1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Read-Copy Update mechanism for mutual exclusion
4  *
5  * Copyright IBM Corporation, 2001
6  *
7  * Author: Dipankar Sarma <dipankar@in.ibm.com>
8  *
9  * Based on the original work by Paul McKenney <paulmck@vnet.ibm.com>
10  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
11  * Papers:
12  * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
13  * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
14  *
15  * For detailed explanation of Read-Copy Update mechanism see -
16  *		http://lse.sourceforge.net/locking/rcupdate.html
17  *
18  */
19 
20 #ifndef __LINUX_RCUPDATE_H
21 #define __LINUX_RCUPDATE_H
22 
23 #include <linux/types.h>
24 #include <linux/compiler.h>
25 #include <linux/atomic.h>
26 #include <linux/irqflags.h>
27 #include <linux/preempt.h>
28 #include <linux/bottom_half.h>
29 #include <linux/lockdep.h>
30 #include <asm/processor.h>
31 #include <linux/cpumask.h>
32 
33 #define ULONG_CMP_GE(a, b)	(ULONG_MAX / 2 >= (a) - (b))
34 #define ULONG_CMP_LT(a, b)	(ULONG_MAX / 2 < (a) - (b))
35 #define ulong2long(a)		(*(long *)(&(a)))
36 
37 /* Exported common interfaces */
38 void call_rcu(struct rcu_head *head, rcu_callback_t func);
39 void rcu_barrier_tasks(void);
40 void synchronize_rcu(void);
41 
42 #ifdef CONFIG_PREEMPT_RCU
43 
44 void __rcu_read_lock(void);
45 void __rcu_read_unlock(void);
46 
47 /*
48  * Defined as a macro as it is a very low level header included from
49  * areas that don't even know about current.  This gives the rcu_read_lock()
50  * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
51  * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
52  */
53 #define rcu_preempt_depth() (current->rcu_read_lock_nesting)
54 
55 #else /* #ifdef CONFIG_PREEMPT_RCU */
56 
__rcu_read_lock(void)57 static inline void __rcu_read_lock(void)
58 {
59 	preempt_disable();
60 }
61 
__rcu_read_unlock(void)62 static inline void __rcu_read_unlock(void)
63 {
64 	preempt_enable();
65 }
66 
rcu_preempt_depth(void)67 static inline int rcu_preempt_depth(void)
68 {
69 	return 0;
70 }
71 
72 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
73 
74 /* Internal to kernel */
75 void rcu_init(void);
76 extern int rcu_scheduler_active __read_mostly;
77 void rcu_sched_clock_irq(int user);
78 void rcu_report_dead(unsigned int cpu);
79 void rcutree_migrate_callbacks(int cpu);
80 
81 #ifdef CONFIG_RCU_STALL_COMMON
82 void rcu_sysrq_start(void);
83 void rcu_sysrq_end(void);
84 #else /* #ifdef CONFIG_RCU_STALL_COMMON */
rcu_sysrq_start(void)85 static inline void rcu_sysrq_start(void) { }
rcu_sysrq_end(void)86 static inline void rcu_sysrq_end(void) { }
87 #endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
88 
89 #ifdef CONFIG_NO_HZ_FULL
90 void rcu_user_enter(void);
91 void rcu_user_exit(void);
92 #else
rcu_user_enter(void)93 static inline void rcu_user_enter(void) { }
rcu_user_exit(void)94 static inline void rcu_user_exit(void) { }
95 #endif /* CONFIG_NO_HZ_FULL */
96 
97 #ifdef CONFIG_RCU_NOCB_CPU
98 void rcu_init_nohz(void);
99 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
rcu_init_nohz(void)100 static inline void rcu_init_nohz(void) { }
101 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
102 
103 /**
104  * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
105  * @a: Code that RCU needs to pay attention to.
106  *
107  * RCU read-side critical sections are forbidden in the inner idle loop,
108  * that is, between the rcu_idle_enter() and the rcu_idle_exit() -- RCU
109  * will happily ignore any such read-side critical sections.  However,
110  * things like powertop need tracepoints in the inner idle loop.
111  *
112  * This macro provides the way out:  RCU_NONIDLE(do_something_with_RCU())
113  * will tell RCU that it needs to pay attention, invoke its argument
114  * (in this example, calling the do_something_with_RCU() function),
115  * and then tell RCU to go back to ignoring this CPU.  It is permissible
116  * to nest RCU_NONIDLE() wrappers, but not indefinitely (but the limit is
117  * on the order of a million or so, even on 32-bit systems).  It is
118  * not legal to block within RCU_NONIDLE(), nor is it permissible to
119  * transfer control either into or out of RCU_NONIDLE()'s statement.
120  */
121 #define RCU_NONIDLE(a) \
122 	do { \
123 		rcu_irq_enter_irqson(); \
124 		do { a; } while (0); \
125 		rcu_irq_exit_irqson(); \
126 	} while (0)
127 
128 /*
129  * Note a quasi-voluntary context switch for RCU-tasks's benefit.
130  * This is a macro rather than an inline function to avoid #include hell.
131  */
132 #ifdef CONFIG_TASKS_RCU
133 #define rcu_tasks_qs(t) \
134 	do { \
135 		if (READ_ONCE((t)->rcu_tasks_holdout)) \
136 			WRITE_ONCE((t)->rcu_tasks_holdout, false); \
137 	} while (0)
138 #define rcu_note_voluntary_context_switch(t) rcu_tasks_qs(t)
139 void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func);
140 void synchronize_rcu_tasks(void);
141 void exit_tasks_rcu_start(void);
142 void exit_tasks_rcu_finish(void);
143 #else /* #ifdef CONFIG_TASKS_RCU */
144 #define rcu_tasks_qs(t)	do { } while (0)
145 #define rcu_note_voluntary_context_switch(t) do { } while (0)
146 #define call_rcu_tasks call_rcu
147 #define synchronize_rcu_tasks synchronize_rcu
exit_tasks_rcu_start(void)148 static inline void exit_tasks_rcu_start(void) { }
exit_tasks_rcu_finish(void)149 static inline void exit_tasks_rcu_finish(void) { }
150 #endif /* #else #ifdef CONFIG_TASKS_RCU */
151 
152 /**
153  * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU
154  *
155  * This macro resembles cond_resched(), except that it is defined to
156  * report potential quiescent states to RCU-tasks even if the cond_resched()
157  * machinery were to be shut off, as some advocate for PREEMPT kernels.
158  */
159 #define cond_resched_tasks_rcu_qs() \
160 do { \
161 	rcu_tasks_qs(current); \
162 	cond_resched(); \
163 } while (0)
164 
165 /*
166  * Infrastructure to implement the synchronize_() primitives in
167  * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
168  */
169 
170 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
171 #include <linux/rcutree.h>
172 #elif defined(CONFIG_TINY_RCU)
173 #include <linux/rcutiny.h>
174 #else
175 #error "Unknown RCU implementation specified to kernel configuration"
176 #endif
177 
178 /*
179  * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls
180  * are needed for dynamic initialization and destruction of rcu_head
181  * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for
182  * dynamic initialization and destruction of statically allocated rcu_head
183  * structures.  However, rcu_head structures allocated dynamically in the
184  * heap don't need any initialization.
185  */
186 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
187 void init_rcu_head(struct rcu_head *head);
188 void destroy_rcu_head(struct rcu_head *head);
189 void init_rcu_head_on_stack(struct rcu_head *head);
190 void destroy_rcu_head_on_stack(struct rcu_head *head);
191 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
init_rcu_head(struct rcu_head * head)192 static inline void init_rcu_head(struct rcu_head *head) { }
destroy_rcu_head(struct rcu_head * head)193 static inline void destroy_rcu_head(struct rcu_head *head) { }
init_rcu_head_on_stack(struct rcu_head * head)194 static inline void init_rcu_head_on_stack(struct rcu_head *head) { }
destroy_rcu_head_on_stack(struct rcu_head * head)195 static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { }
196 #endif	/* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
197 
198 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
199 bool rcu_lockdep_current_cpu_online(void);
200 #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
rcu_lockdep_current_cpu_online(void)201 static inline bool rcu_lockdep_current_cpu_online(void) { return true; }
202 #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
203 
204 #ifdef CONFIG_DEBUG_LOCK_ALLOC
205 
rcu_lock_acquire(struct lockdep_map * map)206 static inline void rcu_lock_acquire(struct lockdep_map *map)
207 {
208 	lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
209 }
210 
rcu_lock_release(struct lockdep_map * map)211 static inline void rcu_lock_release(struct lockdep_map *map)
212 {
213 	lock_release(map, 1, _THIS_IP_);
214 }
215 
216 extern struct lockdep_map rcu_lock_map;
217 extern struct lockdep_map rcu_bh_lock_map;
218 extern struct lockdep_map rcu_sched_lock_map;
219 extern struct lockdep_map rcu_callback_map;
220 int debug_lockdep_rcu_enabled(void);
221 int rcu_read_lock_held(void);
222 int rcu_read_lock_bh_held(void);
223 int rcu_read_lock_sched_held(void);
224 int rcu_read_lock_any_held(void);
225 
226 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
227 
228 # define rcu_lock_acquire(a)		do { } while (0)
229 # define rcu_lock_release(a)		do { } while (0)
230 
rcu_read_lock_held(void)231 static inline int rcu_read_lock_held(void)
232 {
233 	return 1;
234 }
235 
rcu_read_lock_bh_held(void)236 static inline int rcu_read_lock_bh_held(void)
237 {
238 	return 1;
239 }
240 
rcu_read_lock_sched_held(void)241 static inline int rcu_read_lock_sched_held(void)
242 {
243 	return !preemptible();
244 }
245 
rcu_read_lock_any_held(void)246 static inline int rcu_read_lock_any_held(void)
247 {
248 	return !preemptible();
249 }
250 
251 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
252 
253 #ifdef CONFIG_PROVE_RCU
254 
255 /**
256  * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met
257  * @c: condition to check
258  * @s: informative message
259  */
260 #define RCU_LOCKDEP_WARN(c, s)						\
261 	do {								\
262 		static bool __section(.data.unlikely) __warned;		\
263 		if (debug_lockdep_rcu_enabled() && !__warned && (c)) {	\
264 			__warned = true;				\
265 			lockdep_rcu_suspicious(__FILE__, __LINE__, s);	\
266 		}							\
267 	} while (0)
268 
269 #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
rcu_preempt_sleep_check(void)270 static inline void rcu_preempt_sleep_check(void)
271 {
272 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
273 			 "Illegal context switch in RCU read-side critical section");
274 }
275 #else /* #ifdef CONFIG_PROVE_RCU */
rcu_preempt_sleep_check(void)276 static inline void rcu_preempt_sleep_check(void) { }
277 #endif /* #else #ifdef CONFIG_PROVE_RCU */
278 
279 #define rcu_sleep_check()						\
280 	do {								\
281 		rcu_preempt_sleep_check();				\
282 		RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),	\
283 				 "Illegal context switch in RCU-bh read-side critical section"); \
284 		RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),	\
285 				 "Illegal context switch in RCU-sched read-side critical section"); \
286 	} while (0)
287 
288 #else /* #ifdef CONFIG_PROVE_RCU */
289 
290 #define RCU_LOCKDEP_WARN(c, s) do { } while (0)
291 #define rcu_sleep_check() do { } while (0)
292 
293 #endif /* #else #ifdef CONFIG_PROVE_RCU */
294 
295 /*
296  * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
297  * and rcu_assign_pointer().  Some of these could be folded into their
298  * callers, but they are left separate in order to ease introduction of
299  * multiple pointers markings to match different RCU implementations
300  * (e.g., __srcu), should this make sense in the future.
301  */
302 
303 #ifdef __CHECKER__
304 #define rcu_check_sparse(p, space) \
305 	((void)(((typeof(*p) space *)p) == p))
306 #else /* #ifdef __CHECKER__ */
307 #define rcu_check_sparse(p, space)
308 #endif /* #else #ifdef __CHECKER__ */
309 
310 #define __rcu_access_pointer(p, space) \
311 ({ \
312 	typeof(*p) *_________p1 = (typeof(*p) *__force)READ_ONCE(p); \
313 	rcu_check_sparse(p, space); \
314 	((typeof(*p) __force __kernel *)(_________p1)); \
315 })
316 #define __rcu_dereference_check(p, c, space) \
317 ({ \
318 	/* Dependency order vs. p above. */ \
319 	typeof(*p) *________p1 = (typeof(*p) *__force)READ_ONCE(p); \
320 	RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \
321 	rcu_check_sparse(p, space); \
322 	((typeof(*p) __force __kernel *)(________p1)); \
323 })
324 #define __rcu_dereference_protected(p, c, space) \
325 ({ \
326 	RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \
327 	rcu_check_sparse(p, space); \
328 	((typeof(*p) __force __kernel *)(p)); \
329 })
330 #define rcu_dereference_raw(p) \
331 ({ \
332 	/* Dependency order vs. p above. */ \
333 	typeof(p) ________p1 = READ_ONCE(p); \
334 	((typeof(*p) __force __kernel *)(________p1)); \
335 })
336 
337 /**
338  * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
339  * @v: The value to statically initialize with.
340  */
341 #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
342 
343 /**
344  * rcu_assign_pointer() - assign to RCU-protected pointer
345  * @p: pointer to assign to
346  * @v: value to assign (publish)
347  *
348  * Assigns the specified value to the specified RCU-protected
349  * pointer, ensuring that any concurrent RCU readers will see
350  * any prior initialization.
351  *
352  * Inserts memory barriers on architectures that require them
353  * (which is most of them), and also prevents the compiler from
354  * reordering the code that initializes the structure after the pointer
355  * assignment.  More importantly, this call documents which pointers
356  * will be dereferenced by RCU read-side code.
357  *
358  * In some special cases, you may use RCU_INIT_POINTER() instead
359  * of rcu_assign_pointer().  RCU_INIT_POINTER() is a bit faster due
360  * to the fact that it does not constrain either the CPU or the compiler.
361  * That said, using RCU_INIT_POINTER() when you should have used
362  * rcu_assign_pointer() is a very bad thing that results in
363  * impossible-to-diagnose memory corruption.  So please be careful.
364  * See the RCU_INIT_POINTER() comment header for details.
365  *
366  * Note that rcu_assign_pointer() evaluates each of its arguments only
367  * once, appearances notwithstanding.  One of the "extra" evaluations
368  * is in typeof() and the other visible only to sparse (__CHECKER__),
369  * neither of which actually execute the argument.  As with most cpp
370  * macros, this execute-arguments-only-once property is important, so
371  * please be careful when making changes to rcu_assign_pointer() and the
372  * other macros that it invokes.
373  */
374 #define rcu_assign_pointer(p, v)					      \
375 do {									      \
376 	uintptr_t _r_a_p__v = (uintptr_t)(v);				      \
377 	rcu_check_sparse(p, __rcu);					      \
378 									      \
379 	if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL)	      \
380 		WRITE_ONCE((p), (typeof(p))(_r_a_p__v));		      \
381 	else								      \
382 		smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \
383 } while (0)
384 
385 /**
386  * rcu_swap_protected() - swap an RCU and a regular pointer
387  * @rcu_ptr: RCU pointer
388  * @ptr: regular pointer
389  * @c: the conditions under which the dereference will take place
390  *
391  * Perform swap(@rcu_ptr, @ptr) where @rcu_ptr is an RCU-annotated pointer and
392  * @c is the argument that is passed to the rcu_dereference_protected() call
393  * used to read that pointer.
394  */
395 #define rcu_swap_protected(rcu_ptr, ptr, c) do {			\
396 	typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c));	\
397 	rcu_assign_pointer((rcu_ptr), (ptr));				\
398 	(ptr) = __tmp;							\
399 } while (0)
400 
401 /**
402  * rcu_access_pointer() - fetch RCU pointer with no dereferencing
403  * @p: The pointer to read
404  *
405  * Return the value of the specified RCU-protected pointer, but omit the
406  * lockdep checks for being in an RCU read-side critical section.  This is
407  * useful when the value of this pointer is accessed, but the pointer is
408  * not dereferenced, for example, when testing an RCU-protected pointer
409  * against NULL.  Although rcu_access_pointer() may also be used in cases
410  * where update-side locks prevent the value of the pointer from changing,
411  * you should instead use rcu_dereference_protected() for this use case.
412  *
413  * It is also permissible to use rcu_access_pointer() when read-side
414  * access to the pointer was removed at least one grace period ago, as
415  * is the case in the context of the RCU callback that is freeing up
416  * the data, or after a synchronize_rcu() returns.  This can be useful
417  * when tearing down multi-linked structures after a grace period
418  * has elapsed.
419  */
420 #define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
421 
422 /**
423  * rcu_dereference_check() - rcu_dereference with debug checking
424  * @p: The pointer to read, prior to dereferencing
425  * @c: The conditions under which the dereference will take place
426  *
427  * Do an rcu_dereference(), but check that the conditions under which the
428  * dereference will take place are correct.  Typically the conditions
429  * indicate the various locking conditions that should be held at that
430  * point.  The check should return true if the conditions are satisfied.
431  * An implicit check for being in an RCU read-side critical section
432  * (rcu_read_lock()) is included.
433  *
434  * For example:
435  *
436  *	bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
437  *
438  * could be used to indicate to lockdep that foo->bar may only be dereferenced
439  * if either rcu_read_lock() is held, or that the lock required to replace
440  * the bar struct at foo->bar is held.
441  *
442  * Note that the list of conditions may also include indications of when a lock
443  * need not be held, for example during initialisation or destruction of the
444  * target struct:
445  *
446  *	bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
447  *					      atomic_read(&foo->usage) == 0);
448  *
449  * Inserts memory barriers on architectures that require them
450  * (currently only the Alpha), prevents the compiler from refetching
451  * (and from merging fetches), and, more importantly, documents exactly
452  * which pointers are protected by RCU and checks that the pointer is
453  * annotated as __rcu.
454  */
455 #define rcu_dereference_check(p, c) \
456 	__rcu_dereference_check((p), (c) || rcu_read_lock_held(), __rcu)
457 
458 /**
459  * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
460  * @p: The pointer to read, prior to dereferencing
461  * @c: The conditions under which the dereference will take place
462  *
463  * This is the RCU-bh counterpart to rcu_dereference_check().
464  */
465 #define rcu_dereference_bh_check(p, c) \
466 	__rcu_dereference_check((p), (c) || rcu_read_lock_bh_held(), __rcu)
467 
468 /**
469  * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
470  * @p: The pointer to read, prior to dereferencing
471  * @c: The conditions under which the dereference will take place
472  *
473  * This is the RCU-sched counterpart to rcu_dereference_check().
474  */
475 #define rcu_dereference_sched_check(p, c) \
476 	__rcu_dereference_check((p), (c) || rcu_read_lock_sched_held(), \
477 				__rcu)
478 
479 /*
480  * The tracing infrastructure traces RCU (we want that), but unfortunately
481  * some of the RCU checks causes tracing to lock up the system.
482  *
483  * The no-tracing version of rcu_dereference_raw() must not call
484  * rcu_read_lock_held().
485  */
486 #define rcu_dereference_raw_check(p) __rcu_dereference_check((p), 1, __rcu)
487 
488 /**
489  * rcu_dereference_protected() - fetch RCU pointer when updates prevented
490  * @p: The pointer to read, prior to dereferencing
491  * @c: The conditions under which the dereference will take place
492  *
493  * Return the value of the specified RCU-protected pointer, but omit
494  * the READ_ONCE().  This is useful in cases where update-side locks
495  * prevent the value of the pointer from changing.  Please note that this
496  * primitive does *not* prevent the compiler from repeating this reference
497  * or combining it with other references, so it should not be used without
498  * protection of appropriate locks.
499  *
500  * This function is only for update-side use.  Using this function
501  * when protected only by rcu_read_lock() will result in infrequent
502  * but very ugly failures.
503  */
504 #define rcu_dereference_protected(p, c) \
505 	__rcu_dereference_protected((p), (c), __rcu)
506 
507 
508 /**
509  * rcu_dereference() - fetch RCU-protected pointer for dereferencing
510  * @p: The pointer to read, prior to dereferencing
511  *
512  * This is a simple wrapper around rcu_dereference_check().
513  */
514 #define rcu_dereference(p) rcu_dereference_check(p, 0)
515 
516 /**
517  * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
518  * @p: The pointer to read, prior to dereferencing
519  *
520  * Makes rcu_dereference_check() do the dirty work.
521  */
522 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
523 
524 /**
525  * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
526  * @p: The pointer to read, prior to dereferencing
527  *
528  * Makes rcu_dereference_check() do the dirty work.
529  */
530 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
531 
532 /**
533  * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism
534  * @p: The pointer to hand off
535  *
536  * This is simply an identity function, but it documents where a pointer
537  * is handed off from RCU to some other synchronization mechanism, for
538  * example, reference counting or locking.  In C11, it would map to
539  * kill_dependency().  It could be used as follows::
540  *
541  *	rcu_read_lock();
542  *	p = rcu_dereference(gp);
543  *	long_lived = is_long_lived(p);
544  *	if (long_lived) {
545  *		if (!atomic_inc_not_zero(p->refcnt))
546  *			long_lived = false;
547  *		else
548  *			p = rcu_pointer_handoff(p);
549  *	}
550  *	rcu_read_unlock();
551  */
552 #define rcu_pointer_handoff(p) (p)
553 
554 /**
555  * rcu_read_lock() - mark the beginning of an RCU read-side critical section
556  *
557  * When synchronize_rcu() is invoked on one CPU while other CPUs
558  * are within RCU read-side critical sections, then the
559  * synchronize_rcu() is guaranteed to block until after all the other
560  * CPUs exit their critical sections.  Similarly, if call_rcu() is invoked
561  * on one CPU while other CPUs are within RCU read-side critical
562  * sections, invocation of the corresponding RCU callback is deferred
563  * until after the all the other CPUs exit their critical sections.
564  *
565  * Note, however, that RCU callbacks are permitted to run concurrently
566  * with new RCU read-side critical sections.  One way that this can happen
567  * is via the following sequence of events: (1) CPU 0 enters an RCU
568  * read-side critical section, (2) CPU 1 invokes call_rcu() to register
569  * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
570  * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
571  * callback is invoked.  This is legal, because the RCU read-side critical
572  * section that was running concurrently with the call_rcu() (and which
573  * therefore might be referencing something that the corresponding RCU
574  * callback would free up) has completed before the corresponding
575  * RCU callback is invoked.
576  *
577  * RCU read-side critical sections may be nested.  Any deferred actions
578  * will be deferred until the outermost RCU read-side critical section
579  * completes.
580  *
581  * You can avoid reading and understanding the next paragraph by
582  * following this rule: don't put anything in an rcu_read_lock() RCU
583  * read-side critical section that would block in a !PREEMPT kernel.
584  * But if you want the full story, read on!
585  *
586  * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU),
587  * it is illegal to block while in an RCU read-side critical section.
588  * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPTION
589  * kernel builds, RCU read-side critical sections may be preempted,
590  * but explicit blocking is illegal.  Finally, in preemptible RCU
591  * implementations in real-time (with -rt patchset) kernel builds, RCU
592  * read-side critical sections may be preempted and they may also block, but
593  * only when acquiring spinlocks that are subject to priority inheritance.
594  */
rcu_read_lock(void)595 static __always_inline void rcu_read_lock(void)
596 {
597 	__rcu_read_lock();
598 	__acquire(RCU);
599 	rcu_lock_acquire(&rcu_lock_map);
600 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
601 			 "rcu_read_lock() used illegally while idle");
602 }
603 
604 /*
605  * So where is rcu_write_lock()?  It does not exist, as there is no
606  * way for writers to lock out RCU readers.  This is a feature, not
607  * a bug -- this property is what provides RCU's performance benefits.
608  * Of course, writers must coordinate with each other.  The normal
609  * spinlock primitives work well for this, but any other technique may be
610  * used as well.  RCU does not care how the writers keep out of each
611  * others' way, as long as they do so.
612  */
613 
614 /**
615  * rcu_read_unlock() - marks the end of an RCU read-side critical section.
616  *
617  * In most situations, rcu_read_unlock() is immune from deadlock.
618  * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock()
619  * is responsible for deboosting, which it does via rt_mutex_unlock().
620  * Unfortunately, this function acquires the scheduler's runqueue and
621  * priority-inheritance spinlocks.  This means that deadlock could result
622  * if the caller of rcu_read_unlock() already holds one of these locks or
623  * any lock that is ever acquired while holding them.
624  *
625  * That said, RCU readers are never priority boosted unless they were
626  * preempted.  Therefore, one way to avoid deadlock is to make sure
627  * that preemption never happens within any RCU read-side critical
628  * section whose outermost rcu_read_unlock() is called with one of
629  * rt_mutex_unlock()'s locks held.  Such preemption can be avoided in
630  * a number of ways, for example, by invoking preempt_disable() before
631  * critical section's outermost rcu_read_lock().
632  *
633  * Given that the set of locks acquired by rt_mutex_unlock() might change
634  * at any time, a somewhat more future-proofed approach is to make sure
635  * that that preemption never happens within any RCU read-side critical
636  * section whose outermost rcu_read_unlock() is called with irqs disabled.
637  * This approach relies on the fact that rt_mutex_unlock() currently only
638  * acquires irq-disabled locks.
639  *
640  * The second of these two approaches is best in most situations,
641  * however, the first approach can also be useful, at least to those
642  * developers willing to keep abreast of the set of locks acquired by
643  * rt_mutex_unlock().
644  *
645  * See rcu_read_lock() for more information.
646  */
rcu_read_unlock(void)647 static inline void rcu_read_unlock(void)
648 {
649 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
650 			 "rcu_read_unlock() used illegally while idle");
651 	__release(RCU);
652 	__rcu_read_unlock();
653 	rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
654 }
655 
656 /**
657  * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
658  *
659  * This is equivalent of rcu_read_lock(), but also disables softirqs.
660  * Note that anything else that disables softirqs can also serve as
661  * an RCU read-side critical section.
662  *
663  * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
664  * must occur in the same context, for example, it is illegal to invoke
665  * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
666  * was invoked from some other task.
667  */
rcu_read_lock_bh(void)668 static inline void rcu_read_lock_bh(void)
669 {
670 	local_bh_disable();
671 	__acquire(RCU_BH);
672 	rcu_lock_acquire(&rcu_bh_lock_map);
673 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
674 			 "rcu_read_lock_bh() used illegally while idle");
675 }
676 
677 /*
678  * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
679  *
680  * See rcu_read_lock_bh() for more information.
681  */
rcu_read_unlock_bh(void)682 static inline void rcu_read_unlock_bh(void)
683 {
684 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
685 			 "rcu_read_unlock_bh() used illegally while idle");
686 	rcu_lock_release(&rcu_bh_lock_map);
687 	__release(RCU_BH);
688 	local_bh_enable();
689 }
690 
691 /**
692  * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
693  *
694  * This is equivalent of rcu_read_lock(), but disables preemption.
695  * Read-side critical sections can also be introduced by anything else
696  * that disables preemption, including local_irq_disable() and friends.
697  *
698  * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
699  * must occur in the same context, for example, it is illegal to invoke
700  * rcu_read_unlock_sched() from process context if the matching
701  * rcu_read_lock_sched() was invoked from an NMI handler.
702  */
rcu_read_lock_sched(void)703 static inline void rcu_read_lock_sched(void)
704 {
705 	preempt_disable();
706 	__acquire(RCU_SCHED);
707 	rcu_lock_acquire(&rcu_sched_lock_map);
708 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
709 			 "rcu_read_lock_sched() used illegally while idle");
710 }
711 
712 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_lock_sched_notrace(void)713 static inline notrace void rcu_read_lock_sched_notrace(void)
714 {
715 	preempt_disable_notrace();
716 	__acquire(RCU_SCHED);
717 }
718 
719 /*
720  * rcu_read_unlock_sched - marks the end of a RCU-classic critical section
721  *
722  * See rcu_read_lock_sched for more information.
723  */
rcu_read_unlock_sched(void)724 static inline void rcu_read_unlock_sched(void)
725 {
726 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
727 			 "rcu_read_unlock_sched() used illegally while idle");
728 	rcu_lock_release(&rcu_sched_lock_map);
729 	__release(RCU_SCHED);
730 	preempt_enable();
731 }
732 
733 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_unlock_sched_notrace(void)734 static inline notrace void rcu_read_unlock_sched_notrace(void)
735 {
736 	__release(RCU_SCHED);
737 	preempt_enable_notrace();
738 }
739 
740 /**
741  * RCU_INIT_POINTER() - initialize an RCU protected pointer
742  * @p: The pointer to be initialized.
743  * @v: The value to initialized the pointer to.
744  *
745  * Initialize an RCU-protected pointer in special cases where readers
746  * do not need ordering constraints on the CPU or the compiler.  These
747  * special cases are:
748  *
749  * 1.	This use of RCU_INIT_POINTER() is NULLing out the pointer *or*
750  * 2.	The caller has taken whatever steps are required to prevent
751  *	RCU readers from concurrently accessing this pointer *or*
752  * 3.	The referenced data structure has already been exposed to
753  *	readers either at compile time or via rcu_assign_pointer() *and*
754  *
755  *	a.	You have not made *any* reader-visible changes to
756  *		this structure since then *or*
757  *	b.	It is OK for readers accessing this structure from its
758  *		new location to see the old state of the structure.  (For
759  *		example, the changes were to statistical counters or to
760  *		other state where exact synchronization is not required.)
761  *
762  * Failure to follow these rules governing use of RCU_INIT_POINTER() will
763  * result in impossible-to-diagnose memory corruption.  As in the structures
764  * will look OK in crash dumps, but any concurrent RCU readers might
765  * see pre-initialized values of the referenced data structure.  So
766  * please be very careful how you use RCU_INIT_POINTER()!!!
767  *
768  * If you are creating an RCU-protected linked structure that is accessed
769  * by a single external-to-structure RCU-protected pointer, then you may
770  * use RCU_INIT_POINTER() to initialize the internal RCU-protected
771  * pointers, but you must use rcu_assign_pointer() to initialize the
772  * external-to-structure pointer *after* you have completely initialized
773  * the reader-accessible portions of the linked structure.
774  *
775  * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
776  * ordering guarantees for either the CPU or the compiler.
777  */
778 #define RCU_INIT_POINTER(p, v) \
779 	do { \
780 		rcu_check_sparse(p, __rcu); \
781 		WRITE_ONCE(p, RCU_INITIALIZER(v)); \
782 	} while (0)
783 
784 /**
785  * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
786  * @p: The pointer to be initialized.
787  * @v: The value to initialized the pointer to.
788  *
789  * GCC-style initialization for an RCU-protected pointer in a structure field.
790  */
791 #define RCU_POINTER_INITIALIZER(p, v) \
792 		.p = RCU_INITIALIZER(v)
793 
794 /*
795  * Does the specified offset indicate that the corresponding rcu_head
796  * structure can be handled by kfree_rcu()?
797  */
798 #define __is_kfree_rcu_offset(offset) ((offset) < 4096)
799 
800 /*
801  * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain.
802  */
803 #define __kfree_rcu(head, offset) \
804 	do { \
805 		BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \
806 		kfree_call_rcu(head, (rcu_callback_t)(unsigned long)(offset)); \
807 	} while (0)
808 
809 /**
810  * kfree_rcu() - kfree an object after a grace period.
811  * @ptr:	pointer to kfree
812  * @rhf:	the name of the struct rcu_head within the type of @ptr.
813  *
814  * Many rcu callbacks functions just call kfree() on the base structure.
815  * These functions are trivial, but their size adds up, and furthermore
816  * when they are used in a kernel module, that module must invoke the
817  * high-latency rcu_barrier() function at module-unload time.
818  *
819  * The kfree_rcu() function handles this issue.  Rather than encoding a
820  * function address in the embedded rcu_head structure, kfree_rcu() instead
821  * encodes the offset of the rcu_head structure within the base structure.
822  * Because the functions are not allowed in the low-order 4096 bytes of
823  * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
824  * If the offset is larger than 4095 bytes, a compile-time error will
825  * be generated in __kfree_rcu().  If this error is triggered, you can
826  * either fall back to use of call_rcu() or rearrange the structure to
827  * position the rcu_head structure into the first 4096 bytes.
828  *
829  * Note that the allowable offset might decrease in the future, for example,
830  * to allow something like kmem_cache_free_rcu().
831  *
832  * The BUILD_BUG_ON check must not involve any function calls, hence the
833  * checks are done in macros here.
834  */
835 #define kfree_rcu(ptr, rhf)						\
836 do {									\
837 	typeof (ptr) ___p = (ptr);					\
838 									\
839 	if (___p)							\
840 		__kfree_rcu(&((___p)->rhf), offsetof(typeof(*(ptr)), rhf)); \
841 } while (0)
842 
843 /*
844  * Place this after a lock-acquisition primitive to guarantee that
845  * an UNLOCK+LOCK pair acts as a full barrier.  This guarantee applies
846  * if the UNLOCK and LOCK are executed by the same CPU or if the
847  * UNLOCK and LOCK operate on the same lock variable.
848  */
849 #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE
850 #define smp_mb__after_unlock_lock()	smp_mb()  /* Full ordering for lock. */
851 #else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
852 #define smp_mb__after_unlock_lock()	do { } while (0)
853 #endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
854 
855 
856 /* Has the specified rcu_head structure been handed to call_rcu()? */
857 
858 /**
859  * rcu_head_init - Initialize rcu_head for rcu_head_after_call_rcu()
860  * @rhp: The rcu_head structure to initialize.
861  *
862  * If you intend to invoke rcu_head_after_call_rcu() to test whether a
863  * given rcu_head structure has already been passed to call_rcu(), then
864  * you must also invoke this rcu_head_init() function on it just after
865  * allocating that structure.  Calls to this function must not race with
866  * calls to call_rcu(), rcu_head_after_call_rcu(), or callback invocation.
867  */
rcu_head_init(struct rcu_head * rhp)868 static inline void rcu_head_init(struct rcu_head *rhp)
869 {
870 	rhp->func = (rcu_callback_t)~0L;
871 }
872 
873 /**
874  * rcu_head_after_call_rcu - Has this rcu_head been passed to call_rcu()?
875  * @rhp: The rcu_head structure to test.
876  * @f: The function passed to call_rcu() along with @rhp.
877  *
878  * Returns @true if the @rhp has been passed to call_rcu() with @func,
879  * and @false otherwise.  Emits a warning in any other case, including
880  * the case where @rhp has already been invoked after a grace period.
881  * Calls to this function must not race with callback invocation.  One way
882  * to avoid such races is to enclose the call to rcu_head_after_call_rcu()
883  * in an RCU read-side critical section that includes a read-side fetch
884  * of the pointer to the structure containing @rhp.
885  */
886 static inline bool
rcu_head_after_call_rcu(struct rcu_head * rhp,rcu_callback_t f)887 rcu_head_after_call_rcu(struct rcu_head *rhp, rcu_callback_t f)
888 {
889 	rcu_callback_t func = READ_ONCE(rhp->func);
890 
891 	if (func == f)
892 		return true;
893 	WARN_ON_ONCE(func != (rcu_callback_t)~0L);
894 	return false;
895 }
896 
897 #endif /* __LINUX_RCUPDATE_H */
898