1 // SPDX-License-Identifier: GPL-2.0-only
2 /* cpu_feature_enabled() cannot be used this early */
3 #define USE_EARLY_PGTABLE_L5
4
5 #include <linux/memblock.h>
6 #include <linux/linkage.h>
7 #include <linux/bitops.h>
8 #include <linux/kernel.h>
9 #include <linux/export.h>
10 #include <linux/percpu.h>
11 #include <linux/string.h>
12 #include <linux/ctype.h>
13 #include <linux/delay.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/clock.h>
16 #include <linux/sched/task.h>
17 #include <linux/init.h>
18 #include <linux/kprobes.h>
19 #include <linux/kgdb.h>
20 #include <linux/smp.h>
21 #include <linux/io.h>
22 #include <linux/syscore_ops.h>
23
24 #include <asm/stackprotector.h>
25 #include <asm/perf_event.h>
26 #include <asm/mmu_context.h>
27 #include <asm/archrandom.h>
28 #include <asm/hypervisor.h>
29 #include <asm/processor.h>
30 #include <asm/tlbflush.h>
31 #include <asm/debugreg.h>
32 #include <asm/sections.h>
33 #include <asm/vsyscall.h>
34 #include <linux/topology.h>
35 #include <linux/cpumask.h>
36 #include <asm/pgtable.h>
37 #include <linux/atomic.h>
38 #include <asm/proto.h>
39 #include <asm/setup.h>
40 #include <asm/apic.h>
41 #include <asm/desc.h>
42 #include <asm/fpu/internal.h>
43 #include <asm/mtrr.h>
44 #include <asm/hwcap2.h>
45 #include <linux/numa.h>
46 #include <asm/asm.h>
47 #include <asm/bugs.h>
48 #include <asm/cpu.h>
49 #include <asm/mce.h>
50 #include <asm/msr.h>
51 #include <asm/pat.h>
52 #include <asm/microcode.h>
53 #include <asm/microcode_intel.h>
54 #include <asm/intel-family.h>
55 #include <asm/cpu_device_id.h>
56
57 #ifdef CONFIG_X86_LOCAL_APIC
58 #include <asm/uv/uv.h>
59 #endif
60
61 #include "cpu.h"
62
63 u32 elf_hwcap2 __read_mostly;
64
65 /* all of these masks are initialized in setup_cpu_local_masks() */
66 cpumask_var_t cpu_initialized_mask;
67 cpumask_var_t cpu_callout_mask;
68 cpumask_var_t cpu_callin_mask;
69
70 /* representing cpus for which sibling maps can be computed */
71 cpumask_var_t cpu_sibling_setup_mask;
72
73 /* Number of siblings per CPU package */
74 int smp_num_siblings = 1;
75 EXPORT_SYMBOL(smp_num_siblings);
76
77 /* Last level cache ID of each logical CPU */
78 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
79
80 /* correctly size the local cpu masks */
setup_cpu_local_masks(void)81 void __init setup_cpu_local_masks(void)
82 {
83 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
84 alloc_bootmem_cpumask_var(&cpu_callin_mask);
85 alloc_bootmem_cpumask_var(&cpu_callout_mask);
86 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
87 }
88
default_init(struct cpuinfo_x86 * c)89 static void default_init(struct cpuinfo_x86 *c)
90 {
91 #ifdef CONFIG_X86_64
92 cpu_detect_cache_sizes(c);
93 #else
94 /* Not much we can do here... */
95 /* Check if at least it has cpuid */
96 if (c->cpuid_level == -1) {
97 /* No cpuid. It must be an ancient CPU */
98 if (c->x86 == 4)
99 strcpy(c->x86_model_id, "486");
100 else if (c->x86 == 3)
101 strcpy(c->x86_model_id, "386");
102 }
103 #endif
104 }
105
106 static const struct cpu_dev default_cpu = {
107 .c_init = default_init,
108 .c_vendor = "Unknown",
109 .c_x86_vendor = X86_VENDOR_UNKNOWN,
110 };
111
112 static const struct cpu_dev *this_cpu = &default_cpu;
113
114 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
115 #ifdef CONFIG_X86_64
116 /*
117 * We need valid kernel segments for data and code in long mode too
118 * IRET will check the segment types kkeil 2000/10/28
119 * Also sysret mandates a special GDT layout
120 *
121 * TLS descriptors are currently at a different place compared to i386.
122 * Hopefully nobody expects them at a fixed place (Wine?)
123 */
124 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
125 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
126 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
127 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
128 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
129 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
130 #else
131 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
132 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
133 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
134 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
135 /*
136 * Segments used for calling PnP BIOS have byte granularity.
137 * They code segments and data segments have fixed 64k limits,
138 * the transfer segment sizes are set at run time.
139 */
140 /* 32-bit code */
141 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
142 /* 16-bit code */
143 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
144 /* 16-bit data */
145 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
146 /* 16-bit data */
147 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
148 /* 16-bit data */
149 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
150 /*
151 * The APM segments have byte granularity and their bases
152 * are set at run time. All have 64k limits.
153 */
154 /* 32-bit code */
155 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
156 /* 16-bit code */
157 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
158 /* data */
159 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
160
161 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
162 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
163 GDT_STACK_CANARY_INIT
164 #endif
165 } };
166 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
167
x86_mpx_setup(char * s)168 static int __init x86_mpx_setup(char *s)
169 {
170 /* require an exact match without trailing characters */
171 if (strlen(s))
172 return 0;
173
174 /* do not emit a message if the feature is not present */
175 if (!boot_cpu_has(X86_FEATURE_MPX))
176 return 1;
177
178 setup_clear_cpu_cap(X86_FEATURE_MPX);
179 pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
180 return 1;
181 }
182 __setup("nompx", x86_mpx_setup);
183
184 #ifdef CONFIG_X86_64
x86_nopcid_setup(char * s)185 static int __init x86_nopcid_setup(char *s)
186 {
187 /* nopcid doesn't accept parameters */
188 if (s)
189 return -EINVAL;
190
191 /* do not emit a message if the feature is not present */
192 if (!boot_cpu_has(X86_FEATURE_PCID))
193 return 0;
194
195 setup_clear_cpu_cap(X86_FEATURE_PCID);
196 pr_info("nopcid: PCID feature disabled\n");
197 return 0;
198 }
199 early_param("nopcid", x86_nopcid_setup);
200 #endif
201
x86_noinvpcid_setup(char * s)202 static int __init x86_noinvpcid_setup(char *s)
203 {
204 /* noinvpcid doesn't accept parameters */
205 if (s)
206 return -EINVAL;
207
208 /* do not emit a message if the feature is not present */
209 if (!boot_cpu_has(X86_FEATURE_INVPCID))
210 return 0;
211
212 setup_clear_cpu_cap(X86_FEATURE_INVPCID);
213 pr_info("noinvpcid: INVPCID feature disabled\n");
214 return 0;
215 }
216 early_param("noinvpcid", x86_noinvpcid_setup);
217
218 #ifdef CONFIG_X86_32
219 static int cachesize_override = -1;
220 static int disable_x86_serial_nr = 1;
221
cachesize_setup(char * str)222 static int __init cachesize_setup(char *str)
223 {
224 get_option(&str, &cachesize_override);
225 return 1;
226 }
227 __setup("cachesize=", cachesize_setup);
228
x86_sep_setup(char * s)229 static int __init x86_sep_setup(char *s)
230 {
231 setup_clear_cpu_cap(X86_FEATURE_SEP);
232 return 1;
233 }
234 __setup("nosep", x86_sep_setup);
235
236 /* Standard macro to see if a specific flag is changeable */
flag_is_changeable_p(u32 flag)237 static inline int flag_is_changeable_p(u32 flag)
238 {
239 u32 f1, f2;
240
241 /*
242 * Cyrix and IDT cpus allow disabling of CPUID
243 * so the code below may return different results
244 * when it is executed before and after enabling
245 * the CPUID. Add "volatile" to not allow gcc to
246 * optimize the subsequent calls to this function.
247 */
248 asm volatile ("pushfl \n\t"
249 "pushfl \n\t"
250 "popl %0 \n\t"
251 "movl %0, %1 \n\t"
252 "xorl %2, %0 \n\t"
253 "pushl %0 \n\t"
254 "popfl \n\t"
255 "pushfl \n\t"
256 "popl %0 \n\t"
257 "popfl \n\t"
258
259 : "=&r" (f1), "=&r" (f2)
260 : "ir" (flag));
261
262 return ((f1^f2) & flag) != 0;
263 }
264
265 /* Probe for the CPUID instruction */
have_cpuid_p(void)266 int have_cpuid_p(void)
267 {
268 return flag_is_changeable_p(X86_EFLAGS_ID);
269 }
270
squash_the_stupid_serial_number(struct cpuinfo_x86 * c)271 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
272 {
273 unsigned long lo, hi;
274
275 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
276 return;
277
278 /* Disable processor serial number: */
279
280 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
281 lo |= 0x200000;
282 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
283
284 pr_notice("CPU serial number disabled.\n");
285 clear_cpu_cap(c, X86_FEATURE_PN);
286
287 /* Disabling the serial number may affect the cpuid level */
288 c->cpuid_level = cpuid_eax(0);
289 }
290
x86_serial_nr_setup(char * s)291 static int __init x86_serial_nr_setup(char *s)
292 {
293 disable_x86_serial_nr = 0;
294 return 1;
295 }
296 __setup("serialnumber", x86_serial_nr_setup);
297 #else
flag_is_changeable_p(u32 flag)298 static inline int flag_is_changeable_p(u32 flag)
299 {
300 return 1;
301 }
squash_the_stupid_serial_number(struct cpuinfo_x86 * c)302 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
303 {
304 }
305 #endif
306
setup_disable_smep(char * arg)307 static __init int setup_disable_smep(char *arg)
308 {
309 setup_clear_cpu_cap(X86_FEATURE_SMEP);
310 /* Check for things that depend on SMEP being enabled: */
311 check_mpx_erratum(&boot_cpu_data);
312 return 1;
313 }
314 __setup("nosmep", setup_disable_smep);
315
setup_smep(struct cpuinfo_x86 * c)316 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
317 {
318 if (cpu_has(c, X86_FEATURE_SMEP))
319 cr4_set_bits(X86_CR4_SMEP);
320 }
321
setup_disable_smap(char * arg)322 static __init int setup_disable_smap(char *arg)
323 {
324 setup_clear_cpu_cap(X86_FEATURE_SMAP);
325 return 1;
326 }
327 __setup("nosmap", setup_disable_smap);
328
setup_smap(struct cpuinfo_x86 * c)329 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
330 {
331 unsigned long eflags = native_save_fl();
332
333 /* This should have been cleared long ago */
334 BUG_ON(eflags & X86_EFLAGS_AC);
335
336 if (cpu_has(c, X86_FEATURE_SMAP)) {
337 #ifdef CONFIG_X86_SMAP
338 cr4_set_bits(X86_CR4_SMAP);
339 #else
340 cr4_clear_bits(X86_CR4_SMAP);
341 #endif
342 }
343 }
344
setup_umip(struct cpuinfo_x86 * c)345 static __always_inline void setup_umip(struct cpuinfo_x86 *c)
346 {
347 /* Check the boot processor, plus build option for UMIP. */
348 if (!cpu_feature_enabled(X86_FEATURE_UMIP))
349 goto out;
350
351 /* Check the current processor's cpuid bits. */
352 if (!cpu_has(c, X86_FEATURE_UMIP))
353 goto out;
354
355 cr4_set_bits(X86_CR4_UMIP);
356
357 pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
358
359 return;
360
361 out:
362 /*
363 * Make sure UMIP is disabled in case it was enabled in a
364 * previous boot (e.g., via kexec).
365 */
366 cr4_clear_bits(X86_CR4_UMIP);
367 }
368
369 static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
370 static unsigned long cr4_pinned_bits __ro_after_init;
371
native_write_cr0(unsigned long val)372 void native_write_cr0(unsigned long val)
373 {
374 unsigned long bits_missing = 0;
375
376 set_register:
377 asm volatile("mov %0,%%cr0": "+r" (val), "+m" (__force_order));
378
379 if (static_branch_likely(&cr_pinning)) {
380 if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
381 bits_missing = X86_CR0_WP;
382 val |= bits_missing;
383 goto set_register;
384 }
385 /* Warn after we've set the missing bits. */
386 WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
387 }
388 }
389 EXPORT_SYMBOL(native_write_cr0);
390
native_write_cr4(unsigned long val)391 void native_write_cr4(unsigned long val)
392 {
393 unsigned long bits_missing = 0;
394
395 set_register:
396 asm volatile("mov %0,%%cr4": "+r" (val), "+m" (cr4_pinned_bits));
397
398 if (static_branch_likely(&cr_pinning)) {
399 if (unlikely((val & cr4_pinned_bits) != cr4_pinned_bits)) {
400 bits_missing = ~val & cr4_pinned_bits;
401 val |= bits_missing;
402 goto set_register;
403 }
404 /* Warn after we've set the missing bits. */
405 WARN_ONCE(bits_missing, "CR4 bits went missing: %lx!?\n",
406 bits_missing);
407 }
408 }
409 EXPORT_SYMBOL(native_write_cr4);
410
cr4_init(void)411 void cr4_init(void)
412 {
413 unsigned long cr4 = __read_cr4();
414
415 if (boot_cpu_has(X86_FEATURE_PCID))
416 cr4 |= X86_CR4_PCIDE;
417 if (static_branch_likely(&cr_pinning))
418 cr4 |= cr4_pinned_bits;
419
420 __write_cr4(cr4);
421
422 /* Initialize cr4 shadow for this CPU. */
423 this_cpu_write(cpu_tlbstate.cr4, cr4);
424 }
425
426 /*
427 * Once CPU feature detection is finished (and boot params have been
428 * parsed), record any of the sensitive CR bits that are set, and
429 * enable CR pinning.
430 */
setup_cr_pinning(void)431 static void __init setup_cr_pinning(void)
432 {
433 unsigned long mask;
434
435 mask = (X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP);
436 cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & mask;
437 static_key_enable(&cr_pinning.key);
438 }
439
440 /*
441 * Protection Keys are not available in 32-bit mode.
442 */
443 static bool pku_disabled;
444
setup_pku(struct cpuinfo_x86 * c)445 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
446 {
447 struct pkru_state *pk;
448
449 /* check the boot processor, plus compile options for PKU: */
450 if (!cpu_feature_enabled(X86_FEATURE_PKU))
451 return;
452 /* checks the actual processor's cpuid bits: */
453 if (!cpu_has(c, X86_FEATURE_PKU))
454 return;
455 if (pku_disabled)
456 return;
457
458 cr4_set_bits(X86_CR4_PKE);
459 pk = get_xsave_addr(&init_fpstate.xsave, XFEATURE_PKRU);
460 if (pk)
461 pk->pkru = init_pkru_value;
462 /*
463 * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
464 * cpuid bit to be set. We need to ensure that we
465 * update that bit in this CPU's "cpu_info".
466 */
467 get_cpu_cap(c);
468 }
469
470 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
setup_disable_pku(char * arg)471 static __init int setup_disable_pku(char *arg)
472 {
473 /*
474 * Do not clear the X86_FEATURE_PKU bit. All of the
475 * runtime checks are against OSPKE so clearing the
476 * bit does nothing.
477 *
478 * This way, we will see "pku" in cpuinfo, but not
479 * "ospke", which is exactly what we want. It shows
480 * that the CPU has PKU, but the OS has not enabled it.
481 * This happens to be exactly how a system would look
482 * if we disabled the config option.
483 */
484 pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
485 pku_disabled = true;
486 return 1;
487 }
488 __setup("nopku", setup_disable_pku);
489 #endif /* CONFIG_X86_64 */
490
491 /*
492 * Some CPU features depend on higher CPUID levels, which may not always
493 * be available due to CPUID level capping or broken virtualization
494 * software. Add those features to this table to auto-disable them.
495 */
496 struct cpuid_dependent_feature {
497 u32 feature;
498 u32 level;
499 };
500
501 static const struct cpuid_dependent_feature
502 cpuid_dependent_features[] = {
503 { X86_FEATURE_MWAIT, 0x00000005 },
504 { X86_FEATURE_DCA, 0x00000009 },
505 { X86_FEATURE_XSAVE, 0x0000000d },
506 { 0, 0 }
507 };
508
filter_cpuid_features(struct cpuinfo_x86 * c,bool warn)509 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
510 {
511 const struct cpuid_dependent_feature *df;
512
513 for (df = cpuid_dependent_features; df->feature; df++) {
514
515 if (!cpu_has(c, df->feature))
516 continue;
517 /*
518 * Note: cpuid_level is set to -1 if unavailable, but
519 * extended_extended_level is set to 0 if unavailable
520 * and the legitimate extended levels are all negative
521 * when signed; hence the weird messing around with
522 * signs here...
523 */
524 if (!((s32)df->level < 0 ?
525 (u32)df->level > (u32)c->extended_cpuid_level :
526 (s32)df->level > (s32)c->cpuid_level))
527 continue;
528
529 clear_cpu_cap(c, df->feature);
530 if (!warn)
531 continue;
532
533 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
534 x86_cap_flag(df->feature), df->level);
535 }
536 }
537
538 /*
539 * Naming convention should be: <Name> [(<Codename>)]
540 * This table only is used unless init_<vendor>() below doesn't set it;
541 * in particular, if CPUID levels 0x80000002..4 are supported, this
542 * isn't used
543 */
544
545 /* Look up CPU names by table lookup. */
table_lookup_model(struct cpuinfo_x86 * c)546 static const char *table_lookup_model(struct cpuinfo_x86 *c)
547 {
548 #ifdef CONFIG_X86_32
549 const struct legacy_cpu_model_info *info;
550
551 if (c->x86_model >= 16)
552 return NULL; /* Range check */
553
554 if (!this_cpu)
555 return NULL;
556
557 info = this_cpu->legacy_models;
558
559 while (info->family) {
560 if (info->family == c->x86)
561 return info->model_names[c->x86_model];
562 info++;
563 }
564 #endif
565 return NULL; /* Not found */
566 }
567
568 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS];
569 __u32 cpu_caps_set[NCAPINTS + NBUGINTS];
570
load_percpu_segment(int cpu)571 void load_percpu_segment(int cpu)
572 {
573 #ifdef CONFIG_X86_32
574 loadsegment(fs, __KERNEL_PERCPU);
575 #else
576 __loadsegment_simple(gs, 0);
577 wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
578 #endif
579 load_stack_canary_segment();
580 }
581
582 #ifdef CONFIG_X86_32
583 /* The 32-bit entry code needs to find cpu_entry_area. */
584 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
585 #endif
586
587 /* Load the original GDT from the per-cpu structure */
load_direct_gdt(int cpu)588 void load_direct_gdt(int cpu)
589 {
590 struct desc_ptr gdt_descr;
591
592 gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
593 gdt_descr.size = GDT_SIZE - 1;
594 load_gdt(&gdt_descr);
595 }
596 EXPORT_SYMBOL_GPL(load_direct_gdt);
597
598 /* Load a fixmap remapping of the per-cpu GDT */
load_fixmap_gdt(int cpu)599 void load_fixmap_gdt(int cpu)
600 {
601 struct desc_ptr gdt_descr;
602
603 gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
604 gdt_descr.size = GDT_SIZE - 1;
605 load_gdt(&gdt_descr);
606 }
607 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
608
609 /*
610 * Current gdt points %fs at the "master" per-cpu area: after this,
611 * it's on the real one.
612 */
switch_to_new_gdt(int cpu)613 void switch_to_new_gdt(int cpu)
614 {
615 /* Load the original GDT */
616 load_direct_gdt(cpu);
617 /* Reload the per-cpu base */
618 load_percpu_segment(cpu);
619 }
620
621 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
622
get_model_name(struct cpuinfo_x86 * c)623 static void get_model_name(struct cpuinfo_x86 *c)
624 {
625 unsigned int *v;
626 char *p, *q, *s;
627
628 if (c->extended_cpuid_level < 0x80000004)
629 return;
630
631 v = (unsigned int *)c->x86_model_id;
632 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
633 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
634 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
635 c->x86_model_id[48] = 0;
636
637 /* Trim whitespace */
638 p = q = s = &c->x86_model_id[0];
639
640 while (*p == ' ')
641 p++;
642
643 while (*p) {
644 /* Note the last non-whitespace index */
645 if (!isspace(*p))
646 s = q;
647
648 *q++ = *p++;
649 }
650
651 *(s + 1) = '\0';
652 }
653
detect_num_cpu_cores(struct cpuinfo_x86 * c)654 void detect_num_cpu_cores(struct cpuinfo_x86 *c)
655 {
656 unsigned int eax, ebx, ecx, edx;
657
658 c->x86_max_cores = 1;
659 if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
660 return;
661
662 cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
663 if (eax & 0x1f)
664 c->x86_max_cores = (eax >> 26) + 1;
665 }
666
cpu_detect_cache_sizes(struct cpuinfo_x86 * c)667 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
668 {
669 unsigned int n, dummy, ebx, ecx, edx, l2size;
670
671 n = c->extended_cpuid_level;
672
673 if (n >= 0x80000005) {
674 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
675 c->x86_cache_size = (ecx>>24) + (edx>>24);
676 #ifdef CONFIG_X86_64
677 /* On K8 L1 TLB is inclusive, so don't count it */
678 c->x86_tlbsize = 0;
679 #endif
680 }
681
682 if (n < 0x80000006) /* Some chips just has a large L1. */
683 return;
684
685 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
686 l2size = ecx >> 16;
687
688 #ifdef CONFIG_X86_64
689 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
690 #else
691 /* do processor-specific cache resizing */
692 if (this_cpu->legacy_cache_size)
693 l2size = this_cpu->legacy_cache_size(c, l2size);
694
695 /* Allow user to override all this if necessary. */
696 if (cachesize_override != -1)
697 l2size = cachesize_override;
698
699 if (l2size == 0)
700 return; /* Again, no L2 cache is possible */
701 #endif
702
703 c->x86_cache_size = l2size;
704 }
705
706 u16 __read_mostly tlb_lli_4k[NR_INFO];
707 u16 __read_mostly tlb_lli_2m[NR_INFO];
708 u16 __read_mostly tlb_lli_4m[NR_INFO];
709 u16 __read_mostly tlb_lld_4k[NR_INFO];
710 u16 __read_mostly tlb_lld_2m[NR_INFO];
711 u16 __read_mostly tlb_lld_4m[NR_INFO];
712 u16 __read_mostly tlb_lld_1g[NR_INFO];
713
cpu_detect_tlb(struct cpuinfo_x86 * c)714 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
715 {
716 if (this_cpu->c_detect_tlb)
717 this_cpu->c_detect_tlb(c);
718
719 pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
720 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
721 tlb_lli_4m[ENTRIES]);
722
723 pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
724 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
725 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
726 }
727
detect_ht_early(struct cpuinfo_x86 * c)728 int detect_ht_early(struct cpuinfo_x86 *c)
729 {
730 #ifdef CONFIG_SMP
731 u32 eax, ebx, ecx, edx;
732
733 if (!cpu_has(c, X86_FEATURE_HT))
734 return -1;
735
736 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
737 return -1;
738
739 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
740 return -1;
741
742 cpuid(1, &eax, &ebx, &ecx, &edx);
743
744 smp_num_siblings = (ebx & 0xff0000) >> 16;
745 if (smp_num_siblings == 1)
746 pr_info_once("CPU0: Hyper-Threading is disabled\n");
747 #endif
748 return 0;
749 }
750
detect_ht(struct cpuinfo_x86 * c)751 void detect_ht(struct cpuinfo_x86 *c)
752 {
753 #ifdef CONFIG_SMP
754 int index_msb, core_bits;
755
756 if (detect_ht_early(c) < 0)
757 return;
758
759 index_msb = get_count_order(smp_num_siblings);
760 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
761
762 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
763
764 index_msb = get_count_order(smp_num_siblings);
765
766 core_bits = get_count_order(c->x86_max_cores);
767
768 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
769 ((1 << core_bits) - 1);
770 #endif
771 }
772
get_cpu_vendor(struct cpuinfo_x86 * c)773 static void get_cpu_vendor(struct cpuinfo_x86 *c)
774 {
775 char *v = c->x86_vendor_id;
776 int i;
777
778 for (i = 0; i < X86_VENDOR_NUM; i++) {
779 if (!cpu_devs[i])
780 break;
781
782 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
783 (cpu_devs[i]->c_ident[1] &&
784 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
785
786 this_cpu = cpu_devs[i];
787 c->x86_vendor = this_cpu->c_x86_vendor;
788 return;
789 }
790 }
791
792 pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
793 "CPU: Your system may be unstable.\n", v);
794
795 c->x86_vendor = X86_VENDOR_UNKNOWN;
796 this_cpu = &default_cpu;
797 }
798
cpu_detect(struct cpuinfo_x86 * c)799 void cpu_detect(struct cpuinfo_x86 *c)
800 {
801 /* Get vendor name */
802 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
803 (unsigned int *)&c->x86_vendor_id[0],
804 (unsigned int *)&c->x86_vendor_id[8],
805 (unsigned int *)&c->x86_vendor_id[4]);
806
807 c->x86 = 4;
808 /* Intel-defined flags: level 0x00000001 */
809 if (c->cpuid_level >= 0x00000001) {
810 u32 junk, tfms, cap0, misc;
811
812 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
813 c->x86 = x86_family(tfms);
814 c->x86_model = x86_model(tfms);
815 c->x86_stepping = x86_stepping(tfms);
816
817 if (cap0 & (1<<19)) {
818 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
819 c->x86_cache_alignment = c->x86_clflush_size;
820 }
821 }
822 }
823
apply_forced_caps(struct cpuinfo_x86 * c)824 static void apply_forced_caps(struct cpuinfo_x86 *c)
825 {
826 int i;
827
828 for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
829 c->x86_capability[i] &= ~cpu_caps_cleared[i];
830 c->x86_capability[i] |= cpu_caps_set[i];
831 }
832 }
833
init_speculation_control(struct cpuinfo_x86 * c)834 static void init_speculation_control(struct cpuinfo_x86 *c)
835 {
836 /*
837 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
838 * and they also have a different bit for STIBP support. Also,
839 * a hypervisor might have set the individual AMD bits even on
840 * Intel CPUs, for finer-grained selection of what's available.
841 */
842 if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
843 set_cpu_cap(c, X86_FEATURE_IBRS);
844 set_cpu_cap(c, X86_FEATURE_IBPB);
845 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
846 }
847
848 if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
849 set_cpu_cap(c, X86_FEATURE_STIBP);
850
851 if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
852 cpu_has(c, X86_FEATURE_VIRT_SSBD))
853 set_cpu_cap(c, X86_FEATURE_SSBD);
854
855 if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
856 set_cpu_cap(c, X86_FEATURE_IBRS);
857 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
858 }
859
860 if (cpu_has(c, X86_FEATURE_AMD_IBPB))
861 set_cpu_cap(c, X86_FEATURE_IBPB);
862
863 if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
864 set_cpu_cap(c, X86_FEATURE_STIBP);
865 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
866 }
867
868 if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
869 set_cpu_cap(c, X86_FEATURE_SSBD);
870 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
871 clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
872 }
873 }
874
init_cqm(struct cpuinfo_x86 * c)875 static void init_cqm(struct cpuinfo_x86 *c)
876 {
877 if (!cpu_has(c, X86_FEATURE_CQM_LLC)) {
878 c->x86_cache_max_rmid = -1;
879 c->x86_cache_occ_scale = -1;
880 return;
881 }
882
883 /* will be overridden if occupancy monitoring exists */
884 c->x86_cache_max_rmid = cpuid_ebx(0xf);
885
886 if (cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC) ||
887 cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL) ||
888 cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)) {
889 u32 eax, ebx, ecx, edx;
890
891 /* QoS sub-leaf, EAX=0Fh, ECX=1 */
892 cpuid_count(0xf, 1, &eax, &ebx, &ecx, &edx);
893
894 c->x86_cache_max_rmid = ecx;
895 c->x86_cache_occ_scale = ebx;
896 }
897 }
898
get_cpu_cap(struct cpuinfo_x86 * c)899 void get_cpu_cap(struct cpuinfo_x86 *c)
900 {
901 u32 eax, ebx, ecx, edx;
902
903 /* Intel-defined flags: level 0x00000001 */
904 if (c->cpuid_level >= 0x00000001) {
905 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
906
907 c->x86_capability[CPUID_1_ECX] = ecx;
908 c->x86_capability[CPUID_1_EDX] = edx;
909 }
910
911 /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
912 if (c->cpuid_level >= 0x00000006)
913 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
914
915 /* Additional Intel-defined flags: level 0x00000007 */
916 if (c->cpuid_level >= 0x00000007) {
917 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
918 c->x86_capability[CPUID_7_0_EBX] = ebx;
919 c->x86_capability[CPUID_7_ECX] = ecx;
920 c->x86_capability[CPUID_7_EDX] = edx;
921
922 /* Check valid sub-leaf index before accessing it */
923 if (eax >= 1) {
924 cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
925 c->x86_capability[CPUID_7_1_EAX] = eax;
926 }
927 }
928
929 /* Extended state features: level 0x0000000d */
930 if (c->cpuid_level >= 0x0000000d) {
931 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
932
933 c->x86_capability[CPUID_D_1_EAX] = eax;
934 }
935
936 /* AMD-defined flags: level 0x80000001 */
937 eax = cpuid_eax(0x80000000);
938 c->extended_cpuid_level = eax;
939
940 if ((eax & 0xffff0000) == 0x80000000) {
941 if (eax >= 0x80000001) {
942 cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
943
944 c->x86_capability[CPUID_8000_0001_ECX] = ecx;
945 c->x86_capability[CPUID_8000_0001_EDX] = edx;
946 }
947 }
948
949 if (c->extended_cpuid_level >= 0x80000007) {
950 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
951
952 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
953 c->x86_power = edx;
954 }
955
956 if (c->extended_cpuid_level >= 0x80000008) {
957 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
958 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
959 }
960
961 if (c->extended_cpuid_level >= 0x8000000a)
962 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
963
964 init_scattered_cpuid_features(c);
965 init_speculation_control(c);
966 init_cqm(c);
967
968 /*
969 * Clear/Set all flags overridden by options, after probe.
970 * This needs to happen each time we re-probe, which may happen
971 * several times during CPU initialization.
972 */
973 apply_forced_caps(c);
974 }
975
get_cpu_address_sizes(struct cpuinfo_x86 * c)976 void get_cpu_address_sizes(struct cpuinfo_x86 *c)
977 {
978 u32 eax, ebx, ecx, edx;
979
980 if (c->extended_cpuid_level >= 0x80000008) {
981 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
982
983 c->x86_virt_bits = (eax >> 8) & 0xff;
984 c->x86_phys_bits = eax & 0xff;
985 }
986 #ifdef CONFIG_X86_32
987 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
988 c->x86_phys_bits = 36;
989 #endif
990 c->x86_cache_bits = c->x86_phys_bits;
991 }
992
identify_cpu_without_cpuid(struct cpuinfo_x86 * c)993 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
994 {
995 #ifdef CONFIG_X86_32
996 int i;
997
998 /*
999 * First of all, decide if this is a 486 or higher
1000 * It's a 486 if we can modify the AC flag
1001 */
1002 if (flag_is_changeable_p(X86_EFLAGS_AC))
1003 c->x86 = 4;
1004 else
1005 c->x86 = 3;
1006
1007 for (i = 0; i < X86_VENDOR_NUM; i++)
1008 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
1009 c->x86_vendor_id[0] = 0;
1010 cpu_devs[i]->c_identify(c);
1011 if (c->x86_vendor_id[0]) {
1012 get_cpu_vendor(c);
1013 break;
1014 }
1015 }
1016 #endif
1017 }
1018
1019 #define NO_SPECULATION BIT(0)
1020 #define NO_MELTDOWN BIT(1)
1021 #define NO_SSB BIT(2)
1022 #define NO_L1TF BIT(3)
1023 #define NO_MDS BIT(4)
1024 #define MSBDS_ONLY BIT(5)
1025 #define NO_SWAPGS BIT(6)
1026 #define NO_ITLB_MULTIHIT BIT(7)
1027
1028 #define VULNWL(_vendor, _family, _model, _whitelist) \
1029 { X86_VENDOR_##_vendor, _family, _model, X86_FEATURE_ANY, _whitelist }
1030
1031 #define VULNWL_INTEL(model, whitelist) \
1032 VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
1033
1034 #define VULNWL_AMD(family, whitelist) \
1035 VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1036
1037 #define VULNWL_HYGON(family, whitelist) \
1038 VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1039
1040 static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
1041 VULNWL(ANY, 4, X86_MODEL_ANY, NO_SPECULATION),
1042 VULNWL(CENTAUR, 5, X86_MODEL_ANY, NO_SPECULATION),
1043 VULNWL(INTEL, 5, X86_MODEL_ANY, NO_SPECULATION),
1044 VULNWL(NSC, 5, X86_MODEL_ANY, NO_SPECULATION),
1045
1046 /* Intel Family 6 */
1047 VULNWL_INTEL(ATOM_SALTWELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
1048 VULNWL_INTEL(ATOM_SALTWELL_TABLET, NO_SPECULATION | NO_ITLB_MULTIHIT),
1049 VULNWL_INTEL(ATOM_SALTWELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
1050 VULNWL_INTEL(ATOM_BONNELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
1051 VULNWL_INTEL(ATOM_BONNELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
1052
1053 VULNWL_INTEL(ATOM_SILVERMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1054 VULNWL_INTEL(ATOM_SILVERMONT_D, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1055 VULNWL_INTEL(ATOM_SILVERMONT_MID, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1056 VULNWL_INTEL(ATOM_AIRMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1057 VULNWL_INTEL(XEON_PHI_KNL, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1058 VULNWL_INTEL(XEON_PHI_KNM, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1059
1060 VULNWL_INTEL(CORE_YONAH, NO_SSB),
1061
1062 VULNWL_INTEL(ATOM_AIRMONT_MID, NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1063 VULNWL_INTEL(ATOM_AIRMONT_NP, NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1064
1065 VULNWL_INTEL(ATOM_GOLDMONT, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1066 VULNWL_INTEL(ATOM_GOLDMONT_D, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1067 VULNWL_INTEL(ATOM_GOLDMONT_PLUS, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1068
1069 /*
1070 * Technically, swapgs isn't serializing on AMD (despite it previously
1071 * being documented as such in the APM). But according to AMD, %gs is
1072 * updated non-speculatively, and the issuing of %gs-relative memory
1073 * operands will be blocked until the %gs update completes, which is
1074 * good enough for our purposes.
1075 */
1076
1077 VULNWL_INTEL(ATOM_TREMONT_D, NO_ITLB_MULTIHIT),
1078
1079 /* AMD Family 0xf - 0x12 */
1080 VULNWL_AMD(0x0f, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1081 VULNWL_AMD(0x10, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1082 VULNWL_AMD(0x11, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1083 VULNWL_AMD(0x12, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1084
1085 /* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1086 VULNWL_AMD(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1087 VULNWL_HYGON(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1088 {}
1089 };
1090
cpu_matches(unsigned long which)1091 static bool __init cpu_matches(unsigned long which)
1092 {
1093 const struct x86_cpu_id *m = x86_match_cpu(cpu_vuln_whitelist);
1094
1095 return m && !!(m->driver_data & which);
1096 }
1097
x86_read_arch_cap_msr(void)1098 u64 x86_read_arch_cap_msr(void)
1099 {
1100 u64 ia32_cap = 0;
1101
1102 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1103 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
1104
1105 return ia32_cap;
1106 }
1107
cpu_set_bug_bits(struct cpuinfo_x86 * c)1108 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1109 {
1110 u64 ia32_cap = x86_read_arch_cap_msr();
1111
1112 /* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1113 if (!cpu_matches(NO_ITLB_MULTIHIT) && !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO))
1114 setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1115
1116 if (cpu_matches(NO_SPECULATION))
1117 return;
1118
1119 setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1120 setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1121
1122 if (!cpu_matches(NO_SSB) && !(ia32_cap & ARCH_CAP_SSB_NO) &&
1123 !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1124 setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1125
1126 if (ia32_cap & ARCH_CAP_IBRS_ALL)
1127 setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1128
1129 if (!cpu_matches(NO_MDS) && !(ia32_cap & ARCH_CAP_MDS_NO)) {
1130 setup_force_cpu_bug(X86_BUG_MDS);
1131 if (cpu_matches(MSBDS_ONLY))
1132 setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1133 }
1134
1135 if (!cpu_matches(NO_SWAPGS))
1136 setup_force_cpu_bug(X86_BUG_SWAPGS);
1137
1138 /*
1139 * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1140 * - TSX is supported or
1141 * - TSX_CTRL is present
1142 *
1143 * TSX_CTRL check is needed for cases when TSX could be disabled before
1144 * the kernel boot e.g. kexec.
1145 * TSX_CTRL check alone is not sufficient for cases when the microcode
1146 * update is not present or running as guest that don't get TSX_CTRL.
1147 */
1148 if (!(ia32_cap & ARCH_CAP_TAA_NO) &&
1149 (cpu_has(c, X86_FEATURE_RTM) ||
1150 (ia32_cap & ARCH_CAP_TSX_CTRL_MSR)))
1151 setup_force_cpu_bug(X86_BUG_TAA);
1152
1153 if (cpu_matches(NO_MELTDOWN))
1154 return;
1155
1156 /* Rogue Data Cache Load? No! */
1157 if (ia32_cap & ARCH_CAP_RDCL_NO)
1158 return;
1159
1160 setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1161
1162 if (cpu_matches(NO_L1TF))
1163 return;
1164
1165 setup_force_cpu_bug(X86_BUG_L1TF);
1166 }
1167
1168 /*
1169 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1170 * unfortunately, that's not true in practice because of early VIA
1171 * chips and (more importantly) broken virtualizers that are not easy
1172 * to detect. In the latter case it doesn't even *fail* reliably, so
1173 * probing for it doesn't even work. Disable it completely on 32-bit
1174 * unless we can find a reliable way to detect all the broken cases.
1175 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1176 */
detect_nopl(void)1177 static void detect_nopl(void)
1178 {
1179 #ifdef CONFIG_X86_32
1180 setup_clear_cpu_cap(X86_FEATURE_NOPL);
1181 #else
1182 setup_force_cpu_cap(X86_FEATURE_NOPL);
1183 #endif
1184 }
1185
1186 /*
1187 * Do minimum CPU detection early.
1188 * Fields really needed: vendor, cpuid_level, family, model, mask,
1189 * cache alignment.
1190 * The others are not touched to avoid unwanted side effects.
1191 *
1192 * WARNING: this function is only called on the boot CPU. Don't add code
1193 * here that is supposed to run on all CPUs.
1194 */
early_identify_cpu(struct cpuinfo_x86 * c)1195 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1196 {
1197 #ifdef CONFIG_X86_64
1198 c->x86_clflush_size = 64;
1199 c->x86_phys_bits = 36;
1200 c->x86_virt_bits = 48;
1201 #else
1202 c->x86_clflush_size = 32;
1203 c->x86_phys_bits = 32;
1204 c->x86_virt_bits = 32;
1205 #endif
1206 c->x86_cache_alignment = c->x86_clflush_size;
1207
1208 memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1209 c->extended_cpuid_level = 0;
1210
1211 if (!have_cpuid_p())
1212 identify_cpu_without_cpuid(c);
1213
1214 /* cyrix could have cpuid enabled via c_identify()*/
1215 if (have_cpuid_p()) {
1216 cpu_detect(c);
1217 get_cpu_vendor(c);
1218 get_cpu_cap(c);
1219 get_cpu_address_sizes(c);
1220 setup_force_cpu_cap(X86_FEATURE_CPUID);
1221
1222 if (this_cpu->c_early_init)
1223 this_cpu->c_early_init(c);
1224
1225 c->cpu_index = 0;
1226 filter_cpuid_features(c, false);
1227
1228 if (this_cpu->c_bsp_init)
1229 this_cpu->c_bsp_init(c);
1230 } else {
1231 setup_clear_cpu_cap(X86_FEATURE_CPUID);
1232 }
1233
1234 setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1235
1236 cpu_set_bug_bits(c);
1237
1238 fpu__init_system(c);
1239
1240 #ifdef CONFIG_X86_32
1241 /*
1242 * Regardless of whether PCID is enumerated, the SDM says
1243 * that it can't be enabled in 32-bit mode.
1244 */
1245 setup_clear_cpu_cap(X86_FEATURE_PCID);
1246 #endif
1247
1248 /*
1249 * Later in the boot process pgtable_l5_enabled() relies on
1250 * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1251 * enabled by this point we need to clear the feature bit to avoid
1252 * false-positives at the later stage.
1253 *
1254 * pgtable_l5_enabled() can be false here for several reasons:
1255 * - 5-level paging is disabled compile-time;
1256 * - it's 32-bit kernel;
1257 * - machine doesn't support 5-level paging;
1258 * - user specified 'no5lvl' in kernel command line.
1259 */
1260 if (!pgtable_l5_enabled())
1261 setup_clear_cpu_cap(X86_FEATURE_LA57);
1262
1263 detect_nopl();
1264 }
1265
early_cpu_init(void)1266 void __init early_cpu_init(void)
1267 {
1268 const struct cpu_dev *const *cdev;
1269 int count = 0;
1270
1271 #ifdef CONFIG_PROCESSOR_SELECT
1272 pr_info("KERNEL supported cpus:\n");
1273 #endif
1274
1275 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1276 const struct cpu_dev *cpudev = *cdev;
1277
1278 if (count >= X86_VENDOR_NUM)
1279 break;
1280 cpu_devs[count] = cpudev;
1281 count++;
1282
1283 #ifdef CONFIG_PROCESSOR_SELECT
1284 {
1285 unsigned int j;
1286
1287 for (j = 0; j < 2; j++) {
1288 if (!cpudev->c_ident[j])
1289 continue;
1290 pr_info(" %s %s\n", cpudev->c_vendor,
1291 cpudev->c_ident[j]);
1292 }
1293 }
1294 #endif
1295 }
1296 early_identify_cpu(&boot_cpu_data);
1297 }
1298
detect_null_seg_behavior(struct cpuinfo_x86 * c)1299 static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
1300 {
1301 #ifdef CONFIG_X86_64
1302 /*
1303 * Empirically, writing zero to a segment selector on AMD does
1304 * not clear the base, whereas writing zero to a segment
1305 * selector on Intel does clear the base. Intel's behavior
1306 * allows slightly faster context switches in the common case
1307 * where GS is unused by the prev and next threads.
1308 *
1309 * Since neither vendor documents this anywhere that I can see,
1310 * detect it directly instead of hardcoding the choice by
1311 * vendor.
1312 *
1313 * I've designated AMD's behavior as the "bug" because it's
1314 * counterintuitive and less friendly.
1315 */
1316
1317 unsigned long old_base, tmp;
1318 rdmsrl(MSR_FS_BASE, old_base);
1319 wrmsrl(MSR_FS_BASE, 1);
1320 loadsegment(fs, 0);
1321 rdmsrl(MSR_FS_BASE, tmp);
1322 if (tmp != 0)
1323 set_cpu_bug(c, X86_BUG_NULL_SEG);
1324 wrmsrl(MSR_FS_BASE, old_base);
1325 #endif
1326 }
1327
generic_identify(struct cpuinfo_x86 * c)1328 static void generic_identify(struct cpuinfo_x86 *c)
1329 {
1330 c->extended_cpuid_level = 0;
1331
1332 if (!have_cpuid_p())
1333 identify_cpu_without_cpuid(c);
1334
1335 /* cyrix could have cpuid enabled via c_identify()*/
1336 if (!have_cpuid_p())
1337 return;
1338
1339 cpu_detect(c);
1340
1341 get_cpu_vendor(c);
1342
1343 get_cpu_cap(c);
1344
1345 get_cpu_address_sizes(c);
1346
1347 if (c->cpuid_level >= 0x00000001) {
1348 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1349 #ifdef CONFIG_X86_32
1350 # ifdef CONFIG_SMP
1351 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1352 # else
1353 c->apicid = c->initial_apicid;
1354 # endif
1355 #endif
1356 c->phys_proc_id = c->initial_apicid;
1357 }
1358
1359 get_model_name(c); /* Default name */
1360
1361 detect_null_seg_behavior(c);
1362
1363 /*
1364 * ESPFIX is a strange bug. All real CPUs have it. Paravirt
1365 * systems that run Linux at CPL > 0 may or may not have the
1366 * issue, but, even if they have the issue, there's absolutely
1367 * nothing we can do about it because we can't use the real IRET
1368 * instruction.
1369 *
1370 * NB: For the time being, only 32-bit kernels support
1371 * X86_BUG_ESPFIX as such. 64-bit kernels directly choose
1372 * whether to apply espfix using paravirt hooks. If any
1373 * non-paravirt system ever shows up that does *not* have the
1374 * ESPFIX issue, we can change this.
1375 */
1376 #ifdef CONFIG_X86_32
1377 # ifdef CONFIG_PARAVIRT_XXL
1378 do {
1379 extern void native_iret(void);
1380 if (pv_ops.cpu.iret == native_iret)
1381 set_cpu_bug(c, X86_BUG_ESPFIX);
1382 } while (0);
1383 # else
1384 set_cpu_bug(c, X86_BUG_ESPFIX);
1385 # endif
1386 #endif
1387 }
1388
x86_init_cache_qos(struct cpuinfo_x86 * c)1389 static void x86_init_cache_qos(struct cpuinfo_x86 *c)
1390 {
1391 /*
1392 * The heavy lifting of max_rmid and cache_occ_scale are handled
1393 * in get_cpu_cap(). Here we just set the max_rmid for the boot_cpu
1394 * in case CQM bits really aren't there in this CPU.
1395 */
1396 if (c != &boot_cpu_data) {
1397 boot_cpu_data.x86_cache_max_rmid =
1398 min(boot_cpu_data.x86_cache_max_rmid,
1399 c->x86_cache_max_rmid);
1400 }
1401 }
1402
1403 /*
1404 * Validate that ACPI/mptables have the same information about the
1405 * effective APIC id and update the package map.
1406 */
validate_apic_and_package_id(struct cpuinfo_x86 * c)1407 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1408 {
1409 #ifdef CONFIG_SMP
1410 unsigned int apicid, cpu = smp_processor_id();
1411
1412 apicid = apic->cpu_present_to_apicid(cpu);
1413
1414 if (apicid != c->apicid) {
1415 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1416 cpu, apicid, c->initial_apicid);
1417 }
1418 BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1419 BUG_ON(topology_update_die_map(c->cpu_die_id, cpu));
1420 #else
1421 c->logical_proc_id = 0;
1422 #endif
1423 }
1424
1425 /*
1426 * This does the hard work of actually picking apart the CPU stuff...
1427 */
identify_cpu(struct cpuinfo_x86 * c)1428 static void identify_cpu(struct cpuinfo_x86 *c)
1429 {
1430 int i;
1431
1432 c->loops_per_jiffy = loops_per_jiffy;
1433 c->x86_cache_size = 0;
1434 c->x86_vendor = X86_VENDOR_UNKNOWN;
1435 c->x86_model = c->x86_stepping = 0; /* So far unknown... */
1436 c->x86_vendor_id[0] = '\0'; /* Unset */
1437 c->x86_model_id[0] = '\0'; /* Unset */
1438 c->x86_max_cores = 1;
1439 c->x86_coreid_bits = 0;
1440 c->cu_id = 0xff;
1441 #ifdef CONFIG_X86_64
1442 c->x86_clflush_size = 64;
1443 c->x86_phys_bits = 36;
1444 c->x86_virt_bits = 48;
1445 #else
1446 c->cpuid_level = -1; /* CPUID not detected */
1447 c->x86_clflush_size = 32;
1448 c->x86_phys_bits = 32;
1449 c->x86_virt_bits = 32;
1450 #endif
1451 c->x86_cache_alignment = c->x86_clflush_size;
1452 memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1453
1454 generic_identify(c);
1455
1456 if (this_cpu->c_identify)
1457 this_cpu->c_identify(c);
1458
1459 /* Clear/Set all flags overridden by options, after probe */
1460 apply_forced_caps(c);
1461
1462 #ifdef CONFIG_X86_64
1463 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1464 #endif
1465
1466 /*
1467 * Vendor-specific initialization. In this section we
1468 * canonicalize the feature flags, meaning if there are
1469 * features a certain CPU supports which CPUID doesn't
1470 * tell us, CPUID claiming incorrect flags, or other bugs,
1471 * we handle them here.
1472 *
1473 * At the end of this section, c->x86_capability better
1474 * indicate the features this CPU genuinely supports!
1475 */
1476 if (this_cpu->c_init)
1477 this_cpu->c_init(c);
1478
1479 /* Disable the PN if appropriate */
1480 squash_the_stupid_serial_number(c);
1481
1482 /* Set up SMEP/SMAP/UMIP */
1483 setup_smep(c);
1484 setup_smap(c);
1485 setup_umip(c);
1486
1487 /*
1488 * The vendor-specific functions might have changed features.
1489 * Now we do "generic changes."
1490 */
1491
1492 /* Filter out anything that depends on CPUID levels we don't have */
1493 filter_cpuid_features(c, true);
1494
1495 /* If the model name is still unset, do table lookup. */
1496 if (!c->x86_model_id[0]) {
1497 const char *p;
1498 p = table_lookup_model(c);
1499 if (p)
1500 strcpy(c->x86_model_id, p);
1501 else
1502 /* Last resort... */
1503 sprintf(c->x86_model_id, "%02x/%02x",
1504 c->x86, c->x86_model);
1505 }
1506
1507 #ifdef CONFIG_X86_64
1508 detect_ht(c);
1509 #endif
1510
1511 x86_init_rdrand(c);
1512 x86_init_cache_qos(c);
1513 setup_pku(c);
1514
1515 /*
1516 * Clear/Set all flags overridden by options, need do it
1517 * before following smp all cpus cap AND.
1518 */
1519 apply_forced_caps(c);
1520
1521 /*
1522 * On SMP, boot_cpu_data holds the common feature set between
1523 * all CPUs; so make sure that we indicate which features are
1524 * common between the CPUs. The first time this routine gets
1525 * executed, c == &boot_cpu_data.
1526 */
1527 if (c != &boot_cpu_data) {
1528 /* AND the already accumulated flags with these */
1529 for (i = 0; i < NCAPINTS; i++)
1530 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1531
1532 /* OR, i.e. replicate the bug flags */
1533 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1534 c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1535 }
1536
1537 /* Init Machine Check Exception if available. */
1538 mcheck_cpu_init(c);
1539
1540 select_idle_routine(c);
1541
1542 #ifdef CONFIG_NUMA
1543 numa_add_cpu(smp_processor_id());
1544 #endif
1545 }
1546
1547 /*
1548 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1549 * on 32-bit kernels:
1550 */
1551 #ifdef CONFIG_X86_32
enable_sep_cpu(void)1552 void enable_sep_cpu(void)
1553 {
1554 struct tss_struct *tss;
1555 int cpu;
1556
1557 if (!boot_cpu_has(X86_FEATURE_SEP))
1558 return;
1559
1560 cpu = get_cpu();
1561 tss = &per_cpu(cpu_tss_rw, cpu);
1562
1563 /*
1564 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1565 * see the big comment in struct x86_hw_tss's definition.
1566 */
1567
1568 tss->x86_tss.ss1 = __KERNEL_CS;
1569 wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1570 wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1571 wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1572
1573 put_cpu();
1574 }
1575 #endif
1576
identify_boot_cpu(void)1577 void __init identify_boot_cpu(void)
1578 {
1579 identify_cpu(&boot_cpu_data);
1580 #ifdef CONFIG_X86_32
1581 sysenter_setup();
1582 enable_sep_cpu();
1583 #endif
1584 cpu_detect_tlb(&boot_cpu_data);
1585 setup_cr_pinning();
1586
1587 tsx_init();
1588 }
1589
identify_secondary_cpu(struct cpuinfo_x86 * c)1590 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1591 {
1592 BUG_ON(c == &boot_cpu_data);
1593 identify_cpu(c);
1594 #ifdef CONFIG_X86_32
1595 enable_sep_cpu();
1596 #endif
1597 mtrr_ap_init();
1598 validate_apic_and_package_id(c);
1599 x86_spec_ctrl_setup_ap();
1600 }
1601
setup_noclflush(char * arg)1602 static __init int setup_noclflush(char *arg)
1603 {
1604 setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1605 setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1606 return 1;
1607 }
1608 __setup("noclflush", setup_noclflush);
1609
print_cpu_info(struct cpuinfo_x86 * c)1610 void print_cpu_info(struct cpuinfo_x86 *c)
1611 {
1612 const char *vendor = NULL;
1613
1614 if (c->x86_vendor < X86_VENDOR_NUM) {
1615 vendor = this_cpu->c_vendor;
1616 } else {
1617 if (c->cpuid_level >= 0)
1618 vendor = c->x86_vendor_id;
1619 }
1620
1621 if (vendor && !strstr(c->x86_model_id, vendor))
1622 pr_cont("%s ", vendor);
1623
1624 if (c->x86_model_id[0])
1625 pr_cont("%s", c->x86_model_id);
1626 else
1627 pr_cont("%d86", c->x86);
1628
1629 pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1630
1631 if (c->x86_stepping || c->cpuid_level >= 0)
1632 pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
1633 else
1634 pr_cont(")\n");
1635 }
1636
1637 /*
1638 * clearcpuid= was already parsed in fpu__init_parse_early_param.
1639 * But we need to keep a dummy __setup around otherwise it would
1640 * show up as an environment variable for init.
1641 */
setup_clearcpuid(char * arg)1642 static __init int setup_clearcpuid(char *arg)
1643 {
1644 return 1;
1645 }
1646 __setup("clearcpuid=", setup_clearcpuid);
1647
1648 #ifdef CONFIG_X86_64
1649 DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
1650 fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
1651 EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
1652
1653 /*
1654 * The following percpu variables are hot. Align current_task to
1655 * cacheline size such that they fall in the same cacheline.
1656 */
1657 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1658 &init_task;
1659 EXPORT_PER_CPU_SYMBOL(current_task);
1660
1661 DEFINE_PER_CPU(struct irq_stack *, hardirq_stack_ptr);
1662 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1663
1664 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1665 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1666
1667 /* May not be marked __init: used by software suspend */
syscall_init(void)1668 void syscall_init(void)
1669 {
1670 wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1671 wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1672
1673 #ifdef CONFIG_IA32_EMULATION
1674 wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1675 /*
1676 * This only works on Intel CPUs.
1677 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1678 * This does not cause SYSENTER to jump to the wrong location, because
1679 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1680 */
1681 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1682 wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
1683 (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
1684 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1685 #else
1686 wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1687 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1688 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1689 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1690 #endif
1691
1692 /* Flags to clear on syscall */
1693 wrmsrl(MSR_SYSCALL_MASK,
1694 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1695 X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1696 }
1697
1698 DEFINE_PER_CPU(int, debug_stack_usage);
1699 DEFINE_PER_CPU(u32, debug_idt_ctr);
1700
debug_stack_set_zero(void)1701 void debug_stack_set_zero(void)
1702 {
1703 this_cpu_inc(debug_idt_ctr);
1704 load_current_idt();
1705 }
1706 NOKPROBE_SYMBOL(debug_stack_set_zero);
1707
debug_stack_reset(void)1708 void debug_stack_reset(void)
1709 {
1710 if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1711 return;
1712 if (this_cpu_dec_return(debug_idt_ctr) == 0)
1713 load_current_idt();
1714 }
1715 NOKPROBE_SYMBOL(debug_stack_reset);
1716
1717 #else /* CONFIG_X86_64 */
1718
1719 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1720 EXPORT_PER_CPU_SYMBOL(current_task);
1721 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1722 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1723
1724 /*
1725 * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1726 * the top of the kernel stack. Use an extra percpu variable to track the
1727 * top of the kernel stack directly.
1728 */
1729 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1730 (unsigned long)&init_thread_union + THREAD_SIZE;
1731 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1732
1733 #ifdef CONFIG_STACKPROTECTOR
1734 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1735 #endif
1736
1737 #endif /* CONFIG_X86_64 */
1738
1739 /*
1740 * Clear all 6 debug registers:
1741 */
clear_all_debug_regs(void)1742 static void clear_all_debug_regs(void)
1743 {
1744 int i;
1745
1746 for (i = 0; i < 8; i++) {
1747 /* Ignore db4, db5 */
1748 if ((i == 4) || (i == 5))
1749 continue;
1750
1751 set_debugreg(0, i);
1752 }
1753 }
1754
1755 #ifdef CONFIG_KGDB
1756 /*
1757 * Restore debug regs if using kgdbwait and you have a kernel debugger
1758 * connection established.
1759 */
dbg_restore_debug_regs(void)1760 static void dbg_restore_debug_regs(void)
1761 {
1762 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1763 arch_kgdb_ops.correct_hw_break();
1764 }
1765 #else /* ! CONFIG_KGDB */
1766 #define dbg_restore_debug_regs()
1767 #endif /* ! CONFIG_KGDB */
1768
wait_for_master_cpu(int cpu)1769 static void wait_for_master_cpu(int cpu)
1770 {
1771 #ifdef CONFIG_SMP
1772 /*
1773 * wait for ACK from master CPU before continuing
1774 * with AP initialization
1775 */
1776 WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1777 while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1778 cpu_relax();
1779 #endif
1780 }
1781
1782 #ifdef CONFIG_X86_64
setup_getcpu(int cpu)1783 static void setup_getcpu(int cpu)
1784 {
1785 unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
1786 struct desc_struct d = { };
1787
1788 if (boot_cpu_has(X86_FEATURE_RDTSCP))
1789 write_rdtscp_aux(cpudata);
1790
1791 /* Store CPU and node number in limit. */
1792 d.limit0 = cpudata;
1793 d.limit1 = cpudata >> 16;
1794
1795 d.type = 5; /* RO data, expand down, accessed */
1796 d.dpl = 3; /* Visible to user code */
1797 d.s = 1; /* Not a system segment */
1798 d.p = 1; /* Present */
1799 d.d = 1; /* 32-bit */
1800
1801 write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
1802 }
1803 #endif
1804
1805 /*
1806 * cpu_init() initializes state that is per-CPU. Some data is already
1807 * initialized (naturally) in the bootstrap process, such as the GDT
1808 * and IDT. We reload them nevertheless, this function acts as a
1809 * 'CPU state barrier', nothing should get across.
1810 */
1811 #ifdef CONFIG_X86_64
1812
cpu_init(void)1813 void cpu_init(void)
1814 {
1815 int cpu = raw_smp_processor_id();
1816 struct task_struct *me;
1817 struct tss_struct *t;
1818 int i;
1819
1820 wait_for_master_cpu(cpu);
1821
1822 if (cpu)
1823 load_ucode_ap();
1824
1825 t = &per_cpu(cpu_tss_rw, cpu);
1826
1827 #ifdef CONFIG_NUMA
1828 if (this_cpu_read(numa_node) == 0 &&
1829 early_cpu_to_node(cpu) != NUMA_NO_NODE)
1830 set_numa_node(early_cpu_to_node(cpu));
1831 #endif
1832 setup_getcpu(cpu);
1833
1834 me = current;
1835
1836 pr_debug("Initializing CPU#%d\n", cpu);
1837
1838 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1839
1840 /*
1841 * Initialize the per-CPU GDT with the boot GDT,
1842 * and set up the GDT descriptor:
1843 */
1844
1845 switch_to_new_gdt(cpu);
1846 loadsegment(fs, 0);
1847
1848 load_current_idt();
1849
1850 memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1851 syscall_init();
1852
1853 wrmsrl(MSR_FS_BASE, 0);
1854 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1855 barrier();
1856
1857 x86_configure_nx();
1858 x2apic_setup();
1859
1860 /*
1861 * set up and load the per-CPU TSS
1862 */
1863 if (!t->x86_tss.ist[0]) {
1864 t->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
1865 t->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
1866 t->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
1867 t->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
1868 }
1869
1870 t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
1871
1872 /*
1873 * <= is required because the CPU will access up to
1874 * 8 bits beyond the end of the IO permission bitmap.
1875 */
1876 for (i = 0; i <= IO_BITMAP_LONGS; i++)
1877 t->io_bitmap[i] = ~0UL;
1878
1879 mmgrab(&init_mm);
1880 me->active_mm = &init_mm;
1881 BUG_ON(me->mm);
1882 initialize_tlbstate_and_flush();
1883 enter_lazy_tlb(&init_mm, me);
1884
1885 /*
1886 * Initialize the TSS. sp0 points to the entry trampoline stack
1887 * regardless of what task is running.
1888 */
1889 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1890 load_TR_desc();
1891 load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
1892
1893 load_mm_ldt(&init_mm);
1894
1895 clear_all_debug_regs();
1896 dbg_restore_debug_regs();
1897
1898 fpu__init_cpu();
1899
1900 if (is_uv_system())
1901 uv_cpu_init();
1902
1903 load_fixmap_gdt(cpu);
1904 }
1905
1906 #else
1907
cpu_init(void)1908 void cpu_init(void)
1909 {
1910 int cpu = smp_processor_id();
1911 struct task_struct *curr = current;
1912 struct tss_struct *t = &per_cpu(cpu_tss_rw, cpu);
1913
1914 wait_for_master_cpu(cpu);
1915
1916 show_ucode_info_early();
1917
1918 pr_info("Initializing CPU#%d\n", cpu);
1919
1920 if (cpu_feature_enabled(X86_FEATURE_VME) ||
1921 boot_cpu_has(X86_FEATURE_TSC) ||
1922 boot_cpu_has(X86_FEATURE_DE))
1923 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1924
1925 load_current_idt();
1926 switch_to_new_gdt(cpu);
1927
1928 /*
1929 * Set up and load the per-CPU TSS and LDT
1930 */
1931 mmgrab(&init_mm);
1932 curr->active_mm = &init_mm;
1933 BUG_ON(curr->mm);
1934 initialize_tlbstate_and_flush();
1935 enter_lazy_tlb(&init_mm, curr);
1936
1937 /*
1938 * Initialize the TSS. sp0 points to the entry trampoline stack
1939 * regardless of what task is running.
1940 */
1941 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1942 load_TR_desc();
1943 load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
1944
1945 load_mm_ldt(&init_mm);
1946
1947 t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
1948
1949 #ifdef CONFIG_DOUBLEFAULT
1950 /* Set up doublefault TSS pointer in the GDT */
1951 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1952 #endif
1953
1954 clear_all_debug_regs();
1955 dbg_restore_debug_regs();
1956
1957 fpu__init_cpu();
1958
1959 load_fixmap_gdt(cpu);
1960 }
1961 #endif
1962
1963 /*
1964 * The microcode loader calls this upon late microcode load to recheck features,
1965 * only when microcode has been updated. Caller holds microcode_mutex and CPU
1966 * hotplug lock.
1967 */
microcode_check(void)1968 void microcode_check(void)
1969 {
1970 struct cpuinfo_x86 info;
1971
1972 perf_check_microcode();
1973
1974 /* Reload CPUID max function as it might've changed. */
1975 info.cpuid_level = cpuid_eax(0);
1976
1977 /*
1978 * Copy all capability leafs to pick up the synthetic ones so that
1979 * memcmp() below doesn't fail on that. The ones coming from CPUID will
1980 * get overwritten in get_cpu_cap().
1981 */
1982 memcpy(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability));
1983
1984 get_cpu_cap(&info);
1985
1986 if (!memcmp(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability)))
1987 return;
1988
1989 pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
1990 pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
1991 }
1992
1993 /*
1994 * Invoked from core CPU hotplug code after hotplug operations
1995 */
arch_smt_update(void)1996 void arch_smt_update(void)
1997 {
1998 /* Handle the speculative execution misfeatures */
1999 cpu_bugs_smt_update();
2000 /* Check whether IPI broadcasting can be enabled */
2001 apic_smt_update();
2002 }
2003