1 /*
2 * Copyright (C) 2012 Red Hat. All rights reserved.
3 *
4 * This file is released under the GPL.
5 */
6
7 #include "dm.h"
8 #include "dm-bio-prison-v2.h"
9 #include "dm-bio-record.h"
10 #include "dm-cache-metadata.h"
11
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/init.h>
16 #include <linux/mempool.h>
17 #include <linux/module.h>
18 #include <linux/rwsem.h>
19 #include <linux/slab.h>
20 #include <linux/vmalloc.h>
21
22 #define DM_MSG_PREFIX "cache"
23
24 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
25 "A percentage of time allocated for copying to and/or from cache");
26
27 /*----------------------------------------------------------------*/
28
29 /*
30 * Glossary:
31 *
32 * oblock: index of an origin block
33 * cblock: index of a cache block
34 * promotion: movement of a block from origin to cache
35 * demotion: movement of a block from cache to origin
36 * migration: movement of a block between the origin and cache device,
37 * either direction
38 */
39
40 /*----------------------------------------------------------------*/
41
42 struct io_tracker {
43 spinlock_t lock;
44
45 /*
46 * Sectors of in-flight IO.
47 */
48 sector_t in_flight;
49
50 /*
51 * The time, in jiffies, when this device became idle (if it is
52 * indeed idle).
53 */
54 unsigned long idle_time;
55 unsigned long last_update_time;
56 };
57
iot_init(struct io_tracker * iot)58 static void iot_init(struct io_tracker *iot)
59 {
60 spin_lock_init(&iot->lock);
61 iot->in_flight = 0ul;
62 iot->idle_time = 0ul;
63 iot->last_update_time = jiffies;
64 }
65
__iot_idle_for(struct io_tracker * iot,unsigned long jifs)66 static bool __iot_idle_for(struct io_tracker *iot, unsigned long jifs)
67 {
68 if (iot->in_flight)
69 return false;
70
71 return time_after(jiffies, iot->idle_time + jifs);
72 }
73
iot_idle_for(struct io_tracker * iot,unsigned long jifs)74 static bool iot_idle_for(struct io_tracker *iot, unsigned long jifs)
75 {
76 bool r;
77 unsigned long flags;
78
79 spin_lock_irqsave(&iot->lock, flags);
80 r = __iot_idle_for(iot, jifs);
81 spin_unlock_irqrestore(&iot->lock, flags);
82
83 return r;
84 }
85
iot_io_begin(struct io_tracker * iot,sector_t len)86 static void iot_io_begin(struct io_tracker *iot, sector_t len)
87 {
88 unsigned long flags;
89
90 spin_lock_irqsave(&iot->lock, flags);
91 iot->in_flight += len;
92 spin_unlock_irqrestore(&iot->lock, flags);
93 }
94
__iot_io_end(struct io_tracker * iot,sector_t len)95 static void __iot_io_end(struct io_tracker *iot, sector_t len)
96 {
97 if (!len)
98 return;
99
100 iot->in_flight -= len;
101 if (!iot->in_flight)
102 iot->idle_time = jiffies;
103 }
104
iot_io_end(struct io_tracker * iot,sector_t len)105 static void iot_io_end(struct io_tracker *iot, sector_t len)
106 {
107 unsigned long flags;
108
109 spin_lock_irqsave(&iot->lock, flags);
110 __iot_io_end(iot, len);
111 spin_unlock_irqrestore(&iot->lock, flags);
112 }
113
114 /*----------------------------------------------------------------*/
115
116 /*
117 * Represents a chunk of future work. 'input' allows continuations to pass
118 * values between themselves, typically error values.
119 */
120 struct continuation {
121 struct work_struct ws;
122 blk_status_t input;
123 };
124
init_continuation(struct continuation * k,void (* fn)(struct work_struct *))125 static inline void init_continuation(struct continuation *k,
126 void (*fn)(struct work_struct *))
127 {
128 INIT_WORK(&k->ws, fn);
129 k->input = 0;
130 }
131
queue_continuation(struct workqueue_struct * wq,struct continuation * k)132 static inline void queue_continuation(struct workqueue_struct *wq,
133 struct continuation *k)
134 {
135 queue_work(wq, &k->ws);
136 }
137
138 /*----------------------------------------------------------------*/
139
140 /*
141 * The batcher collects together pieces of work that need a particular
142 * operation to occur before they can proceed (typically a commit).
143 */
144 struct batcher {
145 /*
146 * The operation that everyone is waiting for.
147 */
148 blk_status_t (*commit_op)(void *context);
149 void *commit_context;
150
151 /*
152 * This is how bios should be issued once the commit op is complete
153 * (accounted_request).
154 */
155 void (*issue_op)(struct bio *bio, void *context);
156 void *issue_context;
157
158 /*
159 * Queued work gets put on here after commit.
160 */
161 struct workqueue_struct *wq;
162
163 spinlock_t lock;
164 struct list_head work_items;
165 struct bio_list bios;
166 struct work_struct commit_work;
167
168 bool commit_scheduled;
169 };
170
__commit(struct work_struct * _ws)171 static void __commit(struct work_struct *_ws)
172 {
173 struct batcher *b = container_of(_ws, struct batcher, commit_work);
174 blk_status_t r;
175 unsigned long flags;
176 struct list_head work_items;
177 struct work_struct *ws, *tmp;
178 struct continuation *k;
179 struct bio *bio;
180 struct bio_list bios;
181
182 INIT_LIST_HEAD(&work_items);
183 bio_list_init(&bios);
184
185 /*
186 * We have to grab these before the commit_op to avoid a race
187 * condition.
188 */
189 spin_lock_irqsave(&b->lock, flags);
190 list_splice_init(&b->work_items, &work_items);
191 bio_list_merge(&bios, &b->bios);
192 bio_list_init(&b->bios);
193 b->commit_scheduled = false;
194 spin_unlock_irqrestore(&b->lock, flags);
195
196 r = b->commit_op(b->commit_context);
197
198 list_for_each_entry_safe(ws, tmp, &work_items, entry) {
199 k = container_of(ws, struct continuation, ws);
200 k->input = r;
201 INIT_LIST_HEAD(&ws->entry); /* to avoid a WARN_ON */
202 queue_work(b->wq, ws);
203 }
204
205 while ((bio = bio_list_pop(&bios))) {
206 if (r) {
207 bio->bi_status = r;
208 bio_endio(bio);
209 } else
210 b->issue_op(bio, b->issue_context);
211 }
212 }
213
batcher_init(struct batcher * b,blk_status_t (* commit_op)(void *),void * commit_context,void (* issue_op)(struct bio * bio,void *),void * issue_context,struct workqueue_struct * wq)214 static void batcher_init(struct batcher *b,
215 blk_status_t (*commit_op)(void *),
216 void *commit_context,
217 void (*issue_op)(struct bio *bio, void *),
218 void *issue_context,
219 struct workqueue_struct *wq)
220 {
221 b->commit_op = commit_op;
222 b->commit_context = commit_context;
223 b->issue_op = issue_op;
224 b->issue_context = issue_context;
225 b->wq = wq;
226
227 spin_lock_init(&b->lock);
228 INIT_LIST_HEAD(&b->work_items);
229 bio_list_init(&b->bios);
230 INIT_WORK(&b->commit_work, __commit);
231 b->commit_scheduled = false;
232 }
233
async_commit(struct batcher * b)234 static void async_commit(struct batcher *b)
235 {
236 queue_work(b->wq, &b->commit_work);
237 }
238
continue_after_commit(struct batcher * b,struct continuation * k)239 static void continue_after_commit(struct batcher *b, struct continuation *k)
240 {
241 unsigned long flags;
242 bool commit_scheduled;
243
244 spin_lock_irqsave(&b->lock, flags);
245 commit_scheduled = b->commit_scheduled;
246 list_add_tail(&k->ws.entry, &b->work_items);
247 spin_unlock_irqrestore(&b->lock, flags);
248
249 if (commit_scheduled)
250 async_commit(b);
251 }
252
253 /*
254 * Bios are errored if commit failed.
255 */
issue_after_commit(struct batcher * b,struct bio * bio)256 static void issue_after_commit(struct batcher *b, struct bio *bio)
257 {
258 unsigned long flags;
259 bool commit_scheduled;
260
261 spin_lock_irqsave(&b->lock, flags);
262 commit_scheduled = b->commit_scheduled;
263 bio_list_add(&b->bios, bio);
264 spin_unlock_irqrestore(&b->lock, flags);
265
266 if (commit_scheduled)
267 async_commit(b);
268 }
269
270 /*
271 * Call this if some urgent work is waiting for the commit to complete.
272 */
schedule_commit(struct batcher * b)273 static void schedule_commit(struct batcher *b)
274 {
275 bool immediate;
276 unsigned long flags;
277
278 spin_lock_irqsave(&b->lock, flags);
279 immediate = !list_empty(&b->work_items) || !bio_list_empty(&b->bios);
280 b->commit_scheduled = true;
281 spin_unlock_irqrestore(&b->lock, flags);
282
283 if (immediate)
284 async_commit(b);
285 }
286
287 /*
288 * There are a couple of places where we let a bio run, but want to do some
289 * work before calling its endio function. We do this by temporarily
290 * changing the endio fn.
291 */
292 struct dm_hook_info {
293 bio_end_io_t *bi_end_io;
294 };
295
dm_hook_bio(struct dm_hook_info * h,struct bio * bio,bio_end_io_t * bi_end_io,void * bi_private)296 static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
297 bio_end_io_t *bi_end_io, void *bi_private)
298 {
299 h->bi_end_io = bio->bi_end_io;
300
301 bio->bi_end_io = bi_end_io;
302 bio->bi_private = bi_private;
303 }
304
dm_unhook_bio(struct dm_hook_info * h,struct bio * bio)305 static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
306 {
307 bio->bi_end_io = h->bi_end_io;
308 }
309
310 /*----------------------------------------------------------------*/
311
312 #define MIGRATION_POOL_SIZE 128
313 #define COMMIT_PERIOD HZ
314 #define MIGRATION_COUNT_WINDOW 10
315
316 /*
317 * The block size of the device holding cache data must be
318 * between 32KB and 1GB.
319 */
320 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
321 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
322
323 enum cache_metadata_mode {
324 CM_WRITE, /* metadata may be changed */
325 CM_READ_ONLY, /* metadata may not be changed */
326 CM_FAIL
327 };
328
329 enum cache_io_mode {
330 /*
331 * Data is written to cached blocks only. These blocks are marked
332 * dirty. If you lose the cache device you will lose data.
333 * Potential performance increase for both reads and writes.
334 */
335 CM_IO_WRITEBACK,
336
337 /*
338 * Data is written to both cache and origin. Blocks are never
339 * dirty. Potential performance benfit for reads only.
340 */
341 CM_IO_WRITETHROUGH,
342
343 /*
344 * A degraded mode useful for various cache coherency situations
345 * (eg, rolling back snapshots). Reads and writes always go to the
346 * origin. If a write goes to a cached oblock, then the cache
347 * block is invalidated.
348 */
349 CM_IO_PASSTHROUGH
350 };
351
352 struct cache_features {
353 enum cache_metadata_mode mode;
354 enum cache_io_mode io_mode;
355 unsigned metadata_version;
356 };
357
358 struct cache_stats {
359 atomic_t read_hit;
360 atomic_t read_miss;
361 atomic_t write_hit;
362 atomic_t write_miss;
363 atomic_t demotion;
364 atomic_t promotion;
365 atomic_t writeback;
366 atomic_t copies_avoided;
367 atomic_t cache_cell_clash;
368 atomic_t commit_count;
369 atomic_t discard_count;
370 };
371
372 struct cache {
373 struct dm_target *ti;
374 spinlock_t lock;
375
376 /*
377 * Fields for converting from sectors to blocks.
378 */
379 int sectors_per_block_shift;
380 sector_t sectors_per_block;
381
382 struct dm_cache_metadata *cmd;
383
384 /*
385 * Metadata is written to this device.
386 */
387 struct dm_dev *metadata_dev;
388
389 /*
390 * The slower of the two data devices. Typically a spindle.
391 */
392 struct dm_dev *origin_dev;
393
394 /*
395 * The faster of the two data devices. Typically an SSD.
396 */
397 struct dm_dev *cache_dev;
398
399 /*
400 * Size of the origin device in _complete_ blocks and native sectors.
401 */
402 dm_oblock_t origin_blocks;
403 sector_t origin_sectors;
404
405 /*
406 * Size of the cache device in blocks.
407 */
408 dm_cblock_t cache_size;
409
410 /*
411 * Invalidation fields.
412 */
413 spinlock_t invalidation_lock;
414 struct list_head invalidation_requests;
415
416 sector_t migration_threshold;
417 wait_queue_head_t migration_wait;
418 atomic_t nr_allocated_migrations;
419
420 /*
421 * The number of in flight migrations that are performing
422 * background io. eg, promotion, writeback.
423 */
424 atomic_t nr_io_migrations;
425
426 struct bio_list deferred_bios;
427
428 struct rw_semaphore quiesce_lock;
429
430 struct dm_target_callbacks callbacks;
431
432 /*
433 * origin_blocks entries, discarded if set.
434 */
435 dm_dblock_t discard_nr_blocks;
436 unsigned long *discard_bitset;
437 uint32_t discard_block_size; /* a power of 2 times sectors per block */
438
439 /*
440 * Rather than reconstructing the table line for the status we just
441 * save it and regurgitate.
442 */
443 unsigned nr_ctr_args;
444 const char **ctr_args;
445
446 struct dm_kcopyd_client *copier;
447 struct work_struct deferred_bio_worker;
448 struct work_struct migration_worker;
449 struct workqueue_struct *wq;
450 struct delayed_work waker;
451 struct dm_bio_prison_v2 *prison;
452
453 /*
454 * cache_size entries, dirty if set
455 */
456 unsigned long *dirty_bitset;
457 atomic_t nr_dirty;
458
459 unsigned policy_nr_args;
460 struct dm_cache_policy *policy;
461
462 /*
463 * Cache features such as write-through.
464 */
465 struct cache_features features;
466
467 struct cache_stats stats;
468
469 bool need_tick_bio:1;
470 bool sized:1;
471 bool invalidate:1;
472 bool commit_requested:1;
473 bool loaded_mappings:1;
474 bool loaded_discards:1;
475
476 struct rw_semaphore background_work_lock;
477
478 struct batcher committer;
479 struct work_struct commit_ws;
480
481 struct io_tracker tracker;
482
483 mempool_t migration_pool;
484
485 struct bio_set bs;
486 };
487
488 struct per_bio_data {
489 bool tick:1;
490 unsigned req_nr:2;
491 struct dm_bio_prison_cell_v2 *cell;
492 struct dm_hook_info hook_info;
493 sector_t len;
494 };
495
496 struct dm_cache_migration {
497 struct continuation k;
498 struct cache *cache;
499
500 struct policy_work *op;
501 struct bio *overwrite_bio;
502 struct dm_bio_prison_cell_v2 *cell;
503
504 dm_cblock_t invalidate_cblock;
505 dm_oblock_t invalidate_oblock;
506 };
507
508 /*----------------------------------------------------------------*/
509
writethrough_mode(struct cache * cache)510 static bool writethrough_mode(struct cache *cache)
511 {
512 return cache->features.io_mode == CM_IO_WRITETHROUGH;
513 }
514
writeback_mode(struct cache * cache)515 static bool writeback_mode(struct cache *cache)
516 {
517 return cache->features.io_mode == CM_IO_WRITEBACK;
518 }
519
passthrough_mode(struct cache * cache)520 static inline bool passthrough_mode(struct cache *cache)
521 {
522 return unlikely(cache->features.io_mode == CM_IO_PASSTHROUGH);
523 }
524
525 /*----------------------------------------------------------------*/
526
wake_deferred_bio_worker(struct cache * cache)527 static void wake_deferred_bio_worker(struct cache *cache)
528 {
529 queue_work(cache->wq, &cache->deferred_bio_worker);
530 }
531
wake_migration_worker(struct cache * cache)532 static void wake_migration_worker(struct cache *cache)
533 {
534 if (passthrough_mode(cache))
535 return;
536
537 queue_work(cache->wq, &cache->migration_worker);
538 }
539
540 /*----------------------------------------------------------------*/
541
alloc_prison_cell(struct cache * cache)542 static struct dm_bio_prison_cell_v2 *alloc_prison_cell(struct cache *cache)
543 {
544 return dm_bio_prison_alloc_cell_v2(cache->prison, GFP_NOWAIT);
545 }
546
free_prison_cell(struct cache * cache,struct dm_bio_prison_cell_v2 * cell)547 static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell_v2 *cell)
548 {
549 dm_bio_prison_free_cell_v2(cache->prison, cell);
550 }
551
alloc_migration(struct cache * cache)552 static struct dm_cache_migration *alloc_migration(struct cache *cache)
553 {
554 struct dm_cache_migration *mg;
555
556 mg = mempool_alloc(&cache->migration_pool, GFP_NOWAIT);
557 if (!mg)
558 return NULL;
559
560 memset(mg, 0, sizeof(*mg));
561
562 mg->cache = cache;
563 atomic_inc(&cache->nr_allocated_migrations);
564
565 return mg;
566 }
567
free_migration(struct dm_cache_migration * mg)568 static void free_migration(struct dm_cache_migration *mg)
569 {
570 struct cache *cache = mg->cache;
571
572 if (atomic_dec_and_test(&cache->nr_allocated_migrations))
573 wake_up(&cache->migration_wait);
574
575 mempool_free(mg, &cache->migration_pool);
576 }
577
578 /*----------------------------------------------------------------*/
579
oblock_succ(dm_oblock_t b)580 static inline dm_oblock_t oblock_succ(dm_oblock_t b)
581 {
582 return to_oblock(from_oblock(b) + 1ull);
583 }
584
build_key(dm_oblock_t begin,dm_oblock_t end,struct dm_cell_key_v2 * key)585 static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key_v2 *key)
586 {
587 key->virtual = 0;
588 key->dev = 0;
589 key->block_begin = from_oblock(begin);
590 key->block_end = from_oblock(end);
591 }
592
593 /*
594 * We have two lock levels. Level 0, which is used to prevent WRITEs, and
595 * level 1 which prevents *both* READs and WRITEs.
596 */
597 #define WRITE_LOCK_LEVEL 0
598 #define READ_WRITE_LOCK_LEVEL 1
599
lock_level(struct bio * bio)600 static unsigned lock_level(struct bio *bio)
601 {
602 return bio_data_dir(bio) == WRITE ?
603 WRITE_LOCK_LEVEL :
604 READ_WRITE_LOCK_LEVEL;
605 }
606
607 /*----------------------------------------------------------------
608 * Per bio data
609 *--------------------------------------------------------------*/
610
get_per_bio_data(struct bio * bio)611 static struct per_bio_data *get_per_bio_data(struct bio *bio)
612 {
613 struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
614 BUG_ON(!pb);
615 return pb;
616 }
617
init_per_bio_data(struct bio * bio)618 static struct per_bio_data *init_per_bio_data(struct bio *bio)
619 {
620 struct per_bio_data *pb = get_per_bio_data(bio);
621
622 pb->tick = false;
623 pb->req_nr = dm_bio_get_target_bio_nr(bio);
624 pb->cell = NULL;
625 pb->len = 0;
626
627 return pb;
628 }
629
630 /*----------------------------------------------------------------*/
631
defer_bio(struct cache * cache,struct bio * bio)632 static void defer_bio(struct cache *cache, struct bio *bio)
633 {
634 unsigned long flags;
635
636 spin_lock_irqsave(&cache->lock, flags);
637 bio_list_add(&cache->deferred_bios, bio);
638 spin_unlock_irqrestore(&cache->lock, flags);
639
640 wake_deferred_bio_worker(cache);
641 }
642
defer_bios(struct cache * cache,struct bio_list * bios)643 static void defer_bios(struct cache *cache, struct bio_list *bios)
644 {
645 unsigned long flags;
646
647 spin_lock_irqsave(&cache->lock, flags);
648 bio_list_merge(&cache->deferred_bios, bios);
649 bio_list_init(bios);
650 spin_unlock_irqrestore(&cache->lock, flags);
651
652 wake_deferred_bio_worker(cache);
653 }
654
655 /*----------------------------------------------------------------*/
656
bio_detain_shared(struct cache * cache,dm_oblock_t oblock,struct bio * bio)657 static bool bio_detain_shared(struct cache *cache, dm_oblock_t oblock, struct bio *bio)
658 {
659 bool r;
660 struct per_bio_data *pb;
661 struct dm_cell_key_v2 key;
662 dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
663 struct dm_bio_prison_cell_v2 *cell_prealloc, *cell;
664
665 cell_prealloc = alloc_prison_cell(cache); /* FIXME: allow wait if calling from worker */
666 if (!cell_prealloc) {
667 defer_bio(cache, bio);
668 return false;
669 }
670
671 build_key(oblock, end, &key);
672 r = dm_cell_get_v2(cache->prison, &key, lock_level(bio), bio, cell_prealloc, &cell);
673 if (!r) {
674 /*
675 * Failed to get the lock.
676 */
677 free_prison_cell(cache, cell_prealloc);
678 return r;
679 }
680
681 if (cell != cell_prealloc)
682 free_prison_cell(cache, cell_prealloc);
683
684 pb = get_per_bio_data(bio);
685 pb->cell = cell;
686
687 return r;
688 }
689
690 /*----------------------------------------------------------------*/
691
is_dirty(struct cache * cache,dm_cblock_t b)692 static bool is_dirty(struct cache *cache, dm_cblock_t b)
693 {
694 return test_bit(from_cblock(b), cache->dirty_bitset);
695 }
696
set_dirty(struct cache * cache,dm_cblock_t cblock)697 static void set_dirty(struct cache *cache, dm_cblock_t cblock)
698 {
699 if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
700 atomic_inc(&cache->nr_dirty);
701 policy_set_dirty(cache->policy, cblock);
702 }
703 }
704
705 /*
706 * These two are called when setting after migrations to force the policy
707 * and dirty bitset to be in sync.
708 */
force_set_dirty(struct cache * cache,dm_cblock_t cblock)709 static void force_set_dirty(struct cache *cache, dm_cblock_t cblock)
710 {
711 if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset))
712 atomic_inc(&cache->nr_dirty);
713 policy_set_dirty(cache->policy, cblock);
714 }
715
force_clear_dirty(struct cache * cache,dm_cblock_t cblock)716 static void force_clear_dirty(struct cache *cache, dm_cblock_t cblock)
717 {
718 if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
719 if (atomic_dec_return(&cache->nr_dirty) == 0)
720 dm_table_event(cache->ti->table);
721 }
722
723 policy_clear_dirty(cache->policy, cblock);
724 }
725
726 /*----------------------------------------------------------------*/
727
block_size_is_power_of_two(struct cache * cache)728 static bool block_size_is_power_of_two(struct cache *cache)
729 {
730 return cache->sectors_per_block_shift >= 0;
731 }
732
733 /* gcc on ARM generates spurious references to __udivdi3 and __umoddi3 */
734 #if defined(CONFIG_ARM) && __GNUC__ == 4 && __GNUC_MINOR__ <= 6
735 __always_inline
736 #endif
block_div(dm_block_t b,uint32_t n)737 static dm_block_t block_div(dm_block_t b, uint32_t n)
738 {
739 do_div(b, n);
740
741 return b;
742 }
743
oblocks_per_dblock(struct cache * cache)744 static dm_block_t oblocks_per_dblock(struct cache *cache)
745 {
746 dm_block_t oblocks = cache->discard_block_size;
747
748 if (block_size_is_power_of_two(cache))
749 oblocks >>= cache->sectors_per_block_shift;
750 else
751 oblocks = block_div(oblocks, cache->sectors_per_block);
752
753 return oblocks;
754 }
755
oblock_to_dblock(struct cache * cache,dm_oblock_t oblock)756 static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
757 {
758 return to_dblock(block_div(from_oblock(oblock),
759 oblocks_per_dblock(cache)));
760 }
761
set_discard(struct cache * cache,dm_dblock_t b)762 static void set_discard(struct cache *cache, dm_dblock_t b)
763 {
764 unsigned long flags;
765
766 BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
767 atomic_inc(&cache->stats.discard_count);
768
769 spin_lock_irqsave(&cache->lock, flags);
770 set_bit(from_dblock(b), cache->discard_bitset);
771 spin_unlock_irqrestore(&cache->lock, flags);
772 }
773
clear_discard(struct cache * cache,dm_dblock_t b)774 static void clear_discard(struct cache *cache, dm_dblock_t b)
775 {
776 unsigned long flags;
777
778 spin_lock_irqsave(&cache->lock, flags);
779 clear_bit(from_dblock(b), cache->discard_bitset);
780 spin_unlock_irqrestore(&cache->lock, flags);
781 }
782
is_discarded(struct cache * cache,dm_dblock_t b)783 static bool is_discarded(struct cache *cache, dm_dblock_t b)
784 {
785 int r;
786 unsigned long flags;
787
788 spin_lock_irqsave(&cache->lock, flags);
789 r = test_bit(from_dblock(b), cache->discard_bitset);
790 spin_unlock_irqrestore(&cache->lock, flags);
791
792 return r;
793 }
794
is_discarded_oblock(struct cache * cache,dm_oblock_t b)795 static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
796 {
797 int r;
798 unsigned long flags;
799
800 spin_lock_irqsave(&cache->lock, flags);
801 r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
802 cache->discard_bitset);
803 spin_unlock_irqrestore(&cache->lock, flags);
804
805 return r;
806 }
807
808 /*----------------------------------------------------------------
809 * Remapping
810 *--------------------------------------------------------------*/
remap_to_origin(struct cache * cache,struct bio * bio)811 static void remap_to_origin(struct cache *cache, struct bio *bio)
812 {
813 bio_set_dev(bio, cache->origin_dev->bdev);
814 }
815
remap_to_cache(struct cache * cache,struct bio * bio,dm_cblock_t cblock)816 static void remap_to_cache(struct cache *cache, struct bio *bio,
817 dm_cblock_t cblock)
818 {
819 sector_t bi_sector = bio->bi_iter.bi_sector;
820 sector_t block = from_cblock(cblock);
821
822 bio_set_dev(bio, cache->cache_dev->bdev);
823 if (!block_size_is_power_of_two(cache))
824 bio->bi_iter.bi_sector =
825 (block * cache->sectors_per_block) +
826 sector_div(bi_sector, cache->sectors_per_block);
827 else
828 bio->bi_iter.bi_sector =
829 (block << cache->sectors_per_block_shift) |
830 (bi_sector & (cache->sectors_per_block - 1));
831 }
832
check_if_tick_bio_needed(struct cache * cache,struct bio * bio)833 static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
834 {
835 unsigned long flags;
836 struct per_bio_data *pb;
837
838 spin_lock_irqsave(&cache->lock, flags);
839 if (cache->need_tick_bio && !op_is_flush(bio->bi_opf) &&
840 bio_op(bio) != REQ_OP_DISCARD) {
841 pb = get_per_bio_data(bio);
842 pb->tick = true;
843 cache->need_tick_bio = false;
844 }
845 spin_unlock_irqrestore(&cache->lock, flags);
846 }
847
__remap_to_origin_clear_discard(struct cache * cache,struct bio * bio,dm_oblock_t oblock,bool bio_has_pbd)848 static void __remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
849 dm_oblock_t oblock, bool bio_has_pbd)
850 {
851 if (bio_has_pbd)
852 check_if_tick_bio_needed(cache, bio);
853 remap_to_origin(cache, bio);
854 if (bio_data_dir(bio) == WRITE)
855 clear_discard(cache, oblock_to_dblock(cache, oblock));
856 }
857
remap_to_origin_clear_discard(struct cache * cache,struct bio * bio,dm_oblock_t oblock)858 static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
859 dm_oblock_t oblock)
860 {
861 // FIXME: check_if_tick_bio_needed() is called way too much through this interface
862 __remap_to_origin_clear_discard(cache, bio, oblock, true);
863 }
864
remap_to_cache_dirty(struct cache * cache,struct bio * bio,dm_oblock_t oblock,dm_cblock_t cblock)865 static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
866 dm_oblock_t oblock, dm_cblock_t cblock)
867 {
868 check_if_tick_bio_needed(cache, bio);
869 remap_to_cache(cache, bio, cblock);
870 if (bio_data_dir(bio) == WRITE) {
871 set_dirty(cache, cblock);
872 clear_discard(cache, oblock_to_dblock(cache, oblock));
873 }
874 }
875
get_bio_block(struct cache * cache,struct bio * bio)876 static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
877 {
878 sector_t block_nr = bio->bi_iter.bi_sector;
879
880 if (!block_size_is_power_of_two(cache))
881 (void) sector_div(block_nr, cache->sectors_per_block);
882 else
883 block_nr >>= cache->sectors_per_block_shift;
884
885 return to_oblock(block_nr);
886 }
887
accountable_bio(struct cache * cache,struct bio * bio)888 static bool accountable_bio(struct cache *cache, struct bio *bio)
889 {
890 return bio_op(bio) != REQ_OP_DISCARD;
891 }
892
accounted_begin(struct cache * cache,struct bio * bio)893 static void accounted_begin(struct cache *cache, struct bio *bio)
894 {
895 struct per_bio_data *pb;
896
897 if (accountable_bio(cache, bio)) {
898 pb = get_per_bio_data(bio);
899 pb->len = bio_sectors(bio);
900 iot_io_begin(&cache->tracker, pb->len);
901 }
902 }
903
accounted_complete(struct cache * cache,struct bio * bio)904 static void accounted_complete(struct cache *cache, struct bio *bio)
905 {
906 struct per_bio_data *pb = get_per_bio_data(bio);
907
908 iot_io_end(&cache->tracker, pb->len);
909 }
910
accounted_request(struct cache * cache,struct bio * bio)911 static void accounted_request(struct cache *cache, struct bio *bio)
912 {
913 accounted_begin(cache, bio);
914 generic_make_request(bio);
915 }
916
issue_op(struct bio * bio,void * context)917 static void issue_op(struct bio *bio, void *context)
918 {
919 struct cache *cache = context;
920 accounted_request(cache, bio);
921 }
922
923 /*
924 * When running in writethrough mode we need to send writes to clean blocks
925 * to both the cache and origin devices. Clone the bio and send them in parallel.
926 */
remap_to_origin_and_cache(struct cache * cache,struct bio * bio,dm_oblock_t oblock,dm_cblock_t cblock)927 static void remap_to_origin_and_cache(struct cache *cache, struct bio *bio,
928 dm_oblock_t oblock, dm_cblock_t cblock)
929 {
930 struct bio *origin_bio = bio_clone_fast(bio, GFP_NOIO, &cache->bs);
931
932 BUG_ON(!origin_bio);
933
934 bio_chain(origin_bio, bio);
935 /*
936 * Passing false to __remap_to_origin_clear_discard() skips
937 * all code that might use per_bio_data (since clone doesn't have it)
938 */
939 __remap_to_origin_clear_discard(cache, origin_bio, oblock, false);
940 submit_bio(origin_bio);
941
942 remap_to_cache(cache, bio, cblock);
943 }
944
945 /*----------------------------------------------------------------
946 * Failure modes
947 *--------------------------------------------------------------*/
get_cache_mode(struct cache * cache)948 static enum cache_metadata_mode get_cache_mode(struct cache *cache)
949 {
950 return cache->features.mode;
951 }
952
cache_device_name(struct cache * cache)953 static const char *cache_device_name(struct cache *cache)
954 {
955 return dm_device_name(dm_table_get_md(cache->ti->table));
956 }
957
notify_mode_switch(struct cache * cache,enum cache_metadata_mode mode)958 static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode)
959 {
960 const char *descs[] = {
961 "write",
962 "read-only",
963 "fail"
964 };
965
966 dm_table_event(cache->ti->table);
967 DMINFO("%s: switching cache to %s mode",
968 cache_device_name(cache), descs[(int)mode]);
969 }
970
set_cache_mode(struct cache * cache,enum cache_metadata_mode new_mode)971 static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode)
972 {
973 bool needs_check;
974 enum cache_metadata_mode old_mode = get_cache_mode(cache);
975
976 if (dm_cache_metadata_needs_check(cache->cmd, &needs_check)) {
977 DMERR("%s: unable to read needs_check flag, setting failure mode.",
978 cache_device_name(cache));
979 new_mode = CM_FAIL;
980 }
981
982 if (new_mode == CM_WRITE && needs_check) {
983 DMERR("%s: unable to switch cache to write mode until repaired.",
984 cache_device_name(cache));
985 if (old_mode != new_mode)
986 new_mode = old_mode;
987 else
988 new_mode = CM_READ_ONLY;
989 }
990
991 /* Never move out of fail mode */
992 if (old_mode == CM_FAIL)
993 new_mode = CM_FAIL;
994
995 switch (new_mode) {
996 case CM_FAIL:
997 case CM_READ_ONLY:
998 dm_cache_metadata_set_read_only(cache->cmd);
999 break;
1000
1001 case CM_WRITE:
1002 dm_cache_metadata_set_read_write(cache->cmd);
1003 break;
1004 }
1005
1006 cache->features.mode = new_mode;
1007
1008 if (new_mode != old_mode)
1009 notify_mode_switch(cache, new_mode);
1010 }
1011
abort_transaction(struct cache * cache)1012 static void abort_transaction(struct cache *cache)
1013 {
1014 const char *dev_name = cache_device_name(cache);
1015
1016 if (get_cache_mode(cache) >= CM_READ_ONLY)
1017 return;
1018
1019 if (dm_cache_metadata_set_needs_check(cache->cmd)) {
1020 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
1021 set_cache_mode(cache, CM_FAIL);
1022 }
1023
1024 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
1025 if (dm_cache_metadata_abort(cache->cmd)) {
1026 DMERR("%s: failed to abort metadata transaction", dev_name);
1027 set_cache_mode(cache, CM_FAIL);
1028 }
1029 }
1030
metadata_operation_failed(struct cache * cache,const char * op,int r)1031 static void metadata_operation_failed(struct cache *cache, const char *op, int r)
1032 {
1033 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1034 cache_device_name(cache), op, r);
1035 abort_transaction(cache);
1036 set_cache_mode(cache, CM_READ_ONLY);
1037 }
1038
1039 /*----------------------------------------------------------------*/
1040
load_stats(struct cache * cache)1041 static void load_stats(struct cache *cache)
1042 {
1043 struct dm_cache_statistics stats;
1044
1045 dm_cache_metadata_get_stats(cache->cmd, &stats);
1046 atomic_set(&cache->stats.read_hit, stats.read_hits);
1047 atomic_set(&cache->stats.read_miss, stats.read_misses);
1048 atomic_set(&cache->stats.write_hit, stats.write_hits);
1049 atomic_set(&cache->stats.write_miss, stats.write_misses);
1050 }
1051
save_stats(struct cache * cache)1052 static void save_stats(struct cache *cache)
1053 {
1054 struct dm_cache_statistics stats;
1055
1056 if (get_cache_mode(cache) >= CM_READ_ONLY)
1057 return;
1058
1059 stats.read_hits = atomic_read(&cache->stats.read_hit);
1060 stats.read_misses = atomic_read(&cache->stats.read_miss);
1061 stats.write_hits = atomic_read(&cache->stats.write_hit);
1062 stats.write_misses = atomic_read(&cache->stats.write_miss);
1063
1064 dm_cache_metadata_set_stats(cache->cmd, &stats);
1065 }
1066
update_stats(struct cache_stats * stats,enum policy_operation op)1067 static void update_stats(struct cache_stats *stats, enum policy_operation op)
1068 {
1069 switch (op) {
1070 case POLICY_PROMOTE:
1071 atomic_inc(&stats->promotion);
1072 break;
1073
1074 case POLICY_DEMOTE:
1075 atomic_inc(&stats->demotion);
1076 break;
1077
1078 case POLICY_WRITEBACK:
1079 atomic_inc(&stats->writeback);
1080 break;
1081 }
1082 }
1083
1084 /*----------------------------------------------------------------
1085 * Migration processing
1086 *
1087 * Migration covers moving data from the origin device to the cache, or
1088 * vice versa.
1089 *--------------------------------------------------------------*/
1090
inc_io_migrations(struct cache * cache)1091 static void inc_io_migrations(struct cache *cache)
1092 {
1093 atomic_inc(&cache->nr_io_migrations);
1094 }
1095
dec_io_migrations(struct cache * cache)1096 static void dec_io_migrations(struct cache *cache)
1097 {
1098 atomic_dec(&cache->nr_io_migrations);
1099 }
1100
discard_or_flush(struct bio * bio)1101 static bool discard_or_flush(struct bio *bio)
1102 {
1103 return bio_op(bio) == REQ_OP_DISCARD || op_is_flush(bio->bi_opf);
1104 }
1105
calc_discard_block_range(struct cache * cache,struct bio * bio,dm_dblock_t * b,dm_dblock_t * e)1106 static void calc_discard_block_range(struct cache *cache, struct bio *bio,
1107 dm_dblock_t *b, dm_dblock_t *e)
1108 {
1109 sector_t sb = bio->bi_iter.bi_sector;
1110 sector_t se = bio_end_sector(bio);
1111
1112 *b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
1113
1114 if (se - sb < cache->discard_block_size)
1115 *e = *b;
1116 else
1117 *e = to_dblock(block_div(se, cache->discard_block_size));
1118 }
1119
1120 /*----------------------------------------------------------------*/
1121
prevent_background_work(struct cache * cache)1122 static void prevent_background_work(struct cache *cache)
1123 {
1124 lockdep_off();
1125 down_write(&cache->background_work_lock);
1126 lockdep_on();
1127 }
1128
allow_background_work(struct cache * cache)1129 static void allow_background_work(struct cache *cache)
1130 {
1131 lockdep_off();
1132 up_write(&cache->background_work_lock);
1133 lockdep_on();
1134 }
1135
background_work_begin(struct cache * cache)1136 static bool background_work_begin(struct cache *cache)
1137 {
1138 bool r;
1139
1140 lockdep_off();
1141 r = down_read_trylock(&cache->background_work_lock);
1142 lockdep_on();
1143
1144 return r;
1145 }
1146
background_work_end(struct cache * cache)1147 static void background_work_end(struct cache *cache)
1148 {
1149 lockdep_off();
1150 up_read(&cache->background_work_lock);
1151 lockdep_on();
1152 }
1153
1154 /*----------------------------------------------------------------*/
1155
bio_writes_complete_block(struct cache * cache,struct bio * bio)1156 static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1157 {
1158 return (bio_data_dir(bio) == WRITE) &&
1159 (bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1160 }
1161
optimisable_bio(struct cache * cache,struct bio * bio,dm_oblock_t block)1162 static bool optimisable_bio(struct cache *cache, struct bio *bio, dm_oblock_t block)
1163 {
1164 return writeback_mode(cache) &&
1165 (is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio));
1166 }
1167
quiesce(struct dm_cache_migration * mg,void (* continuation)(struct work_struct *))1168 static void quiesce(struct dm_cache_migration *mg,
1169 void (*continuation)(struct work_struct *))
1170 {
1171 init_continuation(&mg->k, continuation);
1172 dm_cell_quiesce_v2(mg->cache->prison, mg->cell, &mg->k.ws);
1173 }
1174
ws_to_mg(struct work_struct * ws)1175 static struct dm_cache_migration *ws_to_mg(struct work_struct *ws)
1176 {
1177 struct continuation *k = container_of(ws, struct continuation, ws);
1178 return container_of(k, struct dm_cache_migration, k);
1179 }
1180
copy_complete(int read_err,unsigned long write_err,void * context)1181 static void copy_complete(int read_err, unsigned long write_err, void *context)
1182 {
1183 struct dm_cache_migration *mg = container_of(context, struct dm_cache_migration, k);
1184
1185 if (read_err || write_err)
1186 mg->k.input = BLK_STS_IOERR;
1187
1188 queue_continuation(mg->cache->wq, &mg->k);
1189 }
1190
copy(struct dm_cache_migration * mg,bool promote)1191 static void copy(struct dm_cache_migration *mg, bool promote)
1192 {
1193 struct dm_io_region o_region, c_region;
1194 struct cache *cache = mg->cache;
1195
1196 o_region.bdev = cache->origin_dev->bdev;
1197 o_region.sector = from_oblock(mg->op->oblock) * cache->sectors_per_block;
1198 o_region.count = cache->sectors_per_block;
1199
1200 c_region.bdev = cache->cache_dev->bdev;
1201 c_region.sector = from_cblock(mg->op->cblock) * cache->sectors_per_block;
1202 c_region.count = cache->sectors_per_block;
1203
1204 if (promote)
1205 dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, &mg->k);
1206 else
1207 dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, &mg->k);
1208 }
1209
bio_drop_shared_lock(struct cache * cache,struct bio * bio)1210 static void bio_drop_shared_lock(struct cache *cache, struct bio *bio)
1211 {
1212 struct per_bio_data *pb = get_per_bio_data(bio);
1213
1214 if (pb->cell && dm_cell_put_v2(cache->prison, pb->cell))
1215 free_prison_cell(cache, pb->cell);
1216 pb->cell = NULL;
1217 }
1218
overwrite_endio(struct bio * bio)1219 static void overwrite_endio(struct bio *bio)
1220 {
1221 struct dm_cache_migration *mg = bio->bi_private;
1222 struct cache *cache = mg->cache;
1223 struct per_bio_data *pb = get_per_bio_data(bio);
1224
1225 dm_unhook_bio(&pb->hook_info, bio);
1226
1227 if (bio->bi_status)
1228 mg->k.input = bio->bi_status;
1229
1230 queue_continuation(cache->wq, &mg->k);
1231 }
1232
overwrite(struct dm_cache_migration * mg,void (* continuation)(struct work_struct *))1233 static void overwrite(struct dm_cache_migration *mg,
1234 void (*continuation)(struct work_struct *))
1235 {
1236 struct bio *bio = mg->overwrite_bio;
1237 struct per_bio_data *pb = get_per_bio_data(bio);
1238
1239 dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
1240
1241 /*
1242 * The overwrite bio is part of the copy operation, as such it does
1243 * not set/clear discard or dirty flags.
1244 */
1245 if (mg->op->op == POLICY_PROMOTE)
1246 remap_to_cache(mg->cache, bio, mg->op->cblock);
1247 else
1248 remap_to_origin(mg->cache, bio);
1249
1250 init_continuation(&mg->k, continuation);
1251 accounted_request(mg->cache, bio);
1252 }
1253
1254 /*
1255 * Migration steps:
1256 *
1257 * 1) exclusive lock preventing WRITEs
1258 * 2) quiesce
1259 * 3) copy or issue overwrite bio
1260 * 4) upgrade to exclusive lock preventing READs and WRITEs
1261 * 5) quiesce
1262 * 6) update metadata and commit
1263 * 7) unlock
1264 */
mg_complete(struct dm_cache_migration * mg,bool success)1265 static void mg_complete(struct dm_cache_migration *mg, bool success)
1266 {
1267 struct bio_list bios;
1268 struct cache *cache = mg->cache;
1269 struct policy_work *op = mg->op;
1270 dm_cblock_t cblock = op->cblock;
1271
1272 if (success)
1273 update_stats(&cache->stats, op->op);
1274
1275 switch (op->op) {
1276 case POLICY_PROMOTE:
1277 clear_discard(cache, oblock_to_dblock(cache, op->oblock));
1278 policy_complete_background_work(cache->policy, op, success);
1279
1280 if (mg->overwrite_bio) {
1281 if (success)
1282 force_set_dirty(cache, cblock);
1283 else if (mg->k.input)
1284 mg->overwrite_bio->bi_status = mg->k.input;
1285 else
1286 mg->overwrite_bio->bi_status = BLK_STS_IOERR;
1287 bio_endio(mg->overwrite_bio);
1288 } else {
1289 if (success)
1290 force_clear_dirty(cache, cblock);
1291 dec_io_migrations(cache);
1292 }
1293 break;
1294
1295 case POLICY_DEMOTE:
1296 /*
1297 * We clear dirty here to update the nr_dirty counter.
1298 */
1299 if (success)
1300 force_clear_dirty(cache, cblock);
1301 policy_complete_background_work(cache->policy, op, success);
1302 dec_io_migrations(cache);
1303 break;
1304
1305 case POLICY_WRITEBACK:
1306 if (success)
1307 force_clear_dirty(cache, cblock);
1308 policy_complete_background_work(cache->policy, op, success);
1309 dec_io_migrations(cache);
1310 break;
1311 }
1312
1313 bio_list_init(&bios);
1314 if (mg->cell) {
1315 if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1316 free_prison_cell(cache, mg->cell);
1317 }
1318
1319 free_migration(mg);
1320 defer_bios(cache, &bios);
1321 wake_migration_worker(cache);
1322
1323 background_work_end(cache);
1324 }
1325
mg_success(struct work_struct * ws)1326 static void mg_success(struct work_struct *ws)
1327 {
1328 struct dm_cache_migration *mg = ws_to_mg(ws);
1329 mg_complete(mg, mg->k.input == 0);
1330 }
1331
mg_update_metadata(struct work_struct * ws)1332 static void mg_update_metadata(struct work_struct *ws)
1333 {
1334 int r;
1335 struct dm_cache_migration *mg = ws_to_mg(ws);
1336 struct cache *cache = mg->cache;
1337 struct policy_work *op = mg->op;
1338
1339 switch (op->op) {
1340 case POLICY_PROMOTE:
1341 r = dm_cache_insert_mapping(cache->cmd, op->cblock, op->oblock);
1342 if (r) {
1343 DMERR_LIMIT("%s: migration failed; couldn't insert mapping",
1344 cache_device_name(cache));
1345 metadata_operation_failed(cache, "dm_cache_insert_mapping", r);
1346
1347 mg_complete(mg, false);
1348 return;
1349 }
1350 mg_complete(mg, true);
1351 break;
1352
1353 case POLICY_DEMOTE:
1354 r = dm_cache_remove_mapping(cache->cmd, op->cblock);
1355 if (r) {
1356 DMERR_LIMIT("%s: migration failed; couldn't update on disk metadata",
1357 cache_device_name(cache));
1358 metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1359
1360 mg_complete(mg, false);
1361 return;
1362 }
1363
1364 /*
1365 * It would be nice if we only had to commit when a REQ_FLUSH
1366 * comes through. But there's one scenario that we have to
1367 * look out for:
1368 *
1369 * - vblock x in a cache block
1370 * - domotion occurs
1371 * - cache block gets reallocated and over written
1372 * - crash
1373 *
1374 * When we recover, because there was no commit the cache will
1375 * rollback to having the data for vblock x in the cache block.
1376 * But the cache block has since been overwritten, so it'll end
1377 * up pointing to data that was never in 'x' during the history
1378 * of the device.
1379 *
1380 * To avoid this issue we require a commit as part of the
1381 * demotion operation.
1382 */
1383 init_continuation(&mg->k, mg_success);
1384 continue_after_commit(&cache->committer, &mg->k);
1385 schedule_commit(&cache->committer);
1386 break;
1387
1388 case POLICY_WRITEBACK:
1389 mg_complete(mg, true);
1390 break;
1391 }
1392 }
1393
mg_update_metadata_after_copy(struct work_struct * ws)1394 static void mg_update_metadata_after_copy(struct work_struct *ws)
1395 {
1396 struct dm_cache_migration *mg = ws_to_mg(ws);
1397
1398 /*
1399 * Did the copy succeed?
1400 */
1401 if (mg->k.input)
1402 mg_complete(mg, false);
1403 else
1404 mg_update_metadata(ws);
1405 }
1406
mg_upgrade_lock(struct work_struct * ws)1407 static void mg_upgrade_lock(struct work_struct *ws)
1408 {
1409 int r;
1410 struct dm_cache_migration *mg = ws_to_mg(ws);
1411
1412 /*
1413 * Did the copy succeed?
1414 */
1415 if (mg->k.input)
1416 mg_complete(mg, false);
1417
1418 else {
1419 /*
1420 * Now we want the lock to prevent both reads and writes.
1421 */
1422 r = dm_cell_lock_promote_v2(mg->cache->prison, mg->cell,
1423 READ_WRITE_LOCK_LEVEL);
1424 if (r < 0)
1425 mg_complete(mg, false);
1426
1427 else if (r)
1428 quiesce(mg, mg_update_metadata);
1429
1430 else
1431 mg_update_metadata(ws);
1432 }
1433 }
1434
mg_full_copy(struct work_struct * ws)1435 static void mg_full_copy(struct work_struct *ws)
1436 {
1437 struct dm_cache_migration *mg = ws_to_mg(ws);
1438 struct cache *cache = mg->cache;
1439 struct policy_work *op = mg->op;
1440 bool is_policy_promote = (op->op == POLICY_PROMOTE);
1441
1442 if ((!is_policy_promote && !is_dirty(cache, op->cblock)) ||
1443 is_discarded_oblock(cache, op->oblock)) {
1444 mg_upgrade_lock(ws);
1445 return;
1446 }
1447
1448 init_continuation(&mg->k, mg_upgrade_lock);
1449 copy(mg, is_policy_promote);
1450 }
1451
mg_copy(struct work_struct * ws)1452 static void mg_copy(struct work_struct *ws)
1453 {
1454 struct dm_cache_migration *mg = ws_to_mg(ws);
1455
1456 if (mg->overwrite_bio) {
1457 /*
1458 * No exclusive lock was held when we last checked if the bio
1459 * was optimisable. So we have to check again in case things
1460 * have changed (eg, the block may no longer be discarded).
1461 */
1462 if (!optimisable_bio(mg->cache, mg->overwrite_bio, mg->op->oblock)) {
1463 /*
1464 * Fallback to a real full copy after doing some tidying up.
1465 */
1466 bool rb = bio_detain_shared(mg->cache, mg->op->oblock, mg->overwrite_bio);
1467 BUG_ON(rb); /* An exclussive lock must _not_ be held for this block */
1468 mg->overwrite_bio = NULL;
1469 inc_io_migrations(mg->cache);
1470 mg_full_copy(ws);
1471 return;
1472 }
1473
1474 /*
1475 * It's safe to do this here, even though it's new data
1476 * because all IO has been locked out of the block.
1477 *
1478 * mg_lock_writes() already took READ_WRITE_LOCK_LEVEL
1479 * so _not_ using mg_upgrade_lock() as continutation.
1480 */
1481 overwrite(mg, mg_update_metadata_after_copy);
1482
1483 } else
1484 mg_full_copy(ws);
1485 }
1486
mg_lock_writes(struct dm_cache_migration * mg)1487 static int mg_lock_writes(struct dm_cache_migration *mg)
1488 {
1489 int r;
1490 struct dm_cell_key_v2 key;
1491 struct cache *cache = mg->cache;
1492 struct dm_bio_prison_cell_v2 *prealloc;
1493
1494 prealloc = alloc_prison_cell(cache);
1495 if (!prealloc) {
1496 DMERR_LIMIT("%s: alloc_prison_cell failed", cache_device_name(cache));
1497 mg_complete(mg, false);
1498 return -ENOMEM;
1499 }
1500
1501 /*
1502 * Prevent writes to the block, but allow reads to continue.
1503 * Unless we're using an overwrite bio, in which case we lock
1504 * everything.
1505 */
1506 build_key(mg->op->oblock, oblock_succ(mg->op->oblock), &key);
1507 r = dm_cell_lock_v2(cache->prison, &key,
1508 mg->overwrite_bio ? READ_WRITE_LOCK_LEVEL : WRITE_LOCK_LEVEL,
1509 prealloc, &mg->cell);
1510 if (r < 0) {
1511 free_prison_cell(cache, prealloc);
1512 mg_complete(mg, false);
1513 return r;
1514 }
1515
1516 if (mg->cell != prealloc)
1517 free_prison_cell(cache, prealloc);
1518
1519 if (r == 0)
1520 mg_copy(&mg->k.ws);
1521 else
1522 quiesce(mg, mg_copy);
1523
1524 return 0;
1525 }
1526
mg_start(struct cache * cache,struct policy_work * op,struct bio * bio)1527 static int mg_start(struct cache *cache, struct policy_work *op, struct bio *bio)
1528 {
1529 struct dm_cache_migration *mg;
1530
1531 if (!background_work_begin(cache)) {
1532 policy_complete_background_work(cache->policy, op, false);
1533 return -EPERM;
1534 }
1535
1536 mg = alloc_migration(cache);
1537 if (!mg) {
1538 policy_complete_background_work(cache->policy, op, false);
1539 background_work_end(cache);
1540 return -ENOMEM;
1541 }
1542
1543 mg->op = op;
1544 mg->overwrite_bio = bio;
1545
1546 if (!bio)
1547 inc_io_migrations(cache);
1548
1549 return mg_lock_writes(mg);
1550 }
1551
1552 /*----------------------------------------------------------------
1553 * invalidation processing
1554 *--------------------------------------------------------------*/
1555
invalidate_complete(struct dm_cache_migration * mg,bool success)1556 static void invalidate_complete(struct dm_cache_migration *mg, bool success)
1557 {
1558 struct bio_list bios;
1559 struct cache *cache = mg->cache;
1560
1561 bio_list_init(&bios);
1562 if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1563 free_prison_cell(cache, mg->cell);
1564
1565 if (!success && mg->overwrite_bio)
1566 bio_io_error(mg->overwrite_bio);
1567
1568 free_migration(mg);
1569 defer_bios(cache, &bios);
1570
1571 background_work_end(cache);
1572 }
1573
invalidate_completed(struct work_struct * ws)1574 static void invalidate_completed(struct work_struct *ws)
1575 {
1576 struct dm_cache_migration *mg = ws_to_mg(ws);
1577 invalidate_complete(mg, !mg->k.input);
1578 }
1579
invalidate_cblock(struct cache * cache,dm_cblock_t cblock)1580 static int invalidate_cblock(struct cache *cache, dm_cblock_t cblock)
1581 {
1582 int r = policy_invalidate_mapping(cache->policy, cblock);
1583 if (!r) {
1584 r = dm_cache_remove_mapping(cache->cmd, cblock);
1585 if (r) {
1586 DMERR_LIMIT("%s: invalidation failed; couldn't update on disk metadata",
1587 cache_device_name(cache));
1588 metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1589 }
1590
1591 } else if (r == -ENODATA) {
1592 /*
1593 * Harmless, already unmapped.
1594 */
1595 r = 0;
1596
1597 } else
1598 DMERR("%s: policy_invalidate_mapping failed", cache_device_name(cache));
1599
1600 return r;
1601 }
1602
invalidate_remove(struct work_struct * ws)1603 static void invalidate_remove(struct work_struct *ws)
1604 {
1605 int r;
1606 struct dm_cache_migration *mg = ws_to_mg(ws);
1607 struct cache *cache = mg->cache;
1608
1609 r = invalidate_cblock(cache, mg->invalidate_cblock);
1610 if (r) {
1611 invalidate_complete(mg, false);
1612 return;
1613 }
1614
1615 init_continuation(&mg->k, invalidate_completed);
1616 continue_after_commit(&cache->committer, &mg->k);
1617 remap_to_origin_clear_discard(cache, mg->overwrite_bio, mg->invalidate_oblock);
1618 mg->overwrite_bio = NULL;
1619 schedule_commit(&cache->committer);
1620 }
1621
invalidate_lock(struct dm_cache_migration * mg)1622 static int invalidate_lock(struct dm_cache_migration *mg)
1623 {
1624 int r;
1625 struct dm_cell_key_v2 key;
1626 struct cache *cache = mg->cache;
1627 struct dm_bio_prison_cell_v2 *prealloc;
1628
1629 prealloc = alloc_prison_cell(cache);
1630 if (!prealloc) {
1631 invalidate_complete(mg, false);
1632 return -ENOMEM;
1633 }
1634
1635 build_key(mg->invalidate_oblock, oblock_succ(mg->invalidate_oblock), &key);
1636 r = dm_cell_lock_v2(cache->prison, &key,
1637 READ_WRITE_LOCK_LEVEL, prealloc, &mg->cell);
1638 if (r < 0) {
1639 free_prison_cell(cache, prealloc);
1640 invalidate_complete(mg, false);
1641 return r;
1642 }
1643
1644 if (mg->cell != prealloc)
1645 free_prison_cell(cache, prealloc);
1646
1647 if (r)
1648 quiesce(mg, invalidate_remove);
1649
1650 else {
1651 /*
1652 * We can't call invalidate_remove() directly here because we
1653 * might still be in request context.
1654 */
1655 init_continuation(&mg->k, invalidate_remove);
1656 queue_work(cache->wq, &mg->k.ws);
1657 }
1658
1659 return 0;
1660 }
1661
invalidate_start(struct cache * cache,dm_cblock_t cblock,dm_oblock_t oblock,struct bio * bio)1662 static int invalidate_start(struct cache *cache, dm_cblock_t cblock,
1663 dm_oblock_t oblock, struct bio *bio)
1664 {
1665 struct dm_cache_migration *mg;
1666
1667 if (!background_work_begin(cache))
1668 return -EPERM;
1669
1670 mg = alloc_migration(cache);
1671 if (!mg) {
1672 background_work_end(cache);
1673 return -ENOMEM;
1674 }
1675
1676 mg->overwrite_bio = bio;
1677 mg->invalidate_cblock = cblock;
1678 mg->invalidate_oblock = oblock;
1679
1680 return invalidate_lock(mg);
1681 }
1682
1683 /*----------------------------------------------------------------
1684 * bio processing
1685 *--------------------------------------------------------------*/
1686
1687 enum busy {
1688 IDLE,
1689 BUSY
1690 };
1691
spare_migration_bandwidth(struct cache * cache)1692 static enum busy spare_migration_bandwidth(struct cache *cache)
1693 {
1694 bool idle = iot_idle_for(&cache->tracker, HZ);
1695 sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
1696 cache->sectors_per_block;
1697
1698 if (idle && current_volume <= cache->migration_threshold)
1699 return IDLE;
1700 else
1701 return BUSY;
1702 }
1703
inc_hit_counter(struct cache * cache,struct bio * bio)1704 static void inc_hit_counter(struct cache *cache, struct bio *bio)
1705 {
1706 atomic_inc(bio_data_dir(bio) == READ ?
1707 &cache->stats.read_hit : &cache->stats.write_hit);
1708 }
1709
inc_miss_counter(struct cache * cache,struct bio * bio)1710 static void inc_miss_counter(struct cache *cache, struct bio *bio)
1711 {
1712 atomic_inc(bio_data_dir(bio) == READ ?
1713 &cache->stats.read_miss : &cache->stats.write_miss);
1714 }
1715
1716 /*----------------------------------------------------------------*/
1717
map_bio(struct cache * cache,struct bio * bio,dm_oblock_t block,bool * commit_needed)1718 static int map_bio(struct cache *cache, struct bio *bio, dm_oblock_t block,
1719 bool *commit_needed)
1720 {
1721 int r, data_dir;
1722 bool rb, background_queued;
1723 dm_cblock_t cblock;
1724
1725 *commit_needed = false;
1726
1727 rb = bio_detain_shared(cache, block, bio);
1728 if (!rb) {
1729 /*
1730 * An exclusive lock is held for this block, so we have to
1731 * wait. We set the commit_needed flag so the current
1732 * transaction will be committed asap, allowing this lock
1733 * to be dropped.
1734 */
1735 *commit_needed = true;
1736 return DM_MAPIO_SUBMITTED;
1737 }
1738
1739 data_dir = bio_data_dir(bio);
1740
1741 if (optimisable_bio(cache, bio, block)) {
1742 struct policy_work *op = NULL;
1743
1744 r = policy_lookup_with_work(cache->policy, block, &cblock, data_dir, true, &op);
1745 if (unlikely(r && r != -ENOENT)) {
1746 DMERR_LIMIT("%s: policy_lookup_with_work() failed with r = %d",
1747 cache_device_name(cache), r);
1748 bio_io_error(bio);
1749 return DM_MAPIO_SUBMITTED;
1750 }
1751
1752 if (r == -ENOENT && op) {
1753 bio_drop_shared_lock(cache, bio);
1754 BUG_ON(op->op != POLICY_PROMOTE);
1755 mg_start(cache, op, bio);
1756 return DM_MAPIO_SUBMITTED;
1757 }
1758 } else {
1759 r = policy_lookup(cache->policy, block, &cblock, data_dir, false, &background_queued);
1760 if (unlikely(r && r != -ENOENT)) {
1761 DMERR_LIMIT("%s: policy_lookup() failed with r = %d",
1762 cache_device_name(cache), r);
1763 bio_io_error(bio);
1764 return DM_MAPIO_SUBMITTED;
1765 }
1766
1767 if (background_queued)
1768 wake_migration_worker(cache);
1769 }
1770
1771 if (r == -ENOENT) {
1772 struct per_bio_data *pb = get_per_bio_data(bio);
1773
1774 /*
1775 * Miss.
1776 */
1777 inc_miss_counter(cache, bio);
1778 if (pb->req_nr == 0) {
1779 accounted_begin(cache, bio);
1780 remap_to_origin_clear_discard(cache, bio, block);
1781 } else {
1782 /*
1783 * This is a duplicate writethrough io that is no
1784 * longer needed because the block has been demoted.
1785 */
1786 bio_endio(bio);
1787 return DM_MAPIO_SUBMITTED;
1788 }
1789 } else {
1790 /*
1791 * Hit.
1792 */
1793 inc_hit_counter(cache, bio);
1794
1795 /*
1796 * Passthrough always maps to the origin, invalidating any
1797 * cache blocks that are written to.
1798 */
1799 if (passthrough_mode(cache)) {
1800 if (bio_data_dir(bio) == WRITE) {
1801 bio_drop_shared_lock(cache, bio);
1802 atomic_inc(&cache->stats.demotion);
1803 invalidate_start(cache, cblock, block, bio);
1804 } else
1805 remap_to_origin_clear_discard(cache, bio, block);
1806 } else {
1807 if (bio_data_dir(bio) == WRITE && writethrough_mode(cache) &&
1808 !is_dirty(cache, cblock)) {
1809 remap_to_origin_and_cache(cache, bio, block, cblock);
1810 accounted_begin(cache, bio);
1811 } else
1812 remap_to_cache_dirty(cache, bio, block, cblock);
1813 }
1814 }
1815
1816 /*
1817 * dm core turns FUA requests into a separate payload and FLUSH req.
1818 */
1819 if (bio->bi_opf & REQ_FUA) {
1820 /*
1821 * issue_after_commit will call accounted_begin a second time. So
1822 * we call accounted_complete() to avoid double accounting.
1823 */
1824 accounted_complete(cache, bio);
1825 issue_after_commit(&cache->committer, bio);
1826 *commit_needed = true;
1827 return DM_MAPIO_SUBMITTED;
1828 }
1829
1830 return DM_MAPIO_REMAPPED;
1831 }
1832
process_bio(struct cache * cache,struct bio * bio)1833 static bool process_bio(struct cache *cache, struct bio *bio)
1834 {
1835 bool commit_needed;
1836
1837 if (map_bio(cache, bio, get_bio_block(cache, bio), &commit_needed) == DM_MAPIO_REMAPPED)
1838 generic_make_request(bio);
1839
1840 return commit_needed;
1841 }
1842
1843 /*
1844 * A non-zero return indicates read_only or fail_io mode.
1845 */
commit(struct cache * cache,bool clean_shutdown)1846 static int commit(struct cache *cache, bool clean_shutdown)
1847 {
1848 int r;
1849
1850 if (get_cache_mode(cache) >= CM_READ_ONLY)
1851 return -EINVAL;
1852
1853 atomic_inc(&cache->stats.commit_count);
1854 r = dm_cache_commit(cache->cmd, clean_shutdown);
1855 if (r)
1856 metadata_operation_failed(cache, "dm_cache_commit", r);
1857
1858 return r;
1859 }
1860
1861 /*
1862 * Used by the batcher.
1863 */
commit_op(void * context)1864 static blk_status_t commit_op(void *context)
1865 {
1866 struct cache *cache = context;
1867
1868 if (dm_cache_changed_this_transaction(cache->cmd))
1869 return errno_to_blk_status(commit(cache, false));
1870
1871 return 0;
1872 }
1873
1874 /*----------------------------------------------------------------*/
1875
process_flush_bio(struct cache * cache,struct bio * bio)1876 static bool process_flush_bio(struct cache *cache, struct bio *bio)
1877 {
1878 struct per_bio_data *pb = get_per_bio_data(bio);
1879
1880 if (!pb->req_nr)
1881 remap_to_origin(cache, bio);
1882 else
1883 remap_to_cache(cache, bio, 0);
1884
1885 issue_after_commit(&cache->committer, bio);
1886 return true;
1887 }
1888
process_discard_bio(struct cache * cache,struct bio * bio)1889 static bool process_discard_bio(struct cache *cache, struct bio *bio)
1890 {
1891 dm_dblock_t b, e;
1892
1893 // FIXME: do we need to lock the region? Or can we just assume the
1894 // user wont be so foolish as to issue discard concurrently with
1895 // other IO?
1896 calc_discard_block_range(cache, bio, &b, &e);
1897 while (b != e) {
1898 set_discard(cache, b);
1899 b = to_dblock(from_dblock(b) + 1);
1900 }
1901
1902 bio_endio(bio);
1903
1904 return false;
1905 }
1906
process_deferred_bios(struct work_struct * ws)1907 static void process_deferred_bios(struct work_struct *ws)
1908 {
1909 struct cache *cache = container_of(ws, struct cache, deferred_bio_worker);
1910
1911 unsigned long flags;
1912 bool commit_needed = false;
1913 struct bio_list bios;
1914 struct bio *bio;
1915
1916 bio_list_init(&bios);
1917
1918 spin_lock_irqsave(&cache->lock, flags);
1919 bio_list_merge(&bios, &cache->deferred_bios);
1920 bio_list_init(&cache->deferred_bios);
1921 spin_unlock_irqrestore(&cache->lock, flags);
1922
1923 while ((bio = bio_list_pop(&bios))) {
1924 if (bio->bi_opf & REQ_PREFLUSH)
1925 commit_needed = process_flush_bio(cache, bio) || commit_needed;
1926
1927 else if (bio_op(bio) == REQ_OP_DISCARD)
1928 commit_needed = process_discard_bio(cache, bio) || commit_needed;
1929
1930 else
1931 commit_needed = process_bio(cache, bio) || commit_needed;
1932 }
1933
1934 if (commit_needed)
1935 schedule_commit(&cache->committer);
1936 }
1937
1938 /*----------------------------------------------------------------
1939 * Main worker loop
1940 *--------------------------------------------------------------*/
1941
requeue_deferred_bios(struct cache * cache)1942 static void requeue_deferred_bios(struct cache *cache)
1943 {
1944 struct bio *bio;
1945 struct bio_list bios;
1946
1947 bio_list_init(&bios);
1948 bio_list_merge(&bios, &cache->deferred_bios);
1949 bio_list_init(&cache->deferred_bios);
1950
1951 while ((bio = bio_list_pop(&bios))) {
1952 bio->bi_status = BLK_STS_DM_REQUEUE;
1953 bio_endio(bio);
1954 }
1955 }
1956
1957 /*
1958 * We want to commit periodically so that not too much
1959 * unwritten metadata builds up.
1960 */
do_waker(struct work_struct * ws)1961 static void do_waker(struct work_struct *ws)
1962 {
1963 struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
1964
1965 policy_tick(cache->policy, true);
1966 wake_migration_worker(cache);
1967 schedule_commit(&cache->committer);
1968 queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
1969 }
1970
check_migrations(struct work_struct * ws)1971 static void check_migrations(struct work_struct *ws)
1972 {
1973 int r;
1974 struct policy_work *op;
1975 struct cache *cache = container_of(ws, struct cache, migration_worker);
1976 enum busy b;
1977
1978 for (;;) {
1979 b = spare_migration_bandwidth(cache);
1980
1981 r = policy_get_background_work(cache->policy, b == IDLE, &op);
1982 if (r == -ENODATA)
1983 break;
1984
1985 if (r) {
1986 DMERR_LIMIT("%s: policy_background_work failed",
1987 cache_device_name(cache));
1988 break;
1989 }
1990
1991 r = mg_start(cache, op, NULL);
1992 if (r)
1993 break;
1994 }
1995 }
1996
1997 /*----------------------------------------------------------------
1998 * Target methods
1999 *--------------------------------------------------------------*/
2000
2001 /*
2002 * This function gets called on the error paths of the constructor, so we
2003 * have to cope with a partially initialised struct.
2004 */
destroy(struct cache * cache)2005 static void destroy(struct cache *cache)
2006 {
2007 unsigned i;
2008
2009 mempool_exit(&cache->migration_pool);
2010
2011 if (cache->prison)
2012 dm_bio_prison_destroy_v2(cache->prison);
2013
2014 if (cache->wq)
2015 destroy_workqueue(cache->wq);
2016
2017 if (cache->dirty_bitset)
2018 free_bitset(cache->dirty_bitset);
2019
2020 if (cache->discard_bitset)
2021 free_bitset(cache->discard_bitset);
2022
2023 if (cache->copier)
2024 dm_kcopyd_client_destroy(cache->copier);
2025
2026 if (cache->cmd)
2027 dm_cache_metadata_close(cache->cmd);
2028
2029 if (cache->metadata_dev)
2030 dm_put_device(cache->ti, cache->metadata_dev);
2031
2032 if (cache->origin_dev)
2033 dm_put_device(cache->ti, cache->origin_dev);
2034
2035 if (cache->cache_dev)
2036 dm_put_device(cache->ti, cache->cache_dev);
2037
2038 if (cache->policy)
2039 dm_cache_policy_destroy(cache->policy);
2040
2041 for (i = 0; i < cache->nr_ctr_args ; i++)
2042 kfree(cache->ctr_args[i]);
2043 kfree(cache->ctr_args);
2044
2045 bioset_exit(&cache->bs);
2046
2047 kfree(cache);
2048 }
2049
cache_dtr(struct dm_target * ti)2050 static void cache_dtr(struct dm_target *ti)
2051 {
2052 struct cache *cache = ti->private;
2053
2054 destroy(cache);
2055 }
2056
get_dev_size(struct dm_dev * dev)2057 static sector_t get_dev_size(struct dm_dev *dev)
2058 {
2059 return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
2060 }
2061
2062 /*----------------------------------------------------------------*/
2063
2064 /*
2065 * Construct a cache device mapping.
2066 *
2067 * cache <metadata dev> <cache dev> <origin dev> <block size>
2068 * <#feature args> [<feature arg>]*
2069 * <policy> <#policy args> [<policy arg>]*
2070 *
2071 * metadata dev : fast device holding the persistent metadata
2072 * cache dev : fast device holding cached data blocks
2073 * origin dev : slow device holding original data blocks
2074 * block size : cache unit size in sectors
2075 *
2076 * #feature args : number of feature arguments passed
2077 * feature args : writethrough. (The default is writeback.)
2078 *
2079 * policy : the replacement policy to use
2080 * #policy args : an even number of policy arguments corresponding
2081 * to key/value pairs passed to the policy
2082 * policy args : key/value pairs passed to the policy
2083 * E.g. 'sequential_threshold 1024'
2084 * See cache-policies.txt for details.
2085 *
2086 * Optional feature arguments are:
2087 * writethrough : write through caching that prohibits cache block
2088 * content from being different from origin block content.
2089 * Without this argument, the default behaviour is to write
2090 * back cache block contents later for performance reasons,
2091 * so they may differ from the corresponding origin blocks.
2092 */
2093 struct cache_args {
2094 struct dm_target *ti;
2095
2096 struct dm_dev *metadata_dev;
2097
2098 struct dm_dev *cache_dev;
2099 sector_t cache_sectors;
2100
2101 struct dm_dev *origin_dev;
2102 sector_t origin_sectors;
2103
2104 uint32_t block_size;
2105
2106 const char *policy_name;
2107 int policy_argc;
2108 const char **policy_argv;
2109
2110 struct cache_features features;
2111 };
2112
destroy_cache_args(struct cache_args * ca)2113 static void destroy_cache_args(struct cache_args *ca)
2114 {
2115 if (ca->metadata_dev)
2116 dm_put_device(ca->ti, ca->metadata_dev);
2117
2118 if (ca->cache_dev)
2119 dm_put_device(ca->ti, ca->cache_dev);
2120
2121 if (ca->origin_dev)
2122 dm_put_device(ca->ti, ca->origin_dev);
2123
2124 kfree(ca);
2125 }
2126
at_least_one_arg(struct dm_arg_set * as,char ** error)2127 static bool at_least_one_arg(struct dm_arg_set *as, char **error)
2128 {
2129 if (!as->argc) {
2130 *error = "Insufficient args";
2131 return false;
2132 }
2133
2134 return true;
2135 }
2136
parse_metadata_dev(struct cache_args * ca,struct dm_arg_set * as,char ** error)2137 static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
2138 char **error)
2139 {
2140 int r;
2141 sector_t metadata_dev_size;
2142 char b[BDEVNAME_SIZE];
2143
2144 if (!at_least_one_arg(as, error))
2145 return -EINVAL;
2146
2147 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2148 &ca->metadata_dev);
2149 if (r) {
2150 *error = "Error opening metadata device";
2151 return r;
2152 }
2153
2154 metadata_dev_size = get_dev_size(ca->metadata_dev);
2155 if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
2156 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2157 bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
2158
2159 return 0;
2160 }
2161
parse_cache_dev(struct cache_args * ca,struct dm_arg_set * as,char ** error)2162 static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
2163 char **error)
2164 {
2165 int r;
2166
2167 if (!at_least_one_arg(as, error))
2168 return -EINVAL;
2169
2170 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2171 &ca->cache_dev);
2172 if (r) {
2173 *error = "Error opening cache device";
2174 return r;
2175 }
2176 ca->cache_sectors = get_dev_size(ca->cache_dev);
2177
2178 return 0;
2179 }
2180
parse_origin_dev(struct cache_args * ca,struct dm_arg_set * as,char ** error)2181 static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
2182 char **error)
2183 {
2184 int r;
2185
2186 if (!at_least_one_arg(as, error))
2187 return -EINVAL;
2188
2189 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2190 &ca->origin_dev);
2191 if (r) {
2192 *error = "Error opening origin device";
2193 return r;
2194 }
2195
2196 ca->origin_sectors = get_dev_size(ca->origin_dev);
2197 if (ca->ti->len > ca->origin_sectors) {
2198 *error = "Device size larger than cached device";
2199 return -EINVAL;
2200 }
2201
2202 return 0;
2203 }
2204
parse_block_size(struct cache_args * ca,struct dm_arg_set * as,char ** error)2205 static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
2206 char **error)
2207 {
2208 unsigned long block_size;
2209
2210 if (!at_least_one_arg(as, error))
2211 return -EINVAL;
2212
2213 if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
2214 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2215 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2216 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2217 *error = "Invalid data block size";
2218 return -EINVAL;
2219 }
2220
2221 if (block_size > ca->cache_sectors) {
2222 *error = "Data block size is larger than the cache device";
2223 return -EINVAL;
2224 }
2225
2226 ca->block_size = block_size;
2227
2228 return 0;
2229 }
2230
init_features(struct cache_features * cf)2231 static void init_features(struct cache_features *cf)
2232 {
2233 cf->mode = CM_WRITE;
2234 cf->io_mode = CM_IO_WRITEBACK;
2235 cf->metadata_version = 1;
2236 }
2237
parse_features(struct cache_args * ca,struct dm_arg_set * as,char ** error)2238 static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2239 char **error)
2240 {
2241 static const struct dm_arg _args[] = {
2242 {0, 2, "Invalid number of cache feature arguments"},
2243 };
2244
2245 int r, mode_ctr = 0;
2246 unsigned argc;
2247 const char *arg;
2248 struct cache_features *cf = &ca->features;
2249
2250 init_features(cf);
2251
2252 r = dm_read_arg_group(_args, as, &argc, error);
2253 if (r)
2254 return -EINVAL;
2255
2256 while (argc--) {
2257 arg = dm_shift_arg(as);
2258
2259 if (!strcasecmp(arg, "writeback")) {
2260 cf->io_mode = CM_IO_WRITEBACK;
2261 mode_ctr++;
2262 }
2263
2264 else if (!strcasecmp(arg, "writethrough")) {
2265 cf->io_mode = CM_IO_WRITETHROUGH;
2266 mode_ctr++;
2267 }
2268
2269 else if (!strcasecmp(arg, "passthrough")) {
2270 cf->io_mode = CM_IO_PASSTHROUGH;
2271 mode_ctr++;
2272 }
2273
2274 else if (!strcasecmp(arg, "metadata2"))
2275 cf->metadata_version = 2;
2276
2277 else {
2278 *error = "Unrecognised cache feature requested";
2279 return -EINVAL;
2280 }
2281 }
2282
2283 if (mode_ctr > 1) {
2284 *error = "Duplicate cache io_mode features requested";
2285 return -EINVAL;
2286 }
2287
2288 return 0;
2289 }
2290
parse_policy(struct cache_args * ca,struct dm_arg_set * as,char ** error)2291 static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2292 char **error)
2293 {
2294 static const struct dm_arg _args[] = {
2295 {0, 1024, "Invalid number of policy arguments"},
2296 };
2297
2298 int r;
2299
2300 if (!at_least_one_arg(as, error))
2301 return -EINVAL;
2302
2303 ca->policy_name = dm_shift_arg(as);
2304
2305 r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2306 if (r)
2307 return -EINVAL;
2308
2309 ca->policy_argv = (const char **)as->argv;
2310 dm_consume_args(as, ca->policy_argc);
2311
2312 return 0;
2313 }
2314
parse_cache_args(struct cache_args * ca,int argc,char ** argv,char ** error)2315 static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2316 char **error)
2317 {
2318 int r;
2319 struct dm_arg_set as;
2320
2321 as.argc = argc;
2322 as.argv = argv;
2323
2324 r = parse_metadata_dev(ca, &as, error);
2325 if (r)
2326 return r;
2327
2328 r = parse_cache_dev(ca, &as, error);
2329 if (r)
2330 return r;
2331
2332 r = parse_origin_dev(ca, &as, error);
2333 if (r)
2334 return r;
2335
2336 r = parse_block_size(ca, &as, error);
2337 if (r)
2338 return r;
2339
2340 r = parse_features(ca, &as, error);
2341 if (r)
2342 return r;
2343
2344 r = parse_policy(ca, &as, error);
2345 if (r)
2346 return r;
2347
2348 return 0;
2349 }
2350
2351 /*----------------------------------------------------------------*/
2352
2353 static struct kmem_cache *migration_cache;
2354
2355 #define NOT_CORE_OPTION 1
2356
process_config_option(struct cache * cache,const char * key,const char * value)2357 static int process_config_option(struct cache *cache, const char *key, const char *value)
2358 {
2359 unsigned long tmp;
2360
2361 if (!strcasecmp(key, "migration_threshold")) {
2362 if (kstrtoul(value, 10, &tmp))
2363 return -EINVAL;
2364
2365 cache->migration_threshold = tmp;
2366 return 0;
2367 }
2368
2369 return NOT_CORE_OPTION;
2370 }
2371
set_config_value(struct cache * cache,const char * key,const char * value)2372 static int set_config_value(struct cache *cache, const char *key, const char *value)
2373 {
2374 int r = process_config_option(cache, key, value);
2375
2376 if (r == NOT_CORE_OPTION)
2377 r = policy_set_config_value(cache->policy, key, value);
2378
2379 if (r)
2380 DMWARN("bad config value for %s: %s", key, value);
2381
2382 return r;
2383 }
2384
set_config_values(struct cache * cache,int argc,const char ** argv)2385 static int set_config_values(struct cache *cache, int argc, const char **argv)
2386 {
2387 int r = 0;
2388
2389 if (argc & 1) {
2390 DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2391 return -EINVAL;
2392 }
2393
2394 while (argc) {
2395 r = set_config_value(cache, argv[0], argv[1]);
2396 if (r)
2397 break;
2398
2399 argc -= 2;
2400 argv += 2;
2401 }
2402
2403 return r;
2404 }
2405
create_cache_policy(struct cache * cache,struct cache_args * ca,char ** error)2406 static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2407 char **error)
2408 {
2409 struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2410 cache->cache_size,
2411 cache->origin_sectors,
2412 cache->sectors_per_block);
2413 if (IS_ERR(p)) {
2414 *error = "Error creating cache's policy";
2415 return PTR_ERR(p);
2416 }
2417 cache->policy = p;
2418 BUG_ON(!cache->policy);
2419
2420 return 0;
2421 }
2422
2423 /*
2424 * We want the discard block size to be at least the size of the cache
2425 * block size and have no more than 2^14 discard blocks across the origin.
2426 */
2427 #define MAX_DISCARD_BLOCKS (1 << 14)
2428
too_many_discard_blocks(sector_t discard_block_size,sector_t origin_size)2429 static bool too_many_discard_blocks(sector_t discard_block_size,
2430 sector_t origin_size)
2431 {
2432 (void) sector_div(origin_size, discard_block_size);
2433
2434 return origin_size > MAX_DISCARD_BLOCKS;
2435 }
2436
calculate_discard_block_size(sector_t cache_block_size,sector_t origin_size)2437 static sector_t calculate_discard_block_size(sector_t cache_block_size,
2438 sector_t origin_size)
2439 {
2440 sector_t discard_block_size = cache_block_size;
2441
2442 if (origin_size)
2443 while (too_many_discard_blocks(discard_block_size, origin_size))
2444 discard_block_size *= 2;
2445
2446 return discard_block_size;
2447 }
2448
set_cache_size(struct cache * cache,dm_cblock_t size)2449 static void set_cache_size(struct cache *cache, dm_cblock_t size)
2450 {
2451 dm_block_t nr_blocks = from_cblock(size);
2452
2453 if (nr_blocks > (1 << 20) && cache->cache_size != size)
2454 DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2455 "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2456 "Please consider increasing the cache block size to reduce the overall cache block count.",
2457 (unsigned long long) nr_blocks);
2458
2459 cache->cache_size = size;
2460 }
2461
is_congested(struct dm_dev * dev,int bdi_bits)2462 static int is_congested(struct dm_dev *dev, int bdi_bits)
2463 {
2464 struct request_queue *q = bdev_get_queue(dev->bdev);
2465 return bdi_congested(q->backing_dev_info, bdi_bits);
2466 }
2467
cache_is_congested(struct dm_target_callbacks * cb,int bdi_bits)2468 static int cache_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2469 {
2470 struct cache *cache = container_of(cb, struct cache, callbacks);
2471
2472 return is_congested(cache->origin_dev, bdi_bits) ||
2473 is_congested(cache->cache_dev, bdi_bits);
2474 }
2475
2476 #define DEFAULT_MIGRATION_THRESHOLD 2048
2477
cache_create(struct cache_args * ca,struct cache ** result)2478 static int cache_create(struct cache_args *ca, struct cache **result)
2479 {
2480 int r = 0;
2481 char **error = &ca->ti->error;
2482 struct cache *cache;
2483 struct dm_target *ti = ca->ti;
2484 dm_block_t origin_blocks;
2485 struct dm_cache_metadata *cmd;
2486 bool may_format = ca->features.mode == CM_WRITE;
2487
2488 cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2489 if (!cache)
2490 return -ENOMEM;
2491
2492 cache->ti = ca->ti;
2493 ti->private = cache;
2494 ti->num_flush_bios = 2;
2495 ti->flush_supported = true;
2496
2497 ti->num_discard_bios = 1;
2498 ti->discards_supported = true;
2499 ti->split_discard_bios = false;
2500
2501 ti->per_io_data_size = sizeof(struct per_bio_data);
2502
2503 cache->features = ca->features;
2504 if (writethrough_mode(cache)) {
2505 /* Create bioset for writethrough bios issued to origin */
2506 r = bioset_init(&cache->bs, BIO_POOL_SIZE, 0, 0);
2507 if (r)
2508 goto bad;
2509 }
2510
2511 cache->callbacks.congested_fn = cache_is_congested;
2512 dm_table_add_target_callbacks(ti->table, &cache->callbacks);
2513
2514 cache->metadata_dev = ca->metadata_dev;
2515 cache->origin_dev = ca->origin_dev;
2516 cache->cache_dev = ca->cache_dev;
2517
2518 ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2519
2520 origin_blocks = cache->origin_sectors = ca->origin_sectors;
2521 origin_blocks = block_div(origin_blocks, ca->block_size);
2522 cache->origin_blocks = to_oblock(origin_blocks);
2523
2524 cache->sectors_per_block = ca->block_size;
2525 if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2526 r = -EINVAL;
2527 goto bad;
2528 }
2529
2530 if (ca->block_size & (ca->block_size - 1)) {
2531 dm_block_t cache_size = ca->cache_sectors;
2532
2533 cache->sectors_per_block_shift = -1;
2534 cache_size = block_div(cache_size, ca->block_size);
2535 set_cache_size(cache, to_cblock(cache_size));
2536 } else {
2537 cache->sectors_per_block_shift = __ffs(ca->block_size);
2538 set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
2539 }
2540
2541 r = create_cache_policy(cache, ca, error);
2542 if (r)
2543 goto bad;
2544
2545 cache->policy_nr_args = ca->policy_argc;
2546 cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2547
2548 r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2549 if (r) {
2550 *error = "Error setting cache policy's config values";
2551 goto bad;
2552 }
2553
2554 cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2555 ca->block_size, may_format,
2556 dm_cache_policy_get_hint_size(cache->policy),
2557 ca->features.metadata_version);
2558 if (IS_ERR(cmd)) {
2559 *error = "Error creating metadata object";
2560 r = PTR_ERR(cmd);
2561 goto bad;
2562 }
2563 cache->cmd = cmd;
2564 set_cache_mode(cache, CM_WRITE);
2565 if (get_cache_mode(cache) != CM_WRITE) {
2566 *error = "Unable to get write access to metadata, please check/repair metadata.";
2567 r = -EINVAL;
2568 goto bad;
2569 }
2570
2571 if (passthrough_mode(cache)) {
2572 bool all_clean;
2573
2574 r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2575 if (r) {
2576 *error = "dm_cache_metadata_all_clean() failed";
2577 goto bad;
2578 }
2579
2580 if (!all_clean) {
2581 *error = "Cannot enter passthrough mode unless all blocks are clean";
2582 r = -EINVAL;
2583 goto bad;
2584 }
2585
2586 policy_allow_migrations(cache->policy, false);
2587 }
2588
2589 spin_lock_init(&cache->lock);
2590 bio_list_init(&cache->deferred_bios);
2591 atomic_set(&cache->nr_allocated_migrations, 0);
2592 atomic_set(&cache->nr_io_migrations, 0);
2593 init_waitqueue_head(&cache->migration_wait);
2594
2595 r = -ENOMEM;
2596 atomic_set(&cache->nr_dirty, 0);
2597 cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2598 if (!cache->dirty_bitset) {
2599 *error = "could not allocate dirty bitset";
2600 goto bad;
2601 }
2602 clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2603
2604 cache->discard_block_size =
2605 calculate_discard_block_size(cache->sectors_per_block,
2606 cache->origin_sectors);
2607 cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
2608 cache->discard_block_size));
2609 cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2610 if (!cache->discard_bitset) {
2611 *error = "could not allocate discard bitset";
2612 goto bad;
2613 }
2614 clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2615
2616 cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2617 if (IS_ERR(cache->copier)) {
2618 *error = "could not create kcopyd client";
2619 r = PTR_ERR(cache->copier);
2620 goto bad;
2621 }
2622
2623 cache->wq = alloc_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM, 0);
2624 if (!cache->wq) {
2625 *error = "could not create workqueue for metadata object";
2626 goto bad;
2627 }
2628 INIT_WORK(&cache->deferred_bio_worker, process_deferred_bios);
2629 INIT_WORK(&cache->migration_worker, check_migrations);
2630 INIT_DELAYED_WORK(&cache->waker, do_waker);
2631
2632 cache->prison = dm_bio_prison_create_v2(cache->wq);
2633 if (!cache->prison) {
2634 *error = "could not create bio prison";
2635 goto bad;
2636 }
2637
2638 r = mempool_init_slab_pool(&cache->migration_pool, MIGRATION_POOL_SIZE,
2639 migration_cache);
2640 if (r) {
2641 *error = "Error creating cache's migration mempool";
2642 goto bad;
2643 }
2644
2645 cache->need_tick_bio = true;
2646 cache->sized = false;
2647 cache->invalidate = false;
2648 cache->commit_requested = false;
2649 cache->loaded_mappings = false;
2650 cache->loaded_discards = false;
2651
2652 load_stats(cache);
2653
2654 atomic_set(&cache->stats.demotion, 0);
2655 atomic_set(&cache->stats.promotion, 0);
2656 atomic_set(&cache->stats.copies_avoided, 0);
2657 atomic_set(&cache->stats.cache_cell_clash, 0);
2658 atomic_set(&cache->stats.commit_count, 0);
2659 atomic_set(&cache->stats.discard_count, 0);
2660
2661 spin_lock_init(&cache->invalidation_lock);
2662 INIT_LIST_HEAD(&cache->invalidation_requests);
2663
2664 batcher_init(&cache->committer, commit_op, cache,
2665 issue_op, cache, cache->wq);
2666 iot_init(&cache->tracker);
2667
2668 init_rwsem(&cache->background_work_lock);
2669 prevent_background_work(cache);
2670
2671 *result = cache;
2672 return 0;
2673 bad:
2674 destroy(cache);
2675 return r;
2676 }
2677
copy_ctr_args(struct cache * cache,int argc,const char ** argv)2678 static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2679 {
2680 unsigned i;
2681 const char **copy;
2682
2683 copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2684 if (!copy)
2685 return -ENOMEM;
2686 for (i = 0; i < argc; i++) {
2687 copy[i] = kstrdup(argv[i], GFP_KERNEL);
2688 if (!copy[i]) {
2689 while (i--)
2690 kfree(copy[i]);
2691 kfree(copy);
2692 return -ENOMEM;
2693 }
2694 }
2695
2696 cache->nr_ctr_args = argc;
2697 cache->ctr_args = copy;
2698
2699 return 0;
2700 }
2701
cache_ctr(struct dm_target * ti,unsigned argc,char ** argv)2702 static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2703 {
2704 int r = -EINVAL;
2705 struct cache_args *ca;
2706 struct cache *cache = NULL;
2707
2708 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2709 if (!ca) {
2710 ti->error = "Error allocating memory for cache";
2711 return -ENOMEM;
2712 }
2713 ca->ti = ti;
2714
2715 r = parse_cache_args(ca, argc, argv, &ti->error);
2716 if (r)
2717 goto out;
2718
2719 r = cache_create(ca, &cache);
2720 if (r)
2721 goto out;
2722
2723 r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
2724 if (r) {
2725 destroy(cache);
2726 goto out;
2727 }
2728
2729 ti->private = cache;
2730 out:
2731 destroy_cache_args(ca);
2732 return r;
2733 }
2734
2735 /*----------------------------------------------------------------*/
2736
cache_map(struct dm_target * ti,struct bio * bio)2737 static int cache_map(struct dm_target *ti, struct bio *bio)
2738 {
2739 struct cache *cache = ti->private;
2740
2741 int r;
2742 bool commit_needed;
2743 dm_oblock_t block = get_bio_block(cache, bio);
2744
2745 init_per_bio_data(bio);
2746 if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
2747 /*
2748 * This can only occur if the io goes to a partial block at
2749 * the end of the origin device. We don't cache these.
2750 * Just remap to the origin and carry on.
2751 */
2752 remap_to_origin(cache, bio);
2753 accounted_begin(cache, bio);
2754 return DM_MAPIO_REMAPPED;
2755 }
2756
2757 if (discard_or_flush(bio)) {
2758 defer_bio(cache, bio);
2759 return DM_MAPIO_SUBMITTED;
2760 }
2761
2762 r = map_bio(cache, bio, block, &commit_needed);
2763 if (commit_needed)
2764 schedule_commit(&cache->committer);
2765
2766 return r;
2767 }
2768
cache_end_io(struct dm_target * ti,struct bio * bio,blk_status_t * error)2769 static int cache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *error)
2770 {
2771 struct cache *cache = ti->private;
2772 unsigned long flags;
2773 struct per_bio_data *pb = get_per_bio_data(bio);
2774
2775 if (pb->tick) {
2776 policy_tick(cache->policy, false);
2777
2778 spin_lock_irqsave(&cache->lock, flags);
2779 cache->need_tick_bio = true;
2780 spin_unlock_irqrestore(&cache->lock, flags);
2781 }
2782
2783 bio_drop_shared_lock(cache, bio);
2784 accounted_complete(cache, bio);
2785
2786 return DM_ENDIO_DONE;
2787 }
2788
write_dirty_bitset(struct cache * cache)2789 static int write_dirty_bitset(struct cache *cache)
2790 {
2791 int r;
2792
2793 if (get_cache_mode(cache) >= CM_READ_ONLY)
2794 return -EINVAL;
2795
2796 r = dm_cache_set_dirty_bits(cache->cmd, from_cblock(cache->cache_size), cache->dirty_bitset);
2797 if (r)
2798 metadata_operation_failed(cache, "dm_cache_set_dirty_bits", r);
2799
2800 return r;
2801 }
2802
write_discard_bitset(struct cache * cache)2803 static int write_discard_bitset(struct cache *cache)
2804 {
2805 unsigned i, r;
2806
2807 if (get_cache_mode(cache) >= CM_READ_ONLY)
2808 return -EINVAL;
2809
2810 r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
2811 cache->discard_nr_blocks);
2812 if (r) {
2813 DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache));
2814 metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r);
2815 return r;
2816 }
2817
2818 for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
2819 r = dm_cache_set_discard(cache->cmd, to_dblock(i),
2820 is_discarded(cache, to_dblock(i)));
2821 if (r) {
2822 metadata_operation_failed(cache, "dm_cache_set_discard", r);
2823 return r;
2824 }
2825 }
2826
2827 return 0;
2828 }
2829
write_hints(struct cache * cache)2830 static int write_hints(struct cache *cache)
2831 {
2832 int r;
2833
2834 if (get_cache_mode(cache) >= CM_READ_ONLY)
2835 return -EINVAL;
2836
2837 r = dm_cache_write_hints(cache->cmd, cache->policy);
2838 if (r) {
2839 metadata_operation_failed(cache, "dm_cache_write_hints", r);
2840 return r;
2841 }
2842
2843 return 0;
2844 }
2845
2846 /*
2847 * returns true on success
2848 */
sync_metadata(struct cache * cache)2849 static bool sync_metadata(struct cache *cache)
2850 {
2851 int r1, r2, r3, r4;
2852
2853 r1 = write_dirty_bitset(cache);
2854 if (r1)
2855 DMERR("%s: could not write dirty bitset", cache_device_name(cache));
2856
2857 r2 = write_discard_bitset(cache);
2858 if (r2)
2859 DMERR("%s: could not write discard bitset", cache_device_name(cache));
2860
2861 save_stats(cache);
2862
2863 r3 = write_hints(cache);
2864 if (r3)
2865 DMERR("%s: could not write hints", cache_device_name(cache));
2866
2867 /*
2868 * If writing the above metadata failed, we still commit, but don't
2869 * set the clean shutdown flag. This will effectively force every
2870 * dirty bit to be set on reload.
2871 */
2872 r4 = commit(cache, !r1 && !r2 && !r3);
2873 if (r4)
2874 DMERR("%s: could not write cache metadata", cache_device_name(cache));
2875
2876 return !r1 && !r2 && !r3 && !r4;
2877 }
2878
cache_postsuspend(struct dm_target * ti)2879 static void cache_postsuspend(struct dm_target *ti)
2880 {
2881 struct cache *cache = ti->private;
2882
2883 prevent_background_work(cache);
2884 BUG_ON(atomic_read(&cache->nr_io_migrations));
2885
2886 cancel_delayed_work(&cache->waker);
2887 flush_workqueue(cache->wq);
2888 WARN_ON(cache->tracker.in_flight);
2889
2890 /*
2891 * If it's a flush suspend there won't be any deferred bios, so this
2892 * call is harmless.
2893 */
2894 requeue_deferred_bios(cache);
2895
2896 if (get_cache_mode(cache) == CM_WRITE)
2897 (void) sync_metadata(cache);
2898 }
2899
load_mapping(void * context,dm_oblock_t oblock,dm_cblock_t cblock,bool dirty,uint32_t hint,bool hint_valid)2900 static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
2901 bool dirty, uint32_t hint, bool hint_valid)
2902 {
2903 int r;
2904 struct cache *cache = context;
2905
2906 if (dirty) {
2907 set_bit(from_cblock(cblock), cache->dirty_bitset);
2908 atomic_inc(&cache->nr_dirty);
2909 } else
2910 clear_bit(from_cblock(cblock), cache->dirty_bitset);
2911
2912 r = policy_load_mapping(cache->policy, oblock, cblock, dirty, hint, hint_valid);
2913 if (r)
2914 return r;
2915
2916 return 0;
2917 }
2918
2919 /*
2920 * The discard block size in the on disk metadata is not
2921 * neccessarily the same as we're currently using. So we have to
2922 * be careful to only set the discarded attribute if we know it
2923 * covers a complete block of the new size.
2924 */
2925 struct discard_load_info {
2926 struct cache *cache;
2927
2928 /*
2929 * These blocks are sized using the on disk dblock size, rather
2930 * than the current one.
2931 */
2932 dm_block_t block_size;
2933 dm_block_t discard_begin, discard_end;
2934 };
2935
discard_load_info_init(struct cache * cache,struct discard_load_info * li)2936 static void discard_load_info_init(struct cache *cache,
2937 struct discard_load_info *li)
2938 {
2939 li->cache = cache;
2940 li->discard_begin = li->discard_end = 0;
2941 }
2942
set_discard_range(struct discard_load_info * li)2943 static void set_discard_range(struct discard_load_info *li)
2944 {
2945 sector_t b, e;
2946
2947 if (li->discard_begin == li->discard_end)
2948 return;
2949
2950 /*
2951 * Convert to sectors.
2952 */
2953 b = li->discard_begin * li->block_size;
2954 e = li->discard_end * li->block_size;
2955
2956 /*
2957 * Then convert back to the current dblock size.
2958 */
2959 b = dm_sector_div_up(b, li->cache->discard_block_size);
2960 sector_div(e, li->cache->discard_block_size);
2961
2962 /*
2963 * The origin may have shrunk, so we need to check we're still in
2964 * bounds.
2965 */
2966 if (e > from_dblock(li->cache->discard_nr_blocks))
2967 e = from_dblock(li->cache->discard_nr_blocks);
2968
2969 for (; b < e; b++)
2970 set_discard(li->cache, to_dblock(b));
2971 }
2972
load_discard(void * context,sector_t discard_block_size,dm_dblock_t dblock,bool discard)2973 static int load_discard(void *context, sector_t discard_block_size,
2974 dm_dblock_t dblock, bool discard)
2975 {
2976 struct discard_load_info *li = context;
2977
2978 li->block_size = discard_block_size;
2979
2980 if (discard) {
2981 if (from_dblock(dblock) == li->discard_end)
2982 /*
2983 * We're already in a discard range, just extend it.
2984 */
2985 li->discard_end = li->discard_end + 1ULL;
2986
2987 else {
2988 /*
2989 * Emit the old range and start a new one.
2990 */
2991 set_discard_range(li);
2992 li->discard_begin = from_dblock(dblock);
2993 li->discard_end = li->discard_begin + 1ULL;
2994 }
2995 } else {
2996 set_discard_range(li);
2997 li->discard_begin = li->discard_end = 0;
2998 }
2999
3000 return 0;
3001 }
3002
get_cache_dev_size(struct cache * cache)3003 static dm_cblock_t get_cache_dev_size(struct cache *cache)
3004 {
3005 sector_t size = get_dev_size(cache->cache_dev);
3006 (void) sector_div(size, cache->sectors_per_block);
3007 return to_cblock(size);
3008 }
3009
can_resize(struct cache * cache,dm_cblock_t new_size)3010 static bool can_resize(struct cache *cache, dm_cblock_t new_size)
3011 {
3012 if (from_cblock(new_size) > from_cblock(cache->cache_size)) {
3013 if (cache->sized) {
3014 DMERR("%s: unable to extend cache due to missing cache table reload",
3015 cache_device_name(cache));
3016 return false;
3017 }
3018 }
3019
3020 /*
3021 * We can't drop a dirty block when shrinking the cache.
3022 */
3023 while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
3024 new_size = to_cblock(from_cblock(new_size) + 1);
3025 if (is_dirty(cache, new_size)) {
3026 DMERR("%s: unable to shrink cache; cache block %llu is dirty",
3027 cache_device_name(cache),
3028 (unsigned long long) from_cblock(new_size));
3029 return false;
3030 }
3031 }
3032
3033 return true;
3034 }
3035
resize_cache_dev(struct cache * cache,dm_cblock_t new_size)3036 static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
3037 {
3038 int r;
3039
3040 r = dm_cache_resize(cache->cmd, new_size);
3041 if (r) {
3042 DMERR("%s: could not resize cache metadata", cache_device_name(cache));
3043 metadata_operation_failed(cache, "dm_cache_resize", r);
3044 return r;
3045 }
3046
3047 set_cache_size(cache, new_size);
3048
3049 return 0;
3050 }
3051
cache_preresume(struct dm_target * ti)3052 static int cache_preresume(struct dm_target *ti)
3053 {
3054 int r = 0;
3055 struct cache *cache = ti->private;
3056 dm_cblock_t csize = get_cache_dev_size(cache);
3057
3058 /*
3059 * Check to see if the cache has resized.
3060 */
3061 if (!cache->sized) {
3062 r = resize_cache_dev(cache, csize);
3063 if (r)
3064 return r;
3065
3066 cache->sized = true;
3067
3068 } else if (csize != cache->cache_size) {
3069 if (!can_resize(cache, csize))
3070 return -EINVAL;
3071
3072 r = resize_cache_dev(cache, csize);
3073 if (r)
3074 return r;
3075 }
3076
3077 if (!cache->loaded_mappings) {
3078 r = dm_cache_load_mappings(cache->cmd, cache->policy,
3079 load_mapping, cache);
3080 if (r) {
3081 DMERR("%s: could not load cache mappings", cache_device_name(cache));
3082 metadata_operation_failed(cache, "dm_cache_load_mappings", r);
3083 return r;
3084 }
3085
3086 cache->loaded_mappings = true;
3087 }
3088
3089 if (!cache->loaded_discards) {
3090 struct discard_load_info li;
3091
3092 /*
3093 * The discard bitset could have been resized, or the
3094 * discard block size changed. To be safe we start by
3095 * setting every dblock to not discarded.
3096 */
3097 clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
3098
3099 discard_load_info_init(cache, &li);
3100 r = dm_cache_load_discards(cache->cmd, load_discard, &li);
3101 if (r) {
3102 DMERR("%s: could not load origin discards", cache_device_name(cache));
3103 metadata_operation_failed(cache, "dm_cache_load_discards", r);
3104 return r;
3105 }
3106 set_discard_range(&li);
3107
3108 cache->loaded_discards = true;
3109 }
3110
3111 return r;
3112 }
3113
cache_resume(struct dm_target * ti)3114 static void cache_resume(struct dm_target *ti)
3115 {
3116 struct cache *cache = ti->private;
3117
3118 cache->need_tick_bio = true;
3119 allow_background_work(cache);
3120 do_waker(&cache->waker.work);
3121 }
3122
3123 /*
3124 * Status format:
3125 *
3126 * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3127 * <cache block size> <#used cache blocks>/<#total cache blocks>
3128 * <#read hits> <#read misses> <#write hits> <#write misses>
3129 * <#demotions> <#promotions> <#dirty>
3130 * <#features> <features>*
3131 * <#core args> <core args>
3132 * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check>
3133 */
cache_status(struct dm_target * ti,status_type_t type,unsigned status_flags,char * result,unsigned maxlen)3134 static void cache_status(struct dm_target *ti, status_type_t type,
3135 unsigned status_flags, char *result, unsigned maxlen)
3136 {
3137 int r = 0;
3138 unsigned i;
3139 ssize_t sz = 0;
3140 dm_block_t nr_free_blocks_metadata = 0;
3141 dm_block_t nr_blocks_metadata = 0;
3142 char buf[BDEVNAME_SIZE];
3143 struct cache *cache = ti->private;
3144 dm_cblock_t residency;
3145 bool needs_check;
3146
3147 switch (type) {
3148 case STATUSTYPE_INFO:
3149 if (get_cache_mode(cache) == CM_FAIL) {
3150 DMEMIT("Fail");
3151 break;
3152 }
3153
3154 /* Commit to ensure statistics aren't out-of-date */
3155 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3156 (void) commit(cache, false);
3157
3158 r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata);
3159 if (r) {
3160 DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
3161 cache_device_name(cache), r);
3162 goto err;
3163 }
3164
3165 r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
3166 if (r) {
3167 DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
3168 cache_device_name(cache), r);
3169 goto err;
3170 }
3171
3172 residency = policy_residency(cache->policy);
3173
3174 DMEMIT("%u %llu/%llu %llu %llu/%llu %u %u %u %u %u %u %lu ",
3175 (unsigned)DM_CACHE_METADATA_BLOCK_SIZE,
3176 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3177 (unsigned long long)nr_blocks_metadata,
3178 (unsigned long long)cache->sectors_per_block,
3179 (unsigned long long) from_cblock(residency),
3180 (unsigned long long) from_cblock(cache->cache_size),
3181 (unsigned) atomic_read(&cache->stats.read_hit),
3182 (unsigned) atomic_read(&cache->stats.read_miss),
3183 (unsigned) atomic_read(&cache->stats.write_hit),
3184 (unsigned) atomic_read(&cache->stats.write_miss),
3185 (unsigned) atomic_read(&cache->stats.demotion),
3186 (unsigned) atomic_read(&cache->stats.promotion),
3187 (unsigned long) atomic_read(&cache->nr_dirty));
3188
3189 if (cache->features.metadata_version == 2)
3190 DMEMIT("2 metadata2 ");
3191 else
3192 DMEMIT("1 ");
3193
3194 if (writethrough_mode(cache))
3195 DMEMIT("writethrough ");
3196
3197 else if (passthrough_mode(cache))
3198 DMEMIT("passthrough ");
3199
3200 else if (writeback_mode(cache))
3201 DMEMIT("writeback ");
3202
3203 else {
3204 DMERR("%s: internal error: unknown io mode: %d",
3205 cache_device_name(cache), (int) cache->features.io_mode);
3206 goto err;
3207 }
3208
3209 DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
3210
3211 DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
3212 if (sz < maxlen) {
3213 r = policy_emit_config_values(cache->policy, result, maxlen, &sz);
3214 if (r)
3215 DMERR("%s: policy_emit_config_values returned %d",
3216 cache_device_name(cache), r);
3217 }
3218
3219 if (get_cache_mode(cache) == CM_READ_ONLY)
3220 DMEMIT("ro ");
3221 else
3222 DMEMIT("rw ");
3223
3224 r = dm_cache_metadata_needs_check(cache->cmd, &needs_check);
3225
3226 if (r || needs_check)
3227 DMEMIT("needs_check ");
3228 else
3229 DMEMIT("- ");
3230
3231 break;
3232
3233 case STATUSTYPE_TABLE:
3234 format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3235 DMEMIT("%s ", buf);
3236 format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3237 DMEMIT("%s ", buf);
3238 format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3239 DMEMIT("%s", buf);
3240
3241 for (i = 0; i < cache->nr_ctr_args - 1; i++)
3242 DMEMIT(" %s", cache->ctr_args[i]);
3243 if (cache->nr_ctr_args)
3244 DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
3245 }
3246
3247 return;
3248
3249 err:
3250 DMEMIT("Error");
3251 }
3252
3253 /*
3254 * Defines a range of cblocks, begin to (end - 1) are in the range. end is
3255 * the one-past-the-end value.
3256 */
3257 struct cblock_range {
3258 dm_cblock_t begin;
3259 dm_cblock_t end;
3260 };
3261
3262 /*
3263 * A cache block range can take two forms:
3264 *
3265 * i) A single cblock, eg. '3456'
3266 * ii) A begin and end cblock with a dash between, eg. 123-234
3267 */
parse_cblock_range(struct cache * cache,const char * str,struct cblock_range * result)3268 static int parse_cblock_range(struct cache *cache, const char *str,
3269 struct cblock_range *result)
3270 {
3271 char dummy;
3272 uint64_t b, e;
3273 int r;
3274
3275 /*
3276 * Try and parse form (ii) first.
3277 */
3278 r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
3279 if (r < 0)
3280 return r;
3281
3282 if (r == 2) {
3283 result->begin = to_cblock(b);
3284 result->end = to_cblock(e);
3285 return 0;
3286 }
3287
3288 /*
3289 * That didn't work, try form (i).
3290 */
3291 r = sscanf(str, "%llu%c", &b, &dummy);
3292 if (r < 0)
3293 return r;
3294
3295 if (r == 1) {
3296 result->begin = to_cblock(b);
3297 result->end = to_cblock(from_cblock(result->begin) + 1u);
3298 return 0;
3299 }
3300
3301 DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str);
3302 return -EINVAL;
3303 }
3304
validate_cblock_range(struct cache * cache,struct cblock_range * range)3305 static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
3306 {
3307 uint64_t b = from_cblock(range->begin);
3308 uint64_t e = from_cblock(range->end);
3309 uint64_t n = from_cblock(cache->cache_size);
3310
3311 if (b >= n) {
3312 DMERR("%s: begin cblock out of range: %llu >= %llu",
3313 cache_device_name(cache), b, n);
3314 return -EINVAL;
3315 }
3316
3317 if (e > n) {
3318 DMERR("%s: end cblock out of range: %llu > %llu",
3319 cache_device_name(cache), e, n);
3320 return -EINVAL;
3321 }
3322
3323 if (b >= e) {
3324 DMERR("%s: invalid cblock range: %llu >= %llu",
3325 cache_device_name(cache), b, e);
3326 return -EINVAL;
3327 }
3328
3329 return 0;
3330 }
3331
cblock_succ(dm_cblock_t b)3332 static inline dm_cblock_t cblock_succ(dm_cblock_t b)
3333 {
3334 return to_cblock(from_cblock(b) + 1);
3335 }
3336
request_invalidation(struct cache * cache,struct cblock_range * range)3337 static int request_invalidation(struct cache *cache, struct cblock_range *range)
3338 {
3339 int r = 0;
3340
3341 /*
3342 * We don't need to do any locking here because we know we're in
3343 * passthrough mode. There's is potential for a race between an
3344 * invalidation triggered by an io and an invalidation message. This
3345 * is harmless, we must not worry if the policy call fails.
3346 */
3347 while (range->begin != range->end) {
3348 r = invalidate_cblock(cache, range->begin);
3349 if (r)
3350 return r;
3351
3352 range->begin = cblock_succ(range->begin);
3353 }
3354
3355 cache->commit_requested = true;
3356 return r;
3357 }
3358
process_invalidate_cblocks_message(struct cache * cache,unsigned count,const char ** cblock_ranges)3359 static int process_invalidate_cblocks_message(struct cache *cache, unsigned count,
3360 const char **cblock_ranges)
3361 {
3362 int r = 0;
3363 unsigned i;
3364 struct cblock_range range;
3365
3366 if (!passthrough_mode(cache)) {
3367 DMERR("%s: cache has to be in passthrough mode for invalidation",
3368 cache_device_name(cache));
3369 return -EPERM;
3370 }
3371
3372 for (i = 0; i < count; i++) {
3373 r = parse_cblock_range(cache, cblock_ranges[i], &range);
3374 if (r)
3375 break;
3376
3377 r = validate_cblock_range(cache, &range);
3378 if (r)
3379 break;
3380
3381 /*
3382 * Pass begin and end origin blocks to the worker and wake it.
3383 */
3384 r = request_invalidation(cache, &range);
3385 if (r)
3386 break;
3387 }
3388
3389 return r;
3390 }
3391
3392 /*
3393 * Supports
3394 * "<key> <value>"
3395 * and
3396 * "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3397 *
3398 * The key migration_threshold is supported by the cache target core.
3399 */
cache_message(struct dm_target * ti,unsigned argc,char ** argv,char * result,unsigned maxlen)3400 static int cache_message(struct dm_target *ti, unsigned argc, char **argv,
3401 char *result, unsigned maxlen)
3402 {
3403 struct cache *cache = ti->private;
3404
3405 if (!argc)
3406 return -EINVAL;
3407
3408 if (get_cache_mode(cache) >= CM_READ_ONLY) {
3409 DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
3410 cache_device_name(cache));
3411 return -EOPNOTSUPP;
3412 }
3413
3414 if (!strcasecmp(argv[0], "invalidate_cblocks"))
3415 return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3416
3417 if (argc != 2)
3418 return -EINVAL;
3419
3420 return set_config_value(cache, argv[0], argv[1]);
3421 }
3422
cache_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)3423 static int cache_iterate_devices(struct dm_target *ti,
3424 iterate_devices_callout_fn fn, void *data)
3425 {
3426 int r = 0;
3427 struct cache *cache = ti->private;
3428
3429 r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3430 if (!r)
3431 r = fn(ti, cache->origin_dev, 0, ti->len, data);
3432
3433 return r;
3434 }
3435
set_discard_limits(struct cache * cache,struct queue_limits * limits)3436 static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3437 {
3438 /*
3439 * FIXME: these limits may be incompatible with the cache device
3440 */
3441 limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
3442 cache->origin_sectors);
3443 limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
3444 }
3445
cache_io_hints(struct dm_target * ti,struct queue_limits * limits)3446 static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3447 {
3448 struct cache *cache = ti->private;
3449 uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3450
3451 /*
3452 * If the system-determined stacked limits are compatible with the
3453 * cache's blocksize (io_opt is a factor) do not override them.
3454 */
3455 if (io_opt_sectors < cache->sectors_per_block ||
3456 do_div(io_opt_sectors, cache->sectors_per_block)) {
3457 blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT);
3458 blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3459 }
3460 set_discard_limits(cache, limits);
3461 }
3462
3463 /*----------------------------------------------------------------*/
3464
3465 static struct target_type cache_target = {
3466 .name = "cache",
3467 .version = {2, 0, 0},
3468 .module = THIS_MODULE,
3469 .ctr = cache_ctr,
3470 .dtr = cache_dtr,
3471 .map = cache_map,
3472 .end_io = cache_end_io,
3473 .postsuspend = cache_postsuspend,
3474 .preresume = cache_preresume,
3475 .resume = cache_resume,
3476 .status = cache_status,
3477 .message = cache_message,
3478 .iterate_devices = cache_iterate_devices,
3479 .io_hints = cache_io_hints,
3480 };
3481
dm_cache_init(void)3482 static int __init dm_cache_init(void)
3483 {
3484 int r;
3485
3486 migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3487 if (!migration_cache)
3488 return -ENOMEM;
3489
3490 r = dm_register_target(&cache_target);
3491 if (r) {
3492 DMERR("cache target registration failed: %d", r);
3493 kmem_cache_destroy(migration_cache);
3494 return r;
3495 }
3496
3497 return 0;
3498 }
3499
dm_cache_exit(void)3500 static void __exit dm_cache_exit(void)
3501 {
3502 dm_unregister_target(&cache_target);
3503 kmem_cache_destroy(migration_cache);
3504 }
3505
3506 module_init(dm_cache_init);
3507 module_exit(dm_cache_exit);
3508
3509 MODULE_DESCRIPTION(DM_NAME " cache target");
3510 MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3511 MODULE_LICENSE("GPL");
3512