1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * General Purpose functions for the global management of the
4 * Communication Processor Module.
5 * Copyright (c) 1997 Dan error_act (dmalek@jlc.net)
6 *
7 * In addition to the individual control of the communication
8 * channels, there are a few functions that globally affect the
9 * communication processor.
10 *
11 * Buffer descriptors must be allocated from the dual ported memory
12 * space. The allocator for that is here. When the communication
13 * process is reset, we reclaim the memory available. There is
14 * currently no deallocator for this memory.
15 * The amount of space available is platform dependent. On the
16 * MBX, the EPPC software loads additional microcode into the
17 * communication processor, and uses some of the DP ram for this
18 * purpose. Current, the first 512 bytes and the last 256 bytes of
19 * memory are used. Right now I am conservative and only use the
20 * memory that can never be used for microcode. If there are
21 * applications that require more DP ram, we can expand the boundaries
22 * but then we have to be careful of any downloaded microcode.
23 */
24 #include <linux/errno.h>
25 #include <linux/sched.h>
26 #include <linux/kernel.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/param.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/interrupt.h>
32 #include <linux/irq.h>
33 #include <linux/module.h>
34 #include <linux/spinlock.h>
35 #include <linux/slab.h>
36 #include <asm/page.h>
37 #include <asm/8xx_immap.h>
38 #include <asm/cpm1.h>
39 #include <asm/io.h>
40 #include <asm/rheap.h>
41 #include <asm/prom.h>
42 #include <asm/cpm.h>
43
44 #include <asm/fs_pd.h>
45
46 #ifdef CONFIG_8xx_GPIO
47 #include <linux/of_gpio.h>
48 #endif
49
50 #define CPM_MAP_SIZE (0x4000)
51
52 cpm8xx_t __iomem *cpmp; /* Pointer to comm processor space */
53 immap_t __iomem *mpc8xx_immr = (void __iomem *)VIRT_IMMR_BASE;
54 static cpic8xx_t __iomem *cpic_reg;
55
56 static struct irq_domain *cpm_pic_host;
57
cpm_mask_irq(struct irq_data * d)58 static void cpm_mask_irq(struct irq_data *d)
59 {
60 unsigned int cpm_vec = (unsigned int)irqd_to_hwirq(d);
61
62 clrbits32(&cpic_reg->cpic_cimr, (1 << cpm_vec));
63 }
64
cpm_unmask_irq(struct irq_data * d)65 static void cpm_unmask_irq(struct irq_data *d)
66 {
67 unsigned int cpm_vec = (unsigned int)irqd_to_hwirq(d);
68
69 setbits32(&cpic_reg->cpic_cimr, (1 << cpm_vec));
70 }
71
cpm_end_irq(struct irq_data * d)72 static void cpm_end_irq(struct irq_data *d)
73 {
74 unsigned int cpm_vec = (unsigned int)irqd_to_hwirq(d);
75
76 out_be32(&cpic_reg->cpic_cisr, (1 << cpm_vec));
77 }
78
79 static struct irq_chip cpm_pic = {
80 .name = "CPM PIC",
81 .irq_mask = cpm_mask_irq,
82 .irq_unmask = cpm_unmask_irq,
83 .irq_eoi = cpm_end_irq,
84 };
85
cpm_get_irq(void)86 int cpm_get_irq(void)
87 {
88 int cpm_vec;
89
90 /*
91 * Get the vector by setting the ACK bit and then reading
92 * the register.
93 */
94 out_be16(&cpic_reg->cpic_civr, 1);
95 cpm_vec = in_be16(&cpic_reg->cpic_civr);
96 cpm_vec >>= 11;
97
98 return irq_linear_revmap(cpm_pic_host, cpm_vec);
99 }
100
cpm_pic_host_map(struct irq_domain * h,unsigned int virq,irq_hw_number_t hw)101 static int cpm_pic_host_map(struct irq_domain *h, unsigned int virq,
102 irq_hw_number_t hw)
103 {
104 pr_debug("cpm_pic_host_map(%d, 0x%lx)\n", virq, hw);
105
106 irq_set_status_flags(virq, IRQ_LEVEL);
107 irq_set_chip_and_handler(virq, &cpm_pic, handle_fasteoi_irq);
108 return 0;
109 }
110
111 /*
112 * The CPM can generate the error interrupt when there is a race condition
113 * between generating and masking interrupts. All we have to do is ACK it
114 * and return. This is a no-op function so we don't need any special
115 * tests in the interrupt handler.
116 */
cpm_error_interrupt(int irq,void * dev)117 static irqreturn_t cpm_error_interrupt(int irq, void *dev)
118 {
119 return IRQ_HANDLED;
120 }
121
122 static const struct irq_domain_ops cpm_pic_host_ops = {
123 .map = cpm_pic_host_map,
124 };
125
cpm_pic_init(void)126 unsigned int __init cpm_pic_init(void)
127 {
128 struct device_node *np = NULL;
129 struct resource res;
130 unsigned int sirq = 0, hwirq, eirq;
131 int ret;
132
133 pr_debug("cpm_pic_init\n");
134
135 np = of_find_compatible_node(NULL, NULL, "fsl,cpm1-pic");
136 if (np == NULL)
137 np = of_find_compatible_node(NULL, "cpm-pic", "CPM");
138 if (np == NULL) {
139 printk(KERN_ERR "CPM PIC init: can not find cpm-pic node\n");
140 return sirq;
141 }
142
143 ret = of_address_to_resource(np, 0, &res);
144 if (ret)
145 goto end;
146
147 cpic_reg = ioremap(res.start, resource_size(&res));
148 if (cpic_reg == NULL)
149 goto end;
150
151 sirq = irq_of_parse_and_map(np, 0);
152 if (!sirq)
153 goto end;
154
155 /* Initialize the CPM interrupt controller. */
156 hwirq = (unsigned int)virq_to_hw(sirq);
157 out_be32(&cpic_reg->cpic_cicr,
158 (CICR_SCD_SCC4 | CICR_SCC_SCC3 | CICR_SCB_SCC2 | CICR_SCA_SCC1) |
159 ((hwirq/2) << 13) | CICR_HP_MASK);
160
161 out_be32(&cpic_reg->cpic_cimr, 0);
162
163 cpm_pic_host = irq_domain_add_linear(np, 64, &cpm_pic_host_ops, NULL);
164 if (cpm_pic_host == NULL) {
165 printk(KERN_ERR "CPM2 PIC: failed to allocate irq host!\n");
166 sirq = 0;
167 goto end;
168 }
169
170 /* Install our own error handler. */
171 np = of_find_compatible_node(NULL, NULL, "fsl,cpm1");
172 if (np == NULL)
173 np = of_find_node_by_type(NULL, "cpm");
174 if (np == NULL) {
175 printk(KERN_ERR "CPM PIC init: can not find cpm node\n");
176 goto end;
177 }
178
179 eirq = irq_of_parse_and_map(np, 0);
180 if (!eirq)
181 goto end;
182
183 if (request_irq(eirq, cpm_error_interrupt, IRQF_NO_THREAD, "error",
184 NULL))
185 printk(KERN_ERR "Could not allocate CPM error IRQ!");
186
187 setbits32(&cpic_reg->cpic_cicr, CICR_IEN);
188
189 end:
190 of_node_put(np);
191 return sirq;
192 }
193
cpm_reset(void)194 void __init cpm_reset(void)
195 {
196 sysconf8xx_t __iomem *siu_conf;
197
198 cpmp = &mpc8xx_immr->im_cpm;
199
200 #ifndef CONFIG_PPC_EARLY_DEBUG_CPM
201 /* Perform a reset. */
202 out_be16(&cpmp->cp_cpcr, CPM_CR_RST | CPM_CR_FLG);
203
204 /* Wait for it. */
205 while (in_be16(&cpmp->cp_cpcr) & CPM_CR_FLG);
206 #endif
207
208 #ifdef CONFIG_UCODE_PATCH
209 cpm_load_patch(cpmp);
210 #endif
211
212 /*
213 * Set SDMA Bus Request priority 5.
214 * On 860T, this also enables FEC priority 6. I am not sure
215 * this is what we really want for some applications, but the
216 * manual recommends it.
217 * Bit 25, FAM can also be set to use FEC aggressive mode (860T).
218 */
219 siu_conf = immr_map(im_siu_conf);
220 if ((mfspr(SPRN_IMMR) & 0xffff) == 0x0900) /* MPC885 */
221 out_be32(&siu_conf->sc_sdcr, 0x40);
222 else
223 out_be32(&siu_conf->sc_sdcr, 1);
224 immr_unmap(siu_conf);
225 }
226
227 static DEFINE_SPINLOCK(cmd_lock);
228
229 #define MAX_CR_CMD_LOOPS 10000
230
cpm_command(u32 command,u8 opcode)231 int cpm_command(u32 command, u8 opcode)
232 {
233 int i, ret;
234 unsigned long flags;
235
236 if (command & 0xffffff0f)
237 return -EINVAL;
238
239 spin_lock_irqsave(&cmd_lock, flags);
240
241 ret = 0;
242 out_be16(&cpmp->cp_cpcr, command | CPM_CR_FLG | (opcode << 8));
243 for (i = 0; i < MAX_CR_CMD_LOOPS; i++)
244 if ((in_be16(&cpmp->cp_cpcr) & CPM_CR_FLG) == 0)
245 goto out;
246
247 printk(KERN_ERR "%s(): Not able to issue CPM command\n", __func__);
248 ret = -EIO;
249 out:
250 spin_unlock_irqrestore(&cmd_lock, flags);
251 return ret;
252 }
253 EXPORT_SYMBOL(cpm_command);
254
255 /*
256 * Set a baud rate generator. This needs lots of work. There are
257 * four BRGs, any of which can be wired to any channel.
258 * The internal baud rate clock is the system clock divided by 16.
259 * This assumes the baudrate is 16x oversampled by the uart.
260 */
261 #define BRG_INT_CLK (get_brgfreq())
262 #define BRG_UART_CLK (BRG_INT_CLK/16)
263 #define BRG_UART_CLK_DIV16 (BRG_UART_CLK/16)
264
265 void
cpm_setbrg(uint brg,uint rate)266 cpm_setbrg(uint brg, uint rate)
267 {
268 u32 __iomem *bp;
269
270 /* This is good enough to get SMCs running..... */
271 bp = &cpmp->cp_brgc1;
272 bp += brg;
273 /*
274 * The BRG has a 12-bit counter. For really slow baud rates (or
275 * really fast processors), we may have to further divide by 16.
276 */
277 if (((BRG_UART_CLK / rate) - 1) < 4096)
278 out_be32(bp, (((BRG_UART_CLK / rate) - 1) << 1) | CPM_BRG_EN);
279 else
280 out_be32(bp, (((BRG_UART_CLK_DIV16 / rate) - 1) << 1) |
281 CPM_BRG_EN | CPM_BRG_DIV16);
282 }
283
284 struct cpm_ioport16 {
285 __be16 dir, par, odr_sor, dat, intr;
286 __be16 res[3];
287 };
288
289 struct cpm_ioport32b {
290 __be32 dir, par, odr, dat;
291 };
292
293 struct cpm_ioport32e {
294 __be32 dir, par, sor, odr, dat;
295 };
296
cpm1_set_pin32(int port,int pin,int flags)297 static void __init cpm1_set_pin32(int port, int pin, int flags)
298 {
299 struct cpm_ioport32e __iomem *iop;
300 pin = 1 << (31 - pin);
301
302 if (port == CPM_PORTB)
303 iop = (struct cpm_ioport32e __iomem *)
304 &mpc8xx_immr->im_cpm.cp_pbdir;
305 else
306 iop = (struct cpm_ioport32e __iomem *)
307 &mpc8xx_immr->im_cpm.cp_pedir;
308
309 if (flags & CPM_PIN_OUTPUT)
310 setbits32(&iop->dir, pin);
311 else
312 clrbits32(&iop->dir, pin);
313
314 if (!(flags & CPM_PIN_GPIO))
315 setbits32(&iop->par, pin);
316 else
317 clrbits32(&iop->par, pin);
318
319 if (port == CPM_PORTB) {
320 if (flags & CPM_PIN_OPENDRAIN)
321 setbits16(&mpc8xx_immr->im_cpm.cp_pbodr, pin);
322 else
323 clrbits16(&mpc8xx_immr->im_cpm.cp_pbodr, pin);
324 }
325
326 if (port == CPM_PORTE) {
327 if (flags & CPM_PIN_SECONDARY)
328 setbits32(&iop->sor, pin);
329 else
330 clrbits32(&iop->sor, pin);
331
332 if (flags & CPM_PIN_OPENDRAIN)
333 setbits32(&mpc8xx_immr->im_cpm.cp_peodr, pin);
334 else
335 clrbits32(&mpc8xx_immr->im_cpm.cp_peodr, pin);
336 }
337 }
338
cpm1_set_pin16(int port,int pin,int flags)339 static void __init cpm1_set_pin16(int port, int pin, int flags)
340 {
341 struct cpm_ioport16 __iomem *iop =
342 (struct cpm_ioport16 __iomem *)&mpc8xx_immr->im_ioport;
343
344 pin = 1 << (15 - pin);
345
346 if (port != 0)
347 iop += port - 1;
348
349 if (flags & CPM_PIN_OUTPUT)
350 setbits16(&iop->dir, pin);
351 else
352 clrbits16(&iop->dir, pin);
353
354 if (!(flags & CPM_PIN_GPIO))
355 setbits16(&iop->par, pin);
356 else
357 clrbits16(&iop->par, pin);
358
359 if (port == CPM_PORTA) {
360 if (flags & CPM_PIN_OPENDRAIN)
361 setbits16(&iop->odr_sor, pin);
362 else
363 clrbits16(&iop->odr_sor, pin);
364 }
365 if (port == CPM_PORTC) {
366 if (flags & CPM_PIN_SECONDARY)
367 setbits16(&iop->odr_sor, pin);
368 else
369 clrbits16(&iop->odr_sor, pin);
370 if (flags & CPM_PIN_FALLEDGE)
371 setbits16(&iop->intr, pin);
372 else
373 clrbits16(&iop->intr, pin);
374 }
375 }
376
cpm1_set_pin(enum cpm_port port,int pin,int flags)377 void __init cpm1_set_pin(enum cpm_port port, int pin, int flags)
378 {
379 if (port == CPM_PORTB || port == CPM_PORTE)
380 cpm1_set_pin32(port, pin, flags);
381 else
382 cpm1_set_pin16(port, pin, flags);
383 }
384
cpm1_clk_setup(enum cpm_clk_target target,int clock,int mode)385 int __init cpm1_clk_setup(enum cpm_clk_target target, int clock, int mode)
386 {
387 int shift;
388 int i, bits = 0;
389 u32 __iomem *reg;
390 u32 mask = 7;
391
392 u8 clk_map[][3] = {
393 {CPM_CLK_SCC1, CPM_BRG1, 0},
394 {CPM_CLK_SCC1, CPM_BRG2, 1},
395 {CPM_CLK_SCC1, CPM_BRG3, 2},
396 {CPM_CLK_SCC1, CPM_BRG4, 3},
397 {CPM_CLK_SCC1, CPM_CLK1, 4},
398 {CPM_CLK_SCC1, CPM_CLK2, 5},
399 {CPM_CLK_SCC1, CPM_CLK3, 6},
400 {CPM_CLK_SCC1, CPM_CLK4, 7},
401
402 {CPM_CLK_SCC2, CPM_BRG1, 0},
403 {CPM_CLK_SCC2, CPM_BRG2, 1},
404 {CPM_CLK_SCC2, CPM_BRG3, 2},
405 {CPM_CLK_SCC2, CPM_BRG4, 3},
406 {CPM_CLK_SCC2, CPM_CLK1, 4},
407 {CPM_CLK_SCC2, CPM_CLK2, 5},
408 {CPM_CLK_SCC2, CPM_CLK3, 6},
409 {CPM_CLK_SCC2, CPM_CLK4, 7},
410
411 {CPM_CLK_SCC3, CPM_BRG1, 0},
412 {CPM_CLK_SCC3, CPM_BRG2, 1},
413 {CPM_CLK_SCC3, CPM_BRG3, 2},
414 {CPM_CLK_SCC3, CPM_BRG4, 3},
415 {CPM_CLK_SCC3, CPM_CLK5, 4},
416 {CPM_CLK_SCC3, CPM_CLK6, 5},
417 {CPM_CLK_SCC3, CPM_CLK7, 6},
418 {CPM_CLK_SCC3, CPM_CLK8, 7},
419
420 {CPM_CLK_SCC4, CPM_BRG1, 0},
421 {CPM_CLK_SCC4, CPM_BRG2, 1},
422 {CPM_CLK_SCC4, CPM_BRG3, 2},
423 {CPM_CLK_SCC4, CPM_BRG4, 3},
424 {CPM_CLK_SCC4, CPM_CLK5, 4},
425 {CPM_CLK_SCC4, CPM_CLK6, 5},
426 {CPM_CLK_SCC4, CPM_CLK7, 6},
427 {CPM_CLK_SCC4, CPM_CLK8, 7},
428
429 {CPM_CLK_SMC1, CPM_BRG1, 0},
430 {CPM_CLK_SMC1, CPM_BRG2, 1},
431 {CPM_CLK_SMC1, CPM_BRG3, 2},
432 {CPM_CLK_SMC1, CPM_BRG4, 3},
433 {CPM_CLK_SMC1, CPM_CLK1, 4},
434 {CPM_CLK_SMC1, CPM_CLK2, 5},
435 {CPM_CLK_SMC1, CPM_CLK3, 6},
436 {CPM_CLK_SMC1, CPM_CLK4, 7},
437
438 {CPM_CLK_SMC2, CPM_BRG1, 0},
439 {CPM_CLK_SMC2, CPM_BRG2, 1},
440 {CPM_CLK_SMC2, CPM_BRG3, 2},
441 {CPM_CLK_SMC2, CPM_BRG4, 3},
442 {CPM_CLK_SMC2, CPM_CLK5, 4},
443 {CPM_CLK_SMC2, CPM_CLK6, 5},
444 {CPM_CLK_SMC2, CPM_CLK7, 6},
445 {CPM_CLK_SMC2, CPM_CLK8, 7},
446 };
447
448 switch (target) {
449 case CPM_CLK_SCC1:
450 reg = &mpc8xx_immr->im_cpm.cp_sicr;
451 shift = 0;
452 break;
453
454 case CPM_CLK_SCC2:
455 reg = &mpc8xx_immr->im_cpm.cp_sicr;
456 shift = 8;
457 break;
458
459 case CPM_CLK_SCC3:
460 reg = &mpc8xx_immr->im_cpm.cp_sicr;
461 shift = 16;
462 break;
463
464 case CPM_CLK_SCC4:
465 reg = &mpc8xx_immr->im_cpm.cp_sicr;
466 shift = 24;
467 break;
468
469 case CPM_CLK_SMC1:
470 reg = &mpc8xx_immr->im_cpm.cp_simode;
471 shift = 12;
472 break;
473
474 case CPM_CLK_SMC2:
475 reg = &mpc8xx_immr->im_cpm.cp_simode;
476 shift = 28;
477 break;
478
479 default:
480 printk(KERN_ERR "cpm1_clock_setup: invalid clock target\n");
481 return -EINVAL;
482 }
483
484 for (i = 0; i < ARRAY_SIZE(clk_map); i++) {
485 if (clk_map[i][0] == target && clk_map[i][1] == clock) {
486 bits = clk_map[i][2];
487 break;
488 }
489 }
490
491 if (i == ARRAY_SIZE(clk_map)) {
492 printk(KERN_ERR "cpm1_clock_setup: invalid clock combination\n");
493 return -EINVAL;
494 }
495
496 bits <<= shift;
497 mask <<= shift;
498
499 if (reg == &mpc8xx_immr->im_cpm.cp_sicr) {
500 if (mode == CPM_CLK_RTX) {
501 bits |= bits << 3;
502 mask |= mask << 3;
503 } else if (mode == CPM_CLK_RX) {
504 bits <<= 3;
505 mask <<= 3;
506 }
507 }
508
509 out_be32(reg, (in_be32(reg) & ~mask) | bits);
510
511 return 0;
512 }
513
514 /*
515 * GPIO LIB API implementation
516 */
517 #ifdef CONFIG_8xx_GPIO
518
519 struct cpm1_gpio16_chip {
520 struct of_mm_gpio_chip mm_gc;
521 spinlock_t lock;
522
523 /* shadowed data register to clear/set bits safely */
524 u16 cpdata;
525
526 /* IRQ associated with Pins when relevant */
527 int irq[16];
528 };
529
cpm1_gpio16_save_regs(struct of_mm_gpio_chip * mm_gc)530 static void cpm1_gpio16_save_regs(struct of_mm_gpio_chip *mm_gc)
531 {
532 struct cpm1_gpio16_chip *cpm1_gc =
533 container_of(mm_gc, struct cpm1_gpio16_chip, mm_gc);
534 struct cpm_ioport16 __iomem *iop = mm_gc->regs;
535
536 cpm1_gc->cpdata = in_be16(&iop->dat);
537 }
538
cpm1_gpio16_get(struct gpio_chip * gc,unsigned int gpio)539 static int cpm1_gpio16_get(struct gpio_chip *gc, unsigned int gpio)
540 {
541 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
542 struct cpm_ioport16 __iomem *iop = mm_gc->regs;
543 u16 pin_mask;
544
545 pin_mask = 1 << (15 - gpio);
546
547 return !!(in_be16(&iop->dat) & pin_mask);
548 }
549
__cpm1_gpio16_set(struct of_mm_gpio_chip * mm_gc,u16 pin_mask,int value)550 static void __cpm1_gpio16_set(struct of_mm_gpio_chip *mm_gc, u16 pin_mask,
551 int value)
552 {
553 struct cpm1_gpio16_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
554 struct cpm_ioport16 __iomem *iop = mm_gc->regs;
555
556 if (value)
557 cpm1_gc->cpdata |= pin_mask;
558 else
559 cpm1_gc->cpdata &= ~pin_mask;
560
561 out_be16(&iop->dat, cpm1_gc->cpdata);
562 }
563
cpm1_gpio16_set(struct gpio_chip * gc,unsigned int gpio,int value)564 static void cpm1_gpio16_set(struct gpio_chip *gc, unsigned int gpio, int value)
565 {
566 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
567 struct cpm1_gpio16_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
568 unsigned long flags;
569 u16 pin_mask = 1 << (15 - gpio);
570
571 spin_lock_irqsave(&cpm1_gc->lock, flags);
572
573 __cpm1_gpio16_set(mm_gc, pin_mask, value);
574
575 spin_unlock_irqrestore(&cpm1_gc->lock, flags);
576 }
577
cpm1_gpio16_to_irq(struct gpio_chip * gc,unsigned int gpio)578 static int cpm1_gpio16_to_irq(struct gpio_chip *gc, unsigned int gpio)
579 {
580 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
581 struct cpm1_gpio16_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
582
583 return cpm1_gc->irq[gpio] ? : -ENXIO;
584 }
585
cpm1_gpio16_dir_out(struct gpio_chip * gc,unsigned int gpio,int val)586 static int cpm1_gpio16_dir_out(struct gpio_chip *gc, unsigned int gpio, int val)
587 {
588 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
589 struct cpm1_gpio16_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
590 struct cpm_ioport16 __iomem *iop = mm_gc->regs;
591 unsigned long flags;
592 u16 pin_mask = 1 << (15 - gpio);
593
594 spin_lock_irqsave(&cpm1_gc->lock, flags);
595
596 setbits16(&iop->dir, pin_mask);
597 __cpm1_gpio16_set(mm_gc, pin_mask, val);
598
599 spin_unlock_irqrestore(&cpm1_gc->lock, flags);
600
601 return 0;
602 }
603
cpm1_gpio16_dir_in(struct gpio_chip * gc,unsigned int gpio)604 static int cpm1_gpio16_dir_in(struct gpio_chip *gc, unsigned int gpio)
605 {
606 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
607 struct cpm1_gpio16_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
608 struct cpm_ioport16 __iomem *iop = mm_gc->regs;
609 unsigned long flags;
610 u16 pin_mask = 1 << (15 - gpio);
611
612 spin_lock_irqsave(&cpm1_gc->lock, flags);
613
614 clrbits16(&iop->dir, pin_mask);
615
616 spin_unlock_irqrestore(&cpm1_gc->lock, flags);
617
618 return 0;
619 }
620
cpm1_gpiochip_add16(struct device * dev)621 int cpm1_gpiochip_add16(struct device *dev)
622 {
623 struct device_node *np = dev->of_node;
624 struct cpm1_gpio16_chip *cpm1_gc;
625 struct of_mm_gpio_chip *mm_gc;
626 struct gpio_chip *gc;
627 u16 mask;
628
629 cpm1_gc = kzalloc(sizeof(*cpm1_gc), GFP_KERNEL);
630 if (!cpm1_gc)
631 return -ENOMEM;
632
633 spin_lock_init(&cpm1_gc->lock);
634
635 if (!of_property_read_u16(np, "fsl,cpm1-gpio-irq-mask", &mask)) {
636 int i, j;
637
638 for (i = 0, j = 0; i < 16; i++)
639 if (mask & (1 << (15 - i)))
640 cpm1_gc->irq[i] = irq_of_parse_and_map(np, j++);
641 }
642
643 mm_gc = &cpm1_gc->mm_gc;
644 gc = &mm_gc->gc;
645
646 mm_gc->save_regs = cpm1_gpio16_save_regs;
647 gc->ngpio = 16;
648 gc->direction_input = cpm1_gpio16_dir_in;
649 gc->direction_output = cpm1_gpio16_dir_out;
650 gc->get = cpm1_gpio16_get;
651 gc->set = cpm1_gpio16_set;
652 gc->to_irq = cpm1_gpio16_to_irq;
653 gc->parent = dev;
654 gc->owner = THIS_MODULE;
655
656 return of_mm_gpiochip_add_data(np, mm_gc, cpm1_gc);
657 }
658
659 struct cpm1_gpio32_chip {
660 struct of_mm_gpio_chip mm_gc;
661 spinlock_t lock;
662
663 /* shadowed data register to clear/set bits safely */
664 u32 cpdata;
665 };
666
cpm1_gpio32_save_regs(struct of_mm_gpio_chip * mm_gc)667 static void cpm1_gpio32_save_regs(struct of_mm_gpio_chip *mm_gc)
668 {
669 struct cpm1_gpio32_chip *cpm1_gc =
670 container_of(mm_gc, struct cpm1_gpio32_chip, mm_gc);
671 struct cpm_ioport32b __iomem *iop = mm_gc->regs;
672
673 cpm1_gc->cpdata = in_be32(&iop->dat);
674 }
675
cpm1_gpio32_get(struct gpio_chip * gc,unsigned int gpio)676 static int cpm1_gpio32_get(struct gpio_chip *gc, unsigned int gpio)
677 {
678 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
679 struct cpm_ioport32b __iomem *iop = mm_gc->regs;
680 u32 pin_mask;
681
682 pin_mask = 1 << (31 - gpio);
683
684 return !!(in_be32(&iop->dat) & pin_mask);
685 }
686
__cpm1_gpio32_set(struct of_mm_gpio_chip * mm_gc,u32 pin_mask,int value)687 static void __cpm1_gpio32_set(struct of_mm_gpio_chip *mm_gc, u32 pin_mask,
688 int value)
689 {
690 struct cpm1_gpio32_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
691 struct cpm_ioport32b __iomem *iop = mm_gc->regs;
692
693 if (value)
694 cpm1_gc->cpdata |= pin_mask;
695 else
696 cpm1_gc->cpdata &= ~pin_mask;
697
698 out_be32(&iop->dat, cpm1_gc->cpdata);
699 }
700
cpm1_gpio32_set(struct gpio_chip * gc,unsigned int gpio,int value)701 static void cpm1_gpio32_set(struct gpio_chip *gc, unsigned int gpio, int value)
702 {
703 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
704 struct cpm1_gpio32_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
705 unsigned long flags;
706 u32 pin_mask = 1 << (31 - gpio);
707
708 spin_lock_irqsave(&cpm1_gc->lock, flags);
709
710 __cpm1_gpio32_set(mm_gc, pin_mask, value);
711
712 spin_unlock_irqrestore(&cpm1_gc->lock, flags);
713 }
714
cpm1_gpio32_dir_out(struct gpio_chip * gc,unsigned int gpio,int val)715 static int cpm1_gpio32_dir_out(struct gpio_chip *gc, unsigned int gpio, int val)
716 {
717 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
718 struct cpm1_gpio32_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
719 struct cpm_ioport32b __iomem *iop = mm_gc->regs;
720 unsigned long flags;
721 u32 pin_mask = 1 << (31 - gpio);
722
723 spin_lock_irqsave(&cpm1_gc->lock, flags);
724
725 setbits32(&iop->dir, pin_mask);
726 __cpm1_gpio32_set(mm_gc, pin_mask, val);
727
728 spin_unlock_irqrestore(&cpm1_gc->lock, flags);
729
730 return 0;
731 }
732
cpm1_gpio32_dir_in(struct gpio_chip * gc,unsigned int gpio)733 static int cpm1_gpio32_dir_in(struct gpio_chip *gc, unsigned int gpio)
734 {
735 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
736 struct cpm1_gpio32_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
737 struct cpm_ioport32b __iomem *iop = mm_gc->regs;
738 unsigned long flags;
739 u32 pin_mask = 1 << (31 - gpio);
740
741 spin_lock_irqsave(&cpm1_gc->lock, flags);
742
743 clrbits32(&iop->dir, pin_mask);
744
745 spin_unlock_irqrestore(&cpm1_gc->lock, flags);
746
747 return 0;
748 }
749
cpm1_gpiochip_add32(struct device * dev)750 int cpm1_gpiochip_add32(struct device *dev)
751 {
752 struct device_node *np = dev->of_node;
753 struct cpm1_gpio32_chip *cpm1_gc;
754 struct of_mm_gpio_chip *mm_gc;
755 struct gpio_chip *gc;
756
757 cpm1_gc = kzalloc(sizeof(*cpm1_gc), GFP_KERNEL);
758 if (!cpm1_gc)
759 return -ENOMEM;
760
761 spin_lock_init(&cpm1_gc->lock);
762
763 mm_gc = &cpm1_gc->mm_gc;
764 gc = &mm_gc->gc;
765
766 mm_gc->save_regs = cpm1_gpio32_save_regs;
767 gc->ngpio = 32;
768 gc->direction_input = cpm1_gpio32_dir_in;
769 gc->direction_output = cpm1_gpio32_dir_out;
770 gc->get = cpm1_gpio32_get;
771 gc->set = cpm1_gpio32_set;
772 gc->parent = dev;
773 gc->owner = THIS_MODULE;
774
775 return of_mm_gpiochip_add_data(np, mm_gc, cpm1_gc);
776 }
777
778 #endif /* CONFIG_8xx_GPIO */
779