1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Scheduler internal types and methods:
4 */
5 #include <linux/sched.h>
6
7 #include <linux/sched/autogroup.h>
8 #include <linux/sched/clock.h>
9 #include <linux/sched/coredump.h>
10 #include <linux/sched/cpufreq.h>
11 #include <linux/sched/cputime.h>
12 #include <linux/sched/deadline.h>
13 #include <linux/sched/debug.h>
14 #include <linux/sched/hotplug.h>
15 #include <linux/sched/idle.h>
16 #include <linux/sched/init.h>
17 #include <linux/sched/isolation.h>
18 #include <linux/sched/jobctl.h>
19 #include <linux/sched/loadavg.h>
20 #include <linux/sched/mm.h>
21 #include <linux/sched/nohz.h>
22 #include <linux/sched/numa_balancing.h>
23 #include <linux/sched/prio.h>
24 #include <linux/sched/rt.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/smt.h>
27 #include <linux/sched/stat.h>
28 #include <linux/sched/sysctl.h>
29 #include <linux/sched/task.h>
30 #include <linux/sched/task_stack.h>
31 #include <linux/sched/topology.h>
32 #include <linux/sched/user.h>
33 #include <linux/sched/wake_q.h>
34 #include <linux/sched/xacct.h>
35
36 #include <uapi/linux/sched/types.h>
37
38 #include <linux/binfmts.h>
39 #include <linux/blkdev.h>
40 #include <linux/compat.h>
41 #include <linux/context_tracking.h>
42 #include <linux/cpufreq.h>
43 #include <linux/cpuidle.h>
44 #include <linux/cpuset.h>
45 #include <linux/ctype.h>
46 #include <linux/debugfs.h>
47 #include <linux/delayacct.h>
48 #include <linux/energy_model.h>
49 #include <linux/init_task.h>
50 #include <linux/kprobes.h>
51 #include <linux/kthread.h>
52 #include <linux/membarrier.h>
53 #include <linux/migrate.h>
54 #include <linux/mmu_context.h>
55 #include <linux/nmi.h>
56 #include <linux/proc_fs.h>
57 #include <linux/prefetch.h>
58 #include <linux/profile.h>
59 #include <linux/psi.h>
60 #include <linux/rcupdate_wait.h>
61 #include <linux/security.h>
62 #include <linux/stop_machine.h>
63 #include <linux/suspend.h>
64 #include <linux/swait.h>
65 #include <linux/syscalls.h>
66 #include <linux/task_work.h>
67 #include <linux/tsacct_kern.h>
68
69 #include <asm/tlb.h>
70 #include <asm-generic/vmlinux.lds.h>
71
72 #ifdef CONFIG_PARAVIRT
73 # include <asm/paravirt.h>
74 #endif
75
76 #include "cpupri.h"
77 #include "cpudeadline.h"
78
79 #include <trace/events/sched.h>
80
81 #ifdef CONFIG_SCHED_DEBUG
82 # define SCHED_WARN_ON(x) WARN_ONCE(x, #x)
83 #else
84 # define SCHED_WARN_ON(x) ({ (void)(x), 0; })
85 #endif
86
87 struct rq;
88 struct cpuidle_state;
89
90 /* task_struct::on_rq states: */
91 #define TASK_ON_RQ_QUEUED 1
92 #define TASK_ON_RQ_MIGRATING 2
93
94 extern __read_mostly int scheduler_running;
95
96 extern unsigned long calc_load_update;
97 extern atomic_long_t calc_load_tasks;
98
99 extern void calc_global_load_tick(struct rq *this_rq);
100 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
101
102 extern void call_trace_sched_update_nr_running(struct rq *rq, int count);
103 /*
104 * Helpers for converting nanosecond timing to jiffy resolution
105 */
106 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
107
108 /*
109 * Increase resolution of nice-level calculations for 64-bit architectures.
110 * The extra resolution improves shares distribution and load balancing of
111 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
112 * hierarchies, especially on larger systems. This is not a user-visible change
113 * and does not change the user-interface for setting shares/weights.
114 *
115 * We increase resolution only if we have enough bits to allow this increased
116 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
117 * are pretty high and the returns do not justify the increased costs.
118 *
119 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
120 * increase coverage and consistency always enable it on 64-bit platforms.
121 */
122 #ifdef CONFIG_64BIT
123 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
124 # define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT)
125 # define scale_load_down(w) \
126 ({ \
127 unsigned long __w = (w); \
128 if (__w) \
129 __w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \
130 __w; \
131 })
132 #else
133 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT)
134 # define scale_load(w) (w)
135 # define scale_load_down(w) (w)
136 #endif
137
138 /*
139 * Task weight (visible to users) and its load (invisible to users) have
140 * independent resolution, but they should be well calibrated. We use
141 * scale_load() and scale_load_down(w) to convert between them. The
142 * following must be true:
143 *
144 * scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
145 *
146 */
147 #define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT)
148
149 /*
150 * Single value that decides SCHED_DEADLINE internal math precision.
151 * 10 -> just above 1us
152 * 9 -> just above 0.5us
153 */
154 #define DL_SCALE 10
155
156 /*
157 * Single value that denotes runtime == period, ie unlimited time.
158 */
159 #define RUNTIME_INF ((u64)~0ULL)
160
idle_policy(int policy)161 static inline int idle_policy(int policy)
162 {
163 return policy == SCHED_IDLE;
164 }
fair_policy(int policy)165 static inline int fair_policy(int policy)
166 {
167 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
168 }
169
rt_policy(int policy)170 static inline int rt_policy(int policy)
171 {
172 return policy == SCHED_FIFO || policy == SCHED_RR;
173 }
174
dl_policy(int policy)175 static inline int dl_policy(int policy)
176 {
177 return policy == SCHED_DEADLINE;
178 }
valid_policy(int policy)179 static inline bool valid_policy(int policy)
180 {
181 return idle_policy(policy) || fair_policy(policy) ||
182 rt_policy(policy) || dl_policy(policy);
183 }
184
task_has_idle_policy(struct task_struct * p)185 static inline int task_has_idle_policy(struct task_struct *p)
186 {
187 return idle_policy(p->policy);
188 }
189
task_has_rt_policy(struct task_struct * p)190 static inline int task_has_rt_policy(struct task_struct *p)
191 {
192 return rt_policy(p->policy);
193 }
194
task_has_dl_policy(struct task_struct * p)195 static inline int task_has_dl_policy(struct task_struct *p)
196 {
197 return dl_policy(p->policy);
198 }
199
200 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
201
update_avg(u64 * avg,u64 sample)202 static inline void update_avg(u64 *avg, u64 sample)
203 {
204 s64 diff = sample - *avg;
205 *avg += diff / 8;
206 }
207
208 /*
209 * !! For sched_setattr_nocheck() (kernel) only !!
210 *
211 * This is actually gross. :(
212 *
213 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
214 * tasks, but still be able to sleep. We need this on platforms that cannot
215 * atomically change clock frequency. Remove once fast switching will be
216 * available on such platforms.
217 *
218 * SUGOV stands for SchedUtil GOVernor.
219 */
220 #define SCHED_FLAG_SUGOV 0x10000000
221
dl_entity_is_special(struct sched_dl_entity * dl_se)222 static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
223 {
224 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
225 return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
226 #else
227 return false;
228 #endif
229 }
230
231 /*
232 * Tells if entity @a should preempt entity @b.
233 */
234 static inline bool
dl_entity_preempt(struct sched_dl_entity * a,struct sched_dl_entity * b)235 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
236 {
237 return dl_entity_is_special(a) ||
238 dl_time_before(a->deadline, b->deadline);
239 }
240
241 /*
242 * This is the priority-queue data structure of the RT scheduling class:
243 */
244 struct rt_prio_array {
245 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
246 struct list_head queue[MAX_RT_PRIO];
247 };
248
249 struct rt_bandwidth {
250 /* nests inside the rq lock: */
251 raw_spinlock_t rt_runtime_lock;
252 ktime_t rt_period;
253 u64 rt_runtime;
254 struct hrtimer rt_period_timer;
255 unsigned int rt_period_active;
256 };
257
258 void __dl_clear_params(struct task_struct *p);
259
260 /*
261 * To keep the bandwidth of -deadline tasks and groups under control
262 * we need some place where:
263 * - store the maximum -deadline bandwidth of the system (the group);
264 * - cache the fraction of that bandwidth that is currently allocated.
265 *
266 * This is all done in the data structure below. It is similar to the
267 * one used for RT-throttling (rt_bandwidth), with the main difference
268 * that, since here we are only interested in admission control, we
269 * do not decrease any runtime while the group "executes", neither we
270 * need a timer to replenish it.
271 *
272 * With respect to SMP, the bandwidth is given on a per-CPU basis,
273 * meaning that:
274 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
275 * - dl_total_bw array contains, in the i-eth element, the currently
276 * allocated bandwidth on the i-eth CPU.
277 * Moreover, groups consume bandwidth on each CPU, while tasks only
278 * consume bandwidth on the CPU they're running on.
279 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
280 * that will be shown the next time the proc or cgroup controls will
281 * be red. It on its turn can be changed by writing on its own
282 * control.
283 */
284 struct dl_bandwidth {
285 raw_spinlock_t dl_runtime_lock;
286 u64 dl_runtime;
287 u64 dl_period;
288 };
289
dl_bandwidth_enabled(void)290 static inline int dl_bandwidth_enabled(void)
291 {
292 return sysctl_sched_rt_runtime >= 0;
293 }
294
295 struct dl_bw {
296 raw_spinlock_t lock;
297 u64 bw;
298 u64 total_bw;
299 };
300
301 static inline void __dl_update(struct dl_bw *dl_b, s64 bw);
302
303 static inline
__dl_sub(struct dl_bw * dl_b,u64 tsk_bw,int cpus)304 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
305 {
306 dl_b->total_bw -= tsk_bw;
307 __dl_update(dl_b, (s32)tsk_bw / cpus);
308 }
309
310 static inline
__dl_add(struct dl_bw * dl_b,u64 tsk_bw,int cpus)311 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
312 {
313 dl_b->total_bw += tsk_bw;
314 __dl_update(dl_b, -((s32)tsk_bw / cpus));
315 }
316
__dl_overflow(struct dl_bw * dl_b,unsigned long cap,u64 old_bw,u64 new_bw)317 static inline bool __dl_overflow(struct dl_bw *dl_b, unsigned long cap,
318 u64 old_bw, u64 new_bw)
319 {
320 return dl_b->bw != -1 &&
321 cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw;
322 }
323
324 /*
325 * Verify the fitness of task @p to run on @cpu taking into account the
326 * CPU original capacity and the runtime/deadline ratio of the task.
327 *
328 * The function will return true if the CPU original capacity of the
329 * @cpu scaled by SCHED_CAPACITY_SCALE >= runtime/deadline ratio of the
330 * task and false otherwise.
331 */
dl_task_fits_capacity(struct task_struct * p,int cpu)332 static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
333 {
334 unsigned long cap = arch_scale_cpu_capacity(cpu);
335
336 return cap_scale(p->dl.dl_deadline, cap) >= p->dl.dl_runtime;
337 }
338
339 extern void init_dl_bw(struct dl_bw *dl_b);
340 extern int sched_dl_global_validate(void);
341 extern void sched_dl_do_global(void);
342 extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
343 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
344 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
345 extern bool __checkparam_dl(const struct sched_attr *attr);
346 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
347 extern int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
348 extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
349 extern bool dl_cpu_busy(unsigned int cpu);
350
351 #ifdef CONFIG_CGROUP_SCHED
352
353 #include <linux/cgroup.h>
354 #include <linux/psi.h>
355
356 struct cfs_rq;
357 struct rt_rq;
358
359 extern struct list_head task_groups;
360
361 struct cfs_bandwidth {
362 #ifdef CONFIG_CFS_BANDWIDTH
363 raw_spinlock_t lock;
364 ktime_t period;
365 u64 quota;
366 u64 runtime;
367 s64 hierarchical_quota;
368
369 u8 idle;
370 u8 period_active;
371 u8 slack_started;
372 struct hrtimer period_timer;
373 struct hrtimer slack_timer;
374 struct list_head throttled_cfs_rq;
375
376 /* Statistics: */
377 int nr_periods;
378 int nr_throttled;
379 u64 throttled_time;
380 #endif
381 };
382
383 /* Task group related information */
384 struct task_group {
385 struct cgroup_subsys_state css;
386
387 #ifdef CONFIG_FAIR_GROUP_SCHED
388 /* schedulable entities of this group on each CPU */
389 struct sched_entity **se;
390 /* runqueue "owned" by this group on each CPU */
391 struct cfs_rq **cfs_rq;
392 unsigned long shares;
393
394 #ifdef CONFIG_SMP
395 /*
396 * load_avg can be heavily contended at clock tick time, so put
397 * it in its own cacheline separated from the fields above which
398 * will also be accessed at each tick.
399 */
400 atomic_long_t load_avg ____cacheline_aligned;
401 #endif
402 #endif
403
404 #ifdef CONFIG_RT_GROUP_SCHED
405 struct sched_rt_entity **rt_se;
406 struct rt_rq **rt_rq;
407
408 struct rt_bandwidth rt_bandwidth;
409 #endif
410
411 struct rcu_head rcu;
412 struct list_head list;
413
414 struct task_group *parent;
415 struct list_head siblings;
416 struct list_head children;
417
418 #ifdef CONFIG_SCHED_AUTOGROUP
419 struct autogroup *autogroup;
420 #endif
421
422 struct cfs_bandwidth cfs_bandwidth;
423
424 #ifdef CONFIG_UCLAMP_TASK_GROUP
425 /* The two decimal precision [%] value requested from user-space */
426 unsigned int uclamp_pct[UCLAMP_CNT];
427 /* Clamp values requested for a task group */
428 struct uclamp_se uclamp_req[UCLAMP_CNT];
429 /* Effective clamp values used for a task group */
430 struct uclamp_se uclamp[UCLAMP_CNT];
431 #endif
432
433 };
434
435 #ifdef CONFIG_FAIR_GROUP_SCHED
436 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
437
438 /*
439 * A weight of 0 or 1 can cause arithmetics problems.
440 * A weight of a cfs_rq is the sum of weights of which entities
441 * are queued on this cfs_rq, so a weight of a entity should not be
442 * too large, so as the shares value of a task group.
443 * (The default weight is 1024 - so there's no practical
444 * limitation from this.)
445 */
446 #define MIN_SHARES (1UL << 1)
447 #define MAX_SHARES (1UL << 18)
448 #endif
449
450 typedef int (*tg_visitor)(struct task_group *, void *);
451
452 extern int walk_tg_tree_from(struct task_group *from,
453 tg_visitor down, tg_visitor up, void *data);
454
455 /*
456 * Iterate the full tree, calling @down when first entering a node and @up when
457 * leaving it for the final time.
458 *
459 * Caller must hold rcu_lock or sufficient equivalent.
460 */
walk_tg_tree(tg_visitor down,tg_visitor up,void * data)461 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
462 {
463 return walk_tg_tree_from(&root_task_group, down, up, data);
464 }
465
466 extern int tg_nop(struct task_group *tg, void *data);
467
468 extern void free_fair_sched_group(struct task_group *tg);
469 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
470 extern void online_fair_sched_group(struct task_group *tg);
471 extern void unregister_fair_sched_group(struct task_group *tg);
472 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
473 struct sched_entity *se, int cpu,
474 struct sched_entity *parent);
475 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
476
477 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
478 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
479 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
480
481 extern void free_rt_sched_group(struct task_group *tg);
482 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
483 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
484 struct sched_rt_entity *rt_se, int cpu,
485 struct sched_rt_entity *parent);
486 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
487 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
488 extern long sched_group_rt_runtime(struct task_group *tg);
489 extern long sched_group_rt_period(struct task_group *tg);
490 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
491
492 extern struct task_group *sched_create_group(struct task_group *parent);
493 extern void sched_online_group(struct task_group *tg,
494 struct task_group *parent);
495 extern void sched_destroy_group(struct task_group *tg);
496 extern void sched_offline_group(struct task_group *tg);
497
498 extern void sched_move_task(struct task_struct *tsk);
499
500 #ifdef CONFIG_FAIR_GROUP_SCHED
501 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
502
503 #ifdef CONFIG_SMP
504 extern void set_task_rq_fair(struct sched_entity *se,
505 struct cfs_rq *prev, struct cfs_rq *next);
506 #else /* !CONFIG_SMP */
set_task_rq_fair(struct sched_entity * se,struct cfs_rq * prev,struct cfs_rq * next)507 static inline void set_task_rq_fair(struct sched_entity *se,
508 struct cfs_rq *prev, struct cfs_rq *next) { }
509 #endif /* CONFIG_SMP */
510 #endif /* CONFIG_FAIR_GROUP_SCHED */
511
512 #else /* CONFIG_CGROUP_SCHED */
513
514 struct cfs_bandwidth { };
515
516 #endif /* CONFIG_CGROUP_SCHED */
517
518 /* CFS-related fields in a runqueue */
519 struct cfs_rq {
520 struct load_weight load;
521 unsigned int nr_running;
522 unsigned int h_nr_running; /* SCHED_{NORMAL,BATCH,IDLE} */
523 unsigned int idle_h_nr_running; /* SCHED_IDLE */
524
525 u64 exec_clock;
526 u64 min_vruntime;
527 #ifndef CONFIG_64BIT
528 u64 min_vruntime_copy;
529 #endif
530
531 struct rb_root_cached tasks_timeline;
532
533 /*
534 * 'curr' points to currently running entity on this cfs_rq.
535 * It is set to NULL otherwise (i.e when none are currently running).
536 */
537 struct sched_entity *curr;
538 struct sched_entity *next;
539 struct sched_entity *last;
540 struct sched_entity *skip;
541
542 #ifdef CONFIG_SCHED_DEBUG
543 unsigned int nr_spread_over;
544 #endif
545
546 #ifdef CONFIG_SMP
547 /*
548 * CFS load tracking
549 */
550 struct sched_avg avg;
551 #ifndef CONFIG_64BIT
552 u64 load_last_update_time_copy;
553 #endif
554 struct {
555 raw_spinlock_t lock ____cacheline_aligned;
556 int nr;
557 unsigned long load_avg;
558 unsigned long util_avg;
559 unsigned long runnable_avg;
560 } removed;
561
562 #ifdef CONFIG_FAIR_GROUP_SCHED
563 unsigned long tg_load_avg_contrib;
564 long propagate;
565 long prop_runnable_sum;
566
567 /*
568 * h_load = weight * f(tg)
569 *
570 * Where f(tg) is the recursive weight fraction assigned to
571 * this group.
572 */
573 unsigned long h_load;
574 u64 last_h_load_update;
575 struct sched_entity *h_load_next;
576 #endif /* CONFIG_FAIR_GROUP_SCHED */
577 #endif /* CONFIG_SMP */
578
579 #ifdef CONFIG_FAIR_GROUP_SCHED
580 struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */
581
582 /*
583 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
584 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
585 * (like users, containers etc.)
586 *
587 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
588 * This list is used during load balance.
589 */
590 int on_list;
591 struct list_head leaf_cfs_rq_list;
592 struct task_group *tg; /* group that "owns" this runqueue */
593
594 #ifdef CONFIG_CFS_BANDWIDTH
595 int runtime_enabled;
596 s64 runtime_remaining;
597
598 u64 throttled_clock;
599 u64 throttled_clock_task;
600 u64 throttled_clock_task_time;
601 int throttled;
602 int throttle_count;
603 struct list_head throttled_list;
604 #endif /* CONFIG_CFS_BANDWIDTH */
605 #endif /* CONFIG_FAIR_GROUP_SCHED */
606 };
607
rt_bandwidth_enabled(void)608 static inline int rt_bandwidth_enabled(void)
609 {
610 return sysctl_sched_rt_runtime >= 0;
611 }
612
613 /* RT IPI pull logic requires IRQ_WORK */
614 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
615 # define HAVE_RT_PUSH_IPI
616 #endif
617
618 /* Real-Time classes' related field in a runqueue: */
619 struct rt_rq {
620 struct rt_prio_array active;
621 unsigned int rt_nr_running;
622 unsigned int rr_nr_running;
623 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
624 struct {
625 int curr; /* highest queued rt task prio */
626 #ifdef CONFIG_SMP
627 int next; /* next highest */
628 #endif
629 } highest_prio;
630 #endif
631 #ifdef CONFIG_SMP
632 unsigned long rt_nr_migratory;
633 unsigned long rt_nr_total;
634 int overloaded;
635 struct plist_head pushable_tasks;
636
637 #endif /* CONFIG_SMP */
638 int rt_queued;
639
640 int rt_throttled;
641 u64 rt_time;
642 u64 rt_runtime;
643 /* Nests inside the rq lock: */
644 raw_spinlock_t rt_runtime_lock;
645
646 #ifdef CONFIG_RT_GROUP_SCHED
647 unsigned long rt_nr_boosted;
648
649 struct rq *rq;
650 struct task_group *tg;
651 #endif
652 };
653
rt_rq_is_runnable(struct rt_rq * rt_rq)654 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
655 {
656 return rt_rq->rt_queued && rt_rq->rt_nr_running;
657 }
658
659 /* Deadline class' related fields in a runqueue */
660 struct dl_rq {
661 /* runqueue is an rbtree, ordered by deadline */
662 struct rb_root_cached root;
663
664 unsigned long dl_nr_running;
665
666 #ifdef CONFIG_SMP
667 /*
668 * Deadline values of the currently executing and the
669 * earliest ready task on this rq. Caching these facilitates
670 * the decision whether or not a ready but not running task
671 * should migrate somewhere else.
672 */
673 struct {
674 u64 curr;
675 u64 next;
676 } earliest_dl;
677
678 unsigned long dl_nr_migratory;
679 int overloaded;
680
681 /*
682 * Tasks on this rq that can be pushed away. They are kept in
683 * an rb-tree, ordered by tasks' deadlines, with caching
684 * of the leftmost (earliest deadline) element.
685 */
686 struct rb_root_cached pushable_dl_tasks_root;
687 #else
688 struct dl_bw dl_bw;
689 #endif
690 /*
691 * "Active utilization" for this runqueue: increased when a
692 * task wakes up (becomes TASK_RUNNING) and decreased when a
693 * task blocks
694 */
695 u64 running_bw;
696
697 /*
698 * Utilization of the tasks "assigned" to this runqueue (including
699 * the tasks that are in runqueue and the tasks that executed on this
700 * CPU and blocked). Increased when a task moves to this runqueue, and
701 * decreased when the task moves away (migrates, changes scheduling
702 * policy, or terminates).
703 * This is needed to compute the "inactive utilization" for the
704 * runqueue (inactive utilization = this_bw - running_bw).
705 */
706 u64 this_bw;
707 u64 extra_bw;
708
709 /*
710 * Inverse of the fraction of CPU utilization that can be reclaimed
711 * by the GRUB algorithm.
712 */
713 u64 bw_ratio;
714 };
715
716 #ifdef CONFIG_FAIR_GROUP_SCHED
717 /* An entity is a task if it doesn't "own" a runqueue */
718 #define entity_is_task(se) (!se->my_q)
719
se_update_runnable(struct sched_entity * se)720 static inline void se_update_runnable(struct sched_entity *se)
721 {
722 if (!entity_is_task(se))
723 se->runnable_weight = se->my_q->h_nr_running;
724 }
725
se_runnable(struct sched_entity * se)726 static inline long se_runnable(struct sched_entity *se)
727 {
728 if (entity_is_task(se))
729 return !!se->on_rq;
730 else
731 return se->runnable_weight;
732 }
733
734 #else
735 #define entity_is_task(se) 1
736
se_update_runnable(struct sched_entity * se)737 static inline void se_update_runnable(struct sched_entity *se) {}
738
se_runnable(struct sched_entity * se)739 static inline long se_runnable(struct sched_entity *se)
740 {
741 return !!se->on_rq;
742 }
743 #endif
744
745 #ifdef CONFIG_SMP
746 /*
747 * XXX we want to get rid of these helpers and use the full load resolution.
748 */
se_weight(struct sched_entity * se)749 static inline long se_weight(struct sched_entity *se)
750 {
751 return scale_load_down(se->load.weight);
752 }
753
754
sched_asym_prefer(int a,int b)755 static inline bool sched_asym_prefer(int a, int b)
756 {
757 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
758 }
759
760 struct perf_domain {
761 struct em_perf_domain *em_pd;
762 struct perf_domain *next;
763 struct rcu_head rcu;
764 };
765
766 /* Scheduling group status flags */
767 #define SG_OVERLOAD 0x1 /* More than one runnable task on a CPU. */
768 #define SG_OVERUTILIZED 0x2 /* One or more CPUs are over-utilized. */
769
770 /*
771 * We add the notion of a root-domain which will be used to define per-domain
772 * variables. Each exclusive cpuset essentially defines an island domain by
773 * fully partitioning the member CPUs from any other cpuset. Whenever a new
774 * exclusive cpuset is created, we also create and attach a new root-domain
775 * object.
776 *
777 */
778 struct root_domain {
779 atomic_t refcount;
780 atomic_t rto_count;
781 struct rcu_head rcu;
782 cpumask_var_t span;
783 cpumask_var_t online;
784
785 /*
786 * Indicate pullable load on at least one CPU, e.g:
787 * - More than one runnable task
788 * - Running task is misfit
789 */
790 int overload;
791
792 /* Indicate one or more cpus over-utilized (tipping point) */
793 int overutilized;
794
795 /*
796 * The bit corresponding to a CPU gets set here if such CPU has more
797 * than one runnable -deadline task (as it is below for RT tasks).
798 */
799 cpumask_var_t dlo_mask;
800 atomic_t dlo_count;
801 struct dl_bw dl_bw;
802 struct cpudl cpudl;
803
804 #ifdef HAVE_RT_PUSH_IPI
805 /*
806 * For IPI pull requests, loop across the rto_mask.
807 */
808 struct irq_work rto_push_work;
809 raw_spinlock_t rto_lock;
810 /* These are only updated and read within rto_lock */
811 int rto_loop;
812 int rto_cpu;
813 /* These atomics are updated outside of a lock */
814 atomic_t rto_loop_next;
815 atomic_t rto_loop_start;
816 #endif
817 /*
818 * The "RT overload" flag: it gets set if a CPU has more than
819 * one runnable RT task.
820 */
821 cpumask_var_t rto_mask;
822 struct cpupri cpupri;
823
824 unsigned long max_cpu_capacity;
825
826 /*
827 * NULL-terminated list of performance domains intersecting with the
828 * CPUs of the rd. Protected by RCU.
829 */
830 struct perf_domain __rcu *pd;
831 };
832
833 extern void init_defrootdomain(void);
834 extern int sched_init_domains(const struct cpumask *cpu_map);
835 extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
836 extern void sched_get_rd(struct root_domain *rd);
837 extern void sched_put_rd(struct root_domain *rd);
838
839 #ifdef HAVE_RT_PUSH_IPI
840 extern void rto_push_irq_work_func(struct irq_work *work);
841 #endif
842 #endif /* CONFIG_SMP */
843
844 #ifdef CONFIG_UCLAMP_TASK
845 /*
846 * struct uclamp_bucket - Utilization clamp bucket
847 * @value: utilization clamp value for tasks on this clamp bucket
848 * @tasks: number of RUNNABLE tasks on this clamp bucket
849 *
850 * Keep track of how many tasks are RUNNABLE for a given utilization
851 * clamp value.
852 */
853 struct uclamp_bucket {
854 unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
855 unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
856 };
857
858 /*
859 * struct uclamp_rq - rq's utilization clamp
860 * @value: currently active clamp values for a rq
861 * @bucket: utilization clamp buckets affecting a rq
862 *
863 * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
864 * A clamp value is affecting a rq when there is at least one task RUNNABLE
865 * (or actually running) with that value.
866 *
867 * There are up to UCLAMP_CNT possible different clamp values, currently there
868 * are only two: minimum utilization and maximum utilization.
869 *
870 * All utilization clamping values are MAX aggregated, since:
871 * - for util_min: we want to run the CPU at least at the max of the minimum
872 * utilization required by its currently RUNNABLE tasks.
873 * - for util_max: we want to allow the CPU to run up to the max of the
874 * maximum utilization allowed by its currently RUNNABLE tasks.
875 *
876 * Since on each system we expect only a limited number of different
877 * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
878 * the metrics required to compute all the per-rq utilization clamp values.
879 */
880 struct uclamp_rq {
881 unsigned int value;
882 struct uclamp_bucket bucket[UCLAMP_BUCKETS];
883 };
884
885 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
886 #endif /* CONFIG_UCLAMP_TASK */
887
888 /*
889 * This is the main, per-CPU runqueue data structure.
890 *
891 * Locking rule: those places that want to lock multiple runqueues
892 * (such as the load balancing or the thread migration code), lock
893 * acquire operations must be ordered by ascending &runqueue.
894 */
895 struct rq {
896 /* runqueue lock: */
897 raw_spinlock_t lock;
898
899 /*
900 * nr_running and cpu_load should be in the same cacheline because
901 * remote CPUs use both these fields when doing load calculation.
902 */
903 unsigned int nr_running;
904 #ifdef CONFIG_NUMA_BALANCING
905 unsigned int nr_numa_running;
906 unsigned int nr_preferred_running;
907 unsigned int numa_migrate_on;
908 #endif
909 #ifdef CONFIG_NO_HZ_COMMON
910 #ifdef CONFIG_SMP
911 unsigned long last_blocked_load_update_tick;
912 unsigned int has_blocked_load;
913 call_single_data_t nohz_csd;
914 #endif /* CONFIG_SMP */
915 unsigned int nohz_tick_stopped;
916 atomic_t nohz_flags;
917 #endif /* CONFIG_NO_HZ_COMMON */
918
919 #ifdef CONFIG_SMP
920 unsigned int ttwu_pending;
921 #endif
922 u64 nr_switches;
923
924 #ifdef CONFIG_UCLAMP_TASK
925 /* Utilization clamp values based on CPU's RUNNABLE tasks */
926 struct uclamp_rq uclamp[UCLAMP_CNT] ____cacheline_aligned;
927 unsigned int uclamp_flags;
928 #define UCLAMP_FLAG_IDLE 0x01
929 #endif
930
931 struct cfs_rq cfs;
932 struct rt_rq rt;
933 struct dl_rq dl;
934
935 #ifdef CONFIG_FAIR_GROUP_SCHED
936 /* list of leaf cfs_rq on this CPU: */
937 struct list_head leaf_cfs_rq_list;
938 struct list_head *tmp_alone_branch;
939 #endif /* CONFIG_FAIR_GROUP_SCHED */
940
941 /*
942 * This is part of a global counter where only the total sum
943 * over all CPUs matters. A task can increase this counter on
944 * one CPU and if it got migrated afterwards it may decrease
945 * it on another CPU. Always updated under the runqueue lock:
946 */
947 unsigned long nr_uninterruptible;
948
949 struct task_struct __rcu *curr;
950 struct task_struct *idle;
951 struct task_struct *stop;
952 unsigned long next_balance;
953 struct mm_struct *prev_mm;
954
955 unsigned int clock_update_flags;
956 u64 clock;
957 /* Ensure that all clocks are in the same cache line */
958 u64 clock_task ____cacheline_aligned;
959 u64 clock_pelt;
960 unsigned long lost_idle_time;
961
962 atomic_t nr_iowait;
963
964 #ifdef CONFIG_MEMBARRIER
965 int membarrier_state;
966 #endif
967
968 #ifdef CONFIG_SMP
969 struct root_domain *rd;
970 struct sched_domain __rcu *sd;
971
972 unsigned long cpu_capacity;
973 unsigned long cpu_capacity_orig;
974
975 struct callback_head *balance_callback;
976
977 unsigned char nohz_idle_balance;
978 unsigned char idle_balance;
979
980 unsigned long misfit_task_load;
981
982 /* For active balancing */
983 int active_balance;
984 int push_cpu;
985 struct cpu_stop_work active_balance_work;
986
987 /* CPU of this runqueue: */
988 int cpu;
989 int online;
990
991 struct list_head cfs_tasks;
992
993 struct sched_avg avg_rt;
994 struct sched_avg avg_dl;
995 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
996 struct sched_avg avg_irq;
997 #endif
998 #ifdef CONFIG_SCHED_THERMAL_PRESSURE
999 struct sched_avg avg_thermal;
1000 #endif
1001 u64 idle_stamp;
1002 u64 avg_idle;
1003
1004 /* This is used to determine avg_idle's max value */
1005 u64 max_idle_balance_cost;
1006 #endif /* CONFIG_SMP */
1007
1008 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1009 u64 prev_irq_time;
1010 #endif
1011 #ifdef CONFIG_PARAVIRT
1012 u64 prev_steal_time;
1013 #endif
1014 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
1015 u64 prev_steal_time_rq;
1016 #endif
1017
1018 /* calc_load related fields */
1019 unsigned long calc_load_update;
1020 long calc_load_active;
1021
1022 #ifdef CONFIG_SCHED_HRTICK
1023 #ifdef CONFIG_SMP
1024 call_single_data_t hrtick_csd;
1025 #endif
1026 struct hrtimer hrtick_timer;
1027 #endif
1028
1029 #ifdef CONFIG_SCHEDSTATS
1030 /* latency stats */
1031 struct sched_info rq_sched_info;
1032 unsigned long long rq_cpu_time;
1033 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1034
1035 /* sys_sched_yield() stats */
1036 unsigned int yld_count;
1037
1038 /* schedule() stats */
1039 unsigned int sched_count;
1040 unsigned int sched_goidle;
1041
1042 /* try_to_wake_up() stats */
1043 unsigned int ttwu_count;
1044 unsigned int ttwu_local;
1045 #endif
1046
1047 #ifdef CONFIG_CPU_IDLE
1048 /* Must be inspected within a rcu lock section */
1049 struct cpuidle_state *idle_state;
1050 #endif
1051 };
1052
1053 #ifdef CONFIG_FAIR_GROUP_SCHED
1054
1055 /* CPU runqueue to which this cfs_rq is attached */
rq_of(struct cfs_rq * cfs_rq)1056 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1057 {
1058 return cfs_rq->rq;
1059 }
1060
1061 #else
1062
rq_of(struct cfs_rq * cfs_rq)1063 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1064 {
1065 return container_of(cfs_rq, struct rq, cfs);
1066 }
1067 #endif
1068
cpu_of(struct rq * rq)1069 static inline int cpu_of(struct rq *rq)
1070 {
1071 #ifdef CONFIG_SMP
1072 return rq->cpu;
1073 #else
1074 return 0;
1075 #endif
1076 }
1077
1078
1079 #ifdef CONFIG_SCHED_SMT
1080 extern void __update_idle_core(struct rq *rq);
1081
update_idle_core(struct rq * rq)1082 static inline void update_idle_core(struct rq *rq)
1083 {
1084 if (static_branch_unlikely(&sched_smt_present))
1085 __update_idle_core(rq);
1086 }
1087
1088 #else
update_idle_core(struct rq * rq)1089 static inline void update_idle_core(struct rq *rq) { }
1090 #endif
1091
1092 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1093
1094 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
1095 #define this_rq() this_cpu_ptr(&runqueues)
1096 #define task_rq(p) cpu_rq(task_cpu(p))
1097 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
1098 #define raw_rq() raw_cpu_ptr(&runqueues)
1099
1100 extern void update_rq_clock(struct rq *rq);
1101
__rq_clock_broken(struct rq * rq)1102 static inline u64 __rq_clock_broken(struct rq *rq)
1103 {
1104 return READ_ONCE(rq->clock);
1105 }
1106
1107 /*
1108 * rq::clock_update_flags bits
1109 *
1110 * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1111 * call to __schedule(). This is an optimisation to avoid
1112 * neighbouring rq clock updates.
1113 *
1114 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1115 * in effect and calls to update_rq_clock() are being ignored.
1116 *
1117 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1118 * made to update_rq_clock() since the last time rq::lock was pinned.
1119 *
1120 * If inside of __schedule(), clock_update_flags will have been
1121 * shifted left (a left shift is a cheap operation for the fast path
1122 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1123 *
1124 * if (rq-clock_update_flags >= RQCF_UPDATED)
1125 *
1126 * to check if %RQCF_UPADTED is set. It'll never be shifted more than
1127 * one position though, because the next rq_unpin_lock() will shift it
1128 * back.
1129 */
1130 #define RQCF_REQ_SKIP 0x01
1131 #define RQCF_ACT_SKIP 0x02
1132 #define RQCF_UPDATED 0x04
1133
assert_clock_updated(struct rq * rq)1134 static inline void assert_clock_updated(struct rq *rq)
1135 {
1136 /*
1137 * The only reason for not seeing a clock update since the
1138 * last rq_pin_lock() is if we're currently skipping updates.
1139 */
1140 SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1141 }
1142
rq_clock(struct rq * rq)1143 static inline u64 rq_clock(struct rq *rq)
1144 {
1145 lockdep_assert_held(&rq->lock);
1146 assert_clock_updated(rq);
1147
1148 return rq->clock;
1149 }
1150
rq_clock_task(struct rq * rq)1151 static inline u64 rq_clock_task(struct rq *rq)
1152 {
1153 lockdep_assert_held(&rq->lock);
1154 assert_clock_updated(rq);
1155
1156 return rq->clock_task;
1157 }
1158
1159 /**
1160 * By default the decay is the default pelt decay period.
1161 * The decay shift can change the decay period in
1162 * multiples of 32.
1163 * Decay shift Decay period(ms)
1164 * 0 32
1165 * 1 64
1166 * 2 128
1167 * 3 256
1168 * 4 512
1169 */
1170 extern int sched_thermal_decay_shift;
1171
rq_clock_thermal(struct rq * rq)1172 static inline u64 rq_clock_thermal(struct rq *rq)
1173 {
1174 return rq_clock_task(rq) >> sched_thermal_decay_shift;
1175 }
1176
rq_clock_skip_update(struct rq * rq)1177 static inline void rq_clock_skip_update(struct rq *rq)
1178 {
1179 lockdep_assert_held(&rq->lock);
1180 rq->clock_update_flags |= RQCF_REQ_SKIP;
1181 }
1182
1183 /*
1184 * See rt task throttling, which is the only time a skip
1185 * request is cancelled.
1186 */
rq_clock_cancel_skipupdate(struct rq * rq)1187 static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1188 {
1189 lockdep_assert_held(&rq->lock);
1190 rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1191 }
1192
1193 struct rq_flags {
1194 unsigned long flags;
1195 struct pin_cookie cookie;
1196 #ifdef CONFIG_SCHED_DEBUG
1197 /*
1198 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1199 * current pin context is stashed here in case it needs to be
1200 * restored in rq_repin_lock().
1201 */
1202 unsigned int clock_update_flags;
1203 #endif
1204 };
1205
1206 /*
1207 * Lockdep annotation that avoids accidental unlocks; it's like a
1208 * sticky/continuous lockdep_assert_held().
1209 *
1210 * This avoids code that has access to 'struct rq *rq' (basically everything in
1211 * the scheduler) from accidentally unlocking the rq if they do not also have a
1212 * copy of the (on-stack) 'struct rq_flags rf'.
1213 *
1214 * Also see Documentation/locking/lockdep-design.rst.
1215 */
rq_pin_lock(struct rq * rq,struct rq_flags * rf)1216 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1217 {
1218 rf->cookie = lockdep_pin_lock(&rq->lock);
1219
1220 #ifdef CONFIG_SCHED_DEBUG
1221 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1222 rf->clock_update_flags = 0;
1223 #endif
1224 }
1225
rq_unpin_lock(struct rq * rq,struct rq_flags * rf)1226 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1227 {
1228 #ifdef CONFIG_SCHED_DEBUG
1229 if (rq->clock_update_flags > RQCF_ACT_SKIP)
1230 rf->clock_update_flags = RQCF_UPDATED;
1231 #endif
1232
1233 lockdep_unpin_lock(&rq->lock, rf->cookie);
1234 }
1235
rq_repin_lock(struct rq * rq,struct rq_flags * rf)1236 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1237 {
1238 lockdep_repin_lock(&rq->lock, rf->cookie);
1239
1240 #ifdef CONFIG_SCHED_DEBUG
1241 /*
1242 * Restore the value we stashed in @rf for this pin context.
1243 */
1244 rq->clock_update_flags |= rf->clock_update_flags;
1245 #endif
1246 }
1247
1248 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1249 __acquires(rq->lock);
1250
1251 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1252 __acquires(p->pi_lock)
1253 __acquires(rq->lock);
1254
__task_rq_unlock(struct rq * rq,struct rq_flags * rf)1255 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1256 __releases(rq->lock)
1257 {
1258 rq_unpin_lock(rq, rf);
1259 raw_spin_unlock(&rq->lock);
1260 }
1261
1262 static inline void
task_rq_unlock(struct rq * rq,struct task_struct * p,struct rq_flags * rf)1263 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1264 __releases(rq->lock)
1265 __releases(p->pi_lock)
1266 {
1267 rq_unpin_lock(rq, rf);
1268 raw_spin_unlock(&rq->lock);
1269 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1270 }
1271
1272 static inline void
rq_lock_irqsave(struct rq * rq,struct rq_flags * rf)1273 rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1274 __acquires(rq->lock)
1275 {
1276 raw_spin_lock_irqsave(&rq->lock, rf->flags);
1277 rq_pin_lock(rq, rf);
1278 }
1279
1280 static inline void
rq_lock_irq(struct rq * rq,struct rq_flags * rf)1281 rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1282 __acquires(rq->lock)
1283 {
1284 raw_spin_lock_irq(&rq->lock);
1285 rq_pin_lock(rq, rf);
1286 }
1287
1288 static inline void
rq_lock(struct rq * rq,struct rq_flags * rf)1289 rq_lock(struct rq *rq, struct rq_flags *rf)
1290 __acquires(rq->lock)
1291 {
1292 raw_spin_lock(&rq->lock);
1293 rq_pin_lock(rq, rf);
1294 }
1295
1296 static inline void
rq_relock(struct rq * rq,struct rq_flags * rf)1297 rq_relock(struct rq *rq, struct rq_flags *rf)
1298 __acquires(rq->lock)
1299 {
1300 raw_spin_lock(&rq->lock);
1301 rq_repin_lock(rq, rf);
1302 }
1303
1304 static inline void
rq_unlock_irqrestore(struct rq * rq,struct rq_flags * rf)1305 rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1306 __releases(rq->lock)
1307 {
1308 rq_unpin_lock(rq, rf);
1309 raw_spin_unlock_irqrestore(&rq->lock, rf->flags);
1310 }
1311
1312 static inline void
rq_unlock_irq(struct rq * rq,struct rq_flags * rf)1313 rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1314 __releases(rq->lock)
1315 {
1316 rq_unpin_lock(rq, rf);
1317 raw_spin_unlock_irq(&rq->lock);
1318 }
1319
1320 static inline void
rq_unlock(struct rq * rq,struct rq_flags * rf)1321 rq_unlock(struct rq *rq, struct rq_flags *rf)
1322 __releases(rq->lock)
1323 {
1324 rq_unpin_lock(rq, rf);
1325 raw_spin_unlock(&rq->lock);
1326 }
1327
1328 static inline struct rq *
this_rq_lock_irq(struct rq_flags * rf)1329 this_rq_lock_irq(struct rq_flags *rf)
1330 __acquires(rq->lock)
1331 {
1332 struct rq *rq;
1333
1334 local_irq_disable();
1335 rq = this_rq();
1336 rq_lock(rq, rf);
1337 return rq;
1338 }
1339
1340 #ifdef CONFIG_NUMA
1341 enum numa_topology_type {
1342 NUMA_DIRECT,
1343 NUMA_GLUELESS_MESH,
1344 NUMA_BACKPLANE,
1345 };
1346 extern enum numa_topology_type sched_numa_topology_type;
1347 extern int sched_max_numa_distance;
1348 extern bool find_numa_distance(int distance);
1349 extern void sched_init_numa(void);
1350 extern void sched_domains_numa_masks_set(unsigned int cpu);
1351 extern void sched_domains_numa_masks_clear(unsigned int cpu);
1352 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
1353 #else
sched_init_numa(void)1354 static inline void sched_init_numa(void) { }
sched_domains_numa_masks_set(unsigned int cpu)1355 static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
sched_domains_numa_masks_clear(unsigned int cpu)1356 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
sched_numa_find_closest(const struct cpumask * cpus,int cpu)1357 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1358 {
1359 return nr_cpu_ids;
1360 }
1361 #endif
1362
1363 #ifdef CONFIG_NUMA_BALANCING
1364 /* The regions in numa_faults array from task_struct */
1365 enum numa_faults_stats {
1366 NUMA_MEM = 0,
1367 NUMA_CPU,
1368 NUMA_MEMBUF,
1369 NUMA_CPUBUF
1370 };
1371 extern void sched_setnuma(struct task_struct *p, int node);
1372 extern int migrate_task_to(struct task_struct *p, int cpu);
1373 extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1374 int cpu, int scpu);
1375 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1376 #else
1377 static inline void
init_numa_balancing(unsigned long clone_flags,struct task_struct * p)1378 init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1379 {
1380 }
1381 #endif /* CONFIG_NUMA_BALANCING */
1382
1383 #ifdef CONFIG_SMP
1384
1385 static inline void
queue_balance_callback(struct rq * rq,struct callback_head * head,void (* func)(struct rq * rq))1386 queue_balance_callback(struct rq *rq,
1387 struct callback_head *head,
1388 void (*func)(struct rq *rq))
1389 {
1390 lockdep_assert_held(&rq->lock);
1391
1392 if (unlikely(head->next))
1393 return;
1394
1395 head->func = (void (*)(struct callback_head *))func;
1396 head->next = rq->balance_callback;
1397 rq->balance_callback = head;
1398 }
1399
1400 #define rcu_dereference_check_sched_domain(p) \
1401 rcu_dereference_check((p), \
1402 lockdep_is_held(&sched_domains_mutex))
1403
1404 /*
1405 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1406 * See destroy_sched_domains: call_rcu for details.
1407 *
1408 * The domain tree of any CPU may only be accessed from within
1409 * preempt-disabled sections.
1410 */
1411 #define for_each_domain(cpu, __sd) \
1412 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1413 __sd; __sd = __sd->parent)
1414
1415 /**
1416 * highest_flag_domain - Return highest sched_domain containing flag.
1417 * @cpu: The CPU whose highest level of sched domain is to
1418 * be returned.
1419 * @flag: The flag to check for the highest sched_domain
1420 * for the given CPU.
1421 *
1422 * Returns the highest sched_domain of a CPU which contains the given flag.
1423 */
highest_flag_domain(int cpu,int flag)1424 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1425 {
1426 struct sched_domain *sd, *hsd = NULL;
1427
1428 for_each_domain(cpu, sd) {
1429 if (!(sd->flags & flag))
1430 break;
1431 hsd = sd;
1432 }
1433
1434 return hsd;
1435 }
1436
lowest_flag_domain(int cpu,int flag)1437 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1438 {
1439 struct sched_domain *sd;
1440
1441 for_each_domain(cpu, sd) {
1442 if (sd->flags & flag)
1443 break;
1444 }
1445
1446 return sd;
1447 }
1448
1449 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
1450 DECLARE_PER_CPU(int, sd_llc_size);
1451 DECLARE_PER_CPU(int, sd_llc_id);
1452 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
1453 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
1454 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
1455 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
1456 extern struct static_key_false sched_asym_cpucapacity;
1457
1458 struct sched_group_capacity {
1459 atomic_t ref;
1460 /*
1461 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1462 * for a single CPU.
1463 */
1464 unsigned long capacity;
1465 unsigned long min_capacity; /* Min per-CPU capacity in group */
1466 unsigned long max_capacity; /* Max per-CPU capacity in group */
1467 unsigned long next_update;
1468 int imbalance; /* XXX unrelated to capacity but shared group state */
1469
1470 #ifdef CONFIG_SCHED_DEBUG
1471 int id;
1472 #endif
1473
1474 unsigned long cpumask[]; /* Balance mask */
1475 };
1476
1477 struct sched_group {
1478 struct sched_group *next; /* Must be a circular list */
1479 atomic_t ref;
1480
1481 unsigned int group_weight;
1482 struct sched_group_capacity *sgc;
1483 int asym_prefer_cpu; /* CPU of highest priority in group */
1484
1485 /*
1486 * The CPUs this group covers.
1487 *
1488 * NOTE: this field is variable length. (Allocated dynamically
1489 * by attaching extra space to the end of the structure,
1490 * depending on how many CPUs the kernel has booted up with)
1491 */
1492 unsigned long cpumask[];
1493 };
1494
sched_group_span(struct sched_group * sg)1495 static inline struct cpumask *sched_group_span(struct sched_group *sg)
1496 {
1497 return to_cpumask(sg->cpumask);
1498 }
1499
1500 /*
1501 * See build_balance_mask().
1502 */
group_balance_mask(struct sched_group * sg)1503 static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1504 {
1505 return to_cpumask(sg->sgc->cpumask);
1506 }
1507
1508 /**
1509 * group_first_cpu - Returns the first CPU in the cpumask of a sched_group.
1510 * @group: The group whose first CPU is to be returned.
1511 */
group_first_cpu(struct sched_group * group)1512 static inline unsigned int group_first_cpu(struct sched_group *group)
1513 {
1514 return cpumask_first(sched_group_span(group));
1515 }
1516
1517 extern int group_balance_cpu(struct sched_group *sg);
1518
1519 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
1520 void register_sched_domain_sysctl(void);
1521 void dirty_sched_domain_sysctl(int cpu);
1522 void unregister_sched_domain_sysctl(void);
1523 #else
register_sched_domain_sysctl(void)1524 static inline void register_sched_domain_sysctl(void)
1525 {
1526 }
dirty_sched_domain_sysctl(int cpu)1527 static inline void dirty_sched_domain_sysctl(int cpu)
1528 {
1529 }
unregister_sched_domain_sysctl(void)1530 static inline void unregister_sched_domain_sysctl(void)
1531 {
1532 }
1533 #endif
1534
1535 extern void flush_smp_call_function_from_idle(void);
1536
1537 #else /* !CONFIG_SMP: */
flush_smp_call_function_from_idle(void)1538 static inline void flush_smp_call_function_from_idle(void) { }
1539 #endif
1540
1541 #include "stats.h"
1542 #include "autogroup.h"
1543
1544 #ifdef CONFIG_CGROUP_SCHED
1545
1546 /*
1547 * Return the group to which this tasks belongs.
1548 *
1549 * We cannot use task_css() and friends because the cgroup subsystem
1550 * changes that value before the cgroup_subsys::attach() method is called,
1551 * therefore we cannot pin it and might observe the wrong value.
1552 *
1553 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1554 * core changes this before calling sched_move_task().
1555 *
1556 * Instead we use a 'copy' which is updated from sched_move_task() while
1557 * holding both task_struct::pi_lock and rq::lock.
1558 */
task_group(struct task_struct * p)1559 static inline struct task_group *task_group(struct task_struct *p)
1560 {
1561 return p->sched_task_group;
1562 }
1563
1564 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
set_task_rq(struct task_struct * p,unsigned int cpu)1565 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1566 {
1567 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1568 struct task_group *tg = task_group(p);
1569 #endif
1570
1571 #ifdef CONFIG_FAIR_GROUP_SCHED
1572 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
1573 p->se.cfs_rq = tg->cfs_rq[cpu];
1574 p->se.parent = tg->se[cpu];
1575 #endif
1576
1577 #ifdef CONFIG_RT_GROUP_SCHED
1578 p->rt.rt_rq = tg->rt_rq[cpu];
1579 p->rt.parent = tg->rt_se[cpu];
1580 #endif
1581 }
1582
1583 #else /* CONFIG_CGROUP_SCHED */
1584
set_task_rq(struct task_struct * p,unsigned int cpu)1585 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
task_group(struct task_struct * p)1586 static inline struct task_group *task_group(struct task_struct *p)
1587 {
1588 return NULL;
1589 }
1590
1591 #endif /* CONFIG_CGROUP_SCHED */
1592
__set_task_cpu(struct task_struct * p,unsigned int cpu)1593 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1594 {
1595 set_task_rq(p, cpu);
1596 #ifdef CONFIG_SMP
1597 /*
1598 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1599 * successfully executed on another CPU. We must ensure that updates of
1600 * per-task data have been completed by this moment.
1601 */
1602 smp_wmb();
1603 #ifdef CONFIG_THREAD_INFO_IN_TASK
1604 WRITE_ONCE(p->cpu, cpu);
1605 #else
1606 WRITE_ONCE(task_thread_info(p)->cpu, cpu);
1607 #endif
1608 p->wake_cpu = cpu;
1609 #endif
1610 }
1611
1612 /*
1613 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1614 */
1615 #ifdef CONFIG_SCHED_DEBUG
1616 # include <linux/static_key.h>
1617 # define const_debug __read_mostly
1618 #else
1619 # define const_debug const
1620 #endif
1621
1622 #define SCHED_FEAT(name, enabled) \
1623 __SCHED_FEAT_##name ,
1624
1625 enum {
1626 #include "features.h"
1627 __SCHED_FEAT_NR,
1628 };
1629
1630 #undef SCHED_FEAT
1631
1632 #ifdef CONFIG_SCHED_DEBUG
1633
1634 /*
1635 * To support run-time toggling of sched features, all the translation units
1636 * (but core.c) reference the sysctl_sched_features defined in core.c.
1637 */
1638 extern const_debug unsigned int sysctl_sched_features;
1639
1640 #ifdef CONFIG_JUMP_LABEL
1641 #define SCHED_FEAT(name, enabled) \
1642 static __always_inline bool static_branch_##name(struct static_key *key) \
1643 { \
1644 return static_key_##enabled(key); \
1645 }
1646
1647 #include "features.h"
1648 #undef SCHED_FEAT
1649
1650 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1651 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1652
1653 #else /* !CONFIG_JUMP_LABEL */
1654
1655 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1656
1657 #endif /* CONFIG_JUMP_LABEL */
1658
1659 #else /* !SCHED_DEBUG */
1660
1661 /*
1662 * Each translation unit has its own copy of sysctl_sched_features to allow
1663 * constants propagation at compile time and compiler optimization based on
1664 * features default.
1665 */
1666 #define SCHED_FEAT(name, enabled) \
1667 (1UL << __SCHED_FEAT_##name) * enabled |
1668 static const_debug __maybe_unused unsigned int sysctl_sched_features =
1669 #include "features.h"
1670 0;
1671 #undef SCHED_FEAT
1672
1673 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1674
1675 #endif /* SCHED_DEBUG */
1676
1677 extern struct static_key_false sched_numa_balancing;
1678 extern struct static_key_false sched_schedstats;
1679
global_rt_period(void)1680 static inline u64 global_rt_period(void)
1681 {
1682 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1683 }
1684
global_rt_runtime(void)1685 static inline u64 global_rt_runtime(void)
1686 {
1687 if (sysctl_sched_rt_runtime < 0)
1688 return RUNTIME_INF;
1689
1690 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1691 }
1692
task_current(struct rq * rq,struct task_struct * p)1693 static inline int task_current(struct rq *rq, struct task_struct *p)
1694 {
1695 return rq->curr == p;
1696 }
1697
task_running(struct rq * rq,struct task_struct * p)1698 static inline int task_running(struct rq *rq, struct task_struct *p)
1699 {
1700 #ifdef CONFIG_SMP
1701 return p->on_cpu;
1702 #else
1703 return task_current(rq, p);
1704 #endif
1705 }
1706
task_on_rq_queued(struct task_struct * p)1707 static inline int task_on_rq_queued(struct task_struct *p)
1708 {
1709 return p->on_rq == TASK_ON_RQ_QUEUED;
1710 }
1711
task_on_rq_migrating(struct task_struct * p)1712 static inline int task_on_rq_migrating(struct task_struct *p)
1713 {
1714 return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
1715 }
1716
1717 /*
1718 * wake flags
1719 */
1720 #define WF_SYNC 0x01 /* Waker goes to sleep after wakeup */
1721 #define WF_FORK 0x02 /* Child wakeup after fork */
1722 #define WF_MIGRATED 0x04 /* Internal use, task got migrated */
1723 #define WF_ON_CPU 0x08 /* Wakee is on_cpu */
1724
1725 /*
1726 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1727 * of tasks with abnormal "nice" values across CPUs the contribution that
1728 * each task makes to its run queue's load is weighted according to its
1729 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1730 * scaled version of the new time slice allocation that they receive on time
1731 * slice expiry etc.
1732 */
1733
1734 #define WEIGHT_IDLEPRIO 3
1735 #define WMULT_IDLEPRIO 1431655765
1736
1737 extern const int sched_prio_to_weight[40];
1738 extern const u32 sched_prio_to_wmult[40];
1739
1740 /*
1741 * {de,en}queue flags:
1742 *
1743 * DEQUEUE_SLEEP - task is no longer runnable
1744 * ENQUEUE_WAKEUP - task just became runnable
1745 *
1746 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1747 * are in a known state which allows modification. Such pairs
1748 * should preserve as much state as possible.
1749 *
1750 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1751 * in the runqueue.
1752 *
1753 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
1754 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
1755 * ENQUEUE_MIGRATED - the task was migrated during wakeup
1756 *
1757 */
1758
1759 #define DEQUEUE_SLEEP 0x01
1760 #define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */
1761 #define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */
1762 #define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */
1763
1764 #define ENQUEUE_WAKEUP 0x01
1765 #define ENQUEUE_RESTORE 0x02
1766 #define ENQUEUE_MOVE 0x04
1767 #define ENQUEUE_NOCLOCK 0x08
1768
1769 #define ENQUEUE_HEAD 0x10
1770 #define ENQUEUE_REPLENISH 0x20
1771 #ifdef CONFIG_SMP
1772 #define ENQUEUE_MIGRATED 0x40
1773 #else
1774 #define ENQUEUE_MIGRATED 0x00
1775 #endif
1776
1777 #define RETRY_TASK ((void *)-1UL)
1778
1779 struct sched_class {
1780
1781 #ifdef CONFIG_UCLAMP_TASK
1782 int uclamp_enabled;
1783 #endif
1784
1785 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1786 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1787 void (*yield_task) (struct rq *rq);
1788 bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
1789
1790 void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
1791
1792 struct task_struct *(*pick_next_task)(struct rq *rq);
1793
1794 void (*put_prev_task)(struct rq *rq, struct task_struct *p);
1795 void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
1796
1797 #ifdef CONFIG_SMP
1798 int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
1799 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1800 void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
1801
1802 void (*task_woken)(struct rq *this_rq, struct task_struct *task);
1803
1804 void (*set_cpus_allowed)(struct task_struct *p,
1805 const struct cpumask *newmask);
1806
1807 void (*rq_online)(struct rq *rq);
1808 void (*rq_offline)(struct rq *rq);
1809 #endif
1810
1811 void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
1812 void (*task_fork)(struct task_struct *p);
1813 void (*task_dead)(struct task_struct *p);
1814
1815 /*
1816 * The switched_from() call is allowed to drop rq->lock, therefore we
1817 * cannot assume the switched_from/switched_to pair is serliazed by
1818 * rq->lock. They are however serialized by p->pi_lock.
1819 */
1820 void (*switched_from)(struct rq *this_rq, struct task_struct *task);
1821 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1822 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1823 int oldprio);
1824
1825 unsigned int (*get_rr_interval)(struct rq *rq,
1826 struct task_struct *task);
1827
1828 void (*update_curr)(struct rq *rq);
1829
1830 #define TASK_SET_GROUP 0
1831 #define TASK_MOVE_GROUP 1
1832
1833 #ifdef CONFIG_FAIR_GROUP_SCHED
1834 void (*task_change_group)(struct task_struct *p, int type);
1835 #endif
1836 } __aligned(STRUCT_ALIGNMENT); /* STRUCT_ALIGN(), vmlinux.lds.h */
1837
put_prev_task(struct rq * rq,struct task_struct * prev)1838 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1839 {
1840 WARN_ON_ONCE(rq->curr != prev);
1841 prev->sched_class->put_prev_task(rq, prev);
1842 }
1843
set_next_task(struct rq * rq,struct task_struct * next)1844 static inline void set_next_task(struct rq *rq, struct task_struct *next)
1845 {
1846 WARN_ON_ONCE(rq->curr != next);
1847 next->sched_class->set_next_task(rq, next, false);
1848 }
1849
1850 /* Defined in include/asm-generic/vmlinux.lds.h */
1851 extern struct sched_class __begin_sched_classes[];
1852 extern struct sched_class __end_sched_classes[];
1853
1854 #define sched_class_highest (__end_sched_classes - 1)
1855 #define sched_class_lowest (__begin_sched_classes - 1)
1856
1857 #define for_class_range(class, _from, _to) \
1858 for (class = (_from); class != (_to); class--)
1859
1860 #define for_each_class(class) \
1861 for_class_range(class, sched_class_highest, sched_class_lowest)
1862
1863 extern const struct sched_class stop_sched_class;
1864 extern const struct sched_class dl_sched_class;
1865 extern const struct sched_class rt_sched_class;
1866 extern const struct sched_class fair_sched_class;
1867 extern const struct sched_class idle_sched_class;
1868
sched_stop_runnable(struct rq * rq)1869 static inline bool sched_stop_runnable(struct rq *rq)
1870 {
1871 return rq->stop && task_on_rq_queued(rq->stop);
1872 }
1873
sched_dl_runnable(struct rq * rq)1874 static inline bool sched_dl_runnable(struct rq *rq)
1875 {
1876 return rq->dl.dl_nr_running > 0;
1877 }
1878
sched_rt_runnable(struct rq * rq)1879 static inline bool sched_rt_runnable(struct rq *rq)
1880 {
1881 return rq->rt.rt_queued > 0;
1882 }
1883
sched_fair_runnable(struct rq * rq)1884 static inline bool sched_fair_runnable(struct rq *rq)
1885 {
1886 return rq->cfs.nr_running > 0;
1887 }
1888
1889 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
1890 extern struct task_struct *pick_next_task_idle(struct rq *rq);
1891
1892 #ifdef CONFIG_SMP
1893
1894 extern void update_group_capacity(struct sched_domain *sd, int cpu);
1895
1896 extern void trigger_load_balance(struct rq *rq);
1897
1898 extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
1899
1900 #endif
1901
1902 #ifdef CONFIG_CPU_IDLE
idle_set_state(struct rq * rq,struct cpuidle_state * idle_state)1903 static inline void idle_set_state(struct rq *rq,
1904 struct cpuidle_state *idle_state)
1905 {
1906 rq->idle_state = idle_state;
1907 }
1908
idle_get_state(struct rq * rq)1909 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1910 {
1911 SCHED_WARN_ON(!rcu_read_lock_held());
1912
1913 return rq->idle_state;
1914 }
1915 #else
idle_set_state(struct rq * rq,struct cpuidle_state * idle_state)1916 static inline void idle_set_state(struct rq *rq,
1917 struct cpuidle_state *idle_state)
1918 {
1919 }
1920
idle_get_state(struct rq * rq)1921 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1922 {
1923 return NULL;
1924 }
1925 #endif
1926
1927 extern void schedule_idle(void);
1928
1929 extern void sysrq_sched_debug_show(void);
1930 extern void sched_init_granularity(void);
1931 extern void update_max_interval(void);
1932
1933 extern void init_sched_dl_class(void);
1934 extern void init_sched_rt_class(void);
1935 extern void init_sched_fair_class(void);
1936
1937 extern void reweight_task(struct task_struct *p, int prio);
1938
1939 extern void resched_curr(struct rq *rq);
1940 extern void resched_cpu(int cpu);
1941
1942 extern struct rt_bandwidth def_rt_bandwidth;
1943 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1944
1945 extern struct dl_bandwidth def_dl_bandwidth;
1946 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
1947 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1948 extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
1949
1950 #define BW_SHIFT 20
1951 #define BW_UNIT (1 << BW_SHIFT)
1952 #define RATIO_SHIFT 8
1953 #define MAX_BW_BITS (64 - BW_SHIFT)
1954 #define MAX_BW ((1ULL << MAX_BW_BITS) - 1)
1955 unsigned long to_ratio(u64 period, u64 runtime);
1956
1957 extern void init_entity_runnable_average(struct sched_entity *se);
1958 extern void post_init_entity_util_avg(struct task_struct *p);
1959
1960 #ifdef CONFIG_NO_HZ_FULL
1961 extern bool sched_can_stop_tick(struct rq *rq);
1962 extern int __init sched_tick_offload_init(void);
1963
1964 /*
1965 * Tick may be needed by tasks in the runqueue depending on their policy and
1966 * requirements. If tick is needed, lets send the target an IPI to kick it out of
1967 * nohz mode if necessary.
1968 */
sched_update_tick_dependency(struct rq * rq)1969 static inline void sched_update_tick_dependency(struct rq *rq)
1970 {
1971 int cpu = cpu_of(rq);
1972
1973 if (!tick_nohz_full_cpu(cpu))
1974 return;
1975
1976 if (sched_can_stop_tick(rq))
1977 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
1978 else
1979 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
1980 }
1981 #else
sched_tick_offload_init(void)1982 static inline int sched_tick_offload_init(void) { return 0; }
sched_update_tick_dependency(struct rq * rq)1983 static inline void sched_update_tick_dependency(struct rq *rq) { }
1984 #endif
1985
add_nr_running(struct rq * rq,unsigned count)1986 static inline void add_nr_running(struct rq *rq, unsigned count)
1987 {
1988 unsigned prev_nr = rq->nr_running;
1989
1990 rq->nr_running = prev_nr + count;
1991 if (trace_sched_update_nr_running_tp_enabled()) {
1992 call_trace_sched_update_nr_running(rq, count);
1993 }
1994
1995 #ifdef CONFIG_SMP
1996 if (prev_nr < 2 && rq->nr_running >= 2) {
1997 if (!READ_ONCE(rq->rd->overload))
1998 WRITE_ONCE(rq->rd->overload, 1);
1999 }
2000 #endif
2001
2002 sched_update_tick_dependency(rq);
2003 }
2004
sub_nr_running(struct rq * rq,unsigned count)2005 static inline void sub_nr_running(struct rq *rq, unsigned count)
2006 {
2007 rq->nr_running -= count;
2008 if (trace_sched_update_nr_running_tp_enabled()) {
2009 call_trace_sched_update_nr_running(rq, -count);
2010 }
2011
2012 /* Check if we still need preemption */
2013 sched_update_tick_dependency(rq);
2014 }
2015
2016 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
2017 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
2018
2019 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
2020
2021 extern const_debug unsigned int sysctl_sched_nr_migrate;
2022 extern const_debug unsigned int sysctl_sched_migration_cost;
2023
2024 #ifdef CONFIG_SCHED_HRTICK
2025
2026 /*
2027 * Use hrtick when:
2028 * - enabled by features
2029 * - hrtimer is actually high res
2030 */
hrtick_enabled(struct rq * rq)2031 static inline int hrtick_enabled(struct rq *rq)
2032 {
2033 if (!sched_feat(HRTICK))
2034 return 0;
2035 if (!cpu_active(cpu_of(rq)))
2036 return 0;
2037 return hrtimer_is_hres_active(&rq->hrtick_timer);
2038 }
2039
2040 void hrtick_start(struct rq *rq, u64 delay);
2041
2042 #else
2043
hrtick_enabled(struct rq * rq)2044 static inline int hrtick_enabled(struct rq *rq)
2045 {
2046 return 0;
2047 }
2048
2049 #endif /* CONFIG_SCHED_HRTICK */
2050
2051 #ifndef arch_scale_freq_tick
2052 static __always_inline
arch_scale_freq_tick(void)2053 void arch_scale_freq_tick(void)
2054 {
2055 }
2056 #endif
2057
2058 #ifndef arch_scale_freq_capacity
2059 /**
2060 * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
2061 * @cpu: the CPU in question.
2062 *
2063 * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
2064 *
2065 * f_curr
2066 * ------ * SCHED_CAPACITY_SCALE
2067 * f_max
2068 */
2069 static __always_inline
arch_scale_freq_capacity(int cpu)2070 unsigned long arch_scale_freq_capacity(int cpu)
2071 {
2072 return SCHED_CAPACITY_SCALE;
2073 }
2074 #endif
2075
2076 #ifdef CONFIG_SMP
2077 #ifdef CONFIG_PREEMPTION
2078
2079 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
2080
2081 /*
2082 * fair double_lock_balance: Safely acquires both rq->locks in a fair
2083 * way at the expense of forcing extra atomic operations in all
2084 * invocations. This assures that the double_lock is acquired using the
2085 * same underlying policy as the spinlock_t on this architecture, which
2086 * reduces latency compared to the unfair variant below. However, it
2087 * also adds more overhead and therefore may reduce throughput.
2088 */
_double_lock_balance(struct rq * this_rq,struct rq * busiest)2089 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2090 __releases(this_rq->lock)
2091 __acquires(busiest->lock)
2092 __acquires(this_rq->lock)
2093 {
2094 raw_spin_unlock(&this_rq->lock);
2095 double_rq_lock(this_rq, busiest);
2096
2097 return 1;
2098 }
2099
2100 #else
2101 /*
2102 * Unfair double_lock_balance: Optimizes throughput at the expense of
2103 * latency by eliminating extra atomic operations when the locks are
2104 * already in proper order on entry. This favors lower CPU-ids and will
2105 * grant the double lock to lower CPUs over higher ids under contention,
2106 * regardless of entry order into the function.
2107 */
_double_lock_balance(struct rq * this_rq,struct rq * busiest)2108 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2109 __releases(this_rq->lock)
2110 __acquires(busiest->lock)
2111 __acquires(this_rq->lock)
2112 {
2113 int ret = 0;
2114
2115 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
2116 if (busiest < this_rq) {
2117 raw_spin_unlock(&this_rq->lock);
2118 raw_spin_lock(&busiest->lock);
2119 raw_spin_lock_nested(&this_rq->lock,
2120 SINGLE_DEPTH_NESTING);
2121 ret = 1;
2122 } else
2123 raw_spin_lock_nested(&busiest->lock,
2124 SINGLE_DEPTH_NESTING);
2125 }
2126 return ret;
2127 }
2128
2129 #endif /* CONFIG_PREEMPTION */
2130
2131 /*
2132 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2133 */
double_lock_balance(struct rq * this_rq,struct rq * busiest)2134 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2135 {
2136 if (unlikely(!irqs_disabled())) {
2137 /* printk() doesn't work well under rq->lock */
2138 raw_spin_unlock(&this_rq->lock);
2139 BUG_ON(1);
2140 }
2141
2142 return _double_lock_balance(this_rq, busiest);
2143 }
2144
double_unlock_balance(struct rq * this_rq,struct rq * busiest)2145 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2146 __releases(busiest->lock)
2147 {
2148 raw_spin_unlock(&busiest->lock);
2149 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
2150 }
2151
double_lock(spinlock_t * l1,spinlock_t * l2)2152 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
2153 {
2154 if (l1 > l2)
2155 swap(l1, l2);
2156
2157 spin_lock(l1);
2158 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2159 }
2160
double_lock_irq(spinlock_t * l1,spinlock_t * l2)2161 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
2162 {
2163 if (l1 > l2)
2164 swap(l1, l2);
2165
2166 spin_lock_irq(l1);
2167 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2168 }
2169
double_raw_lock(raw_spinlock_t * l1,raw_spinlock_t * l2)2170 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2171 {
2172 if (l1 > l2)
2173 swap(l1, l2);
2174
2175 raw_spin_lock(l1);
2176 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2177 }
2178
2179 /*
2180 * double_rq_lock - safely lock two runqueues
2181 *
2182 * Note this does not disable interrupts like task_rq_lock,
2183 * you need to do so manually before calling.
2184 */
double_rq_lock(struct rq * rq1,struct rq * rq2)2185 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2186 __acquires(rq1->lock)
2187 __acquires(rq2->lock)
2188 {
2189 BUG_ON(!irqs_disabled());
2190 if (rq1 == rq2) {
2191 raw_spin_lock(&rq1->lock);
2192 __acquire(rq2->lock); /* Fake it out ;) */
2193 } else {
2194 if (rq1 < rq2) {
2195 raw_spin_lock(&rq1->lock);
2196 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2197 } else {
2198 raw_spin_lock(&rq2->lock);
2199 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2200 }
2201 }
2202 }
2203
2204 /*
2205 * double_rq_unlock - safely unlock two runqueues
2206 *
2207 * Note this does not restore interrupts like task_rq_unlock,
2208 * you need to do so manually after calling.
2209 */
double_rq_unlock(struct rq * rq1,struct rq * rq2)2210 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2211 __releases(rq1->lock)
2212 __releases(rq2->lock)
2213 {
2214 raw_spin_unlock(&rq1->lock);
2215 if (rq1 != rq2)
2216 raw_spin_unlock(&rq2->lock);
2217 else
2218 __release(rq2->lock);
2219 }
2220
2221 extern void set_rq_online (struct rq *rq);
2222 extern void set_rq_offline(struct rq *rq);
2223 extern bool sched_smp_initialized;
2224
2225 #else /* CONFIG_SMP */
2226
2227 /*
2228 * double_rq_lock - safely lock two runqueues
2229 *
2230 * Note this does not disable interrupts like task_rq_lock,
2231 * you need to do so manually before calling.
2232 */
double_rq_lock(struct rq * rq1,struct rq * rq2)2233 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2234 __acquires(rq1->lock)
2235 __acquires(rq2->lock)
2236 {
2237 BUG_ON(!irqs_disabled());
2238 BUG_ON(rq1 != rq2);
2239 raw_spin_lock(&rq1->lock);
2240 __acquire(rq2->lock); /* Fake it out ;) */
2241 }
2242
2243 /*
2244 * double_rq_unlock - safely unlock two runqueues
2245 *
2246 * Note this does not restore interrupts like task_rq_unlock,
2247 * you need to do so manually after calling.
2248 */
double_rq_unlock(struct rq * rq1,struct rq * rq2)2249 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2250 __releases(rq1->lock)
2251 __releases(rq2->lock)
2252 {
2253 BUG_ON(rq1 != rq2);
2254 raw_spin_unlock(&rq1->lock);
2255 __release(rq2->lock);
2256 }
2257
2258 #endif
2259
2260 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2261 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
2262
2263 #ifdef CONFIG_SCHED_DEBUG
2264 extern bool sched_debug_enabled;
2265
2266 extern void print_cfs_stats(struct seq_file *m, int cpu);
2267 extern void print_rt_stats(struct seq_file *m, int cpu);
2268 extern void print_dl_stats(struct seq_file *m, int cpu);
2269 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2270 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2271 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2272 #ifdef CONFIG_NUMA_BALANCING
2273 extern void
2274 show_numa_stats(struct task_struct *p, struct seq_file *m);
2275 extern void
2276 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2277 unsigned long tpf, unsigned long gsf, unsigned long gpf);
2278 #endif /* CONFIG_NUMA_BALANCING */
2279 #endif /* CONFIG_SCHED_DEBUG */
2280
2281 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
2282 extern void init_rt_rq(struct rt_rq *rt_rq);
2283 extern void init_dl_rq(struct dl_rq *dl_rq);
2284
2285 extern void cfs_bandwidth_usage_inc(void);
2286 extern void cfs_bandwidth_usage_dec(void);
2287
2288 #ifdef CONFIG_NO_HZ_COMMON
2289 #define NOHZ_BALANCE_KICK_BIT 0
2290 #define NOHZ_STATS_KICK_BIT 1
2291
2292 #define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT)
2293 #define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT)
2294
2295 #define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK)
2296
2297 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
2298
2299 extern void nohz_balance_exit_idle(struct rq *rq);
2300 #else
nohz_balance_exit_idle(struct rq * rq)2301 static inline void nohz_balance_exit_idle(struct rq *rq) { }
2302 #endif
2303
2304
2305 #ifdef CONFIG_SMP
2306 static inline
__dl_update(struct dl_bw * dl_b,s64 bw)2307 void __dl_update(struct dl_bw *dl_b, s64 bw)
2308 {
2309 struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
2310 int i;
2311
2312 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2313 "sched RCU must be held");
2314 for_each_cpu_and(i, rd->span, cpu_active_mask) {
2315 struct rq *rq = cpu_rq(i);
2316
2317 rq->dl.extra_bw += bw;
2318 }
2319 }
2320 #else
2321 static inline
__dl_update(struct dl_bw * dl_b,s64 bw)2322 void __dl_update(struct dl_bw *dl_b, s64 bw)
2323 {
2324 struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
2325
2326 dl->extra_bw += bw;
2327 }
2328 #endif
2329
2330
2331 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2332 struct irqtime {
2333 u64 total;
2334 u64 tick_delta;
2335 u64 irq_start_time;
2336 struct u64_stats_sync sync;
2337 };
2338
2339 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
2340
2341 /*
2342 * Returns the irqtime minus the softirq time computed by ksoftirqd.
2343 * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime
2344 * and never move forward.
2345 */
irq_time_read(int cpu)2346 static inline u64 irq_time_read(int cpu)
2347 {
2348 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2349 unsigned int seq;
2350 u64 total;
2351
2352 do {
2353 seq = __u64_stats_fetch_begin(&irqtime->sync);
2354 total = irqtime->total;
2355 } while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2356
2357 return total;
2358 }
2359 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2360
2361 #ifdef CONFIG_CPU_FREQ
2362 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
2363
2364 /**
2365 * cpufreq_update_util - Take a note about CPU utilization changes.
2366 * @rq: Runqueue to carry out the update for.
2367 * @flags: Update reason flags.
2368 *
2369 * This function is called by the scheduler on the CPU whose utilization is
2370 * being updated.
2371 *
2372 * It can only be called from RCU-sched read-side critical sections.
2373 *
2374 * The way cpufreq is currently arranged requires it to evaluate the CPU
2375 * performance state (frequency/voltage) on a regular basis to prevent it from
2376 * being stuck in a completely inadequate performance level for too long.
2377 * That is not guaranteed to happen if the updates are only triggered from CFS
2378 * and DL, though, because they may not be coming in if only RT tasks are
2379 * active all the time (or there are RT tasks only).
2380 *
2381 * As a workaround for that issue, this function is called periodically by the
2382 * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
2383 * but that really is a band-aid. Going forward it should be replaced with
2384 * solutions targeted more specifically at RT tasks.
2385 */
cpufreq_update_util(struct rq * rq,unsigned int flags)2386 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2387 {
2388 struct update_util_data *data;
2389
2390 data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2391 cpu_of(rq)));
2392 if (data)
2393 data->func(data, rq_clock(rq), flags);
2394 }
2395 #else
cpufreq_update_util(struct rq * rq,unsigned int flags)2396 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
2397 #endif /* CONFIG_CPU_FREQ */
2398
2399 #ifdef CONFIG_UCLAMP_TASK
2400 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
2401
2402 /**
2403 * uclamp_rq_util_with - clamp @util with @rq and @p effective uclamp values.
2404 * @rq: The rq to clamp against. Must not be NULL.
2405 * @util: The util value to clamp.
2406 * @p: The task to clamp against. Can be NULL if you want to clamp
2407 * against @rq only.
2408 *
2409 * Clamps the passed @util to the max(@rq, @p) effective uclamp values.
2410 *
2411 * If sched_uclamp_used static key is disabled, then just return the util
2412 * without any clamping since uclamp aggregation at the rq level in the fast
2413 * path is disabled, rendering this operation a NOP.
2414 *
2415 * Use uclamp_eff_value() if you don't care about uclamp values at rq level. It
2416 * will return the correct effective uclamp value of the task even if the
2417 * static key is disabled.
2418 */
2419 static __always_inline
uclamp_rq_util_with(struct rq * rq,unsigned long util,struct task_struct * p)2420 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
2421 struct task_struct *p)
2422 {
2423 unsigned long min_util;
2424 unsigned long max_util;
2425
2426 if (!static_branch_likely(&sched_uclamp_used))
2427 return util;
2428
2429 min_util = READ_ONCE(rq->uclamp[UCLAMP_MIN].value);
2430 max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value);
2431
2432 if (p) {
2433 min_util = max(min_util, uclamp_eff_value(p, UCLAMP_MIN));
2434 max_util = max(max_util, uclamp_eff_value(p, UCLAMP_MAX));
2435 }
2436
2437 /*
2438 * Since CPU's {min,max}_util clamps are MAX aggregated considering
2439 * RUNNABLE tasks with _different_ clamps, we can end up with an
2440 * inversion. Fix it now when the clamps are applied.
2441 */
2442 if (unlikely(min_util >= max_util))
2443 return min_util;
2444
2445 return clamp(util, min_util, max_util);
2446 }
2447
2448 /*
2449 * When uclamp is compiled in, the aggregation at rq level is 'turned off'
2450 * by default in the fast path and only gets turned on once userspace performs
2451 * an operation that requires it.
2452 *
2453 * Returns true if userspace opted-in to use uclamp and aggregation at rq level
2454 * hence is active.
2455 */
uclamp_is_used(void)2456 static inline bool uclamp_is_used(void)
2457 {
2458 return static_branch_likely(&sched_uclamp_used);
2459 }
2460 #else /* CONFIG_UCLAMP_TASK */
2461 static inline
uclamp_rq_util_with(struct rq * rq,unsigned long util,struct task_struct * p)2462 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
2463 struct task_struct *p)
2464 {
2465 return util;
2466 }
2467
uclamp_is_used(void)2468 static inline bool uclamp_is_used(void)
2469 {
2470 return false;
2471 }
2472 #endif /* CONFIG_UCLAMP_TASK */
2473
2474 #ifdef arch_scale_freq_capacity
2475 # ifndef arch_scale_freq_invariant
2476 # define arch_scale_freq_invariant() true
2477 # endif
2478 #else
2479 # define arch_scale_freq_invariant() false
2480 #endif
2481
2482 #ifdef CONFIG_SMP
capacity_orig_of(int cpu)2483 static inline unsigned long capacity_orig_of(int cpu)
2484 {
2485 return cpu_rq(cpu)->cpu_capacity_orig;
2486 }
2487 #endif
2488
2489 /**
2490 * enum schedutil_type - CPU utilization type
2491 * @FREQUENCY_UTIL: Utilization used to select frequency
2492 * @ENERGY_UTIL: Utilization used during energy calculation
2493 *
2494 * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
2495 * need to be aggregated differently depending on the usage made of them. This
2496 * enum is used within schedutil_freq_util() to differentiate the types of
2497 * utilization expected by the callers, and adjust the aggregation accordingly.
2498 */
2499 enum schedutil_type {
2500 FREQUENCY_UTIL,
2501 ENERGY_UTIL,
2502 };
2503
2504 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
2505
2506 unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
2507 unsigned long max, enum schedutil_type type,
2508 struct task_struct *p);
2509
cpu_bw_dl(struct rq * rq)2510 static inline unsigned long cpu_bw_dl(struct rq *rq)
2511 {
2512 return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
2513 }
2514
cpu_util_dl(struct rq * rq)2515 static inline unsigned long cpu_util_dl(struct rq *rq)
2516 {
2517 return READ_ONCE(rq->avg_dl.util_avg);
2518 }
2519
cpu_util_cfs(struct rq * rq)2520 static inline unsigned long cpu_util_cfs(struct rq *rq)
2521 {
2522 unsigned long util = READ_ONCE(rq->cfs.avg.util_avg);
2523
2524 if (sched_feat(UTIL_EST)) {
2525 util = max_t(unsigned long, util,
2526 READ_ONCE(rq->cfs.avg.util_est.enqueued));
2527 }
2528
2529 return util;
2530 }
2531
cpu_util_rt(struct rq * rq)2532 static inline unsigned long cpu_util_rt(struct rq *rq)
2533 {
2534 return READ_ONCE(rq->avg_rt.util_avg);
2535 }
2536 #else /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
schedutil_cpu_util(int cpu,unsigned long util_cfs,unsigned long max,enum schedutil_type type,struct task_struct * p)2537 static inline unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
2538 unsigned long max, enum schedutil_type type,
2539 struct task_struct *p)
2540 {
2541 return 0;
2542 }
2543 #endif /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
2544
2545 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
cpu_util_irq(struct rq * rq)2546 static inline unsigned long cpu_util_irq(struct rq *rq)
2547 {
2548 return rq->avg_irq.util_avg;
2549 }
2550
2551 static inline
scale_irq_capacity(unsigned long util,unsigned long irq,unsigned long max)2552 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2553 {
2554 util *= (max - irq);
2555 util /= max;
2556
2557 return util;
2558
2559 }
2560 #else
cpu_util_irq(struct rq * rq)2561 static inline unsigned long cpu_util_irq(struct rq *rq)
2562 {
2563 return 0;
2564 }
2565
2566 static inline
scale_irq_capacity(unsigned long util,unsigned long irq,unsigned long max)2567 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2568 {
2569 return util;
2570 }
2571 #endif
2572
2573 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2574
2575 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
2576
2577 DECLARE_STATIC_KEY_FALSE(sched_energy_present);
2578
sched_energy_enabled(void)2579 static inline bool sched_energy_enabled(void)
2580 {
2581 return static_branch_unlikely(&sched_energy_present);
2582 }
2583
2584 #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
2585
2586 #define perf_domain_span(pd) NULL
sched_energy_enabled(void)2587 static inline bool sched_energy_enabled(void) { return false; }
2588
2589 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
2590
2591 #ifdef CONFIG_MEMBARRIER
2592 /*
2593 * The scheduler provides memory barriers required by membarrier between:
2594 * - prior user-space memory accesses and store to rq->membarrier_state,
2595 * - store to rq->membarrier_state and following user-space memory accesses.
2596 * In the same way it provides those guarantees around store to rq->curr.
2597 */
membarrier_switch_mm(struct rq * rq,struct mm_struct * prev_mm,struct mm_struct * next_mm)2598 static inline void membarrier_switch_mm(struct rq *rq,
2599 struct mm_struct *prev_mm,
2600 struct mm_struct *next_mm)
2601 {
2602 int membarrier_state;
2603
2604 if (prev_mm == next_mm)
2605 return;
2606
2607 membarrier_state = atomic_read(&next_mm->membarrier_state);
2608 if (READ_ONCE(rq->membarrier_state) == membarrier_state)
2609 return;
2610
2611 WRITE_ONCE(rq->membarrier_state, membarrier_state);
2612 }
2613 #else
membarrier_switch_mm(struct rq * rq,struct mm_struct * prev_mm,struct mm_struct * next_mm)2614 static inline void membarrier_switch_mm(struct rq *rq,
2615 struct mm_struct *prev_mm,
2616 struct mm_struct *next_mm)
2617 {
2618 }
2619 #endif
2620
2621 #ifdef CONFIG_SMP
is_per_cpu_kthread(struct task_struct * p)2622 static inline bool is_per_cpu_kthread(struct task_struct *p)
2623 {
2624 if (!(p->flags & PF_KTHREAD))
2625 return false;
2626
2627 if (p->nr_cpus_allowed != 1)
2628 return false;
2629
2630 return true;
2631 }
2632 #endif
2633
2634 void swake_up_all_locked(struct swait_queue_head *q);
2635 void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);
2636