1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Copyright (C) 1994 Linus Torvalds
4  *
5  * Pentium III FXSR, SSE support
6  * General FPU state handling cleanups
7  *	Gareth Hughes <gareth@valinux.com>, May 2000
8  * x86-64 work by Andi Kleen 2002
9  */
10 
11 #ifndef _ASM_X86_FPU_INTERNAL_H
12 #define _ASM_X86_FPU_INTERNAL_H
13 
14 #include <linux/compat.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 
18 #include <asm/user.h>
19 #include <asm/fpu/api.h>
20 #include <asm/fpu/xstate.h>
21 #include <asm/cpufeature.h>
22 #include <asm/trace/fpu.h>
23 
24 /*
25  * High level FPU state handling functions:
26  */
27 extern void fpu__initialize(struct fpu *fpu);
28 extern void fpu__prepare_read(struct fpu *fpu);
29 extern void fpu__prepare_write(struct fpu *fpu);
30 extern void fpu__save(struct fpu *fpu);
31 extern void fpu__restore(struct fpu *fpu);
32 extern int  fpu__restore_sig(void __user *buf, int ia32_frame);
33 extern void fpu__drop(struct fpu *fpu);
34 extern int  fpu__copy(struct fpu *dst_fpu, struct fpu *src_fpu);
35 extern void fpu__clear(struct fpu *fpu);
36 extern int  fpu__exception_code(struct fpu *fpu, int trap_nr);
37 extern int  dump_fpu(struct pt_regs *ptregs, struct user_i387_struct *fpstate);
38 
39 /*
40  * Boot time FPU initialization functions:
41  */
42 extern void fpu__init_cpu(void);
43 extern void fpu__init_system_xstate(void);
44 extern void fpu__init_cpu_xstate(void);
45 extern void fpu__init_system(struct cpuinfo_x86 *c);
46 extern void fpu__init_check_bugs(void);
47 extern void fpu__resume_cpu(void);
48 extern u64 fpu__get_supported_xfeatures_mask(void);
49 
50 /*
51  * Debugging facility:
52  */
53 #ifdef CONFIG_X86_DEBUG_FPU
54 # define WARN_ON_FPU(x) WARN_ON_ONCE(x)
55 #else
56 # define WARN_ON_FPU(x) ({ (void)(x); 0; })
57 #endif
58 
59 /*
60  * FPU related CPU feature flag helper routines:
61  */
use_xsaveopt(void)62 static __always_inline __pure bool use_xsaveopt(void)
63 {
64 	return static_cpu_has(X86_FEATURE_XSAVEOPT);
65 }
66 
use_xsave(void)67 static __always_inline __pure bool use_xsave(void)
68 {
69 	return static_cpu_has(X86_FEATURE_XSAVE);
70 }
71 
use_fxsr(void)72 static __always_inline __pure bool use_fxsr(void)
73 {
74 	return static_cpu_has(X86_FEATURE_FXSR);
75 }
76 
77 /*
78  * fpstate handling functions:
79  */
80 
81 extern union fpregs_state init_fpstate;
82 
83 extern void fpstate_init(union fpregs_state *state);
84 #ifdef CONFIG_MATH_EMULATION
85 extern void fpstate_init_soft(struct swregs_state *soft);
86 #else
fpstate_init_soft(struct swregs_state * soft)87 static inline void fpstate_init_soft(struct swregs_state *soft) {}
88 #endif
89 
fpstate_init_xstate(struct xregs_state * xsave)90 static inline void fpstate_init_xstate(struct xregs_state *xsave)
91 {
92 	/*
93 	 * XRSTORS requires these bits set in xcomp_bv, or it will
94 	 * trigger #GP:
95 	 */
96 	xsave->header.xcomp_bv = XCOMP_BV_COMPACTED_FORMAT | xfeatures_mask;
97 }
98 
fpstate_init_fxstate(struct fxregs_state * fx)99 static inline void fpstate_init_fxstate(struct fxregs_state *fx)
100 {
101 	fx->cwd = 0x37f;
102 	fx->mxcsr = MXCSR_DEFAULT;
103 }
104 extern void fpstate_sanitize_xstate(struct fpu *fpu);
105 
106 #define user_insn(insn, output, input...)				\
107 ({									\
108 	int err;							\
109 	asm volatile(ASM_STAC "\n"					\
110 		     "1:" #insn "\n\t"					\
111 		     "2: " ASM_CLAC "\n"				\
112 		     ".section .fixup,\"ax\"\n"				\
113 		     "3:  movl $-1,%[err]\n"				\
114 		     "    jmp  2b\n"					\
115 		     ".previous\n"					\
116 		     _ASM_EXTABLE(1b, 3b)				\
117 		     : [err] "=r" (err), output				\
118 		     : "0"(0), input);					\
119 	err;								\
120 })
121 
122 #define kernel_insn(insn, output, input...)				\
123 	asm volatile("1:" #insn "\n\t"					\
124 		     "2:\n"						\
125 		     _ASM_EXTABLE_HANDLE(1b, 2b, ex_handler_fprestore)	\
126 		     : output : input)
127 
copy_fregs_to_user(struct fregs_state __user * fx)128 static inline int copy_fregs_to_user(struct fregs_state __user *fx)
129 {
130 	return user_insn(fnsave %[fx]; fwait,  [fx] "=m" (*fx), "m" (*fx));
131 }
132 
copy_fxregs_to_user(struct fxregs_state __user * fx)133 static inline int copy_fxregs_to_user(struct fxregs_state __user *fx)
134 {
135 	if (IS_ENABLED(CONFIG_X86_32))
136 		return user_insn(fxsave %[fx], [fx] "=m" (*fx), "m" (*fx));
137 	else if (IS_ENABLED(CONFIG_AS_FXSAVEQ))
138 		return user_insn(fxsaveq %[fx], [fx] "=m" (*fx), "m" (*fx));
139 
140 	/* See comment in copy_fxregs_to_kernel() below. */
141 	return user_insn(rex64/fxsave (%[fx]), "=m" (*fx), [fx] "R" (fx));
142 }
143 
copy_kernel_to_fxregs(struct fxregs_state * fx)144 static inline void copy_kernel_to_fxregs(struct fxregs_state *fx)
145 {
146 	if (IS_ENABLED(CONFIG_X86_32)) {
147 		kernel_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
148 	} else {
149 		if (IS_ENABLED(CONFIG_AS_FXSAVEQ)) {
150 			kernel_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));
151 		} else {
152 			/* See comment in copy_fxregs_to_kernel() below. */
153 			kernel_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx), "m" (*fx));
154 		}
155 	}
156 }
157 
copy_user_to_fxregs(struct fxregs_state __user * fx)158 static inline int copy_user_to_fxregs(struct fxregs_state __user *fx)
159 {
160 	if (IS_ENABLED(CONFIG_X86_32))
161 		return user_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
162 	else if (IS_ENABLED(CONFIG_AS_FXSAVEQ))
163 		return user_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));
164 
165 	/* See comment in copy_fxregs_to_kernel() below. */
166 	return user_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx),
167 			  "m" (*fx));
168 }
169 
copy_kernel_to_fregs(struct fregs_state * fx)170 static inline void copy_kernel_to_fregs(struct fregs_state *fx)
171 {
172 	kernel_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
173 }
174 
copy_user_to_fregs(struct fregs_state __user * fx)175 static inline int copy_user_to_fregs(struct fregs_state __user *fx)
176 {
177 	return user_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
178 }
179 
copy_fxregs_to_kernel(struct fpu * fpu)180 static inline void copy_fxregs_to_kernel(struct fpu *fpu)
181 {
182 	if (IS_ENABLED(CONFIG_X86_32))
183 		asm volatile( "fxsave %[fx]" : [fx] "=m" (fpu->state.fxsave));
184 	else if (IS_ENABLED(CONFIG_AS_FXSAVEQ))
185 		asm volatile("fxsaveq %[fx]" : [fx] "=m" (fpu->state.fxsave));
186 	else {
187 		/* Using "rex64; fxsave %0" is broken because, if the memory
188 		 * operand uses any extended registers for addressing, a second
189 		 * REX prefix will be generated (to the assembler, rex64
190 		 * followed by semicolon is a separate instruction), and hence
191 		 * the 64-bitness is lost.
192 		 *
193 		 * Using "fxsaveq %0" would be the ideal choice, but is only
194 		 * supported starting with gas 2.16.
195 		 *
196 		 * Using, as a workaround, the properly prefixed form below
197 		 * isn't accepted by any binutils version so far released,
198 		 * complaining that the same type of prefix is used twice if
199 		 * an extended register is needed for addressing (fix submitted
200 		 * to mainline 2005-11-21).
201 		 *
202 		 *  asm volatile("rex64/fxsave %0" : "=m" (fpu->state.fxsave));
203 		 *
204 		 * This, however, we can work around by forcing the compiler to
205 		 * select an addressing mode that doesn't require extended
206 		 * registers.
207 		 */
208 		asm volatile( "rex64/fxsave (%[fx])"
209 			     : "=m" (fpu->state.fxsave)
210 			     : [fx] "R" (&fpu->state.fxsave));
211 	}
212 }
213 
214 /* These macros all use (%edi)/(%rdi) as the single memory argument. */
215 #define XSAVE		".byte " REX_PREFIX "0x0f,0xae,0x27"
216 #define XSAVEOPT	".byte " REX_PREFIX "0x0f,0xae,0x37"
217 #define XSAVES		".byte " REX_PREFIX "0x0f,0xc7,0x2f"
218 #define XRSTOR		".byte " REX_PREFIX "0x0f,0xae,0x2f"
219 #define XRSTORS		".byte " REX_PREFIX "0x0f,0xc7,0x1f"
220 
221 #define XSTATE_OP(op, st, lmask, hmask, err)				\
222 	asm volatile("1:" op "\n\t"					\
223 		     "xor %[err], %[err]\n"				\
224 		     "2:\n\t"						\
225 		     ".pushsection .fixup,\"ax\"\n\t"			\
226 		     "3: movl $-2,%[err]\n\t"				\
227 		     "jmp 2b\n\t"					\
228 		     ".popsection\n\t"					\
229 		     _ASM_EXTABLE(1b, 3b)				\
230 		     : [err] "=r" (err)					\
231 		     : "D" (st), "m" (*st), "a" (lmask), "d" (hmask)	\
232 		     : "memory")
233 
234 /*
235  * If XSAVES is enabled, it replaces XSAVEOPT because it supports a compact
236  * format and supervisor states in addition to modified optimization in
237  * XSAVEOPT.
238  *
239  * Otherwise, if XSAVEOPT is enabled, XSAVEOPT replaces XSAVE because XSAVEOPT
240  * supports modified optimization which is not supported by XSAVE.
241  *
242  * We use XSAVE as a fallback.
243  *
244  * The 661 label is defined in the ALTERNATIVE* macros as the address of the
245  * original instruction which gets replaced. We need to use it here as the
246  * address of the instruction where we might get an exception at.
247  */
248 #define XSTATE_XSAVE(st, lmask, hmask, err)				\
249 	asm volatile(ALTERNATIVE_2(XSAVE,				\
250 				   XSAVEOPT, X86_FEATURE_XSAVEOPT,	\
251 				   XSAVES,   X86_FEATURE_XSAVES)	\
252 		     "\n"						\
253 		     "xor %[err], %[err]\n"				\
254 		     "3:\n"						\
255 		     ".pushsection .fixup,\"ax\"\n"			\
256 		     "4: movl $-2, %[err]\n"				\
257 		     "jmp 3b\n"						\
258 		     ".popsection\n"					\
259 		     _ASM_EXTABLE(661b, 4b)				\
260 		     : [err] "=r" (err)					\
261 		     : "D" (st), "m" (*st), "a" (lmask), "d" (hmask)	\
262 		     : "memory")
263 
264 /*
265  * Use XRSTORS to restore context if it is enabled. XRSTORS supports compact
266  * XSAVE area format.
267  */
268 #define XSTATE_XRESTORE(st, lmask, hmask)				\
269 	asm volatile(ALTERNATIVE(XRSTOR,				\
270 				 XRSTORS, X86_FEATURE_XSAVES)		\
271 		     "\n"						\
272 		     "3:\n"						\
273 		     _ASM_EXTABLE_HANDLE(661b, 3b, ex_handler_fprestore)\
274 		     :							\
275 		     : "D" (st), "m" (*st), "a" (lmask), "d" (hmask)	\
276 		     : "memory")
277 
278 /*
279  * This function is called only during boot time when x86 caps are not set
280  * up and alternative can not be used yet.
281  */
copy_xregs_to_kernel_booting(struct xregs_state * xstate)282 static inline void copy_xregs_to_kernel_booting(struct xregs_state *xstate)
283 {
284 	u64 mask = -1;
285 	u32 lmask = mask;
286 	u32 hmask = mask >> 32;
287 	int err;
288 
289 	WARN_ON(system_state != SYSTEM_BOOTING);
290 
291 	if (static_cpu_has(X86_FEATURE_XSAVES))
292 		XSTATE_OP(XSAVES, xstate, lmask, hmask, err);
293 	else
294 		XSTATE_OP(XSAVE, xstate, lmask, hmask, err);
295 
296 	/* We should never fault when copying to a kernel buffer: */
297 	WARN_ON_FPU(err);
298 }
299 
300 /*
301  * This function is called only during boot time when x86 caps are not set
302  * up and alternative can not be used yet.
303  */
copy_kernel_to_xregs_booting(struct xregs_state * xstate)304 static inline void copy_kernel_to_xregs_booting(struct xregs_state *xstate)
305 {
306 	u64 mask = -1;
307 	u32 lmask = mask;
308 	u32 hmask = mask >> 32;
309 	int err;
310 
311 	WARN_ON(system_state != SYSTEM_BOOTING);
312 
313 	if (static_cpu_has(X86_FEATURE_XSAVES))
314 		XSTATE_OP(XRSTORS, xstate, lmask, hmask, err);
315 	else
316 		XSTATE_OP(XRSTOR, xstate, lmask, hmask, err);
317 
318 	/*
319 	 * We should never fault when copying from a kernel buffer, and the FPU
320 	 * state we set at boot time should be valid.
321 	 */
322 	WARN_ON_FPU(err);
323 }
324 
325 /*
326  * Save processor xstate to xsave area.
327  */
copy_xregs_to_kernel(struct xregs_state * xstate)328 static inline void copy_xregs_to_kernel(struct xregs_state *xstate)
329 {
330 	u64 mask = -1;
331 	u32 lmask = mask;
332 	u32 hmask = mask >> 32;
333 	int err;
334 
335 	WARN_ON_FPU(!alternatives_patched);
336 
337 	XSTATE_XSAVE(xstate, lmask, hmask, err);
338 
339 	/* We should never fault when copying to a kernel buffer: */
340 	WARN_ON_FPU(err);
341 }
342 
343 /*
344  * Restore processor xstate from xsave area.
345  */
copy_kernel_to_xregs(struct xregs_state * xstate,u64 mask)346 static inline void copy_kernel_to_xregs(struct xregs_state *xstate, u64 mask)
347 {
348 	u32 lmask = mask;
349 	u32 hmask = mask >> 32;
350 
351 	XSTATE_XRESTORE(xstate, lmask, hmask);
352 }
353 
354 /*
355  * Save xstate to user space xsave area.
356  *
357  * We don't use modified optimization because xrstor/xrstors might track
358  * a different application.
359  *
360  * We don't use compacted format xsave area for
361  * backward compatibility for old applications which don't understand
362  * compacted format of xsave area.
363  */
copy_xregs_to_user(struct xregs_state __user * buf)364 static inline int copy_xregs_to_user(struct xregs_state __user *buf)
365 {
366 	int err;
367 
368 	/*
369 	 * Clear the xsave header first, so that reserved fields are
370 	 * initialized to zero.
371 	 */
372 	err = __clear_user(&buf->header, sizeof(buf->header));
373 	if (unlikely(err))
374 		return -EFAULT;
375 
376 	stac();
377 	XSTATE_OP(XSAVE, buf, -1, -1, err);
378 	clac();
379 
380 	return err;
381 }
382 
383 /*
384  * Restore xstate from user space xsave area.
385  */
copy_user_to_xregs(struct xregs_state __user * buf,u64 mask)386 static inline int copy_user_to_xregs(struct xregs_state __user *buf, u64 mask)
387 {
388 	struct xregs_state *xstate = ((__force struct xregs_state *)buf);
389 	u32 lmask = mask;
390 	u32 hmask = mask >> 32;
391 	int err;
392 
393 	stac();
394 	XSTATE_OP(XRSTOR, xstate, lmask, hmask, err);
395 	clac();
396 
397 	return err;
398 }
399 
400 /*
401  * These must be called with preempt disabled. Returns
402  * 'true' if the FPU state is still intact and we can
403  * keep registers active.
404  *
405  * The legacy FNSAVE instruction cleared all FPU state
406  * unconditionally, so registers are essentially destroyed.
407  * Modern FPU state can be kept in registers, if there are
408  * no pending FP exceptions.
409  */
copy_fpregs_to_fpstate(struct fpu * fpu)410 static inline int copy_fpregs_to_fpstate(struct fpu *fpu)
411 {
412 	if (likely(use_xsave())) {
413 		copy_xregs_to_kernel(&fpu->state.xsave);
414 		return 1;
415 	}
416 
417 	if (likely(use_fxsr())) {
418 		copy_fxregs_to_kernel(fpu);
419 		return 1;
420 	}
421 
422 	/*
423 	 * Legacy FPU register saving, FNSAVE always clears FPU registers,
424 	 * so we have to mark them inactive:
425 	 */
426 	asm volatile("fnsave %[fp]; fwait" : [fp] "=m" (fpu->state.fsave));
427 
428 	return 0;
429 }
430 
__copy_kernel_to_fpregs(union fpregs_state * fpstate,u64 mask)431 static inline void __copy_kernel_to_fpregs(union fpregs_state *fpstate, u64 mask)
432 {
433 	if (use_xsave()) {
434 		copy_kernel_to_xregs(&fpstate->xsave, mask);
435 	} else {
436 		if (use_fxsr())
437 			copy_kernel_to_fxregs(&fpstate->fxsave);
438 		else
439 			copy_kernel_to_fregs(&fpstate->fsave);
440 	}
441 }
442 
copy_kernel_to_fpregs(union fpregs_state * fpstate)443 static inline void copy_kernel_to_fpregs(union fpregs_state *fpstate)
444 {
445 	/*
446 	 * AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception is
447 	 * pending. Clear the x87 state here by setting it to fixed values.
448 	 * "m" is a random variable that should be in L1.
449 	 */
450 	if (unlikely(static_cpu_has_bug(X86_BUG_FXSAVE_LEAK))) {
451 		asm volatile(
452 			"fnclex\n\t"
453 			"emms\n\t"
454 			"fildl %P[addr]"	/* set F?P to defined value */
455 			: : [addr] "m" (fpstate));
456 	}
457 
458 	__copy_kernel_to_fpregs(fpstate, -1);
459 }
460 
461 extern int copy_fpstate_to_sigframe(void __user *buf, void __user *fp, int size);
462 
463 /*
464  * FPU context switch related helper methods:
465  */
466 
467 DECLARE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
468 
469 /*
470  * The in-register FPU state for an FPU context on a CPU is assumed to be
471  * valid if the fpu->last_cpu matches the CPU, and the fpu_fpregs_owner_ctx
472  * matches the FPU.
473  *
474  * If the FPU register state is valid, the kernel can skip restoring the
475  * FPU state from memory.
476  *
477  * Any code that clobbers the FPU registers or updates the in-memory
478  * FPU state for a task MUST let the rest of the kernel know that the
479  * FPU registers are no longer valid for this task.
480  *
481  * Either one of these invalidation functions is enough. Invalidate
482  * a resource you control: CPU if using the CPU for something else
483  * (with preemption disabled), FPU for the current task, or a task that
484  * is prevented from running by the current task.
485  */
__cpu_invalidate_fpregs_state(void)486 static inline void __cpu_invalidate_fpregs_state(void)
487 {
488 	__this_cpu_write(fpu_fpregs_owner_ctx, NULL);
489 }
490 
__fpu_invalidate_fpregs_state(struct fpu * fpu)491 static inline void __fpu_invalidate_fpregs_state(struct fpu *fpu)
492 {
493 	fpu->last_cpu = -1;
494 }
495 
fpregs_state_valid(struct fpu * fpu,unsigned int cpu)496 static inline int fpregs_state_valid(struct fpu *fpu, unsigned int cpu)
497 {
498 	return fpu == this_cpu_read_stable(fpu_fpregs_owner_ctx) && cpu == fpu->last_cpu;
499 }
500 
501 /*
502  * These generally need preemption protection to work,
503  * do try to avoid using these on their own:
504  */
fpregs_deactivate(struct fpu * fpu)505 static inline void fpregs_deactivate(struct fpu *fpu)
506 {
507 	this_cpu_write(fpu_fpregs_owner_ctx, NULL);
508 	trace_x86_fpu_regs_deactivated(fpu);
509 }
510 
fpregs_activate(struct fpu * fpu)511 static inline void fpregs_activate(struct fpu *fpu)
512 {
513 	this_cpu_write(fpu_fpregs_owner_ctx, fpu);
514 	trace_x86_fpu_regs_activated(fpu);
515 }
516 
517 /*
518  * FPU state switching for scheduling.
519  *
520  * This is a two-stage process:
521  *
522  *  - switch_fpu_prepare() saves the old state.
523  *    This is done within the context of the old process.
524  *
525  *  - switch_fpu_finish() restores the new state as
526  *    necessary.
527  */
528 static inline void
switch_fpu_prepare(struct fpu * old_fpu,int cpu)529 switch_fpu_prepare(struct fpu *old_fpu, int cpu)
530 {
531 	if (static_cpu_has(X86_FEATURE_FPU) && old_fpu->initialized) {
532 		if (!copy_fpregs_to_fpstate(old_fpu))
533 			old_fpu->last_cpu = -1;
534 		else
535 			old_fpu->last_cpu = cpu;
536 
537 		/* But leave fpu_fpregs_owner_ctx! */
538 		trace_x86_fpu_regs_deactivated(old_fpu);
539 	} else
540 		old_fpu->last_cpu = -1;
541 }
542 
543 /*
544  * Misc helper functions:
545  */
546 
547 /*
548  * Set up the userspace FPU context for the new task, if the task
549  * has used the FPU.
550  */
switch_fpu_finish(struct fpu * new_fpu,int cpu)551 static inline void switch_fpu_finish(struct fpu *new_fpu, int cpu)
552 {
553 	bool preload = static_cpu_has(X86_FEATURE_FPU) &&
554 		       new_fpu->initialized;
555 
556 	if (preload) {
557 		if (!fpregs_state_valid(new_fpu, cpu))
558 			copy_kernel_to_fpregs(&new_fpu->state);
559 		fpregs_activate(new_fpu);
560 	}
561 }
562 
563 /*
564  * Needs to be preemption-safe.
565  *
566  * NOTE! user_fpu_begin() must be used only immediately before restoring
567  * the save state. It does not do any saving/restoring on its own. In
568  * lazy FPU mode, it is just an optimization to avoid a #NM exception,
569  * the task can lose the FPU right after preempt_enable().
570  */
user_fpu_begin(void)571 static inline void user_fpu_begin(void)
572 {
573 	struct fpu *fpu = &current->thread.fpu;
574 
575 	preempt_disable();
576 	fpregs_activate(fpu);
577 	preempt_enable();
578 }
579 
580 /*
581  * MXCSR and XCR definitions:
582  */
583 
584 extern unsigned int mxcsr_feature_mask;
585 
586 #define XCR_XFEATURE_ENABLED_MASK	0x00000000
587 
xgetbv(u32 index)588 static inline u64 xgetbv(u32 index)
589 {
590 	u32 eax, edx;
591 
592 	asm volatile(".byte 0x0f,0x01,0xd0" /* xgetbv */
593 		     : "=a" (eax), "=d" (edx)
594 		     : "c" (index));
595 	return eax + ((u64)edx << 32);
596 }
597 
xsetbv(u32 index,u64 value)598 static inline void xsetbv(u32 index, u64 value)
599 {
600 	u32 eax = value;
601 	u32 edx = value >> 32;
602 
603 	asm volatile(".byte 0x0f,0x01,0xd1" /* xsetbv */
604 		     : : "a" (eax), "d" (edx), "c" (index));
605 }
606 
607 #endif /* _ASM_X86_FPU_INTERNAL_H */
608