1 /*
2 * linux/kernel/posix-timers.c
3 *
4 *
5 * 2002-10-15 Posix Clocks & timers
6 * by George Anzinger george@mvista.com
7 *
8 * Copyright (C) 2002 2003 by MontaVista Software.
9 *
10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11 * Copyright (C) 2004 Boris Hu
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or (at
16 * your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful, but
19 * WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * General Public License for more details.
22
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 *
27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
28 */
29
30 /* These are all the functions necessary to implement
31 * POSIX clocks & timers
32 */
33 #include <linux/mm.h>
34 #include <linux/interrupt.h>
35 #include <linux/slab.h>
36 #include <linux/time.h>
37 #include <linux/mutex.h>
38 #include <linux/sched/task.h>
39
40 #include <linux/uaccess.h>
41 #include <linux/list.h>
42 #include <linux/init.h>
43 #include <linux/compiler.h>
44 #include <linux/hash.h>
45 #include <linux/posix-clock.h>
46 #include <linux/posix-timers.h>
47 #include <linux/syscalls.h>
48 #include <linux/wait.h>
49 #include <linux/workqueue.h>
50 #include <linux/export.h>
51 #include <linux/hashtable.h>
52 #include <linux/compat.h>
53 #include <linux/nospec.h>
54
55 #include "timekeeping.h"
56 #include "posix-timers.h"
57
58 /*
59 * Management arrays for POSIX timers. Timers are now kept in static hash table
60 * with 512 entries.
61 * Timer ids are allocated by local routine, which selects proper hash head by
62 * key, constructed from current->signal address and per signal struct counter.
63 * This keeps timer ids unique per process, but now they can intersect between
64 * processes.
65 */
66
67 /*
68 * Lets keep our timers in a slab cache :-)
69 */
70 static struct kmem_cache *posix_timers_cache;
71
72 static DEFINE_HASHTABLE(posix_timers_hashtable, 9);
73 static DEFINE_SPINLOCK(hash_lock);
74
75 static const struct k_clock * const posix_clocks[];
76 static const struct k_clock *clockid_to_kclock(const clockid_t id);
77 static const struct k_clock clock_realtime, clock_monotonic;
78
79 /*
80 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
81 * SIGEV values. Here we put out an error if this assumption fails.
82 */
83 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
84 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
85 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
86 #endif
87
88 /*
89 * The timer ID is turned into a timer address by idr_find().
90 * Verifying a valid ID consists of:
91 *
92 * a) checking that idr_find() returns other than -1.
93 * b) checking that the timer id matches the one in the timer itself.
94 * c) that the timer owner is in the callers thread group.
95 */
96
97 /*
98 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
99 * to implement others. This structure defines the various
100 * clocks.
101 *
102 * RESOLUTION: Clock resolution is used to round up timer and interval
103 * times, NOT to report clock times, which are reported with as
104 * much resolution as the system can muster. In some cases this
105 * resolution may depend on the underlying clock hardware and
106 * may not be quantifiable until run time, and only then is the
107 * necessary code is written. The standard says we should say
108 * something about this issue in the documentation...
109 *
110 * FUNCTIONS: The CLOCKs structure defines possible functions to
111 * handle various clock functions.
112 *
113 * The standard POSIX timer management code assumes the
114 * following: 1.) The k_itimer struct (sched.h) is used for
115 * the timer. 2.) The list, it_lock, it_clock, it_id and
116 * it_pid fields are not modified by timer code.
117 *
118 * Permissions: It is assumed that the clock_settime() function defined
119 * for each clock will take care of permission checks. Some
120 * clocks may be set able by any user (i.e. local process
121 * clocks) others not. Currently the only set able clock we
122 * have is CLOCK_REALTIME and its high res counter part, both of
123 * which we beg off on and pass to do_sys_settimeofday().
124 */
125 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);
126
127 #define lock_timer(tid, flags) \
128 ({ struct k_itimer *__timr; \
129 __cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags)); \
130 __timr; \
131 })
132
hash(struct signal_struct * sig,unsigned int nr)133 static int hash(struct signal_struct *sig, unsigned int nr)
134 {
135 return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable));
136 }
137
__posix_timers_find(struct hlist_head * head,struct signal_struct * sig,timer_t id)138 static struct k_itimer *__posix_timers_find(struct hlist_head *head,
139 struct signal_struct *sig,
140 timer_t id)
141 {
142 struct k_itimer *timer;
143
144 hlist_for_each_entry_rcu(timer, head, t_hash) {
145 if ((timer->it_signal == sig) && (timer->it_id == id))
146 return timer;
147 }
148 return NULL;
149 }
150
posix_timer_by_id(timer_t id)151 static struct k_itimer *posix_timer_by_id(timer_t id)
152 {
153 struct signal_struct *sig = current->signal;
154 struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)];
155
156 return __posix_timers_find(head, sig, id);
157 }
158
posix_timer_add(struct k_itimer * timer)159 static int posix_timer_add(struct k_itimer *timer)
160 {
161 struct signal_struct *sig = current->signal;
162 int first_free_id = sig->posix_timer_id;
163 struct hlist_head *head;
164 int ret = -ENOENT;
165
166 do {
167 spin_lock(&hash_lock);
168 head = &posix_timers_hashtable[hash(sig, sig->posix_timer_id)];
169 if (!__posix_timers_find(head, sig, sig->posix_timer_id)) {
170 hlist_add_head_rcu(&timer->t_hash, head);
171 ret = sig->posix_timer_id;
172 }
173 if (++sig->posix_timer_id < 0)
174 sig->posix_timer_id = 0;
175 if ((sig->posix_timer_id == first_free_id) && (ret == -ENOENT))
176 /* Loop over all possible ids completed */
177 ret = -EAGAIN;
178 spin_unlock(&hash_lock);
179 } while (ret == -ENOENT);
180 return ret;
181 }
182
unlock_timer(struct k_itimer * timr,unsigned long flags)183 static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
184 {
185 spin_unlock_irqrestore(&timr->it_lock, flags);
186 }
187
188 /* Get clock_realtime */
posix_clock_realtime_get(clockid_t which_clock,struct timespec64 * tp)189 static int posix_clock_realtime_get(clockid_t which_clock, struct timespec64 *tp)
190 {
191 ktime_get_real_ts64(tp);
192 return 0;
193 }
194
195 /* Set clock_realtime */
posix_clock_realtime_set(const clockid_t which_clock,const struct timespec64 * tp)196 static int posix_clock_realtime_set(const clockid_t which_clock,
197 const struct timespec64 *tp)
198 {
199 return do_sys_settimeofday64(tp, NULL);
200 }
201
posix_clock_realtime_adj(const clockid_t which_clock,struct timex * t)202 static int posix_clock_realtime_adj(const clockid_t which_clock,
203 struct timex *t)
204 {
205 return do_adjtimex(t);
206 }
207
208 /*
209 * Get monotonic time for posix timers
210 */
posix_ktime_get_ts(clockid_t which_clock,struct timespec64 * tp)211 static int posix_ktime_get_ts(clockid_t which_clock, struct timespec64 *tp)
212 {
213 ktime_get_ts64(tp);
214 return 0;
215 }
216
217 /*
218 * Get monotonic-raw time for posix timers
219 */
posix_get_monotonic_raw(clockid_t which_clock,struct timespec64 * tp)220 static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec64 *tp)
221 {
222 ktime_get_raw_ts64(tp);
223 return 0;
224 }
225
226
posix_get_realtime_coarse(clockid_t which_clock,struct timespec64 * tp)227 static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec64 *tp)
228 {
229 ktime_get_coarse_real_ts64(tp);
230 return 0;
231 }
232
posix_get_monotonic_coarse(clockid_t which_clock,struct timespec64 * tp)233 static int posix_get_monotonic_coarse(clockid_t which_clock,
234 struct timespec64 *tp)
235 {
236 ktime_get_coarse_ts64(tp);
237 return 0;
238 }
239
posix_get_coarse_res(const clockid_t which_clock,struct timespec64 * tp)240 static int posix_get_coarse_res(const clockid_t which_clock, struct timespec64 *tp)
241 {
242 *tp = ktime_to_timespec64(KTIME_LOW_RES);
243 return 0;
244 }
245
posix_get_boottime(const clockid_t which_clock,struct timespec64 * tp)246 static int posix_get_boottime(const clockid_t which_clock, struct timespec64 *tp)
247 {
248 ktime_get_boottime_ts64(tp);
249 return 0;
250 }
251
posix_get_tai(clockid_t which_clock,struct timespec64 * tp)252 static int posix_get_tai(clockid_t which_clock, struct timespec64 *tp)
253 {
254 ktime_get_clocktai_ts64(tp);
255 return 0;
256 }
257
posix_get_hrtimer_res(clockid_t which_clock,struct timespec64 * tp)258 static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec64 *tp)
259 {
260 tp->tv_sec = 0;
261 tp->tv_nsec = hrtimer_resolution;
262 return 0;
263 }
264
265 /*
266 * Initialize everything, well, just everything in Posix clocks/timers ;)
267 */
init_posix_timers(void)268 static __init int init_posix_timers(void)
269 {
270 posix_timers_cache = kmem_cache_create("posix_timers_cache",
271 sizeof (struct k_itimer), 0, SLAB_PANIC,
272 NULL);
273 return 0;
274 }
275 __initcall(init_posix_timers);
276
277 /*
278 * The siginfo si_overrun field and the return value of timer_getoverrun(2)
279 * are of type int. Clamp the overrun value to INT_MAX
280 */
timer_overrun_to_int(struct k_itimer * timr,int baseval)281 static inline int timer_overrun_to_int(struct k_itimer *timr, int baseval)
282 {
283 s64 sum = timr->it_overrun_last + (s64)baseval;
284
285 return sum > (s64)INT_MAX ? INT_MAX : (int)sum;
286 }
287
common_hrtimer_rearm(struct k_itimer * timr)288 static void common_hrtimer_rearm(struct k_itimer *timr)
289 {
290 struct hrtimer *timer = &timr->it.real.timer;
291
292 if (!timr->it_interval)
293 return;
294
295 timr->it_overrun += hrtimer_forward(timer, timer->base->get_time(),
296 timr->it_interval);
297 hrtimer_restart(timer);
298 }
299
300 /*
301 * This function is exported for use by the signal deliver code. It is
302 * called just prior to the info block being released and passes that
303 * block to us. It's function is to update the overrun entry AND to
304 * restart the timer. It should only be called if the timer is to be
305 * restarted (i.e. we have flagged this in the sys_private entry of the
306 * info block).
307 *
308 * To protect against the timer going away while the interrupt is queued,
309 * we require that the it_requeue_pending flag be set.
310 */
posixtimer_rearm(struct siginfo * info)311 void posixtimer_rearm(struct siginfo *info)
312 {
313 struct k_itimer *timr;
314 unsigned long flags;
315
316 timr = lock_timer(info->si_tid, &flags);
317 if (!timr)
318 return;
319
320 if (timr->it_requeue_pending == info->si_sys_private) {
321 timr->kclock->timer_rearm(timr);
322
323 timr->it_active = 1;
324 timr->it_overrun_last = timr->it_overrun;
325 timr->it_overrun = -1LL;
326 ++timr->it_requeue_pending;
327
328 info->si_overrun = timer_overrun_to_int(timr, info->si_overrun);
329 }
330
331 unlock_timer(timr, flags);
332 }
333
posix_timer_event(struct k_itimer * timr,int si_private)334 int posix_timer_event(struct k_itimer *timr, int si_private)
335 {
336 enum pid_type type;
337 int ret = -1;
338 /*
339 * FIXME: if ->sigq is queued we can race with
340 * dequeue_signal()->posixtimer_rearm().
341 *
342 * If dequeue_signal() sees the "right" value of
343 * si_sys_private it calls posixtimer_rearm().
344 * We re-queue ->sigq and drop ->it_lock().
345 * posixtimer_rearm() locks the timer
346 * and re-schedules it while ->sigq is pending.
347 * Not really bad, but not that we want.
348 */
349 timr->sigq->info.si_sys_private = si_private;
350
351 type = !(timr->it_sigev_notify & SIGEV_THREAD_ID) ? PIDTYPE_TGID : PIDTYPE_PID;
352 ret = send_sigqueue(timr->sigq, timr->it_pid, type);
353 /* If we failed to send the signal the timer stops. */
354 return ret > 0;
355 }
356
357 /*
358 * This function gets called when a POSIX.1b interval timer expires. It
359 * is used as a callback from the kernel internal timer. The
360 * run_timer_list code ALWAYS calls with interrupts on.
361
362 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
363 */
posix_timer_fn(struct hrtimer * timer)364 static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
365 {
366 struct k_itimer *timr;
367 unsigned long flags;
368 int si_private = 0;
369 enum hrtimer_restart ret = HRTIMER_NORESTART;
370
371 timr = container_of(timer, struct k_itimer, it.real.timer);
372 spin_lock_irqsave(&timr->it_lock, flags);
373
374 timr->it_active = 0;
375 if (timr->it_interval != 0)
376 si_private = ++timr->it_requeue_pending;
377
378 if (posix_timer_event(timr, si_private)) {
379 /*
380 * signal was not sent because of sig_ignor
381 * we will not get a call back to restart it AND
382 * it should be restarted.
383 */
384 if (timr->it_interval != 0) {
385 ktime_t now = hrtimer_cb_get_time(timer);
386
387 /*
388 * FIXME: What we really want, is to stop this
389 * timer completely and restart it in case the
390 * SIG_IGN is removed. This is a non trivial
391 * change which involves sighand locking
392 * (sigh !), which we don't want to do late in
393 * the release cycle.
394 *
395 * For now we just let timers with an interval
396 * less than a jiffie expire every jiffie to
397 * avoid softirq starvation in case of SIG_IGN
398 * and a very small interval, which would put
399 * the timer right back on the softirq pending
400 * list. By moving now ahead of time we trick
401 * hrtimer_forward() to expire the timer
402 * later, while we still maintain the overrun
403 * accuracy, but have some inconsistency in
404 * the timer_gettime() case. This is at least
405 * better than a starved softirq. A more
406 * complex fix which solves also another related
407 * inconsistency is already in the pipeline.
408 */
409 #ifdef CONFIG_HIGH_RES_TIMERS
410 {
411 ktime_t kj = NSEC_PER_SEC / HZ;
412
413 if (timr->it_interval < kj)
414 now = ktime_add(now, kj);
415 }
416 #endif
417 timr->it_overrun += hrtimer_forward(timer, now,
418 timr->it_interval);
419 ret = HRTIMER_RESTART;
420 ++timr->it_requeue_pending;
421 timr->it_active = 1;
422 }
423 }
424
425 unlock_timer(timr, flags);
426 return ret;
427 }
428
good_sigevent(sigevent_t * event)429 static struct pid *good_sigevent(sigevent_t * event)
430 {
431 struct pid *pid = task_tgid(current);
432 struct task_struct *rtn;
433
434 switch (event->sigev_notify) {
435 case SIGEV_SIGNAL | SIGEV_THREAD_ID:
436 pid = find_vpid(event->sigev_notify_thread_id);
437 rtn = pid_task(pid, PIDTYPE_PID);
438 if (!rtn || !same_thread_group(rtn, current))
439 return NULL;
440 /* FALLTHRU */
441 case SIGEV_SIGNAL:
442 case SIGEV_THREAD:
443 if (event->sigev_signo <= 0 || event->sigev_signo > SIGRTMAX)
444 return NULL;
445 /* FALLTHRU */
446 case SIGEV_NONE:
447 return pid;
448 default:
449 return NULL;
450 }
451 }
452
alloc_posix_timer(void)453 static struct k_itimer * alloc_posix_timer(void)
454 {
455 struct k_itimer *tmr;
456 tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
457 if (!tmr)
458 return tmr;
459 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
460 kmem_cache_free(posix_timers_cache, tmr);
461 return NULL;
462 }
463 clear_siginfo(&tmr->sigq->info);
464 return tmr;
465 }
466
k_itimer_rcu_free(struct rcu_head * head)467 static void k_itimer_rcu_free(struct rcu_head *head)
468 {
469 struct k_itimer *tmr = container_of(head, struct k_itimer, it.rcu);
470
471 kmem_cache_free(posix_timers_cache, tmr);
472 }
473
474 #define IT_ID_SET 1
475 #define IT_ID_NOT_SET 0
release_posix_timer(struct k_itimer * tmr,int it_id_set)476 static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
477 {
478 if (it_id_set) {
479 unsigned long flags;
480 spin_lock_irqsave(&hash_lock, flags);
481 hlist_del_rcu(&tmr->t_hash);
482 spin_unlock_irqrestore(&hash_lock, flags);
483 }
484 put_pid(tmr->it_pid);
485 sigqueue_free(tmr->sigq);
486 call_rcu(&tmr->it.rcu, k_itimer_rcu_free);
487 }
488
common_timer_create(struct k_itimer * new_timer)489 static int common_timer_create(struct k_itimer *new_timer)
490 {
491 hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
492 return 0;
493 }
494
495 /* Create a POSIX.1b interval timer. */
do_timer_create(clockid_t which_clock,struct sigevent * event,timer_t __user * created_timer_id)496 static int do_timer_create(clockid_t which_clock, struct sigevent *event,
497 timer_t __user *created_timer_id)
498 {
499 const struct k_clock *kc = clockid_to_kclock(which_clock);
500 struct k_itimer *new_timer;
501 int error, new_timer_id;
502 int it_id_set = IT_ID_NOT_SET;
503
504 if (!kc)
505 return -EINVAL;
506 if (!kc->timer_create)
507 return -EOPNOTSUPP;
508
509 new_timer = alloc_posix_timer();
510 if (unlikely(!new_timer))
511 return -EAGAIN;
512
513 spin_lock_init(&new_timer->it_lock);
514 new_timer_id = posix_timer_add(new_timer);
515 if (new_timer_id < 0) {
516 error = new_timer_id;
517 goto out;
518 }
519
520 it_id_set = IT_ID_SET;
521 new_timer->it_id = (timer_t) new_timer_id;
522 new_timer->it_clock = which_clock;
523 new_timer->kclock = kc;
524 new_timer->it_overrun = -1LL;
525
526 if (event) {
527 rcu_read_lock();
528 new_timer->it_pid = get_pid(good_sigevent(event));
529 rcu_read_unlock();
530 if (!new_timer->it_pid) {
531 error = -EINVAL;
532 goto out;
533 }
534 new_timer->it_sigev_notify = event->sigev_notify;
535 new_timer->sigq->info.si_signo = event->sigev_signo;
536 new_timer->sigq->info.si_value = event->sigev_value;
537 } else {
538 new_timer->it_sigev_notify = SIGEV_SIGNAL;
539 new_timer->sigq->info.si_signo = SIGALRM;
540 memset(&new_timer->sigq->info.si_value, 0, sizeof(sigval_t));
541 new_timer->sigq->info.si_value.sival_int = new_timer->it_id;
542 new_timer->it_pid = get_pid(task_tgid(current));
543 }
544
545 new_timer->sigq->info.si_tid = new_timer->it_id;
546 new_timer->sigq->info.si_code = SI_TIMER;
547
548 if (copy_to_user(created_timer_id,
549 &new_timer_id, sizeof (new_timer_id))) {
550 error = -EFAULT;
551 goto out;
552 }
553
554 error = kc->timer_create(new_timer);
555 if (error)
556 goto out;
557
558 spin_lock_irq(¤t->sighand->siglock);
559 new_timer->it_signal = current->signal;
560 list_add(&new_timer->list, ¤t->signal->posix_timers);
561 spin_unlock_irq(¤t->sighand->siglock);
562
563 return 0;
564 /*
565 * In the case of the timer belonging to another task, after
566 * the task is unlocked, the timer is owned by the other task
567 * and may cease to exist at any time. Don't use or modify
568 * new_timer after the unlock call.
569 */
570 out:
571 release_posix_timer(new_timer, it_id_set);
572 return error;
573 }
574
SYSCALL_DEFINE3(timer_create,const clockid_t,which_clock,struct sigevent __user *,timer_event_spec,timer_t __user *,created_timer_id)575 SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
576 struct sigevent __user *, timer_event_spec,
577 timer_t __user *, created_timer_id)
578 {
579 if (timer_event_spec) {
580 sigevent_t event;
581
582 if (copy_from_user(&event, timer_event_spec, sizeof (event)))
583 return -EFAULT;
584 return do_timer_create(which_clock, &event, created_timer_id);
585 }
586 return do_timer_create(which_clock, NULL, created_timer_id);
587 }
588
589 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(timer_create,clockid_t,which_clock,struct compat_sigevent __user *,timer_event_spec,timer_t __user *,created_timer_id)590 COMPAT_SYSCALL_DEFINE3(timer_create, clockid_t, which_clock,
591 struct compat_sigevent __user *, timer_event_spec,
592 timer_t __user *, created_timer_id)
593 {
594 if (timer_event_spec) {
595 sigevent_t event;
596
597 if (get_compat_sigevent(&event, timer_event_spec))
598 return -EFAULT;
599 return do_timer_create(which_clock, &event, created_timer_id);
600 }
601 return do_timer_create(which_clock, NULL, created_timer_id);
602 }
603 #endif
604
605 /*
606 * Locking issues: We need to protect the result of the id look up until
607 * we get the timer locked down so it is not deleted under us. The
608 * removal is done under the idr spinlock so we use that here to bridge
609 * the find to the timer lock. To avoid a dead lock, the timer id MUST
610 * be release with out holding the timer lock.
611 */
__lock_timer(timer_t timer_id,unsigned long * flags)612 static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
613 {
614 struct k_itimer *timr;
615
616 /*
617 * timer_t could be any type >= int and we want to make sure any
618 * @timer_id outside positive int range fails lookup.
619 */
620 if ((unsigned long long)timer_id > INT_MAX)
621 return NULL;
622
623 rcu_read_lock();
624 timr = posix_timer_by_id(timer_id);
625 if (timr) {
626 spin_lock_irqsave(&timr->it_lock, *flags);
627 if (timr->it_signal == current->signal) {
628 rcu_read_unlock();
629 return timr;
630 }
631 spin_unlock_irqrestore(&timr->it_lock, *flags);
632 }
633 rcu_read_unlock();
634
635 return NULL;
636 }
637
common_hrtimer_remaining(struct k_itimer * timr,ktime_t now)638 static ktime_t common_hrtimer_remaining(struct k_itimer *timr, ktime_t now)
639 {
640 struct hrtimer *timer = &timr->it.real.timer;
641
642 return __hrtimer_expires_remaining_adjusted(timer, now);
643 }
644
common_hrtimer_forward(struct k_itimer * timr,ktime_t now)645 static s64 common_hrtimer_forward(struct k_itimer *timr, ktime_t now)
646 {
647 struct hrtimer *timer = &timr->it.real.timer;
648
649 return hrtimer_forward(timer, now, timr->it_interval);
650 }
651
652 /*
653 * Get the time remaining on a POSIX.1b interval timer. This function
654 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
655 * mess with irq.
656 *
657 * We have a couple of messes to clean up here. First there is the case
658 * of a timer that has a requeue pending. These timers should appear to
659 * be in the timer list with an expiry as if we were to requeue them
660 * now.
661 *
662 * The second issue is the SIGEV_NONE timer which may be active but is
663 * not really ever put in the timer list (to save system resources).
664 * This timer may be expired, and if so, we will do it here. Otherwise
665 * it is the same as a requeue pending timer WRT to what we should
666 * report.
667 */
common_timer_get(struct k_itimer * timr,struct itimerspec64 * cur_setting)668 void common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting)
669 {
670 const struct k_clock *kc = timr->kclock;
671 ktime_t now, remaining, iv;
672 struct timespec64 ts64;
673 bool sig_none;
674
675 sig_none = timr->it_sigev_notify == SIGEV_NONE;
676 iv = timr->it_interval;
677
678 /* interval timer ? */
679 if (iv) {
680 cur_setting->it_interval = ktime_to_timespec64(iv);
681 } else if (!timr->it_active) {
682 /*
683 * SIGEV_NONE oneshot timers are never queued. Check them
684 * below.
685 */
686 if (!sig_none)
687 return;
688 }
689
690 /*
691 * The timespec64 based conversion is suboptimal, but it's not
692 * worth to implement yet another callback.
693 */
694 kc->clock_get(timr->it_clock, &ts64);
695 now = timespec64_to_ktime(ts64);
696
697 /*
698 * When a requeue is pending or this is a SIGEV_NONE timer move the
699 * expiry time forward by intervals, so expiry is > now.
700 */
701 if (iv && (timr->it_requeue_pending & REQUEUE_PENDING || sig_none))
702 timr->it_overrun += kc->timer_forward(timr, now);
703
704 remaining = kc->timer_remaining(timr, now);
705 /* Return 0 only, when the timer is expired and not pending */
706 if (remaining <= 0) {
707 /*
708 * A single shot SIGEV_NONE timer must return 0, when
709 * it is expired !
710 */
711 if (!sig_none)
712 cur_setting->it_value.tv_nsec = 1;
713 } else {
714 cur_setting->it_value = ktime_to_timespec64(remaining);
715 }
716 }
717
718 /* Get the time remaining on a POSIX.1b interval timer. */
do_timer_gettime(timer_t timer_id,struct itimerspec64 * setting)719 static int do_timer_gettime(timer_t timer_id, struct itimerspec64 *setting)
720 {
721 struct k_itimer *timr;
722 const struct k_clock *kc;
723 unsigned long flags;
724 int ret = 0;
725
726 timr = lock_timer(timer_id, &flags);
727 if (!timr)
728 return -EINVAL;
729
730 memset(setting, 0, sizeof(*setting));
731 kc = timr->kclock;
732 if (WARN_ON_ONCE(!kc || !kc->timer_get))
733 ret = -EINVAL;
734 else
735 kc->timer_get(timr, setting);
736
737 unlock_timer(timr, flags);
738 return ret;
739 }
740
741 /* Get the time remaining on a POSIX.1b interval timer. */
SYSCALL_DEFINE2(timer_gettime,timer_t,timer_id,struct __kernel_itimerspec __user *,setting)742 SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
743 struct __kernel_itimerspec __user *, setting)
744 {
745 struct itimerspec64 cur_setting;
746
747 int ret = do_timer_gettime(timer_id, &cur_setting);
748 if (!ret) {
749 if (put_itimerspec64(&cur_setting, setting))
750 ret = -EFAULT;
751 }
752 return ret;
753 }
754
755 #ifdef CONFIG_COMPAT_32BIT_TIME
756
COMPAT_SYSCALL_DEFINE2(timer_gettime,timer_t,timer_id,struct compat_itimerspec __user *,setting)757 COMPAT_SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
758 struct compat_itimerspec __user *, setting)
759 {
760 struct itimerspec64 cur_setting;
761
762 int ret = do_timer_gettime(timer_id, &cur_setting);
763 if (!ret) {
764 if (put_compat_itimerspec64(&cur_setting, setting))
765 ret = -EFAULT;
766 }
767 return ret;
768 }
769
770 #endif
771
772 /*
773 * Get the number of overruns of a POSIX.1b interval timer. This is to
774 * be the overrun of the timer last delivered. At the same time we are
775 * accumulating overruns on the next timer. The overrun is frozen when
776 * the signal is delivered, either at the notify time (if the info block
777 * is not queued) or at the actual delivery time (as we are informed by
778 * the call back to posixtimer_rearm(). So all we need to do is
779 * to pick up the frozen overrun.
780 */
SYSCALL_DEFINE1(timer_getoverrun,timer_t,timer_id)781 SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
782 {
783 struct k_itimer *timr;
784 int overrun;
785 unsigned long flags;
786
787 timr = lock_timer(timer_id, &flags);
788 if (!timr)
789 return -EINVAL;
790
791 overrun = timer_overrun_to_int(timr, 0);
792 unlock_timer(timr, flags);
793
794 return overrun;
795 }
796
common_hrtimer_arm(struct k_itimer * timr,ktime_t expires,bool absolute,bool sigev_none)797 static void common_hrtimer_arm(struct k_itimer *timr, ktime_t expires,
798 bool absolute, bool sigev_none)
799 {
800 struct hrtimer *timer = &timr->it.real.timer;
801 enum hrtimer_mode mode;
802
803 mode = absolute ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
804 /*
805 * Posix magic: Relative CLOCK_REALTIME timers are not affected by
806 * clock modifications, so they become CLOCK_MONOTONIC based under the
807 * hood. See hrtimer_init(). Update timr->kclock, so the generic
808 * functions which use timr->kclock->clock_get() work.
809 *
810 * Note: it_clock stays unmodified, because the next timer_set() might
811 * use ABSTIME, so it needs to switch back.
812 */
813 if (timr->it_clock == CLOCK_REALTIME)
814 timr->kclock = absolute ? &clock_realtime : &clock_monotonic;
815
816 hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
817 timr->it.real.timer.function = posix_timer_fn;
818
819 if (!absolute)
820 expires = ktime_add_safe(expires, timer->base->get_time());
821 hrtimer_set_expires(timer, expires);
822
823 if (!sigev_none)
824 hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
825 }
826
common_hrtimer_try_to_cancel(struct k_itimer * timr)827 static int common_hrtimer_try_to_cancel(struct k_itimer *timr)
828 {
829 return hrtimer_try_to_cancel(&timr->it.real.timer);
830 }
831
832 /* Set a POSIX.1b interval timer. */
common_timer_set(struct k_itimer * timr,int flags,struct itimerspec64 * new_setting,struct itimerspec64 * old_setting)833 int common_timer_set(struct k_itimer *timr, int flags,
834 struct itimerspec64 *new_setting,
835 struct itimerspec64 *old_setting)
836 {
837 const struct k_clock *kc = timr->kclock;
838 bool sigev_none;
839 ktime_t expires;
840
841 if (old_setting)
842 common_timer_get(timr, old_setting);
843
844 /* Prevent rearming by clearing the interval */
845 timr->it_interval = 0;
846 /*
847 * Careful here. On SMP systems the timer expiry function could be
848 * active and spinning on timr->it_lock.
849 */
850 if (kc->timer_try_to_cancel(timr) < 0)
851 return TIMER_RETRY;
852
853 timr->it_active = 0;
854 timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
855 ~REQUEUE_PENDING;
856 timr->it_overrun_last = 0;
857
858 /* Switch off the timer when it_value is zero */
859 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
860 return 0;
861
862 timr->it_interval = timespec64_to_ktime(new_setting->it_interval);
863 expires = timespec64_to_ktime(new_setting->it_value);
864 sigev_none = timr->it_sigev_notify == SIGEV_NONE;
865
866 kc->timer_arm(timr, expires, flags & TIMER_ABSTIME, sigev_none);
867 timr->it_active = !sigev_none;
868 return 0;
869 }
870
do_timer_settime(timer_t timer_id,int flags,struct itimerspec64 * new_spec64,struct itimerspec64 * old_spec64)871 static int do_timer_settime(timer_t timer_id, int flags,
872 struct itimerspec64 *new_spec64,
873 struct itimerspec64 *old_spec64)
874 {
875 const struct k_clock *kc;
876 struct k_itimer *timr;
877 unsigned long flag;
878 int error = 0;
879
880 if (!timespec64_valid(&new_spec64->it_interval) ||
881 !timespec64_valid(&new_spec64->it_value))
882 return -EINVAL;
883
884 if (old_spec64)
885 memset(old_spec64, 0, sizeof(*old_spec64));
886 retry:
887 timr = lock_timer(timer_id, &flag);
888 if (!timr)
889 return -EINVAL;
890
891 kc = timr->kclock;
892 if (WARN_ON_ONCE(!kc || !kc->timer_set))
893 error = -EINVAL;
894 else
895 error = kc->timer_set(timr, flags, new_spec64, old_spec64);
896
897 unlock_timer(timr, flag);
898 if (error == TIMER_RETRY) {
899 old_spec64 = NULL; // We already got the old time...
900 goto retry;
901 }
902
903 return error;
904 }
905
906 /* Set a POSIX.1b interval timer */
SYSCALL_DEFINE4(timer_settime,timer_t,timer_id,int,flags,const struct __kernel_itimerspec __user *,new_setting,struct __kernel_itimerspec __user *,old_setting)907 SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
908 const struct __kernel_itimerspec __user *, new_setting,
909 struct __kernel_itimerspec __user *, old_setting)
910 {
911 struct itimerspec64 new_spec, old_spec;
912 struct itimerspec64 *rtn = old_setting ? &old_spec : NULL;
913 int error = 0;
914
915 if (!new_setting)
916 return -EINVAL;
917
918 if (get_itimerspec64(&new_spec, new_setting))
919 return -EFAULT;
920
921 error = do_timer_settime(timer_id, flags, &new_spec, rtn);
922 if (!error && old_setting) {
923 if (put_itimerspec64(&old_spec, old_setting))
924 error = -EFAULT;
925 }
926 return error;
927 }
928
929 #ifdef CONFIG_COMPAT_32BIT_TIME
COMPAT_SYSCALL_DEFINE4(timer_settime,timer_t,timer_id,int,flags,struct compat_itimerspec __user *,new,struct compat_itimerspec __user *,old)930 COMPAT_SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
931 struct compat_itimerspec __user *, new,
932 struct compat_itimerspec __user *, old)
933 {
934 struct itimerspec64 new_spec, old_spec;
935 struct itimerspec64 *rtn = old ? &old_spec : NULL;
936 int error = 0;
937
938 if (!new)
939 return -EINVAL;
940 if (get_compat_itimerspec64(&new_spec, new))
941 return -EFAULT;
942
943 error = do_timer_settime(timer_id, flags, &new_spec, rtn);
944 if (!error && old) {
945 if (put_compat_itimerspec64(&old_spec, old))
946 error = -EFAULT;
947 }
948 return error;
949 }
950 #endif
951
common_timer_del(struct k_itimer * timer)952 int common_timer_del(struct k_itimer *timer)
953 {
954 const struct k_clock *kc = timer->kclock;
955
956 timer->it_interval = 0;
957 if (kc->timer_try_to_cancel(timer) < 0)
958 return TIMER_RETRY;
959 timer->it_active = 0;
960 return 0;
961 }
962
timer_delete_hook(struct k_itimer * timer)963 static inline int timer_delete_hook(struct k_itimer *timer)
964 {
965 const struct k_clock *kc = timer->kclock;
966
967 if (WARN_ON_ONCE(!kc || !kc->timer_del))
968 return -EINVAL;
969 return kc->timer_del(timer);
970 }
971
972 /* Delete a POSIX.1b interval timer. */
SYSCALL_DEFINE1(timer_delete,timer_t,timer_id)973 SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
974 {
975 struct k_itimer *timer;
976 unsigned long flags;
977
978 retry_delete:
979 timer = lock_timer(timer_id, &flags);
980 if (!timer)
981 return -EINVAL;
982
983 if (timer_delete_hook(timer) == TIMER_RETRY) {
984 unlock_timer(timer, flags);
985 goto retry_delete;
986 }
987
988 spin_lock(¤t->sighand->siglock);
989 list_del(&timer->list);
990 spin_unlock(¤t->sighand->siglock);
991 /*
992 * This keeps any tasks waiting on the spin lock from thinking
993 * they got something (see the lock code above).
994 */
995 timer->it_signal = NULL;
996
997 unlock_timer(timer, flags);
998 release_posix_timer(timer, IT_ID_SET);
999 return 0;
1000 }
1001
1002 /*
1003 * return timer owned by the process, used by exit_itimers
1004 */
itimer_delete(struct k_itimer * timer)1005 static void itimer_delete(struct k_itimer *timer)
1006 {
1007 unsigned long flags;
1008
1009 retry_delete:
1010 spin_lock_irqsave(&timer->it_lock, flags);
1011
1012 if (timer_delete_hook(timer) == TIMER_RETRY) {
1013 unlock_timer(timer, flags);
1014 goto retry_delete;
1015 }
1016 list_del(&timer->list);
1017 /*
1018 * This keeps any tasks waiting on the spin lock from thinking
1019 * they got something (see the lock code above).
1020 */
1021 timer->it_signal = NULL;
1022
1023 unlock_timer(timer, flags);
1024 release_posix_timer(timer, IT_ID_SET);
1025 }
1026
1027 /*
1028 * This is called by do_exit or de_thread, only when there are no more
1029 * references to the shared signal_struct.
1030 */
exit_itimers(struct signal_struct * sig)1031 void exit_itimers(struct signal_struct *sig)
1032 {
1033 struct k_itimer *tmr;
1034
1035 while (!list_empty(&sig->posix_timers)) {
1036 tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
1037 itimer_delete(tmr);
1038 }
1039 }
1040
SYSCALL_DEFINE2(clock_settime,const clockid_t,which_clock,const struct __kernel_timespec __user *,tp)1041 SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
1042 const struct __kernel_timespec __user *, tp)
1043 {
1044 const struct k_clock *kc = clockid_to_kclock(which_clock);
1045 struct timespec64 new_tp;
1046
1047 if (!kc || !kc->clock_set)
1048 return -EINVAL;
1049
1050 if (get_timespec64(&new_tp, tp))
1051 return -EFAULT;
1052
1053 return kc->clock_set(which_clock, &new_tp);
1054 }
1055
SYSCALL_DEFINE2(clock_gettime,const clockid_t,which_clock,struct __kernel_timespec __user *,tp)1056 SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
1057 struct __kernel_timespec __user *, tp)
1058 {
1059 const struct k_clock *kc = clockid_to_kclock(which_clock);
1060 struct timespec64 kernel_tp;
1061 int error;
1062
1063 if (!kc)
1064 return -EINVAL;
1065
1066 error = kc->clock_get(which_clock, &kernel_tp);
1067
1068 if (!error && put_timespec64(&kernel_tp, tp))
1069 error = -EFAULT;
1070
1071 return error;
1072 }
1073
SYSCALL_DEFINE2(clock_adjtime,const clockid_t,which_clock,struct timex __user *,utx)1074 SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock,
1075 struct timex __user *, utx)
1076 {
1077 const struct k_clock *kc = clockid_to_kclock(which_clock);
1078 struct timex ktx;
1079 int err;
1080
1081 if (!kc)
1082 return -EINVAL;
1083 if (!kc->clock_adj)
1084 return -EOPNOTSUPP;
1085
1086 if (copy_from_user(&ktx, utx, sizeof(ktx)))
1087 return -EFAULT;
1088
1089 err = kc->clock_adj(which_clock, &ktx);
1090
1091 if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx)))
1092 return -EFAULT;
1093
1094 return err;
1095 }
1096
SYSCALL_DEFINE2(clock_getres,const clockid_t,which_clock,struct __kernel_timespec __user *,tp)1097 SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
1098 struct __kernel_timespec __user *, tp)
1099 {
1100 const struct k_clock *kc = clockid_to_kclock(which_clock);
1101 struct timespec64 rtn_tp;
1102 int error;
1103
1104 if (!kc)
1105 return -EINVAL;
1106
1107 error = kc->clock_getres(which_clock, &rtn_tp);
1108
1109 if (!error && tp && put_timespec64(&rtn_tp, tp))
1110 error = -EFAULT;
1111
1112 return error;
1113 }
1114
1115 #ifdef CONFIG_COMPAT_32BIT_TIME
1116
COMPAT_SYSCALL_DEFINE2(clock_settime,clockid_t,which_clock,struct compat_timespec __user *,tp)1117 COMPAT_SYSCALL_DEFINE2(clock_settime, clockid_t, which_clock,
1118 struct compat_timespec __user *, tp)
1119 {
1120 const struct k_clock *kc = clockid_to_kclock(which_clock);
1121 struct timespec64 ts;
1122
1123 if (!kc || !kc->clock_set)
1124 return -EINVAL;
1125
1126 if (compat_get_timespec64(&ts, tp))
1127 return -EFAULT;
1128
1129 return kc->clock_set(which_clock, &ts);
1130 }
1131
COMPAT_SYSCALL_DEFINE2(clock_gettime,clockid_t,which_clock,struct compat_timespec __user *,tp)1132 COMPAT_SYSCALL_DEFINE2(clock_gettime, clockid_t, which_clock,
1133 struct compat_timespec __user *, tp)
1134 {
1135 const struct k_clock *kc = clockid_to_kclock(which_clock);
1136 struct timespec64 ts;
1137 int err;
1138
1139 if (!kc)
1140 return -EINVAL;
1141
1142 err = kc->clock_get(which_clock, &ts);
1143
1144 if (!err && compat_put_timespec64(&ts, tp))
1145 err = -EFAULT;
1146
1147 return err;
1148 }
1149
1150 #endif
1151
1152 #ifdef CONFIG_COMPAT
1153
COMPAT_SYSCALL_DEFINE2(clock_adjtime,clockid_t,which_clock,struct compat_timex __user *,utp)1154 COMPAT_SYSCALL_DEFINE2(clock_adjtime, clockid_t, which_clock,
1155 struct compat_timex __user *, utp)
1156 {
1157 const struct k_clock *kc = clockid_to_kclock(which_clock);
1158 struct timex ktx;
1159 int err;
1160
1161 if (!kc)
1162 return -EINVAL;
1163 if (!kc->clock_adj)
1164 return -EOPNOTSUPP;
1165
1166 err = compat_get_timex(&ktx, utp);
1167 if (err)
1168 return err;
1169
1170 err = kc->clock_adj(which_clock, &ktx);
1171
1172 if (err >= 0)
1173 err = compat_put_timex(utp, &ktx);
1174
1175 return err;
1176 }
1177
1178 #endif
1179
1180 #ifdef CONFIG_COMPAT_32BIT_TIME
1181
COMPAT_SYSCALL_DEFINE2(clock_getres,clockid_t,which_clock,struct compat_timespec __user *,tp)1182 COMPAT_SYSCALL_DEFINE2(clock_getres, clockid_t, which_clock,
1183 struct compat_timespec __user *, tp)
1184 {
1185 const struct k_clock *kc = clockid_to_kclock(which_clock);
1186 struct timespec64 ts;
1187 int err;
1188
1189 if (!kc)
1190 return -EINVAL;
1191
1192 err = kc->clock_getres(which_clock, &ts);
1193 if (!err && tp && compat_put_timespec64(&ts, tp))
1194 return -EFAULT;
1195
1196 return err;
1197 }
1198
1199 #endif
1200
1201 /*
1202 * nanosleep for monotonic and realtime clocks
1203 */
common_nsleep(const clockid_t which_clock,int flags,const struct timespec64 * rqtp)1204 static int common_nsleep(const clockid_t which_clock, int flags,
1205 const struct timespec64 *rqtp)
1206 {
1207 return hrtimer_nanosleep(rqtp, flags & TIMER_ABSTIME ?
1208 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1209 which_clock);
1210 }
1211
SYSCALL_DEFINE4(clock_nanosleep,const clockid_t,which_clock,int,flags,const struct __kernel_timespec __user *,rqtp,struct __kernel_timespec __user *,rmtp)1212 SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
1213 const struct __kernel_timespec __user *, rqtp,
1214 struct __kernel_timespec __user *, rmtp)
1215 {
1216 const struct k_clock *kc = clockid_to_kclock(which_clock);
1217 struct timespec64 t;
1218
1219 if (!kc)
1220 return -EINVAL;
1221 if (!kc->nsleep)
1222 return -EOPNOTSUPP;
1223
1224 if (get_timespec64(&t, rqtp))
1225 return -EFAULT;
1226
1227 if (!timespec64_valid(&t))
1228 return -EINVAL;
1229 if (flags & TIMER_ABSTIME)
1230 rmtp = NULL;
1231 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1232 current->restart_block.nanosleep.rmtp = rmtp;
1233
1234 return kc->nsleep(which_clock, flags, &t);
1235 }
1236
1237 #ifdef CONFIG_COMPAT_32BIT_TIME
1238
COMPAT_SYSCALL_DEFINE4(clock_nanosleep,clockid_t,which_clock,int,flags,struct compat_timespec __user *,rqtp,struct compat_timespec __user *,rmtp)1239 COMPAT_SYSCALL_DEFINE4(clock_nanosleep, clockid_t, which_clock, int, flags,
1240 struct compat_timespec __user *, rqtp,
1241 struct compat_timespec __user *, rmtp)
1242 {
1243 const struct k_clock *kc = clockid_to_kclock(which_clock);
1244 struct timespec64 t;
1245
1246 if (!kc)
1247 return -EINVAL;
1248 if (!kc->nsleep)
1249 return -EOPNOTSUPP;
1250
1251 if (compat_get_timespec64(&t, rqtp))
1252 return -EFAULT;
1253
1254 if (!timespec64_valid(&t))
1255 return -EINVAL;
1256 if (flags & TIMER_ABSTIME)
1257 rmtp = NULL;
1258 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1259 current->restart_block.nanosleep.compat_rmtp = rmtp;
1260
1261 return kc->nsleep(which_clock, flags, &t);
1262 }
1263
1264 #endif
1265
1266 static const struct k_clock clock_realtime = {
1267 .clock_getres = posix_get_hrtimer_res,
1268 .clock_get = posix_clock_realtime_get,
1269 .clock_set = posix_clock_realtime_set,
1270 .clock_adj = posix_clock_realtime_adj,
1271 .nsleep = common_nsleep,
1272 .timer_create = common_timer_create,
1273 .timer_set = common_timer_set,
1274 .timer_get = common_timer_get,
1275 .timer_del = common_timer_del,
1276 .timer_rearm = common_hrtimer_rearm,
1277 .timer_forward = common_hrtimer_forward,
1278 .timer_remaining = common_hrtimer_remaining,
1279 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1280 .timer_arm = common_hrtimer_arm,
1281 };
1282
1283 static const struct k_clock clock_monotonic = {
1284 .clock_getres = posix_get_hrtimer_res,
1285 .clock_get = posix_ktime_get_ts,
1286 .nsleep = common_nsleep,
1287 .timer_create = common_timer_create,
1288 .timer_set = common_timer_set,
1289 .timer_get = common_timer_get,
1290 .timer_del = common_timer_del,
1291 .timer_rearm = common_hrtimer_rearm,
1292 .timer_forward = common_hrtimer_forward,
1293 .timer_remaining = common_hrtimer_remaining,
1294 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1295 .timer_arm = common_hrtimer_arm,
1296 };
1297
1298 static const struct k_clock clock_monotonic_raw = {
1299 .clock_getres = posix_get_hrtimer_res,
1300 .clock_get = posix_get_monotonic_raw,
1301 };
1302
1303 static const struct k_clock clock_realtime_coarse = {
1304 .clock_getres = posix_get_coarse_res,
1305 .clock_get = posix_get_realtime_coarse,
1306 };
1307
1308 static const struct k_clock clock_monotonic_coarse = {
1309 .clock_getres = posix_get_coarse_res,
1310 .clock_get = posix_get_monotonic_coarse,
1311 };
1312
1313 static const struct k_clock clock_tai = {
1314 .clock_getres = posix_get_hrtimer_res,
1315 .clock_get = posix_get_tai,
1316 .nsleep = common_nsleep,
1317 .timer_create = common_timer_create,
1318 .timer_set = common_timer_set,
1319 .timer_get = common_timer_get,
1320 .timer_del = common_timer_del,
1321 .timer_rearm = common_hrtimer_rearm,
1322 .timer_forward = common_hrtimer_forward,
1323 .timer_remaining = common_hrtimer_remaining,
1324 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1325 .timer_arm = common_hrtimer_arm,
1326 };
1327
1328 static const struct k_clock clock_boottime = {
1329 .clock_getres = posix_get_hrtimer_res,
1330 .clock_get = posix_get_boottime,
1331 .nsleep = common_nsleep,
1332 .timer_create = common_timer_create,
1333 .timer_set = common_timer_set,
1334 .timer_get = common_timer_get,
1335 .timer_del = common_timer_del,
1336 .timer_rearm = common_hrtimer_rearm,
1337 .timer_forward = common_hrtimer_forward,
1338 .timer_remaining = common_hrtimer_remaining,
1339 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1340 .timer_arm = common_hrtimer_arm,
1341 };
1342
1343 static const struct k_clock * const posix_clocks[] = {
1344 [CLOCK_REALTIME] = &clock_realtime,
1345 [CLOCK_MONOTONIC] = &clock_monotonic,
1346 [CLOCK_PROCESS_CPUTIME_ID] = &clock_process,
1347 [CLOCK_THREAD_CPUTIME_ID] = &clock_thread,
1348 [CLOCK_MONOTONIC_RAW] = &clock_monotonic_raw,
1349 [CLOCK_REALTIME_COARSE] = &clock_realtime_coarse,
1350 [CLOCK_MONOTONIC_COARSE] = &clock_monotonic_coarse,
1351 [CLOCK_BOOTTIME] = &clock_boottime,
1352 [CLOCK_REALTIME_ALARM] = &alarm_clock,
1353 [CLOCK_BOOTTIME_ALARM] = &alarm_clock,
1354 [CLOCK_TAI] = &clock_tai,
1355 };
1356
clockid_to_kclock(const clockid_t id)1357 static const struct k_clock *clockid_to_kclock(const clockid_t id)
1358 {
1359 clockid_t idx = id;
1360
1361 if (id < 0) {
1362 return (id & CLOCKFD_MASK) == CLOCKFD ?
1363 &clock_posix_dynamic : &clock_posix_cpu;
1364 }
1365
1366 if (id >= ARRAY_SIZE(posix_clocks))
1367 return NULL;
1368
1369 return posix_clocks[array_index_nospec(idx, ARRAY_SIZE(posix_clocks))];
1370 }
1371