1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2002 Andi Kleen, SuSE Labs.
4  * Thanks to Ben LaHaise for precious feedback.
5  */
6 #include <linux/highmem.h>
7 #include <linux/memblock.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/interrupt.h>
11 #include <linux/seq_file.h>
12 #include <linux/debugfs.h>
13 #include <linux/pfn.h>
14 #include <linux/percpu.h>
15 #include <linux/gfp.h>
16 #include <linux/pci.h>
17 #include <linux/vmalloc.h>
18 
19 #include <asm/e820/api.h>
20 #include <asm/processor.h>
21 #include <asm/tlbflush.h>
22 #include <asm/sections.h>
23 #include <asm/setup.h>
24 #include <linux/uaccess.h>
25 #include <asm/pgalloc.h>
26 #include <asm/proto.h>
27 #include <asm/pat.h>
28 #include <asm/set_memory.h>
29 
30 #include "mm_internal.h"
31 
32 /*
33  * The current flushing context - we pass it instead of 5 arguments:
34  */
35 struct cpa_data {
36 	unsigned long	*vaddr;
37 	pgd_t		*pgd;
38 	pgprot_t	mask_set;
39 	pgprot_t	mask_clr;
40 	unsigned long	numpages;
41 	unsigned long	curpage;
42 	unsigned long	pfn;
43 	unsigned int	flags;
44 	unsigned int	force_split		: 1,
45 			force_static_prot	: 1;
46 	struct page	**pages;
47 };
48 
49 enum cpa_warn {
50 	CPA_CONFLICT,
51 	CPA_PROTECT,
52 	CPA_DETECT,
53 };
54 
55 static const int cpa_warn_level = CPA_PROTECT;
56 
57 /*
58  * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
59  * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
60  * entries change the page attribute in parallel to some other cpu
61  * splitting a large page entry along with changing the attribute.
62  */
63 static DEFINE_SPINLOCK(cpa_lock);
64 
65 #define CPA_FLUSHTLB 1
66 #define CPA_ARRAY 2
67 #define CPA_PAGES_ARRAY 4
68 #define CPA_NO_CHECK_ALIAS 8 /* Do not search for aliases */
69 
70 #ifdef CONFIG_PROC_FS
71 static unsigned long direct_pages_count[PG_LEVEL_NUM];
72 
update_page_count(int level,unsigned long pages)73 void update_page_count(int level, unsigned long pages)
74 {
75 	/* Protect against CPA */
76 	spin_lock(&pgd_lock);
77 	direct_pages_count[level] += pages;
78 	spin_unlock(&pgd_lock);
79 }
80 
split_page_count(int level)81 static void split_page_count(int level)
82 {
83 	if (direct_pages_count[level] == 0)
84 		return;
85 
86 	direct_pages_count[level]--;
87 	direct_pages_count[level - 1] += PTRS_PER_PTE;
88 }
89 
arch_report_meminfo(struct seq_file * m)90 void arch_report_meminfo(struct seq_file *m)
91 {
92 	seq_printf(m, "DirectMap4k:    %8lu kB\n",
93 			direct_pages_count[PG_LEVEL_4K] << 2);
94 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
95 	seq_printf(m, "DirectMap2M:    %8lu kB\n",
96 			direct_pages_count[PG_LEVEL_2M] << 11);
97 #else
98 	seq_printf(m, "DirectMap4M:    %8lu kB\n",
99 			direct_pages_count[PG_LEVEL_2M] << 12);
100 #endif
101 	if (direct_gbpages)
102 		seq_printf(m, "DirectMap1G:    %8lu kB\n",
103 			direct_pages_count[PG_LEVEL_1G] << 20);
104 }
105 #else
split_page_count(int level)106 static inline void split_page_count(int level) { }
107 #endif
108 
109 #ifdef CONFIG_X86_CPA_STATISTICS
110 
111 static unsigned long cpa_1g_checked;
112 static unsigned long cpa_1g_sameprot;
113 static unsigned long cpa_1g_preserved;
114 static unsigned long cpa_2m_checked;
115 static unsigned long cpa_2m_sameprot;
116 static unsigned long cpa_2m_preserved;
117 static unsigned long cpa_4k_install;
118 
cpa_inc_1g_checked(void)119 static inline void cpa_inc_1g_checked(void)
120 {
121 	cpa_1g_checked++;
122 }
123 
cpa_inc_2m_checked(void)124 static inline void cpa_inc_2m_checked(void)
125 {
126 	cpa_2m_checked++;
127 }
128 
cpa_inc_4k_install(void)129 static inline void cpa_inc_4k_install(void)
130 {
131 	cpa_4k_install++;
132 }
133 
cpa_inc_lp_sameprot(int level)134 static inline void cpa_inc_lp_sameprot(int level)
135 {
136 	if (level == PG_LEVEL_1G)
137 		cpa_1g_sameprot++;
138 	else
139 		cpa_2m_sameprot++;
140 }
141 
cpa_inc_lp_preserved(int level)142 static inline void cpa_inc_lp_preserved(int level)
143 {
144 	if (level == PG_LEVEL_1G)
145 		cpa_1g_preserved++;
146 	else
147 		cpa_2m_preserved++;
148 }
149 
cpastats_show(struct seq_file * m,void * p)150 static int cpastats_show(struct seq_file *m, void *p)
151 {
152 	seq_printf(m, "1G pages checked:     %16lu\n", cpa_1g_checked);
153 	seq_printf(m, "1G pages sameprot:    %16lu\n", cpa_1g_sameprot);
154 	seq_printf(m, "1G pages preserved:   %16lu\n", cpa_1g_preserved);
155 	seq_printf(m, "2M pages checked:     %16lu\n", cpa_2m_checked);
156 	seq_printf(m, "2M pages sameprot:    %16lu\n", cpa_2m_sameprot);
157 	seq_printf(m, "2M pages preserved:   %16lu\n", cpa_2m_preserved);
158 	seq_printf(m, "4K pages set-checked: %16lu\n", cpa_4k_install);
159 	return 0;
160 }
161 
cpastats_open(struct inode * inode,struct file * file)162 static int cpastats_open(struct inode *inode, struct file *file)
163 {
164 	return single_open(file, cpastats_show, NULL);
165 }
166 
167 static const struct file_operations cpastats_fops = {
168 	.open		= cpastats_open,
169 	.read		= seq_read,
170 	.llseek		= seq_lseek,
171 	.release	= single_release,
172 };
173 
cpa_stats_init(void)174 static int __init cpa_stats_init(void)
175 {
176 	debugfs_create_file("cpa_stats", S_IRUSR, arch_debugfs_dir, NULL,
177 			    &cpastats_fops);
178 	return 0;
179 }
180 late_initcall(cpa_stats_init);
181 #else
cpa_inc_1g_checked(void)182 static inline void cpa_inc_1g_checked(void) { }
cpa_inc_2m_checked(void)183 static inline void cpa_inc_2m_checked(void) { }
cpa_inc_4k_install(void)184 static inline void cpa_inc_4k_install(void) { }
cpa_inc_lp_sameprot(int level)185 static inline void cpa_inc_lp_sameprot(int level) { }
cpa_inc_lp_preserved(int level)186 static inline void cpa_inc_lp_preserved(int level) { }
187 #endif
188 
189 
190 static inline int
within(unsigned long addr,unsigned long start,unsigned long end)191 within(unsigned long addr, unsigned long start, unsigned long end)
192 {
193 	return addr >= start && addr < end;
194 }
195 
196 static inline int
within_inclusive(unsigned long addr,unsigned long start,unsigned long end)197 within_inclusive(unsigned long addr, unsigned long start, unsigned long end)
198 {
199 	return addr >= start && addr <= end;
200 }
201 
202 #ifdef CONFIG_X86_64
203 
highmap_start_pfn(void)204 static inline unsigned long highmap_start_pfn(void)
205 {
206 	return __pa_symbol(_text) >> PAGE_SHIFT;
207 }
208 
highmap_end_pfn(void)209 static inline unsigned long highmap_end_pfn(void)
210 {
211 	/* Do not reference physical address outside the kernel. */
212 	return __pa_symbol(roundup(_brk_end, PMD_SIZE) - 1) >> PAGE_SHIFT;
213 }
214 
__cpa_pfn_in_highmap(unsigned long pfn)215 static bool __cpa_pfn_in_highmap(unsigned long pfn)
216 {
217 	/*
218 	 * Kernel text has an alias mapping at a high address, known
219 	 * here as "highmap".
220 	 */
221 	return within_inclusive(pfn, highmap_start_pfn(), highmap_end_pfn());
222 }
223 
224 #else
225 
__cpa_pfn_in_highmap(unsigned long pfn)226 static bool __cpa_pfn_in_highmap(unsigned long pfn)
227 {
228 	/* There is no highmap on 32-bit */
229 	return false;
230 }
231 
232 #endif
233 
234 /*
235  * See set_mce_nospec().
236  *
237  * Machine check recovery code needs to change cache mode of poisoned pages to
238  * UC to avoid speculative access logging another error. But passing the
239  * address of the 1:1 mapping to set_memory_uc() is a fine way to encourage a
240  * speculative access. So we cheat and flip the top bit of the address. This
241  * works fine for the code that updates the page tables. But at the end of the
242  * process we need to flush the TLB and cache and the non-canonical address
243  * causes a #GP fault when used by the INVLPG and CLFLUSH instructions.
244  *
245  * But in the common case we already have a canonical address. This code
246  * will fix the top bit if needed and is a no-op otherwise.
247  */
fix_addr(unsigned long addr)248 static inline unsigned long fix_addr(unsigned long addr)
249 {
250 #ifdef CONFIG_X86_64
251 	return (long)(addr << 1) >> 1;
252 #else
253 	return addr;
254 #endif
255 }
256 
__cpa_addr(struct cpa_data * cpa,unsigned long idx)257 static unsigned long __cpa_addr(struct cpa_data *cpa, unsigned long idx)
258 {
259 	if (cpa->flags & CPA_PAGES_ARRAY) {
260 		struct page *page = cpa->pages[idx];
261 
262 		if (unlikely(PageHighMem(page)))
263 			return 0;
264 
265 		return (unsigned long)page_address(page);
266 	}
267 
268 	if (cpa->flags & CPA_ARRAY)
269 		return cpa->vaddr[idx];
270 
271 	return *cpa->vaddr + idx * PAGE_SIZE;
272 }
273 
274 /*
275  * Flushing functions
276  */
277 
clflush_cache_range_opt(void * vaddr,unsigned int size)278 static void clflush_cache_range_opt(void *vaddr, unsigned int size)
279 {
280 	const unsigned long clflush_size = boot_cpu_data.x86_clflush_size;
281 	void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1));
282 	void *vend = vaddr + size;
283 
284 	if (p >= vend)
285 		return;
286 
287 	for (; p < vend; p += clflush_size)
288 		clflushopt(p);
289 }
290 
291 /**
292  * clflush_cache_range - flush a cache range with clflush
293  * @vaddr:	virtual start address
294  * @size:	number of bytes to flush
295  *
296  * CLFLUSHOPT is an unordered instruction which needs fencing with MFENCE or
297  * SFENCE to avoid ordering issues.
298  */
clflush_cache_range(void * vaddr,unsigned int size)299 void clflush_cache_range(void *vaddr, unsigned int size)
300 {
301 	mb();
302 	clflush_cache_range_opt(vaddr, size);
303 	mb();
304 }
305 EXPORT_SYMBOL_GPL(clflush_cache_range);
306 
arch_invalidate_pmem(void * addr,size_t size)307 void arch_invalidate_pmem(void *addr, size_t size)
308 {
309 	clflush_cache_range(addr, size);
310 }
311 EXPORT_SYMBOL_GPL(arch_invalidate_pmem);
312 
__cpa_flush_all(void * arg)313 static void __cpa_flush_all(void *arg)
314 {
315 	unsigned long cache = (unsigned long)arg;
316 
317 	/*
318 	 * Flush all to work around Errata in early athlons regarding
319 	 * large page flushing.
320 	 */
321 	__flush_tlb_all();
322 
323 	if (cache && boot_cpu_data.x86 >= 4)
324 		wbinvd();
325 }
326 
cpa_flush_all(unsigned long cache)327 static void cpa_flush_all(unsigned long cache)
328 {
329 	BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
330 
331 	on_each_cpu(__cpa_flush_all, (void *) cache, 1);
332 }
333 
__cpa_flush_tlb(void * data)334 void __cpa_flush_tlb(void *data)
335 {
336 	struct cpa_data *cpa = data;
337 	unsigned int i;
338 
339 	for (i = 0; i < cpa->numpages; i++)
340 		__flush_tlb_one_kernel(fix_addr(__cpa_addr(cpa, i)));
341 }
342 
cpa_flush(struct cpa_data * data,int cache)343 static void cpa_flush(struct cpa_data *data, int cache)
344 {
345 	struct cpa_data *cpa = data;
346 	unsigned int i;
347 
348 	BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
349 
350 	if (cache && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
351 		cpa_flush_all(cache);
352 		return;
353 	}
354 
355 	if (cpa->numpages <= tlb_single_page_flush_ceiling)
356 		on_each_cpu(__cpa_flush_tlb, cpa, 1);
357 	else
358 		flush_tlb_all();
359 
360 	if (!cache)
361 		return;
362 
363 	mb();
364 	for (i = 0; i < cpa->numpages; i++) {
365 		unsigned long addr = __cpa_addr(cpa, i);
366 		unsigned int level;
367 
368 		pte_t *pte = lookup_address(addr, &level);
369 
370 		/*
371 		 * Only flush present addresses:
372 		 */
373 		if (pte && (pte_val(*pte) & _PAGE_PRESENT))
374 			clflush_cache_range_opt((void *)fix_addr(addr), PAGE_SIZE);
375 	}
376 	mb();
377 }
378 
overlaps(unsigned long r1_start,unsigned long r1_end,unsigned long r2_start,unsigned long r2_end)379 static bool overlaps(unsigned long r1_start, unsigned long r1_end,
380 		     unsigned long r2_start, unsigned long r2_end)
381 {
382 	return (r1_start <= r2_end && r1_end >= r2_start) ||
383 		(r2_start <= r1_end && r2_end >= r1_start);
384 }
385 
386 #ifdef CONFIG_PCI_BIOS
387 /*
388  * The BIOS area between 640k and 1Mb needs to be executable for PCI BIOS
389  * based config access (CONFIG_PCI_GOBIOS) support.
390  */
391 #define BIOS_PFN	PFN_DOWN(BIOS_BEGIN)
392 #define BIOS_PFN_END	PFN_DOWN(BIOS_END - 1)
393 
protect_pci_bios(unsigned long spfn,unsigned long epfn)394 static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
395 {
396 	if (pcibios_enabled && overlaps(spfn, epfn, BIOS_PFN, BIOS_PFN_END))
397 		return _PAGE_NX;
398 	return 0;
399 }
400 #else
protect_pci_bios(unsigned long spfn,unsigned long epfn)401 static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
402 {
403 	return 0;
404 }
405 #endif
406 
407 /*
408  * The .rodata section needs to be read-only. Using the pfn catches all
409  * aliases.  This also includes __ro_after_init, so do not enforce until
410  * kernel_set_to_readonly is true.
411  */
protect_rodata(unsigned long spfn,unsigned long epfn)412 static pgprotval_t protect_rodata(unsigned long spfn, unsigned long epfn)
413 {
414 	unsigned long epfn_ro, spfn_ro = PFN_DOWN(__pa_symbol(__start_rodata));
415 
416 	/*
417 	 * Note: __end_rodata is at page aligned and not inclusive, so
418 	 * subtract 1 to get the last enforced PFN in the rodata area.
419 	 */
420 	epfn_ro = PFN_DOWN(__pa_symbol(__end_rodata)) - 1;
421 
422 	if (kernel_set_to_readonly && overlaps(spfn, epfn, spfn_ro, epfn_ro))
423 		return _PAGE_RW;
424 	return 0;
425 }
426 
427 /*
428  * Protect kernel text against becoming non executable by forbidding
429  * _PAGE_NX.  This protects only the high kernel mapping (_text -> _etext)
430  * out of which the kernel actually executes.  Do not protect the low
431  * mapping.
432  *
433  * This does not cover __inittext since that is gone after boot.
434  */
protect_kernel_text(unsigned long start,unsigned long end)435 static pgprotval_t protect_kernel_text(unsigned long start, unsigned long end)
436 {
437 	unsigned long t_end = (unsigned long)_etext - 1;
438 	unsigned long t_start = (unsigned long)_text;
439 
440 	if (overlaps(start, end, t_start, t_end))
441 		return _PAGE_NX;
442 	return 0;
443 }
444 
445 #if defined(CONFIG_X86_64)
446 /*
447  * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
448  * kernel text mappings for the large page aligned text, rodata sections
449  * will be always read-only. For the kernel identity mappings covering the
450  * holes caused by this alignment can be anything that user asks.
451  *
452  * This will preserve the large page mappings for kernel text/data at no
453  * extra cost.
454  */
protect_kernel_text_ro(unsigned long start,unsigned long end)455 static pgprotval_t protect_kernel_text_ro(unsigned long start,
456 					  unsigned long end)
457 {
458 	unsigned long t_end = (unsigned long)__end_rodata_hpage_align - 1;
459 	unsigned long t_start = (unsigned long)_text;
460 	unsigned int level;
461 
462 	if (!kernel_set_to_readonly || !overlaps(start, end, t_start, t_end))
463 		return 0;
464 	/*
465 	 * Don't enforce the !RW mapping for the kernel text mapping, if
466 	 * the current mapping is already using small page mapping.  No
467 	 * need to work hard to preserve large page mappings in this case.
468 	 *
469 	 * This also fixes the Linux Xen paravirt guest boot failure caused
470 	 * by unexpected read-only mappings for kernel identity
471 	 * mappings. In this paravirt guest case, the kernel text mapping
472 	 * and the kernel identity mapping share the same page-table pages,
473 	 * so the protections for kernel text and identity mappings have to
474 	 * be the same.
475 	 */
476 	if (lookup_address(start, &level) && (level != PG_LEVEL_4K))
477 		return _PAGE_RW;
478 	return 0;
479 }
480 #else
protect_kernel_text_ro(unsigned long start,unsigned long end)481 static pgprotval_t protect_kernel_text_ro(unsigned long start,
482 					  unsigned long end)
483 {
484 	return 0;
485 }
486 #endif
487 
conflicts(pgprot_t prot,pgprotval_t val)488 static inline bool conflicts(pgprot_t prot, pgprotval_t val)
489 {
490 	return (pgprot_val(prot) & ~val) != pgprot_val(prot);
491 }
492 
check_conflict(int warnlvl,pgprot_t prot,pgprotval_t val,unsigned long start,unsigned long end,unsigned long pfn,const char * txt)493 static inline void check_conflict(int warnlvl, pgprot_t prot, pgprotval_t val,
494 				  unsigned long start, unsigned long end,
495 				  unsigned long pfn, const char *txt)
496 {
497 	static const char *lvltxt[] = {
498 		[CPA_CONFLICT]	= "conflict",
499 		[CPA_PROTECT]	= "protect",
500 		[CPA_DETECT]	= "detect",
501 	};
502 
503 	if (warnlvl > cpa_warn_level || !conflicts(prot, val))
504 		return;
505 
506 	pr_warn("CPA %8s %10s: 0x%016lx - 0x%016lx PFN %lx req %016llx prevent %016llx\n",
507 		lvltxt[warnlvl], txt, start, end, pfn, (unsigned long long)pgprot_val(prot),
508 		(unsigned long long)val);
509 }
510 
511 /*
512  * Certain areas of memory on x86 require very specific protection flags,
513  * for example the BIOS area or kernel text. Callers don't always get this
514  * right (again, ioremap() on BIOS memory is not uncommon) so this function
515  * checks and fixes these known static required protection bits.
516  */
static_protections(pgprot_t prot,unsigned long start,unsigned long pfn,unsigned long npg,unsigned long lpsize,int warnlvl)517 static inline pgprot_t static_protections(pgprot_t prot, unsigned long start,
518 					  unsigned long pfn, unsigned long npg,
519 					  unsigned long lpsize, int warnlvl)
520 {
521 	pgprotval_t forbidden, res;
522 	unsigned long end;
523 
524 	/*
525 	 * There is no point in checking RW/NX conflicts when the requested
526 	 * mapping is setting the page !PRESENT.
527 	 */
528 	if (!(pgprot_val(prot) & _PAGE_PRESENT))
529 		return prot;
530 
531 	/* Operate on the virtual address */
532 	end = start + npg * PAGE_SIZE - 1;
533 
534 	res = protect_kernel_text(start, end);
535 	check_conflict(warnlvl, prot, res, start, end, pfn, "Text NX");
536 	forbidden = res;
537 
538 	/*
539 	 * Special case to preserve a large page. If the change spawns the
540 	 * full large page mapping then there is no point to split it
541 	 * up. Happens with ftrace and is going to be removed once ftrace
542 	 * switched to text_poke().
543 	 */
544 	if (lpsize != (npg * PAGE_SIZE) || (start & (lpsize - 1))) {
545 		res = protect_kernel_text_ro(start, end);
546 		check_conflict(warnlvl, prot, res, start, end, pfn, "Text RO");
547 		forbidden |= res;
548 	}
549 
550 	/* Check the PFN directly */
551 	res = protect_pci_bios(pfn, pfn + npg - 1);
552 	check_conflict(warnlvl, prot, res, start, end, pfn, "PCIBIOS NX");
553 	forbidden |= res;
554 
555 	res = protect_rodata(pfn, pfn + npg - 1);
556 	check_conflict(warnlvl, prot, res, start, end, pfn, "Rodata RO");
557 	forbidden |= res;
558 
559 	return __pgprot(pgprot_val(prot) & ~forbidden);
560 }
561 
562 /*
563  * Lookup the page table entry for a virtual address in a specific pgd.
564  * Return a pointer to the entry and the level of the mapping.
565  */
lookup_address_in_pgd(pgd_t * pgd,unsigned long address,unsigned int * level)566 pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
567 			     unsigned int *level)
568 {
569 	p4d_t *p4d;
570 	pud_t *pud;
571 	pmd_t *pmd;
572 
573 	*level = PG_LEVEL_NONE;
574 
575 	if (pgd_none(*pgd))
576 		return NULL;
577 
578 	p4d = p4d_offset(pgd, address);
579 	if (p4d_none(*p4d))
580 		return NULL;
581 
582 	*level = PG_LEVEL_512G;
583 	if (p4d_large(*p4d) || !p4d_present(*p4d))
584 		return (pte_t *)p4d;
585 
586 	pud = pud_offset(p4d, address);
587 	if (pud_none(*pud))
588 		return NULL;
589 
590 	*level = PG_LEVEL_1G;
591 	if (pud_large(*pud) || !pud_present(*pud))
592 		return (pte_t *)pud;
593 
594 	pmd = pmd_offset(pud, address);
595 	if (pmd_none(*pmd))
596 		return NULL;
597 
598 	*level = PG_LEVEL_2M;
599 	if (pmd_large(*pmd) || !pmd_present(*pmd))
600 		return (pte_t *)pmd;
601 
602 	*level = PG_LEVEL_4K;
603 
604 	return pte_offset_kernel(pmd, address);
605 }
606 
607 /*
608  * Lookup the page table entry for a virtual address. Return a pointer
609  * to the entry and the level of the mapping.
610  *
611  * Note: We return pud and pmd either when the entry is marked large
612  * or when the present bit is not set. Otherwise we would return a
613  * pointer to a nonexisting mapping.
614  */
lookup_address(unsigned long address,unsigned int * level)615 pte_t *lookup_address(unsigned long address, unsigned int *level)
616 {
617 	return lookup_address_in_pgd(pgd_offset_k(address), address, level);
618 }
619 EXPORT_SYMBOL_GPL(lookup_address);
620 
_lookup_address_cpa(struct cpa_data * cpa,unsigned long address,unsigned int * level)621 static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
622 				  unsigned int *level)
623 {
624 	if (cpa->pgd)
625 		return lookup_address_in_pgd(cpa->pgd + pgd_index(address),
626 					       address, level);
627 
628 	return lookup_address(address, level);
629 }
630 
631 /*
632  * Lookup the PMD entry for a virtual address. Return a pointer to the entry
633  * or NULL if not present.
634  */
lookup_pmd_address(unsigned long address)635 pmd_t *lookup_pmd_address(unsigned long address)
636 {
637 	pgd_t *pgd;
638 	p4d_t *p4d;
639 	pud_t *pud;
640 
641 	pgd = pgd_offset_k(address);
642 	if (pgd_none(*pgd))
643 		return NULL;
644 
645 	p4d = p4d_offset(pgd, address);
646 	if (p4d_none(*p4d) || p4d_large(*p4d) || !p4d_present(*p4d))
647 		return NULL;
648 
649 	pud = pud_offset(p4d, address);
650 	if (pud_none(*pud) || pud_large(*pud) || !pud_present(*pud))
651 		return NULL;
652 
653 	return pmd_offset(pud, address);
654 }
655 
656 /*
657  * This is necessary because __pa() does not work on some
658  * kinds of memory, like vmalloc() or the alloc_remap()
659  * areas on 32-bit NUMA systems.  The percpu areas can
660  * end up in this kind of memory, for instance.
661  *
662  * This could be optimized, but it is only intended to be
663  * used at inititalization time, and keeping it
664  * unoptimized should increase the testing coverage for
665  * the more obscure platforms.
666  */
slow_virt_to_phys(void * __virt_addr)667 phys_addr_t slow_virt_to_phys(void *__virt_addr)
668 {
669 	unsigned long virt_addr = (unsigned long)__virt_addr;
670 	phys_addr_t phys_addr;
671 	unsigned long offset;
672 	enum pg_level level;
673 	pte_t *pte;
674 
675 	pte = lookup_address(virt_addr, &level);
676 	BUG_ON(!pte);
677 
678 	/*
679 	 * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t
680 	 * before being left-shifted PAGE_SHIFT bits -- this trick is to
681 	 * make 32-PAE kernel work correctly.
682 	 */
683 	switch (level) {
684 	case PG_LEVEL_1G:
685 		phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT;
686 		offset = virt_addr & ~PUD_PAGE_MASK;
687 		break;
688 	case PG_LEVEL_2M:
689 		phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT;
690 		offset = virt_addr & ~PMD_PAGE_MASK;
691 		break;
692 	default:
693 		phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
694 		offset = virt_addr & ~PAGE_MASK;
695 	}
696 
697 	return (phys_addr_t)(phys_addr | offset);
698 }
699 EXPORT_SYMBOL_GPL(slow_virt_to_phys);
700 
701 /*
702  * Set the new pmd in all the pgds we know about:
703  */
__set_pmd_pte(pte_t * kpte,unsigned long address,pte_t pte)704 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
705 {
706 	/* change init_mm */
707 	set_pte_atomic(kpte, pte);
708 #ifdef CONFIG_X86_32
709 	if (!SHARED_KERNEL_PMD) {
710 		struct page *page;
711 
712 		list_for_each_entry(page, &pgd_list, lru) {
713 			pgd_t *pgd;
714 			p4d_t *p4d;
715 			pud_t *pud;
716 			pmd_t *pmd;
717 
718 			pgd = (pgd_t *)page_address(page) + pgd_index(address);
719 			p4d = p4d_offset(pgd, address);
720 			pud = pud_offset(p4d, address);
721 			pmd = pmd_offset(pud, address);
722 			set_pte_atomic((pte_t *)pmd, pte);
723 		}
724 	}
725 #endif
726 }
727 
pgprot_clear_protnone_bits(pgprot_t prot)728 static pgprot_t pgprot_clear_protnone_bits(pgprot_t prot)
729 {
730 	/*
731 	 * _PAGE_GLOBAL means "global page" for present PTEs.
732 	 * But, it is also used to indicate _PAGE_PROTNONE
733 	 * for non-present PTEs.
734 	 *
735 	 * This ensures that a _PAGE_GLOBAL PTE going from
736 	 * present to non-present is not confused as
737 	 * _PAGE_PROTNONE.
738 	 */
739 	if (!(pgprot_val(prot) & _PAGE_PRESENT))
740 		pgprot_val(prot) &= ~_PAGE_GLOBAL;
741 
742 	return prot;
743 }
744 
__should_split_large_page(pte_t * kpte,unsigned long address,struct cpa_data * cpa)745 static int __should_split_large_page(pte_t *kpte, unsigned long address,
746 				     struct cpa_data *cpa)
747 {
748 	unsigned long numpages, pmask, psize, lpaddr, pfn, old_pfn;
749 	pgprot_t old_prot, new_prot, req_prot, chk_prot;
750 	pte_t new_pte, *tmp;
751 	enum pg_level level;
752 
753 	/*
754 	 * Check for races, another CPU might have split this page
755 	 * up already:
756 	 */
757 	tmp = _lookup_address_cpa(cpa, address, &level);
758 	if (tmp != kpte)
759 		return 1;
760 
761 	switch (level) {
762 	case PG_LEVEL_2M:
763 		old_prot = pmd_pgprot(*(pmd_t *)kpte);
764 		old_pfn = pmd_pfn(*(pmd_t *)kpte);
765 		cpa_inc_2m_checked();
766 		break;
767 	case PG_LEVEL_1G:
768 		old_prot = pud_pgprot(*(pud_t *)kpte);
769 		old_pfn = pud_pfn(*(pud_t *)kpte);
770 		cpa_inc_1g_checked();
771 		break;
772 	default:
773 		return -EINVAL;
774 	}
775 
776 	psize = page_level_size(level);
777 	pmask = page_level_mask(level);
778 
779 	/*
780 	 * Calculate the number of pages, which fit into this large
781 	 * page starting at address:
782 	 */
783 	lpaddr = (address + psize) & pmask;
784 	numpages = (lpaddr - address) >> PAGE_SHIFT;
785 	if (numpages < cpa->numpages)
786 		cpa->numpages = numpages;
787 
788 	/*
789 	 * We are safe now. Check whether the new pgprot is the same:
790 	 * Convert protection attributes to 4k-format, as cpa->mask* are set
791 	 * up accordingly.
792 	 */
793 
794 	/* Clear PSE (aka _PAGE_PAT) and move PAT bit to correct position */
795 	req_prot = pgprot_large_2_4k(old_prot);
796 
797 	pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
798 	pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
799 
800 	/*
801 	 * req_prot is in format of 4k pages. It must be converted to large
802 	 * page format: the caching mode includes the PAT bit located at
803 	 * different bit positions in the two formats.
804 	 */
805 	req_prot = pgprot_4k_2_large(req_prot);
806 	req_prot = pgprot_clear_protnone_bits(req_prot);
807 	if (pgprot_val(req_prot) & _PAGE_PRESENT)
808 		pgprot_val(req_prot) |= _PAGE_PSE;
809 
810 	/*
811 	 * old_pfn points to the large page base pfn. So we need to add the
812 	 * offset of the virtual address:
813 	 */
814 	pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT);
815 	cpa->pfn = pfn;
816 
817 	/*
818 	 * Calculate the large page base address and the number of 4K pages
819 	 * in the large page
820 	 */
821 	lpaddr = address & pmask;
822 	numpages = psize >> PAGE_SHIFT;
823 
824 	/*
825 	 * Sanity check that the existing mapping is correct versus the static
826 	 * protections. static_protections() guards against !PRESENT, so no
827 	 * extra conditional required here.
828 	 */
829 	chk_prot = static_protections(old_prot, lpaddr, old_pfn, numpages,
830 				      psize, CPA_CONFLICT);
831 
832 	if (WARN_ON_ONCE(pgprot_val(chk_prot) != pgprot_val(old_prot))) {
833 		/*
834 		 * Split the large page and tell the split code to
835 		 * enforce static protections.
836 		 */
837 		cpa->force_static_prot = 1;
838 		return 1;
839 	}
840 
841 	/*
842 	 * Optimization: If the requested pgprot is the same as the current
843 	 * pgprot, then the large page can be preserved and no updates are
844 	 * required independent of alignment and length of the requested
845 	 * range. The above already established that the current pgprot is
846 	 * correct, which in consequence makes the requested pgprot correct
847 	 * as well if it is the same. The static protection scan below will
848 	 * not come to a different conclusion.
849 	 */
850 	if (pgprot_val(req_prot) == pgprot_val(old_prot)) {
851 		cpa_inc_lp_sameprot(level);
852 		return 0;
853 	}
854 
855 	/*
856 	 * If the requested range does not cover the full page, split it up
857 	 */
858 	if (address != lpaddr || cpa->numpages != numpages)
859 		return 1;
860 
861 	/*
862 	 * Check whether the requested pgprot is conflicting with a static
863 	 * protection requirement in the large page.
864 	 */
865 	new_prot = static_protections(req_prot, lpaddr, old_pfn, numpages,
866 				      psize, CPA_DETECT);
867 
868 	/*
869 	 * If there is a conflict, split the large page.
870 	 *
871 	 * There used to be a 4k wise evaluation trying really hard to
872 	 * preserve the large pages, but experimentation has shown, that this
873 	 * does not help at all. There might be corner cases which would
874 	 * preserve one large page occasionally, but it's really not worth the
875 	 * extra code and cycles for the common case.
876 	 */
877 	if (pgprot_val(req_prot) != pgprot_val(new_prot))
878 		return 1;
879 
880 	/* All checks passed. Update the large page mapping. */
881 	new_pte = pfn_pte(old_pfn, new_prot);
882 	__set_pmd_pte(kpte, address, new_pte);
883 	cpa->flags |= CPA_FLUSHTLB;
884 	cpa_inc_lp_preserved(level);
885 	return 0;
886 }
887 
should_split_large_page(pte_t * kpte,unsigned long address,struct cpa_data * cpa)888 static int should_split_large_page(pte_t *kpte, unsigned long address,
889 				   struct cpa_data *cpa)
890 {
891 	int do_split;
892 
893 	if (cpa->force_split)
894 		return 1;
895 
896 	spin_lock(&pgd_lock);
897 	do_split = __should_split_large_page(kpte, address, cpa);
898 	spin_unlock(&pgd_lock);
899 
900 	return do_split;
901 }
902 
split_set_pte(struct cpa_data * cpa,pte_t * pte,unsigned long pfn,pgprot_t ref_prot,unsigned long address,unsigned long size)903 static void split_set_pte(struct cpa_data *cpa, pte_t *pte, unsigned long pfn,
904 			  pgprot_t ref_prot, unsigned long address,
905 			  unsigned long size)
906 {
907 	unsigned int npg = PFN_DOWN(size);
908 	pgprot_t prot;
909 
910 	/*
911 	 * If should_split_large_page() discovered an inconsistent mapping,
912 	 * remove the invalid protection in the split mapping.
913 	 */
914 	if (!cpa->force_static_prot)
915 		goto set;
916 
917 	/* Hand in lpsize = 0 to enforce the protection mechanism */
918 	prot = static_protections(ref_prot, address, pfn, npg, 0, CPA_PROTECT);
919 
920 	if (pgprot_val(prot) == pgprot_val(ref_prot))
921 		goto set;
922 
923 	/*
924 	 * If this is splitting a PMD, fix it up. PUD splits cannot be
925 	 * fixed trivially as that would require to rescan the newly
926 	 * installed PMD mappings after returning from split_large_page()
927 	 * so an eventual further split can allocate the necessary PTE
928 	 * pages. Warn for now and revisit it in case this actually
929 	 * happens.
930 	 */
931 	if (size == PAGE_SIZE)
932 		ref_prot = prot;
933 	else
934 		pr_warn_once("CPA: Cannot fixup static protections for PUD split\n");
935 set:
936 	set_pte(pte, pfn_pte(pfn, ref_prot));
937 }
938 
939 static int
__split_large_page(struct cpa_data * cpa,pte_t * kpte,unsigned long address,struct page * base)940 __split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address,
941 		   struct page *base)
942 {
943 	unsigned long lpaddr, lpinc, ref_pfn, pfn, pfninc = 1;
944 	pte_t *pbase = (pte_t *)page_address(base);
945 	unsigned int i, level;
946 	pgprot_t ref_prot;
947 	pte_t *tmp;
948 
949 	spin_lock(&pgd_lock);
950 	/*
951 	 * Check for races, another CPU might have split this page
952 	 * up for us already:
953 	 */
954 	tmp = _lookup_address_cpa(cpa, address, &level);
955 	if (tmp != kpte) {
956 		spin_unlock(&pgd_lock);
957 		return 1;
958 	}
959 
960 	paravirt_alloc_pte(&init_mm, page_to_pfn(base));
961 
962 	switch (level) {
963 	case PG_LEVEL_2M:
964 		ref_prot = pmd_pgprot(*(pmd_t *)kpte);
965 		/*
966 		 * Clear PSE (aka _PAGE_PAT) and move
967 		 * PAT bit to correct position.
968 		 */
969 		ref_prot = pgprot_large_2_4k(ref_prot);
970 		ref_pfn = pmd_pfn(*(pmd_t *)kpte);
971 		lpaddr = address & PMD_MASK;
972 		lpinc = PAGE_SIZE;
973 		break;
974 
975 	case PG_LEVEL_1G:
976 		ref_prot = pud_pgprot(*(pud_t *)kpte);
977 		ref_pfn = pud_pfn(*(pud_t *)kpte);
978 		pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
979 		lpaddr = address & PUD_MASK;
980 		lpinc = PMD_SIZE;
981 		/*
982 		 * Clear the PSE flags if the PRESENT flag is not set
983 		 * otherwise pmd_present/pmd_huge will return true
984 		 * even on a non present pmd.
985 		 */
986 		if (!(pgprot_val(ref_prot) & _PAGE_PRESENT))
987 			pgprot_val(ref_prot) &= ~_PAGE_PSE;
988 		break;
989 
990 	default:
991 		spin_unlock(&pgd_lock);
992 		return 1;
993 	}
994 
995 	ref_prot = pgprot_clear_protnone_bits(ref_prot);
996 
997 	/*
998 	 * Get the target pfn from the original entry:
999 	 */
1000 	pfn = ref_pfn;
1001 	for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc, lpaddr += lpinc)
1002 		split_set_pte(cpa, pbase + i, pfn, ref_prot, lpaddr, lpinc);
1003 
1004 	if (virt_addr_valid(address)) {
1005 		unsigned long pfn = PFN_DOWN(__pa(address));
1006 
1007 		if (pfn_range_is_mapped(pfn, pfn + 1))
1008 			split_page_count(level);
1009 	}
1010 
1011 	/*
1012 	 * Install the new, split up pagetable.
1013 	 *
1014 	 * We use the standard kernel pagetable protections for the new
1015 	 * pagetable protections, the actual ptes set above control the
1016 	 * primary protection behavior:
1017 	 */
1018 	__set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
1019 
1020 	/*
1021 	 * Do a global flush tlb after splitting the large page
1022 	 * and before we do the actual change page attribute in the PTE.
1023 	 *
1024 	 * Without this, we violate the TLB application note, that says:
1025 	 * "The TLBs may contain both ordinary and large-page
1026 	 *  translations for a 4-KByte range of linear addresses. This
1027 	 *  may occur if software modifies the paging structures so that
1028 	 *  the page size used for the address range changes. If the two
1029 	 *  translations differ with respect to page frame or attributes
1030 	 *  (e.g., permissions), processor behavior is undefined and may
1031 	 *  be implementation-specific."
1032 	 *
1033 	 * We do this global tlb flush inside the cpa_lock, so that we
1034 	 * don't allow any other cpu, with stale tlb entries change the
1035 	 * page attribute in parallel, that also falls into the
1036 	 * just split large page entry.
1037 	 */
1038 	flush_tlb_all();
1039 	spin_unlock(&pgd_lock);
1040 
1041 	return 0;
1042 }
1043 
split_large_page(struct cpa_data * cpa,pte_t * kpte,unsigned long address)1044 static int split_large_page(struct cpa_data *cpa, pte_t *kpte,
1045 			    unsigned long address)
1046 {
1047 	struct page *base;
1048 
1049 	if (!debug_pagealloc_enabled())
1050 		spin_unlock(&cpa_lock);
1051 	base = alloc_pages(GFP_KERNEL, 0);
1052 	if (!debug_pagealloc_enabled())
1053 		spin_lock(&cpa_lock);
1054 	if (!base)
1055 		return -ENOMEM;
1056 
1057 	if (__split_large_page(cpa, kpte, address, base))
1058 		__free_page(base);
1059 
1060 	return 0;
1061 }
1062 
try_to_free_pte_page(pte_t * pte)1063 static bool try_to_free_pte_page(pte_t *pte)
1064 {
1065 	int i;
1066 
1067 	for (i = 0; i < PTRS_PER_PTE; i++)
1068 		if (!pte_none(pte[i]))
1069 			return false;
1070 
1071 	free_page((unsigned long)pte);
1072 	return true;
1073 }
1074 
try_to_free_pmd_page(pmd_t * pmd)1075 static bool try_to_free_pmd_page(pmd_t *pmd)
1076 {
1077 	int i;
1078 
1079 	for (i = 0; i < PTRS_PER_PMD; i++)
1080 		if (!pmd_none(pmd[i]))
1081 			return false;
1082 
1083 	free_page((unsigned long)pmd);
1084 	return true;
1085 }
1086 
unmap_pte_range(pmd_t * pmd,unsigned long start,unsigned long end)1087 static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end)
1088 {
1089 	pte_t *pte = pte_offset_kernel(pmd, start);
1090 
1091 	while (start < end) {
1092 		set_pte(pte, __pte(0));
1093 
1094 		start += PAGE_SIZE;
1095 		pte++;
1096 	}
1097 
1098 	if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) {
1099 		pmd_clear(pmd);
1100 		return true;
1101 	}
1102 	return false;
1103 }
1104 
__unmap_pmd_range(pud_t * pud,pmd_t * pmd,unsigned long start,unsigned long end)1105 static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd,
1106 			      unsigned long start, unsigned long end)
1107 {
1108 	if (unmap_pte_range(pmd, start, end))
1109 		if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
1110 			pud_clear(pud);
1111 }
1112 
unmap_pmd_range(pud_t * pud,unsigned long start,unsigned long end)1113 static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end)
1114 {
1115 	pmd_t *pmd = pmd_offset(pud, start);
1116 
1117 	/*
1118 	 * Not on a 2MB page boundary?
1119 	 */
1120 	if (start & (PMD_SIZE - 1)) {
1121 		unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
1122 		unsigned long pre_end = min_t(unsigned long, end, next_page);
1123 
1124 		__unmap_pmd_range(pud, pmd, start, pre_end);
1125 
1126 		start = pre_end;
1127 		pmd++;
1128 	}
1129 
1130 	/*
1131 	 * Try to unmap in 2M chunks.
1132 	 */
1133 	while (end - start >= PMD_SIZE) {
1134 		if (pmd_large(*pmd))
1135 			pmd_clear(pmd);
1136 		else
1137 			__unmap_pmd_range(pud, pmd, start, start + PMD_SIZE);
1138 
1139 		start += PMD_SIZE;
1140 		pmd++;
1141 	}
1142 
1143 	/*
1144 	 * 4K leftovers?
1145 	 */
1146 	if (start < end)
1147 		return __unmap_pmd_range(pud, pmd, start, end);
1148 
1149 	/*
1150 	 * Try again to free the PMD page if haven't succeeded above.
1151 	 */
1152 	if (!pud_none(*pud))
1153 		if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
1154 			pud_clear(pud);
1155 }
1156 
unmap_pud_range(p4d_t * p4d,unsigned long start,unsigned long end)1157 static void unmap_pud_range(p4d_t *p4d, unsigned long start, unsigned long end)
1158 {
1159 	pud_t *pud = pud_offset(p4d, start);
1160 
1161 	/*
1162 	 * Not on a GB page boundary?
1163 	 */
1164 	if (start & (PUD_SIZE - 1)) {
1165 		unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1166 		unsigned long pre_end	= min_t(unsigned long, end, next_page);
1167 
1168 		unmap_pmd_range(pud, start, pre_end);
1169 
1170 		start = pre_end;
1171 		pud++;
1172 	}
1173 
1174 	/*
1175 	 * Try to unmap in 1G chunks?
1176 	 */
1177 	while (end - start >= PUD_SIZE) {
1178 
1179 		if (pud_large(*pud))
1180 			pud_clear(pud);
1181 		else
1182 			unmap_pmd_range(pud, start, start + PUD_SIZE);
1183 
1184 		start += PUD_SIZE;
1185 		pud++;
1186 	}
1187 
1188 	/*
1189 	 * 2M leftovers?
1190 	 */
1191 	if (start < end)
1192 		unmap_pmd_range(pud, start, end);
1193 
1194 	/*
1195 	 * No need to try to free the PUD page because we'll free it in
1196 	 * populate_pgd's error path
1197 	 */
1198 }
1199 
alloc_pte_page(pmd_t * pmd)1200 static int alloc_pte_page(pmd_t *pmd)
1201 {
1202 	pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
1203 	if (!pte)
1204 		return -1;
1205 
1206 	set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
1207 	return 0;
1208 }
1209 
alloc_pmd_page(pud_t * pud)1210 static int alloc_pmd_page(pud_t *pud)
1211 {
1212 	pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
1213 	if (!pmd)
1214 		return -1;
1215 
1216 	set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
1217 	return 0;
1218 }
1219 
populate_pte(struct cpa_data * cpa,unsigned long start,unsigned long end,unsigned num_pages,pmd_t * pmd,pgprot_t pgprot)1220 static void populate_pte(struct cpa_data *cpa,
1221 			 unsigned long start, unsigned long end,
1222 			 unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
1223 {
1224 	pte_t *pte;
1225 
1226 	pte = pte_offset_kernel(pmd, start);
1227 
1228 	pgprot = pgprot_clear_protnone_bits(pgprot);
1229 
1230 	while (num_pages-- && start < end) {
1231 		set_pte(pte, pfn_pte(cpa->pfn, pgprot));
1232 
1233 		start	 += PAGE_SIZE;
1234 		cpa->pfn++;
1235 		pte++;
1236 	}
1237 }
1238 
populate_pmd(struct cpa_data * cpa,unsigned long start,unsigned long end,unsigned num_pages,pud_t * pud,pgprot_t pgprot)1239 static long populate_pmd(struct cpa_data *cpa,
1240 			 unsigned long start, unsigned long end,
1241 			 unsigned num_pages, pud_t *pud, pgprot_t pgprot)
1242 {
1243 	long cur_pages = 0;
1244 	pmd_t *pmd;
1245 	pgprot_t pmd_pgprot;
1246 
1247 	/*
1248 	 * Not on a 2M boundary?
1249 	 */
1250 	if (start & (PMD_SIZE - 1)) {
1251 		unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
1252 		unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
1253 
1254 		pre_end   = min_t(unsigned long, pre_end, next_page);
1255 		cur_pages = (pre_end - start) >> PAGE_SHIFT;
1256 		cur_pages = min_t(unsigned int, num_pages, cur_pages);
1257 
1258 		/*
1259 		 * Need a PTE page?
1260 		 */
1261 		pmd = pmd_offset(pud, start);
1262 		if (pmd_none(*pmd))
1263 			if (alloc_pte_page(pmd))
1264 				return -1;
1265 
1266 		populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);
1267 
1268 		start = pre_end;
1269 	}
1270 
1271 	/*
1272 	 * We mapped them all?
1273 	 */
1274 	if (num_pages == cur_pages)
1275 		return cur_pages;
1276 
1277 	pmd_pgprot = pgprot_4k_2_large(pgprot);
1278 
1279 	while (end - start >= PMD_SIZE) {
1280 
1281 		/*
1282 		 * We cannot use a 1G page so allocate a PMD page if needed.
1283 		 */
1284 		if (pud_none(*pud))
1285 			if (alloc_pmd_page(pud))
1286 				return -1;
1287 
1288 		pmd = pmd_offset(pud, start);
1289 
1290 		set_pmd(pmd, pmd_mkhuge(pfn_pmd(cpa->pfn,
1291 					canon_pgprot(pmd_pgprot))));
1292 
1293 		start	  += PMD_SIZE;
1294 		cpa->pfn  += PMD_SIZE >> PAGE_SHIFT;
1295 		cur_pages += PMD_SIZE >> PAGE_SHIFT;
1296 	}
1297 
1298 	/*
1299 	 * Map trailing 4K pages.
1300 	 */
1301 	if (start < end) {
1302 		pmd = pmd_offset(pud, start);
1303 		if (pmd_none(*pmd))
1304 			if (alloc_pte_page(pmd))
1305 				return -1;
1306 
1307 		populate_pte(cpa, start, end, num_pages - cur_pages,
1308 			     pmd, pgprot);
1309 	}
1310 	return num_pages;
1311 }
1312 
populate_pud(struct cpa_data * cpa,unsigned long start,p4d_t * p4d,pgprot_t pgprot)1313 static int populate_pud(struct cpa_data *cpa, unsigned long start, p4d_t *p4d,
1314 			pgprot_t pgprot)
1315 {
1316 	pud_t *pud;
1317 	unsigned long end;
1318 	long cur_pages = 0;
1319 	pgprot_t pud_pgprot;
1320 
1321 	end = start + (cpa->numpages << PAGE_SHIFT);
1322 
1323 	/*
1324 	 * Not on a Gb page boundary? => map everything up to it with
1325 	 * smaller pages.
1326 	 */
1327 	if (start & (PUD_SIZE - 1)) {
1328 		unsigned long pre_end;
1329 		unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1330 
1331 		pre_end   = min_t(unsigned long, end, next_page);
1332 		cur_pages = (pre_end - start) >> PAGE_SHIFT;
1333 		cur_pages = min_t(int, (int)cpa->numpages, cur_pages);
1334 
1335 		pud = pud_offset(p4d, start);
1336 
1337 		/*
1338 		 * Need a PMD page?
1339 		 */
1340 		if (pud_none(*pud))
1341 			if (alloc_pmd_page(pud))
1342 				return -1;
1343 
1344 		cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
1345 					 pud, pgprot);
1346 		if (cur_pages < 0)
1347 			return cur_pages;
1348 
1349 		start = pre_end;
1350 	}
1351 
1352 	/* We mapped them all? */
1353 	if (cpa->numpages == cur_pages)
1354 		return cur_pages;
1355 
1356 	pud = pud_offset(p4d, start);
1357 	pud_pgprot = pgprot_4k_2_large(pgprot);
1358 
1359 	/*
1360 	 * Map everything starting from the Gb boundary, possibly with 1G pages
1361 	 */
1362 	while (boot_cpu_has(X86_FEATURE_GBPAGES) && end - start >= PUD_SIZE) {
1363 		set_pud(pud, pud_mkhuge(pfn_pud(cpa->pfn,
1364 				   canon_pgprot(pud_pgprot))));
1365 
1366 		start	  += PUD_SIZE;
1367 		cpa->pfn  += PUD_SIZE >> PAGE_SHIFT;
1368 		cur_pages += PUD_SIZE >> PAGE_SHIFT;
1369 		pud++;
1370 	}
1371 
1372 	/* Map trailing leftover */
1373 	if (start < end) {
1374 		long tmp;
1375 
1376 		pud = pud_offset(p4d, start);
1377 		if (pud_none(*pud))
1378 			if (alloc_pmd_page(pud))
1379 				return -1;
1380 
1381 		tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
1382 				   pud, pgprot);
1383 		if (tmp < 0)
1384 			return cur_pages;
1385 
1386 		cur_pages += tmp;
1387 	}
1388 	return cur_pages;
1389 }
1390 
1391 /*
1392  * Restrictions for kernel page table do not necessarily apply when mapping in
1393  * an alternate PGD.
1394  */
populate_pgd(struct cpa_data * cpa,unsigned long addr)1395 static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
1396 {
1397 	pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
1398 	pud_t *pud = NULL;	/* shut up gcc */
1399 	p4d_t *p4d;
1400 	pgd_t *pgd_entry;
1401 	long ret;
1402 
1403 	pgd_entry = cpa->pgd + pgd_index(addr);
1404 
1405 	if (pgd_none(*pgd_entry)) {
1406 		p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
1407 		if (!p4d)
1408 			return -1;
1409 
1410 		set_pgd(pgd_entry, __pgd(__pa(p4d) | _KERNPG_TABLE));
1411 	}
1412 
1413 	/*
1414 	 * Allocate a PUD page and hand it down for mapping.
1415 	 */
1416 	p4d = p4d_offset(pgd_entry, addr);
1417 	if (p4d_none(*p4d)) {
1418 		pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
1419 		if (!pud)
1420 			return -1;
1421 
1422 		set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
1423 	}
1424 
1425 	pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
1426 	pgprot_val(pgprot) |=  pgprot_val(cpa->mask_set);
1427 
1428 	ret = populate_pud(cpa, addr, p4d, pgprot);
1429 	if (ret < 0) {
1430 		/*
1431 		 * Leave the PUD page in place in case some other CPU or thread
1432 		 * already found it, but remove any useless entries we just
1433 		 * added to it.
1434 		 */
1435 		unmap_pud_range(p4d, addr,
1436 				addr + (cpa->numpages << PAGE_SHIFT));
1437 		return ret;
1438 	}
1439 
1440 	cpa->numpages = ret;
1441 	return 0;
1442 }
1443 
__cpa_process_fault(struct cpa_data * cpa,unsigned long vaddr,int primary)1444 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
1445 			       int primary)
1446 {
1447 	if (cpa->pgd) {
1448 		/*
1449 		 * Right now, we only execute this code path when mapping
1450 		 * the EFI virtual memory map regions, no other users
1451 		 * provide a ->pgd value. This may change in the future.
1452 		 */
1453 		return populate_pgd(cpa, vaddr);
1454 	}
1455 
1456 	/*
1457 	 * Ignore all non primary paths.
1458 	 */
1459 	if (!primary) {
1460 		cpa->numpages = 1;
1461 		return 0;
1462 	}
1463 
1464 	/*
1465 	 * Ignore the NULL PTE for kernel identity mapping, as it is expected
1466 	 * to have holes.
1467 	 * Also set numpages to '1' indicating that we processed cpa req for
1468 	 * one virtual address page and its pfn. TBD: numpages can be set based
1469 	 * on the initial value and the level returned by lookup_address().
1470 	 */
1471 	if (within(vaddr, PAGE_OFFSET,
1472 		   PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
1473 		cpa->numpages = 1;
1474 		cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
1475 		return 0;
1476 
1477 	} else if (__cpa_pfn_in_highmap(cpa->pfn)) {
1478 		/* Faults in the highmap are OK, so do not warn: */
1479 		return -EFAULT;
1480 	} else {
1481 		WARN(1, KERN_WARNING "CPA: called for zero pte. "
1482 			"vaddr = %lx cpa->vaddr = %lx\n", vaddr,
1483 			*cpa->vaddr);
1484 
1485 		return -EFAULT;
1486 	}
1487 }
1488 
__change_page_attr(struct cpa_data * cpa,int primary)1489 static int __change_page_attr(struct cpa_data *cpa, int primary)
1490 {
1491 	unsigned long address;
1492 	int do_split, err;
1493 	unsigned int level;
1494 	pte_t *kpte, old_pte;
1495 
1496 	address = __cpa_addr(cpa, cpa->curpage);
1497 repeat:
1498 	kpte = _lookup_address_cpa(cpa, address, &level);
1499 	if (!kpte)
1500 		return __cpa_process_fault(cpa, address, primary);
1501 
1502 	old_pte = *kpte;
1503 	if (pte_none(old_pte))
1504 		return __cpa_process_fault(cpa, address, primary);
1505 
1506 	if (level == PG_LEVEL_4K) {
1507 		pte_t new_pte;
1508 		pgprot_t new_prot = pte_pgprot(old_pte);
1509 		unsigned long pfn = pte_pfn(old_pte);
1510 
1511 		pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
1512 		pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
1513 
1514 		cpa_inc_4k_install();
1515 		/* Hand in lpsize = 0 to enforce the protection mechanism */
1516 		new_prot = static_protections(new_prot, address, pfn, 1, 0,
1517 					      CPA_PROTECT);
1518 
1519 		new_prot = pgprot_clear_protnone_bits(new_prot);
1520 
1521 		/*
1522 		 * We need to keep the pfn from the existing PTE,
1523 		 * after all we're only going to change it's attributes
1524 		 * not the memory it points to
1525 		 */
1526 		new_pte = pfn_pte(pfn, new_prot);
1527 		cpa->pfn = pfn;
1528 		/*
1529 		 * Do we really change anything ?
1530 		 */
1531 		if (pte_val(old_pte) != pte_val(new_pte)) {
1532 			set_pte_atomic(kpte, new_pte);
1533 			cpa->flags |= CPA_FLUSHTLB;
1534 		}
1535 		cpa->numpages = 1;
1536 		return 0;
1537 	}
1538 
1539 	/*
1540 	 * Check, whether we can keep the large page intact
1541 	 * and just change the pte:
1542 	 */
1543 	do_split = should_split_large_page(kpte, address, cpa);
1544 	/*
1545 	 * When the range fits into the existing large page,
1546 	 * return. cp->numpages and cpa->tlbflush have been updated in
1547 	 * try_large_page:
1548 	 */
1549 	if (do_split <= 0)
1550 		return do_split;
1551 
1552 	/*
1553 	 * We have to split the large page:
1554 	 */
1555 	err = split_large_page(cpa, kpte, address);
1556 	if (!err)
1557 		goto repeat;
1558 
1559 	return err;
1560 }
1561 
1562 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
1563 
cpa_process_alias(struct cpa_data * cpa)1564 static int cpa_process_alias(struct cpa_data *cpa)
1565 {
1566 	struct cpa_data alias_cpa;
1567 	unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
1568 	unsigned long vaddr;
1569 	int ret;
1570 
1571 	if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
1572 		return 0;
1573 
1574 	/*
1575 	 * No need to redo, when the primary call touched the direct
1576 	 * mapping already:
1577 	 */
1578 	vaddr = __cpa_addr(cpa, cpa->curpage);
1579 	if (!(within(vaddr, PAGE_OFFSET,
1580 		    PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
1581 
1582 		alias_cpa = *cpa;
1583 		alias_cpa.vaddr = &laddr;
1584 		alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1585 		alias_cpa.curpage = 0;
1586 
1587 		ret = __change_page_attr_set_clr(&alias_cpa, 0);
1588 		if (ret)
1589 			return ret;
1590 	}
1591 
1592 #ifdef CONFIG_X86_64
1593 	/*
1594 	 * If the primary call didn't touch the high mapping already
1595 	 * and the physical address is inside the kernel map, we need
1596 	 * to touch the high mapped kernel as well:
1597 	 */
1598 	if (!within(vaddr, (unsigned long)_text, _brk_end) &&
1599 	    __cpa_pfn_in_highmap(cpa->pfn)) {
1600 		unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
1601 					       __START_KERNEL_map - phys_base;
1602 		alias_cpa = *cpa;
1603 		alias_cpa.vaddr = &temp_cpa_vaddr;
1604 		alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1605 		alias_cpa.curpage = 0;
1606 
1607 		/*
1608 		 * The high mapping range is imprecise, so ignore the
1609 		 * return value.
1610 		 */
1611 		__change_page_attr_set_clr(&alias_cpa, 0);
1612 	}
1613 #endif
1614 
1615 	return 0;
1616 }
1617 
__change_page_attr_set_clr(struct cpa_data * cpa,int checkalias)1618 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
1619 {
1620 	unsigned long numpages = cpa->numpages;
1621 	unsigned long rempages = numpages;
1622 	int ret = 0;
1623 
1624 	while (rempages) {
1625 		/*
1626 		 * Store the remaining nr of pages for the large page
1627 		 * preservation check.
1628 		 */
1629 		cpa->numpages = rempages;
1630 		/* for array changes, we can't use large page */
1631 		if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
1632 			cpa->numpages = 1;
1633 
1634 		if (!debug_pagealloc_enabled())
1635 			spin_lock(&cpa_lock);
1636 		ret = __change_page_attr(cpa, checkalias);
1637 		if (!debug_pagealloc_enabled())
1638 			spin_unlock(&cpa_lock);
1639 		if (ret)
1640 			goto out;
1641 
1642 		if (checkalias) {
1643 			ret = cpa_process_alias(cpa);
1644 			if (ret)
1645 				goto out;
1646 		}
1647 
1648 		/*
1649 		 * Adjust the number of pages with the result of the
1650 		 * CPA operation. Either a large page has been
1651 		 * preserved or a single page update happened.
1652 		 */
1653 		BUG_ON(cpa->numpages > rempages || !cpa->numpages);
1654 		rempages -= cpa->numpages;
1655 		cpa->curpage += cpa->numpages;
1656 	}
1657 
1658 out:
1659 	/* Restore the original numpages */
1660 	cpa->numpages = numpages;
1661 	return ret;
1662 }
1663 
change_page_attr_set_clr(unsigned long * addr,int numpages,pgprot_t mask_set,pgprot_t mask_clr,int force_split,int in_flag,struct page ** pages)1664 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
1665 				    pgprot_t mask_set, pgprot_t mask_clr,
1666 				    int force_split, int in_flag,
1667 				    struct page **pages)
1668 {
1669 	struct cpa_data cpa;
1670 	int ret, cache, checkalias;
1671 
1672 	memset(&cpa, 0, sizeof(cpa));
1673 
1674 	/*
1675 	 * Check, if we are requested to set a not supported
1676 	 * feature.  Clearing non-supported features is OK.
1677 	 */
1678 	mask_set = canon_pgprot(mask_set);
1679 
1680 	if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
1681 		return 0;
1682 
1683 	/* Ensure we are PAGE_SIZE aligned */
1684 	if (in_flag & CPA_ARRAY) {
1685 		int i;
1686 		for (i = 0; i < numpages; i++) {
1687 			if (addr[i] & ~PAGE_MASK) {
1688 				addr[i] &= PAGE_MASK;
1689 				WARN_ON_ONCE(1);
1690 			}
1691 		}
1692 	} else if (!(in_flag & CPA_PAGES_ARRAY)) {
1693 		/*
1694 		 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1695 		 * No need to check in that case
1696 		 */
1697 		if (*addr & ~PAGE_MASK) {
1698 			*addr &= PAGE_MASK;
1699 			/*
1700 			 * People should not be passing in unaligned addresses:
1701 			 */
1702 			WARN_ON_ONCE(1);
1703 		}
1704 	}
1705 
1706 	/* Must avoid aliasing mappings in the highmem code */
1707 	kmap_flush_unused();
1708 
1709 	vm_unmap_aliases();
1710 
1711 	cpa.vaddr = addr;
1712 	cpa.pages = pages;
1713 	cpa.numpages = numpages;
1714 	cpa.mask_set = mask_set;
1715 	cpa.mask_clr = mask_clr;
1716 	cpa.flags = 0;
1717 	cpa.curpage = 0;
1718 	cpa.force_split = force_split;
1719 
1720 	if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
1721 		cpa.flags |= in_flag;
1722 
1723 	/* No alias checking for _NX bit modifications */
1724 	checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
1725 	/* Has caller explicitly disabled alias checking? */
1726 	if (in_flag & CPA_NO_CHECK_ALIAS)
1727 		checkalias = 0;
1728 
1729 	ret = __change_page_attr_set_clr(&cpa, checkalias);
1730 
1731 	/*
1732 	 * Check whether we really changed something:
1733 	 */
1734 	if (!(cpa.flags & CPA_FLUSHTLB))
1735 		goto out;
1736 
1737 	/*
1738 	 * No need to flush, when we did not set any of the caching
1739 	 * attributes:
1740 	 */
1741 	cache = !!pgprot2cachemode(mask_set);
1742 
1743 	/*
1744 	 * On error; flush everything to be sure.
1745 	 */
1746 	if (ret) {
1747 		cpa_flush_all(cache);
1748 		goto out;
1749 	}
1750 
1751 	cpa_flush(&cpa, cache);
1752 out:
1753 	return ret;
1754 }
1755 
change_page_attr_set(unsigned long * addr,int numpages,pgprot_t mask,int array)1756 static inline int change_page_attr_set(unsigned long *addr, int numpages,
1757 				       pgprot_t mask, int array)
1758 {
1759 	return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1760 		(array ? CPA_ARRAY : 0), NULL);
1761 }
1762 
change_page_attr_clear(unsigned long * addr,int numpages,pgprot_t mask,int array)1763 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
1764 					 pgprot_t mask, int array)
1765 {
1766 	return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1767 		(array ? CPA_ARRAY : 0), NULL);
1768 }
1769 
cpa_set_pages_array(struct page ** pages,int numpages,pgprot_t mask)1770 static inline int cpa_set_pages_array(struct page **pages, int numpages,
1771 				       pgprot_t mask)
1772 {
1773 	return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
1774 		CPA_PAGES_ARRAY, pages);
1775 }
1776 
cpa_clear_pages_array(struct page ** pages,int numpages,pgprot_t mask)1777 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1778 					 pgprot_t mask)
1779 {
1780 	return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1781 		CPA_PAGES_ARRAY, pages);
1782 }
1783 
_set_memory_uc(unsigned long addr,int numpages)1784 int _set_memory_uc(unsigned long addr, int numpages)
1785 {
1786 	/*
1787 	 * for now UC MINUS. see comments in ioremap_nocache()
1788 	 * If you really need strong UC use ioremap_uc(), but note
1789 	 * that you cannot override IO areas with set_memory_*() as
1790 	 * these helpers cannot work with IO memory.
1791 	 */
1792 	return change_page_attr_set(&addr, numpages,
1793 				    cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1794 				    0);
1795 }
1796 
set_memory_uc(unsigned long addr,int numpages)1797 int set_memory_uc(unsigned long addr, int numpages)
1798 {
1799 	int ret;
1800 
1801 	/*
1802 	 * for now UC MINUS. see comments in ioremap_nocache()
1803 	 */
1804 	ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1805 			      _PAGE_CACHE_MODE_UC_MINUS, NULL);
1806 	if (ret)
1807 		goto out_err;
1808 
1809 	ret = _set_memory_uc(addr, numpages);
1810 	if (ret)
1811 		goto out_free;
1812 
1813 	return 0;
1814 
1815 out_free:
1816 	free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1817 out_err:
1818 	return ret;
1819 }
1820 EXPORT_SYMBOL(set_memory_uc);
1821 
_set_memory_wc(unsigned long addr,int numpages)1822 int _set_memory_wc(unsigned long addr, int numpages)
1823 {
1824 	int ret;
1825 
1826 	ret = change_page_attr_set(&addr, numpages,
1827 				   cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1828 				   0);
1829 	if (!ret) {
1830 		ret = change_page_attr_set_clr(&addr, numpages,
1831 					       cachemode2pgprot(_PAGE_CACHE_MODE_WC),
1832 					       __pgprot(_PAGE_CACHE_MASK),
1833 					       0, 0, NULL);
1834 	}
1835 	return ret;
1836 }
1837 
set_memory_wc(unsigned long addr,int numpages)1838 int set_memory_wc(unsigned long addr, int numpages)
1839 {
1840 	int ret;
1841 
1842 	ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1843 		_PAGE_CACHE_MODE_WC, NULL);
1844 	if (ret)
1845 		return ret;
1846 
1847 	ret = _set_memory_wc(addr, numpages);
1848 	if (ret)
1849 		free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1850 
1851 	return ret;
1852 }
1853 EXPORT_SYMBOL(set_memory_wc);
1854 
_set_memory_wt(unsigned long addr,int numpages)1855 int _set_memory_wt(unsigned long addr, int numpages)
1856 {
1857 	return change_page_attr_set(&addr, numpages,
1858 				    cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0);
1859 }
1860 
_set_memory_wb(unsigned long addr,int numpages)1861 int _set_memory_wb(unsigned long addr, int numpages)
1862 {
1863 	/* WB cache mode is hard wired to all cache attribute bits being 0 */
1864 	return change_page_attr_clear(&addr, numpages,
1865 				      __pgprot(_PAGE_CACHE_MASK), 0);
1866 }
1867 
set_memory_wb(unsigned long addr,int numpages)1868 int set_memory_wb(unsigned long addr, int numpages)
1869 {
1870 	int ret;
1871 
1872 	ret = _set_memory_wb(addr, numpages);
1873 	if (ret)
1874 		return ret;
1875 
1876 	free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1877 	return 0;
1878 }
1879 EXPORT_SYMBOL(set_memory_wb);
1880 
set_memory_x(unsigned long addr,int numpages)1881 int set_memory_x(unsigned long addr, int numpages)
1882 {
1883 	if (!(__supported_pte_mask & _PAGE_NX))
1884 		return 0;
1885 
1886 	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1887 }
1888 
set_memory_nx(unsigned long addr,int numpages)1889 int set_memory_nx(unsigned long addr, int numpages)
1890 {
1891 	if (!(__supported_pte_mask & _PAGE_NX))
1892 		return 0;
1893 
1894 	return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1895 }
1896 
set_memory_ro(unsigned long addr,int numpages)1897 int set_memory_ro(unsigned long addr, int numpages)
1898 {
1899 	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1900 }
1901 
set_memory_rw(unsigned long addr,int numpages)1902 int set_memory_rw(unsigned long addr, int numpages)
1903 {
1904 	return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1905 }
1906 
set_memory_np(unsigned long addr,int numpages)1907 int set_memory_np(unsigned long addr, int numpages)
1908 {
1909 	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1910 }
1911 
set_memory_np_noalias(unsigned long addr,int numpages)1912 int set_memory_np_noalias(unsigned long addr, int numpages)
1913 {
1914 	int cpa_flags = CPA_NO_CHECK_ALIAS;
1915 
1916 	return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1917 					__pgprot(_PAGE_PRESENT), 0,
1918 					cpa_flags, NULL);
1919 }
1920 
set_memory_4k(unsigned long addr,int numpages)1921 int set_memory_4k(unsigned long addr, int numpages)
1922 {
1923 	return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1924 					__pgprot(0), 1, 0, NULL);
1925 }
1926 
set_memory_nonglobal(unsigned long addr,int numpages)1927 int set_memory_nonglobal(unsigned long addr, int numpages)
1928 {
1929 	return change_page_attr_clear(&addr, numpages,
1930 				      __pgprot(_PAGE_GLOBAL), 0);
1931 }
1932 
set_memory_global(unsigned long addr,int numpages)1933 int set_memory_global(unsigned long addr, int numpages)
1934 {
1935 	return change_page_attr_set(&addr, numpages,
1936 				    __pgprot(_PAGE_GLOBAL), 0);
1937 }
1938 
__set_memory_enc_dec(unsigned long addr,int numpages,bool enc)1939 static int __set_memory_enc_dec(unsigned long addr, int numpages, bool enc)
1940 {
1941 	struct cpa_data cpa;
1942 	int ret;
1943 
1944 	/* Nothing to do if memory encryption is not active */
1945 	if (!mem_encrypt_active())
1946 		return 0;
1947 
1948 	/* Should not be working on unaligned addresses */
1949 	if (WARN_ONCE(addr & ~PAGE_MASK, "misaligned address: %#lx\n", addr))
1950 		addr &= PAGE_MASK;
1951 
1952 	memset(&cpa, 0, sizeof(cpa));
1953 	cpa.vaddr = &addr;
1954 	cpa.numpages = numpages;
1955 	cpa.mask_set = enc ? __pgprot(_PAGE_ENC) : __pgprot(0);
1956 	cpa.mask_clr = enc ? __pgprot(0) : __pgprot(_PAGE_ENC);
1957 	cpa.pgd = init_mm.pgd;
1958 
1959 	/* Must avoid aliasing mappings in the highmem code */
1960 	kmap_flush_unused();
1961 	vm_unmap_aliases();
1962 
1963 	/*
1964 	 * Before changing the encryption attribute, we need to flush caches.
1965 	 */
1966 	cpa_flush(&cpa, 1);
1967 
1968 	ret = __change_page_attr_set_clr(&cpa, 1);
1969 
1970 	/*
1971 	 * After changing the encryption attribute, we need to flush TLBs again
1972 	 * in case any speculative TLB caching occurred (but no need to flush
1973 	 * caches again).  We could just use cpa_flush_all(), but in case TLB
1974 	 * flushing gets optimized in the cpa_flush() path use the same logic
1975 	 * as above.
1976 	 */
1977 	cpa_flush(&cpa, 0);
1978 
1979 	return ret;
1980 }
1981 
set_memory_encrypted(unsigned long addr,int numpages)1982 int set_memory_encrypted(unsigned long addr, int numpages)
1983 {
1984 	return __set_memory_enc_dec(addr, numpages, true);
1985 }
1986 EXPORT_SYMBOL_GPL(set_memory_encrypted);
1987 
set_memory_decrypted(unsigned long addr,int numpages)1988 int set_memory_decrypted(unsigned long addr, int numpages)
1989 {
1990 	return __set_memory_enc_dec(addr, numpages, false);
1991 }
1992 EXPORT_SYMBOL_GPL(set_memory_decrypted);
1993 
set_pages_uc(struct page * page,int numpages)1994 int set_pages_uc(struct page *page, int numpages)
1995 {
1996 	unsigned long addr = (unsigned long)page_address(page);
1997 
1998 	return set_memory_uc(addr, numpages);
1999 }
2000 EXPORT_SYMBOL(set_pages_uc);
2001 
_set_pages_array(struct page ** pages,int numpages,enum page_cache_mode new_type)2002 static int _set_pages_array(struct page **pages, int numpages,
2003 		enum page_cache_mode new_type)
2004 {
2005 	unsigned long start;
2006 	unsigned long end;
2007 	enum page_cache_mode set_type;
2008 	int i;
2009 	int free_idx;
2010 	int ret;
2011 
2012 	for (i = 0; i < numpages; i++) {
2013 		if (PageHighMem(pages[i]))
2014 			continue;
2015 		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2016 		end = start + PAGE_SIZE;
2017 		if (reserve_memtype(start, end, new_type, NULL))
2018 			goto err_out;
2019 	}
2020 
2021 	/* If WC, set to UC- first and then WC */
2022 	set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
2023 				_PAGE_CACHE_MODE_UC_MINUS : new_type;
2024 
2025 	ret = cpa_set_pages_array(pages, numpages,
2026 				  cachemode2pgprot(set_type));
2027 	if (!ret && new_type == _PAGE_CACHE_MODE_WC)
2028 		ret = change_page_attr_set_clr(NULL, numpages,
2029 					       cachemode2pgprot(
2030 						_PAGE_CACHE_MODE_WC),
2031 					       __pgprot(_PAGE_CACHE_MASK),
2032 					       0, CPA_PAGES_ARRAY, pages);
2033 	if (ret)
2034 		goto err_out;
2035 	return 0; /* Success */
2036 err_out:
2037 	free_idx = i;
2038 	for (i = 0; i < free_idx; i++) {
2039 		if (PageHighMem(pages[i]))
2040 			continue;
2041 		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2042 		end = start + PAGE_SIZE;
2043 		free_memtype(start, end);
2044 	}
2045 	return -EINVAL;
2046 }
2047 
set_pages_array_uc(struct page ** pages,int numpages)2048 int set_pages_array_uc(struct page **pages, int numpages)
2049 {
2050 	return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_UC_MINUS);
2051 }
2052 EXPORT_SYMBOL(set_pages_array_uc);
2053 
set_pages_array_wc(struct page ** pages,int numpages)2054 int set_pages_array_wc(struct page **pages, int numpages)
2055 {
2056 	return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WC);
2057 }
2058 EXPORT_SYMBOL(set_pages_array_wc);
2059 
set_pages_array_wt(struct page ** pages,int numpages)2060 int set_pages_array_wt(struct page **pages, int numpages)
2061 {
2062 	return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WT);
2063 }
2064 EXPORT_SYMBOL_GPL(set_pages_array_wt);
2065 
set_pages_wb(struct page * page,int numpages)2066 int set_pages_wb(struct page *page, int numpages)
2067 {
2068 	unsigned long addr = (unsigned long)page_address(page);
2069 
2070 	return set_memory_wb(addr, numpages);
2071 }
2072 EXPORT_SYMBOL(set_pages_wb);
2073 
set_pages_array_wb(struct page ** pages,int numpages)2074 int set_pages_array_wb(struct page **pages, int numpages)
2075 {
2076 	int retval;
2077 	unsigned long start;
2078 	unsigned long end;
2079 	int i;
2080 
2081 	/* WB cache mode is hard wired to all cache attribute bits being 0 */
2082 	retval = cpa_clear_pages_array(pages, numpages,
2083 			__pgprot(_PAGE_CACHE_MASK));
2084 	if (retval)
2085 		return retval;
2086 
2087 	for (i = 0; i < numpages; i++) {
2088 		if (PageHighMem(pages[i]))
2089 			continue;
2090 		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2091 		end = start + PAGE_SIZE;
2092 		free_memtype(start, end);
2093 	}
2094 
2095 	return 0;
2096 }
2097 EXPORT_SYMBOL(set_pages_array_wb);
2098 
set_pages_ro(struct page * page,int numpages)2099 int set_pages_ro(struct page *page, int numpages)
2100 {
2101 	unsigned long addr = (unsigned long)page_address(page);
2102 
2103 	return set_memory_ro(addr, numpages);
2104 }
2105 
set_pages_rw(struct page * page,int numpages)2106 int set_pages_rw(struct page *page, int numpages)
2107 {
2108 	unsigned long addr = (unsigned long)page_address(page);
2109 
2110 	return set_memory_rw(addr, numpages);
2111 }
2112 
__set_pages_p(struct page * page,int numpages)2113 static int __set_pages_p(struct page *page, int numpages)
2114 {
2115 	unsigned long tempaddr = (unsigned long) page_address(page);
2116 	struct cpa_data cpa = { .vaddr = &tempaddr,
2117 				.pgd = NULL,
2118 				.numpages = numpages,
2119 				.mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2120 				.mask_clr = __pgprot(0),
2121 				.flags = 0};
2122 
2123 	/*
2124 	 * No alias checking needed for setting present flag. otherwise,
2125 	 * we may need to break large pages for 64-bit kernel text
2126 	 * mappings (this adds to complexity if we want to do this from
2127 	 * atomic context especially). Let's keep it simple!
2128 	 */
2129 	return __change_page_attr_set_clr(&cpa, 0);
2130 }
2131 
__set_pages_np(struct page * page,int numpages)2132 static int __set_pages_np(struct page *page, int numpages)
2133 {
2134 	unsigned long tempaddr = (unsigned long) page_address(page);
2135 	struct cpa_data cpa = { .vaddr = &tempaddr,
2136 				.pgd = NULL,
2137 				.numpages = numpages,
2138 				.mask_set = __pgprot(0),
2139 				.mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2140 				.flags = 0};
2141 
2142 	/*
2143 	 * No alias checking needed for setting not present flag. otherwise,
2144 	 * we may need to break large pages for 64-bit kernel text
2145 	 * mappings (this adds to complexity if we want to do this from
2146 	 * atomic context especially). Let's keep it simple!
2147 	 */
2148 	return __change_page_attr_set_clr(&cpa, 0);
2149 }
2150 
set_direct_map_invalid_noflush(struct page * page)2151 int set_direct_map_invalid_noflush(struct page *page)
2152 {
2153 	return __set_pages_np(page, 1);
2154 }
2155 
set_direct_map_default_noflush(struct page * page)2156 int set_direct_map_default_noflush(struct page *page)
2157 {
2158 	return __set_pages_p(page, 1);
2159 }
2160 
__kernel_map_pages(struct page * page,int numpages,int enable)2161 void __kernel_map_pages(struct page *page, int numpages, int enable)
2162 {
2163 	if (PageHighMem(page))
2164 		return;
2165 	if (!enable) {
2166 		debug_check_no_locks_freed(page_address(page),
2167 					   numpages * PAGE_SIZE);
2168 	}
2169 
2170 	/*
2171 	 * The return value is ignored as the calls cannot fail.
2172 	 * Large pages for identity mappings are not used at boot time
2173 	 * and hence no memory allocations during large page split.
2174 	 */
2175 	if (enable)
2176 		__set_pages_p(page, numpages);
2177 	else
2178 		__set_pages_np(page, numpages);
2179 
2180 	/*
2181 	 * We should perform an IPI and flush all tlbs,
2182 	 * but that can deadlock->flush only current cpu.
2183 	 * Preemption needs to be disabled around __flush_tlb_all() due to
2184 	 * CR3 reload in __native_flush_tlb().
2185 	 */
2186 	preempt_disable();
2187 	__flush_tlb_all();
2188 	preempt_enable();
2189 
2190 	arch_flush_lazy_mmu_mode();
2191 }
2192 
2193 #ifdef CONFIG_HIBERNATION
kernel_page_present(struct page * page)2194 bool kernel_page_present(struct page *page)
2195 {
2196 	unsigned int level;
2197 	pte_t *pte;
2198 
2199 	if (PageHighMem(page))
2200 		return false;
2201 
2202 	pte = lookup_address((unsigned long)page_address(page), &level);
2203 	return (pte_val(*pte) & _PAGE_PRESENT);
2204 }
2205 #endif /* CONFIG_HIBERNATION */
2206 
kernel_map_pages_in_pgd(pgd_t * pgd,u64 pfn,unsigned long address,unsigned numpages,unsigned long page_flags)2207 int __init kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
2208 				   unsigned numpages, unsigned long page_flags)
2209 {
2210 	int retval = -EINVAL;
2211 
2212 	struct cpa_data cpa = {
2213 		.vaddr = &address,
2214 		.pfn = pfn,
2215 		.pgd = pgd,
2216 		.numpages = numpages,
2217 		.mask_set = __pgprot(0),
2218 		.mask_clr = __pgprot(0),
2219 		.flags = 0,
2220 	};
2221 
2222 	WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2223 
2224 	if (!(__supported_pte_mask & _PAGE_NX))
2225 		goto out;
2226 
2227 	if (!(page_flags & _PAGE_NX))
2228 		cpa.mask_clr = __pgprot(_PAGE_NX);
2229 
2230 	if (!(page_flags & _PAGE_RW))
2231 		cpa.mask_clr = __pgprot(_PAGE_RW);
2232 
2233 	if (!(page_flags & _PAGE_ENC))
2234 		cpa.mask_clr = pgprot_encrypted(cpa.mask_clr);
2235 
2236 	cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags);
2237 
2238 	retval = __change_page_attr_set_clr(&cpa, 0);
2239 	__flush_tlb_all();
2240 
2241 out:
2242 	return retval;
2243 }
2244 
2245 /*
2246  * __flush_tlb_all() flushes mappings only on current CPU and hence this
2247  * function shouldn't be used in an SMP environment. Presently, it's used only
2248  * during boot (way before smp_init()) by EFI subsystem and hence is ok.
2249  */
kernel_unmap_pages_in_pgd(pgd_t * pgd,unsigned long address,unsigned long numpages)2250 int __init kernel_unmap_pages_in_pgd(pgd_t *pgd, unsigned long address,
2251 				     unsigned long numpages)
2252 {
2253 	int retval;
2254 
2255 	/*
2256 	 * The typical sequence for unmapping is to find a pte through
2257 	 * lookup_address_in_pgd() (ideally, it should never return NULL because
2258 	 * the address is already mapped) and change it's protections. As pfn is
2259 	 * the *target* of a mapping, it's not useful while unmapping.
2260 	 */
2261 	struct cpa_data cpa = {
2262 		.vaddr		= &address,
2263 		.pfn		= 0,
2264 		.pgd		= pgd,
2265 		.numpages	= numpages,
2266 		.mask_set	= __pgprot(0),
2267 		.mask_clr	= __pgprot(_PAGE_PRESENT | _PAGE_RW),
2268 		.flags		= 0,
2269 	};
2270 
2271 	WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2272 
2273 	retval = __change_page_attr_set_clr(&cpa, 0);
2274 	__flush_tlb_all();
2275 
2276 	return retval;
2277 }
2278 
2279 /*
2280  * The testcases use internal knowledge of the implementation that shouldn't
2281  * be exposed to the rest of the kernel. Include these directly here.
2282  */
2283 #ifdef CONFIG_CPA_DEBUG
2284 #include "pageattr-test.c"
2285 #endif
2286