1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Driver for the MaxLinear MxL5xx family of tuners/demods
4 *
5 * Copyright (C) 2014-2015 Ralph Metzler <rjkm@metzlerbros.de>
6 * Marcus Metzler <mocm@metzlerbros.de>
7 * developed for Digital Devices GmbH
8 *
9 * based on code:
10 * Copyright (c) 2011-2013 MaxLinear, Inc. All rights reserved
11 * which was released under GPL V2
12 *
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License
15 * version 2, as published by the Free Software Foundation.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 */
22
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/init.h>
27 #include <linux/delay.h>
28 #include <linux/firmware.h>
29 #include <linux/i2c.h>
30 #include <linux/mutex.h>
31 #include <linux/vmalloc.h>
32 #include <asm/div64.h>
33 #include <asm/unaligned.h>
34
35 #include <media/dvb_frontend.h>
36 #include "mxl5xx.h"
37 #include "mxl5xx_regs.h"
38 #include "mxl5xx_defs.h"
39
40 #define BYTE0(v) ((v >> 0) & 0xff)
41 #define BYTE1(v) ((v >> 8) & 0xff)
42 #define BYTE2(v) ((v >> 16) & 0xff)
43 #define BYTE3(v) ((v >> 24) & 0xff)
44
45 static LIST_HEAD(mxllist);
46
47 struct mxl_base {
48 struct list_head mxllist;
49 struct list_head mxls;
50
51 u8 adr;
52 struct i2c_adapter *i2c;
53
54 u32 count;
55 u32 type;
56 u32 sku_type;
57 u32 chipversion;
58 u32 clock;
59 u32 fwversion;
60
61 u8 *ts_map;
62 u8 can_clkout;
63 u8 chan_bond;
64 u8 demod_num;
65 u8 tuner_num;
66
67 unsigned long next_tune;
68
69 struct mutex i2c_lock;
70 struct mutex status_lock;
71 struct mutex tune_lock;
72
73 u8 buf[MXL_HYDRA_OEM_MAX_CMD_BUFF_LEN];
74
75 u32 cmd_size;
76 u8 cmd_data[MAX_CMD_DATA];
77 };
78
79 struct mxl {
80 struct list_head mxl;
81
82 struct mxl_base *base;
83 struct dvb_frontend fe;
84 struct device *i2cdev;
85 u32 demod;
86 u32 tuner;
87 u32 tuner_in_use;
88 u8 xbar[3];
89
90 unsigned long tune_time;
91 };
92
convert_endian(u8 flag,u32 size,u8 * d)93 static void convert_endian(u8 flag, u32 size, u8 *d)
94 {
95 u32 i;
96
97 if (!flag)
98 return;
99 for (i = 0; i < (size & ~3); i += 4) {
100 d[i + 0] ^= d[i + 3];
101 d[i + 3] ^= d[i + 0];
102 d[i + 0] ^= d[i + 3];
103
104 d[i + 1] ^= d[i + 2];
105 d[i + 2] ^= d[i + 1];
106 d[i + 1] ^= d[i + 2];
107 }
108
109 switch (size & 3) {
110 case 0:
111 case 1:
112 /* do nothing */
113 break;
114 case 2:
115 d[i + 0] ^= d[i + 1];
116 d[i + 1] ^= d[i + 0];
117 d[i + 0] ^= d[i + 1];
118 break;
119
120 case 3:
121 d[i + 0] ^= d[i + 2];
122 d[i + 2] ^= d[i + 0];
123 d[i + 0] ^= d[i + 2];
124 break;
125 }
126
127 }
128
i2c_write(struct i2c_adapter * adap,u8 adr,u8 * data,u32 len)129 static int i2c_write(struct i2c_adapter *adap, u8 adr,
130 u8 *data, u32 len)
131 {
132 struct i2c_msg msg = {.addr = adr, .flags = 0,
133 .buf = data, .len = len};
134
135 return (i2c_transfer(adap, &msg, 1) == 1) ? 0 : -1;
136 }
137
i2c_read(struct i2c_adapter * adap,u8 adr,u8 * data,u32 len)138 static int i2c_read(struct i2c_adapter *adap, u8 adr,
139 u8 *data, u32 len)
140 {
141 struct i2c_msg msg = {.addr = adr, .flags = I2C_M_RD,
142 .buf = data, .len = len};
143
144 return (i2c_transfer(adap, &msg, 1) == 1) ? 0 : -1;
145 }
146
i2cread(struct mxl * state,u8 * data,int len)147 static int i2cread(struct mxl *state, u8 *data, int len)
148 {
149 return i2c_read(state->base->i2c, state->base->adr, data, len);
150 }
151
i2cwrite(struct mxl * state,u8 * data,int len)152 static int i2cwrite(struct mxl *state, u8 *data, int len)
153 {
154 return i2c_write(state->base->i2c, state->base->adr, data, len);
155 }
156
read_register_unlocked(struct mxl * state,u32 reg,u32 * val)157 static int read_register_unlocked(struct mxl *state, u32 reg, u32 *val)
158 {
159 int stat;
160 u8 data[MXL_HYDRA_REG_SIZE_IN_BYTES + MXL_HYDRA_I2C_HDR_SIZE] = {
161 MXL_HYDRA_PLID_REG_READ, 0x04,
162 GET_BYTE(reg, 0), GET_BYTE(reg, 1),
163 GET_BYTE(reg, 2), GET_BYTE(reg, 3),
164 };
165
166 stat = i2cwrite(state, data,
167 MXL_HYDRA_REG_SIZE_IN_BYTES + MXL_HYDRA_I2C_HDR_SIZE);
168 if (stat)
169 dev_err(state->i2cdev, "i2c read error 1\n");
170 if (!stat)
171 stat = i2cread(state, (u8 *) val,
172 MXL_HYDRA_REG_SIZE_IN_BYTES);
173 le32_to_cpus(val);
174 if (stat)
175 dev_err(state->i2cdev, "i2c read error 2\n");
176 return stat;
177 }
178
179 #define DMA_I2C_INTERRUPT_ADDR 0x8000011C
180 #define DMA_INTR_PROT_WR_CMP 0x08
181
send_command(struct mxl * state,u32 size,u8 * buf)182 static int send_command(struct mxl *state, u32 size, u8 *buf)
183 {
184 int stat;
185 u32 val, count = 10;
186
187 mutex_lock(&state->base->i2c_lock);
188 if (state->base->fwversion > 0x02010109) {
189 read_register_unlocked(state, DMA_I2C_INTERRUPT_ADDR, &val);
190 if (DMA_INTR_PROT_WR_CMP & val)
191 dev_info(state->i2cdev, "%s busy\n", __func__);
192 while ((DMA_INTR_PROT_WR_CMP & val) && --count) {
193 mutex_unlock(&state->base->i2c_lock);
194 usleep_range(1000, 2000);
195 mutex_lock(&state->base->i2c_lock);
196 read_register_unlocked(state, DMA_I2C_INTERRUPT_ADDR,
197 &val);
198 }
199 if (!count) {
200 dev_info(state->i2cdev, "%s busy\n", __func__);
201 mutex_unlock(&state->base->i2c_lock);
202 return -EBUSY;
203 }
204 }
205 stat = i2cwrite(state, buf, size);
206 mutex_unlock(&state->base->i2c_lock);
207 return stat;
208 }
209
write_register(struct mxl * state,u32 reg,u32 val)210 static int write_register(struct mxl *state, u32 reg, u32 val)
211 {
212 int stat;
213 u8 data[MXL_HYDRA_REG_WRITE_LEN] = {
214 MXL_HYDRA_PLID_REG_WRITE, 0x08,
215 BYTE0(reg), BYTE1(reg), BYTE2(reg), BYTE3(reg),
216 BYTE0(val), BYTE1(val), BYTE2(val), BYTE3(val),
217 };
218 mutex_lock(&state->base->i2c_lock);
219 stat = i2cwrite(state, data, sizeof(data));
220 mutex_unlock(&state->base->i2c_lock);
221 if (stat)
222 dev_err(state->i2cdev, "i2c write error\n");
223 return stat;
224 }
225
write_firmware_block(struct mxl * state,u32 reg,u32 size,u8 * reg_data_ptr)226 static int write_firmware_block(struct mxl *state,
227 u32 reg, u32 size, u8 *reg_data_ptr)
228 {
229 int stat;
230 u8 *buf = state->base->buf;
231
232 mutex_lock(&state->base->i2c_lock);
233 buf[0] = MXL_HYDRA_PLID_REG_WRITE;
234 buf[1] = size + 4;
235 buf[2] = GET_BYTE(reg, 0);
236 buf[3] = GET_BYTE(reg, 1);
237 buf[4] = GET_BYTE(reg, 2);
238 buf[5] = GET_BYTE(reg, 3);
239 memcpy(&buf[6], reg_data_ptr, size);
240 stat = i2cwrite(state, buf,
241 MXL_HYDRA_I2C_HDR_SIZE +
242 MXL_HYDRA_REG_SIZE_IN_BYTES + size);
243 mutex_unlock(&state->base->i2c_lock);
244 if (stat)
245 dev_err(state->i2cdev, "fw block write failed\n");
246 return stat;
247 }
248
read_register(struct mxl * state,u32 reg,u32 * val)249 static int read_register(struct mxl *state, u32 reg, u32 *val)
250 {
251 int stat;
252 u8 data[MXL_HYDRA_REG_SIZE_IN_BYTES + MXL_HYDRA_I2C_HDR_SIZE] = {
253 MXL_HYDRA_PLID_REG_READ, 0x04,
254 GET_BYTE(reg, 0), GET_BYTE(reg, 1),
255 GET_BYTE(reg, 2), GET_BYTE(reg, 3),
256 };
257
258 mutex_lock(&state->base->i2c_lock);
259 stat = i2cwrite(state, data,
260 MXL_HYDRA_REG_SIZE_IN_BYTES + MXL_HYDRA_I2C_HDR_SIZE);
261 if (stat)
262 dev_err(state->i2cdev, "i2c read error 1\n");
263 if (!stat)
264 stat = i2cread(state, (u8 *) val,
265 MXL_HYDRA_REG_SIZE_IN_BYTES);
266 mutex_unlock(&state->base->i2c_lock);
267 le32_to_cpus(val);
268 if (stat)
269 dev_err(state->i2cdev, "i2c read error 2\n");
270 return stat;
271 }
272
read_register_block(struct mxl * state,u32 reg,u32 size,u8 * data)273 static int read_register_block(struct mxl *state, u32 reg, u32 size, u8 *data)
274 {
275 int stat;
276 u8 *buf = state->base->buf;
277
278 mutex_lock(&state->base->i2c_lock);
279
280 buf[0] = MXL_HYDRA_PLID_REG_READ;
281 buf[1] = size + 4;
282 buf[2] = GET_BYTE(reg, 0);
283 buf[3] = GET_BYTE(reg, 1);
284 buf[4] = GET_BYTE(reg, 2);
285 buf[5] = GET_BYTE(reg, 3);
286 stat = i2cwrite(state, buf,
287 MXL_HYDRA_I2C_HDR_SIZE + MXL_HYDRA_REG_SIZE_IN_BYTES);
288 if (!stat) {
289 stat = i2cread(state, data, size);
290 convert_endian(MXL_ENABLE_BIG_ENDIAN, size, data);
291 }
292 mutex_unlock(&state->base->i2c_lock);
293 return stat;
294 }
295
read_by_mnemonic(struct mxl * state,u32 reg,u8 lsbloc,u8 numofbits,u32 * val)296 static int read_by_mnemonic(struct mxl *state,
297 u32 reg, u8 lsbloc, u8 numofbits, u32 *val)
298 {
299 u32 data = 0, mask = 0;
300 int stat;
301
302 stat = read_register(state, reg, &data);
303 if (stat)
304 return stat;
305 mask = MXL_GET_REG_MASK_32(lsbloc, numofbits);
306 data &= mask;
307 data >>= lsbloc;
308 *val = data;
309 return 0;
310 }
311
312
update_by_mnemonic(struct mxl * state,u32 reg,u8 lsbloc,u8 numofbits,u32 val)313 static int update_by_mnemonic(struct mxl *state,
314 u32 reg, u8 lsbloc, u8 numofbits, u32 val)
315 {
316 u32 data, mask;
317 int stat;
318
319 stat = read_register(state, reg, &data);
320 if (stat)
321 return stat;
322 mask = MXL_GET_REG_MASK_32(lsbloc, numofbits);
323 data = (data & ~mask) | ((val << lsbloc) & mask);
324 stat = write_register(state, reg, data);
325 return stat;
326 }
327
firmware_is_alive(struct mxl * state)328 static int firmware_is_alive(struct mxl *state)
329 {
330 u32 hb0, hb1;
331
332 if (read_register(state, HYDRA_HEAR_BEAT, &hb0))
333 return 0;
334 msleep(20);
335 if (read_register(state, HYDRA_HEAR_BEAT, &hb1))
336 return 0;
337 if (hb1 == hb0)
338 return 0;
339 return 1;
340 }
341
init(struct dvb_frontend * fe)342 static int init(struct dvb_frontend *fe)
343 {
344 struct dtv_frontend_properties *p = &fe->dtv_property_cache;
345
346 /* init fe stats */
347 p->strength.len = 1;
348 p->strength.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
349 p->cnr.len = 1;
350 p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
351 p->pre_bit_error.len = 1;
352 p->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
353 p->pre_bit_count.len = 1;
354 p->pre_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
355 p->post_bit_error.len = 1;
356 p->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
357 p->post_bit_count.len = 1;
358 p->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
359
360 return 0;
361 }
362
release(struct dvb_frontend * fe)363 static void release(struct dvb_frontend *fe)
364 {
365 struct mxl *state = fe->demodulator_priv;
366
367 list_del(&state->mxl);
368 /* Release one frontend, two more shall take its place! */
369 state->base->count--;
370 if (state->base->count == 0) {
371 list_del(&state->base->mxllist);
372 kfree(state->base);
373 }
374 kfree(state);
375 }
376
get_algo(struct dvb_frontend * fe)377 static enum dvbfe_algo get_algo(struct dvb_frontend *fe)
378 {
379 return DVBFE_ALGO_HW;
380 }
381
gold2root(u32 gold)382 static u32 gold2root(u32 gold)
383 {
384 u32 x, g, tmp = gold;
385
386 if (tmp >= 0x3ffff)
387 tmp = 0;
388 for (g = 0, x = 1; g < tmp; g++)
389 x = (((x ^ (x >> 7)) & 1) << 17) | (x >> 1);
390 return x;
391 }
392
cfg_scrambler(struct mxl * state,u32 gold)393 static int cfg_scrambler(struct mxl *state, u32 gold)
394 {
395 u32 root;
396 u8 buf[26] = {
397 MXL_HYDRA_PLID_CMD_WRITE, 24,
398 0, MXL_HYDRA_DEMOD_SCRAMBLE_CODE_CMD, 0, 0,
399 state->demod, 0, 0, 0,
400 0, 0, 0, 0, 0, 0, 0, 0,
401 0, 0, 0, 0, 1, 0, 0, 0,
402 };
403
404 root = gold2root(gold);
405
406 buf[25] = (root >> 24) & 0xff;
407 buf[24] = (root >> 16) & 0xff;
408 buf[23] = (root >> 8) & 0xff;
409 buf[22] = root & 0xff;
410
411 return send_command(state, sizeof(buf), buf);
412 }
413
cfg_demod_abort_tune(struct mxl * state)414 static int cfg_demod_abort_tune(struct mxl *state)
415 {
416 struct MXL_HYDRA_DEMOD_ABORT_TUNE_T abort_tune_cmd;
417 u8 cmd_size = sizeof(abort_tune_cmd);
418 u8 cmd_buff[MXL_HYDRA_OEM_MAX_CMD_BUFF_LEN];
419
420 abort_tune_cmd.demod_id = state->demod;
421 BUILD_HYDRA_CMD(MXL_HYDRA_ABORT_TUNE_CMD, MXL_CMD_WRITE,
422 cmd_size, &abort_tune_cmd, cmd_buff);
423 return send_command(state, cmd_size + MXL_HYDRA_CMD_HEADER_SIZE,
424 &cmd_buff[0]);
425 }
426
send_master_cmd(struct dvb_frontend * fe,struct dvb_diseqc_master_cmd * cmd)427 static int send_master_cmd(struct dvb_frontend *fe,
428 struct dvb_diseqc_master_cmd *cmd)
429 {
430 /*struct mxl *state = fe->demodulator_priv;*/
431
432 return 0; /*CfgDemodAbortTune(state);*/
433 }
434
set_parameters(struct dvb_frontend * fe)435 static int set_parameters(struct dvb_frontend *fe)
436 {
437 struct mxl *state = fe->demodulator_priv;
438 struct dtv_frontend_properties *p = &fe->dtv_property_cache;
439 struct MXL_HYDRA_DEMOD_PARAM_T demod_chan_cfg;
440 u8 cmd_size = sizeof(demod_chan_cfg);
441 u8 cmd_buff[MXL_HYDRA_OEM_MAX_CMD_BUFF_LEN];
442 u32 srange = 10;
443 int stat;
444
445 if (p->frequency < 950000 || p->frequency > 2150000)
446 return -EINVAL;
447 if (p->symbol_rate < 1000000 || p->symbol_rate > 45000000)
448 return -EINVAL;
449
450 /* CfgDemodAbortTune(state); */
451
452 switch (p->delivery_system) {
453 case SYS_DSS:
454 demod_chan_cfg.standard = MXL_HYDRA_DSS;
455 demod_chan_cfg.roll_off = MXL_HYDRA_ROLLOFF_AUTO;
456 break;
457 case SYS_DVBS:
458 srange = p->symbol_rate / 1000000;
459 if (srange > 10)
460 srange = 10;
461 demod_chan_cfg.standard = MXL_HYDRA_DVBS;
462 demod_chan_cfg.roll_off = MXL_HYDRA_ROLLOFF_0_35;
463 demod_chan_cfg.modulation_scheme = MXL_HYDRA_MOD_QPSK;
464 demod_chan_cfg.pilots = MXL_HYDRA_PILOTS_OFF;
465 break;
466 case SYS_DVBS2:
467 demod_chan_cfg.standard = MXL_HYDRA_DVBS2;
468 demod_chan_cfg.roll_off = MXL_HYDRA_ROLLOFF_AUTO;
469 demod_chan_cfg.modulation_scheme = MXL_HYDRA_MOD_AUTO;
470 demod_chan_cfg.pilots = MXL_HYDRA_PILOTS_AUTO;
471 cfg_scrambler(state, p->scrambling_sequence_index);
472 break;
473 default:
474 return -EINVAL;
475 }
476 demod_chan_cfg.tuner_index = state->tuner;
477 demod_chan_cfg.demod_index = state->demod;
478 demod_chan_cfg.frequency_in_hz = p->frequency * 1000;
479 demod_chan_cfg.symbol_rate_in_hz = p->symbol_rate;
480 demod_chan_cfg.max_carrier_offset_in_mhz = srange;
481 demod_chan_cfg.spectrum_inversion = MXL_HYDRA_SPECTRUM_AUTO;
482 demod_chan_cfg.fec_code_rate = MXL_HYDRA_FEC_AUTO;
483
484 mutex_lock(&state->base->tune_lock);
485 if (time_after(jiffies + msecs_to_jiffies(200),
486 state->base->next_tune))
487 while (time_before(jiffies, state->base->next_tune))
488 usleep_range(10000, 11000);
489 state->base->next_tune = jiffies + msecs_to_jiffies(100);
490 state->tuner_in_use = state->tuner;
491 BUILD_HYDRA_CMD(MXL_HYDRA_DEMOD_SET_PARAM_CMD, MXL_CMD_WRITE,
492 cmd_size, &demod_chan_cfg, cmd_buff);
493 stat = send_command(state, cmd_size + MXL_HYDRA_CMD_HEADER_SIZE,
494 &cmd_buff[0]);
495 mutex_unlock(&state->base->tune_lock);
496 return stat;
497 }
498
499 static int enable_tuner(struct mxl *state, u32 tuner, u32 enable);
500
sleep(struct dvb_frontend * fe)501 static int sleep(struct dvb_frontend *fe)
502 {
503 struct mxl *state = fe->demodulator_priv;
504 struct mxl *p;
505
506 cfg_demod_abort_tune(state);
507 if (state->tuner_in_use != 0xffffffff) {
508 mutex_lock(&state->base->tune_lock);
509 state->tuner_in_use = 0xffffffff;
510 list_for_each_entry(p, &state->base->mxls, mxl) {
511 if (p->tuner_in_use == state->tuner)
512 break;
513 }
514 if (&p->mxl == &state->base->mxls)
515 enable_tuner(state, state->tuner, 0);
516 mutex_unlock(&state->base->tune_lock);
517 }
518 return 0;
519 }
520
read_snr(struct dvb_frontend * fe)521 static int read_snr(struct dvb_frontend *fe)
522 {
523 struct mxl *state = fe->demodulator_priv;
524 int stat;
525 u32 reg_data = 0;
526 struct dtv_frontend_properties *p = &fe->dtv_property_cache;
527
528 mutex_lock(&state->base->status_lock);
529 HYDRA_DEMOD_STATUS_LOCK(state, state->demod);
530 stat = read_register(state, (HYDRA_DMD_SNR_ADDR_OFFSET +
531 HYDRA_DMD_STATUS_OFFSET(state->demod)),
532 ®_data);
533 HYDRA_DEMOD_STATUS_UNLOCK(state, state->demod);
534 mutex_unlock(&state->base->status_lock);
535
536 p->cnr.stat[0].scale = FE_SCALE_DECIBEL;
537 p->cnr.stat[0].svalue = (s16)reg_data * 10;
538
539 return stat;
540 }
541
read_ber(struct dvb_frontend * fe)542 static int read_ber(struct dvb_frontend *fe)
543 {
544 struct mxl *state = fe->demodulator_priv;
545 struct dtv_frontend_properties *p = &fe->dtv_property_cache;
546 u32 reg[8];
547
548 mutex_lock(&state->base->status_lock);
549 HYDRA_DEMOD_STATUS_LOCK(state, state->demod);
550 read_register_block(state,
551 (HYDRA_DMD_DVBS_1ST_CORR_RS_ERRORS_ADDR_OFFSET +
552 HYDRA_DMD_STATUS_OFFSET(state->demod)),
553 (4 * sizeof(u32)),
554 (u8 *) ®[0]);
555 HYDRA_DEMOD_STATUS_UNLOCK(state, state->demod);
556
557 switch (p->delivery_system) {
558 case SYS_DSS:
559 case SYS_DVBS:
560 p->pre_bit_error.stat[0].scale = FE_SCALE_COUNTER;
561 p->pre_bit_error.stat[0].uvalue = reg[2];
562 p->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER;
563 p->pre_bit_count.stat[0].uvalue = reg[3];
564 break;
565 default:
566 break;
567 }
568
569 read_register_block(state,
570 (HYDRA_DMD_DVBS2_CRC_ERRORS_ADDR_OFFSET +
571 HYDRA_DMD_STATUS_OFFSET(state->demod)),
572 (7 * sizeof(u32)),
573 (u8 *) ®[0]);
574
575 switch (p->delivery_system) {
576 case SYS_DSS:
577 case SYS_DVBS:
578 p->post_bit_error.stat[0].scale = FE_SCALE_COUNTER;
579 p->post_bit_error.stat[0].uvalue = reg[5];
580 p->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
581 p->post_bit_count.stat[0].uvalue = reg[6];
582 break;
583 case SYS_DVBS2:
584 p->post_bit_error.stat[0].scale = FE_SCALE_COUNTER;
585 p->post_bit_error.stat[0].uvalue = reg[1];
586 p->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
587 p->post_bit_count.stat[0].uvalue = reg[2];
588 break;
589 default:
590 break;
591 }
592
593 mutex_unlock(&state->base->status_lock);
594
595 return 0;
596 }
597
read_signal_strength(struct dvb_frontend * fe)598 static int read_signal_strength(struct dvb_frontend *fe)
599 {
600 struct mxl *state = fe->demodulator_priv;
601 struct dtv_frontend_properties *p = &fe->dtv_property_cache;
602 int stat;
603 u32 reg_data = 0;
604
605 mutex_lock(&state->base->status_lock);
606 HYDRA_DEMOD_STATUS_LOCK(state, state->demod);
607 stat = read_register(state, (HYDRA_DMD_STATUS_INPUT_POWER_ADDR +
608 HYDRA_DMD_STATUS_OFFSET(state->demod)),
609 ®_data);
610 HYDRA_DEMOD_STATUS_UNLOCK(state, state->demod);
611 mutex_unlock(&state->base->status_lock);
612
613 p->strength.stat[0].scale = FE_SCALE_DECIBEL;
614 p->strength.stat[0].svalue = (s16) reg_data * 10; /* fix scale */
615
616 return stat;
617 }
618
read_status(struct dvb_frontend * fe,enum fe_status * status)619 static int read_status(struct dvb_frontend *fe, enum fe_status *status)
620 {
621 struct mxl *state = fe->demodulator_priv;
622 struct dtv_frontend_properties *p = &fe->dtv_property_cache;
623 u32 reg_data = 0;
624
625 mutex_lock(&state->base->status_lock);
626 HYDRA_DEMOD_STATUS_LOCK(state, state->demod);
627 read_register(state, (HYDRA_DMD_LOCK_STATUS_ADDR_OFFSET +
628 HYDRA_DMD_STATUS_OFFSET(state->demod)),
629 ®_data);
630 HYDRA_DEMOD_STATUS_UNLOCK(state, state->demod);
631 mutex_unlock(&state->base->status_lock);
632
633 *status = (reg_data == 1) ? 0x1f : 0;
634
635 /* signal statistics */
636
637 /* signal strength is always available */
638 read_signal_strength(fe);
639
640 if (*status & FE_HAS_CARRIER)
641 read_snr(fe);
642 else
643 p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
644
645 if (*status & FE_HAS_SYNC)
646 read_ber(fe);
647 else {
648 p->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
649 p->pre_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
650 p->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
651 p->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
652 }
653
654 return 0;
655 }
656
tune(struct dvb_frontend * fe,bool re_tune,unsigned int mode_flags,unsigned int * delay,enum fe_status * status)657 static int tune(struct dvb_frontend *fe, bool re_tune,
658 unsigned int mode_flags,
659 unsigned int *delay, enum fe_status *status)
660 {
661 struct mxl *state = fe->demodulator_priv;
662 int r = 0;
663
664 *delay = HZ / 2;
665 if (re_tune) {
666 r = set_parameters(fe);
667 if (r)
668 return r;
669 state->tune_time = jiffies;
670 }
671
672 return read_status(fe, status);
673 }
674
conv_fec(enum MXL_HYDRA_FEC_E fec)675 static enum fe_code_rate conv_fec(enum MXL_HYDRA_FEC_E fec)
676 {
677 enum fe_code_rate fec2fec[11] = {
678 FEC_NONE, FEC_1_2, FEC_3_5, FEC_2_3,
679 FEC_3_4, FEC_4_5, FEC_5_6, FEC_6_7,
680 FEC_7_8, FEC_8_9, FEC_9_10
681 };
682
683 if (fec > MXL_HYDRA_FEC_9_10)
684 return FEC_NONE;
685 return fec2fec[fec];
686 }
687
get_frontend(struct dvb_frontend * fe,struct dtv_frontend_properties * p)688 static int get_frontend(struct dvb_frontend *fe,
689 struct dtv_frontend_properties *p)
690 {
691 struct mxl *state = fe->demodulator_priv;
692 u32 reg_data[MXL_DEMOD_CHAN_PARAMS_BUFF_SIZE];
693 u32 freq;
694
695 mutex_lock(&state->base->status_lock);
696 HYDRA_DEMOD_STATUS_LOCK(state, state->demod);
697 read_register_block(state,
698 (HYDRA_DMD_STANDARD_ADDR_OFFSET +
699 HYDRA_DMD_STATUS_OFFSET(state->demod)),
700 (MXL_DEMOD_CHAN_PARAMS_BUFF_SIZE * 4), /* 25 * 4 bytes */
701 (u8 *) ®_data[0]);
702 /* read demod channel parameters */
703 read_register_block(state,
704 (HYDRA_DMD_STATUS_CENTER_FREQ_IN_KHZ_ADDR +
705 HYDRA_DMD_STATUS_OFFSET(state->demod)),
706 (4), /* 4 bytes */
707 (u8 *) &freq);
708 HYDRA_DEMOD_STATUS_UNLOCK(state, state->demod);
709 mutex_unlock(&state->base->status_lock);
710
711 dev_dbg(state->i2cdev, "freq=%u delsys=%u srate=%u\n",
712 freq * 1000, reg_data[DMD_STANDARD_ADDR],
713 reg_data[DMD_SYMBOL_RATE_ADDR]);
714 p->symbol_rate = reg_data[DMD_SYMBOL_RATE_ADDR];
715 p->frequency = freq;
716 /*
717 * p->delivery_system =
718 * (MXL_HYDRA_BCAST_STD_E) regData[DMD_STANDARD_ADDR];
719 * p->inversion =
720 * (MXL_HYDRA_SPECTRUM_E) regData[DMD_SPECTRUM_INVERSION_ADDR];
721 * freqSearchRangeKHz =
722 * (regData[DMD_FREQ_SEARCH_RANGE_IN_KHZ_ADDR]);
723 */
724
725 p->fec_inner = conv_fec(reg_data[DMD_FEC_CODE_RATE_ADDR]);
726 switch (p->delivery_system) {
727 case SYS_DSS:
728 break;
729 case SYS_DVBS2:
730 switch ((enum MXL_HYDRA_PILOTS_E)
731 reg_data[DMD_DVBS2_PILOT_ON_OFF_ADDR]) {
732 case MXL_HYDRA_PILOTS_OFF:
733 p->pilot = PILOT_OFF;
734 break;
735 case MXL_HYDRA_PILOTS_ON:
736 p->pilot = PILOT_ON;
737 break;
738 default:
739 break;
740 }
741 fallthrough;
742 case SYS_DVBS:
743 switch ((enum MXL_HYDRA_MODULATION_E)
744 reg_data[DMD_MODULATION_SCHEME_ADDR]) {
745 case MXL_HYDRA_MOD_QPSK:
746 p->modulation = QPSK;
747 break;
748 case MXL_HYDRA_MOD_8PSK:
749 p->modulation = PSK_8;
750 break;
751 default:
752 break;
753 }
754 switch ((enum MXL_HYDRA_ROLLOFF_E)
755 reg_data[DMD_SPECTRUM_ROLL_OFF_ADDR]) {
756 case MXL_HYDRA_ROLLOFF_0_20:
757 p->rolloff = ROLLOFF_20;
758 break;
759 case MXL_HYDRA_ROLLOFF_0_35:
760 p->rolloff = ROLLOFF_35;
761 break;
762 case MXL_HYDRA_ROLLOFF_0_25:
763 p->rolloff = ROLLOFF_25;
764 break;
765 default:
766 break;
767 }
768 break;
769 default:
770 return -EINVAL;
771 }
772 return 0;
773 }
774
set_input(struct dvb_frontend * fe,int input)775 static int set_input(struct dvb_frontend *fe, int input)
776 {
777 struct mxl *state = fe->demodulator_priv;
778
779 state->tuner = input;
780 return 0;
781 }
782
783 static const struct dvb_frontend_ops mxl_ops = {
784 .delsys = { SYS_DVBS, SYS_DVBS2, SYS_DSS },
785 .info = {
786 .name = "MaxLinear MxL5xx DVB-S/S2 tuner-demodulator",
787 .frequency_min_hz = 300 * MHz,
788 .frequency_max_hz = 2350 * MHz,
789 .symbol_rate_min = 1000000,
790 .symbol_rate_max = 45000000,
791 .caps = FE_CAN_INVERSION_AUTO |
792 FE_CAN_FEC_AUTO |
793 FE_CAN_QPSK |
794 FE_CAN_2G_MODULATION
795 },
796 .init = init,
797 .release = release,
798 .get_frontend_algo = get_algo,
799 .tune = tune,
800 .read_status = read_status,
801 .sleep = sleep,
802 .get_frontend = get_frontend,
803 .diseqc_send_master_cmd = send_master_cmd,
804 };
805
match_base(struct i2c_adapter * i2c,u8 adr)806 static struct mxl_base *match_base(struct i2c_adapter *i2c, u8 adr)
807 {
808 struct mxl_base *p;
809
810 list_for_each_entry(p, &mxllist, mxllist)
811 if (p->i2c == i2c && p->adr == adr)
812 return p;
813 return NULL;
814 }
815
cfg_dev_xtal(struct mxl * state,u32 freq,u32 cap,u32 enable)816 static void cfg_dev_xtal(struct mxl *state, u32 freq, u32 cap, u32 enable)
817 {
818 if (state->base->can_clkout || !enable)
819 update_by_mnemonic(state, 0x90200054, 23, 1, enable);
820
821 if (freq == 24000000)
822 write_register(state, HYDRA_CRYSTAL_SETTING, 0);
823 else
824 write_register(state, HYDRA_CRYSTAL_SETTING, 1);
825
826 write_register(state, HYDRA_CRYSTAL_CAP, cap);
827 }
828
get_big_endian(u8 num_of_bits,const u8 buf[])829 static u32 get_big_endian(u8 num_of_bits, const u8 buf[])
830 {
831 u32 ret_value = 0;
832
833 switch (num_of_bits) {
834 case 24:
835 ret_value = (((u32) buf[0]) << 16) |
836 (((u32) buf[1]) << 8) | buf[2];
837 break;
838 case 32:
839 ret_value = (((u32) buf[0]) << 24) |
840 (((u32) buf[1]) << 16) |
841 (((u32) buf[2]) << 8) | buf[3];
842 break;
843 default:
844 break;
845 }
846
847 return ret_value;
848 }
849
write_fw_segment(struct mxl * state,u32 mem_addr,u32 total_size,u8 * data_ptr)850 static int write_fw_segment(struct mxl *state,
851 u32 mem_addr, u32 total_size, u8 *data_ptr)
852 {
853 int status;
854 u32 data_count = 0;
855 u32 size = 0;
856 u32 orig_size = 0;
857 u8 *w_buf_ptr = NULL;
858 u32 block_size = ((MXL_HYDRA_OEM_MAX_BLOCK_WRITE_LENGTH -
859 (MXL_HYDRA_I2C_HDR_SIZE +
860 MXL_HYDRA_REG_SIZE_IN_BYTES)) / 4) * 4;
861 u8 w_msg_buffer[MXL_HYDRA_OEM_MAX_BLOCK_WRITE_LENGTH -
862 (MXL_HYDRA_I2C_HDR_SIZE + MXL_HYDRA_REG_SIZE_IN_BYTES)];
863
864 do {
865 size = orig_size = (((u32)(data_count + block_size)) > total_size) ?
866 (total_size - data_count) : block_size;
867
868 if (orig_size & 3)
869 size = (orig_size + 4) & ~3;
870 w_buf_ptr = &w_msg_buffer[0];
871 memset((void *) w_buf_ptr, 0, size);
872 memcpy((void *) w_buf_ptr, (void *) data_ptr, orig_size);
873 convert_endian(1, size, w_buf_ptr);
874 status = write_firmware_block(state, mem_addr, size, w_buf_ptr);
875 if (status)
876 return status;
877 data_count += size;
878 mem_addr += size;
879 data_ptr += size;
880 } while (data_count < total_size);
881
882 return status;
883 }
884
do_firmware_download(struct mxl * state,u8 * mbin_buffer_ptr,u32 mbin_buffer_size)885 static int do_firmware_download(struct mxl *state, u8 *mbin_buffer_ptr,
886 u32 mbin_buffer_size)
887
888 {
889 int status;
890 u32 index = 0;
891 u32 seg_length = 0;
892 u32 seg_address = 0;
893 struct MBIN_FILE_T *mbin_ptr = (struct MBIN_FILE_T *)mbin_buffer_ptr;
894 struct MBIN_SEGMENT_T *segment_ptr;
895 enum MXL_BOOL_E xcpu_fw_flag = MXL_FALSE;
896
897 if (mbin_ptr->header.id != MBIN_FILE_HEADER_ID) {
898 dev_err(state->i2cdev, "%s: Invalid file header ID (%c)\n",
899 __func__, mbin_ptr->header.id);
900 return -EINVAL;
901 }
902 status = write_register(state, FW_DL_SIGN_ADDR, 0);
903 if (status)
904 return status;
905 segment_ptr = (struct MBIN_SEGMENT_T *) (&mbin_ptr->data[0]);
906 for (index = 0; index < mbin_ptr->header.num_segments; index++) {
907 if (segment_ptr->header.id != MBIN_SEGMENT_HEADER_ID) {
908 dev_err(state->i2cdev, "%s: Invalid segment header ID (%c)\n",
909 __func__, segment_ptr->header.id);
910 return -EINVAL;
911 }
912 seg_length = get_big_endian(24,
913 &(segment_ptr->header.len24[0]));
914 seg_address = get_big_endian(32,
915 &(segment_ptr->header.address[0]));
916
917 if (state->base->type == MXL_HYDRA_DEVICE_568) {
918 if ((((seg_address & 0x90760000) == 0x90760000) ||
919 ((seg_address & 0x90740000) == 0x90740000)) &&
920 (xcpu_fw_flag == MXL_FALSE)) {
921 update_by_mnemonic(state, 0x8003003C, 0, 1, 1);
922 msleep(200);
923 write_register(state, 0x90720000, 0);
924 usleep_range(10000, 11000);
925 xcpu_fw_flag = MXL_TRUE;
926 }
927 status = write_fw_segment(state, seg_address,
928 seg_length,
929 (u8 *) segment_ptr->data);
930 } else {
931 if (((seg_address & 0x90760000) != 0x90760000) &&
932 ((seg_address & 0x90740000) != 0x90740000))
933 status = write_fw_segment(state, seg_address,
934 seg_length, (u8 *) segment_ptr->data);
935 }
936 if (status)
937 return status;
938 segment_ptr = (struct MBIN_SEGMENT_T *)
939 &(segment_ptr->data[((seg_length + 3) / 4) * 4]);
940 }
941 return status;
942 }
943
check_fw(struct mxl * state,u8 * mbin,u32 mbin_len)944 static int check_fw(struct mxl *state, u8 *mbin, u32 mbin_len)
945 {
946 struct MBIN_FILE_HEADER_T *fh = (struct MBIN_FILE_HEADER_T *) mbin;
947 u32 flen = (fh->image_size24[0] << 16) |
948 (fh->image_size24[1] << 8) | fh->image_size24[2];
949 u8 *fw, cs = 0;
950 u32 i;
951
952 if (fh->id != 'M' || fh->fmt_version != '1' || flen > 0x3FFF0) {
953 dev_info(state->i2cdev, "Invalid FW Header\n");
954 return -1;
955 }
956 fw = mbin + sizeof(struct MBIN_FILE_HEADER_T);
957 for (i = 0; i < flen; i += 1)
958 cs += fw[i];
959 if (cs != fh->image_checksum) {
960 dev_info(state->i2cdev, "Invalid FW Checksum\n");
961 return -1;
962 }
963 return 0;
964 }
965
firmware_download(struct mxl * state,u8 * mbin,u32 mbin_len)966 static int firmware_download(struct mxl *state, u8 *mbin, u32 mbin_len)
967 {
968 int status;
969 u32 reg_data = 0;
970 struct MXL_HYDRA_SKU_COMMAND_T dev_sku_cfg;
971 u8 cmd_size = sizeof(struct MXL_HYDRA_SKU_COMMAND_T);
972 u8 cmd_buff[sizeof(struct MXL_HYDRA_SKU_COMMAND_T) + 6];
973
974 if (check_fw(state, mbin, mbin_len))
975 return -1;
976
977 /* put CPU into reset */
978 status = update_by_mnemonic(state, 0x8003003C, 0, 1, 0);
979 if (status)
980 return status;
981 usleep_range(1000, 2000);
982
983 /* Reset TX FIFO's, BBAND, XBAR */
984 status = write_register(state, HYDRA_RESET_TRANSPORT_FIFO_REG,
985 HYDRA_RESET_TRANSPORT_FIFO_DATA);
986 if (status)
987 return status;
988 status = write_register(state, HYDRA_RESET_BBAND_REG,
989 HYDRA_RESET_BBAND_DATA);
990 if (status)
991 return status;
992 status = write_register(state, HYDRA_RESET_XBAR_REG,
993 HYDRA_RESET_XBAR_DATA);
994 if (status)
995 return status;
996
997 /* Disable clock to Baseband, Wideband, SerDes,
998 * Alias ext & Transport modules
999 */
1000 status = write_register(state, HYDRA_MODULES_CLK_2_REG,
1001 HYDRA_DISABLE_CLK_2);
1002 if (status)
1003 return status;
1004 /* Clear Software & Host interrupt status - (Clear on read) */
1005 status = read_register(state, HYDRA_PRCM_ROOT_CLK_REG, ®_data);
1006 if (status)
1007 return status;
1008 status = do_firmware_download(state, mbin, mbin_len);
1009 if (status)
1010 return status;
1011
1012 if (state->base->type == MXL_HYDRA_DEVICE_568) {
1013 usleep_range(10000, 11000);
1014
1015 /* bring XCPU out of reset */
1016 status = write_register(state, 0x90720000, 1);
1017 if (status)
1018 return status;
1019 msleep(500);
1020
1021 /* Enable XCPU UART message processing in MCPU */
1022 status = write_register(state, 0x9076B510, 1);
1023 if (status)
1024 return status;
1025 } else {
1026 /* Bring CPU out of reset */
1027 status = update_by_mnemonic(state, 0x8003003C, 0, 1, 1);
1028 if (status)
1029 return status;
1030 /* Wait until FW boots */
1031 msleep(150);
1032 }
1033
1034 /* Initialize XPT XBAR */
1035 status = write_register(state, XPT_DMD0_BASEADDR, 0x76543210);
1036 if (status)
1037 return status;
1038
1039 if (!firmware_is_alive(state))
1040 return -1;
1041
1042 dev_info(state->i2cdev, "Hydra FW alive. Hail!\n");
1043
1044 /* sometimes register values are wrong shortly
1045 * after first heart beats
1046 */
1047 msleep(50);
1048
1049 dev_sku_cfg.sku_type = state->base->sku_type;
1050 BUILD_HYDRA_CMD(MXL_HYDRA_DEV_CFG_SKU_CMD, MXL_CMD_WRITE,
1051 cmd_size, &dev_sku_cfg, cmd_buff);
1052 status = send_command(state, cmd_size + MXL_HYDRA_CMD_HEADER_SIZE,
1053 &cmd_buff[0]);
1054
1055 return status;
1056 }
1057
cfg_ts_pad_mux(struct mxl * state,enum MXL_BOOL_E enable_serial_ts)1058 static int cfg_ts_pad_mux(struct mxl *state, enum MXL_BOOL_E enable_serial_ts)
1059 {
1060 int status = 0;
1061 u32 pad_mux_value = 0;
1062
1063 if (enable_serial_ts == MXL_TRUE) {
1064 pad_mux_value = 0;
1065 if ((state->base->type == MXL_HYDRA_DEVICE_541) ||
1066 (state->base->type == MXL_HYDRA_DEVICE_541S))
1067 pad_mux_value = 2;
1068 } else {
1069 if ((state->base->type == MXL_HYDRA_DEVICE_581) ||
1070 (state->base->type == MXL_HYDRA_DEVICE_581S))
1071 pad_mux_value = 2;
1072 else
1073 pad_mux_value = 3;
1074 }
1075
1076 switch (state->base->type) {
1077 case MXL_HYDRA_DEVICE_561:
1078 case MXL_HYDRA_DEVICE_581:
1079 case MXL_HYDRA_DEVICE_541:
1080 case MXL_HYDRA_DEVICE_541S:
1081 case MXL_HYDRA_DEVICE_561S:
1082 case MXL_HYDRA_DEVICE_581S:
1083 status |= update_by_mnemonic(state, 0x90000170, 24, 3,
1084 pad_mux_value);
1085 status |= update_by_mnemonic(state, 0x90000170, 28, 3,
1086 pad_mux_value);
1087 status |= update_by_mnemonic(state, 0x90000174, 0, 3,
1088 pad_mux_value);
1089 status |= update_by_mnemonic(state, 0x90000174, 4, 3,
1090 pad_mux_value);
1091 status |= update_by_mnemonic(state, 0x90000174, 8, 3,
1092 pad_mux_value);
1093 status |= update_by_mnemonic(state, 0x90000174, 12, 3,
1094 pad_mux_value);
1095 status |= update_by_mnemonic(state, 0x90000174, 16, 3,
1096 pad_mux_value);
1097 status |= update_by_mnemonic(state, 0x90000174, 20, 3,
1098 pad_mux_value);
1099 status |= update_by_mnemonic(state, 0x90000174, 24, 3,
1100 pad_mux_value);
1101 status |= update_by_mnemonic(state, 0x90000174, 28, 3,
1102 pad_mux_value);
1103 status |= update_by_mnemonic(state, 0x90000178, 0, 3,
1104 pad_mux_value);
1105 status |= update_by_mnemonic(state, 0x90000178, 4, 3,
1106 pad_mux_value);
1107 status |= update_by_mnemonic(state, 0x90000178, 8, 3,
1108 pad_mux_value);
1109 break;
1110
1111 case MXL_HYDRA_DEVICE_544:
1112 case MXL_HYDRA_DEVICE_542:
1113 status |= update_by_mnemonic(state, 0x9000016C, 4, 3, 1);
1114 status |= update_by_mnemonic(state, 0x9000016C, 8, 3, 0);
1115 status |= update_by_mnemonic(state, 0x9000016C, 12, 3, 0);
1116 status |= update_by_mnemonic(state, 0x9000016C, 16, 3, 0);
1117 status |= update_by_mnemonic(state, 0x90000170, 0, 3, 0);
1118 status |= update_by_mnemonic(state, 0x90000178, 12, 3, 1);
1119 status |= update_by_mnemonic(state, 0x90000178, 16, 3, 1);
1120 status |= update_by_mnemonic(state, 0x90000178, 20, 3, 1);
1121 status |= update_by_mnemonic(state, 0x90000178, 24, 3, 1);
1122 status |= update_by_mnemonic(state, 0x9000017C, 0, 3, 1);
1123 status |= update_by_mnemonic(state, 0x9000017C, 4, 3, 1);
1124 if (enable_serial_ts == MXL_ENABLE) {
1125 status |= update_by_mnemonic(state,
1126 0x90000170, 4, 3, 0);
1127 status |= update_by_mnemonic(state,
1128 0x90000170, 8, 3, 0);
1129 status |= update_by_mnemonic(state,
1130 0x90000170, 12, 3, 0);
1131 status |= update_by_mnemonic(state,
1132 0x90000170, 16, 3, 0);
1133 status |= update_by_mnemonic(state,
1134 0x90000170, 20, 3, 1);
1135 status |= update_by_mnemonic(state,
1136 0x90000170, 24, 3, 1);
1137 status |= update_by_mnemonic(state,
1138 0x90000170, 28, 3, 2);
1139 status |= update_by_mnemonic(state,
1140 0x90000174, 0, 3, 2);
1141 status |= update_by_mnemonic(state,
1142 0x90000174, 4, 3, 2);
1143 status |= update_by_mnemonic(state,
1144 0x90000174, 8, 3, 2);
1145 status |= update_by_mnemonic(state,
1146 0x90000174, 12, 3, 2);
1147 status |= update_by_mnemonic(state,
1148 0x90000174, 16, 3, 2);
1149 status |= update_by_mnemonic(state,
1150 0x90000174, 20, 3, 2);
1151 status |= update_by_mnemonic(state,
1152 0x90000174, 24, 3, 2);
1153 status |= update_by_mnemonic(state,
1154 0x90000174, 28, 3, 2);
1155 status |= update_by_mnemonic(state,
1156 0x90000178, 0, 3, 2);
1157 status |= update_by_mnemonic(state,
1158 0x90000178, 4, 3, 2);
1159 status |= update_by_mnemonic(state,
1160 0x90000178, 8, 3, 2);
1161 } else {
1162 status |= update_by_mnemonic(state,
1163 0x90000170, 4, 3, 3);
1164 status |= update_by_mnemonic(state,
1165 0x90000170, 8, 3, 3);
1166 status |= update_by_mnemonic(state,
1167 0x90000170, 12, 3, 3);
1168 status |= update_by_mnemonic(state,
1169 0x90000170, 16, 3, 3);
1170 status |= update_by_mnemonic(state,
1171 0x90000170, 20, 3, 3);
1172 status |= update_by_mnemonic(state,
1173 0x90000170, 24, 3, 3);
1174 status |= update_by_mnemonic(state,
1175 0x90000170, 28, 3, 3);
1176 status |= update_by_mnemonic(state,
1177 0x90000174, 0, 3, 3);
1178 status |= update_by_mnemonic(state,
1179 0x90000174, 4, 3, 3);
1180 status |= update_by_mnemonic(state,
1181 0x90000174, 8, 3, 3);
1182 status |= update_by_mnemonic(state,
1183 0x90000174, 12, 3, 3);
1184 status |= update_by_mnemonic(state,
1185 0x90000174, 16, 3, 3);
1186 status |= update_by_mnemonic(state,
1187 0x90000174, 20, 3, 1);
1188 status |= update_by_mnemonic(state,
1189 0x90000174, 24, 3, 1);
1190 status |= update_by_mnemonic(state,
1191 0x90000174, 28, 3, 1);
1192 status |= update_by_mnemonic(state,
1193 0x90000178, 0, 3, 1);
1194 status |= update_by_mnemonic(state,
1195 0x90000178, 4, 3, 1);
1196 status |= update_by_mnemonic(state,
1197 0x90000178, 8, 3, 1);
1198 }
1199 break;
1200
1201 case MXL_HYDRA_DEVICE_568:
1202 if (enable_serial_ts == MXL_FALSE) {
1203 status |= update_by_mnemonic(state,
1204 0x9000016C, 8, 3, 5);
1205 status |= update_by_mnemonic(state,
1206 0x9000016C, 12, 3, 5);
1207 status |= update_by_mnemonic(state,
1208 0x9000016C, 16, 3, 5);
1209 status |= update_by_mnemonic(state,
1210 0x9000016C, 20, 3, 5);
1211 status |= update_by_mnemonic(state,
1212 0x9000016C, 24, 3, 5);
1213 status |= update_by_mnemonic(state,
1214 0x9000016C, 28, 3, 5);
1215 status |= update_by_mnemonic(state,
1216 0x90000170, 0, 3, 5);
1217 status |= update_by_mnemonic(state,
1218 0x90000170, 4, 3, 5);
1219 status |= update_by_mnemonic(state,
1220 0x90000170, 8, 3, 5);
1221 status |= update_by_mnemonic(state,
1222 0x90000170, 12, 3, 5);
1223 status |= update_by_mnemonic(state,
1224 0x90000170, 16, 3, 5);
1225 status |= update_by_mnemonic(state,
1226 0x90000170, 20, 3, 5);
1227
1228 status |= update_by_mnemonic(state,
1229 0x90000170, 24, 3, pad_mux_value);
1230 status |= update_by_mnemonic(state,
1231 0x90000174, 0, 3, pad_mux_value);
1232 status |= update_by_mnemonic(state,
1233 0x90000174, 4, 3, pad_mux_value);
1234 status |= update_by_mnemonic(state,
1235 0x90000174, 8, 3, pad_mux_value);
1236 status |= update_by_mnemonic(state,
1237 0x90000174, 12, 3, pad_mux_value);
1238 status |= update_by_mnemonic(state,
1239 0x90000174, 16, 3, pad_mux_value);
1240 status |= update_by_mnemonic(state,
1241 0x90000174, 20, 3, pad_mux_value);
1242 status |= update_by_mnemonic(state,
1243 0x90000174, 24, 3, pad_mux_value);
1244 status |= update_by_mnemonic(state,
1245 0x90000174, 28, 3, pad_mux_value);
1246 status |= update_by_mnemonic(state,
1247 0x90000178, 0, 3, pad_mux_value);
1248 status |= update_by_mnemonic(state,
1249 0x90000178, 4, 3, pad_mux_value);
1250
1251 status |= update_by_mnemonic(state,
1252 0x90000178, 8, 3, 5);
1253 status |= update_by_mnemonic(state,
1254 0x90000178, 12, 3, 5);
1255 status |= update_by_mnemonic(state,
1256 0x90000178, 16, 3, 5);
1257 status |= update_by_mnemonic(state,
1258 0x90000178, 20, 3, 5);
1259 status |= update_by_mnemonic(state,
1260 0x90000178, 24, 3, 5);
1261 status |= update_by_mnemonic(state,
1262 0x90000178, 28, 3, 5);
1263 status |= update_by_mnemonic(state,
1264 0x9000017C, 0, 3, 5);
1265 status |= update_by_mnemonic(state,
1266 0x9000017C, 4, 3, 5);
1267 } else {
1268 status |= update_by_mnemonic(state,
1269 0x90000170, 4, 3, pad_mux_value);
1270 status |= update_by_mnemonic(state,
1271 0x90000170, 8, 3, pad_mux_value);
1272 status |= update_by_mnemonic(state,
1273 0x90000170, 12, 3, pad_mux_value);
1274 status |= update_by_mnemonic(state,
1275 0x90000170, 16, 3, pad_mux_value);
1276 status |= update_by_mnemonic(state,
1277 0x90000170, 20, 3, pad_mux_value);
1278 status |= update_by_mnemonic(state,
1279 0x90000170, 24, 3, pad_mux_value);
1280 status |= update_by_mnemonic(state,
1281 0x90000170, 28, 3, pad_mux_value);
1282 status |= update_by_mnemonic(state,
1283 0x90000174, 0, 3, pad_mux_value);
1284 status |= update_by_mnemonic(state,
1285 0x90000174, 4, 3, pad_mux_value);
1286 status |= update_by_mnemonic(state,
1287 0x90000174, 8, 3, pad_mux_value);
1288 status |= update_by_mnemonic(state,
1289 0x90000174, 12, 3, pad_mux_value);
1290 }
1291 break;
1292
1293
1294 case MXL_HYDRA_DEVICE_584:
1295 default:
1296 status |= update_by_mnemonic(state,
1297 0x90000170, 4, 3, pad_mux_value);
1298 status |= update_by_mnemonic(state,
1299 0x90000170, 8, 3, pad_mux_value);
1300 status |= update_by_mnemonic(state,
1301 0x90000170, 12, 3, pad_mux_value);
1302 status |= update_by_mnemonic(state,
1303 0x90000170, 16, 3, pad_mux_value);
1304 status |= update_by_mnemonic(state,
1305 0x90000170, 20, 3, pad_mux_value);
1306 status |= update_by_mnemonic(state,
1307 0x90000170, 24, 3, pad_mux_value);
1308 status |= update_by_mnemonic(state,
1309 0x90000170, 28, 3, pad_mux_value);
1310 status |= update_by_mnemonic(state,
1311 0x90000174, 0, 3, pad_mux_value);
1312 status |= update_by_mnemonic(state,
1313 0x90000174, 4, 3, pad_mux_value);
1314 status |= update_by_mnemonic(state,
1315 0x90000174, 8, 3, pad_mux_value);
1316 status |= update_by_mnemonic(state,
1317 0x90000174, 12, 3, pad_mux_value);
1318 break;
1319 }
1320 return status;
1321 }
1322
set_drive_strength(struct mxl * state,enum MXL_HYDRA_TS_DRIVE_STRENGTH_E ts_drive_strength)1323 static int set_drive_strength(struct mxl *state,
1324 enum MXL_HYDRA_TS_DRIVE_STRENGTH_E ts_drive_strength)
1325 {
1326 int stat = 0;
1327 u32 val;
1328
1329 read_register(state, 0x90000194, &val);
1330 dev_info(state->i2cdev, "DIGIO = %08x\n", val);
1331 dev_info(state->i2cdev, "set drive_strength = %u\n", ts_drive_strength);
1332
1333
1334 stat |= update_by_mnemonic(state, 0x90000194, 0, 3, ts_drive_strength);
1335 stat |= update_by_mnemonic(state, 0x90000194, 20, 3, ts_drive_strength);
1336 stat |= update_by_mnemonic(state, 0x90000194, 24, 3, ts_drive_strength);
1337 stat |= update_by_mnemonic(state, 0x90000198, 12, 3, ts_drive_strength);
1338 stat |= update_by_mnemonic(state, 0x90000198, 16, 3, ts_drive_strength);
1339 stat |= update_by_mnemonic(state, 0x90000198, 20, 3, ts_drive_strength);
1340 stat |= update_by_mnemonic(state, 0x90000198, 24, 3, ts_drive_strength);
1341 stat |= update_by_mnemonic(state, 0x9000019C, 0, 3, ts_drive_strength);
1342 stat |= update_by_mnemonic(state, 0x9000019C, 4, 3, ts_drive_strength);
1343 stat |= update_by_mnemonic(state, 0x9000019C, 8, 3, ts_drive_strength);
1344 stat |= update_by_mnemonic(state, 0x9000019C, 24, 3, ts_drive_strength);
1345 stat |= update_by_mnemonic(state, 0x9000019C, 28, 3, ts_drive_strength);
1346 stat |= update_by_mnemonic(state, 0x900001A0, 0, 3, ts_drive_strength);
1347 stat |= update_by_mnemonic(state, 0x900001A0, 4, 3, ts_drive_strength);
1348 stat |= update_by_mnemonic(state, 0x900001A0, 20, 3, ts_drive_strength);
1349 stat |= update_by_mnemonic(state, 0x900001A0, 24, 3, ts_drive_strength);
1350 stat |= update_by_mnemonic(state, 0x900001A0, 28, 3, ts_drive_strength);
1351
1352 return stat;
1353 }
1354
enable_tuner(struct mxl * state,u32 tuner,u32 enable)1355 static int enable_tuner(struct mxl *state, u32 tuner, u32 enable)
1356 {
1357 int stat = 0;
1358 struct MXL_HYDRA_TUNER_CMD ctrl_tuner_cmd;
1359 u8 cmd_size = sizeof(ctrl_tuner_cmd);
1360 u8 cmd_buff[MXL_HYDRA_OEM_MAX_CMD_BUFF_LEN];
1361 u32 val, count = 10;
1362
1363 ctrl_tuner_cmd.tuner_id = tuner;
1364 ctrl_tuner_cmd.enable = enable;
1365 BUILD_HYDRA_CMD(MXL_HYDRA_TUNER_ACTIVATE_CMD, MXL_CMD_WRITE,
1366 cmd_size, &ctrl_tuner_cmd, cmd_buff);
1367 stat = send_command(state, cmd_size + MXL_HYDRA_CMD_HEADER_SIZE,
1368 &cmd_buff[0]);
1369 if (stat)
1370 return stat;
1371 read_register(state, HYDRA_TUNER_ENABLE_COMPLETE, &val);
1372 while (--count && ((val >> tuner) & 1) != enable) {
1373 msleep(20);
1374 read_register(state, HYDRA_TUNER_ENABLE_COMPLETE, &val);
1375 }
1376 if (!count)
1377 return -1;
1378 read_register(state, HYDRA_TUNER_ENABLE_COMPLETE, &val);
1379 dev_dbg(state->i2cdev, "tuner %u ready = %u\n",
1380 tuner, (val >> tuner) & 1);
1381
1382 return 0;
1383 }
1384
1385
config_ts(struct mxl * state,enum MXL_HYDRA_DEMOD_ID_E demod_id,struct MXL_HYDRA_MPEGOUT_PARAM_T * mpeg_out_param_ptr)1386 static int config_ts(struct mxl *state, enum MXL_HYDRA_DEMOD_ID_E demod_id,
1387 struct MXL_HYDRA_MPEGOUT_PARAM_T *mpeg_out_param_ptr)
1388 {
1389 int status = 0;
1390 u32 nco_count_min = 0;
1391 u32 clk_type = 0;
1392
1393 struct MXL_REG_FIELD_T xpt_sync_polarity[MXL_HYDRA_DEMOD_MAX] = {
1394 {0x90700010, 8, 1}, {0x90700010, 9, 1},
1395 {0x90700010, 10, 1}, {0x90700010, 11, 1},
1396 {0x90700010, 12, 1}, {0x90700010, 13, 1},
1397 {0x90700010, 14, 1}, {0x90700010, 15, 1} };
1398 struct MXL_REG_FIELD_T xpt_clock_polarity[MXL_HYDRA_DEMOD_MAX] = {
1399 {0x90700010, 16, 1}, {0x90700010, 17, 1},
1400 {0x90700010, 18, 1}, {0x90700010, 19, 1},
1401 {0x90700010, 20, 1}, {0x90700010, 21, 1},
1402 {0x90700010, 22, 1}, {0x90700010, 23, 1} };
1403 struct MXL_REG_FIELD_T xpt_valid_polarity[MXL_HYDRA_DEMOD_MAX] = {
1404 {0x90700014, 0, 1}, {0x90700014, 1, 1},
1405 {0x90700014, 2, 1}, {0x90700014, 3, 1},
1406 {0x90700014, 4, 1}, {0x90700014, 5, 1},
1407 {0x90700014, 6, 1}, {0x90700014, 7, 1} };
1408 struct MXL_REG_FIELD_T xpt_ts_clock_phase[MXL_HYDRA_DEMOD_MAX] = {
1409 {0x90700018, 0, 3}, {0x90700018, 4, 3},
1410 {0x90700018, 8, 3}, {0x90700018, 12, 3},
1411 {0x90700018, 16, 3}, {0x90700018, 20, 3},
1412 {0x90700018, 24, 3}, {0x90700018, 28, 3} };
1413 struct MXL_REG_FIELD_T xpt_lsb_first[MXL_HYDRA_DEMOD_MAX] = {
1414 {0x9070000C, 16, 1}, {0x9070000C, 17, 1},
1415 {0x9070000C, 18, 1}, {0x9070000C, 19, 1},
1416 {0x9070000C, 20, 1}, {0x9070000C, 21, 1},
1417 {0x9070000C, 22, 1}, {0x9070000C, 23, 1} };
1418 struct MXL_REG_FIELD_T xpt_sync_byte[MXL_HYDRA_DEMOD_MAX] = {
1419 {0x90700010, 0, 1}, {0x90700010, 1, 1},
1420 {0x90700010, 2, 1}, {0x90700010, 3, 1},
1421 {0x90700010, 4, 1}, {0x90700010, 5, 1},
1422 {0x90700010, 6, 1}, {0x90700010, 7, 1} };
1423 struct MXL_REG_FIELD_T xpt_enable_output[MXL_HYDRA_DEMOD_MAX] = {
1424 {0x9070000C, 0, 1}, {0x9070000C, 1, 1},
1425 {0x9070000C, 2, 1}, {0x9070000C, 3, 1},
1426 {0x9070000C, 4, 1}, {0x9070000C, 5, 1},
1427 {0x9070000C, 6, 1}, {0x9070000C, 7, 1} };
1428 struct MXL_REG_FIELD_T xpt_err_replace_sync[MXL_HYDRA_DEMOD_MAX] = {
1429 {0x9070000C, 24, 1}, {0x9070000C, 25, 1},
1430 {0x9070000C, 26, 1}, {0x9070000C, 27, 1},
1431 {0x9070000C, 28, 1}, {0x9070000C, 29, 1},
1432 {0x9070000C, 30, 1}, {0x9070000C, 31, 1} };
1433 struct MXL_REG_FIELD_T xpt_err_replace_valid[MXL_HYDRA_DEMOD_MAX] = {
1434 {0x90700014, 8, 1}, {0x90700014, 9, 1},
1435 {0x90700014, 10, 1}, {0x90700014, 11, 1},
1436 {0x90700014, 12, 1}, {0x90700014, 13, 1},
1437 {0x90700014, 14, 1}, {0x90700014, 15, 1} };
1438 struct MXL_REG_FIELD_T xpt_continuous_clock[MXL_HYDRA_DEMOD_MAX] = {
1439 {0x907001D4, 0, 1}, {0x907001D4, 1, 1},
1440 {0x907001D4, 2, 1}, {0x907001D4, 3, 1},
1441 {0x907001D4, 4, 1}, {0x907001D4, 5, 1},
1442 {0x907001D4, 6, 1}, {0x907001D4, 7, 1} };
1443 struct MXL_REG_FIELD_T xpt_nco_clock_rate[MXL_HYDRA_DEMOD_MAX] = {
1444 {0x90700044, 16, 80}, {0x90700044, 16, 81},
1445 {0x90700044, 16, 82}, {0x90700044, 16, 83},
1446 {0x90700044, 16, 84}, {0x90700044, 16, 85},
1447 {0x90700044, 16, 86}, {0x90700044, 16, 87} };
1448
1449 demod_id = state->base->ts_map[demod_id];
1450
1451 if (mpeg_out_param_ptr->enable == MXL_ENABLE) {
1452 if (mpeg_out_param_ptr->mpeg_mode ==
1453 MXL_HYDRA_MPEG_MODE_PARALLEL) {
1454 } else {
1455 cfg_ts_pad_mux(state, MXL_TRUE);
1456 update_by_mnemonic(state,
1457 0x90700010, 27, 1, MXL_FALSE);
1458 }
1459 }
1460
1461 nco_count_min =
1462 (u32)(MXL_HYDRA_NCO_CLK / mpeg_out_param_ptr->max_mpeg_clk_rate);
1463
1464 if (state->base->chipversion >= 2) {
1465 status |= update_by_mnemonic(state,
1466 xpt_nco_clock_rate[demod_id].reg_addr, /* Reg Addr */
1467 xpt_nco_clock_rate[demod_id].lsb_pos, /* LSB pos */
1468 xpt_nco_clock_rate[demod_id].num_of_bits, /* Num of bits */
1469 nco_count_min); /* Data */
1470 } else
1471 update_by_mnemonic(state, 0x90700044, 16, 8, nco_count_min);
1472
1473 if (mpeg_out_param_ptr->mpeg_clk_type == MXL_HYDRA_MPEG_CLK_CONTINUOUS)
1474 clk_type = 1;
1475
1476 if (mpeg_out_param_ptr->mpeg_mode < MXL_HYDRA_MPEG_MODE_PARALLEL) {
1477 status |= update_by_mnemonic(state,
1478 xpt_continuous_clock[demod_id].reg_addr,
1479 xpt_continuous_clock[demod_id].lsb_pos,
1480 xpt_continuous_clock[demod_id].num_of_bits,
1481 clk_type);
1482 } else
1483 update_by_mnemonic(state, 0x907001D4, 8, 1, clk_type);
1484
1485 status |= update_by_mnemonic(state,
1486 xpt_sync_polarity[demod_id].reg_addr,
1487 xpt_sync_polarity[demod_id].lsb_pos,
1488 xpt_sync_polarity[demod_id].num_of_bits,
1489 mpeg_out_param_ptr->mpeg_sync_pol);
1490
1491 status |= update_by_mnemonic(state,
1492 xpt_valid_polarity[demod_id].reg_addr,
1493 xpt_valid_polarity[demod_id].lsb_pos,
1494 xpt_valid_polarity[demod_id].num_of_bits,
1495 mpeg_out_param_ptr->mpeg_valid_pol);
1496
1497 status |= update_by_mnemonic(state,
1498 xpt_clock_polarity[demod_id].reg_addr,
1499 xpt_clock_polarity[demod_id].lsb_pos,
1500 xpt_clock_polarity[demod_id].num_of_bits,
1501 mpeg_out_param_ptr->mpeg_clk_pol);
1502
1503 status |= update_by_mnemonic(state,
1504 xpt_sync_byte[demod_id].reg_addr,
1505 xpt_sync_byte[demod_id].lsb_pos,
1506 xpt_sync_byte[demod_id].num_of_bits,
1507 mpeg_out_param_ptr->mpeg_sync_pulse_width);
1508
1509 status |= update_by_mnemonic(state,
1510 xpt_ts_clock_phase[demod_id].reg_addr,
1511 xpt_ts_clock_phase[demod_id].lsb_pos,
1512 xpt_ts_clock_phase[demod_id].num_of_bits,
1513 mpeg_out_param_ptr->mpeg_clk_phase);
1514
1515 status |= update_by_mnemonic(state,
1516 xpt_lsb_first[demod_id].reg_addr,
1517 xpt_lsb_first[demod_id].lsb_pos,
1518 xpt_lsb_first[demod_id].num_of_bits,
1519 mpeg_out_param_ptr->lsb_or_msb_first);
1520
1521 switch (mpeg_out_param_ptr->mpeg_error_indication) {
1522 case MXL_HYDRA_MPEG_ERR_REPLACE_SYNC:
1523 status |= update_by_mnemonic(state,
1524 xpt_err_replace_sync[demod_id].reg_addr,
1525 xpt_err_replace_sync[demod_id].lsb_pos,
1526 xpt_err_replace_sync[demod_id].num_of_bits,
1527 MXL_TRUE);
1528 status |= update_by_mnemonic(state,
1529 xpt_err_replace_valid[demod_id].reg_addr,
1530 xpt_err_replace_valid[demod_id].lsb_pos,
1531 xpt_err_replace_valid[demod_id].num_of_bits,
1532 MXL_FALSE);
1533 break;
1534
1535 case MXL_HYDRA_MPEG_ERR_REPLACE_VALID:
1536 status |= update_by_mnemonic(state,
1537 xpt_err_replace_sync[demod_id].reg_addr,
1538 xpt_err_replace_sync[demod_id].lsb_pos,
1539 xpt_err_replace_sync[demod_id].num_of_bits,
1540 MXL_FALSE);
1541
1542 status |= update_by_mnemonic(state,
1543 xpt_err_replace_valid[demod_id].reg_addr,
1544 xpt_err_replace_valid[demod_id].lsb_pos,
1545 xpt_err_replace_valid[demod_id].num_of_bits,
1546 MXL_TRUE);
1547 break;
1548
1549 case MXL_HYDRA_MPEG_ERR_INDICATION_DISABLED:
1550 default:
1551 status |= update_by_mnemonic(state,
1552 xpt_err_replace_sync[demod_id].reg_addr,
1553 xpt_err_replace_sync[demod_id].lsb_pos,
1554 xpt_err_replace_sync[demod_id].num_of_bits,
1555 MXL_FALSE);
1556
1557 status |= update_by_mnemonic(state,
1558 xpt_err_replace_valid[demod_id].reg_addr,
1559 xpt_err_replace_valid[demod_id].lsb_pos,
1560 xpt_err_replace_valid[demod_id].num_of_bits,
1561 MXL_FALSE);
1562
1563 break;
1564
1565 }
1566
1567 if (mpeg_out_param_ptr->mpeg_mode != MXL_HYDRA_MPEG_MODE_PARALLEL) {
1568 status |= update_by_mnemonic(state,
1569 xpt_enable_output[demod_id].reg_addr,
1570 xpt_enable_output[demod_id].lsb_pos,
1571 xpt_enable_output[demod_id].num_of_bits,
1572 mpeg_out_param_ptr->enable);
1573 }
1574 return status;
1575 }
1576
config_mux(struct mxl * state)1577 static int config_mux(struct mxl *state)
1578 {
1579 update_by_mnemonic(state, 0x9070000C, 0, 1, 0);
1580 update_by_mnemonic(state, 0x9070000C, 1, 1, 0);
1581 update_by_mnemonic(state, 0x9070000C, 2, 1, 0);
1582 update_by_mnemonic(state, 0x9070000C, 3, 1, 0);
1583 update_by_mnemonic(state, 0x9070000C, 4, 1, 0);
1584 update_by_mnemonic(state, 0x9070000C, 5, 1, 0);
1585 update_by_mnemonic(state, 0x9070000C, 6, 1, 0);
1586 update_by_mnemonic(state, 0x9070000C, 7, 1, 0);
1587 update_by_mnemonic(state, 0x90700008, 0, 2, 1);
1588 update_by_mnemonic(state, 0x90700008, 2, 2, 1);
1589 return 0;
1590 }
1591
load_fw(struct mxl * state,struct mxl5xx_cfg * cfg)1592 static int load_fw(struct mxl *state, struct mxl5xx_cfg *cfg)
1593 {
1594 int stat = 0;
1595 u8 *buf;
1596
1597 if (cfg->fw)
1598 return firmware_download(state, cfg->fw, cfg->fw_len);
1599
1600 if (!cfg->fw_read)
1601 return -1;
1602
1603 buf = vmalloc(0x40000);
1604 if (!buf)
1605 return -ENOMEM;
1606
1607 cfg->fw_read(cfg->fw_priv, buf, 0x40000);
1608 stat = firmware_download(state, buf, 0x40000);
1609 vfree(buf);
1610
1611 return stat;
1612 }
1613
validate_sku(struct mxl * state)1614 static int validate_sku(struct mxl *state)
1615 {
1616 u32 pad_mux_bond = 0, prcm_chip_id = 0, prcm_so_cid = 0;
1617 int status;
1618 u32 type = state->base->type;
1619
1620 status = read_by_mnemonic(state, 0x90000190, 0, 3, &pad_mux_bond);
1621 status |= read_by_mnemonic(state, 0x80030000, 0, 12, &prcm_chip_id);
1622 status |= read_by_mnemonic(state, 0x80030004, 24, 8, &prcm_so_cid);
1623 if (status)
1624 return -1;
1625
1626 dev_info(state->i2cdev, "padMuxBond=%08x, prcmChipId=%08x, prcmSoCId=%08x\n",
1627 pad_mux_bond, prcm_chip_id, prcm_so_cid);
1628
1629 if (prcm_chip_id != 0x560) {
1630 switch (pad_mux_bond) {
1631 case MXL_HYDRA_SKU_ID_581:
1632 if (type == MXL_HYDRA_DEVICE_581)
1633 return 0;
1634 if (type == MXL_HYDRA_DEVICE_581S) {
1635 state->base->type = MXL_HYDRA_DEVICE_581;
1636 return 0;
1637 }
1638 break;
1639 case MXL_HYDRA_SKU_ID_584:
1640 if (type == MXL_HYDRA_DEVICE_584)
1641 return 0;
1642 break;
1643 case MXL_HYDRA_SKU_ID_544:
1644 if (type == MXL_HYDRA_DEVICE_544)
1645 return 0;
1646 if (type == MXL_HYDRA_DEVICE_542)
1647 return 0;
1648 break;
1649 case MXL_HYDRA_SKU_ID_582:
1650 if (type == MXL_HYDRA_DEVICE_582)
1651 return 0;
1652 break;
1653 default:
1654 return -1;
1655 }
1656 } else {
1657
1658 }
1659 return -1;
1660 }
1661
get_fwinfo(struct mxl * state)1662 static int get_fwinfo(struct mxl *state)
1663 {
1664 int status;
1665 u32 val = 0;
1666
1667 status = read_by_mnemonic(state, 0x90000190, 0, 3, &val);
1668 if (status)
1669 return status;
1670 dev_info(state->i2cdev, "chipID=%08x\n", val);
1671
1672 status = read_by_mnemonic(state, 0x80030004, 8, 8, &val);
1673 if (status)
1674 return status;
1675 dev_info(state->i2cdev, "chipVer=%08x\n", val);
1676
1677 status = read_register(state, HYDRA_FIRMWARE_VERSION, &val);
1678 if (status)
1679 return status;
1680 dev_info(state->i2cdev, "FWVer=%08x\n", val);
1681
1682 state->base->fwversion = val;
1683 return status;
1684 }
1685
1686
1687 static u8 ts_map1_to_1[MXL_HYDRA_DEMOD_MAX] = {
1688 MXL_HYDRA_DEMOD_ID_0,
1689 MXL_HYDRA_DEMOD_ID_1,
1690 MXL_HYDRA_DEMOD_ID_2,
1691 MXL_HYDRA_DEMOD_ID_3,
1692 MXL_HYDRA_DEMOD_ID_4,
1693 MXL_HYDRA_DEMOD_ID_5,
1694 MXL_HYDRA_DEMOD_ID_6,
1695 MXL_HYDRA_DEMOD_ID_7,
1696 };
1697
1698 static u8 ts_map54x[MXL_HYDRA_DEMOD_MAX] = {
1699 MXL_HYDRA_DEMOD_ID_2,
1700 MXL_HYDRA_DEMOD_ID_3,
1701 MXL_HYDRA_DEMOD_ID_4,
1702 MXL_HYDRA_DEMOD_ID_5,
1703 MXL_HYDRA_DEMOD_MAX,
1704 MXL_HYDRA_DEMOD_MAX,
1705 MXL_HYDRA_DEMOD_MAX,
1706 MXL_HYDRA_DEMOD_MAX,
1707 };
1708
probe(struct mxl * state,struct mxl5xx_cfg * cfg)1709 static int probe(struct mxl *state, struct mxl5xx_cfg *cfg)
1710 {
1711 u32 chipver;
1712 int fw, status, j;
1713 struct MXL_HYDRA_MPEGOUT_PARAM_T mpeg_interface_cfg;
1714
1715 state->base->ts_map = ts_map1_to_1;
1716
1717 switch (state->base->type) {
1718 case MXL_HYDRA_DEVICE_581:
1719 case MXL_HYDRA_DEVICE_581S:
1720 state->base->can_clkout = 1;
1721 state->base->demod_num = 8;
1722 state->base->tuner_num = 1;
1723 state->base->sku_type = MXL_HYDRA_SKU_TYPE_581;
1724 break;
1725 case MXL_HYDRA_DEVICE_582:
1726 state->base->can_clkout = 1;
1727 state->base->demod_num = 8;
1728 state->base->tuner_num = 3;
1729 state->base->sku_type = MXL_HYDRA_SKU_TYPE_582;
1730 break;
1731 case MXL_HYDRA_DEVICE_585:
1732 state->base->can_clkout = 0;
1733 state->base->demod_num = 8;
1734 state->base->tuner_num = 4;
1735 state->base->sku_type = MXL_HYDRA_SKU_TYPE_585;
1736 break;
1737 case MXL_HYDRA_DEVICE_544:
1738 state->base->can_clkout = 0;
1739 state->base->demod_num = 4;
1740 state->base->tuner_num = 4;
1741 state->base->sku_type = MXL_HYDRA_SKU_TYPE_544;
1742 state->base->ts_map = ts_map54x;
1743 break;
1744 case MXL_HYDRA_DEVICE_541:
1745 case MXL_HYDRA_DEVICE_541S:
1746 state->base->can_clkout = 0;
1747 state->base->demod_num = 4;
1748 state->base->tuner_num = 1;
1749 state->base->sku_type = MXL_HYDRA_SKU_TYPE_541;
1750 state->base->ts_map = ts_map54x;
1751 break;
1752 case MXL_HYDRA_DEVICE_561:
1753 case MXL_HYDRA_DEVICE_561S:
1754 state->base->can_clkout = 0;
1755 state->base->demod_num = 6;
1756 state->base->tuner_num = 1;
1757 state->base->sku_type = MXL_HYDRA_SKU_TYPE_561;
1758 break;
1759 case MXL_HYDRA_DEVICE_568:
1760 state->base->can_clkout = 0;
1761 state->base->demod_num = 8;
1762 state->base->tuner_num = 1;
1763 state->base->chan_bond = 1;
1764 state->base->sku_type = MXL_HYDRA_SKU_TYPE_568;
1765 break;
1766 case MXL_HYDRA_DEVICE_542:
1767 state->base->can_clkout = 1;
1768 state->base->demod_num = 4;
1769 state->base->tuner_num = 3;
1770 state->base->sku_type = MXL_HYDRA_SKU_TYPE_542;
1771 state->base->ts_map = ts_map54x;
1772 break;
1773 case MXL_HYDRA_DEVICE_TEST:
1774 case MXL_HYDRA_DEVICE_584:
1775 default:
1776 state->base->can_clkout = 0;
1777 state->base->demod_num = 8;
1778 state->base->tuner_num = 4;
1779 state->base->sku_type = MXL_HYDRA_SKU_TYPE_584;
1780 break;
1781 }
1782
1783 status = validate_sku(state);
1784 if (status)
1785 return status;
1786
1787 update_by_mnemonic(state, 0x80030014, 9, 1, 1);
1788 update_by_mnemonic(state, 0x8003003C, 12, 1, 1);
1789 status = read_by_mnemonic(state, 0x80030000, 12, 4, &chipver);
1790 if (status)
1791 state->base->chipversion = 0;
1792 else
1793 state->base->chipversion = (chipver == 2) ? 2 : 1;
1794 dev_info(state->i2cdev, "Hydra chip version %u\n",
1795 state->base->chipversion);
1796
1797 cfg_dev_xtal(state, cfg->clk, cfg->cap, 0);
1798
1799 fw = firmware_is_alive(state);
1800 if (!fw) {
1801 status = load_fw(state, cfg);
1802 if (status)
1803 return status;
1804 }
1805 get_fwinfo(state);
1806
1807 config_mux(state);
1808 mpeg_interface_cfg.enable = MXL_ENABLE;
1809 mpeg_interface_cfg.lsb_or_msb_first = MXL_HYDRA_MPEG_SERIAL_MSB_1ST;
1810 /* supports only (0-104&139)MHz */
1811 if (cfg->ts_clk)
1812 mpeg_interface_cfg.max_mpeg_clk_rate = cfg->ts_clk;
1813 else
1814 mpeg_interface_cfg.max_mpeg_clk_rate = 69; /* 139; */
1815 mpeg_interface_cfg.mpeg_clk_phase = MXL_HYDRA_MPEG_CLK_PHASE_SHIFT_0_DEG;
1816 mpeg_interface_cfg.mpeg_clk_pol = MXL_HYDRA_MPEG_CLK_IN_PHASE;
1817 /* MXL_HYDRA_MPEG_CLK_GAPPED; */
1818 mpeg_interface_cfg.mpeg_clk_type = MXL_HYDRA_MPEG_CLK_CONTINUOUS;
1819 mpeg_interface_cfg.mpeg_error_indication =
1820 MXL_HYDRA_MPEG_ERR_INDICATION_DISABLED;
1821 mpeg_interface_cfg.mpeg_mode = MXL_HYDRA_MPEG_MODE_SERIAL_3_WIRE;
1822 mpeg_interface_cfg.mpeg_sync_pol = MXL_HYDRA_MPEG_ACTIVE_HIGH;
1823 mpeg_interface_cfg.mpeg_sync_pulse_width = MXL_HYDRA_MPEG_SYNC_WIDTH_BIT;
1824 mpeg_interface_cfg.mpeg_valid_pol = MXL_HYDRA_MPEG_ACTIVE_HIGH;
1825
1826 for (j = 0; j < state->base->demod_num; j++) {
1827 status = config_ts(state, (enum MXL_HYDRA_DEMOD_ID_E) j,
1828 &mpeg_interface_cfg);
1829 if (status)
1830 return status;
1831 }
1832 set_drive_strength(state, 1);
1833 return 0;
1834 }
1835
mxl5xx_attach(struct i2c_adapter * i2c,struct mxl5xx_cfg * cfg,u32 demod,u32 tuner,int (** fn_set_input)(struct dvb_frontend *,int))1836 struct dvb_frontend *mxl5xx_attach(struct i2c_adapter *i2c,
1837 struct mxl5xx_cfg *cfg, u32 demod, u32 tuner,
1838 int (**fn_set_input)(struct dvb_frontend *, int))
1839 {
1840 struct mxl *state;
1841 struct mxl_base *base;
1842
1843 state = kzalloc(sizeof(struct mxl), GFP_KERNEL);
1844 if (!state)
1845 return NULL;
1846
1847 state->demod = demod;
1848 state->tuner = tuner;
1849 state->tuner_in_use = 0xffffffff;
1850 state->i2cdev = &i2c->dev;
1851
1852 base = match_base(i2c, cfg->adr);
1853 if (base) {
1854 base->count++;
1855 if (base->count > base->demod_num)
1856 goto fail;
1857 state->base = base;
1858 } else {
1859 base = kzalloc(sizeof(struct mxl_base), GFP_KERNEL);
1860 if (!base)
1861 goto fail;
1862 base->i2c = i2c;
1863 base->adr = cfg->adr;
1864 base->type = cfg->type;
1865 base->count = 1;
1866 mutex_init(&base->i2c_lock);
1867 mutex_init(&base->status_lock);
1868 mutex_init(&base->tune_lock);
1869 INIT_LIST_HEAD(&base->mxls);
1870
1871 state->base = base;
1872 if (probe(state, cfg) < 0) {
1873 kfree(base);
1874 goto fail;
1875 }
1876 list_add(&base->mxllist, &mxllist);
1877 }
1878 state->fe.ops = mxl_ops;
1879 state->xbar[0] = 4;
1880 state->xbar[1] = demod;
1881 state->xbar[2] = 8;
1882 state->fe.demodulator_priv = state;
1883 *fn_set_input = set_input;
1884
1885 list_add(&state->mxl, &base->mxls);
1886 return &state->fe;
1887
1888 fail:
1889 kfree(state);
1890 return NULL;
1891 }
1892 EXPORT_SYMBOL_GPL(mxl5xx_attach);
1893
1894 MODULE_DESCRIPTION("MaxLinear MxL5xx DVB-S/S2 tuner-demodulator driver");
1895 MODULE_AUTHOR("Ralph and Marcus Metzler, Metzler Brothers Systementwicklung GbR");
1896 MODULE_LICENSE("GPL v2");
1897