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT,
119 (esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT);
120 pr_alert(" EA = %lu, S1PTW = %lu\n",
121 (esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT,
122 (esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT);
123
124 if (esr_is_data_abort(esr))
125 data_abort_decode(esr);
126 }
127
128 /*
129 * Dump out the page tables associated with 'addr' in the currently active mm.
130 */
show_pte(unsigned long addr)131 void show_pte(unsigned long addr)
132 {
133 struct mm_struct *mm;
134 pgd_t *pgdp;
135 pgd_t pgd;
136
137 if (addr < TASK_SIZE) {
138 /* TTBR0 */
139 mm = current->active_mm;
140 if (mm == &init_mm) {
141 pr_alert("[%016lx] user address but active_mm is swapper\n",
142 addr);
143 return;
144 }
145 } else if (addr >= VA_START) {
146 /* TTBR1 */
147 mm = &init_mm;
148 } else {
149 pr_alert("[%016lx] address between user and kernel address ranges\n",
150 addr);
151 return;
152 }
153
154 pr_alert("%s pgtable: %luk pages, %u-bit VAs, pgdp = %p\n",
155 mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K,
156 VA_BITS, mm->pgd);
157 pgdp = pgd_offset(mm, addr);
158 pgd = READ_ONCE(*pgdp);
159 pr_alert("[%016lx] pgd=%016llx", addr, pgd_val(pgd));
160
161 do {
162 pud_t *pudp, pud;
163 pmd_t *pmdp, pmd;
164 pte_t *ptep, pte;
165
166 if (pgd_none(pgd) || pgd_bad(pgd))
167 break;
168
169 pudp = pud_offset(pgdp, addr);
170 pud = READ_ONCE(*pudp);
171 pr_cont(", pud=%016llx", pud_val(pud));
172 if (pud_none(pud) || pud_bad(pud))
173 break;
174
175 pmdp = pmd_offset(pudp, addr);
176 pmd = READ_ONCE(*pmdp);
177 pr_cont(", pmd=%016llx", pmd_val(pmd));
178 if (pmd_none(pmd) || pmd_bad(pmd))
179 break;
180
181 ptep = pte_offset_map(pmdp, addr);
182 pte = READ_ONCE(*ptep);
183 pr_cont(", pte=%016llx", pte_val(pte));
184 pte_unmap(ptep);
185 } while(0);
186
187 pr_cont("\n");
188 }
189
190 /*
191 * This function sets the access flags (dirty, accessed), as well as write
192 * permission, and only to a more permissive setting.
193 *
194 * It needs to cope with hardware update of the accessed/dirty state by other
195 * agents in the system and can safely skip the __sync_icache_dcache() call as,
196 * like set_pte_at(), the PTE is never changed from no-exec to exec here.
197 *
198 * Returns whether or not the PTE actually changed.
199 */
ptep_set_access_flags(struct vm_area_struct * vma,unsigned long address,pte_t * ptep,pte_t entry,int dirty)200 int ptep_set_access_flags(struct vm_area_struct *vma,
201 unsigned long address, pte_t *ptep,
202 pte_t entry, int dirty)
203 {
204 pteval_t old_pteval, pteval;
205 pte_t pte = READ_ONCE(*ptep);
206
207 if (pte_same(pte, entry))
208 return 0;
209
210 /* only preserve the access flags and write permission */
211 pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY;
212
213 /*
214 * Setting the flags must be done atomically to avoid racing with the
215 * hardware update of the access/dirty state. The PTE_RDONLY bit must
216 * be set to the most permissive (lowest value) of *ptep and entry
217 * (calculated as: a & b == ~(~a | ~b)).
218 */
219 pte_val(entry) ^= PTE_RDONLY;
220 pteval = pte_val(pte);
221 do {
222 old_pteval = pteval;
223 pteval ^= PTE_RDONLY;
224 pteval |= pte_val(entry);
225 pteval ^= PTE_RDONLY;
226 pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
227 } while (pteval != old_pteval);
228
229 flush_tlb_fix_spurious_fault(vma, address);
230 return 1;
231 }
232
is_el1_instruction_abort(unsigned int esr)233 static bool is_el1_instruction_abort(unsigned int esr)
234 {
235 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
236 }
237
is_el1_permission_fault(unsigned int esr,struct pt_regs * regs,unsigned long addr)238 static inline bool is_el1_permission_fault(unsigned int esr,
239 struct pt_regs *regs,
240 unsigned long addr)
241 {
242 unsigned int ec = ESR_ELx_EC(esr);
243 unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE;
244
245 if (ec != ESR_ELx_EC_DABT_CUR && ec != ESR_ELx_EC_IABT_CUR)
246 return false;
247
248 if (fsc_type == ESR_ELx_FSC_PERM)
249 return true;
250
251 if (addr < TASK_SIZE && system_uses_ttbr0_pan())
252 return fsc_type == ESR_ELx_FSC_FAULT &&
253 (regs->pstate & PSR_PAN_BIT);
254
255 return false;
256 }
257
die_kernel_fault(const char * msg,unsigned long addr,unsigned int esr,struct pt_regs * regs)258 static void die_kernel_fault(const char *msg, unsigned long addr,
259 unsigned int esr, struct pt_regs *regs)
260 {
261 bust_spinlocks(1);
262
263 pr_alert("Unable to handle kernel %s at virtual address %016lx\n", msg,
264 addr);
265
266 mem_abort_decode(esr);
267
268 show_pte(addr);
269 die("Oops", regs, esr);
270 bust_spinlocks(0);
271 do_exit(SIGKILL);
272 }
273
__do_kernel_fault(unsigned long addr,unsigned int esr,struct pt_regs * regs)274 static void __do_kernel_fault(unsigned long addr, unsigned int esr,
275 struct pt_regs *regs)
276 {
277 const char *msg;
278
279 /*
280 * Are we prepared to handle this kernel fault?
281 * We are almost certainly not prepared to handle instruction faults.
282 */
283 if (!is_el1_instruction_abort(esr) && fixup_exception(regs))
284 return;
285
286 if (is_el1_permission_fault(esr, regs, addr)) {
287 if (esr & ESR_ELx_WNR)
288 msg = "write to read-only memory";
289 else
290 msg = "read from unreadable memory";
291 } else if (addr < PAGE_SIZE) {
292 msg = "NULL pointer dereference";
293 } else {
294 msg = "paging request";
295 }
296
297 die_kernel_fault(msg, addr, esr, regs);
298 }
299
__do_user_fault(struct siginfo * info,unsigned int esr)300 static void __do_user_fault(struct siginfo *info, unsigned int esr)
301 {
302 current->thread.fault_address = (unsigned long)info->si_addr;
303
304 /*
305 * If the faulting address is in the kernel, we must sanitize the ESR.
306 * From userspace's point of view, kernel-only mappings don't exist
307 * at all, so we report them as level 0 translation faults.
308 * (This is not quite the way that "no mapping there at all" behaves:
309 * an alignment fault not caused by the memory type would take
310 * precedence over translation fault for a real access to empty
311 * space. Unfortunately we can't easily distinguish "alignment fault
312 * not caused by memory type" from "alignment fault caused by memory
313 * type", so we ignore this wrinkle and just return the translation
314 * fault.)
315 */
316 if (current->thread.fault_address >= TASK_SIZE) {
317 switch (ESR_ELx_EC(esr)) {
318 case ESR_ELx_EC_DABT_LOW:
319 /*
320 * These bits provide only information about the
321 * faulting instruction, which userspace knows already.
322 * We explicitly clear bits which are architecturally
323 * RES0 in case they are given meanings in future.
324 * We always report the ESR as if the fault was taken
325 * to EL1 and so ISV and the bits in ISS[23:14] are
326 * clear. (In fact it always will be a fault to EL1.)
327 */
328 esr &= ESR_ELx_EC_MASK | ESR_ELx_IL |
329 ESR_ELx_CM | ESR_ELx_WNR;
330 esr |= ESR_ELx_FSC_FAULT;
331 break;
332 case ESR_ELx_EC_IABT_LOW:
333 /*
334 * Claim a level 0 translation fault.
335 * All other bits are architecturally RES0 for faults
336 * reported with that DFSC value, so we clear them.
337 */
338 esr &= ESR_ELx_EC_MASK | ESR_ELx_IL;
339 esr |= ESR_ELx_FSC_FAULT;
340 break;
341 default:
342 /*
343 * This should never happen (entry.S only brings us
344 * into this code for insn and data aborts from a lower
345 * exception level). Fail safe by not providing an ESR
346 * context record at all.
347 */
348 WARN(1, "ESR 0x%x is not DABT or IABT from EL0\n", esr);
349 esr = 0;
350 break;
351 }
352 }
353
354 current->thread.fault_code = esr;
355 arm64_force_sig_info(info, esr_to_fault_info(esr)->name, current);
356 }
357
do_bad_area(unsigned long addr,unsigned int esr,struct pt_regs * regs)358 static void do_bad_area(unsigned long addr, unsigned int esr, struct pt_regs *regs)
359 {
360 /*
361 * If we are in kernel mode at this point, we have no context to
362 * handle this fault with.
363 */
364 if (user_mode(regs)) {
365 const struct fault_info *inf = esr_to_fault_info(esr);
366 struct siginfo si;
367
368 clear_siginfo(&si);
369 si.si_signo = inf->sig;
370 si.si_code = inf->code;
371 si.si_addr = (void __user *)addr;
372
373 __do_user_fault(&si, esr);
374 } else {
375 __do_kernel_fault(addr, esr, regs);
376 }
377 }
378
379 #define VM_FAULT_BADMAP 0x010000
380 #define VM_FAULT_BADACCESS 0x020000
381
__do_page_fault(struct mm_struct * mm,unsigned long addr,unsigned int mm_flags,unsigned long vm_flags,struct task_struct * tsk)382 static vm_fault_t __do_page_fault(struct mm_struct *mm, unsigned long addr,
383 unsigned int mm_flags, unsigned long vm_flags,
384 struct task_struct *tsk)
385 {
386 struct vm_area_struct *vma;
387 vm_fault_t fault;
388
389 vma = find_vma(mm, addr);
390 fault = VM_FAULT_BADMAP;
391 if (unlikely(!vma))
392 goto out;
393 if (unlikely(vma->vm_start > addr))
394 goto check_stack;
395
396 /*
397 * Ok, we have a good vm_area for this memory access, so we can handle
398 * it.
399 */
400 good_area:
401 /*
402 * Check that the permissions on the VMA allow for the fault which
403 * occurred.
404 */
405 if (!(vma->vm_flags & vm_flags)) {
406 fault = VM_FAULT_BADACCESS;
407 goto out;
408 }
409
410 return handle_mm_fault(vma, addr & PAGE_MASK, mm_flags);
411
412 check_stack:
413 if (vma->vm_flags & VM_GROWSDOWN && !expand_stack(vma, addr))
414 goto good_area;
415 out:
416 return fault;
417 }
418
is_el0_instruction_abort(unsigned int esr)419 static bool is_el0_instruction_abort(unsigned int esr)
420 {
421 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
422 }
423
do_page_fault(unsigned long addr,unsigned int esr,struct pt_regs * regs)424 static int __kprobes do_page_fault(unsigned long addr, unsigned int esr,
425 struct pt_regs *regs)
426 {
427 struct task_struct *tsk;
428 struct mm_struct *mm;
429 struct siginfo si;
430 vm_fault_t fault, major = 0;
431 unsigned long vm_flags = VM_READ | VM_WRITE;
432 unsigned int mm_flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
433
434 if (notify_page_fault(regs, esr))
435 return 0;
436
437 tsk = current;
438 mm = tsk->mm;
439
440 /*
441 * If we're in an interrupt or have no user context, we must not take
442 * the fault.
443 */
444 if (faulthandler_disabled() || !mm)
445 goto no_context;
446
447 if (user_mode(regs))
448 mm_flags |= FAULT_FLAG_USER;
449
450 if (is_el0_instruction_abort(esr)) {
451 vm_flags = VM_EXEC;
452 } else if ((esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM)) {
453 vm_flags = VM_WRITE;
454 mm_flags |= FAULT_FLAG_WRITE;
455 }
456
457 if (addr < TASK_SIZE && is_el1_permission_fault(esr, regs, addr)) {
458 /* regs->orig_addr_limit may be 0 if we entered from EL0 */
459 if (regs->orig_addr_limit == KERNEL_DS)
460 die_kernel_fault("access to user memory with fs=KERNEL_DS",
461 addr, esr, regs);
462
463 if (is_el1_instruction_abort(esr))
464 die_kernel_fault("execution of user memory",
465 addr, esr, regs);
466
467 if (!search_exception_tables(regs->pc))
468 die_kernel_fault("access to user memory outside uaccess routines",
469 addr, esr, regs);
470 }
471
472 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
473
474 /*
475 * As per x86, we may deadlock here. However, since the kernel only
476 * validly references user space from well defined areas of the code,
477 * we can bug out early if this is from code which shouldn't.
478 */
479 if (!down_read_trylock(&mm->mmap_sem)) {
480 if (!user_mode(regs) && !search_exception_tables(regs->pc))
481 goto no_context;
482 retry:
483 down_read(&mm->mmap_sem);
484 } else {
485 /*
486 * The above down_read_trylock() might have succeeded in which
487 * case, we'll have missed the might_sleep() from down_read().
488 */
489 might_sleep();
490 #ifdef CONFIG_DEBUG_VM
491 if (!user_mode(regs) && !search_exception_tables(regs->pc))
492 goto no_context;
493 #endif
494 }
495
496 fault = __do_page_fault(mm, addr, mm_flags, vm_flags, tsk);
497 major |= fault & VM_FAULT_MAJOR;
498
499 if (fault & VM_FAULT_RETRY) {
500 /*
501 * If we need to retry but a fatal signal is pending,
502 * handle the signal first. We do not need to release
503 * the mmap_sem because it would already be released
504 * in __lock_page_or_retry in mm/filemap.c.
505 */
506 if (fatal_signal_pending(current)) {
507 if (!user_mode(regs))
508 goto no_context;
509 return 0;
510 }
511
512 /*
513 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk of
514 * starvation.
515 */
516 if (mm_flags & FAULT_FLAG_ALLOW_RETRY) {
517 mm_flags &= ~FAULT_FLAG_ALLOW_RETRY;
518 mm_flags |= FAULT_FLAG_TRIED;
519 goto retry;
520 }
521 }
522 up_read(&mm->mmap_sem);
523
524 /*
525 * Handle the "normal" (no error) case first.
526 */
527 if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
528 VM_FAULT_BADACCESS)))) {
529 /*
530 * Major/minor page fault accounting is only done
531 * once. If we go through a retry, it is extremely
532 * likely that the page will be found in page cache at
533 * that point.
534 */
535 if (major) {
536 tsk->maj_flt++;
537 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs,
538 addr);
539 } else {
540 tsk->min_flt++;
541 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs,
542 addr);
543 }
544
545 return 0;
546 }
547
548 /*
549 * If we are in kernel mode at this point, we have no context to
550 * handle this fault with.
551 */
552 if (!user_mode(regs))
553 goto no_context;
554
555 if (fault & VM_FAULT_OOM) {
556 /*
557 * We ran out of memory, call the OOM killer, and return to
558 * userspace (which will retry the fault, or kill us if we got
559 * oom-killed).
560 */
561 pagefault_out_of_memory();
562 return 0;
563 }
564
565 clear_siginfo(&si);
566 si.si_addr = (void __user *)addr;
567
568 if (fault & VM_FAULT_SIGBUS) {
569 /*
570 * We had some memory, but were unable to successfully fix up
571 * this page fault.
572 */
573 si.si_signo = SIGBUS;
574 si.si_code = BUS_ADRERR;
575 } else if (fault & VM_FAULT_HWPOISON_LARGE) {
576 unsigned int hindex = VM_FAULT_GET_HINDEX(fault);
577
578 si.si_signo = SIGBUS;
579 si.si_code = BUS_MCEERR_AR;
580 si.si_addr_lsb = hstate_index_to_shift(hindex);
581 } else if (fault & VM_FAULT_HWPOISON) {
582 si.si_signo = SIGBUS;
583 si.si_code = BUS_MCEERR_AR;
584 si.si_addr_lsb = PAGE_SHIFT;
585 } else {
586 /*
587 * Something tried to access memory that isn't in our memory
588 * map.
589 */
590 si.si_signo = SIGSEGV;
591 si.si_code = fault == VM_FAULT_BADACCESS ?
592 SEGV_ACCERR : SEGV_MAPERR;
593 }
594
595 __do_user_fault(&si, esr);
596 return 0;
597
598 no_context:
599 __do_kernel_fault(addr, esr, regs);
600 return 0;
601 }
602
do_translation_fault(unsigned long addr,unsigned int esr,struct pt_regs * regs)603 static int __kprobes do_translation_fault(unsigned long addr,
604 unsigned int esr,
605 struct pt_regs *regs)
606 {
607 if (addr < TASK_SIZE)
608 return do_page_fault(addr, esr, regs);
609
610 do_bad_area(addr, esr, regs);
611 return 0;
612 }
613
do_alignment_fault(unsigned long addr,unsigned int esr,struct pt_regs * regs)614 static int do_alignment_fault(unsigned long addr, unsigned int esr,
615 struct pt_regs *regs)
616 {
617 do_bad_area(addr, esr, regs);
618 return 0;
619 }
620
do_bad(unsigned long addr,unsigned int esr,struct pt_regs * regs)621 static int do_bad(unsigned long addr, unsigned int esr, struct pt_regs *regs)
622 {
623 return 1; /* "fault" */
624 }
625
do_sea(unsigned long addr,unsigned int esr,struct pt_regs * regs)626 static int do_sea(unsigned long addr, unsigned int esr, struct pt_regs *regs)
627 {
628 struct siginfo info;
629 const struct fault_info *inf;
630
631 inf = esr_to_fault_info(esr);
632
633 /*
634 * Synchronous aborts may interrupt code which had interrupts masked.
635 * Before calling out into the wider kernel tell the interested
636 * subsystems.
637 */
638 if (IS_ENABLED(CONFIG_ACPI_APEI_SEA)) {
639 if (interrupts_enabled(regs))
640 nmi_enter();
641
642 ghes_notify_sea();
643
644 if (interrupts_enabled(regs))
645 nmi_exit();
646 }
647
648 clear_siginfo(&info);
649 info.si_signo = inf->sig;
650 info.si_errno = 0;
651 info.si_code = inf->code;
652 if (esr & ESR_ELx_FnV)
653 info.si_addr = NULL;
654 else
655 info.si_addr = (void __user *)addr;
656 arm64_notify_die(inf->name, regs, &info, esr);
657
658 return 0;
659 }
660
661 static const struct fault_info fault_info[] = {
662 { do_bad, SIGKILL, SI_KERNEL, "ttbr address size fault" },
663 { do_bad, SIGKILL, SI_KERNEL, "level 1 address size fault" },
664 { do_bad, SIGKILL, SI_KERNEL, "level 2 address size fault" },
665 { do_bad, SIGKILL, SI_KERNEL, "level 3 address size fault" },
666 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 0 translation fault" },
667 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 1 translation fault" },
668 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 2 translation fault" },
669 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 3 translation fault" },
670 { do_bad, SIGKILL, SI_KERNEL, "unknown 8" },
671 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 access flag fault" },
672 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 access flag fault" },
673 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 access flag fault" },
674 { do_bad, SIGKILL, SI_KERNEL, "unknown 12" },
675 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 permission fault" },
676 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 permission fault" },
677 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 permission fault" },
678 { do_sea, SIGBUS, BUS_OBJERR, "synchronous external abort" },
679 { do_bad, SIGKILL, SI_KERNEL, "unknown 17" },
680 { do_bad, SIGKILL, SI_KERNEL, "unknown 18" },
681 { do_bad, SIGKILL, SI_KERNEL, "unknown 19" },
682 { do_sea, SIGKILL, SI_KERNEL, "level 0 (translation table walk)" },
683 { do_sea, SIGKILL, SI_KERNEL, "level 1 (translation table walk)" },
684 { do_sea, SIGKILL, SI_KERNEL, "level 2 (translation table walk)" },
685 { do_sea, SIGKILL, SI_KERNEL, "level 3 (translation table walk)" },
686 { do_sea, SIGBUS, BUS_OBJERR, "synchronous parity or ECC error" }, // Reserved when RAS is implemented
687 { do_bad, SIGKILL, SI_KERNEL, "unknown 25" },
688 { do_bad, SIGKILL, SI_KERNEL, "unknown 26" },
689 { do_bad, SIGKILL, SI_KERNEL, "unknown 27" },
690 { do_sea, SIGKILL, SI_KERNEL, "level 0 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
691 { do_sea, SIGKILL, SI_KERNEL, "level 1 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
692 { do_sea, SIGKILL, SI_KERNEL, "level 2 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
693 { do_sea, SIGKILL, SI_KERNEL, "level 3 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
694 { do_bad, SIGKILL, SI_KERNEL, "unknown 32" },
695 { do_alignment_fault, SIGBUS, BUS_ADRALN, "alignment fault" },
696 { do_bad, SIGKILL, SI_KERNEL, "unknown 34" },
697 { do_bad, SIGKILL, SI_KERNEL, "unknown 35" },
698 { do_bad, SIGKILL, SI_KERNEL, "unknown 36" },
699 { do_bad, SIGKILL, SI_KERNEL, "unknown 37" },
700 { do_bad, SIGKILL, SI_KERNEL, "unknown 38" },
701 { do_bad, SIGKILL, SI_KERNEL, "unknown 39" },
702 { do_bad, SIGKILL, SI_KERNEL, "unknown 40" },
703 { do_bad, SIGKILL, SI_KERNEL, "unknown 41" },
704 { do_bad, SIGKILL, SI_KERNEL, "unknown 42" },
705 { do_bad, SIGKILL, SI_KERNEL, "unknown 43" },
706 { do_bad, SIGKILL, SI_KERNEL, "unknown 44" },
707 { do_bad, SIGKILL, SI_KERNEL, "unknown 45" },
708 { do_bad, SIGKILL, SI_KERNEL, "unknown 46" },
709 { do_bad, SIGKILL, SI_KERNEL, "unknown 47" },
710 { do_bad, SIGKILL, SI_KERNEL, "TLB conflict abort" },
711 { do_bad, SIGKILL, SI_KERNEL, "Unsupported atomic hardware update fault" },
712 { do_bad, SIGKILL, SI_KERNEL, "unknown 50" },
713 { do_bad, SIGKILL, SI_KERNEL, "unknown 51" },
714 { do_bad, SIGKILL, SI_KERNEL, "implementation fault (lockdown abort)" },
715 { do_bad, SIGBUS, BUS_OBJERR, "implementation fault (unsupported exclusive)" },
716 { do_bad, SIGKILL, SI_KERNEL, "unknown 54" },
717 { do_bad, SIGKILL, SI_KERNEL, "unknown 55" },
718 { do_bad, SIGKILL, SI_KERNEL, "unknown 56" },
719 { do_bad, SIGKILL, SI_KERNEL, "unknown 57" },
720 { do_bad, SIGKILL, SI_KERNEL, "unknown 58" },
721 { do_bad, SIGKILL, SI_KERNEL, "unknown 59" },
722 { do_bad, SIGKILL, SI_KERNEL, "unknown 60" },
723 { do_bad, SIGKILL, SI_KERNEL, "section domain fault" },
724 { do_bad, SIGKILL, SI_KERNEL, "page domain fault" },
725 { do_bad, SIGKILL, SI_KERNEL, "unknown 63" },
726 };
727
handle_guest_sea(phys_addr_t addr,unsigned int esr)728 int handle_guest_sea(phys_addr_t addr, unsigned int esr)
729 {
730 return ghes_notify_sea();
731 }
732
do_mem_abort(unsigned long addr,unsigned int esr,struct pt_regs * regs)733 asmlinkage void __exception do_mem_abort(unsigned long addr, unsigned int esr,
734 struct pt_regs *regs)
735 {
736 const struct fault_info *inf = esr_to_fault_info(esr);
737 struct siginfo info;
738
739 if (!inf->fn(addr, esr, regs))
740 return;
741
742 if (!user_mode(regs)) {
743 pr_alert("Unhandled fault at 0x%016lx\n", addr);
744 mem_abort_decode(esr);
745 show_pte(addr);
746 }
747
748 clear_siginfo(&info);
749 info.si_signo = inf->sig;
750 info.si_errno = 0;
751 info.si_code = inf->code;
752 info.si_addr = (void __user *)addr;
753 arm64_notify_die(inf->name, regs, &info, esr);
754 }
755
do_el0_irq_bp_hardening(void)756 asmlinkage void __exception do_el0_irq_bp_hardening(void)
757 {
758 /* PC has already been checked in entry.S */
759 arm64_apply_bp_hardening();
760 }
761
do_el0_ia_bp_hardening(unsigned long addr,unsigned int esr,struct pt_regs * regs)762 asmlinkage void __exception do_el0_ia_bp_hardening(unsigned long addr,
763 unsigned int esr,
764 struct pt_regs *regs)
765 {
766 /*
767 * We've taken an instruction abort from userspace and not yet
768 * re-enabled IRQs. If the address is a kernel address, apply
769 * BP hardening prior to enabling IRQs and pre-emption.
770 */
771 if (addr > TASK_SIZE)
772 arm64_apply_bp_hardening();
773
774 local_irq_enable();
775 do_mem_abort(addr, esr, regs);
776 }
777
778
do_sp_pc_abort(unsigned long addr,unsigned int esr,struct pt_regs * regs)779 asmlinkage void __exception do_sp_pc_abort(unsigned long addr,
780 unsigned int esr,
781 struct pt_regs *regs)
782 {
783 struct siginfo info;
784
785 if (user_mode(regs)) {
786 if (instruction_pointer(regs) > TASK_SIZE)
787 arm64_apply_bp_hardening();
788 local_irq_enable();
789 }
790
791 clear_siginfo(&info);
792 info.si_signo = SIGBUS;
793 info.si_errno = 0;
794 info.si_code = BUS_ADRALN;
795 info.si_addr = (void __user *)addr;
796 arm64_notify_die("SP/PC alignment exception", regs, &info, esr);
797 }
798
799 int __init early_brk64(unsigned long addr, unsigned int esr,
800 struct pt_regs *regs);
801
802 /*
803 * __refdata because early_brk64 is __init, but the reference to it is
804 * clobbered at arch_initcall time.
805 * See traps.c and debug-monitors.c:debug_traps_init().
806 */
807 static struct fault_info __refdata debug_fault_info[] = {
808 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware breakpoint" },
809 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware single-step" },
810 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware watchpoint" },
811 { do_bad, SIGKILL, SI_KERNEL, "unknown 3" },
812 { do_bad, SIGTRAP, TRAP_BRKPT, "aarch32 BKPT" },
813 { do_bad, SIGKILL, SI_KERNEL, "aarch32 vector catch" },
814 { early_brk64, SIGTRAP, TRAP_BRKPT, "aarch64 BRK" },
815 { do_bad, SIGKILL, SI_KERNEL, "unknown 7" },
816 };
817
hook_debug_fault_code(int nr,int (* fn)(unsigned long,unsigned int,struct pt_regs *),int sig,int code,const char * name)818 void __init hook_debug_fault_code(int nr,
819 int (*fn)(unsigned long, unsigned int, struct pt_regs *),
820 int sig, int code, const char *name)
821 {
822 BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));
823
824 debug_fault_info[nr].fn = fn;
825 debug_fault_info[nr].sig = sig;
826 debug_fault_info[nr].code = code;
827 debug_fault_info[nr].name = name;
828 }
829
do_debug_exception(unsigned long addr,unsigned int esr,struct pt_regs * regs)830 asmlinkage int __exception do_debug_exception(unsigned long addr,
831 unsigned int esr,
832 struct pt_regs *regs)
833 {
834 const struct fault_info *inf = debug_fault_info + DBG_ESR_EVT(esr);
835 int rv;
836
837 /*
838 * Tell lockdep we disabled irqs in entry.S. Do nothing if they were
839 * already disabled to preserve the last enabled/disabled addresses.
840 */
841 if (interrupts_enabled(regs))
842 trace_hardirqs_off();
843
844 if (user_mode(regs) && instruction_pointer(regs) > TASK_SIZE)
845 arm64_apply_bp_hardening();
846
847 if (!inf->fn(addr, esr, regs)) {
848 rv = 1;
849 } else {
850 struct siginfo info;
851
852 clear_siginfo(&info);
853 info.si_signo = inf->sig;
854 info.si_errno = 0;
855 info.si_code = inf->code;
856 info.si_addr = (void __user *)addr;
857 arm64_notify_die(inf->name, regs, &info, esr);
858 rv = 0;
859 }
860
861 if (interrupts_enabled(regs))
862 trace_hardirqs_on();
863
864 return rv;
865 }
866 NOKPROBE_SYMBOL(do_debug_exception);
867
868 #ifdef CONFIG_ARM64_PAN
cpu_enable_pan(const struct arm64_cpu_capabilities * __unused)869 void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused)
870 {
871 /*
872 * We modify PSTATE. This won't work from irq context as the PSTATE
873 * is discarded once we return from the exception.
874 */
875 WARN_ON_ONCE(in_interrupt());
876
877 sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0);
878 asm(SET_PSTATE_PAN(1));
879 }
880 #endif /* CONFIG_ARM64_PAN */
881