1 /*
2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3 */
4
5 /*
6 * Written by Anatoly P. Pinchuk pap@namesys.botik.ru
7 * Programm System Institute
8 * Pereslavl-Zalessky Russia
9 */
10
11 #include <linux/time.h>
12 #include <linux/string.h>
13 #include <linux/pagemap.h>
14 #include <linux/bio.h>
15 #include "reiserfs.h"
16 #include <linux/buffer_head.h>
17 #include <linux/quotaops.h>
18
19 /* Does the buffer contain a disk block which is in the tree. */
B_IS_IN_TREE(const struct buffer_head * bh)20 inline int B_IS_IN_TREE(const struct buffer_head *bh)
21 {
22
23 RFALSE(B_LEVEL(bh) > MAX_HEIGHT,
24 "PAP-1010: block (%b) has too big level (%z)", bh, bh);
25
26 return (B_LEVEL(bh) != FREE_LEVEL);
27 }
28
29 /* to get item head in le form */
copy_item_head(struct item_head * to,const struct item_head * from)30 inline void copy_item_head(struct item_head *to,
31 const struct item_head *from)
32 {
33 memcpy(to, from, IH_SIZE);
34 }
35
36 /*
37 * k1 is pointer to on-disk structure which is stored in little-endian
38 * form. k2 is pointer to cpu variable. For key of items of the same
39 * object this returns 0.
40 * Returns: -1 if key1 < key2
41 * 0 if key1 == key2
42 * 1 if key1 > key2
43 */
comp_short_keys(const struct reiserfs_key * le_key,const struct cpu_key * cpu_key)44 inline int comp_short_keys(const struct reiserfs_key *le_key,
45 const struct cpu_key *cpu_key)
46 {
47 __u32 n;
48 n = le32_to_cpu(le_key->k_dir_id);
49 if (n < cpu_key->on_disk_key.k_dir_id)
50 return -1;
51 if (n > cpu_key->on_disk_key.k_dir_id)
52 return 1;
53 n = le32_to_cpu(le_key->k_objectid);
54 if (n < cpu_key->on_disk_key.k_objectid)
55 return -1;
56 if (n > cpu_key->on_disk_key.k_objectid)
57 return 1;
58 return 0;
59 }
60
61 /*
62 * k1 is pointer to on-disk structure which is stored in little-endian
63 * form. k2 is pointer to cpu variable.
64 * Compare keys using all 4 key fields.
65 * Returns: -1 if key1 < key2 0
66 * if key1 = key2 1 if key1 > key2
67 */
comp_keys(const struct reiserfs_key * le_key,const struct cpu_key * cpu_key)68 static inline int comp_keys(const struct reiserfs_key *le_key,
69 const struct cpu_key *cpu_key)
70 {
71 int retval;
72
73 retval = comp_short_keys(le_key, cpu_key);
74 if (retval)
75 return retval;
76 if (le_key_k_offset(le_key_version(le_key), le_key) <
77 cpu_key_k_offset(cpu_key))
78 return -1;
79 if (le_key_k_offset(le_key_version(le_key), le_key) >
80 cpu_key_k_offset(cpu_key))
81 return 1;
82
83 if (cpu_key->key_length == 3)
84 return 0;
85
86 /* this part is needed only when tail conversion is in progress */
87 if (le_key_k_type(le_key_version(le_key), le_key) <
88 cpu_key_k_type(cpu_key))
89 return -1;
90
91 if (le_key_k_type(le_key_version(le_key), le_key) >
92 cpu_key_k_type(cpu_key))
93 return 1;
94
95 return 0;
96 }
97
comp_short_le_keys(const struct reiserfs_key * key1,const struct reiserfs_key * key2)98 inline int comp_short_le_keys(const struct reiserfs_key *key1,
99 const struct reiserfs_key *key2)
100 {
101 __u32 *k1_u32, *k2_u32;
102 int key_length = REISERFS_SHORT_KEY_LEN;
103
104 k1_u32 = (__u32 *) key1;
105 k2_u32 = (__u32 *) key2;
106 for (; key_length--; ++k1_u32, ++k2_u32) {
107 if (le32_to_cpu(*k1_u32) < le32_to_cpu(*k2_u32))
108 return -1;
109 if (le32_to_cpu(*k1_u32) > le32_to_cpu(*k2_u32))
110 return 1;
111 }
112 return 0;
113 }
114
le_key2cpu_key(struct cpu_key * to,const struct reiserfs_key * from)115 inline void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from)
116 {
117 int version;
118 to->on_disk_key.k_dir_id = le32_to_cpu(from->k_dir_id);
119 to->on_disk_key.k_objectid = le32_to_cpu(from->k_objectid);
120
121 /* find out version of the key */
122 version = le_key_version(from);
123 to->version = version;
124 to->on_disk_key.k_offset = le_key_k_offset(version, from);
125 to->on_disk_key.k_type = le_key_k_type(version, from);
126 }
127
128 /*
129 * this does not say which one is bigger, it only returns 1 if keys
130 * are not equal, 0 otherwise
131 */
comp_le_keys(const struct reiserfs_key * k1,const struct reiserfs_key * k2)132 inline int comp_le_keys(const struct reiserfs_key *k1,
133 const struct reiserfs_key *k2)
134 {
135 return memcmp(k1, k2, sizeof(struct reiserfs_key));
136 }
137
138 /**************************************************************************
139 * Binary search toolkit function *
140 * Search for an item in the array by the item key *
141 * Returns: 1 if found, 0 if not found; *
142 * *pos = number of the searched element if found, else the *
143 * number of the first element that is larger than key. *
144 **************************************************************************/
145 /*
146 * For those not familiar with binary search: lbound is the leftmost item
147 * that it could be, rbound the rightmost item that it could be. We examine
148 * the item halfway between lbound and rbound, and that tells us either
149 * that we can increase lbound, or decrease rbound, or that we have found it,
150 * or if lbound <= rbound that there are no possible items, and we have not
151 * found it. With each examination we cut the number of possible items it
152 * could be by one more than half rounded down, or we find it.
153 */
bin_search(const void * key,const void * base,int num,int width,int * pos)154 static inline int bin_search(const void *key, /* Key to search for. */
155 const void *base, /* First item in the array. */
156 int num, /* Number of items in the array. */
157 /*
158 * Item size in the array. searched. Lest the
159 * reader be confused, note that this is crafted
160 * as a general function, and when it is applied
161 * specifically to the array of item headers in a
162 * node, width is actually the item header size
163 * not the item size.
164 */
165 int width,
166 int *pos /* Number of the searched for element. */
167 )
168 {
169 int rbound, lbound, j;
170
171 for (j = ((rbound = num - 1) + (lbound = 0)) / 2;
172 lbound <= rbound; j = (rbound + lbound) / 2)
173 switch (comp_keys
174 ((struct reiserfs_key *)((char *)base + j * width),
175 (struct cpu_key *)key)) {
176 case -1:
177 lbound = j + 1;
178 continue;
179 case 1:
180 rbound = j - 1;
181 continue;
182 case 0:
183 *pos = j;
184 return ITEM_FOUND; /* Key found in the array. */
185 }
186
187 /*
188 * bin_search did not find given key, it returns position of key,
189 * that is minimal and greater than the given one.
190 */
191 *pos = lbound;
192 return ITEM_NOT_FOUND;
193 }
194
195
196 /* Minimal possible key. It is never in the tree. */
197 const struct reiserfs_key MIN_KEY = { 0, 0, {{0, 0},} };
198
199 /* Maximal possible key. It is never in the tree. */
200 static const struct reiserfs_key MAX_KEY = {
201 cpu_to_le32(0xffffffff),
202 cpu_to_le32(0xffffffff),
203 {{cpu_to_le32(0xffffffff),
204 cpu_to_le32(0xffffffff)},}
205 };
206
207 /*
208 * Get delimiting key of the buffer by looking for it in the buffers in the
209 * path, starting from the bottom of the path, and going upwards. We must
210 * check the path's validity at each step. If the key is not in the path,
211 * there is no delimiting key in the tree (buffer is first or last buffer
212 * in tree), and in this case we return a special key, either MIN_KEY or
213 * MAX_KEY.
214 */
get_lkey(const struct treepath * chk_path,const struct super_block * sb)215 static inline const struct reiserfs_key *get_lkey(const struct treepath *chk_path,
216 const struct super_block *sb)
217 {
218 int position, path_offset = chk_path->path_length;
219 struct buffer_head *parent;
220
221 RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET,
222 "PAP-5010: invalid offset in the path");
223
224 /* While not higher in path than first element. */
225 while (path_offset-- > FIRST_PATH_ELEMENT_OFFSET) {
226
227 RFALSE(!buffer_uptodate
228 (PATH_OFFSET_PBUFFER(chk_path, path_offset)),
229 "PAP-5020: parent is not uptodate");
230
231 /* Parent at the path is not in the tree now. */
232 if (!B_IS_IN_TREE
233 (parent =
234 PATH_OFFSET_PBUFFER(chk_path, path_offset)))
235 return &MAX_KEY;
236 /* Check whether position in the parent is correct. */
237 if ((position =
238 PATH_OFFSET_POSITION(chk_path,
239 path_offset)) >
240 B_NR_ITEMS(parent))
241 return &MAX_KEY;
242 /* Check whether parent at the path really points to the child. */
243 if (B_N_CHILD_NUM(parent, position) !=
244 PATH_OFFSET_PBUFFER(chk_path,
245 path_offset + 1)->b_blocknr)
246 return &MAX_KEY;
247 /*
248 * Return delimiting key if position in the parent
249 * is not equal to zero.
250 */
251 if (position)
252 return internal_key(parent, position - 1);
253 }
254 /* Return MIN_KEY if we are in the root of the buffer tree. */
255 if (PATH_OFFSET_PBUFFER(chk_path, FIRST_PATH_ELEMENT_OFFSET)->
256 b_blocknr == SB_ROOT_BLOCK(sb))
257 return &MIN_KEY;
258 return &MAX_KEY;
259 }
260
261 /* Get delimiting key of the buffer at the path and its right neighbor. */
get_rkey(const struct treepath * chk_path,const struct super_block * sb)262 inline const struct reiserfs_key *get_rkey(const struct treepath *chk_path,
263 const struct super_block *sb)
264 {
265 int position, path_offset = chk_path->path_length;
266 struct buffer_head *parent;
267
268 RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET,
269 "PAP-5030: invalid offset in the path");
270
271 while (path_offset-- > FIRST_PATH_ELEMENT_OFFSET) {
272
273 RFALSE(!buffer_uptodate
274 (PATH_OFFSET_PBUFFER(chk_path, path_offset)),
275 "PAP-5040: parent is not uptodate");
276
277 /* Parent at the path is not in the tree now. */
278 if (!B_IS_IN_TREE
279 (parent =
280 PATH_OFFSET_PBUFFER(chk_path, path_offset)))
281 return &MIN_KEY;
282 /* Check whether position in the parent is correct. */
283 if ((position =
284 PATH_OFFSET_POSITION(chk_path,
285 path_offset)) >
286 B_NR_ITEMS(parent))
287 return &MIN_KEY;
288 /*
289 * Check whether parent at the path really points
290 * to the child.
291 */
292 if (B_N_CHILD_NUM(parent, position) !=
293 PATH_OFFSET_PBUFFER(chk_path,
294 path_offset + 1)->b_blocknr)
295 return &MIN_KEY;
296
297 /*
298 * Return delimiting key if position in the parent
299 * is not the last one.
300 */
301 if (position != B_NR_ITEMS(parent))
302 return internal_key(parent, position);
303 }
304
305 /* Return MAX_KEY if we are in the root of the buffer tree. */
306 if (PATH_OFFSET_PBUFFER(chk_path, FIRST_PATH_ELEMENT_OFFSET)->
307 b_blocknr == SB_ROOT_BLOCK(sb))
308 return &MAX_KEY;
309 return &MIN_KEY;
310 }
311
312 /*
313 * Check whether a key is contained in the tree rooted from a buffer at a path.
314 * This works by looking at the left and right delimiting keys for the buffer
315 * in the last path_element in the path. These delimiting keys are stored
316 * at least one level above that buffer in the tree. If the buffer is the
317 * first or last node in the tree order then one of the delimiting keys may
318 * be absent, and in this case get_lkey and get_rkey return a special key
319 * which is MIN_KEY or MAX_KEY.
320 */
key_in_buffer(struct treepath * chk_path,const struct cpu_key * key,struct super_block * sb)321 static inline int key_in_buffer(
322 /* Path which should be checked. */
323 struct treepath *chk_path,
324 /* Key which should be checked. */
325 const struct cpu_key *key,
326 struct super_block *sb
327 )
328 {
329
330 RFALSE(!key || chk_path->path_length < FIRST_PATH_ELEMENT_OFFSET
331 || chk_path->path_length > MAX_HEIGHT,
332 "PAP-5050: pointer to the key(%p) is NULL or invalid path length(%d)",
333 key, chk_path->path_length);
334 RFALSE(!PATH_PLAST_BUFFER(chk_path)->b_bdev,
335 "PAP-5060: device must not be NODEV");
336
337 if (comp_keys(get_lkey(chk_path, sb), key) == 1)
338 /* left delimiting key is bigger, that the key we look for */
339 return 0;
340 /* if ( comp_keys(key, get_rkey(chk_path, sb)) != -1 ) */
341 if (comp_keys(get_rkey(chk_path, sb), key) != 1)
342 /* key must be less than right delimitiing key */
343 return 0;
344 return 1;
345 }
346
reiserfs_check_path(struct treepath * p)347 int reiserfs_check_path(struct treepath *p)
348 {
349 RFALSE(p->path_length != ILLEGAL_PATH_ELEMENT_OFFSET,
350 "path not properly relsed");
351 return 0;
352 }
353
354 /*
355 * Drop the reference to each buffer in a path and restore
356 * dirty bits clean when preparing the buffer for the log.
357 * This version should only be called from fix_nodes()
358 */
pathrelse_and_restore(struct super_block * sb,struct treepath * search_path)359 void pathrelse_and_restore(struct super_block *sb,
360 struct treepath *search_path)
361 {
362 int path_offset = search_path->path_length;
363
364 RFALSE(path_offset < ILLEGAL_PATH_ELEMENT_OFFSET,
365 "clm-4000: invalid path offset");
366
367 while (path_offset > ILLEGAL_PATH_ELEMENT_OFFSET) {
368 struct buffer_head *bh;
369 bh = PATH_OFFSET_PBUFFER(search_path, path_offset--);
370 reiserfs_restore_prepared_buffer(sb, bh);
371 brelse(bh);
372 }
373 search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET;
374 }
375
376 /* Drop the reference to each buffer in a path */
pathrelse(struct treepath * search_path)377 void pathrelse(struct treepath *search_path)
378 {
379 int path_offset = search_path->path_length;
380
381 RFALSE(path_offset < ILLEGAL_PATH_ELEMENT_OFFSET,
382 "PAP-5090: invalid path offset");
383
384 while (path_offset > ILLEGAL_PATH_ELEMENT_OFFSET)
385 brelse(PATH_OFFSET_PBUFFER(search_path, path_offset--));
386
387 search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET;
388 }
389
is_leaf(char * buf,int blocksize,struct buffer_head * bh)390 static int is_leaf(char *buf, int blocksize, struct buffer_head *bh)
391 {
392 struct block_head *blkh;
393 struct item_head *ih;
394 int used_space;
395 int prev_location;
396 int i;
397 int nr;
398
399 blkh = (struct block_head *)buf;
400 if (blkh_level(blkh) != DISK_LEAF_NODE_LEVEL) {
401 reiserfs_warning(NULL, "reiserfs-5080",
402 "this should be caught earlier");
403 return 0;
404 }
405
406 nr = blkh_nr_item(blkh);
407 if (nr < 1 || nr > ((blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN))) {
408 /* item number is too big or too small */
409 reiserfs_warning(NULL, "reiserfs-5081",
410 "nr_item seems wrong: %z", bh);
411 return 0;
412 }
413 ih = (struct item_head *)(buf + BLKH_SIZE) + nr - 1;
414 used_space = BLKH_SIZE + IH_SIZE * nr + (blocksize - ih_location(ih));
415
416 /* free space does not match to calculated amount of use space */
417 if (used_space != blocksize - blkh_free_space(blkh)) {
418 reiserfs_warning(NULL, "reiserfs-5082",
419 "free space seems wrong: %z", bh);
420 return 0;
421 }
422 /*
423 * FIXME: it is_leaf will hit performance too much - we may have
424 * return 1 here
425 */
426
427 /* check tables of item heads */
428 ih = (struct item_head *)(buf + BLKH_SIZE);
429 prev_location = blocksize;
430 for (i = 0; i < nr; i++, ih++) {
431 if (le_ih_k_type(ih) == TYPE_ANY) {
432 reiserfs_warning(NULL, "reiserfs-5083",
433 "wrong item type for item %h",
434 ih);
435 return 0;
436 }
437 if (ih_location(ih) >= blocksize
438 || ih_location(ih) < IH_SIZE * nr) {
439 reiserfs_warning(NULL, "reiserfs-5084",
440 "item location seems wrong: %h",
441 ih);
442 return 0;
443 }
444 if (ih_item_len(ih) < 1
445 || ih_item_len(ih) > MAX_ITEM_LEN(blocksize)) {
446 reiserfs_warning(NULL, "reiserfs-5085",
447 "item length seems wrong: %h",
448 ih);
449 return 0;
450 }
451 if (prev_location - ih_location(ih) != ih_item_len(ih)) {
452 reiserfs_warning(NULL, "reiserfs-5086",
453 "item location seems wrong "
454 "(second one): %h", ih);
455 return 0;
456 }
457 prev_location = ih_location(ih);
458 }
459
460 /* one may imagine many more checks */
461 return 1;
462 }
463
464 /* returns 1 if buf looks like an internal node, 0 otherwise */
is_internal(char * buf,int blocksize,struct buffer_head * bh)465 static int is_internal(char *buf, int blocksize, struct buffer_head *bh)
466 {
467 struct block_head *blkh;
468 int nr;
469 int used_space;
470
471 blkh = (struct block_head *)buf;
472 nr = blkh_level(blkh);
473 if (nr <= DISK_LEAF_NODE_LEVEL || nr > MAX_HEIGHT) {
474 /* this level is not possible for internal nodes */
475 reiserfs_warning(NULL, "reiserfs-5087",
476 "this should be caught earlier");
477 return 0;
478 }
479
480 nr = blkh_nr_item(blkh);
481 /* for internal which is not root we might check min number of keys */
482 if (nr > (blocksize - BLKH_SIZE - DC_SIZE) / (KEY_SIZE + DC_SIZE)) {
483 reiserfs_warning(NULL, "reiserfs-5088",
484 "number of key seems wrong: %z", bh);
485 return 0;
486 }
487
488 used_space = BLKH_SIZE + KEY_SIZE * nr + DC_SIZE * (nr + 1);
489 if (used_space != blocksize - blkh_free_space(blkh)) {
490 reiserfs_warning(NULL, "reiserfs-5089",
491 "free space seems wrong: %z", bh);
492 return 0;
493 }
494
495 /* one may imagine many more checks */
496 return 1;
497 }
498
499 /*
500 * make sure that bh contains formatted node of reiserfs tree of
501 * 'level'-th level
502 */
is_tree_node(struct buffer_head * bh,int level)503 static int is_tree_node(struct buffer_head *bh, int level)
504 {
505 if (B_LEVEL(bh) != level) {
506 reiserfs_warning(NULL, "reiserfs-5090", "node level %d does "
507 "not match to the expected one %d",
508 B_LEVEL(bh), level);
509 return 0;
510 }
511 if (level == DISK_LEAF_NODE_LEVEL)
512 return is_leaf(bh->b_data, bh->b_size, bh);
513
514 return is_internal(bh->b_data, bh->b_size, bh);
515 }
516
517 #define SEARCH_BY_KEY_READA 16
518
519 /*
520 * The function is NOT SCHEDULE-SAFE!
521 * It might unlock the write lock if we needed to wait for a block
522 * to be read. Note that in this case it won't recover the lock to avoid
523 * high contention resulting from too much lock requests, especially
524 * the caller (search_by_key) will perform other schedule-unsafe
525 * operations just after calling this function.
526 *
527 * @return depth of lock to be restored after read completes
528 */
search_by_key_reada(struct super_block * s,struct buffer_head ** bh,b_blocknr_t * b,int num)529 static int search_by_key_reada(struct super_block *s,
530 struct buffer_head **bh,
531 b_blocknr_t *b, int num)
532 {
533 int i, j;
534 int depth = -1;
535
536 for (i = 0; i < num; i++) {
537 bh[i] = sb_getblk(s, b[i]);
538 }
539 /*
540 * We are going to read some blocks on which we
541 * have a reference. It's safe, though we might be
542 * reading blocks concurrently changed if we release
543 * the lock. But it's still fine because we check later
544 * if the tree changed
545 */
546 for (j = 0; j < i; j++) {
547 /*
548 * note, this needs attention if we are getting rid of the BKL
549 * you have to make sure the prepared bit isn't set on this
550 * buffer
551 */
552 if (!buffer_uptodate(bh[j])) {
553 if (depth == -1)
554 depth = reiserfs_write_unlock_nested(s);
555 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, bh + j);
556 }
557 brelse(bh[j]);
558 }
559 return depth;
560 }
561
562 /*
563 * This function fills up the path from the root to the leaf as it
564 * descends the tree looking for the key. It uses reiserfs_bread to
565 * try to find buffers in the cache given their block number. If it
566 * does not find them in the cache it reads them from disk. For each
567 * node search_by_key finds using reiserfs_bread it then uses
568 * bin_search to look through that node. bin_search will find the
569 * position of the block_number of the next node if it is looking
570 * through an internal node. If it is looking through a leaf node
571 * bin_search will find the position of the item which has key either
572 * equal to given key, or which is the maximal key less than the given
573 * key. search_by_key returns a path that must be checked for the
574 * correctness of the top of the path but need not be checked for the
575 * correctness of the bottom of the path
576 */
577 /*
578 * search_by_key - search for key (and item) in stree
579 * @sb: superblock
580 * @key: pointer to key to search for
581 * @search_path: Allocated and initialized struct treepath; Returned filled
582 * on success.
583 * @stop_level: How far down the tree to search, Use DISK_LEAF_NODE_LEVEL to
584 * stop at leaf level.
585 *
586 * The function is NOT SCHEDULE-SAFE!
587 */
search_by_key(struct super_block * sb,const struct cpu_key * key,struct treepath * search_path,int stop_level)588 int search_by_key(struct super_block *sb, const struct cpu_key *key,
589 struct treepath *search_path, int stop_level)
590 {
591 b_blocknr_t block_number;
592 int expected_level;
593 struct buffer_head *bh;
594 struct path_element *last_element;
595 int node_level, retval;
596 int fs_gen;
597 struct buffer_head *reada_bh[SEARCH_BY_KEY_READA];
598 b_blocknr_t reada_blocks[SEARCH_BY_KEY_READA];
599 int reada_count = 0;
600
601 #ifdef CONFIG_REISERFS_CHECK
602 int repeat_counter = 0;
603 #endif
604
605 PROC_INFO_INC(sb, search_by_key);
606
607 /*
608 * As we add each node to a path we increase its count. This means
609 * that we must be careful to release all nodes in a path before we
610 * either discard the path struct or re-use the path struct, as we
611 * do here.
612 */
613
614 pathrelse(search_path);
615
616 /*
617 * With each iteration of this loop we search through the items in the
618 * current node, and calculate the next current node(next path element)
619 * for the next iteration of this loop..
620 */
621 block_number = SB_ROOT_BLOCK(sb);
622 expected_level = -1;
623 while (1) {
624
625 #ifdef CONFIG_REISERFS_CHECK
626 if (!(++repeat_counter % 50000))
627 reiserfs_warning(sb, "PAP-5100",
628 "%s: there were %d iterations of "
629 "while loop looking for key %K",
630 current->comm, repeat_counter,
631 key);
632 #endif
633
634 /* prep path to have another element added to it. */
635 last_element =
636 PATH_OFFSET_PELEMENT(search_path,
637 ++search_path->path_length);
638 fs_gen = get_generation(sb);
639
640 /*
641 * Read the next tree node, and set the last element
642 * in the path to have a pointer to it.
643 */
644 if ((bh = last_element->pe_buffer =
645 sb_getblk(sb, block_number))) {
646
647 /*
648 * We'll need to drop the lock if we encounter any
649 * buffers that need to be read. If all of them are
650 * already up to date, we don't need to drop the lock.
651 */
652 int depth = -1;
653
654 if (!buffer_uptodate(bh) && reada_count > 1)
655 depth = search_by_key_reada(sb, reada_bh,
656 reada_blocks, reada_count);
657
658 if (!buffer_uptodate(bh) && depth == -1)
659 depth = reiserfs_write_unlock_nested(sb);
660
661 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
662 wait_on_buffer(bh);
663
664 if (depth != -1)
665 reiserfs_write_lock_nested(sb, depth);
666 if (!buffer_uptodate(bh))
667 goto io_error;
668 } else {
669 io_error:
670 search_path->path_length--;
671 pathrelse(search_path);
672 return IO_ERROR;
673 }
674 reada_count = 0;
675 if (expected_level == -1)
676 expected_level = SB_TREE_HEIGHT(sb);
677 expected_level--;
678
679 /*
680 * It is possible that schedule occurred. We must check
681 * whether the key to search is still in the tree rooted
682 * from the current buffer. If not then repeat search
683 * from the root.
684 */
685 if (fs_changed(fs_gen, sb) &&
686 (!B_IS_IN_TREE(bh) ||
687 B_LEVEL(bh) != expected_level ||
688 !key_in_buffer(search_path, key, sb))) {
689 PROC_INFO_INC(sb, search_by_key_fs_changed);
690 PROC_INFO_INC(sb, search_by_key_restarted);
691 PROC_INFO_INC(sb,
692 sbk_restarted[expected_level - 1]);
693 pathrelse(search_path);
694
695 /*
696 * Get the root block number so that we can
697 * repeat the search starting from the root.
698 */
699 block_number = SB_ROOT_BLOCK(sb);
700 expected_level = -1;
701
702 /* repeat search from the root */
703 continue;
704 }
705
706 /*
707 * only check that the key is in the buffer if key is not
708 * equal to the MAX_KEY. Latter case is only possible in
709 * "finish_unfinished()" processing during mount.
710 */
711 RFALSE(comp_keys(&MAX_KEY, key) &&
712 !key_in_buffer(search_path, key, sb),
713 "PAP-5130: key is not in the buffer");
714 #ifdef CONFIG_REISERFS_CHECK
715 if (REISERFS_SB(sb)->cur_tb) {
716 print_cur_tb("5140");
717 reiserfs_panic(sb, "PAP-5140",
718 "schedule occurred in do_balance!");
719 }
720 #endif
721
722 /*
723 * make sure, that the node contents look like a node of
724 * certain level
725 */
726 if (!is_tree_node(bh, expected_level)) {
727 reiserfs_error(sb, "vs-5150",
728 "invalid format found in block %ld. "
729 "Fsck?", bh->b_blocknr);
730 pathrelse(search_path);
731 return IO_ERROR;
732 }
733
734 /* ok, we have acquired next formatted node in the tree */
735 node_level = B_LEVEL(bh);
736
737 PROC_INFO_BH_STAT(sb, bh, node_level - 1);
738
739 RFALSE(node_level < stop_level,
740 "vs-5152: tree level (%d) is less than stop level (%d)",
741 node_level, stop_level);
742
743 retval = bin_search(key, item_head(bh, 0),
744 B_NR_ITEMS(bh),
745 (node_level ==
746 DISK_LEAF_NODE_LEVEL) ? IH_SIZE :
747 KEY_SIZE,
748 &last_element->pe_position);
749 if (node_level == stop_level) {
750 return retval;
751 }
752
753 /* we are not in the stop level */
754 /*
755 * item has been found, so we choose the pointer which
756 * is to the right of the found one
757 */
758 if (retval == ITEM_FOUND)
759 last_element->pe_position++;
760
761 /*
762 * if item was not found we choose the position which is to
763 * the left of the found item. This requires no code,
764 * bin_search did it already.
765 */
766
767 /*
768 * So we have chosen a position in the current node which is
769 * an internal node. Now we calculate child block number by
770 * position in the node.
771 */
772 block_number =
773 B_N_CHILD_NUM(bh, last_element->pe_position);
774
775 /*
776 * if we are going to read leaf nodes, try for read
777 * ahead as well
778 */
779 if ((search_path->reada & PATH_READA) &&
780 node_level == DISK_LEAF_NODE_LEVEL + 1) {
781 int pos = last_element->pe_position;
782 int limit = B_NR_ITEMS(bh);
783 struct reiserfs_key *le_key;
784
785 if (search_path->reada & PATH_READA_BACK)
786 limit = 0;
787 while (reada_count < SEARCH_BY_KEY_READA) {
788 if (pos == limit)
789 break;
790 reada_blocks[reada_count++] =
791 B_N_CHILD_NUM(bh, pos);
792 if (search_path->reada & PATH_READA_BACK)
793 pos--;
794 else
795 pos++;
796
797 /*
798 * check to make sure we're in the same object
799 */
800 le_key = internal_key(bh, pos);
801 if (le32_to_cpu(le_key->k_objectid) !=
802 key->on_disk_key.k_objectid) {
803 break;
804 }
805 }
806 }
807 }
808 }
809
810 /*
811 * Form the path to an item and position in this item which contains
812 * file byte defined by key. If there is no such item
813 * corresponding to the key, we point the path to the item with
814 * maximal key less than key, and *pos_in_item is set to one
815 * past the last entry/byte in the item. If searching for entry in a
816 * directory item, and it is not found, *pos_in_item is set to one
817 * entry more than the entry with maximal key which is less than the
818 * sought key.
819 *
820 * Note that if there is no entry in this same node which is one more,
821 * then we point to an imaginary entry. for direct items, the
822 * position is in units of bytes, for indirect items the position is
823 * in units of blocknr entries, for directory items the position is in
824 * units of directory entries.
825 */
826 /* The function is NOT SCHEDULE-SAFE! */
search_for_position_by_key(struct super_block * sb,const struct cpu_key * p_cpu_key,struct treepath * search_path)827 int search_for_position_by_key(struct super_block *sb,
828 /* Key to search (cpu variable) */
829 const struct cpu_key *p_cpu_key,
830 /* Filled up by this function. */
831 struct treepath *search_path)
832 {
833 struct item_head *p_le_ih; /* pointer to on-disk structure */
834 int blk_size;
835 loff_t item_offset, offset;
836 struct reiserfs_dir_entry de;
837 int retval;
838
839 /* If searching for directory entry. */
840 if (is_direntry_cpu_key(p_cpu_key))
841 return search_by_entry_key(sb, p_cpu_key, search_path,
842 &de);
843
844 /* If not searching for directory entry. */
845
846 /* If item is found. */
847 retval = search_item(sb, p_cpu_key, search_path);
848 if (retval == IO_ERROR)
849 return retval;
850 if (retval == ITEM_FOUND) {
851
852 RFALSE(!ih_item_len
853 (item_head
854 (PATH_PLAST_BUFFER(search_path),
855 PATH_LAST_POSITION(search_path))),
856 "PAP-5165: item length equals zero");
857
858 pos_in_item(search_path) = 0;
859 return POSITION_FOUND;
860 }
861
862 RFALSE(!PATH_LAST_POSITION(search_path),
863 "PAP-5170: position equals zero");
864
865 /* Item is not found. Set path to the previous item. */
866 p_le_ih =
867 item_head(PATH_PLAST_BUFFER(search_path),
868 --PATH_LAST_POSITION(search_path));
869 blk_size = sb->s_blocksize;
870
871 if (comp_short_keys(&p_le_ih->ih_key, p_cpu_key))
872 return FILE_NOT_FOUND;
873
874 /* FIXME: quite ugly this far */
875
876 item_offset = le_ih_k_offset(p_le_ih);
877 offset = cpu_key_k_offset(p_cpu_key);
878
879 /* Needed byte is contained in the item pointed to by the path. */
880 if (item_offset <= offset &&
881 item_offset + op_bytes_number(p_le_ih, blk_size) > offset) {
882 pos_in_item(search_path) = offset - item_offset;
883 if (is_indirect_le_ih(p_le_ih)) {
884 pos_in_item(search_path) /= blk_size;
885 }
886 return POSITION_FOUND;
887 }
888
889 /*
890 * Needed byte is not contained in the item pointed to by the
891 * path. Set pos_in_item out of the item.
892 */
893 if (is_indirect_le_ih(p_le_ih))
894 pos_in_item(search_path) =
895 ih_item_len(p_le_ih) / UNFM_P_SIZE;
896 else
897 pos_in_item(search_path) = ih_item_len(p_le_ih);
898
899 return POSITION_NOT_FOUND;
900 }
901
902 /* Compare given item and item pointed to by the path. */
comp_items(const struct item_head * stored_ih,const struct treepath * path)903 int comp_items(const struct item_head *stored_ih, const struct treepath *path)
904 {
905 struct buffer_head *bh = PATH_PLAST_BUFFER(path);
906 struct item_head *ih;
907
908 /* Last buffer at the path is not in the tree. */
909 if (!B_IS_IN_TREE(bh))
910 return 1;
911
912 /* Last path position is invalid. */
913 if (PATH_LAST_POSITION(path) >= B_NR_ITEMS(bh))
914 return 1;
915
916 /* we need only to know, whether it is the same item */
917 ih = tp_item_head(path);
918 return memcmp(stored_ih, ih, IH_SIZE);
919 }
920
921 /* unformatted nodes are not logged anymore, ever. This is safe now */
922 #define held_by_others(bh) (atomic_read(&(bh)->b_count) > 1)
923
924 /* block can not be forgotten as it is in I/O or held by someone */
925 #define block_in_use(bh) (buffer_locked(bh) || (held_by_others(bh)))
926
927 /* prepare for delete or cut of direct item */
prepare_for_direct_item(struct treepath * path,struct item_head * le_ih,struct inode * inode,loff_t new_file_length,int * cut_size)928 static inline int prepare_for_direct_item(struct treepath *path,
929 struct item_head *le_ih,
930 struct inode *inode,
931 loff_t new_file_length, int *cut_size)
932 {
933 loff_t round_len;
934
935 if (new_file_length == max_reiserfs_offset(inode)) {
936 /* item has to be deleted */
937 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
938 return M_DELETE;
939 }
940 /* new file gets truncated */
941 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_6) {
942 round_len = ROUND_UP(new_file_length);
943 /* this was new_file_length < le_ih ... */
944 if (round_len < le_ih_k_offset(le_ih)) {
945 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
946 return M_DELETE; /* Delete this item. */
947 }
948 /* Calculate first position and size for cutting from item. */
949 pos_in_item(path) = round_len - (le_ih_k_offset(le_ih) - 1);
950 *cut_size = -(ih_item_len(le_ih) - pos_in_item(path));
951
952 return M_CUT; /* Cut from this item. */
953 }
954
955 /* old file: items may have any length */
956
957 if (new_file_length < le_ih_k_offset(le_ih)) {
958 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
959 return M_DELETE; /* Delete this item. */
960 }
961
962 /* Calculate first position and size for cutting from item. */
963 *cut_size = -(ih_item_len(le_ih) -
964 (pos_in_item(path) =
965 new_file_length + 1 - le_ih_k_offset(le_ih)));
966 return M_CUT; /* Cut from this item. */
967 }
968
prepare_for_direntry_item(struct treepath * path,struct item_head * le_ih,struct inode * inode,loff_t new_file_length,int * cut_size)969 static inline int prepare_for_direntry_item(struct treepath *path,
970 struct item_head *le_ih,
971 struct inode *inode,
972 loff_t new_file_length,
973 int *cut_size)
974 {
975 if (le_ih_k_offset(le_ih) == DOT_OFFSET &&
976 new_file_length == max_reiserfs_offset(inode)) {
977 RFALSE(ih_entry_count(le_ih) != 2,
978 "PAP-5220: incorrect empty directory item (%h)", le_ih);
979 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
980 /* Delete the directory item containing "." and ".." entry. */
981 return M_DELETE;
982 }
983
984 if (ih_entry_count(le_ih) == 1) {
985 /*
986 * Delete the directory item such as there is one record only
987 * in this item
988 */
989 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
990 return M_DELETE;
991 }
992
993 /* Cut one record from the directory item. */
994 *cut_size =
995 -(DEH_SIZE +
996 entry_length(get_last_bh(path), le_ih, pos_in_item(path)));
997 return M_CUT;
998 }
999
1000 #define JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD (2 * JOURNAL_PER_BALANCE_CNT + 1)
1001
1002 /*
1003 * If the path points to a directory or direct item, calculate mode
1004 * and the size cut, for balance.
1005 * If the path points to an indirect item, remove some number of its
1006 * unformatted nodes.
1007 * In case of file truncate calculate whether this item must be
1008 * deleted/truncated or last unformatted node of this item will be
1009 * converted to a direct item.
1010 * This function returns a determination of what balance mode the
1011 * calling function should employ.
1012 */
prepare_for_delete_or_cut(struct reiserfs_transaction_handle * th,struct inode * inode,struct treepath * path,const struct cpu_key * item_key,int * removed,int * cut_size,unsigned long long new_file_length)1013 static char prepare_for_delete_or_cut(struct reiserfs_transaction_handle *th,
1014 struct inode *inode,
1015 struct treepath *path,
1016 const struct cpu_key *item_key,
1017 /*
1018 * Number of unformatted nodes
1019 * which were removed from end
1020 * of the file.
1021 */
1022 int *removed,
1023 int *cut_size,
1024 /* MAX_KEY_OFFSET in case of delete. */
1025 unsigned long long new_file_length
1026 )
1027 {
1028 struct super_block *sb = inode->i_sb;
1029 struct item_head *p_le_ih = tp_item_head(path);
1030 struct buffer_head *bh = PATH_PLAST_BUFFER(path);
1031
1032 BUG_ON(!th->t_trans_id);
1033
1034 /* Stat_data item. */
1035 if (is_statdata_le_ih(p_le_ih)) {
1036
1037 RFALSE(new_file_length != max_reiserfs_offset(inode),
1038 "PAP-5210: mode must be M_DELETE");
1039
1040 *cut_size = -(IH_SIZE + ih_item_len(p_le_ih));
1041 return M_DELETE;
1042 }
1043
1044 /* Directory item. */
1045 if (is_direntry_le_ih(p_le_ih))
1046 return prepare_for_direntry_item(path, p_le_ih, inode,
1047 new_file_length,
1048 cut_size);
1049
1050 /* Direct item. */
1051 if (is_direct_le_ih(p_le_ih))
1052 return prepare_for_direct_item(path, p_le_ih, inode,
1053 new_file_length, cut_size);
1054
1055 /* Case of an indirect item. */
1056 {
1057 int blk_size = sb->s_blocksize;
1058 struct item_head s_ih;
1059 int need_re_search;
1060 int delete = 0;
1061 int result = M_CUT;
1062 int pos = 0;
1063
1064 if ( new_file_length == max_reiserfs_offset (inode) ) {
1065 /*
1066 * prepare_for_delete_or_cut() is called by
1067 * reiserfs_delete_item()
1068 */
1069 new_file_length = 0;
1070 delete = 1;
1071 }
1072
1073 do {
1074 need_re_search = 0;
1075 *cut_size = 0;
1076 bh = PATH_PLAST_BUFFER(path);
1077 copy_item_head(&s_ih, tp_item_head(path));
1078 pos = I_UNFM_NUM(&s_ih);
1079
1080 while (le_ih_k_offset (&s_ih) + (pos - 1) * blk_size > new_file_length) {
1081 __le32 *unfm;
1082 __u32 block;
1083
1084 /*
1085 * Each unformatted block deletion may involve
1086 * one additional bitmap block into the transaction,
1087 * thereby the initial journal space reservation
1088 * might not be enough.
1089 */
1090 if (!delete && (*cut_size) != 0 &&
1091 reiserfs_transaction_free_space(th) < JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD)
1092 break;
1093
1094 unfm = (__le32 *)ih_item_body(bh, &s_ih) + pos - 1;
1095 block = get_block_num(unfm, 0);
1096
1097 if (block != 0) {
1098 reiserfs_prepare_for_journal(sb, bh, 1);
1099 put_block_num(unfm, 0, 0);
1100 journal_mark_dirty(th, bh);
1101 reiserfs_free_block(th, inode, block, 1);
1102 }
1103
1104 reiserfs_cond_resched(sb);
1105
1106 if (item_moved (&s_ih, path)) {
1107 need_re_search = 1;
1108 break;
1109 }
1110
1111 pos --;
1112 (*removed)++;
1113 (*cut_size) -= UNFM_P_SIZE;
1114
1115 if (pos == 0) {
1116 (*cut_size) -= IH_SIZE;
1117 result = M_DELETE;
1118 break;
1119 }
1120 }
1121 /*
1122 * a trick. If the buffer has been logged, this will
1123 * do nothing. If we've broken the loop without logging
1124 * it, it will restore the buffer
1125 */
1126 reiserfs_restore_prepared_buffer(sb, bh);
1127 } while (need_re_search &&
1128 search_for_position_by_key(sb, item_key, path) == POSITION_FOUND);
1129 pos_in_item(path) = pos * UNFM_P_SIZE;
1130
1131 if (*cut_size == 0) {
1132 /*
1133 * Nothing was cut. maybe convert last unformatted node to the
1134 * direct item?
1135 */
1136 result = M_CONVERT;
1137 }
1138 return result;
1139 }
1140 }
1141
1142 /* Calculate number of bytes which will be deleted or cut during balance */
calc_deleted_bytes_number(struct tree_balance * tb,char mode)1143 static int calc_deleted_bytes_number(struct tree_balance *tb, char mode)
1144 {
1145 int del_size;
1146 struct item_head *p_le_ih = tp_item_head(tb->tb_path);
1147
1148 if (is_statdata_le_ih(p_le_ih))
1149 return 0;
1150
1151 del_size =
1152 (mode ==
1153 M_DELETE) ? ih_item_len(p_le_ih) : -tb->insert_size[0];
1154 if (is_direntry_le_ih(p_le_ih)) {
1155 /*
1156 * return EMPTY_DIR_SIZE; We delete emty directories only.
1157 * we can't use EMPTY_DIR_SIZE, as old format dirs have a
1158 * different empty size. ick. FIXME, is this right?
1159 */
1160 return del_size;
1161 }
1162
1163 if (is_indirect_le_ih(p_le_ih))
1164 del_size = (del_size / UNFM_P_SIZE) *
1165 (PATH_PLAST_BUFFER(tb->tb_path)->b_size);
1166 return del_size;
1167 }
1168
init_tb_struct(struct reiserfs_transaction_handle * th,struct tree_balance * tb,struct super_block * sb,struct treepath * path,int size)1169 static void init_tb_struct(struct reiserfs_transaction_handle *th,
1170 struct tree_balance *tb,
1171 struct super_block *sb,
1172 struct treepath *path, int size)
1173 {
1174
1175 BUG_ON(!th->t_trans_id);
1176
1177 memset(tb, '\0', sizeof(struct tree_balance));
1178 tb->transaction_handle = th;
1179 tb->tb_sb = sb;
1180 tb->tb_path = path;
1181 PATH_OFFSET_PBUFFER(path, ILLEGAL_PATH_ELEMENT_OFFSET) = NULL;
1182 PATH_OFFSET_POSITION(path, ILLEGAL_PATH_ELEMENT_OFFSET) = 0;
1183 tb->insert_size[0] = size;
1184 }
1185
padd_item(char * item,int total_length,int length)1186 void padd_item(char *item, int total_length, int length)
1187 {
1188 int i;
1189
1190 for (i = total_length; i > length;)
1191 item[--i] = 0;
1192 }
1193
1194 #ifdef REISERQUOTA_DEBUG
key2type(struct reiserfs_key * ih)1195 char key2type(struct reiserfs_key *ih)
1196 {
1197 if (is_direntry_le_key(2, ih))
1198 return 'd';
1199 if (is_direct_le_key(2, ih))
1200 return 'D';
1201 if (is_indirect_le_key(2, ih))
1202 return 'i';
1203 if (is_statdata_le_key(2, ih))
1204 return 's';
1205 return 'u';
1206 }
1207
head2type(struct item_head * ih)1208 char head2type(struct item_head *ih)
1209 {
1210 if (is_direntry_le_ih(ih))
1211 return 'd';
1212 if (is_direct_le_ih(ih))
1213 return 'D';
1214 if (is_indirect_le_ih(ih))
1215 return 'i';
1216 if (is_statdata_le_ih(ih))
1217 return 's';
1218 return 'u';
1219 }
1220 #endif
1221
1222 /*
1223 * Delete object item.
1224 * th - active transaction handle
1225 * path - path to the deleted item
1226 * item_key - key to search for the deleted item
1227 * indode - used for updating i_blocks and quotas
1228 * un_bh - NULL or unformatted node pointer
1229 */
reiserfs_delete_item(struct reiserfs_transaction_handle * th,struct treepath * path,const struct cpu_key * item_key,struct inode * inode,struct buffer_head * un_bh)1230 int reiserfs_delete_item(struct reiserfs_transaction_handle *th,
1231 struct treepath *path, const struct cpu_key *item_key,
1232 struct inode *inode, struct buffer_head *un_bh)
1233 {
1234 struct super_block *sb = inode->i_sb;
1235 struct tree_balance s_del_balance;
1236 struct item_head s_ih;
1237 struct item_head *q_ih;
1238 int quota_cut_bytes;
1239 int ret_value, del_size, removed;
1240 int depth;
1241
1242 #ifdef CONFIG_REISERFS_CHECK
1243 char mode;
1244 int iter = 0;
1245 #endif
1246
1247 BUG_ON(!th->t_trans_id);
1248
1249 init_tb_struct(th, &s_del_balance, sb, path,
1250 0 /*size is unknown */ );
1251
1252 while (1) {
1253 removed = 0;
1254
1255 #ifdef CONFIG_REISERFS_CHECK
1256 iter++;
1257 mode =
1258 #endif
1259 prepare_for_delete_or_cut(th, inode, path,
1260 item_key, &removed,
1261 &del_size,
1262 max_reiserfs_offset(inode));
1263
1264 RFALSE(mode != M_DELETE, "PAP-5320: mode must be M_DELETE");
1265
1266 copy_item_head(&s_ih, tp_item_head(path));
1267 s_del_balance.insert_size[0] = del_size;
1268
1269 ret_value = fix_nodes(M_DELETE, &s_del_balance, NULL, NULL);
1270 if (ret_value != REPEAT_SEARCH)
1271 break;
1272
1273 PROC_INFO_INC(sb, delete_item_restarted);
1274
1275 /* file system changed, repeat search */
1276 ret_value =
1277 search_for_position_by_key(sb, item_key, path);
1278 if (ret_value == IO_ERROR)
1279 break;
1280 if (ret_value == FILE_NOT_FOUND) {
1281 reiserfs_warning(sb, "vs-5340",
1282 "no items of the file %K found",
1283 item_key);
1284 break;
1285 }
1286 } /* while (1) */
1287
1288 if (ret_value != CARRY_ON) {
1289 unfix_nodes(&s_del_balance);
1290 return 0;
1291 }
1292
1293 /* reiserfs_delete_item returns item length when success */
1294 ret_value = calc_deleted_bytes_number(&s_del_balance, M_DELETE);
1295 q_ih = tp_item_head(path);
1296 quota_cut_bytes = ih_item_len(q_ih);
1297
1298 /*
1299 * hack so the quota code doesn't have to guess if the file has a
1300 * tail. On tail insert, we allocate quota for 1 unformatted node.
1301 * We test the offset because the tail might have been
1302 * split into multiple items, and we only want to decrement for
1303 * the unfm node once
1304 */
1305 if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(q_ih)) {
1306 if ((le_ih_k_offset(q_ih) & (sb->s_blocksize - 1)) == 1) {
1307 quota_cut_bytes = sb->s_blocksize + UNFM_P_SIZE;
1308 } else {
1309 quota_cut_bytes = 0;
1310 }
1311 }
1312
1313 if (un_bh) {
1314 int off;
1315 char *data;
1316
1317 /*
1318 * We are in direct2indirect conversion, so move tail contents
1319 * to the unformatted node
1320 */
1321 /*
1322 * note, we do the copy before preparing the buffer because we
1323 * don't care about the contents of the unformatted node yet.
1324 * the only thing we really care about is the direct item's
1325 * data is in the unformatted node.
1326 *
1327 * Otherwise, we would have to call
1328 * reiserfs_prepare_for_journal on the unformatted node,
1329 * which might schedule, meaning we'd have to loop all the
1330 * way back up to the start of the while loop.
1331 *
1332 * The unformatted node must be dirtied later on. We can't be
1333 * sure here if the entire tail has been deleted yet.
1334 *
1335 * un_bh is from the page cache (all unformatted nodes are
1336 * from the page cache) and might be a highmem page. So, we
1337 * can't use un_bh->b_data.
1338 * -clm
1339 */
1340
1341 data = kmap_atomic(un_bh->b_page);
1342 off = ((le_ih_k_offset(&s_ih) - 1) & (PAGE_SIZE - 1));
1343 memcpy(data + off,
1344 ih_item_body(PATH_PLAST_BUFFER(path), &s_ih),
1345 ret_value);
1346 kunmap_atomic(data);
1347 }
1348
1349 /* Perform balancing after all resources have been collected at once. */
1350 do_balance(&s_del_balance, NULL, NULL, M_DELETE);
1351
1352 #ifdef REISERQUOTA_DEBUG
1353 reiserfs_debug(sb, REISERFS_DEBUG_CODE,
1354 "reiserquota delete_item(): freeing %u, id=%u type=%c",
1355 quota_cut_bytes, inode->i_uid, head2type(&s_ih));
1356 #endif
1357 depth = reiserfs_write_unlock_nested(inode->i_sb);
1358 dquot_free_space_nodirty(inode, quota_cut_bytes);
1359 reiserfs_write_lock_nested(inode->i_sb, depth);
1360
1361 /* Return deleted body length */
1362 return ret_value;
1363 }
1364
1365 /*
1366 * Summary Of Mechanisms For Handling Collisions Between Processes:
1367 *
1368 * deletion of the body of the object is performed by iput(), with the
1369 * result that if multiple processes are operating on a file, the
1370 * deletion of the body of the file is deferred until the last process
1371 * that has an open inode performs its iput().
1372 *
1373 * writes and truncates are protected from collisions by use of
1374 * semaphores.
1375 *
1376 * creates, linking, and mknod are protected from collisions with other
1377 * processes by making the reiserfs_add_entry() the last step in the
1378 * creation, and then rolling back all changes if there was a collision.
1379 * - Hans
1380 */
1381
1382 /* this deletes item which never gets split */
reiserfs_delete_solid_item(struct reiserfs_transaction_handle * th,struct inode * inode,struct reiserfs_key * key)1383 void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th,
1384 struct inode *inode, struct reiserfs_key *key)
1385 {
1386 struct super_block *sb = th->t_super;
1387 struct tree_balance tb;
1388 INITIALIZE_PATH(path);
1389 int item_len = 0;
1390 int tb_init = 0;
1391 struct cpu_key cpu_key;
1392 int retval;
1393 int quota_cut_bytes = 0;
1394
1395 BUG_ON(!th->t_trans_id);
1396
1397 le_key2cpu_key(&cpu_key, key);
1398
1399 while (1) {
1400 retval = search_item(th->t_super, &cpu_key, &path);
1401 if (retval == IO_ERROR) {
1402 reiserfs_error(th->t_super, "vs-5350",
1403 "i/o failure occurred trying "
1404 "to delete %K", &cpu_key);
1405 break;
1406 }
1407 if (retval != ITEM_FOUND) {
1408 pathrelse(&path);
1409 /*
1410 * No need for a warning, if there is just no free
1411 * space to insert '..' item into the
1412 * newly-created subdir
1413 */
1414 if (!
1415 ((unsigned long long)
1416 GET_HASH_VALUE(le_key_k_offset
1417 (le_key_version(key), key)) == 0
1418 && (unsigned long long)
1419 GET_GENERATION_NUMBER(le_key_k_offset
1420 (le_key_version(key),
1421 key)) == 1))
1422 reiserfs_warning(th->t_super, "vs-5355",
1423 "%k not found", key);
1424 break;
1425 }
1426 if (!tb_init) {
1427 tb_init = 1;
1428 item_len = ih_item_len(tp_item_head(&path));
1429 init_tb_struct(th, &tb, th->t_super, &path,
1430 -(IH_SIZE + item_len));
1431 }
1432 quota_cut_bytes = ih_item_len(tp_item_head(&path));
1433
1434 retval = fix_nodes(M_DELETE, &tb, NULL, NULL);
1435 if (retval == REPEAT_SEARCH) {
1436 PROC_INFO_INC(th->t_super, delete_solid_item_restarted);
1437 continue;
1438 }
1439
1440 if (retval == CARRY_ON) {
1441 do_balance(&tb, NULL, NULL, M_DELETE);
1442 /*
1443 * Should we count quota for item? (we don't
1444 * count quotas for save-links)
1445 */
1446 if (inode) {
1447 int depth;
1448 #ifdef REISERQUOTA_DEBUG
1449 reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE,
1450 "reiserquota delete_solid_item(): freeing %u id=%u type=%c",
1451 quota_cut_bytes, inode->i_uid,
1452 key2type(key));
1453 #endif
1454 depth = reiserfs_write_unlock_nested(sb);
1455 dquot_free_space_nodirty(inode,
1456 quota_cut_bytes);
1457 reiserfs_write_lock_nested(sb, depth);
1458 }
1459 break;
1460 }
1461
1462 /* IO_ERROR, NO_DISK_SPACE, etc */
1463 reiserfs_warning(th->t_super, "vs-5360",
1464 "could not delete %K due to fix_nodes failure",
1465 &cpu_key);
1466 unfix_nodes(&tb);
1467 break;
1468 }
1469
1470 reiserfs_check_path(&path);
1471 }
1472
reiserfs_delete_object(struct reiserfs_transaction_handle * th,struct inode * inode)1473 int reiserfs_delete_object(struct reiserfs_transaction_handle *th,
1474 struct inode *inode)
1475 {
1476 int err;
1477 inode->i_size = 0;
1478 BUG_ON(!th->t_trans_id);
1479
1480 /* for directory this deletes item containing "." and ".." */
1481 err =
1482 reiserfs_do_truncate(th, inode, NULL, 0 /*no timestamp updates */ );
1483 if (err)
1484 return err;
1485
1486 #if defined( USE_INODE_GENERATION_COUNTER )
1487 if (!old_format_only(th->t_super)) {
1488 __le32 *inode_generation;
1489
1490 inode_generation =
1491 &REISERFS_SB(th->t_super)->s_rs->s_inode_generation;
1492 le32_add_cpu(inode_generation, 1);
1493 }
1494 /* USE_INODE_GENERATION_COUNTER */
1495 #endif
1496 reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode));
1497
1498 return err;
1499 }
1500
unmap_buffers(struct page * page,loff_t pos)1501 static void unmap_buffers(struct page *page, loff_t pos)
1502 {
1503 struct buffer_head *bh;
1504 struct buffer_head *head;
1505 struct buffer_head *next;
1506 unsigned long tail_index;
1507 unsigned long cur_index;
1508
1509 if (page) {
1510 if (page_has_buffers(page)) {
1511 tail_index = pos & (PAGE_SIZE - 1);
1512 cur_index = 0;
1513 head = page_buffers(page);
1514 bh = head;
1515 do {
1516 next = bh->b_this_page;
1517
1518 /*
1519 * we want to unmap the buffers that contain
1520 * the tail, and all the buffers after it
1521 * (since the tail must be at the end of the
1522 * file). We don't want to unmap file data
1523 * before the tail, since it might be dirty
1524 * and waiting to reach disk
1525 */
1526 cur_index += bh->b_size;
1527 if (cur_index > tail_index) {
1528 reiserfs_unmap_buffer(bh);
1529 }
1530 bh = next;
1531 } while (bh != head);
1532 }
1533 }
1534 }
1535
maybe_indirect_to_direct(struct reiserfs_transaction_handle * th,struct inode * inode,struct page * page,struct treepath * path,const struct cpu_key * item_key,loff_t new_file_size,char * mode)1536 static int maybe_indirect_to_direct(struct reiserfs_transaction_handle *th,
1537 struct inode *inode,
1538 struct page *page,
1539 struct treepath *path,
1540 const struct cpu_key *item_key,
1541 loff_t new_file_size, char *mode)
1542 {
1543 struct super_block *sb = inode->i_sb;
1544 int block_size = sb->s_blocksize;
1545 int cut_bytes;
1546 BUG_ON(!th->t_trans_id);
1547 BUG_ON(new_file_size != inode->i_size);
1548
1549 /*
1550 * the page being sent in could be NULL if there was an i/o error
1551 * reading in the last block. The user will hit problems trying to
1552 * read the file, but for now we just skip the indirect2direct
1553 */
1554 if (atomic_read(&inode->i_count) > 1 ||
1555 !tail_has_to_be_packed(inode) ||
1556 !page || (REISERFS_I(inode)->i_flags & i_nopack_mask)) {
1557 /* leave tail in an unformatted node */
1558 *mode = M_SKIP_BALANCING;
1559 cut_bytes =
1560 block_size - (new_file_size & (block_size - 1));
1561 pathrelse(path);
1562 return cut_bytes;
1563 }
1564
1565 /* Perform the conversion to a direct_item. */
1566 return indirect2direct(th, inode, page, path, item_key,
1567 new_file_size, mode);
1568 }
1569
1570 /*
1571 * we did indirect_to_direct conversion. And we have inserted direct
1572 * item successesfully, but there were no disk space to cut unfm
1573 * pointer being converted. Therefore we have to delete inserted
1574 * direct item(s)
1575 */
indirect_to_direct_roll_back(struct reiserfs_transaction_handle * th,struct inode * inode,struct treepath * path)1576 static void indirect_to_direct_roll_back(struct reiserfs_transaction_handle *th,
1577 struct inode *inode, struct treepath *path)
1578 {
1579 struct cpu_key tail_key;
1580 int tail_len;
1581 int removed;
1582 BUG_ON(!th->t_trans_id);
1583
1584 make_cpu_key(&tail_key, inode, inode->i_size + 1, TYPE_DIRECT, 4);
1585 tail_key.key_length = 4;
1586
1587 tail_len =
1588 (cpu_key_k_offset(&tail_key) & (inode->i_sb->s_blocksize - 1)) - 1;
1589 while (tail_len) {
1590 /* look for the last byte of the tail */
1591 if (search_for_position_by_key(inode->i_sb, &tail_key, path) ==
1592 POSITION_NOT_FOUND)
1593 reiserfs_panic(inode->i_sb, "vs-5615",
1594 "found invalid item");
1595 RFALSE(path->pos_in_item !=
1596 ih_item_len(tp_item_head(path)) - 1,
1597 "vs-5616: appended bytes found");
1598 PATH_LAST_POSITION(path)--;
1599
1600 removed =
1601 reiserfs_delete_item(th, path, &tail_key, inode,
1602 NULL /*unbh not needed */ );
1603 RFALSE(removed <= 0
1604 || removed > tail_len,
1605 "vs-5617: there was tail %d bytes, removed item length %d bytes",
1606 tail_len, removed);
1607 tail_len -= removed;
1608 set_cpu_key_k_offset(&tail_key,
1609 cpu_key_k_offset(&tail_key) - removed);
1610 }
1611 reiserfs_warning(inode->i_sb, "reiserfs-5091", "indirect_to_direct "
1612 "conversion has been rolled back due to "
1613 "lack of disk space");
1614 mark_inode_dirty(inode);
1615 }
1616
1617 /* (Truncate or cut entry) or delete object item. Returns < 0 on failure */
reiserfs_cut_from_item(struct reiserfs_transaction_handle * th,struct treepath * path,struct cpu_key * item_key,struct inode * inode,struct page * page,loff_t new_file_size)1618 int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th,
1619 struct treepath *path,
1620 struct cpu_key *item_key,
1621 struct inode *inode,
1622 struct page *page, loff_t new_file_size)
1623 {
1624 struct super_block *sb = inode->i_sb;
1625 /*
1626 * Every function which is going to call do_balance must first
1627 * create a tree_balance structure. Then it must fill up this
1628 * structure by using the init_tb_struct and fix_nodes functions.
1629 * After that we can make tree balancing.
1630 */
1631 struct tree_balance s_cut_balance;
1632 struct item_head *p_le_ih;
1633 int cut_size = 0; /* Amount to be cut. */
1634 int ret_value = CARRY_ON;
1635 int removed = 0; /* Number of the removed unformatted nodes. */
1636 int is_inode_locked = 0;
1637 char mode; /* Mode of the balance. */
1638 int retval2 = -1;
1639 int quota_cut_bytes;
1640 loff_t tail_pos = 0;
1641 int depth;
1642
1643 BUG_ON(!th->t_trans_id);
1644
1645 init_tb_struct(th, &s_cut_balance, inode->i_sb, path,
1646 cut_size);
1647
1648 /*
1649 * Repeat this loop until we either cut the item without needing
1650 * to balance, or we fix_nodes without schedule occurring
1651 */
1652 while (1) {
1653 /*
1654 * Determine the balance mode, position of the first byte to
1655 * be cut, and size to be cut. In case of the indirect item
1656 * free unformatted nodes which are pointed to by the cut
1657 * pointers.
1658 */
1659
1660 mode =
1661 prepare_for_delete_or_cut(th, inode, path,
1662 item_key, &removed,
1663 &cut_size, new_file_size);
1664 if (mode == M_CONVERT) {
1665 /*
1666 * convert last unformatted node to direct item or
1667 * leave tail in the unformatted node
1668 */
1669 RFALSE(ret_value != CARRY_ON,
1670 "PAP-5570: can not convert twice");
1671
1672 ret_value =
1673 maybe_indirect_to_direct(th, inode, page,
1674 path, item_key,
1675 new_file_size, &mode);
1676 if (mode == M_SKIP_BALANCING)
1677 /* tail has been left in the unformatted node */
1678 return ret_value;
1679
1680 is_inode_locked = 1;
1681
1682 /*
1683 * removing of last unformatted node will
1684 * change value we have to return to truncate.
1685 * Save it
1686 */
1687 retval2 = ret_value;
1688
1689 /*
1690 * So, we have performed the first part of the
1691 * conversion:
1692 * inserting the new direct item. Now we are
1693 * removing the last unformatted node pointer.
1694 * Set key to search for it.
1695 */
1696 set_cpu_key_k_type(item_key, TYPE_INDIRECT);
1697 item_key->key_length = 4;
1698 new_file_size -=
1699 (new_file_size & (sb->s_blocksize - 1));
1700 tail_pos = new_file_size;
1701 set_cpu_key_k_offset(item_key, new_file_size + 1);
1702 if (search_for_position_by_key
1703 (sb, item_key,
1704 path) == POSITION_NOT_FOUND) {
1705 print_block(PATH_PLAST_BUFFER(path), 3,
1706 PATH_LAST_POSITION(path) - 1,
1707 PATH_LAST_POSITION(path) + 1);
1708 reiserfs_panic(sb, "PAP-5580", "item to "
1709 "convert does not exist (%K)",
1710 item_key);
1711 }
1712 continue;
1713 }
1714 if (cut_size == 0) {
1715 pathrelse(path);
1716 return 0;
1717 }
1718
1719 s_cut_balance.insert_size[0] = cut_size;
1720
1721 ret_value = fix_nodes(mode, &s_cut_balance, NULL, NULL);
1722 if (ret_value != REPEAT_SEARCH)
1723 break;
1724
1725 PROC_INFO_INC(sb, cut_from_item_restarted);
1726
1727 ret_value =
1728 search_for_position_by_key(sb, item_key, path);
1729 if (ret_value == POSITION_FOUND)
1730 continue;
1731
1732 reiserfs_warning(sb, "PAP-5610", "item %K not found",
1733 item_key);
1734 unfix_nodes(&s_cut_balance);
1735 return (ret_value == IO_ERROR) ? -EIO : -ENOENT;
1736 } /* while */
1737
1738 /* check fix_nodes results (IO_ERROR or NO_DISK_SPACE) */
1739 if (ret_value != CARRY_ON) {
1740 if (is_inode_locked) {
1741 /*
1742 * FIXME: this seems to be not needed: we are always
1743 * able to cut item
1744 */
1745 indirect_to_direct_roll_back(th, inode, path);
1746 }
1747 if (ret_value == NO_DISK_SPACE)
1748 reiserfs_warning(sb, "reiserfs-5092",
1749 "NO_DISK_SPACE");
1750 unfix_nodes(&s_cut_balance);
1751 return -EIO;
1752 }
1753
1754 /* go ahead and perform balancing */
1755
1756 RFALSE(mode == M_PASTE || mode == M_INSERT, "invalid mode");
1757
1758 /* Calculate number of bytes that need to be cut from the item. */
1759 quota_cut_bytes =
1760 (mode ==
1761 M_DELETE) ? ih_item_len(tp_item_head(path)) : -s_cut_balance.
1762 insert_size[0];
1763 if (retval2 == -1)
1764 ret_value = calc_deleted_bytes_number(&s_cut_balance, mode);
1765 else
1766 ret_value = retval2;
1767
1768 /*
1769 * For direct items, we only change the quota when deleting the last
1770 * item.
1771 */
1772 p_le_ih = tp_item_head(s_cut_balance.tb_path);
1773 if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(p_le_ih)) {
1774 if (mode == M_DELETE &&
1775 (le_ih_k_offset(p_le_ih) & (sb->s_blocksize - 1)) ==
1776 1) {
1777 /* FIXME: this is to keep 3.5 happy */
1778 REISERFS_I(inode)->i_first_direct_byte = U32_MAX;
1779 quota_cut_bytes = sb->s_blocksize + UNFM_P_SIZE;
1780 } else {
1781 quota_cut_bytes = 0;
1782 }
1783 }
1784 #ifdef CONFIG_REISERFS_CHECK
1785 if (is_inode_locked) {
1786 struct item_head *le_ih =
1787 tp_item_head(s_cut_balance.tb_path);
1788 /*
1789 * we are going to complete indirect2direct conversion. Make
1790 * sure, that we exactly remove last unformatted node pointer
1791 * of the item
1792 */
1793 if (!is_indirect_le_ih(le_ih))
1794 reiserfs_panic(sb, "vs-5652",
1795 "item must be indirect %h", le_ih);
1796
1797 if (mode == M_DELETE && ih_item_len(le_ih) != UNFM_P_SIZE)
1798 reiserfs_panic(sb, "vs-5653", "completing "
1799 "indirect2direct conversion indirect "
1800 "item %h being deleted must be of "
1801 "4 byte long", le_ih);
1802
1803 if (mode == M_CUT
1804 && s_cut_balance.insert_size[0] != -UNFM_P_SIZE) {
1805 reiserfs_panic(sb, "vs-5654", "can not complete "
1806 "indirect2direct conversion of %h "
1807 "(CUT, insert_size==%d)",
1808 le_ih, s_cut_balance.insert_size[0]);
1809 }
1810 /*
1811 * it would be useful to make sure, that right neighboring
1812 * item is direct item of this file
1813 */
1814 }
1815 #endif
1816
1817 do_balance(&s_cut_balance, NULL, NULL, mode);
1818 if (is_inode_locked) {
1819 /*
1820 * we've done an indirect->direct conversion. when the
1821 * data block was freed, it was removed from the list of
1822 * blocks that must be flushed before the transaction
1823 * commits, make sure to unmap and invalidate it
1824 */
1825 unmap_buffers(page, tail_pos);
1826 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
1827 }
1828 #ifdef REISERQUOTA_DEBUG
1829 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
1830 "reiserquota cut_from_item(): freeing %u id=%u type=%c",
1831 quota_cut_bytes, inode->i_uid, '?');
1832 #endif
1833 depth = reiserfs_write_unlock_nested(sb);
1834 dquot_free_space_nodirty(inode, quota_cut_bytes);
1835 reiserfs_write_lock_nested(sb, depth);
1836 return ret_value;
1837 }
1838
truncate_directory(struct reiserfs_transaction_handle * th,struct inode * inode)1839 static void truncate_directory(struct reiserfs_transaction_handle *th,
1840 struct inode *inode)
1841 {
1842 BUG_ON(!th->t_trans_id);
1843 if (inode->i_nlink)
1844 reiserfs_error(inode->i_sb, "vs-5655", "link count != 0");
1845
1846 set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), DOT_OFFSET);
1847 set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_DIRENTRY);
1848 reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode));
1849 reiserfs_update_sd(th, inode);
1850 set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), SD_OFFSET);
1851 set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_STAT_DATA);
1852 }
1853
1854 /*
1855 * Truncate file to the new size. Note, this must be called with a
1856 * transaction already started
1857 */
reiserfs_do_truncate(struct reiserfs_transaction_handle * th,struct inode * inode,struct page * page,int update_timestamps)1858 int reiserfs_do_truncate(struct reiserfs_transaction_handle *th,
1859 struct inode *inode, /* ->i_size contains new size */
1860 struct page *page, /* up to date for last block */
1861 /*
1862 * when it is called by file_release to convert
1863 * the tail - no timestamps should be updated
1864 */
1865 int update_timestamps
1866 )
1867 {
1868 INITIALIZE_PATH(s_search_path); /* Path to the current object item. */
1869 struct item_head *p_le_ih; /* Pointer to an item header. */
1870
1871 /* Key to search for a previous file item. */
1872 struct cpu_key s_item_key;
1873 loff_t file_size, /* Old file size. */
1874 new_file_size; /* New file size. */
1875 int deleted; /* Number of deleted or truncated bytes. */
1876 int retval;
1877 int err = 0;
1878
1879 BUG_ON(!th->t_trans_id);
1880 if (!
1881 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)
1882 || S_ISLNK(inode->i_mode)))
1883 return 0;
1884
1885 /* deletion of directory - no need to update timestamps */
1886 if (S_ISDIR(inode->i_mode)) {
1887 truncate_directory(th, inode);
1888 return 0;
1889 }
1890
1891 /* Get new file size. */
1892 new_file_size = inode->i_size;
1893
1894 /* FIXME: note, that key type is unimportant here */
1895 make_cpu_key(&s_item_key, inode, max_reiserfs_offset(inode),
1896 TYPE_DIRECT, 3);
1897
1898 retval =
1899 search_for_position_by_key(inode->i_sb, &s_item_key,
1900 &s_search_path);
1901 if (retval == IO_ERROR) {
1902 reiserfs_error(inode->i_sb, "vs-5657",
1903 "i/o failure occurred trying to truncate %K",
1904 &s_item_key);
1905 err = -EIO;
1906 goto out;
1907 }
1908 if (retval == POSITION_FOUND || retval == FILE_NOT_FOUND) {
1909 reiserfs_error(inode->i_sb, "PAP-5660",
1910 "wrong result %d of search for %K", retval,
1911 &s_item_key);
1912
1913 err = -EIO;
1914 goto out;
1915 }
1916
1917 s_search_path.pos_in_item--;
1918
1919 /* Get real file size (total length of all file items) */
1920 p_le_ih = tp_item_head(&s_search_path);
1921 if (is_statdata_le_ih(p_le_ih))
1922 file_size = 0;
1923 else {
1924 loff_t offset = le_ih_k_offset(p_le_ih);
1925 int bytes =
1926 op_bytes_number(p_le_ih, inode->i_sb->s_blocksize);
1927
1928 /*
1929 * this may mismatch with real file size: if last direct item
1930 * had no padding zeros and last unformatted node had no free
1931 * space, this file would have this file size
1932 */
1933 file_size = offset + bytes - 1;
1934 }
1935 /*
1936 * are we doing a full truncate or delete, if so
1937 * kick in the reada code
1938 */
1939 if (new_file_size == 0)
1940 s_search_path.reada = PATH_READA | PATH_READA_BACK;
1941
1942 if (file_size == 0 || file_size < new_file_size) {
1943 goto update_and_out;
1944 }
1945
1946 /* Update key to search for the last file item. */
1947 set_cpu_key_k_offset(&s_item_key, file_size);
1948
1949 do {
1950 /* Cut or delete file item. */
1951 deleted =
1952 reiserfs_cut_from_item(th, &s_search_path, &s_item_key,
1953 inode, page, new_file_size);
1954 if (deleted < 0) {
1955 reiserfs_warning(inode->i_sb, "vs-5665",
1956 "reiserfs_cut_from_item failed");
1957 reiserfs_check_path(&s_search_path);
1958 return 0;
1959 }
1960
1961 RFALSE(deleted > file_size,
1962 "PAP-5670: reiserfs_cut_from_item: too many bytes deleted: deleted %d, file_size %lu, item_key %K",
1963 deleted, file_size, &s_item_key);
1964
1965 /* Change key to search the last file item. */
1966 file_size -= deleted;
1967
1968 set_cpu_key_k_offset(&s_item_key, file_size);
1969
1970 /*
1971 * While there are bytes to truncate and previous
1972 * file item is presented in the tree.
1973 */
1974
1975 /*
1976 * This loop could take a really long time, and could log
1977 * many more blocks than a transaction can hold. So, we do
1978 * a polite journal end here, and if the transaction needs
1979 * ending, we make sure the file is consistent before ending
1980 * the current trans and starting a new one
1981 */
1982 if (journal_transaction_should_end(th, 0) ||
1983 reiserfs_transaction_free_space(th) <= JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD) {
1984 pathrelse(&s_search_path);
1985
1986 if (update_timestamps) {
1987 inode->i_mtime = current_time(inode);
1988 inode->i_ctime = current_time(inode);
1989 }
1990 reiserfs_update_sd(th, inode);
1991
1992 err = journal_end(th);
1993 if (err)
1994 goto out;
1995 err = journal_begin(th, inode->i_sb,
1996 JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD + JOURNAL_PER_BALANCE_CNT * 4) ;
1997 if (err)
1998 goto out;
1999 reiserfs_update_inode_transaction(inode);
2000 }
2001 } while (file_size > ROUND_UP(new_file_size) &&
2002 search_for_position_by_key(inode->i_sb, &s_item_key,
2003 &s_search_path) == POSITION_FOUND);
2004
2005 RFALSE(file_size > ROUND_UP(new_file_size),
2006 "PAP-5680: truncate did not finish: new_file_size %lld, current %lld, oid %d",
2007 new_file_size, file_size, s_item_key.on_disk_key.k_objectid);
2008
2009 update_and_out:
2010 if (update_timestamps) {
2011 /* this is truncate, not file closing */
2012 inode->i_mtime = current_time(inode);
2013 inode->i_ctime = current_time(inode);
2014 }
2015 reiserfs_update_sd(th, inode);
2016
2017 out:
2018 pathrelse(&s_search_path);
2019 return err;
2020 }
2021
2022 #ifdef CONFIG_REISERFS_CHECK
2023 /* this makes sure, that we __append__, not overwrite or add holes */
check_research_for_paste(struct treepath * path,const struct cpu_key * key)2024 static void check_research_for_paste(struct treepath *path,
2025 const struct cpu_key *key)
2026 {
2027 struct item_head *found_ih = tp_item_head(path);
2028
2029 if (is_direct_le_ih(found_ih)) {
2030 if (le_ih_k_offset(found_ih) +
2031 op_bytes_number(found_ih,
2032 get_last_bh(path)->b_size) !=
2033 cpu_key_k_offset(key)
2034 || op_bytes_number(found_ih,
2035 get_last_bh(path)->b_size) !=
2036 pos_in_item(path))
2037 reiserfs_panic(NULL, "PAP-5720", "found direct item "
2038 "%h or position (%d) does not match "
2039 "to key %K", found_ih,
2040 pos_in_item(path), key);
2041 }
2042 if (is_indirect_le_ih(found_ih)) {
2043 if (le_ih_k_offset(found_ih) +
2044 op_bytes_number(found_ih,
2045 get_last_bh(path)->b_size) !=
2046 cpu_key_k_offset(key)
2047 || I_UNFM_NUM(found_ih) != pos_in_item(path)
2048 || get_ih_free_space(found_ih) != 0)
2049 reiserfs_panic(NULL, "PAP-5730", "found indirect "
2050 "item (%h) or position (%d) does not "
2051 "match to key (%K)",
2052 found_ih, pos_in_item(path), key);
2053 }
2054 }
2055 #endif /* config reiserfs check */
2056
2057 /*
2058 * Paste bytes to the existing item.
2059 * Returns bytes number pasted into the item.
2060 */
reiserfs_paste_into_item(struct reiserfs_transaction_handle * th,struct treepath * search_path,const struct cpu_key * key,struct inode * inode,const char * body,int pasted_size)2061 int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th,
2062 /* Path to the pasted item. */
2063 struct treepath *search_path,
2064 /* Key to search for the needed item. */
2065 const struct cpu_key *key,
2066 /* Inode item belongs to */
2067 struct inode *inode,
2068 /* Pointer to the bytes to paste. */
2069 const char *body,
2070 /* Size of pasted bytes. */
2071 int pasted_size)
2072 {
2073 struct super_block *sb = inode->i_sb;
2074 struct tree_balance s_paste_balance;
2075 int retval;
2076 int fs_gen;
2077 int depth;
2078
2079 BUG_ON(!th->t_trans_id);
2080
2081 fs_gen = get_generation(inode->i_sb);
2082
2083 #ifdef REISERQUOTA_DEBUG
2084 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
2085 "reiserquota paste_into_item(): allocating %u id=%u type=%c",
2086 pasted_size, inode->i_uid,
2087 key2type(&key->on_disk_key));
2088 #endif
2089
2090 depth = reiserfs_write_unlock_nested(sb);
2091 retval = dquot_alloc_space_nodirty(inode, pasted_size);
2092 reiserfs_write_lock_nested(sb, depth);
2093 if (retval) {
2094 pathrelse(search_path);
2095 return retval;
2096 }
2097 init_tb_struct(th, &s_paste_balance, th->t_super, search_path,
2098 pasted_size);
2099 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
2100 s_paste_balance.key = key->on_disk_key;
2101 #endif
2102
2103 /* DQUOT_* can schedule, must check before the fix_nodes */
2104 if (fs_changed(fs_gen, inode->i_sb)) {
2105 goto search_again;
2106 }
2107
2108 while ((retval =
2109 fix_nodes(M_PASTE, &s_paste_balance, NULL,
2110 body)) == REPEAT_SEARCH) {
2111 search_again:
2112 /* file system changed while we were in the fix_nodes */
2113 PROC_INFO_INC(th->t_super, paste_into_item_restarted);
2114 retval =
2115 search_for_position_by_key(th->t_super, key,
2116 search_path);
2117 if (retval == IO_ERROR) {
2118 retval = -EIO;
2119 goto error_out;
2120 }
2121 if (retval == POSITION_FOUND) {
2122 reiserfs_warning(inode->i_sb, "PAP-5710",
2123 "entry or pasted byte (%K) exists",
2124 key);
2125 retval = -EEXIST;
2126 goto error_out;
2127 }
2128 #ifdef CONFIG_REISERFS_CHECK
2129 check_research_for_paste(search_path, key);
2130 #endif
2131 }
2132
2133 /*
2134 * Perform balancing after all resources are collected by fix_nodes,
2135 * and accessing them will not risk triggering schedule.
2136 */
2137 if (retval == CARRY_ON) {
2138 do_balance(&s_paste_balance, NULL /*ih */ , body, M_PASTE);
2139 return 0;
2140 }
2141 retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO;
2142 error_out:
2143 /* this also releases the path */
2144 unfix_nodes(&s_paste_balance);
2145 #ifdef REISERQUOTA_DEBUG
2146 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
2147 "reiserquota paste_into_item(): freeing %u id=%u type=%c",
2148 pasted_size, inode->i_uid,
2149 key2type(&key->on_disk_key));
2150 #endif
2151 depth = reiserfs_write_unlock_nested(sb);
2152 dquot_free_space_nodirty(inode, pasted_size);
2153 reiserfs_write_lock_nested(sb, depth);
2154 return retval;
2155 }
2156
2157 /*
2158 * Insert new item into the buffer at the path.
2159 * th - active transaction handle
2160 * path - path to the inserted item
2161 * ih - pointer to the item header to insert
2162 * body - pointer to the bytes to insert
2163 */
reiserfs_insert_item(struct reiserfs_transaction_handle * th,struct treepath * path,const struct cpu_key * key,struct item_head * ih,struct inode * inode,const char * body)2164 int reiserfs_insert_item(struct reiserfs_transaction_handle *th,
2165 struct treepath *path, const struct cpu_key *key,
2166 struct item_head *ih, struct inode *inode,
2167 const char *body)
2168 {
2169 struct tree_balance s_ins_balance;
2170 int retval;
2171 int fs_gen = 0;
2172 int quota_bytes = 0;
2173
2174 BUG_ON(!th->t_trans_id);
2175
2176 if (inode) { /* Do we count quotas for item? */
2177 int depth;
2178 fs_gen = get_generation(inode->i_sb);
2179 quota_bytes = ih_item_len(ih);
2180
2181 /*
2182 * hack so the quota code doesn't have to guess
2183 * if the file has a tail, links are always tails,
2184 * so there's no guessing needed
2185 */
2186 if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(ih))
2187 quota_bytes = inode->i_sb->s_blocksize + UNFM_P_SIZE;
2188 #ifdef REISERQUOTA_DEBUG
2189 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
2190 "reiserquota insert_item(): allocating %u id=%u type=%c",
2191 quota_bytes, inode->i_uid, head2type(ih));
2192 #endif
2193 /*
2194 * We can't dirty inode here. It would be immediately
2195 * written but appropriate stat item isn't inserted yet...
2196 */
2197 depth = reiserfs_write_unlock_nested(inode->i_sb);
2198 retval = dquot_alloc_space_nodirty(inode, quota_bytes);
2199 reiserfs_write_lock_nested(inode->i_sb, depth);
2200 if (retval) {
2201 pathrelse(path);
2202 return retval;
2203 }
2204 }
2205 init_tb_struct(th, &s_ins_balance, th->t_super, path,
2206 IH_SIZE + ih_item_len(ih));
2207 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
2208 s_ins_balance.key = key->on_disk_key;
2209 #endif
2210 /*
2211 * DQUOT_* can schedule, must check to be sure calling
2212 * fix_nodes is safe
2213 */
2214 if (inode && fs_changed(fs_gen, inode->i_sb)) {
2215 goto search_again;
2216 }
2217
2218 while ((retval =
2219 fix_nodes(M_INSERT, &s_ins_balance, ih,
2220 body)) == REPEAT_SEARCH) {
2221 search_again:
2222 /* file system changed while we were in the fix_nodes */
2223 PROC_INFO_INC(th->t_super, insert_item_restarted);
2224 retval = search_item(th->t_super, key, path);
2225 if (retval == IO_ERROR) {
2226 retval = -EIO;
2227 goto error_out;
2228 }
2229 if (retval == ITEM_FOUND) {
2230 reiserfs_warning(th->t_super, "PAP-5760",
2231 "key %K already exists in the tree",
2232 key);
2233 retval = -EEXIST;
2234 goto error_out;
2235 }
2236 }
2237
2238 /* make balancing after all resources will be collected at a time */
2239 if (retval == CARRY_ON) {
2240 do_balance(&s_ins_balance, ih, body, M_INSERT);
2241 return 0;
2242 }
2243
2244 retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO;
2245 error_out:
2246 /* also releases the path */
2247 unfix_nodes(&s_ins_balance);
2248 #ifdef REISERQUOTA_DEBUG
2249 reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE,
2250 "reiserquota insert_item(): freeing %u id=%u type=%c",
2251 quota_bytes, inode->i_uid, head2type(ih));
2252 #endif
2253 if (inode) {
2254 int depth = reiserfs_write_unlock_nested(inode->i_sb);
2255 dquot_free_space_nodirty(inode, quota_bytes);
2256 reiserfs_write_lock_nested(inode->i_sb, depth);
2257 }
2258 return retval;
2259 }
2260