1 /*
2 * Contains CPU feature definitions
3 *
4 * Copyright (C) 2015 ARM Ltd.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program. If not, see <http://www.gnu.org/licenses/>.
17 */
18
19 #define pr_fmt(fmt) "CPU features: " fmt
20
21 #include <linux/bsearch.h>
22 #include <linux/cpumask.h>
23 #include <linux/sort.h>
24 #include <linux/stop_machine.h>
25 #include <linux/types.h>
26 #include <linux/mm.h>
27 #include <asm/cpu.h>
28 #include <asm/cpufeature.h>
29 #include <asm/cpu_ops.h>
30 #include <asm/fpsimd.h>
31 #include <asm/mmu_context.h>
32 #include <asm/processor.h>
33 #include <asm/sysreg.h>
34 #include <asm/traps.h>
35 #include <asm/virt.h>
36
37 unsigned long elf_hwcap __read_mostly;
38 EXPORT_SYMBOL_GPL(elf_hwcap);
39
40 #ifdef CONFIG_COMPAT
41 #define COMPAT_ELF_HWCAP_DEFAULT \
42 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
43 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
44 COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
45 COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
46 COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
47 COMPAT_HWCAP_LPAE)
48 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
49 unsigned int compat_elf_hwcap2 __read_mostly;
50 #endif
51
52 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
53 EXPORT_SYMBOL(cpu_hwcaps);
54
55 /*
56 * Flag to indicate if we have computed the system wide
57 * capabilities based on the boot time active CPUs. This
58 * will be used to determine if a new booting CPU should
59 * go through the verification process to make sure that it
60 * supports the system capabilities, without using a hotplug
61 * notifier.
62 */
63 static bool sys_caps_initialised;
64
set_sys_caps_initialised(void)65 static inline void set_sys_caps_initialised(void)
66 {
67 sys_caps_initialised = true;
68 }
69
dump_cpu_hwcaps(struct notifier_block * self,unsigned long v,void * p)70 static int dump_cpu_hwcaps(struct notifier_block *self, unsigned long v, void *p)
71 {
72 /* file-wide pr_fmt adds "CPU features: " prefix */
73 pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps);
74 return 0;
75 }
76
77 static struct notifier_block cpu_hwcaps_notifier = {
78 .notifier_call = dump_cpu_hwcaps
79 };
80
register_cpu_hwcaps_dumper(void)81 static int __init register_cpu_hwcaps_dumper(void)
82 {
83 atomic_notifier_chain_register(&panic_notifier_list,
84 &cpu_hwcaps_notifier);
85 return 0;
86 }
87 __initcall(register_cpu_hwcaps_dumper);
88
89 DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
90 EXPORT_SYMBOL(cpu_hwcap_keys);
91
92 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
93 { \
94 .sign = SIGNED, \
95 .visible = VISIBLE, \
96 .strict = STRICT, \
97 .type = TYPE, \
98 .shift = SHIFT, \
99 .width = WIDTH, \
100 .safe_val = SAFE_VAL, \
101 }
102
103 /* Define a feature with unsigned values */
104 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
105 __ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
106
107 /* Define a feature with a signed value */
108 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
109 __ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
110
111 #define ARM64_FTR_END \
112 { \
113 .width = 0, \
114 }
115
116 /* meta feature for alternatives */
117 static bool __maybe_unused
118 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused);
119
120
121 /*
122 * NOTE: Any changes to the visibility of features should be kept in
123 * sync with the documentation of the CPU feature register ABI.
124 */
125 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
126 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_TS_SHIFT, 4, 0),
127 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_FHM_SHIFT, 4, 0),
128 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_DP_SHIFT, 4, 0),
129 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM4_SHIFT, 4, 0),
130 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM3_SHIFT, 4, 0),
131 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA3_SHIFT, 4, 0),
132 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
133 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
134 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
135 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
136 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
137 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
138 ARM64_FTR_END,
139 };
140
141 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
142 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_LRCPC_SHIFT, 4, 0),
143 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FCMA_SHIFT, 4, 0),
144 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_JSCVT_SHIFT, 4, 0),
145 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DPB_SHIFT, 4, 0),
146 ARM64_FTR_END,
147 };
148
149 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
150 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV3_SHIFT, 4, 0),
151 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV2_SHIFT, 4, 0),
152 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_DIT_SHIFT, 4, 0),
153 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
154 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SVE_SHIFT, 4, 0),
155 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_RAS_SHIFT, 4, 0),
156 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_GIC_SHIFT, 4, 0),
157 S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
158 S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
159 /* Linux doesn't care about the EL3 */
160 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL3_SHIFT, 4, 0),
161 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL2_SHIFT, 4, 0),
162 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
163 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
164 ARM64_FTR_END,
165 };
166
167 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
168 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
169 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
170 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
171 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
172 /* Linux shouldn't care about secure memory */
173 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
174 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
175 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
176 /*
177 * Differing PARange is fine as long as all peripherals and memory are mapped
178 * within the minimum PARange of all CPUs
179 */
180 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
181 ARM64_FTR_END,
182 };
183
184 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
185 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
186 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
187 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
188 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
189 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
190 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
191 ARM64_FTR_END,
192 };
193
194 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
195 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_FWB_SHIFT, 4, 0),
196 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_AT_SHIFT, 4, 0),
197 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
198 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
199 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
200 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
201 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
202 ARM64_FTR_END,
203 };
204
205 static const struct arm64_ftr_bits ftr_ctr[] = {
206 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */
207 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DIC_SHIFT, 1, 1),
208 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IDC_SHIFT, 1, 1),
209 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_SAFE, CTR_CWG_SHIFT, 4, 0),
210 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_SAFE, CTR_ERG_SHIFT, 4, 0),
211 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DMINLINE_SHIFT, 4, 1),
212 /*
213 * Linux can handle differing I-cache policies. Userspace JITs will
214 * make use of *minLine.
215 * If we have differing I-cache policies, report it as the weakest - VIPT.
216 */
217 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, 14, 2, ICACHE_POLICY_VIPT), /* L1Ip */
218 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IMINLINE_SHIFT, 4, 0),
219 ARM64_FTR_END,
220 };
221
222 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
223 .name = "SYS_CTR_EL0",
224 .ftr_bits = ftr_ctr
225 };
226
227 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
228 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0xf), /* InnerShr */
229 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0), /* FCSE */
230 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0), /* AuxReg */
231 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0), /* TCM */
232 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0), /* ShareLvl */
233 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0xf), /* OuterShr */
234 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0), /* PMSA */
235 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* VMSA */
236 ARM64_FTR_END,
237 };
238
239 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
240 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 36, 28, 0),
241 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0),
242 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
243 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
244 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
245 /*
246 * We can instantiate multiple PMU instances with different levels
247 * of support.
248 */
249 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
250 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
251 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
252 ARM64_FTR_END,
253 };
254
255 static const struct arm64_ftr_bits ftr_mvfr2[] = {
256 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0), /* FPMisc */
257 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* SIMDMisc */
258 ARM64_FTR_END,
259 };
260
261 static const struct arm64_ftr_bits ftr_dczid[] = {
262 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 4, 1, 1), /* DZP */
263 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* BS */
264 ARM64_FTR_END,
265 };
266
267
268 static const struct arm64_ftr_bits ftr_id_isar5[] = {
269 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_RDM_SHIFT, 4, 0),
270 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_CRC32_SHIFT, 4, 0),
271 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA2_SHIFT, 4, 0),
272 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA1_SHIFT, 4, 0),
273 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_AES_SHIFT, 4, 0),
274 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SEVL_SHIFT, 4, 0),
275 ARM64_FTR_END,
276 };
277
278 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
279 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0), /* ac2 */
280 ARM64_FTR_END,
281 };
282
283 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
284 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0), /* State3 */
285 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0), /* State2 */
286 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0), /* State1 */
287 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* State0 */
288 ARM64_FTR_END,
289 };
290
291 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
292 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
293 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf), /* PerfMon */
294 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
295 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
296 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
297 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
298 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
299 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
300 ARM64_FTR_END,
301 };
302
303 static const struct arm64_ftr_bits ftr_zcr[] = {
304 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE,
305 ZCR_ELx_LEN_SHIFT, ZCR_ELx_LEN_SIZE, 0), /* LEN */
306 ARM64_FTR_END,
307 };
308
309 /*
310 * Common ftr bits for a 32bit register with all hidden, strict
311 * attributes, with 4bit feature fields and a default safe value of
312 * 0. Covers the following 32bit registers:
313 * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
314 */
315 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
316 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
317 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
318 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
319 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
320 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
321 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
322 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
323 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
324 ARM64_FTR_END,
325 };
326
327 /* Table for a single 32bit feature value */
328 static const struct arm64_ftr_bits ftr_single32[] = {
329 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
330 ARM64_FTR_END,
331 };
332
333 static const struct arm64_ftr_bits ftr_raz[] = {
334 ARM64_FTR_END,
335 };
336
337 #define ARM64_FTR_REG(id, table) { \
338 .sys_id = id, \
339 .reg = &(struct arm64_ftr_reg){ \
340 .name = #id, \
341 .ftr_bits = &((table)[0]), \
342 }}
343
344 static const struct __ftr_reg_entry {
345 u32 sys_id;
346 struct arm64_ftr_reg *reg;
347 } arm64_ftr_regs[] = {
348
349 /* Op1 = 0, CRn = 0, CRm = 1 */
350 ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
351 ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
352 ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
353 ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
354 ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
355 ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
356 ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
357
358 /* Op1 = 0, CRn = 0, CRm = 2 */
359 ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
360 ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
361 ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
362 ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
363 ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
364 ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
365 ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
366
367 /* Op1 = 0, CRn = 0, CRm = 3 */
368 ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
369 ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
370 ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
371
372 /* Op1 = 0, CRn = 0, CRm = 4 */
373 ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
374 ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_raz),
375 ARM64_FTR_REG(SYS_ID_AA64ZFR0_EL1, ftr_raz),
376
377 /* Op1 = 0, CRn = 0, CRm = 5 */
378 ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
379 ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
380
381 /* Op1 = 0, CRn = 0, CRm = 6 */
382 ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
383 ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1),
384
385 /* Op1 = 0, CRn = 0, CRm = 7 */
386 ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
387 ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
388 ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
389
390 /* Op1 = 0, CRn = 1, CRm = 2 */
391 ARM64_FTR_REG(SYS_ZCR_EL1, ftr_zcr),
392
393 /* Op1 = 3, CRn = 0, CRm = 0 */
394 { SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
395 ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
396
397 /* Op1 = 3, CRn = 14, CRm = 0 */
398 ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
399 };
400
search_cmp_ftr_reg(const void * id,const void * regp)401 static int search_cmp_ftr_reg(const void *id, const void *regp)
402 {
403 return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
404 }
405
406 /*
407 * get_arm64_ftr_reg - Lookup a feature register entry using its
408 * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
409 * ascending order of sys_id , we use binary search to find a matching
410 * entry.
411 *
412 * returns - Upon success, matching ftr_reg entry for id.
413 * - NULL on failure. It is upto the caller to decide
414 * the impact of a failure.
415 */
get_arm64_ftr_reg(u32 sys_id)416 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
417 {
418 const struct __ftr_reg_entry *ret;
419
420 ret = bsearch((const void *)(unsigned long)sys_id,
421 arm64_ftr_regs,
422 ARRAY_SIZE(arm64_ftr_regs),
423 sizeof(arm64_ftr_regs[0]),
424 search_cmp_ftr_reg);
425 if (ret)
426 return ret->reg;
427 return NULL;
428 }
429
arm64_ftr_set_value(const struct arm64_ftr_bits * ftrp,s64 reg,s64 ftr_val)430 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
431 s64 ftr_val)
432 {
433 u64 mask = arm64_ftr_mask(ftrp);
434
435 reg &= ~mask;
436 reg |= (ftr_val << ftrp->shift) & mask;
437 return reg;
438 }
439
arm64_ftr_safe_value(const struct arm64_ftr_bits * ftrp,s64 new,s64 cur)440 static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
441 s64 cur)
442 {
443 s64 ret = 0;
444
445 switch (ftrp->type) {
446 case FTR_EXACT:
447 ret = ftrp->safe_val;
448 break;
449 case FTR_LOWER_SAFE:
450 ret = new < cur ? new : cur;
451 break;
452 case FTR_HIGHER_SAFE:
453 ret = new > cur ? new : cur;
454 break;
455 default:
456 BUG();
457 }
458
459 return ret;
460 }
461
sort_ftr_regs(void)462 static void __init sort_ftr_regs(void)
463 {
464 int i;
465
466 /* Check that the array is sorted so that we can do the binary search */
467 for (i = 1; i < ARRAY_SIZE(arm64_ftr_regs); i++)
468 BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
469 }
470
471 /*
472 * Initialise the CPU feature register from Boot CPU values.
473 * Also initiliases the strict_mask for the register.
474 * Any bits that are not covered by an arm64_ftr_bits entry are considered
475 * RES0 for the system-wide value, and must strictly match.
476 */
init_cpu_ftr_reg(u32 sys_reg,u64 new)477 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
478 {
479 u64 val = 0;
480 u64 strict_mask = ~0x0ULL;
481 u64 user_mask = 0;
482 u64 valid_mask = 0;
483
484 const struct arm64_ftr_bits *ftrp;
485 struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
486
487 BUG_ON(!reg);
488
489 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
490 u64 ftr_mask = arm64_ftr_mask(ftrp);
491 s64 ftr_new = arm64_ftr_value(ftrp, new);
492
493 val = arm64_ftr_set_value(ftrp, val, ftr_new);
494
495 valid_mask |= ftr_mask;
496 if (!ftrp->strict)
497 strict_mask &= ~ftr_mask;
498 if (ftrp->visible)
499 user_mask |= ftr_mask;
500 else
501 reg->user_val = arm64_ftr_set_value(ftrp,
502 reg->user_val,
503 ftrp->safe_val);
504 }
505
506 val &= valid_mask;
507
508 reg->sys_val = val;
509 reg->strict_mask = strict_mask;
510 reg->user_mask = user_mask;
511 }
512
513 extern const struct arm64_cpu_capabilities arm64_errata[];
514 static void __init setup_boot_cpu_capabilities(void);
515
init_cpu_features(struct cpuinfo_arm64 * info)516 void __init init_cpu_features(struct cpuinfo_arm64 *info)
517 {
518 /* Before we start using the tables, make sure it is sorted */
519 sort_ftr_regs();
520
521 init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
522 init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
523 init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
524 init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
525 init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
526 init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
527 init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
528 init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
529 init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
530 init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
531 init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
532 init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
533 init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
534
535 if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
536 init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
537 init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
538 init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
539 init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
540 init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
541 init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
542 init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
543 init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
544 init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
545 init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
546 init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
547 init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
548 init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
549 init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
550 init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
551 init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
552 }
553
554 if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
555 init_cpu_ftr_reg(SYS_ZCR_EL1, info->reg_zcr);
556 sve_init_vq_map();
557 }
558
559 /*
560 * Detect and enable early CPU capabilities based on the boot CPU,
561 * after we have initialised the CPU feature infrastructure.
562 */
563 setup_boot_cpu_capabilities();
564 }
565
update_cpu_ftr_reg(struct arm64_ftr_reg * reg,u64 new)566 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
567 {
568 const struct arm64_ftr_bits *ftrp;
569
570 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
571 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
572 s64 ftr_new = arm64_ftr_value(ftrp, new);
573
574 if (ftr_cur == ftr_new)
575 continue;
576 /* Find a safe value */
577 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
578 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
579 }
580
581 }
582
check_update_ftr_reg(u32 sys_id,int cpu,u64 val,u64 boot)583 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
584 {
585 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
586
587 BUG_ON(!regp);
588 update_cpu_ftr_reg(regp, val);
589 if ((boot & regp->strict_mask) == (val & regp->strict_mask))
590 return 0;
591 pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
592 regp->name, boot, cpu, val);
593 return 1;
594 }
595
596 /*
597 * Update system wide CPU feature registers with the values from a
598 * non-boot CPU. Also performs SANITY checks to make sure that there
599 * aren't any insane variations from that of the boot CPU.
600 */
update_cpu_features(int cpu,struct cpuinfo_arm64 * info,struct cpuinfo_arm64 * boot)601 void update_cpu_features(int cpu,
602 struct cpuinfo_arm64 *info,
603 struct cpuinfo_arm64 *boot)
604 {
605 int taint = 0;
606
607 /*
608 * The kernel can handle differing I-cache policies, but otherwise
609 * caches should look identical. Userspace JITs will make use of
610 * *minLine.
611 */
612 taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
613 info->reg_ctr, boot->reg_ctr);
614
615 /*
616 * Userspace may perform DC ZVA instructions. Mismatched block sizes
617 * could result in too much or too little memory being zeroed if a
618 * process is preempted and migrated between CPUs.
619 */
620 taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
621 info->reg_dczid, boot->reg_dczid);
622
623 /* If different, timekeeping will be broken (especially with KVM) */
624 taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
625 info->reg_cntfrq, boot->reg_cntfrq);
626
627 /*
628 * The kernel uses self-hosted debug features and expects CPUs to
629 * support identical debug features. We presently need CTX_CMPs, WRPs,
630 * and BRPs to be identical.
631 * ID_AA64DFR1 is currently RES0.
632 */
633 taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
634 info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
635 taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
636 info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
637 /*
638 * Even in big.LITTLE, processors should be identical instruction-set
639 * wise.
640 */
641 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
642 info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
643 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
644 info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
645
646 /*
647 * Differing PARange support is fine as long as all peripherals and
648 * memory are mapped within the minimum PARange of all CPUs.
649 * Linux should not care about secure memory.
650 */
651 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
652 info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
653 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
654 info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
655 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
656 info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
657
658 /*
659 * EL3 is not our concern.
660 * ID_AA64PFR1 is currently RES0.
661 */
662 taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
663 info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
664 taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
665 info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
666
667 taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
668 info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
669
670 /*
671 * If we have AArch32, we care about 32-bit features for compat.
672 * If the system doesn't support AArch32, don't update them.
673 */
674 if (id_aa64pfr0_32bit_el0(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
675 id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
676
677 taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
678 info->reg_id_dfr0, boot->reg_id_dfr0);
679 taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
680 info->reg_id_isar0, boot->reg_id_isar0);
681 taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
682 info->reg_id_isar1, boot->reg_id_isar1);
683 taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
684 info->reg_id_isar2, boot->reg_id_isar2);
685 taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
686 info->reg_id_isar3, boot->reg_id_isar3);
687 taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
688 info->reg_id_isar4, boot->reg_id_isar4);
689 taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
690 info->reg_id_isar5, boot->reg_id_isar5);
691
692 /*
693 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
694 * ACTLR formats could differ across CPUs and therefore would have to
695 * be trapped for virtualization anyway.
696 */
697 taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
698 info->reg_id_mmfr0, boot->reg_id_mmfr0);
699 taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
700 info->reg_id_mmfr1, boot->reg_id_mmfr1);
701 taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
702 info->reg_id_mmfr2, boot->reg_id_mmfr2);
703 taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
704 info->reg_id_mmfr3, boot->reg_id_mmfr3);
705 taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
706 info->reg_id_pfr0, boot->reg_id_pfr0);
707 taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
708 info->reg_id_pfr1, boot->reg_id_pfr1);
709 taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
710 info->reg_mvfr0, boot->reg_mvfr0);
711 taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
712 info->reg_mvfr1, boot->reg_mvfr1);
713 taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
714 info->reg_mvfr2, boot->reg_mvfr2);
715 }
716
717 if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
718 taint |= check_update_ftr_reg(SYS_ZCR_EL1, cpu,
719 info->reg_zcr, boot->reg_zcr);
720
721 /* Probe vector lengths, unless we already gave up on SVE */
722 if (id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
723 !sys_caps_initialised)
724 sve_update_vq_map();
725 }
726
727 /*
728 * Mismatched CPU features are a recipe for disaster. Don't even
729 * pretend to support them.
730 */
731 if (taint) {
732 pr_warn_once("Unsupported CPU feature variation detected.\n");
733 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
734 }
735 }
736
read_sanitised_ftr_reg(u32 id)737 u64 read_sanitised_ftr_reg(u32 id)
738 {
739 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
740
741 /* We shouldn't get a request for an unsupported register */
742 BUG_ON(!regp);
743 return regp->sys_val;
744 }
745
746 #define read_sysreg_case(r) \
747 case r: return read_sysreg_s(r)
748
749 /*
750 * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
751 * Read the system register on the current CPU
752 */
__read_sysreg_by_encoding(u32 sys_id)753 static u64 __read_sysreg_by_encoding(u32 sys_id)
754 {
755 switch (sys_id) {
756 read_sysreg_case(SYS_ID_PFR0_EL1);
757 read_sysreg_case(SYS_ID_PFR1_EL1);
758 read_sysreg_case(SYS_ID_DFR0_EL1);
759 read_sysreg_case(SYS_ID_MMFR0_EL1);
760 read_sysreg_case(SYS_ID_MMFR1_EL1);
761 read_sysreg_case(SYS_ID_MMFR2_EL1);
762 read_sysreg_case(SYS_ID_MMFR3_EL1);
763 read_sysreg_case(SYS_ID_ISAR0_EL1);
764 read_sysreg_case(SYS_ID_ISAR1_EL1);
765 read_sysreg_case(SYS_ID_ISAR2_EL1);
766 read_sysreg_case(SYS_ID_ISAR3_EL1);
767 read_sysreg_case(SYS_ID_ISAR4_EL1);
768 read_sysreg_case(SYS_ID_ISAR5_EL1);
769 read_sysreg_case(SYS_MVFR0_EL1);
770 read_sysreg_case(SYS_MVFR1_EL1);
771 read_sysreg_case(SYS_MVFR2_EL1);
772
773 read_sysreg_case(SYS_ID_AA64PFR0_EL1);
774 read_sysreg_case(SYS_ID_AA64PFR1_EL1);
775 read_sysreg_case(SYS_ID_AA64DFR0_EL1);
776 read_sysreg_case(SYS_ID_AA64DFR1_EL1);
777 read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
778 read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
779 read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
780 read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
781 read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
782
783 read_sysreg_case(SYS_CNTFRQ_EL0);
784 read_sysreg_case(SYS_CTR_EL0);
785 read_sysreg_case(SYS_DCZID_EL0);
786
787 default:
788 BUG();
789 return 0;
790 }
791 }
792
793 #include <linux/irqchip/arm-gic-v3.h>
794
795 static bool
feature_matches(u64 reg,const struct arm64_cpu_capabilities * entry)796 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
797 {
798 int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
799
800 return val >= entry->min_field_value;
801 }
802
803 static bool
has_cpuid_feature(const struct arm64_cpu_capabilities * entry,int scope)804 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
805 {
806 u64 val;
807
808 WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
809 if (scope == SCOPE_SYSTEM)
810 val = read_sanitised_ftr_reg(entry->sys_reg);
811 else
812 val = __read_sysreg_by_encoding(entry->sys_reg);
813
814 return feature_matches(val, entry);
815 }
816
has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities * entry,int scope)817 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
818 {
819 bool has_sre;
820
821 if (!has_cpuid_feature(entry, scope))
822 return false;
823
824 has_sre = gic_enable_sre();
825 if (!has_sre)
826 pr_warn_once("%s present but disabled by higher exception level\n",
827 entry->desc);
828
829 return has_sre;
830 }
831
has_no_hw_prefetch(const struct arm64_cpu_capabilities * entry,int __unused)832 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
833 {
834 u32 midr = read_cpuid_id();
835
836 /* Cavium ThunderX pass 1.x and 2.x */
837 return MIDR_IS_CPU_MODEL_RANGE(midr, MIDR_THUNDERX,
838 MIDR_CPU_VAR_REV(0, 0),
839 MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
840 }
841
has_no_fpsimd(const struct arm64_cpu_capabilities * entry,int __unused)842 static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
843 {
844 u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
845
846 return cpuid_feature_extract_signed_field(pfr0,
847 ID_AA64PFR0_FP_SHIFT) < 0;
848 }
849
has_cache_idc(const struct arm64_cpu_capabilities * entry,int __unused)850 static bool has_cache_idc(const struct arm64_cpu_capabilities *entry,
851 int __unused)
852 {
853 return read_sanitised_ftr_reg(SYS_CTR_EL0) & BIT(CTR_IDC_SHIFT);
854 }
855
has_cache_dic(const struct arm64_cpu_capabilities * entry,int __unused)856 static bool has_cache_dic(const struct arm64_cpu_capabilities *entry,
857 int __unused)
858 {
859 return read_sanitised_ftr_reg(SYS_CTR_EL0) & BIT(CTR_DIC_SHIFT);
860 }
861
862 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
863 static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
864
unmap_kernel_at_el0(const struct arm64_cpu_capabilities * entry,int scope)865 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
866 int scope)
867 {
868 /* List of CPUs that are not vulnerable and don't need KPTI */
869 static const struct midr_range kpti_safe_list[] = {
870 MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
871 MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
872 { /* sentinel */ }
873 };
874 char const *str = "command line option";
875
876 /*
877 * For reasons that aren't entirely clear, enabling KPTI on Cavium
878 * ThunderX leads to apparent I-cache corruption of kernel text, which
879 * ends as well as you might imagine. Don't even try.
880 */
881 if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
882 str = "ARM64_WORKAROUND_CAVIUM_27456";
883 __kpti_forced = -1;
884 }
885
886 /* Forced? */
887 if (__kpti_forced) {
888 pr_info_once("kernel page table isolation forced %s by %s\n",
889 __kpti_forced > 0 ? "ON" : "OFF", str);
890 return __kpti_forced > 0;
891 }
892
893 /* Useful for KASLR robustness */
894 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
895 return true;
896
897 /* Don't force KPTI for CPUs that are not vulnerable */
898 if (is_midr_in_range_list(read_cpuid_id(), kpti_safe_list))
899 return false;
900
901 /* Defer to CPU feature registers */
902 return !has_cpuid_feature(entry, scope);
903 }
904
905 static void
kpti_install_ng_mappings(const struct arm64_cpu_capabilities * __unused)906 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
907 {
908 typedef void (kpti_remap_fn)(int, int, phys_addr_t);
909 extern kpti_remap_fn idmap_kpti_install_ng_mappings;
910 kpti_remap_fn *remap_fn;
911
912 static bool kpti_applied = false;
913 int cpu = smp_processor_id();
914
915 if (kpti_applied)
916 return;
917
918 remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings);
919
920 cpu_install_idmap();
921 remap_fn(cpu, num_online_cpus(), __pa_symbol(swapper_pg_dir));
922 cpu_uninstall_idmap();
923
924 if (!cpu)
925 kpti_applied = true;
926
927 return;
928 }
929
parse_kpti(char * str)930 static int __init parse_kpti(char *str)
931 {
932 bool enabled;
933 int ret = strtobool(str, &enabled);
934
935 if (ret)
936 return ret;
937
938 __kpti_forced = enabled ? 1 : -1;
939 return 0;
940 }
941 early_param("kpti", parse_kpti);
942 #endif /* CONFIG_UNMAP_KERNEL_AT_EL0 */
943
944 #ifdef CONFIG_ARM64_HW_AFDBM
__cpu_enable_hw_dbm(void)945 static inline void __cpu_enable_hw_dbm(void)
946 {
947 u64 tcr = read_sysreg(tcr_el1) | TCR_HD;
948
949 write_sysreg(tcr, tcr_el1);
950 isb();
951 }
952
cpu_has_broken_dbm(void)953 static bool cpu_has_broken_dbm(void)
954 {
955 /* List of CPUs which have broken DBM support. */
956 static const struct midr_range cpus[] = {
957 #ifdef CONFIG_ARM64_ERRATUM_1024718
958 MIDR_RANGE(MIDR_CORTEX_A55, 0, 0, 1, 0), // A55 r0p0 -r1p0
959 #endif
960 {},
961 };
962
963 return is_midr_in_range_list(read_cpuid_id(), cpus);
964 }
965
cpu_can_use_dbm(const struct arm64_cpu_capabilities * cap)966 static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap)
967 {
968 return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) &&
969 !cpu_has_broken_dbm();
970 }
971
cpu_enable_hw_dbm(struct arm64_cpu_capabilities const * cap)972 static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap)
973 {
974 if (cpu_can_use_dbm(cap))
975 __cpu_enable_hw_dbm();
976 }
977
has_hw_dbm(const struct arm64_cpu_capabilities * cap,int __unused)978 static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap,
979 int __unused)
980 {
981 static bool detected = false;
982 /*
983 * DBM is a non-conflicting feature. i.e, the kernel can safely
984 * run a mix of CPUs with and without the feature. So, we
985 * unconditionally enable the capability to allow any late CPU
986 * to use the feature. We only enable the control bits on the
987 * CPU, if it actually supports.
988 *
989 * We have to make sure we print the "feature" detection only
990 * when at least one CPU actually uses it. So check if this CPU
991 * can actually use it and print the message exactly once.
992 *
993 * This is safe as all CPUs (including secondary CPUs - due to the
994 * LOCAL_CPU scope - and the hotplugged CPUs - via verification)
995 * goes through the "matches" check exactly once. Also if a CPU
996 * matches the criteria, it is guaranteed that the CPU will turn
997 * the DBM on, as the capability is unconditionally enabled.
998 */
999 if (!detected && cpu_can_use_dbm(cap)) {
1000 detected = true;
1001 pr_info("detected: Hardware dirty bit management\n");
1002 }
1003
1004 return true;
1005 }
1006
1007 #endif
1008
1009 #ifdef CONFIG_ARM64_VHE
runs_at_el2(const struct arm64_cpu_capabilities * entry,int __unused)1010 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
1011 {
1012 return is_kernel_in_hyp_mode();
1013 }
1014
cpu_copy_el2regs(const struct arm64_cpu_capabilities * __unused)1015 static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused)
1016 {
1017 /*
1018 * Copy register values that aren't redirected by hardware.
1019 *
1020 * Before code patching, we only set tpidr_el1, all CPUs need to copy
1021 * this value to tpidr_el2 before we patch the code. Once we've done
1022 * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
1023 * do anything here.
1024 */
1025 if (!alternatives_applied)
1026 write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
1027 }
1028 #endif
1029
cpu_has_fwb(const struct arm64_cpu_capabilities * __unused)1030 static void cpu_has_fwb(const struct arm64_cpu_capabilities *__unused)
1031 {
1032 u64 val = read_sysreg_s(SYS_CLIDR_EL1);
1033
1034 /* Check that CLIDR_EL1.LOU{U,IS} are both 0 */
1035 WARN_ON(val & (7 << 27 | 7 << 21));
1036 }
1037
1038 static const struct arm64_cpu_capabilities arm64_features[] = {
1039 {
1040 .desc = "GIC system register CPU interface",
1041 .capability = ARM64_HAS_SYSREG_GIC_CPUIF,
1042 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1043 .matches = has_useable_gicv3_cpuif,
1044 .sys_reg = SYS_ID_AA64PFR0_EL1,
1045 .field_pos = ID_AA64PFR0_GIC_SHIFT,
1046 .sign = FTR_UNSIGNED,
1047 .min_field_value = 1,
1048 },
1049 #ifdef CONFIG_ARM64_PAN
1050 {
1051 .desc = "Privileged Access Never",
1052 .capability = ARM64_HAS_PAN,
1053 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1054 .matches = has_cpuid_feature,
1055 .sys_reg = SYS_ID_AA64MMFR1_EL1,
1056 .field_pos = ID_AA64MMFR1_PAN_SHIFT,
1057 .sign = FTR_UNSIGNED,
1058 .min_field_value = 1,
1059 .cpu_enable = cpu_enable_pan,
1060 },
1061 #endif /* CONFIG_ARM64_PAN */
1062 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
1063 {
1064 .desc = "LSE atomic instructions",
1065 .capability = ARM64_HAS_LSE_ATOMICS,
1066 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1067 .matches = has_cpuid_feature,
1068 .sys_reg = SYS_ID_AA64ISAR0_EL1,
1069 .field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
1070 .sign = FTR_UNSIGNED,
1071 .min_field_value = 2,
1072 },
1073 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
1074 {
1075 .desc = "Software prefetching using PRFM",
1076 .capability = ARM64_HAS_NO_HW_PREFETCH,
1077 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1078 .matches = has_no_hw_prefetch,
1079 },
1080 #ifdef CONFIG_ARM64_UAO
1081 {
1082 .desc = "User Access Override",
1083 .capability = ARM64_HAS_UAO,
1084 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1085 .matches = has_cpuid_feature,
1086 .sys_reg = SYS_ID_AA64MMFR2_EL1,
1087 .field_pos = ID_AA64MMFR2_UAO_SHIFT,
1088 .min_field_value = 1,
1089 /*
1090 * We rely on stop_machine() calling uao_thread_switch() to set
1091 * UAO immediately after patching.
1092 */
1093 },
1094 #endif /* CONFIG_ARM64_UAO */
1095 #ifdef CONFIG_ARM64_PAN
1096 {
1097 .capability = ARM64_ALT_PAN_NOT_UAO,
1098 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1099 .matches = cpufeature_pan_not_uao,
1100 },
1101 #endif /* CONFIG_ARM64_PAN */
1102 #ifdef CONFIG_ARM64_VHE
1103 {
1104 .desc = "Virtualization Host Extensions",
1105 .capability = ARM64_HAS_VIRT_HOST_EXTN,
1106 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
1107 .matches = runs_at_el2,
1108 .cpu_enable = cpu_copy_el2regs,
1109 },
1110 #endif /* CONFIG_ARM64_VHE */
1111 {
1112 .desc = "32-bit EL0 Support",
1113 .capability = ARM64_HAS_32BIT_EL0,
1114 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1115 .matches = has_cpuid_feature,
1116 .sys_reg = SYS_ID_AA64PFR0_EL1,
1117 .sign = FTR_UNSIGNED,
1118 .field_pos = ID_AA64PFR0_EL0_SHIFT,
1119 .min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
1120 },
1121 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
1122 {
1123 .desc = "Kernel page table isolation (KPTI)",
1124 .capability = ARM64_UNMAP_KERNEL_AT_EL0,
1125 .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
1126 /*
1127 * The ID feature fields below are used to indicate that
1128 * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
1129 * more details.
1130 */
1131 .sys_reg = SYS_ID_AA64PFR0_EL1,
1132 .field_pos = ID_AA64PFR0_CSV3_SHIFT,
1133 .min_field_value = 1,
1134 .matches = unmap_kernel_at_el0,
1135 .cpu_enable = kpti_install_ng_mappings,
1136 },
1137 #endif
1138 {
1139 /* FP/SIMD is not implemented */
1140 .capability = ARM64_HAS_NO_FPSIMD,
1141 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1142 .min_field_value = 0,
1143 .matches = has_no_fpsimd,
1144 },
1145 #ifdef CONFIG_ARM64_PMEM
1146 {
1147 .desc = "Data cache clean to Point of Persistence",
1148 .capability = ARM64_HAS_DCPOP,
1149 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1150 .matches = has_cpuid_feature,
1151 .sys_reg = SYS_ID_AA64ISAR1_EL1,
1152 .field_pos = ID_AA64ISAR1_DPB_SHIFT,
1153 .min_field_value = 1,
1154 },
1155 #endif
1156 #ifdef CONFIG_ARM64_SVE
1157 {
1158 .desc = "Scalable Vector Extension",
1159 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1160 .capability = ARM64_SVE,
1161 .sys_reg = SYS_ID_AA64PFR0_EL1,
1162 .sign = FTR_UNSIGNED,
1163 .field_pos = ID_AA64PFR0_SVE_SHIFT,
1164 .min_field_value = ID_AA64PFR0_SVE,
1165 .matches = has_cpuid_feature,
1166 .cpu_enable = sve_kernel_enable,
1167 },
1168 #endif /* CONFIG_ARM64_SVE */
1169 #ifdef CONFIG_ARM64_RAS_EXTN
1170 {
1171 .desc = "RAS Extension Support",
1172 .capability = ARM64_HAS_RAS_EXTN,
1173 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1174 .matches = has_cpuid_feature,
1175 .sys_reg = SYS_ID_AA64PFR0_EL1,
1176 .sign = FTR_UNSIGNED,
1177 .field_pos = ID_AA64PFR0_RAS_SHIFT,
1178 .min_field_value = ID_AA64PFR0_RAS_V1,
1179 .cpu_enable = cpu_clear_disr,
1180 },
1181 #endif /* CONFIG_ARM64_RAS_EXTN */
1182 {
1183 .desc = "Data cache clean to the PoU not required for I/D coherence",
1184 .capability = ARM64_HAS_CACHE_IDC,
1185 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1186 .matches = has_cache_idc,
1187 },
1188 {
1189 .desc = "Instruction cache invalidation not required for I/D coherence",
1190 .capability = ARM64_HAS_CACHE_DIC,
1191 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1192 .matches = has_cache_dic,
1193 },
1194 {
1195 .desc = "Stage-2 Force Write-Back",
1196 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1197 .capability = ARM64_HAS_STAGE2_FWB,
1198 .sys_reg = SYS_ID_AA64MMFR2_EL1,
1199 .sign = FTR_UNSIGNED,
1200 .field_pos = ID_AA64MMFR2_FWB_SHIFT,
1201 .min_field_value = 1,
1202 .matches = has_cpuid_feature,
1203 .cpu_enable = cpu_has_fwb,
1204 },
1205 #ifdef CONFIG_ARM64_HW_AFDBM
1206 {
1207 /*
1208 * Since we turn this on always, we don't want the user to
1209 * think that the feature is available when it may not be.
1210 * So hide the description.
1211 *
1212 * .desc = "Hardware pagetable Dirty Bit Management",
1213 *
1214 */
1215 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1216 .capability = ARM64_HW_DBM,
1217 .sys_reg = SYS_ID_AA64MMFR1_EL1,
1218 .sign = FTR_UNSIGNED,
1219 .field_pos = ID_AA64MMFR1_HADBS_SHIFT,
1220 .min_field_value = 2,
1221 .matches = has_hw_dbm,
1222 .cpu_enable = cpu_enable_hw_dbm,
1223 },
1224 #endif
1225 {},
1226 };
1227
1228 #define HWCAP_CAP(reg, field, s, min_value, cap_type, cap) \
1229 { \
1230 .desc = #cap, \
1231 .type = ARM64_CPUCAP_SYSTEM_FEATURE, \
1232 .matches = has_cpuid_feature, \
1233 .sys_reg = reg, \
1234 .field_pos = field, \
1235 .sign = s, \
1236 .min_field_value = min_value, \
1237 .hwcap_type = cap_type, \
1238 .hwcap = cap, \
1239 }
1240
1241 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
1242 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_PMULL),
1243 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_AES),
1244 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA1),
1245 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA2),
1246 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_SHA512),
1247 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_CRC32),
1248 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ATOMICS),
1249 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RDM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDRDM),
1250 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA3),
1251 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SM3),
1252 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM4_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SM4),
1253 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_DP_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDDP),
1254 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_FHM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDFHM),
1255 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_FLAGM),
1256 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_FP),
1257 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_FPHP),
1258 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_ASIMD),
1259 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_ASIMDHP),
1260 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_DIT_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_DIT),
1261 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_DCPOP),
1262 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_JSCVT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_JSCVT),
1263 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FCMA_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_FCMA),
1264 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_LRCPC),
1265 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ILRCPC),
1266 HWCAP_CAP(SYS_ID_AA64MMFR2_EL1, ID_AA64MMFR2_AT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_USCAT),
1267 #ifdef CONFIG_ARM64_SVE
1268 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_SVE_SHIFT, FTR_UNSIGNED, ID_AA64PFR0_SVE, CAP_HWCAP, HWCAP_SVE),
1269 #endif
1270 {},
1271 };
1272
1273 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
1274 #ifdef CONFIG_COMPAT
1275 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
1276 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
1277 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
1278 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
1279 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
1280 #endif
1281 {},
1282 };
1283
cap_set_elf_hwcap(const struct arm64_cpu_capabilities * cap)1284 static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
1285 {
1286 switch (cap->hwcap_type) {
1287 case CAP_HWCAP:
1288 elf_hwcap |= cap->hwcap;
1289 break;
1290 #ifdef CONFIG_COMPAT
1291 case CAP_COMPAT_HWCAP:
1292 compat_elf_hwcap |= (u32)cap->hwcap;
1293 break;
1294 case CAP_COMPAT_HWCAP2:
1295 compat_elf_hwcap2 |= (u32)cap->hwcap;
1296 break;
1297 #endif
1298 default:
1299 WARN_ON(1);
1300 break;
1301 }
1302 }
1303
1304 /* Check if we have a particular HWCAP enabled */
cpus_have_elf_hwcap(const struct arm64_cpu_capabilities * cap)1305 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
1306 {
1307 bool rc;
1308
1309 switch (cap->hwcap_type) {
1310 case CAP_HWCAP:
1311 rc = (elf_hwcap & cap->hwcap) != 0;
1312 break;
1313 #ifdef CONFIG_COMPAT
1314 case CAP_COMPAT_HWCAP:
1315 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
1316 break;
1317 case CAP_COMPAT_HWCAP2:
1318 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
1319 break;
1320 #endif
1321 default:
1322 WARN_ON(1);
1323 rc = false;
1324 }
1325
1326 return rc;
1327 }
1328
setup_elf_hwcaps(const struct arm64_cpu_capabilities * hwcaps)1329 static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
1330 {
1331 /* We support emulation of accesses to CPU ID feature registers */
1332 elf_hwcap |= HWCAP_CPUID;
1333 for (; hwcaps->matches; hwcaps++)
1334 if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps)))
1335 cap_set_elf_hwcap(hwcaps);
1336 }
1337
1338 /*
1339 * Check if the current CPU has a given feature capability.
1340 * Should be called from non-preemptible context.
1341 */
__this_cpu_has_cap(const struct arm64_cpu_capabilities * cap_array,unsigned int cap)1342 static bool __this_cpu_has_cap(const struct arm64_cpu_capabilities *cap_array,
1343 unsigned int cap)
1344 {
1345 const struct arm64_cpu_capabilities *caps;
1346
1347 if (WARN_ON(preemptible()))
1348 return false;
1349
1350 for (caps = cap_array; caps->matches; caps++)
1351 if (caps->capability == cap)
1352 return caps->matches(caps, SCOPE_LOCAL_CPU);
1353
1354 return false;
1355 }
1356
__update_cpu_capabilities(const struct arm64_cpu_capabilities * caps,u16 scope_mask,const char * info)1357 static void __update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
1358 u16 scope_mask, const char *info)
1359 {
1360 scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
1361 for (; caps->matches; caps++) {
1362 if (!(caps->type & scope_mask) ||
1363 !caps->matches(caps, cpucap_default_scope(caps)))
1364 continue;
1365
1366 if (!cpus_have_cap(caps->capability) && caps->desc)
1367 pr_info("%s %s\n", info, caps->desc);
1368 cpus_set_cap(caps->capability);
1369 }
1370 }
1371
update_cpu_capabilities(u16 scope_mask)1372 static void update_cpu_capabilities(u16 scope_mask)
1373 {
1374 __update_cpu_capabilities(arm64_errata, scope_mask,
1375 "enabling workaround for");
1376 __update_cpu_capabilities(arm64_features, scope_mask, "detected:");
1377 }
1378
__enable_cpu_capability(void * arg)1379 static int __enable_cpu_capability(void *arg)
1380 {
1381 const struct arm64_cpu_capabilities *cap = arg;
1382
1383 cap->cpu_enable(cap);
1384 return 0;
1385 }
1386
1387 /*
1388 * Run through the enabled capabilities and enable() it on all active
1389 * CPUs
1390 */
1391 static void __init
__enable_cpu_capabilities(const struct arm64_cpu_capabilities * caps,u16 scope_mask)1392 __enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
1393 u16 scope_mask)
1394 {
1395 scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
1396 for (; caps->matches; caps++) {
1397 unsigned int num = caps->capability;
1398
1399 if (!(caps->type & scope_mask) || !cpus_have_cap(num))
1400 continue;
1401
1402 /* Ensure cpus_have_const_cap(num) works */
1403 static_branch_enable(&cpu_hwcap_keys[num]);
1404
1405 if (caps->cpu_enable) {
1406 /*
1407 * Capabilities with SCOPE_BOOT_CPU scope are finalised
1408 * before any secondary CPU boots. Thus, each secondary
1409 * will enable the capability as appropriate via
1410 * check_local_cpu_capabilities(). The only exception is
1411 * the boot CPU, for which the capability must be
1412 * enabled here. This approach avoids costly
1413 * stop_machine() calls for this case.
1414 *
1415 * Otherwise, use stop_machine() as it schedules the
1416 * work allowing us to modify PSTATE, instead of
1417 * on_each_cpu() which uses an IPI, giving us a PSTATE
1418 * that disappears when we return.
1419 */
1420 if (scope_mask & SCOPE_BOOT_CPU)
1421 caps->cpu_enable(caps);
1422 else
1423 stop_machine(__enable_cpu_capability,
1424 (void *)caps, cpu_online_mask);
1425 }
1426 }
1427 }
1428
enable_cpu_capabilities(u16 scope_mask)1429 static void __init enable_cpu_capabilities(u16 scope_mask)
1430 {
1431 __enable_cpu_capabilities(arm64_errata, scope_mask);
1432 __enable_cpu_capabilities(arm64_features, scope_mask);
1433 }
1434
1435 /*
1436 * Run through the list of capabilities to check for conflicts.
1437 * If the system has already detected a capability, take necessary
1438 * action on this CPU.
1439 *
1440 * Returns "false" on conflicts.
1441 */
1442 static bool
__verify_local_cpu_caps(const struct arm64_cpu_capabilities * caps,u16 scope_mask)1443 __verify_local_cpu_caps(const struct arm64_cpu_capabilities *caps,
1444 u16 scope_mask)
1445 {
1446 bool cpu_has_cap, system_has_cap;
1447
1448 scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
1449
1450 for (; caps->matches; caps++) {
1451 if (!(caps->type & scope_mask))
1452 continue;
1453
1454 cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU);
1455 system_has_cap = cpus_have_cap(caps->capability);
1456
1457 if (system_has_cap) {
1458 /*
1459 * Check if the new CPU misses an advertised feature,
1460 * which is not safe to miss.
1461 */
1462 if (!cpu_has_cap && !cpucap_late_cpu_optional(caps))
1463 break;
1464 /*
1465 * We have to issue cpu_enable() irrespective of
1466 * whether the CPU has it or not, as it is enabeld
1467 * system wide. It is upto the call back to take
1468 * appropriate action on this CPU.
1469 */
1470 if (caps->cpu_enable)
1471 caps->cpu_enable(caps);
1472 } else {
1473 /*
1474 * Check if the CPU has this capability if it isn't
1475 * safe to have when the system doesn't.
1476 */
1477 if (cpu_has_cap && !cpucap_late_cpu_permitted(caps))
1478 break;
1479 }
1480 }
1481
1482 if (caps->matches) {
1483 pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
1484 smp_processor_id(), caps->capability,
1485 caps->desc, system_has_cap, cpu_has_cap);
1486 return false;
1487 }
1488
1489 return true;
1490 }
1491
verify_local_cpu_caps(u16 scope_mask)1492 static bool verify_local_cpu_caps(u16 scope_mask)
1493 {
1494 return __verify_local_cpu_caps(arm64_errata, scope_mask) &&
1495 __verify_local_cpu_caps(arm64_features, scope_mask);
1496 }
1497
1498 /*
1499 * Check for CPU features that are used in early boot
1500 * based on the Boot CPU value.
1501 */
check_early_cpu_features(void)1502 static void check_early_cpu_features(void)
1503 {
1504 verify_cpu_asid_bits();
1505 /*
1506 * Early features are used by the kernel already. If there
1507 * is a conflict, we cannot proceed further.
1508 */
1509 if (!verify_local_cpu_caps(SCOPE_BOOT_CPU))
1510 cpu_panic_kernel();
1511 }
1512
1513 static void
verify_local_elf_hwcaps(const struct arm64_cpu_capabilities * caps)1514 verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
1515 {
1516
1517 for (; caps->matches; caps++)
1518 if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
1519 pr_crit("CPU%d: missing HWCAP: %s\n",
1520 smp_processor_id(), caps->desc);
1521 cpu_die_early();
1522 }
1523 }
1524
verify_sve_features(void)1525 static void verify_sve_features(void)
1526 {
1527 u64 safe_zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
1528 u64 zcr = read_zcr_features();
1529
1530 unsigned int safe_len = safe_zcr & ZCR_ELx_LEN_MASK;
1531 unsigned int len = zcr & ZCR_ELx_LEN_MASK;
1532
1533 if (len < safe_len || sve_verify_vq_map()) {
1534 pr_crit("CPU%d: SVE: required vector length(s) missing\n",
1535 smp_processor_id());
1536 cpu_die_early();
1537 }
1538
1539 /* Add checks on other ZCR bits here if necessary */
1540 }
1541
1542
1543 /*
1544 * Run through the enabled system capabilities and enable() it on this CPU.
1545 * The capabilities were decided based on the available CPUs at the boot time.
1546 * Any new CPU should match the system wide status of the capability. If the
1547 * new CPU doesn't have a capability which the system now has enabled, we
1548 * cannot do anything to fix it up and could cause unexpected failures. So
1549 * we park the CPU.
1550 */
verify_local_cpu_capabilities(void)1551 static void verify_local_cpu_capabilities(void)
1552 {
1553 /*
1554 * The capabilities with SCOPE_BOOT_CPU are checked from
1555 * check_early_cpu_features(), as they need to be verified
1556 * on all secondary CPUs.
1557 */
1558 if (!verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU))
1559 cpu_die_early();
1560
1561 verify_local_elf_hwcaps(arm64_elf_hwcaps);
1562
1563 if (system_supports_32bit_el0())
1564 verify_local_elf_hwcaps(compat_elf_hwcaps);
1565
1566 if (system_supports_sve())
1567 verify_sve_features();
1568 }
1569
check_local_cpu_capabilities(void)1570 void check_local_cpu_capabilities(void)
1571 {
1572 /*
1573 * All secondary CPUs should conform to the early CPU features
1574 * in use by the kernel based on boot CPU.
1575 */
1576 check_early_cpu_features();
1577
1578 /*
1579 * If we haven't finalised the system capabilities, this CPU gets
1580 * a chance to update the errata work arounds and local features.
1581 * Otherwise, this CPU should verify that it has all the system
1582 * advertised capabilities.
1583 */
1584 if (!sys_caps_initialised)
1585 update_cpu_capabilities(SCOPE_LOCAL_CPU);
1586 else
1587 verify_local_cpu_capabilities();
1588 }
1589
setup_boot_cpu_capabilities(void)1590 static void __init setup_boot_cpu_capabilities(void)
1591 {
1592 /* Detect capabilities with either SCOPE_BOOT_CPU or SCOPE_LOCAL_CPU */
1593 update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU);
1594 /* Enable the SCOPE_BOOT_CPU capabilities alone right away */
1595 enable_cpu_capabilities(SCOPE_BOOT_CPU);
1596 }
1597
1598 DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready);
1599 EXPORT_SYMBOL(arm64_const_caps_ready);
1600
mark_const_caps_ready(void)1601 static void __init mark_const_caps_ready(void)
1602 {
1603 static_branch_enable(&arm64_const_caps_ready);
1604 }
1605
1606 extern const struct arm64_cpu_capabilities arm64_errata[];
1607
this_cpu_has_cap(unsigned int cap)1608 bool this_cpu_has_cap(unsigned int cap)
1609 {
1610 return (__this_cpu_has_cap(arm64_features, cap) ||
1611 __this_cpu_has_cap(arm64_errata, cap));
1612 }
1613
setup_system_capabilities(void)1614 static void __init setup_system_capabilities(void)
1615 {
1616 /*
1617 * We have finalised the system-wide safe feature
1618 * registers, finalise the capabilities that depend
1619 * on it. Also enable all the available capabilities,
1620 * that are not enabled already.
1621 */
1622 update_cpu_capabilities(SCOPE_SYSTEM);
1623 enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU);
1624 }
1625
setup_cpu_features(void)1626 void __init setup_cpu_features(void)
1627 {
1628 u32 cwg;
1629
1630 setup_system_capabilities();
1631 mark_const_caps_ready();
1632 setup_elf_hwcaps(arm64_elf_hwcaps);
1633
1634 if (system_supports_32bit_el0())
1635 setup_elf_hwcaps(compat_elf_hwcaps);
1636
1637 if (system_uses_ttbr0_pan())
1638 pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
1639
1640 sve_setup();
1641 minsigstksz_setup();
1642
1643 /* Advertise that we have computed the system capabilities */
1644 set_sys_caps_initialised();
1645
1646 /*
1647 * Check for sane CTR_EL0.CWG value.
1648 */
1649 cwg = cache_type_cwg();
1650 if (!cwg)
1651 pr_warn("No Cache Writeback Granule information, assuming %d\n",
1652 ARCH_DMA_MINALIGN);
1653 }
1654
1655 static bool __maybe_unused
cpufeature_pan_not_uao(const struct arm64_cpu_capabilities * entry,int __unused)1656 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
1657 {
1658 return (cpus_have_const_cap(ARM64_HAS_PAN) && !cpus_have_const_cap(ARM64_HAS_UAO));
1659 }
1660
1661 /*
1662 * We emulate only the following system register space.
1663 * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
1664 * See Table C5-6 System instruction encodings for System register accesses,
1665 * ARMv8 ARM(ARM DDI 0487A.f) for more details.
1666 */
is_emulated(u32 id)1667 static inline bool __attribute_const__ is_emulated(u32 id)
1668 {
1669 return (sys_reg_Op0(id) == 0x3 &&
1670 sys_reg_CRn(id) == 0x0 &&
1671 sys_reg_Op1(id) == 0x0 &&
1672 (sys_reg_CRm(id) == 0 ||
1673 ((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7))));
1674 }
1675
1676 /*
1677 * With CRm == 0, reg should be one of :
1678 * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
1679 */
emulate_id_reg(u32 id,u64 * valp)1680 static inline int emulate_id_reg(u32 id, u64 *valp)
1681 {
1682 switch (id) {
1683 case SYS_MIDR_EL1:
1684 *valp = read_cpuid_id();
1685 break;
1686 case SYS_MPIDR_EL1:
1687 *valp = SYS_MPIDR_SAFE_VAL;
1688 break;
1689 case SYS_REVIDR_EL1:
1690 /* IMPLEMENTATION DEFINED values are emulated with 0 */
1691 *valp = 0;
1692 break;
1693 default:
1694 return -EINVAL;
1695 }
1696
1697 return 0;
1698 }
1699
emulate_sys_reg(u32 id,u64 * valp)1700 static int emulate_sys_reg(u32 id, u64 *valp)
1701 {
1702 struct arm64_ftr_reg *regp;
1703
1704 if (!is_emulated(id))
1705 return -EINVAL;
1706
1707 if (sys_reg_CRm(id) == 0)
1708 return emulate_id_reg(id, valp);
1709
1710 regp = get_arm64_ftr_reg(id);
1711 if (regp)
1712 *valp = arm64_ftr_reg_user_value(regp);
1713 else
1714 /*
1715 * The untracked registers are either IMPLEMENTATION DEFINED
1716 * (e.g, ID_AFR0_EL1) or reserved RAZ.
1717 */
1718 *valp = 0;
1719 return 0;
1720 }
1721
emulate_mrs(struct pt_regs * regs,u32 insn)1722 static int emulate_mrs(struct pt_regs *regs, u32 insn)
1723 {
1724 int rc;
1725 u32 sys_reg, dst;
1726 u64 val;
1727
1728 /*
1729 * sys_reg values are defined as used in mrs/msr instruction.
1730 * shift the imm value to get the encoding.
1731 */
1732 sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
1733 rc = emulate_sys_reg(sys_reg, &val);
1734 if (!rc) {
1735 dst = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
1736 pt_regs_write_reg(regs, dst, val);
1737 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
1738 }
1739
1740 return rc;
1741 }
1742
1743 static struct undef_hook mrs_hook = {
1744 .instr_mask = 0xfff00000,
1745 .instr_val = 0xd5300000,
1746 .pstate_mask = PSR_AA32_MODE_MASK,
1747 .pstate_val = PSR_MODE_EL0t,
1748 .fn = emulate_mrs,
1749 };
1750
enable_mrs_emulation(void)1751 static int __init enable_mrs_emulation(void)
1752 {
1753 register_undef_hook(&mrs_hook);
1754 return 0;
1755 }
1756
1757 core_initcall(enable_mrs_emulation);
1758
cpu_clear_disr(const struct arm64_cpu_capabilities * __unused)1759 void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
1760 {
1761 /* Firmware may have left a deferred SError in this register. */
1762 write_sysreg_s(0, SYS_DISR_EL1);
1763 }
1764