1 #include <linux/export.h>
2 #include <linux/bvec.h>
3 #include <linux/uio.h>
4 #include <linux/pagemap.h>
5 #include <linux/slab.h>
6 #include <linux/vmalloc.h>
7 #include <linux/splice.h>
8 #include <net/checksum.h>
9
10 #define PIPE_PARANOIA /* for now */
11
12 #define iterate_iovec(i, n, __v, __p, skip, STEP) { \
13 size_t left; \
14 size_t wanted = n; \
15 __p = i->iov; \
16 __v.iov_len = min(n, __p->iov_len - skip); \
17 if (likely(__v.iov_len)) { \
18 __v.iov_base = __p->iov_base + skip; \
19 left = (STEP); \
20 __v.iov_len -= left; \
21 skip += __v.iov_len; \
22 n -= __v.iov_len; \
23 } else { \
24 left = 0; \
25 } \
26 while (unlikely(!left && n)) { \
27 __p++; \
28 __v.iov_len = min(n, __p->iov_len); \
29 if (unlikely(!__v.iov_len)) \
30 continue; \
31 __v.iov_base = __p->iov_base; \
32 left = (STEP); \
33 __v.iov_len -= left; \
34 skip = __v.iov_len; \
35 n -= __v.iov_len; \
36 } \
37 n = wanted - n; \
38 }
39
40 #define iterate_kvec(i, n, __v, __p, skip, STEP) { \
41 size_t wanted = n; \
42 __p = i->kvec; \
43 __v.iov_len = min(n, __p->iov_len - skip); \
44 if (likely(__v.iov_len)) { \
45 __v.iov_base = __p->iov_base + skip; \
46 (void)(STEP); \
47 skip += __v.iov_len; \
48 n -= __v.iov_len; \
49 } \
50 while (unlikely(n)) { \
51 __p++; \
52 __v.iov_len = min(n, __p->iov_len); \
53 if (unlikely(!__v.iov_len)) \
54 continue; \
55 __v.iov_base = __p->iov_base; \
56 (void)(STEP); \
57 skip = __v.iov_len; \
58 n -= __v.iov_len; \
59 } \
60 n = wanted; \
61 }
62
63 #define iterate_bvec(i, n, __v, __bi, skip, STEP) { \
64 struct bvec_iter __start; \
65 __start.bi_size = n; \
66 __start.bi_bvec_done = skip; \
67 __start.bi_idx = 0; \
68 for_each_bvec(__v, i->bvec, __bi, __start) { \
69 if (!__v.bv_len) \
70 continue; \
71 (void)(STEP); \
72 } \
73 }
74
75 #define iterate_all_kinds(i, n, v, I, B, K) { \
76 if (likely(n)) { \
77 size_t skip = i->iov_offset; \
78 if (unlikely(i->type & ITER_BVEC)) { \
79 struct bio_vec v; \
80 struct bvec_iter __bi; \
81 iterate_bvec(i, n, v, __bi, skip, (B)) \
82 } else if (unlikely(i->type & ITER_KVEC)) { \
83 const struct kvec *kvec; \
84 struct kvec v; \
85 iterate_kvec(i, n, v, kvec, skip, (K)) \
86 } else { \
87 const struct iovec *iov; \
88 struct iovec v; \
89 iterate_iovec(i, n, v, iov, skip, (I)) \
90 } \
91 } \
92 }
93
94 #define iterate_and_advance(i, n, v, I, B, K) { \
95 if (unlikely(i->count < n)) \
96 n = i->count; \
97 if (i->count) { \
98 size_t skip = i->iov_offset; \
99 if (unlikely(i->type & ITER_BVEC)) { \
100 const struct bio_vec *bvec = i->bvec; \
101 struct bio_vec v; \
102 struct bvec_iter __bi; \
103 iterate_bvec(i, n, v, __bi, skip, (B)) \
104 i->bvec = __bvec_iter_bvec(i->bvec, __bi); \
105 i->nr_segs -= i->bvec - bvec; \
106 skip = __bi.bi_bvec_done; \
107 } else if (unlikely(i->type & ITER_KVEC)) { \
108 const struct kvec *kvec; \
109 struct kvec v; \
110 iterate_kvec(i, n, v, kvec, skip, (K)) \
111 if (skip == kvec->iov_len) { \
112 kvec++; \
113 skip = 0; \
114 } \
115 i->nr_segs -= kvec - i->kvec; \
116 i->kvec = kvec; \
117 } else { \
118 const struct iovec *iov; \
119 struct iovec v; \
120 iterate_iovec(i, n, v, iov, skip, (I)) \
121 if (skip == iov->iov_len) { \
122 iov++; \
123 skip = 0; \
124 } \
125 i->nr_segs -= iov - i->iov; \
126 i->iov = iov; \
127 } \
128 i->count -= n; \
129 i->iov_offset = skip; \
130 } \
131 }
132
copyout(void __user * to,const void * from,size_t n)133 static int copyout(void __user *to, const void *from, size_t n)
134 {
135 if (access_ok(VERIFY_WRITE, to, n)) {
136 kasan_check_read(from, n);
137 n = raw_copy_to_user(to, from, n);
138 }
139 return n;
140 }
141
copyin(void * to,const void __user * from,size_t n)142 static int copyin(void *to, const void __user *from, size_t n)
143 {
144 if (access_ok(VERIFY_READ, from, n)) {
145 kasan_check_write(to, n);
146 n = raw_copy_from_user(to, from, n);
147 }
148 return n;
149 }
150
copy_page_to_iter_iovec(struct page * page,size_t offset,size_t bytes,struct iov_iter * i)151 static size_t copy_page_to_iter_iovec(struct page *page, size_t offset, size_t bytes,
152 struct iov_iter *i)
153 {
154 size_t skip, copy, left, wanted;
155 const struct iovec *iov;
156 char __user *buf;
157 void *kaddr, *from;
158
159 if (unlikely(bytes > i->count))
160 bytes = i->count;
161
162 if (unlikely(!bytes))
163 return 0;
164
165 might_fault();
166 wanted = bytes;
167 iov = i->iov;
168 skip = i->iov_offset;
169 buf = iov->iov_base + skip;
170 copy = min(bytes, iov->iov_len - skip);
171
172 if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_writeable(buf, copy)) {
173 kaddr = kmap_atomic(page);
174 from = kaddr + offset;
175
176 /* first chunk, usually the only one */
177 left = copyout(buf, from, copy);
178 copy -= left;
179 skip += copy;
180 from += copy;
181 bytes -= copy;
182
183 while (unlikely(!left && bytes)) {
184 iov++;
185 buf = iov->iov_base;
186 copy = min(bytes, iov->iov_len);
187 left = copyout(buf, from, copy);
188 copy -= left;
189 skip = copy;
190 from += copy;
191 bytes -= copy;
192 }
193 if (likely(!bytes)) {
194 kunmap_atomic(kaddr);
195 goto done;
196 }
197 offset = from - kaddr;
198 buf += copy;
199 kunmap_atomic(kaddr);
200 copy = min(bytes, iov->iov_len - skip);
201 }
202 /* Too bad - revert to non-atomic kmap */
203
204 kaddr = kmap(page);
205 from = kaddr + offset;
206 left = copyout(buf, from, copy);
207 copy -= left;
208 skip += copy;
209 from += copy;
210 bytes -= copy;
211 while (unlikely(!left && bytes)) {
212 iov++;
213 buf = iov->iov_base;
214 copy = min(bytes, iov->iov_len);
215 left = copyout(buf, from, copy);
216 copy -= left;
217 skip = copy;
218 from += copy;
219 bytes -= copy;
220 }
221 kunmap(page);
222
223 done:
224 if (skip == iov->iov_len) {
225 iov++;
226 skip = 0;
227 }
228 i->count -= wanted - bytes;
229 i->nr_segs -= iov - i->iov;
230 i->iov = iov;
231 i->iov_offset = skip;
232 return wanted - bytes;
233 }
234
copy_page_from_iter_iovec(struct page * page,size_t offset,size_t bytes,struct iov_iter * i)235 static size_t copy_page_from_iter_iovec(struct page *page, size_t offset, size_t bytes,
236 struct iov_iter *i)
237 {
238 size_t skip, copy, left, wanted;
239 const struct iovec *iov;
240 char __user *buf;
241 void *kaddr, *to;
242
243 if (unlikely(bytes > i->count))
244 bytes = i->count;
245
246 if (unlikely(!bytes))
247 return 0;
248
249 might_fault();
250 wanted = bytes;
251 iov = i->iov;
252 skip = i->iov_offset;
253 buf = iov->iov_base + skip;
254 copy = min(bytes, iov->iov_len - skip);
255
256 if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_readable(buf, copy)) {
257 kaddr = kmap_atomic(page);
258 to = kaddr + offset;
259
260 /* first chunk, usually the only one */
261 left = copyin(to, buf, copy);
262 copy -= left;
263 skip += copy;
264 to += copy;
265 bytes -= copy;
266
267 while (unlikely(!left && bytes)) {
268 iov++;
269 buf = iov->iov_base;
270 copy = min(bytes, iov->iov_len);
271 left = copyin(to, buf, copy);
272 copy -= left;
273 skip = copy;
274 to += copy;
275 bytes -= copy;
276 }
277 if (likely(!bytes)) {
278 kunmap_atomic(kaddr);
279 goto done;
280 }
281 offset = to - kaddr;
282 buf += copy;
283 kunmap_atomic(kaddr);
284 copy = min(bytes, iov->iov_len - skip);
285 }
286 /* Too bad - revert to non-atomic kmap */
287
288 kaddr = kmap(page);
289 to = kaddr + offset;
290 left = copyin(to, buf, copy);
291 copy -= left;
292 skip += copy;
293 to += copy;
294 bytes -= copy;
295 while (unlikely(!left && bytes)) {
296 iov++;
297 buf = iov->iov_base;
298 copy = min(bytes, iov->iov_len);
299 left = copyin(to, buf, copy);
300 copy -= left;
301 skip = copy;
302 to += copy;
303 bytes -= copy;
304 }
305 kunmap(page);
306
307 done:
308 if (skip == iov->iov_len) {
309 iov++;
310 skip = 0;
311 }
312 i->count -= wanted - bytes;
313 i->nr_segs -= iov - i->iov;
314 i->iov = iov;
315 i->iov_offset = skip;
316 return wanted - bytes;
317 }
318
319 #ifdef PIPE_PARANOIA
sanity(const struct iov_iter * i)320 static bool sanity(const struct iov_iter *i)
321 {
322 struct pipe_inode_info *pipe = i->pipe;
323 int idx = i->idx;
324 int next = pipe->curbuf + pipe->nrbufs;
325 if (i->iov_offset) {
326 struct pipe_buffer *p;
327 if (unlikely(!pipe->nrbufs))
328 goto Bad; // pipe must be non-empty
329 if (unlikely(idx != ((next - 1) & (pipe->buffers - 1))))
330 goto Bad; // must be at the last buffer...
331
332 p = &pipe->bufs[idx];
333 if (unlikely(p->offset + p->len != i->iov_offset))
334 goto Bad; // ... at the end of segment
335 } else {
336 if (idx != (next & (pipe->buffers - 1)))
337 goto Bad; // must be right after the last buffer
338 }
339 return true;
340 Bad:
341 printk(KERN_ERR "idx = %d, offset = %zd\n", i->idx, i->iov_offset);
342 printk(KERN_ERR "curbuf = %d, nrbufs = %d, buffers = %d\n",
343 pipe->curbuf, pipe->nrbufs, pipe->buffers);
344 for (idx = 0; idx < pipe->buffers; idx++)
345 printk(KERN_ERR "[%p %p %d %d]\n",
346 pipe->bufs[idx].ops,
347 pipe->bufs[idx].page,
348 pipe->bufs[idx].offset,
349 pipe->bufs[idx].len);
350 WARN_ON(1);
351 return false;
352 }
353 #else
354 #define sanity(i) true
355 #endif
356
next_idx(int idx,struct pipe_inode_info * pipe)357 static inline int next_idx(int idx, struct pipe_inode_info *pipe)
358 {
359 return (idx + 1) & (pipe->buffers - 1);
360 }
361
copy_page_to_iter_pipe(struct page * page,size_t offset,size_t bytes,struct iov_iter * i)362 static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes,
363 struct iov_iter *i)
364 {
365 struct pipe_inode_info *pipe = i->pipe;
366 struct pipe_buffer *buf;
367 size_t off;
368 int idx;
369
370 if (unlikely(bytes > i->count))
371 bytes = i->count;
372
373 if (unlikely(!bytes))
374 return 0;
375
376 if (!sanity(i))
377 return 0;
378
379 off = i->iov_offset;
380 idx = i->idx;
381 buf = &pipe->bufs[idx];
382 if (off) {
383 if (offset == off && buf->page == page) {
384 /* merge with the last one */
385 buf->len += bytes;
386 i->iov_offset += bytes;
387 goto out;
388 }
389 idx = next_idx(idx, pipe);
390 buf = &pipe->bufs[idx];
391 }
392 if (idx == pipe->curbuf && pipe->nrbufs)
393 return 0;
394 pipe->nrbufs++;
395 buf->ops = &page_cache_pipe_buf_ops;
396 get_page(buf->page = page);
397 buf->offset = offset;
398 buf->len = bytes;
399 i->iov_offset = offset + bytes;
400 i->idx = idx;
401 out:
402 i->count -= bytes;
403 return bytes;
404 }
405
406 /*
407 * Fault in one or more iovecs of the given iov_iter, to a maximum length of
408 * bytes. For each iovec, fault in each page that constitutes the iovec.
409 *
410 * Return 0 on success, or non-zero if the memory could not be accessed (i.e.
411 * because it is an invalid address).
412 */
iov_iter_fault_in_readable(struct iov_iter * i,size_t bytes)413 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
414 {
415 size_t skip = i->iov_offset;
416 const struct iovec *iov;
417 int err;
418 struct iovec v;
419
420 if (!(i->type & (ITER_BVEC|ITER_KVEC))) {
421 iterate_iovec(i, bytes, v, iov, skip, ({
422 err = fault_in_pages_readable(v.iov_base, v.iov_len);
423 if (unlikely(err))
424 return err;
425 0;}))
426 }
427 return 0;
428 }
429 EXPORT_SYMBOL(iov_iter_fault_in_readable);
430
iov_iter_init(struct iov_iter * i,int direction,const struct iovec * iov,unsigned long nr_segs,size_t count)431 void iov_iter_init(struct iov_iter *i, int direction,
432 const struct iovec *iov, unsigned long nr_segs,
433 size_t count)
434 {
435 /* It will get better. Eventually... */
436 if (uaccess_kernel()) {
437 direction |= ITER_KVEC;
438 i->type = direction;
439 i->kvec = (struct kvec *)iov;
440 } else {
441 i->type = direction;
442 i->iov = iov;
443 }
444 i->nr_segs = nr_segs;
445 i->iov_offset = 0;
446 i->count = count;
447 }
448 EXPORT_SYMBOL(iov_iter_init);
449
memcpy_from_page(char * to,struct page * page,size_t offset,size_t len)450 static void memcpy_from_page(char *to, struct page *page, size_t offset, size_t len)
451 {
452 char *from = kmap_atomic(page);
453 memcpy(to, from + offset, len);
454 kunmap_atomic(from);
455 }
456
memcpy_to_page(struct page * page,size_t offset,const char * from,size_t len)457 static void memcpy_to_page(struct page *page, size_t offset, const char *from, size_t len)
458 {
459 char *to = kmap_atomic(page);
460 memcpy(to + offset, from, len);
461 kunmap_atomic(to);
462 }
463
memzero_page(struct page * page,size_t offset,size_t len)464 static void memzero_page(struct page *page, size_t offset, size_t len)
465 {
466 char *addr = kmap_atomic(page);
467 memset(addr + offset, 0, len);
468 kunmap_atomic(addr);
469 }
470
allocated(struct pipe_buffer * buf)471 static inline bool allocated(struct pipe_buffer *buf)
472 {
473 return buf->ops == &default_pipe_buf_ops;
474 }
475
data_start(const struct iov_iter * i,int * idxp,size_t * offp)476 static inline void data_start(const struct iov_iter *i, int *idxp, size_t *offp)
477 {
478 size_t off = i->iov_offset;
479 int idx = i->idx;
480 if (off && (!allocated(&i->pipe->bufs[idx]) || off == PAGE_SIZE)) {
481 idx = next_idx(idx, i->pipe);
482 off = 0;
483 }
484 *idxp = idx;
485 *offp = off;
486 }
487
push_pipe(struct iov_iter * i,size_t size,int * idxp,size_t * offp)488 static size_t push_pipe(struct iov_iter *i, size_t size,
489 int *idxp, size_t *offp)
490 {
491 struct pipe_inode_info *pipe = i->pipe;
492 size_t off;
493 int idx;
494 ssize_t left;
495
496 if (unlikely(size > i->count))
497 size = i->count;
498 if (unlikely(!size))
499 return 0;
500
501 left = size;
502 data_start(i, &idx, &off);
503 *idxp = idx;
504 *offp = off;
505 if (off) {
506 left -= PAGE_SIZE - off;
507 if (left <= 0) {
508 pipe->bufs[idx].len += size;
509 return size;
510 }
511 pipe->bufs[idx].len = PAGE_SIZE;
512 idx = next_idx(idx, pipe);
513 }
514 while (idx != pipe->curbuf || !pipe->nrbufs) {
515 struct page *page = alloc_page(GFP_USER);
516 if (!page)
517 break;
518 pipe->nrbufs++;
519 pipe->bufs[idx].ops = &default_pipe_buf_ops;
520 pipe->bufs[idx].page = page;
521 pipe->bufs[idx].offset = 0;
522 if (left <= PAGE_SIZE) {
523 pipe->bufs[idx].len = left;
524 return size;
525 }
526 pipe->bufs[idx].len = PAGE_SIZE;
527 left -= PAGE_SIZE;
528 idx = next_idx(idx, pipe);
529 }
530 return size - left;
531 }
532
copy_pipe_to_iter(const void * addr,size_t bytes,struct iov_iter * i)533 static size_t copy_pipe_to_iter(const void *addr, size_t bytes,
534 struct iov_iter *i)
535 {
536 struct pipe_inode_info *pipe = i->pipe;
537 size_t n, off;
538 int idx;
539
540 if (!sanity(i))
541 return 0;
542
543 bytes = n = push_pipe(i, bytes, &idx, &off);
544 if (unlikely(!n))
545 return 0;
546 for ( ; n; idx = next_idx(idx, pipe), off = 0) {
547 size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
548 memcpy_to_page(pipe->bufs[idx].page, off, addr, chunk);
549 i->idx = idx;
550 i->iov_offset = off + chunk;
551 n -= chunk;
552 addr += chunk;
553 }
554 i->count -= bytes;
555 return bytes;
556 }
557
_copy_to_iter(const void * addr,size_t bytes,struct iov_iter * i)558 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
559 {
560 const char *from = addr;
561 if (unlikely(i->type & ITER_PIPE))
562 return copy_pipe_to_iter(addr, bytes, i);
563 if (iter_is_iovec(i))
564 might_fault();
565 iterate_and_advance(i, bytes, v,
566 copyout(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len),
567 memcpy_to_page(v.bv_page, v.bv_offset,
568 (from += v.bv_len) - v.bv_len, v.bv_len),
569 memcpy(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len)
570 )
571
572 return bytes;
573 }
574 EXPORT_SYMBOL(_copy_to_iter);
575
576 #ifdef CONFIG_ARCH_HAS_UACCESS_MCSAFE
copyout_mcsafe(void __user * to,const void * from,size_t n)577 static int copyout_mcsafe(void __user *to, const void *from, size_t n)
578 {
579 if (access_ok(VERIFY_WRITE, to, n)) {
580 kasan_check_read(from, n);
581 n = copy_to_user_mcsafe((__force void *) to, from, n);
582 }
583 return n;
584 }
585
memcpy_mcsafe_to_page(struct page * page,size_t offset,const char * from,size_t len)586 static unsigned long memcpy_mcsafe_to_page(struct page *page, size_t offset,
587 const char *from, size_t len)
588 {
589 unsigned long ret;
590 char *to;
591
592 to = kmap_atomic(page);
593 ret = memcpy_mcsafe(to + offset, from, len);
594 kunmap_atomic(to);
595
596 return ret;
597 }
598
copy_pipe_to_iter_mcsafe(const void * addr,size_t bytes,struct iov_iter * i)599 static size_t copy_pipe_to_iter_mcsafe(const void *addr, size_t bytes,
600 struct iov_iter *i)
601 {
602 struct pipe_inode_info *pipe = i->pipe;
603 size_t n, off, xfer = 0;
604 int idx;
605
606 if (!sanity(i))
607 return 0;
608
609 bytes = n = push_pipe(i, bytes, &idx, &off);
610 if (unlikely(!n))
611 return 0;
612 for ( ; n; idx = next_idx(idx, pipe), off = 0) {
613 size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
614 unsigned long rem;
615
616 rem = memcpy_mcsafe_to_page(pipe->bufs[idx].page, off, addr,
617 chunk);
618 i->idx = idx;
619 i->iov_offset = off + chunk - rem;
620 xfer += chunk - rem;
621 if (rem)
622 break;
623 n -= chunk;
624 addr += chunk;
625 }
626 i->count -= xfer;
627 return xfer;
628 }
629
630 /**
631 * _copy_to_iter_mcsafe - copy to user with source-read error exception handling
632 * @addr: source kernel address
633 * @bytes: total transfer length
634 * @iter: destination iterator
635 *
636 * The pmem driver arranges for filesystem-dax to use this facility via
637 * dax_copy_to_iter() for protecting read/write to persistent memory.
638 * Unless / until an architecture can guarantee identical performance
639 * between _copy_to_iter_mcsafe() and _copy_to_iter() it would be a
640 * performance regression to switch more users to the mcsafe version.
641 *
642 * Otherwise, the main differences between this and typical _copy_to_iter().
643 *
644 * * Typical tail/residue handling after a fault retries the copy
645 * byte-by-byte until the fault happens again. Re-triggering machine
646 * checks is potentially fatal so the implementation uses source
647 * alignment and poison alignment assumptions to avoid re-triggering
648 * hardware exceptions.
649 *
650 * * ITER_KVEC, ITER_PIPE, and ITER_BVEC can return short copies.
651 * Compare to copy_to_iter() where only ITER_IOVEC attempts might return
652 * a short copy.
653 *
654 * See MCSAFE_TEST for self-test.
655 */
_copy_to_iter_mcsafe(const void * addr,size_t bytes,struct iov_iter * i)656 size_t _copy_to_iter_mcsafe(const void *addr, size_t bytes, struct iov_iter *i)
657 {
658 const char *from = addr;
659 unsigned long rem, curr_addr, s_addr = (unsigned long) addr;
660
661 if (unlikely(i->type & ITER_PIPE))
662 return copy_pipe_to_iter_mcsafe(addr, bytes, i);
663 if (iter_is_iovec(i))
664 might_fault();
665 iterate_and_advance(i, bytes, v,
666 copyout_mcsafe(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len),
667 ({
668 rem = memcpy_mcsafe_to_page(v.bv_page, v.bv_offset,
669 (from += v.bv_len) - v.bv_len, v.bv_len);
670 if (rem) {
671 curr_addr = (unsigned long) from;
672 bytes = curr_addr - s_addr - rem;
673 return bytes;
674 }
675 }),
676 ({
677 rem = memcpy_mcsafe(v.iov_base, (from += v.iov_len) - v.iov_len,
678 v.iov_len);
679 if (rem) {
680 curr_addr = (unsigned long) from;
681 bytes = curr_addr - s_addr - rem;
682 return bytes;
683 }
684 })
685 )
686
687 return bytes;
688 }
689 EXPORT_SYMBOL_GPL(_copy_to_iter_mcsafe);
690 #endif /* CONFIG_ARCH_HAS_UACCESS_MCSAFE */
691
_copy_from_iter(void * addr,size_t bytes,struct iov_iter * i)692 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
693 {
694 char *to = addr;
695 if (unlikely(i->type & ITER_PIPE)) {
696 WARN_ON(1);
697 return 0;
698 }
699 if (iter_is_iovec(i))
700 might_fault();
701 iterate_and_advance(i, bytes, v,
702 copyin((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len),
703 memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
704 v.bv_offset, v.bv_len),
705 memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
706 )
707
708 return bytes;
709 }
710 EXPORT_SYMBOL(_copy_from_iter);
711
_copy_from_iter_full(void * addr,size_t bytes,struct iov_iter * i)712 bool _copy_from_iter_full(void *addr, size_t bytes, struct iov_iter *i)
713 {
714 char *to = addr;
715 if (unlikely(i->type & ITER_PIPE)) {
716 WARN_ON(1);
717 return false;
718 }
719 if (unlikely(i->count < bytes))
720 return false;
721
722 if (iter_is_iovec(i))
723 might_fault();
724 iterate_all_kinds(i, bytes, v, ({
725 if (copyin((to += v.iov_len) - v.iov_len,
726 v.iov_base, v.iov_len))
727 return false;
728 0;}),
729 memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
730 v.bv_offset, v.bv_len),
731 memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
732 )
733
734 iov_iter_advance(i, bytes);
735 return true;
736 }
737 EXPORT_SYMBOL(_copy_from_iter_full);
738
_copy_from_iter_nocache(void * addr,size_t bytes,struct iov_iter * i)739 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
740 {
741 char *to = addr;
742 if (unlikely(i->type & ITER_PIPE)) {
743 WARN_ON(1);
744 return 0;
745 }
746 iterate_and_advance(i, bytes, v,
747 __copy_from_user_inatomic_nocache((to += v.iov_len) - v.iov_len,
748 v.iov_base, v.iov_len),
749 memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
750 v.bv_offset, v.bv_len),
751 memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
752 )
753
754 return bytes;
755 }
756 EXPORT_SYMBOL(_copy_from_iter_nocache);
757
758 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
759 /**
760 * _copy_from_iter_flushcache - write destination through cpu cache
761 * @addr: destination kernel address
762 * @bytes: total transfer length
763 * @iter: source iterator
764 *
765 * The pmem driver arranges for filesystem-dax to use this facility via
766 * dax_copy_from_iter() for ensuring that writes to persistent memory
767 * are flushed through the CPU cache. It is differentiated from
768 * _copy_from_iter_nocache() in that guarantees all data is flushed for
769 * all iterator types. The _copy_from_iter_nocache() only attempts to
770 * bypass the cache for the ITER_IOVEC case, and on some archs may use
771 * instructions that strand dirty-data in the cache.
772 */
_copy_from_iter_flushcache(void * addr,size_t bytes,struct iov_iter * i)773 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
774 {
775 char *to = addr;
776 if (unlikely(i->type & ITER_PIPE)) {
777 WARN_ON(1);
778 return 0;
779 }
780 iterate_and_advance(i, bytes, v,
781 __copy_from_user_flushcache((to += v.iov_len) - v.iov_len,
782 v.iov_base, v.iov_len),
783 memcpy_page_flushcache((to += v.bv_len) - v.bv_len, v.bv_page,
784 v.bv_offset, v.bv_len),
785 memcpy_flushcache((to += v.iov_len) - v.iov_len, v.iov_base,
786 v.iov_len)
787 )
788
789 return bytes;
790 }
791 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
792 #endif
793
_copy_from_iter_full_nocache(void * addr,size_t bytes,struct iov_iter * i)794 bool _copy_from_iter_full_nocache(void *addr, size_t bytes, struct iov_iter *i)
795 {
796 char *to = addr;
797 if (unlikely(i->type & ITER_PIPE)) {
798 WARN_ON(1);
799 return false;
800 }
801 if (unlikely(i->count < bytes))
802 return false;
803 iterate_all_kinds(i, bytes, v, ({
804 if (__copy_from_user_inatomic_nocache((to += v.iov_len) - v.iov_len,
805 v.iov_base, v.iov_len))
806 return false;
807 0;}),
808 memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
809 v.bv_offset, v.bv_len),
810 memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
811 )
812
813 iov_iter_advance(i, bytes);
814 return true;
815 }
816 EXPORT_SYMBOL(_copy_from_iter_full_nocache);
817
page_copy_sane(struct page * page,size_t offset,size_t n)818 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
819 {
820 struct page *head = compound_head(page);
821 size_t v = n + offset + page_address(page) - page_address(head);
822
823 if (likely(n <= v && v <= (PAGE_SIZE << compound_order(head))))
824 return true;
825 WARN_ON(1);
826 return false;
827 }
828
copy_page_to_iter(struct page * page,size_t offset,size_t bytes,struct iov_iter * i)829 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
830 struct iov_iter *i)
831 {
832 if (unlikely(!page_copy_sane(page, offset, bytes)))
833 return 0;
834 if (i->type & (ITER_BVEC|ITER_KVEC)) {
835 void *kaddr = kmap_atomic(page);
836 size_t wanted = copy_to_iter(kaddr + offset, bytes, i);
837 kunmap_atomic(kaddr);
838 return wanted;
839 } else if (likely(!(i->type & ITER_PIPE)))
840 return copy_page_to_iter_iovec(page, offset, bytes, i);
841 else
842 return copy_page_to_iter_pipe(page, offset, bytes, i);
843 }
844 EXPORT_SYMBOL(copy_page_to_iter);
845
copy_page_from_iter(struct page * page,size_t offset,size_t bytes,struct iov_iter * i)846 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
847 struct iov_iter *i)
848 {
849 if (unlikely(!page_copy_sane(page, offset, bytes)))
850 return 0;
851 if (unlikely(i->type & ITER_PIPE)) {
852 WARN_ON(1);
853 return 0;
854 }
855 if (i->type & (ITER_BVEC|ITER_KVEC)) {
856 void *kaddr = kmap_atomic(page);
857 size_t wanted = _copy_from_iter(kaddr + offset, bytes, i);
858 kunmap_atomic(kaddr);
859 return wanted;
860 } else
861 return copy_page_from_iter_iovec(page, offset, bytes, i);
862 }
863 EXPORT_SYMBOL(copy_page_from_iter);
864
pipe_zero(size_t bytes,struct iov_iter * i)865 static size_t pipe_zero(size_t bytes, struct iov_iter *i)
866 {
867 struct pipe_inode_info *pipe = i->pipe;
868 size_t n, off;
869 int idx;
870
871 if (!sanity(i))
872 return 0;
873
874 bytes = n = push_pipe(i, bytes, &idx, &off);
875 if (unlikely(!n))
876 return 0;
877
878 for ( ; n; idx = next_idx(idx, pipe), off = 0) {
879 size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
880 memzero_page(pipe->bufs[idx].page, off, chunk);
881 i->idx = idx;
882 i->iov_offset = off + chunk;
883 n -= chunk;
884 }
885 i->count -= bytes;
886 return bytes;
887 }
888
iov_iter_zero(size_t bytes,struct iov_iter * i)889 size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
890 {
891 if (unlikely(i->type & ITER_PIPE))
892 return pipe_zero(bytes, i);
893 iterate_and_advance(i, bytes, v,
894 clear_user(v.iov_base, v.iov_len),
895 memzero_page(v.bv_page, v.bv_offset, v.bv_len),
896 memset(v.iov_base, 0, v.iov_len)
897 )
898
899 return bytes;
900 }
901 EXPORT_SYMBOL(iov_iter_zero);
902
iov_iter_copy_from_user_atomic(struct page * page,struct iov_iter * i,unsigned long offset,size_t bytes)903 size_t iov_iter_copy_from_user_atomic(struct page *page,
904 struct iov_iter *i, unsigned long offset, size_t bytes)
905 {
906 char *kaddr = kmap_atomic(page), *p = kaddr + offset;
907 if (unlikely(!page_copy_sane(page, offset, bytes))) {
908 kunmap_atomic(kaddr);
909 return 0;
910 }
911 if (unlikely(i->type & ITER_PIPE)) {
912 kunmap_atomic(kaddr);
913 WARN_ON(1);
914 return 0;
915 }
916 iterate_all_kinds(i, bytes, v,
917 copyin((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len),
918 memcpy_from_page((p += v.bv_len) - v.bv_len, v.bv_page,
919 v.bv_offset, v.bv_len),
920 memcpy((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
921 )
922 kunmap_atomic(kaddr);
923 return bytes;
924 }
925 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
926
pipe_truncate(struct iov_iter * i)927 static inline void pipe_truncate(struct iov_iter *i)
928 {
929 struct pipe_inode_info *pipe = i->pipe;
930 if (pipe->nrbufs) {
931 size_t off = i->iov_offset;
932 int idx = i->idx;
933 int nrbufs = (idx - pipe->curbuf) & (pipe->buffers - 1);
934 if (off) {
935 pipe->bufs[idx].len = off - pipe->bufs[idx].offset;
936 idx = next_idx(idx, pipe);
937 nrbufs++;
938 }
939 while (pipe->nrbufs > nrbufs) {
940 pipe_buf_release(pipe, &pipe->bufs[idx]);
941 idx = next_idx(idx, pipe);
942 pipe->nrbufs--;
943 }
944 }
945 }
946
pipe_advance(struct iov_iter * i,size_t size)947 static void pipe_advance(struct iov_iter *i, size_t size)
948 {
949 struct pipe_inode_info *pipe = i->pipe;
950 if (unlikely(i->count < size))
951 size = i->count;
952 if (size) {
953 struct pipe_buffer *buf;
954 size_t off = i->iov_offset, left = size;
955 int idx = i->idx;
956 if (off) /* make it relative to the beginning of buffer */
957 left += off - pipe->bufs[idx].offset;
958 while (1) {
959 buf = &pipe->bufs[idx];
960 if (left <= buf->len)
961 break;
962 left -= buf->len;
963 idx = next_idx(idx, pipe);
964 }
965 i->idx = idx;
966 i->iov_offset = buf->offset + left;
967 }
968 i->count -= size;
969 /* ... and discard everything past that point */
970 pipe_truncate(i);
971 }
972
iov_iter_advance(struct iov_iter * i,size_t size)973 void iov_iter_advance(struct iov_iter *i, size_t size)
974 {
975 if (unlikely(i->type & ITER_PIPE)) {
976 pipe_advance(i, size);
977 return;
978 }
979 iterate_and_advance(i, size, v, 0, 0, 0)
980 }
981 EXPORT_SYMBOL(iov_iter_advance);
982
iov_iter_revert(struct iov_iter * i,size_t unroll)983 void iov_iter_revert(struct iov_iter *i, size_t unroll)
984 {
985 if (!unroll)
986 return;
987 if (WARN_ON(unroll > MAX_RW_COUNT))
988 return;
989 i->count += unroll;
990 if (unlikely(i->type & ITER_PIPE)) {
991 struct pipe_inode_info *pipe = i->pipe;
992 int idx = i->idx;
993 size_t off = i->iov_offset;
994 while (1) {
995 size_t n = off - pipe->bufs[idx].offset;
996 if (unroll < n) {
997 off -= unroll;
998 break;
999 }
1000 unroll -= n;
1001 if (!unroll && idx == i->start_idx) {
1002 off = 0;
1003 break;
1004 }
1005 if (!idx--)
1006 idx = pipe->buffers - 1;
1007 off = pipe->bufs[idx].offset + pipe->bufs[idx].len;
1008 }
1009 i->iov_offset = off;
1010 i->idx = idx;
1011 pipe_truncate(i);
1012 return;
1013 }
1014 if (unroll <= i->iov_offset) {
1015 i->iov_offset -= unroll;
1016 return;
1017 }
1018 unroll -= i->iov_offset;
1019 if (i->type & ITER_BVEC) {
1020 const struct bio_vec *bvec = i->bvec;
1021 while (1) {
1022 size_t n = (--bvec)->bv_len;
1023 i->nr_segs++;
1024 if (unroll <= n) {
1025 i->bvec = bvec;
1026 i->iov_offset = n - unroll;
1027 return;
1028 }
1029 unroll -= n;
1030 }
1031 } else { /* same logics for iovec and kvec */
1032 const struct iovec *iov = i->iov;
1033 while (1) {
1034 size_t n = (--iov)->iov_len;
1035 i->nr_segs++;
1036 if (unroll <= n) {
1037 i->iov = iov;
1038 i->iov_offset = n - unroll;
1039 return;
1040 }
1041 unroll -= n;
1042 }
1043 }
1044 }
1045 EXPORT_SYMBOL(iov_iter_revert);
1046
1047 /*
1048 * Return the count of just the current iov_iter segment.
1049 */
iov_iter_single_seg_count(const struct iov_iter * i)1050 size_t iov_iter_single_seg_count(const struct iov_iter *i)
1051 {
1052 if (unlikely(i->type & ITER_PIPE))
1053 return i->count; // it is a silly place, anyway
1054 if (i->nr_segs == 1)
1055 return i->count;
1056 else if (i->type & ITER_BVEC)
1057 return min(i->count, i->bvec->bv_len - i->iov_offset);
1058 else
1059 return min(i->count, i->iov->iov_len - i->iov_offset);
1060 }
1061 EXPORT_SYMBOL(iov_iter_single_seg_count);
1062
iov_iter_kvec(struct iov_iter * i,int direction,const struct kvec * kvec,unsigned long nr_segs,size_t count)1063 void iov_iter_kvec(struct iov_iter *i, int direction,
1064 const struct kvec *kvec, unsigned long nr_segs,
1065 size_t count)
1066 {
1067 BUG_ON(!(direction & ITER_KVEC));
1068 i->type = direction;
1069 i->kvec = kvec;
1070 i->nr_segs = nr_segs;
1071 i->iov_offset = 0;
1072 i->count = count;
1073 }
1074 EXPORT_SYMBOL(iov_iter_kvec);
1075
iov_iter_bvec(struct iov_iter * i,int direction,const struct bio_vec * bvec,unsigned long nr_segs,size_t count)1076 void iov_iter_bvec(struct iov_iter *i, int direction,
1077 const struct bio_vec *bvec, unsigned long nr_segs,
1078 size_t count)
1079 {
1080 BUG_ON(!(direction & ITER_BVEC));
1081 i->type = direction;
1082 i->bvec = bvec;
1083 i->nr_segs = nr_segs;
1084 i->iov_offset = 0;
1085 i->count = count;
1086 }
1087 EXPORT_SYMBOL(iov_iter_bvec);
1088
iov_iter_pipe(struct iov_iter * i,int direction,struct pipe_inode_info * pipe,size_t count)1089 void iov_iter_pipe(struct iov_iter *i, int direction,
1090 struct pipe_inode_info *pipe,
1091 size_t count)
1092 {
1093 BUG_ON(direction != ITER_PIPE);
1094 WARN_ON(pipe->nrbufs == pipe->buffers);
1095 i->type = direction;
1096 i->pipe = pipe;
1097 i->idx = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
1098 i->iov_offset = 0;
1099 i->count = count;
1100 i->start_idx = i->idx;
1101 }
1102 EXPORT_SYMBOL(iov_iter_pipe);
1103
iov_iter_alignment(const struct iov_iter * i)1104 unsigned long iov_iter_alignment(const struct iov_iter *i)
1105 {
1106 unsigned long res = 0;
1107 size_t size = i->count;
1108
1109 if (unlikely(i->type & ITER_PIPE)) {
1110 if (size && i->iov_offset && allocated(&i->pipe->bufs[i->idx]))
1111 return size | i->iov_offset;
1112 return size;
1113 }
1114 iterate_all_kinds(i, size, v,
1115 (res |= (unsigned long)v.iov_base | v.iov_len, 0),
1116 res |= v.bv_offset | v.bv_len,
1117 res |= (unsigned long)v.iov_base | v.iov_len
1118 )
1119 return res;
1120 }
1121 EXPORT_SYMBOL(iov_iter_alignment);
1122
iov_iter_gap_alignment(const struct iov_iter * i)1123 unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
1124 {
1125 unsigned long res = 0;
1126 size_t size = i->count;
1127
1128 if (unlikely(i->type & ITER_PIPE)) {
1129 WARN_ON(1);
1130 return ~0U;
1131 }
1132
1133 iterate_all_kinds(i, size, v,
1134 (res |= (!res ? 0 : (unsigned long)v.iov_base) |
1135 (size != v.iov_len ? size : 0), 0),
1136 (res |= (!res ? 0 : (unsigned long)v.bv_offset) |
1137 (size != v.bv_len ? size : 0)),
1138 (res |= (!res ? 0 : (unsigned long)v.iov_base) |
1139 (size != v.iov_len ? size : 0))
1140 );
1141 return res;
1142 }
1143 EXPORT_SYMBOL(iov_iter_gap_alignment);
1144
__pipe_get_pages(struct iov_iter * i,size_t maxsize,struct page ** pages,int idx,size_t * start)1145 static inline ssize_t __pipe_get_pages(struct iov_iter *i,
1146 size_t maxsize,
1147 struct page **pages,
1148 int idx,
1149 size_t *start)
1150 {
1151 struct pipe_inode_info *pipe = i->pipe;
1152 ssize_t n = push_pipe(i, maxsize, &idx, start);
1153 if (!n)
1154 return -EFAULT;
1155
1156 maxsize = n;
1157 n += *start;
1158 while (n > 0) {
1159 get_page(*pages++ = pipe->bufs[idx].page);
1160 idx = next_idx(idx, pipe);
1161 n -= PAGE_SIZE;
1162 }
1163
1164 return maxsize;
1165 }
1166
pipe_get_pages(struct iov_iter * i,struct page ** pages,size_t maxsize,unsigned maxpages,size_t * start)1167 static ssize_t pipe_get_pages(struct iov_iter *i,
1168 struct page **pages, size_t maxsize, unsigned maxpages,
1169 size_t *start)
1170 {
1171 unsigned npages;
1172 size_t capacity;
1173 int idx;
1174
1175 if (!maxsize)
1176 return 0;
1177
1178 if (!sanity(i))
1179 return -EFAULT;
1180
1181 data_start(i, &idx, start);
1182 /* some of this one + all after this one */
1183 npages = ((i->pipe->curbuf - idx - 1) & (i->pipe->buffers - 1)) + 1;
1184 capacity = min(npages,maxpages) * PAGE_SIZE - *start;
1185
1186 return __pipe_get_pages(i, min(maxsize, capacity), pages, idx, start);
1187 }
1188
iov_iter_get_pages(struct iov_iter * i,struct page ** pages,size_t maxsize,unsigned maxpages,size_t * start)1189 ssize_t iov_iter_get_pages(struct iov_iter *i,
1190 struct page **pages, size_t maxsize, unsigned maxpages,
1191 size_t *start)
1192 {
1193 if (maxsize > i->count)
1194 maxsize = i->count;
1195
1196 if (unlikely(i->type & ITER_PIPE))
1197 return pipe_get_pages(i, pages, maxsize, maxpages, start);
1198 iterate_all_kinds(i, maxsize, v, ({
1199 unsigned long addr = (unsigned long)v.iov_base;
1200 size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1));
1201 int n;
1202 int res;
1203
1204 if (len > maxpages * PAGE_SIZE)
1205 len = maxpages * PAGE_SIZE;
1206 addr &= ~(PAGE_SIZE - 1);
1207 n = DIV_ROUND_UP(len, PAGE_SIZE);
1208 res = get_user_pages_fast(addr, n, (i->type & WRITE) != WRITE, pages);
1209 if (unlikely(res < 0))
1210 return res;
1211 return (res == n ? len : res * PAGE_SIZE) - *start;
1212 0;}),({
1213 /* can't be more than PAGE_SIZE */
1214 *start = v.bv_offset;
1215 get_page(*pages = v.bv_page);
1216 return v.bv_len;
1217 }),({
1218 return -EFAULT;
1219 })
1220 )
1221 return 0;
1222 }
1223 EXPORT_SYMBOL(iov_iter_get_pages);
1224
get_pages_array(size_t n)1225 static struct page **get_pages_array(size_t n)
1226 {
1227 return kvmalloc_array(n, sizeof(struct page *), GFP_KERNEL);
1228 }
1229
pipe_get_pages_alloc(struct iov_iter * i,struct page *** pages,size_t maxsize,size_t * start)1230 static ssize_t pipe_get_pages_alloc(struct iov_iter *i,
1231 struct page ***pages, size_t maxsize,
1232 size_t *start)
1233 {
1234 struct page **p;
1235 ssize_t n;
1236 int idx;
1237 int npages;
1238
1239 if (!maxsize)
1240 return 0;
1241
1242 if (!sanity(i))
1243 return -EFAULT;
1244
1245 data_start(i, &idx, start);
1246 /* some of this one + all after this one */
1247 npages = ((i->pipe->curbuf - idx - 1) & (i->pipe->buffers - 1)) + 1;
1248 n = npages * PAGE_SIZE - *start;
1249 if (maxsize > n)
1250 maxsize = n;
1251 else
1252 npages = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE);
1253 p = get_pages_array(npages);
1254 if (!p)
1255 return -ENOMEM;
1256 n = __pipe_get_pages(i, maxsize, p, idx, start);
1257 if (n > 0)
1258 *pages = p;
1259 else
1260 kvfree(p);
1261 return n;
1262 }
1263
iov_iter_get_pages_alloc(struct iov_iter * i,struct page *** pages,size_t maxsize,size_t * start)1264 ssize_t iov_iter_get_pages_alloc(struct iov_iter *i,
1265 struct page ***pages, size_t maxsize,
1266 size_t *start)
1267 {
1268 struct page **p;
1269
1270 if (maxsize > i->count)
1271 maxsize = i->count;
1272
1273 if (unlikely(i->type & ITER_PIPE))
1274 return pipe_get_pages_alloc(i, pages, maxsize, start);
1275 iterate_all_kinds(i, maxsize, v, ({
1276 unsigned long addr = (unsigned long)v.iov_base;
1277 size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1));
1278 int n;
1279 int res;
1280
1281 addr &= ~(PAGE_SIZE - 1);
1282 n = DIV_ROUND_UP(len, PAGE_SIZE);
1283 p = get_pages_array(n);
1284 if (!p)
1285 return -ENOMEM;
1286 res = get_user_pages_fast(addr, n, (i->type & WRITE) != WRITE, p);
1287 if (unlikely(res < 0)) {
1288 kvfree(p);
1289 return res;
1290 }
1291 *pages = p;
1292 return (res == n ? len : res * PAGE_SIZE) - *start;
1293 0;}),({
1294 /* can't be more than PAGE_SIZE */
1295 *start = v.bv_offset;
1296 *pages = p = get_pages_array(1);
1297 if (!p)
1298 return -ENOMEM;
1299 get_page(*p = v.bv_page);
1300 return v.bv_len;
1301 }),({
1302 return -EFAULT;
1303 })
1304 )
1305 return 0;
1306 }
1307 EXPORT_SYMBOL(iov_iter_get_pages_alloc);
1308
csum_and_copy_from_iter(void * addr,size_t bytes,__wsum * csum,struct iov_iter * i)1309 size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum,
1310 struct iov_iter *i)
1311 {
1312 char *to = addr;
1313 __wsum sum, next;
1314 size_t off = 0;
1315 sum = *csum;
1316 if (unlikely(i->type & ITER_PIPE)) {
1317 WARN_ON(1);
1318 return 0;
1319 }
1320 iterate_and_advance(i, bytes, v, ({
1321 int err = 0;
1322 next = csum_and_copy_from_user(v.iov_base,
1323 (to += v.iov_len) - v.iov_len,
1324 v.iov_len, 0, &err);
1325 if (!err) {
1326 sum = csum_block_add(sum, next, off);
1327 off += v.iov_len;
1328 }
1329 err ? v.iov_len : 0;
1330 }), ({
1331 char *p = kmap_atomic(v.bv_page);
1332 next = csum_partial_copy_nocheck(p + v.bv_offset,
1333 (to += v.bv_len) - v.bv_len,
1334 v.bv_len, 0);
1335 kunmap_atomic(p);
1336 sum = csum_block_add(sum, next, off);
1337 off += v.bv_len;
1338 }),({
1339 next = csum_partial_copy_nocheck(v.iov_base,
1340 (to += v.iov_len) - v.iov_len,
1341 v.iov_len, 0);
1342 sum = csum_block_add(sum, next, off);
1343 off += v.iov_len;
1344 })
1345 )
1346 *csum = sum;
1347 return bytes;
1348 }
1349 EXPORT_SYMBOL(csum_and_copy_from_iter);
1350
csum_and_copy_from_iter_full(void * addr,size_t bytes,__wsum * csum,struct iov_iter * i)1351 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum,
1352 struct iov_iter *i)
1353 {
1354 char *to = addr;
1355 __wsum sum, next;
1356 size_t off = 0;
1357 sum = *csum;
1358 if (unlikely(i->type & ITER_PIPE)) {
1359 WARN_ON(1);
1360 return false;
1361 }
1362 if (unlikely(i->count < bytes))
1363 return false;
1364 iterate_all_kinds(i, bytes, v, ({
1365 int err = 0;
1366 next = csum_and_copy_from_user(v.iov_base,
1367 (to += v.iov_len) - v.iov_len,
1368 v.iov_len, 0, &err);
1369 if (err)
1370 return false;
1371 sum = csum_block_add(sum, next, off);
1372 off += v.iov_len;
1373 0;
1374 }), ({
1375 char *p = kmap_atomic(v.bv_page);
1376 next = csum_partial_copy_nocheck(p + v.bv_offset,
1377 (to += v.bv_len) - v.bv_len,
1378 v.bv_len, 0);
1379 kunmap_atomic(p);
1380 sum = csum_block_add(sum, next, off);
1381 off += v.bv_len;
1382 }),({
1383 next = csum_partial_copy_nocheck(v.iov_base,
1384 (to += v.iov_len) - v.iov_len,
1385 v.iov_len, 0);
1386 sum = csum_block_add(sum, next, off);
1387 off += v.iov_len;
1388 })
1389 )
1390 *csum = sum;
1391 iov_iter_advance(i, bytes);
1392 return true;
1393 }
1394 EXPORT_SYMBOL(csum_and_copy_from_iter_full);
1395
csum_and_copy_to_iter(const void * addr,size_t bytes,__wsum * csum,struct iov_iter * i)1396 size_t csum_and_copy_to_iter(const void *addr, size_t bytes, __wsum *csum,
1397 struct iov_iter *i)
1398 {
1399 const char *from = addr;
1400 __wsum sum, next;
1401 size_t off = 0;
1402 sum = *csum;
1403 if (unlikely(i->type & ITER_PIPE)) {
1404 WARN_ON(1); /* for now */
1405 return 0;
1406 }
1407 iterate_and_advance(i, bytes, v, ({
1408 int err = 0;
1409 next = csum_and_copy_to_user((from += v.iov_len) - v.iov_len,
1410 v.iov_base,
1411 v.iov_len, 0, &err);
1412 if (!err) {
1413 sum = csum_block_add(sum, next, off);
1414 off += v.iov_len;
1415 }
1416 err ? v.iov_len : 0;
1417 }), ({
1418 char *p = kmap_atomic(v.bv_page);
1419 next = csum_partial_copy_nocheck((from += v.bv_len) - v.bv_len,
1420 p + v.bv_offset,
1421 v.bv_len, 0);
1422 kunmap_atomic(p);
1423 sum = csum_block_add(sum, next, off);
1424 off += v.bv_len;
1425 }),({
1426 next = csum_partial_copy_nocheck((from += v.iov_len) - v.iov_len,
1427 v.iov_base,
1428 v.iov_len, 0);
1429 sum = csum_block_add(sum, next, off);
1430 off += v.iov_len;
1431 })
1432 )
1433 *csum = sum;
1434 return bytes;
1435 }
1436 EXPORT_SYMBOL(csum_and_copy_to_iter);
1437
iov_iter_npages(const struct iov_iter * i,int maxpages)1438 int iov_iter_npages(const struct iov_iter *i, int maxpages)
1439 {
1440 size_t size = i->count;
1441 int npages = 0;
1442
1443 if (!size)
1444 return 0;
1445
1446 if (unlikely(i->type & ITER_PIPE)) {
1447 struct pipe_inode_info *pipe = i->pipe;
1448 size_t off;
1449 int idx;
1450
1451 if (!sanity(i))
1452 return 0;
1453
1454 data_start(i, &idx, &off);
1455 /* some of this one + all after this one */
1456 npages = ((pipe->curbuf - idx - 1) & (pipe->buffers - 1)) + 1;
1457 if (npages >= maxpages)
1458 return maxpages;
1459 } else iterate_all_kinds(i, size, v, ({
1460 unsigned long p = (unsigned long)v.iov_base;
1461 npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE)
1462 - p / PAGE_SIZE;
1463 if (npages >= maxpages)
1464 return maxpages;
1465 0;}),({
1466 npages++;
1467 if (npages >= maxpages)
1468 return maxpages;
1469 }),({
1470 unsigned long p = (unsigned long)v.iov_base;
1471 npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE)
1472 - p / PAGE_SIZE;
1473 if (npages >= maxpages)
1474 return maxpages;
1475 })
1476 )
1477 return npages;
1478 }
1479 EXPORT_SYMBOL(iov_iter_npages);
1480
dup_iter(struct iov_iter * new,struct iov_iter * old,gfp_t flags)1481 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1482 {
1483 *new = *old;
1484 if (unlikely(new->type & ITER_PIPE)) {
1485 WARN_ON(1);
1486 return NULL;
1487 }
1488 if (new->type & ITER_BVEC)
1489 return new->bvec = kmemdup(new->bvec,
1490 new->nr_segs * sizeof(struct bio_vec),
1491 flags);
1492 else
1493 /* iovec and kvec have identical layout */
1494 return new->iov = kmemdup(new->iov,
1495 new->nr_segs * sizeof(struct iovec),
1496 flags);
1497 }
1498 EXPORT_SYMBOL(dup_iter);
1499
1500 /**
1501 * import_iovec() - Copy an array of &struct iovec from userspace
1502 * into the kernel, check that it is valid, and initialize a new
1503 * &struct iov_iter iterator to access it.
1504 *
1505 * @type: One of %READ or %WRITE.
1506 * @uvector: Pointer to the userspace array.
1507 * @nr_segs: Number of elements in userspace array.
1508 * @fast_segs: Number of elements in @iov.
1509 * @iov: (input and output parameter) Pointer to pointer to (usually small
1510 * on-stack) kernel array.
1511 * @i: Pointer to iterator that will be initialized on success.
1512 *
1513 * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1514 * then this function places %NULL in *@iov on return. Otherwise, a new
1515 * array will be allocated and the result placed in *@iov. This means that
1516 * the caller may call kfree() on *@iov regardless of whether the small
1517 * on-stack array was used or not (and regardless of whether this function
1518 * returns an error or not).
1519 *
1520 * Return: 0 on success or negative error code on error.
1521 */
import_iovec(int type,const struct iovec __user * uvector,unsigned nr_segs,unsigned fast_segs,struct iovec ** iov,struct iov_iter * i)1522 int import_iovec(int type, const struct iovec __user * uvector,
1523 unsigned nr_segs, unsigned fast_segs,
1524 struct iovec **iov, struct iov_iter *i)
1525 {
1526 ssize_t n;
1527 struct iovec *p;
1528 n = rw_copy_check_uvector(type, uvector, nr_segs, fast_segs,
1529 *iov, &p);
1530 if (n < 0) {
1531 if (p != *iov)
1532 kfree(p);
1533 *iov = NULL;
1534 return n;
1535 }
1536 iov_iter_init(i, type, p, nr_segs, n);
1537 *iov = p == *iov ? NULL : p;
1538 return 0;
1539 }
1540 EXPORT_SYMBOL(import_iovec);
1541
1542 #ifdef CONFIG_COMPAT
1543 #include <linux/compat.h>
1544
compat_import_iovec(int type,const struct compat_iovec __user * uvector,unsigned nr_segs,unsigned fast_segs,struct iovec ** iov,struct iov_iter * i)1545 int compat_import_iovec(int type, const struct compat_iovec __user * uvector,
1546 unsigned nr_segs, unsigned fast_segs,
1547 struct iovec **iov, struct iov_iter *i)
1548 {
1549 ssize_t n;
1550 struct iovec *p;
1551 n = compat_rw_copy_check_uvector(type, uvector, nr_segs, fast_segs,
1552 *iov, &p);
1553 if (n < 0) {
1554 if (p != *iov)
1555 kfree(p);
1556 *iov = NULL;
1557 return n;
1558 }
1559 iov_iter_init(i, type, p, nr_segs, n);
1560 *iov = p == *iov ? NULL : p;
1561 return 0;
1562 }
1563 #endif
1564
import_single_range(int rw,void __user * buf,size_t len,struct iovec * iov,struct iov_iter * i)1565 int import_single_range(int rw, void __user *buf, size_t len,
1566 struct iovec *iov, struct iov_iter *i)
1567 {
1568 if (len > MAX_RW_COUNT)
1569 len = MAX_RW_COUNT;
1570 if (unlikely(!access_ok(!rw, buf, len)))
1571 return -EFAULT;
1572
1573 iov->iov_base = buf;
1574 iov->iov_len = len;
1575 iov_iter_init(i, rw, iov, 1, len);
1576 return 0;
1577 }
1578 EXPORT_SYMBOL(import_single_range);
1579
iov_iter_for_each_range(struct iov_iter * i,size_t bytes,int (* f)(struct kvec * vec,void * context),void * context)1580 int iov_iter_for_each_range(struct iov_iter *i, size_t bytes,
1581 int (*f)(struct kvec *vec, void *context),
1582 void *context)
1583 {
1584 struct kvec w;
1585 int err = -EINVAL;
1586 if (!bytes)
1587 return 0;
1588
1589 iterate_all_kinds(i, bytes, v, -EINVAL, ({
1590 w.iov_base = kmap(v.bv_page) + v.bv_offset;
1591 w.iov_len = v.bv_len;
1592 err = f(&w, context);
1593 kunmap(v.bv_page);
1594 err;}), ({
1595 w = v;
1596 err = f(&w, context);})
1597 )
1598 return err;
1599 }
1600 EXPORT_SYMBOL(iov_iter_for_each_range);
1601