1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Syncookies implementation for the Linux kernel
4  *
5  *  Copyright (C) 1997 Andi Kleen
6  *  Based on ideas by D.J.Bernstein and Eric Schenk.
7  */
8 
9 #include <linux/tcp.h>
10 #include <linux/slab.h>
11 #include <linux/random.h>
12 #include <linux/siphash.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <net/secure_seq.h>
16 #include <net/tcp.h>
17 #include <net/route.h>
18 
19 static siphash_key_t syncookie_secret[2] __read_mostly;
20 
21 #define COOKIEBITS 24	/* Upper bits store count */
22 #define COOKIEMASK (((__u32)1 << COOKIEBITS) - 1)
23 
24 /* TCP Timestamp: 6 lowest bits of timestamp sent in the cookie SYN-ACK
25  * stores TCP options:
26  *
27  * MSB                               LSB
28  * | 31 ...   6 |  5  |  4   | 3 2 1 0 |
29  * |  Timestamp | ECN | SACK | WScale  |
30  *
31  * When we receive a valid cookie-ACK, we look at the echoed tsval (if
32  * any) to figure out which TCP options we should use for the rebuilt
33  * connection.
34  *
35  * A WScale setting of '0xf' (which is an invalid scaling value)
36  * means that original syn did not include the TCP window scaling option.
37  */
38 #define TS_OPT_WSCALE_MASK	0xf
39 #define TS_OPT_SACK		BIT(4)
40 #define TS_OPT_ECN		BIT(5)
41 /* There is no TS_OPT_TIMESTAMP:
42  * if ACK contains timestamp option, we already know it was
43  * requested/supported by the syn/synack exchange.
44  */
45 #define TSBITS	6
46 #define TSMASK	(((__u32)1 << TSBITS) - 1)
47 
cookie_hash(__be32 saddr,__be32 daddr,__be16 sport,__be16 dport,u32 count,int c)48 static u32 cookie_hash(__be32 saddr, __be32 daddr, __be16 sport, __be16 dport,
49 		       u32 count, int c)
50 {
51 	net_get_random_once(syncookie_secret, sizeof(syncookie_secret));
52 	return siphash_4u32((__force u32)saddr, (__force u32)daddr,
53 			    (__force u32)sport << 16 | (__force u32)dport,
54 			    count, &syncookie_secret[c]);
55 }
56 
57 
58 /*
59  * when syncookies are in effect and tcp timestamps are enabled we encode
60  * tcp options in the lower bits of the timestamp value that will be
61  * sent in the syn-ack.
62  * Since subsequent timestamps use the normal tcp_time_stamp value, we
63  * must make sure that the resulting initial timestamp is <= tcp_time_stamp.
64  */
cookie_init_timestamp(struct request_sock * req)65 u64 cookie_init_timestamp(struct request_sock *req)
66 {
67 	struct inet_request_sock *ireq;
68 	u32 ts, ts_now = tcp_time_stamp_raw();
69 	u32 options = 0;
70 
71 	ireq = inet_rsk(req);
72 
73 	options = ireq->wscale_ok ? ireq->snd_wscale : TS_OPT_WSCALE_MASK;
74 	if (ireq->sack_ok)
75 		options |= TS_OPT_SACK;
76 	if (ireq->ecn_ok)
77 		options |= TS_OPT_ECN;
78 
79 	ts = ts_now & ~TSMASK;
80 	ts |= options;
81 	if (ts > ts_now) {
82 		ts >>= TSBITS;
83 		ts--;
84 		ts <<= TSBITS;
85 		ts |= options;
86 	}
87 	return (u64)ts * (NSEC_PER_SEC / TCP_TS_HZ);
88 }
89 
90 
secure_tcp_syn_cookie(__be32 saddr,__be32 daddr,__be16 sport,__be16 dport,__u32 sseq,__u32 data)91 static __u32 secure_tcp_syn_cookie(__be32 saddr, __be32 daddr, __be16 sport,
92 				   __be16 dport, __u32 sseq, __u32 data)
93 {
94 	/*
95 	 * Compute the secure sequence number.
96 	 * The output should be:
97 	 *   HASH(sec1,saddr,sport,daddr,dport,sec1) + sseq + (count * 2^24)
98 	 *      + (HASH(sec2,saddr,sport,daddr,dport,count,sec2) % 2^24).
99 	 * Where sseq is their sequence number and count increases every
100 	 * minute by 1.
101 	 * As an extra hack, we add a small "data" value that encodes the
102 	 * MSS into the second hash value.
103 	 */
104 	u32 count = tcp_cookie_time();
105 	return (cookie_hash(saddr, daddr, sport, dport, 0, 0) +
106 		sseq + (count << COOKIEBITS) +
107 		((cookie_hash(saddr, daddr, sport, dport, count, 1) + data)
108 		 & COOKIEMASK));
109 }
110 
111 /*
112  * This retrieves the small "data" value from the syncookie.
113  * If the syncookie is bad, the data returned will be out of
114  * range.  This must be checked by the caller.
115  *
116  * The count value used to generate the cookie must be less than
117  * MAX_SYNCOOKIE_AGE minutes in the past.
118  * The return value (__u32)-1 if this test fails.
119  */
check_tcp_syn_cookie(__u32 cookie,__be32 saddr,__be32 daddr,__be16 sport,__be16 dport,__u32 sseq)120 static __u32 check_tcp_syn_cookie(__u32 cookie, __be32 saddr, __be32 daddr,
121 				  __be16 sport, __be16 dport, __u32 sseq)
122 {
123 	u32 diff, count = tcp_cookie_time();
124 
125 	/* Strip away the layers from the cookie */
126 	cookie -= cookie_hash(saddr, daddr, sport, dport, 0, 0) + sseq;
127 
128 	/* Cookie is now reduced to (count * 2^24) ^ (hash % 2^24) */
129 	diff = (count - (cookie >> COOKIEBITS)) & ((__u32) -1 >> COOKIEBITS);
130 	if (diff >= MAX_SYNCOOKIE_AGE)
131 		return (__u32)-1;
132 
133 	return (cookie -
134 		cookie_hash(saddr, daddr, sport, dport, count - diff, 1))
135 		& COOKIEMASK;	/* Leaving the data behind */
136 }
137 
138 /*
139  * MSS Values are chosen based on the 2011 paper
140  * 'An Analysis of TCP Maximum Segement Sizes' by S. Alcock and R. Nelson.
141  * Values ..
142  *  .. lower than 536 are rare (< 0.2%)
143  *  .. between 537 and 1299 account for less than < 1.5% of observed values
144  *  .. in the 1300-1349 range account for about 15 to 20% of observed mss values
145  *  .. exceeding 1460 are very rare (< 0.04%)
146  *
147  *  1460 is the single most frequently announced mss value (30 to 46% depending
148  *  on monitor location).  Table must be sorted.
149  */
150 static __u16 const msstab[] = {
151 	536,
152 	1300,
153 	1440,	/* 1440, 1452: PPPoE */
154 	1460,
155 };
156 
157 /*
158  * Generate a syncookie.  mssp points to the mss, which is returned
159  * rounded down to the value encoded in the cookie.
160  */
__cookie_v4_init_sequence(const struct iphdr * iph,const struct tcphdr * th,u16 * mssp)161 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
162 			      u16 *mssp)
163 {
164 	int mssind;
165 	const __u16 mss = *mssp;
166 
167 	for (mssind = ARRAY_SIZE(msstab) - 1; mssind ; mssind--)
168 		if (mss >= msstab[mssind])
169 			break;
170 	*mssp = msstab[mssind];
171 
172 	return secure_tcp_syn_cookie(iph->saddr, iph->daddr,
173 				     th->source, th->dest, ntohl(th->seq),
174 				     mssind);
175 }
176 EXPORT_SYMBOL_GPL(__cookie_v4_init_sequence);
177 
cookie_v4_init_sequence(const struct sk_buff * skb,__u16 * mssp)178 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mssp)
179 {
180 	const struct iphdr *iph = ip_hdr(skb);
181 	const struct tcphdr *th = tcp_hdr(skb);
182 
183 	return __cookie_v4_init_sequence(iph, th, mssp);
184 }
185 
186 /*
187  * Check if a ack sequence number is a valid syncookie.
188  * Return the decoded mss if it is, or 0 if not.
189  */
__cookie_v4_check(const struct iphdr * iph,const struct tcphdr * th,u32 cookie)190 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
191 		      u32 cookie)
192 {
193 	__u32 seq = ntohl(th->seq) - 1;
194 	__u32 mssind = check_tcp_syn_cookie(cookie, iph->saddr, iph->daddr,
195 					    th->source, th->dest, seq);
196 
197 	return mssind < ARRAY_SIZE(msstab) ? msstab[mssind] : 0;
198 }
199 EXPORT_SYMBOL_GPL(__cookie_v4_check);
200 
tcp_get_cookie_sock(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct dst_entry * dst,u32 tsoff)201 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
202 				 struct request_sock *req,
203 				 struct dst_entry *dst, u32 tsoff)
204 {
205 	struct inet_connection_sock *icsk = inet_csk(sk);
206 	struct sock *child;
207 	bool own_req;
208 
209 	child = icsk->icsk_af_ops->syn_recv_sock(sk, skb, req, dst,
210 						 NULL, &own_req);
211 	if (child) {
212 		refcount_set(&req->rsk_refcnt, 1);
213 		tcp_sk(child)->tsoffset = tsoff;
214 		sock_rps_save_rxhash(child, skb);
215 		if (inet_csk_reqsk_queue_add(sk, req, child))
216 			return child;
217 
218 		bh_unlock_sock(child);
219 		sock_put(child);
220 	}
221 	__reqsk_free(req);
222 
223 	return NULL;
224 }
225 EXPORT_SYMBOL(tcp_get_cookie_sock);
226 
227 /*
228  * when syncookies are in effect and tcp timestamps are enabled we stored
229  * additional tcp options in the timestamp.
230  * This extracts these options from the timestamp echo.
231  *
232  * return false if we decode a tcp option that is disabled
233  * on the host.
234  */
cookie_timestamp_decode(const struct net * net,struct tcp_options_received * tcp_opt)235 bool cookie_timestamp_decode(const struct net *net,
236 			     struct tcp_options_received *tcp_opt)
237 {
238 	/* echoed timestamp, lowest bits contain options */
239 	u32 options = tcp_opt->rcv_tsecr;
240 
241 	if (!tcp_opt->saw_tstamp)  {
242 		tcp_clear_options(tcp_opt);
243 		return true;
244 	}
245 
246 	if (!net->ipv4.sysctl_tcp_timestamps)
247 		return false;
248 
249 	tcp_opt->sack_ok = (options & TS_OPT_SACK) ? TCP_SACK_SEEN : 0;
250 
251 	if (tcp_opt->sack_ok && !net->ipv4.sysctl_tcp_sack)
252 		return false;
253 
254 	if ((options & TS_OPT_WSCALE_MASK) == TS_OPT_WSCALE_MASK)
255 		return true; /* no window scaling */
256 
257 	tcp_opt->wscale_ok = 1;
258 	tcp_opt->snd_wscale = options & TS_OPT_WSCALE_MASK;
259 
260 	return net->ipv4.sysctl_tcp_window_scaling != 0;
261 }
262 EXPORT_SYMBOL(cookie_timestamp_decode);
263 
cookie_ecn_ok(const struct tcp_options_received * tcp_opt,const struct net * net,const struct dst_entry * dst)264 bool cookie_ecn_ok(const struct tcp_options_received *tcp_opt,
265 		   const struct net *net, const struct dst_entry *dst)
266 {
267 	bool ecn_ok = tcp_opt->rcv_tsecr & TS_OPT_ECN;
268 
269 	if (!ecn_ok)
270 		return false;
271 
272 	if (net->ipv4.sysctl_tcp_ecn)
273 		return true;
274 
275 	return dst_feature(dst, RTAX_FEATURE_ECN);
276 }
277 EXPORT_SYMBOL(cookie_ecn_ok);
278 
279 /* On input, sk is a listener.
280  * Output is listener if incoming packet would not create a child
281  *           NULL if memory could not be allocated.
282  */
cookie_v4_check(struct sock * sk,struct sk_buff * skb)283 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb)
284 {
285 	struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
286 	struct tcp_options_received tcp_opt;
287 	struct inet_request_sock *ireq;
288 	struct tcp_request_sock *treq;
289 	struct tcp_sock *tp = tcp_sk(sk);
290 	const struct tcphdr *th = tcp_hdr(skb);
291 	__u32 cookie = ntohl(th->ack_seq) - 1;
292 	struct sock *ret = sk;
293 	struct request_sock *req;
294 	int mss;
295 	struct rtable *rt;
296 	__u8 rcv_wscale;
297 	struct flowi4 fl4;
298 	u32 tsoff = 0;
299 
300 	if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies || !th->ack || th->rst)
301 		goto out;
302 
303 	if (tcp_synq_no_recent_overflow(sk))
304 		goto out;
305 
306 	mss = __cookie_v4_check(ip_hdr(skb), th, cookie);
307 	if (mss == 0) {
308 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESFAILED);
309 		goto out;
310 	}
311 
312 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESRECV);
313 
314 	/* check for timestamp cookie support */
315 	memset(&tcp_opt, 0, sizeof(tcp_opt));
316 	tcp_parse_options(sock_net(sk), skb, &tcp_opt, 0, NULL);
317 
318 	if (tcp_opt.saw_tstamp && tcp_opt.rcv_tsecr) {
319 		tsoff = secure_tcp_ts_off(sock_net(sk),
320 					  ip_hdr(skb)->daddr,
321 					  ip_hdr(skb)->saddr);
322 		tcp_opt.rcv_tsecr -= tsoff;
323 	}
324 
325 	if (!cookie_timestamp_decode(sock_net(sk), &tcp_opt))
326 		goto out;
327 
328 	ret = NULL;
329 	req = inet_reqsk_alloc(&tcp_request_sock_ops, sk, false); /* for safety */
330 	if (!req)
331 		goto out;
332 
333 	ireq = inet_rsk(req);
334 	treq = tcp_rsk(req);
335 	treq->rcv_isn		= ntohl(th->seq) - 1;
336 	treq->snt_isn		= cookie;
337 	treq->ts_off		= 0;
338 	treq->txhash		= net_tx_rndhash();
339 	req->mss		= mss;
340 	ireq->ir_num		= ntohs(th->dest);
341 	ireq->ir_rmt_port	= th->source;
342 	sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
343 	sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
344 	ireq->ir_mark		= inet_request_mark(sk, skb);
345 	ireq->snd_wscale	= tcp_opt.snd_wscale;
346 	ireq->sack_ok		= tcp_opt.sack_ok;
347 	ireq->wscale_ok		= tcp_opt.wscale_ok;
348 	ireq->tstamp_ok		= tcp_opt.saw_tstamp;
349 	req->ts_recent		= tcp_opt.saw_tstamp ? tcp_opt.rcv_tsval : 0;
350 	treq->snt_synack	= 0;
351 	treq->tfo_listener	= false;
352 	if (IS_ENABLED(CONFIG_SMC))
353 		ireq->smc_ok = 0;
354 
355 	ireq->ir_iif = inet_request_bound_dev_if(sk, skb);
356 
357 	/* We throwed the options of the initial SYN away, so we hope
358 	 * the ACK carries the same options again (see RFC1122 4.2.3.8)
359 	 */
360 	RCU_INIT_POINTER(ireq->ireq_opt, tcp_v4_save_options(sock_net(sk), skb));
361 
362 	if (security_inet_conn_request(sk, skb, req)) {
363 		reqsk_free(req);
364 		goto out;
365 	}
366 
367 	req->num_retrans = 0;
368 
369 	/*
370 	 * We need to lookup the route here to get at the correct
371 	 * window size. We should better make sure that the window size
372 	 * hasn't changed since we received the original syn, but I see
373 	 * no easy way to do this.
374 	 */
375 	flowi4_init_output(&fl4, ireq->ir_iif, ireq->ir_mark,
376 			   RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE, IPPROTO_TCP,
377 			   inet_sk_flowi_flags(sk),
378 			   opt->srr ? opt->faddr : ireq->ir_rmt_addr,
379 			   ireq->ir_loc_addr, th->source, th->dest, sk->sk_uid);
380 	security_req_classify_flow(req, flowi4_to_flowi(&fl4));
381 	rt = ip_route_output_key(sock_net(sk), &fl4);
382 	if (IS_ERR(rt)) {
383 		reqsk_free(req);
384 		goto out;
385 	}
386 
387 	/* Try to redo what tcp_v4_send_synack did. */
388 	req->rsk_window_clamp = tp->window_clamp ? :dst_metric(&rt->dst, RTAX_WINDOW);
389 
390 	tcp_select_initial_window(sk, tcp_full_space(sk), req->mss,
391 				  &req->rsk_rcv_wnd, &req->rsk_window_clamp,
392 				  ireq->wscale_ok, &rcv_wscale,
393 				  dst_metric(&rt->dst, RTAX_INITRWND));
394 
395 	ireq->rcv_wscale  = rcv_wscale;
396 	ireq->ecn_ok = cookie_ecn_ok(&tcp_opt, sock_net(sk), &rt->dst);
397 
398 	ret = tcp_get_cookie_sock(sk, skb, req, &rt->dst, tsoff);
399 	/* ip_queue_xmit() depends on our flow being setup
400 	 * Normal sockets get it right from inet_csk_route_child_sock()
401 	 */
402 	if (ret)
403 		inet_sk(ret)->cork.fl.u.ip4 = fl4;
404 out:	return ret;
405 }
406