1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * cacheinfo support - processor cache information via sysfs
4  *
5  * Based on arch/x86/kernel/cpu/intel_cacheinfo.c
6  * Author: Sudeep Holla <sudeep.holla@arm.com>
7  */
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/acpi.h>
11 #include <linux/bitops.h>
12 #include <linux/cacheinfo.h>
13 #include <linux/compiler.h>
14 #include <linux/cpu.h>
15 #include <linux/device.h>
16 #include <linux/init.h>
17 #include <linux/of.h>
18 #include <linux/sched.h>
19 #include <linux/slab.h>
20 #include <linux/smp.h>
21 #include <linux/sysfs.h>
22 
23 /* pointer to per cpu cacheinfo */
24 static DEFINE_PER_CPU(struct cpu_cacheinfo, ci_cpu_cacheinfo);
25 #define ci_cacheinfo(cpu)	(&per_cpu(ci_cpu_cacheinfo, cpu))
26 #define cache_leaves(cpu)	(ci_cacheinfo(cpu)->num_leaves)
27 #define per_cpu_cacheinfo(cpu)	(ci_cacheinfo(cpu)->info_list)
28 
get_cpu_cacheinfo(unsigned int cpu)29 struct cpu_cacheinfo *get_cpu_cacheinfo(unsigned int cpu)
30 {
31 	return ci_cacheinfo(cpu);
32 }
33 
34 #ifdef CONFIG_OF
cache_leaves_are_shared(struct cacheinfo * this_leaf,struct cacheinfo * sib_leaf)35 static inline bool cache_leaves_are_shared(struct cacheinfo *this_leaf,
36 					   struct cacheinfo *sib_leaf)
37 {
38 	return sib_leaf->fw_token == this_leaf->fw_token;
39 }
40 
41 /* OF properties to query for a given cache type */
42 struct cache_type_info {
43 	const char *size_prop;
44 	const char *line_size_props[2];
45 	const char *nr_sets_prop;
46 };
47 
48 static const struct cache_type_info cache_type_info[] = {
49 	{
50 		.size_prop       = "cache-size",
51 		.line_size_props = { "cache-line-size",
52 				     "cache-block-size", },
53 		.nr_sets_prop    = "cache-sets",
54 	}, {
55 		.size_prop       = "i-cache-size",
56 		.line_size_props = { "i-cache-line-size",
57 				     "i-cache-block-size", },
58 		.nr_sets_prop    = "i-cache-sets",
59 	}, {
60 		.size_prop       = "d-cache-size",
61 		.line_size_props = { "d-cache-line-size",
62 				     "d-cache-block-size", },
63 		.nr_sets_prop    = "d-cache-sets",
64 	},
65 };
66 
get_cacheinfo_idx(enum cache_type type)67 static inline int get_cacheinfo_idx(enum cache_type type)
68 {
69 	if (type == CACHE_TYPE_UNIFIED)
70 		return 0;
71 	return type;
72 }
73 
cache_size(struct cacheinfo * this_leaf,struct device_node * np)74 static void cache_size(struct cacheinfo *this_leaf, struct device_node *np)
75 {
76 	const char *propname;
77 	int ct_idx;
78 
79 	ct_idx = get_cacheinfo_idx(this_leaf->type);
80 	propname = cache_type_info[ct_idx].size_prop;
81 
82 	of_property_read_u32(np, propname, &this_leaf->size);
83 }
84 
85 /* not cache_line_size() because that's a macro in include/linux/cache.h */
cache_get_line_size(struct cacheinfo * this_leaf,struct device_node * np)86 static void cache_get_line_size(struct cacheinfo *this_leaf,
87 				struct device_node *np)
88 {
89 	int i, lim, ct_idx;
90 
91 	ct_idx = get_cacheinfo_idx(this_leaf->type);
92 	lim = ARRAY_SIZE(cache_type_info[ct_idx].line_size_props);
93 
94 	for (i = 0; i < lim; i++) {
95 		int ret;
96 		u32 line_size;
97 		const char *propname;
98 
99 		propname = cache_type_info[ct_idx].line_size_props[i];
100 		ret = of_property_read_u32(np, propname, &line_size);
101 		if (!ret) {
102 			this_leaf->coherency_line_size = line_size;
103 			break;
104 		}
105 	}
106 }
107 
cache_nr_sets(struct cacheinfo * this_leaf,struct device_node * np)108 static void cache_nr_sets(struct cacheinfo *this_leaf, struct device_node *np)
109 {
110 	const char *propname;
111 	int ct_idx;
112 
113 	ct_idx = get_cacheinfo_idx(this_leaf->type);
114 	propname = cache_type_info[ct_idx].nr_sets_prop;
115 
116 	of_property_read_u32(np, propname, &this_leaf->number_of_sets);
117 }
118 
cache_associativity(struct cacheinfo * this_leaf)119 static void cache_associativity(struct cacheinfo *this_leaf)
120 {
121 	unsigned int line_size = this_leaf->coherency_line_size;
122 	unsigned int nr_sets = this_leaf->number_of_sets;
123 	unsigned int size = this_leaf->size;
124 
125 	/*
126 	 * If the cache is fully associative, there is no need to
127 	 * check the other properties.
128 	 */
129 	if (!(nr_sets == 1) && (nr_sets > 0 && size > 0 && line_size > 0))
130 		this_leaf->ways_of_associativity = (size / nr_sets) / line_size;
131 }
132 
cache_node_is_unified(struct cacheinfo * this_leaf,struct device_node * np)133 static bool cache_node_is_unified(struct cacheinfo *this_leaf,
134 				  struct device_node *np)
135 {
136 	return of_property_read_bool(np, "cache-unified");
137 }
138 
cache_of_set_props(struct cacheinfo * this_leaf,struct device_node * np)139 static void cache_of_set_props(struct cacheinfo *this_leaf,
140 			       struct device_node *np)
141 {
142 	/*
143 	 * init_cache_level must setup the cache level correctly
144 	 * overriding the architecturally specified levels, so
145 	 * if type is NONE at this stage, it should be unified
146 	 */
147 	if (this_leaf->type == CACHE_TYPE_NOCACHE &&
148 	    cache_node_is_unified(this_leaf, np))
149 		this_leaf->type = CACHE_TYPE_UNIFIED;
150 	cache_size(this_leaf, np);
151 	cache_get_line_size(this_leaf, np);
152 	cache_nr_sets(this_leaf, np);
153 	cache_associativity(this_leaf);
154 }
155 
cache_setup_of_node(unsigned int cpu)156 static int cache_setup_of_node(unsigned int cpu)
157 {
158 	struct device_node *np;
159 	struct cacheinfo *this_leaf;
160 	struct device *cpu_dev = get_cpu_device(cpu);
161 	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
162 	unsigned int index = 0;
163 
164 	/* skip if fw_token is already populated */
165 	if (this_cpu_ci->info_list->fw_token) {
166 		return 0;
167 	}
168 
169 	if (!cpu_dev) {
170 		pr_err("No cpu device for CPU %d\n", cpu);
171 		return -ENODEV;
172 	}
173 	np = cpu_dev->of_node;
174 	if (!np) {
175 		pr_err("Failed to find cpu%d device node\n", cpu);
176 		return -ENOENT;
177 	}
178 
179 	while (index < cache_leaves(cpu)) {
180 		this_leaf = this_cpu_ci->info_list + index;
181 		if (this_leaf->level != 1)
182 			np = of_find_next_cache_node(np);
183 		else
184 			np = of_node_get(np);/* cpu node itself */
185 		if (!np)
186 			break;
187 		cache_of_set_props(this_leaf, np);
188 		this_leaf->fw_token = np;
189 		index++;
190 	}
191 
192 	if (index != cache_leaves(cpu)) /* not all OF nodes populated */
193 		return -ENOENT;
194 
195 	return 0;
196 }
197 #else
cache_setup_of_node(unsigned int cpu)198 static inline int cache_setup_of_node(unsigned int cpu) { return 0; }
cache_leaves_are_shared(struct cacheinfo * this_leaf,struct cacheinfo * sib_leaf)199 static inline bool cache_leaves_are_shared(struct cacheinfo *this_leaf,
200 					   struct cacheinfo *sib_leaf)
201 {
202 	/*
203 	 * For non-DT/ACPI systems, assume unique level 1 caches, system-wide
204 	 * shared caches for all other levels. This will be used only if
205 	 * arch specific code has not populated shared_cpu_map
206 	 */
207 	return !(this_leaf->level == 1);
208 }
209 #endif
210 
cache_setup_acpi(unsigned int cpu)211 int __weak cache_setup_acpi(unsigned int cpu)
212 {
213 	return -ENOTSUPP;
214 }
215 
216 unsigned int coherency_max_size;
217 
cache_shared_cpu_map_setup(unsigned int cpu)218 static int cache_shared_cpu_map_setup(unsigned int cpu)
219 {
220 	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
221 	struct cacheinfo *this_leaf, *sib_leaf;
222 	unsigned int index;
223 	int ret = 0;
224 
225 	if (this_cpu_ci->cpu_map_populated)
226 		return 0;
227 
228 	if (of_have_populated_dt())
229 		ret = cache_setup_of_node(cpu);
230 	else if (!acpi_disabled)
231 		ret = cache_setup_acpi(cpu);
232 
233 	if (ret)
234 		return ret;
235 
236 	for (index = 0; index < cache_leaves(cpu); index++) {
237 		unsigned int i;
238 
239 		this_leaf = this_cpu_ci->info_list + index;
240 		/* skip if shared_cpu_map is already populated */
241 		if (!cpumask_empty(&this_leaf->shared_cpu_map))
242 			continue;
243 
244 		cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
245 		for_each_online_cpu(i) {
246 			struct cpu_cacheinfo *sib_cpu_ci = get_cpu_cacheinfo(i);
247 
248 			if (i == cpu || !sib_cpu_ci->info_list)
249 				continue;/* skip if itself or no cacheinfo */
250 			sib_leaf = sib_cpu_ci->info_list + index;
251 			if (cache_leaves_are_shared(this_leaf, sib_leaf)) {
252 				cpumask_set_cpu(cpu, &sib_leaf->shared_cpu_map);
253 				cpumask_set_cpu(i, &this_leaf->shared_cpu_map);
254 			}
255 		}
256 		/* record the maximum cache line size */
257 		if (this_leaf->coherency_line_size > coherency_max_size)
258 			coherency_max_size = this_leaf->coherency_line_size;
259 	}
260 
261 	return 0;
262 }
263 
cache_shared_cpu_map_remove(unsigned int cpu)264 static void cache_shared_cpu_map_remove(unsigned int cpu)
265 {
266 	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
267 	struct cacheinfo *this_leaf, *sib_leaf;
268 	unsigned int sibling, index;
269 
270 	for (index = 0; index < cache_leaves(cpu); index++) {
271 		this_leaf = this_cpu_ci->info_list + index;
272 		for_each_cpu(sibling, &this_leaf->shared_cpu_map) {
273 			struct cpu_cacheinfo *sib_cpu_ci;
274 
275 			if (sibling == cpu) /* skip itself */
276 				continue;
277 
278 			sib_cpu_ci = get_cpu_cacheinfo(sibling);
279 			if (!sib_cpu_ci->info_list)
280 				continue;
281 
282 			sib_leaf = sib_cpu_ci->info_list + index;
283 			cpumask_clear_cpu(cpu, &sib_leaf->shared_cpu_map);
284 			cpumask_clear_cpu(sibling, &this_leaf->shared_cpu_map);
285 		}
286 		if (of_have_populated_dt())
287 			of_node_put(this_leaf->fw_token);
288 	}
289 }
290 
free_cache_attributes(unsigned int cpu)291 static void free_cache_attributes(unsigned int cpu)
292 {
293 	if (!per_cpu_cacheinfo(cpu))
294 		return;
295 
296 	cache_shared_cpu_map_remove(cpu);
297 
298 	kfree(per_cpu_cacheinfo(cpu));
299 	per_cpu_cacheinfo(cpu) = NULL;
300 }
301 
init_cache_level(unsigned int cpu)302 int __weak init_cache_level(unsigned int cpu)
303 {
304 	return -ENOENT;
305 }
306 
populate_cache_leaves(unsigned int cpu)307 int __weak populate_cache_leaves(unsigned int cpu)
308 {
309 	return -ENOENT;
310 }
311 
detect_cache_attributes(unsigned int cpu)312 static int detect_cache_attributes(unsigned int cpu)
313 {
314 	int ret;
315 
316 	if (init_cache_level(cpu) || !cache_leaves(cpu))
317 		return -ENOENT;
318 
319 	per_cpu_cacheinfo(cpu) = kcalloc(cache_leaves(cpu),
320 					 sizeof(struct cacheinfo), GFP_KERNEL);
321 	if (per_cpu_cacheinfo(cpu) == NULL)
322 		return -ENOMEM;
323 
324 	/*
325 	 * populate_cache_leaves() may completely setup the cache leaves and
326 	 * shared_cpu_map or it may leave it partially setup.
327 	 */
328 	ret = populate_cache_leaves(cpu);
329 	if (ret)
330 		goto free_ci;
331 	/*
332 	 * For systems using DT for cache hierarchy, fw_token
333 	 * and shared_cpu_map will be set up here only if they are
334 	 * not populated already
335 	 */
336 	ret = cache_shared_cpu_map_setup(cpu);
337 	if (ret) {
338 		pr_warn("Unable to detect cache hierarchy for CPU %d\n", cpu);
339 		goto free_ci;
340 	}
341 
342 	return 0;
343 
344 free_ci:
345 	free_cache_attributes(cpu);
346 	return ret;
347 }
348 
349 /* pointer to cpuX/cache device */
350 static DEFINE_PER_CPU(struct device *, ci_cache_dev);
351 #define per_cpu_cache_dev(cpu)	(per_cpu(ci_cache_dev, cpu))
352 
353 static cpumask_t cache_dev_map;
354 
355 /* pointer to array of devices for cpuX/cache/indexY */
356 static DEFINE_PER_CPU(struct device **, ci_index_dev);
357 #define per_cpu_index_dev(cpu)	(per_cpu(ci_index_dev, cpu))
358 #define per_cache_index_dev(cpu, idx)	((per_cpu_index_dev(cpu))[idx])
359 
360 #define show_one(file_name, object)				\
361 static ssize_t file_name##_show(struct device *dev,		\
362 		struct device_attribute *attr, char *buf)	\
363 {								\
364 	struct cacheinfo *this_leaf = dev_get_drvdata(dev);	\
365 	return sprintf(buf, "%u\n", this_leaf->object);		\
366 }
367 
368 show_one(id, id);
369 show_one(level, level);
370 show_one(coherency_line_size, coherency_line_size);
371 show_one(number_of_sets, number_of_sets);
372 show_one(physical_line_partition, physical_line_partition);
373 show_one(ways_of_associativity, ways_of_associativity);
374 
size_show(struct device * dev,struct device_attribute * attr,char * buf)375 static ssize_t size_show(struct device *dev,
376 			 struct device_attribute *attr, char *buf)
377 {
378 	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
379 
380 	return sprintf(buf, "%uK\n", this_leaf->size >> 10);
381 }
382 
shared_cpumap_show_func(struct device * dev,bool list,char * buf)383 static ssize_t shared_cpumap_show_func(struct device *dev, bool list, char *buf)
384 {
385 	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
386 	const struct cpumask *mask = &this_leaf->shared_cpu_map;
387 
388 	return cpumap_print_to_pagebuf(list, buf, mask);
389 }
390 
shared_cpu_map_show(struct device * dev,struct device_attribute * attr,char * buf)391 static ssize_t shared_cpu_map_show(struct device *dev,
392 				   struct device_attribute *attr, char *buf)
393 {
394 	return shared_cpumap_show_func(dev, false, buf);
395 }
396 
shared_cpu_list_show(struct device * dev,struct device_attribute * attr,char * buf)397 static ssize_t shared_cpu_list_show(struct device *dev,
398 				    struct device_attribute *attr, char *buf)
399 {
400 	return shared_cpumap_show_func(dev, true, buf);
401 }
402 
type_show(struct device * dev,struct device_attribute * attr,char * buf)403 static ssize_t type_show(struct device *dev,
404 			 struct device_attribute *attr, char *buf)
405 {
406 	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
407 
408 	switch (this_leaf->type) {
409 	case CACHE_TYPE_DATA:
410 		return sprintf(buf, "Data\n");
411 	case CACHE_TYPE_INST:
412 		return sprintf(buf, "Instruction\n");
413 	case CACHE_TYPE_UNIFIED:
414 		return sprintf(buf, "Unified\n");
415 	default:
416 		return -EINVAL;
417 	}
418 }
419 
allocation_policy_show(struct device * dev,struct device_attribute * attr,char * buf)420 static ssize_t allocation_policy_show(struct device *dev,
421 				      struct device_attribute *attr, char *buf)
422 {
423 	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
424 	unsigned int ci_attr = this_leaf->attributes;
425 	int n = 0;
426 
427 	if ((ci_attr & CACHE_READ_ALLOCATE) && (ci_attr & CACHE_WRITE_ALLOCATE))
428 		n = sprintf(buf, "ReadWriteAllocate\n");
429 	else if (ci_attr & CACHE_READ_ALLOCATE)
430 		n = sprintf(buf, "ReadAllocate\n");
431 	else if (ci_attr & CACHE_WRITE_ALLOCATE)
432 		n = sprintf(buf, "WriteAllocate\n");
433 	return n;
434 }
435 
write_policy_show(struct device * dev,struct device_attribute * attr,char * buf)436 static ssize_t write_policy_show(struct device *dev,
437 				 struct device_attribute *attr, char *buf)
438 {
439 	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
440 	unsigned int ci_attr = this_leaf->attributes;
441 	int n = 0;
442 
443 	if (ci_attr & CACHE_WRITE_THROUGH)
444 		n = sprintf(buf, "WriteThrough\n");
445 	else if (ci_attr & CACHE_WRITE_BACK)
446 		n = sprintf(buf, "WriteBack\n");
447 	return n;
448 }
449 
450 static DEVICE_ATTR_RO(id);
451 static DEVICE_ATTR_RO(level);
452 static DEVICE_ATTR_RO(type);
453 static DEVICE_ATTR_RO(coherency_line_size);
454 static DEVICE_ATTR_RO(ways_of_associativity);
455 static DEVICE_ATTR_RO(number_of_sets);
456 static DEVICE_ATTR_RO(size);
457 static DEVICE_ATTR_RO(allocation_policy);
458 static DEVICE_ATTR_RO(write_policy);
459 static DEVICE_ATTR_RO(shared_cpu_map);
460 static DEVICE_ATTR_RO(shared_cpu_list);
461 static DEVICE_ATTR_RO(physical_line_partition);
462 
463 static struct attribute *cache_default_attrs[] = {
464 	&dev_attr_id.attr,
465 	&dev_attr_type.attr,
466 	&dev_attr_level.attr,
467 	&dev_attr_shared_cpu_map.attr,
468 	&dev_attr_shared_cpu_list.attr,
469 	&dev_attr_coherency_line_size.attr,
470 	&dev_attr_ways_of_associativity.attr,
471 	&dev_attr_number_of_sets.attr,
472 	&dev_attr_size.attr,
473 	&dev_attr_allocation_policy.attr,
474 	&dev_attr_write_policy.attr,
475 	&dev_attr_physical_line_partition.attr,
476 	NULL
477 };
478 
479 static umode_t
cache_default_attrs_is_visible(struct kobject * kobj,struct attribute * attr,int unused)480 cache_default_attrs_is_visible(struct kobject *kobj,
481 			       struct attribute *attr, int unused)
482 {
483 	struct device *dev = kobj_to_dev(kobj);
484 	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
485 	const struct cpumask *mask = &this_leaf->shared_cpu_map;
486 	umode_t mode = attr->mode;
487 
488 	if ((attr == &dev_attr_id.attr) && (this_leaf->attributes & CACHE_ID))
489 		return mode;
490 	if ((attr == &dev_attr_type.attr) && this_leaf->type)
491 		return mode;
492 	if ((attr == &dev_attr_level.attr) && this_leaf->level)
493 		return mode;
494 	if ((attr == &dev_attr_shared_cpu_map.attr) && !cpumask_empty(mask))
495 		return mode;
496 	if ((attr == &dev_attr_shared_cpu_list.attr) && !cpumask_empty(mask))
497 		return mode;
498 	if ((attr == &dev_attr_coherency_line_size.attr) &&
499 	    this_leaf->coherency_line_size)
500 		return mode;
501 	if ((attr == &dev_attr_ways_of_associativity.attr) &&
502 	    this_leaf->size) /* allow 0 = full associativity */
503 		return mode;
504 	if ((attr == &dev_attr_number_of_sets.attr) &&
505 	    this_leaf->number_of_sets)
506 		return mode;
507 	if ((attr == &dev_attr_size.attr) && this_leaf->size)
508 		return mode;
509 	if ((attr == &dev_attr_write_policy.attr) &&
510 	    (this_leaf->attributes & CACHE_WRITE_POLICY_MASK))
511 		return mode;
512 	if ((attr == &dev_attr_allocation_policy.attr) &&
513 	    (this_leaf->attributes & CACHE_ALLOCATE_POLICY_MASK))
514 		return mode;
515 	if ((attr == &dev_attr_physical_line_partition.attr) &&
516 	    this_leaf->physical_line_partition)
517 		return mode;
518 
519 	return 0;
520 }
521 
522 static const struct attribute_group cache_default_group = {
523 	.attrs = cache_default_attrs,
524 	.is_visible = cache_default_attrs_is_visible,
525 };
526 
527 static const struct attribute_group *cache_default_groups[] = {
528 	&cache_default_group,
529 	NULL,
530 };
531 
532 static const struct attribute_group *cache_private_groups[] = {
533 	&cache_default_group,
534 	NULL, /* Place holder for private group */
535 	NULL,
536 };
537 
538 const struct attribute_group *
cache_get_priv_group(struct cacheinfo * this_leaf)539 __weak cache_get_priv_group(struct cacheinfo *this_leaf)
540 {
541 	return NULL;
542 }
543 
544 static const struct attribute_group **
cache_get_attribute_groups(struct cacheinfo * this_leaf)545 cache_get_attribute_groups(struct cacheinfo *this_leaf)
546 {
547 	const struct attribute_group *priv_group =
548 			cache_get_priv_group(this_leaf);
549 
550 	if (!priv_group)
551 		return cache_default_groups;
552 
553 	if (!cache_private_groups[1])
554 		cache_private_groups[1] = priv_group;
555 
556 	return cache_private_groups;
557 }
558 
559 /* Add/Remove cache interface for CPU device */
cpu_cache_sysfs_exit(unsigned int cpu)560 static void cpu_cache_sysfs_exit(unsigned int cpu)
561 {
562 	int i;
563 	struct device *ci_dev;
564 
565 	if (per_cpu_index_dev(cpu)) {
566 		for (i = 0; i < cache_leaves(cpu); i++) {
567 			ci_dev = per_cache_index_dev(cpu, i);
568 			if (!ci_dev)
569 				continue;
570 			device_unregister(ci_dev);
571 		}
572 		kfree(per_cpu_index_dev(cpu));
573 		per_cpu_index_dev(cpu) = NULL;
574 	}
575 	device_unregister(per_cpu_cache_dev(cpu));
576 	per_cpu_cache_dev(cpu) = NULL;
577 }
578 
cpu_cache_sysfs_init(unsigned int cpu)579 static int cpu_cache_sysfs_init(unsigned int cpu)
580 {
581 	struct device *dev = get_cpu_device(cpu);
582 
583 	if (per_cpu_cacheinfo(cpu) == NULL)
584 		return -ENOENT;
585 
586 	per_cpu_cache_dev(cpu) = cpu_device_create(dev, NULL, NULL, "cache");
587 	if (IS_ERR(per_cpu_cache_dev(cpu)))
588 		return PTR_ERR(per_cpu_cache_dev(cpu));
589 
590 	/* Allocate all required memory */
591 	per_cpu_index_dev(cpu) = kcalloc(cache_leaves(cpu),
592 					 sizeof(struct device *), GFP_KERNEL);
593 	if (unlikely(per_cpu_index_dev(cpu) == NULL))
594 		goto err_out;
595 
596 	return 0;
597 
598 err_out:
599 	cpu_cache_sysfs_exit(cpu);
600 	return -ENOMEM;
601 }
602 
cache_add_dev(unsigned int cpu)603 static int cache_add_dev(unsigned int cpu)
604 {
605 	unsigned int i;
606 	int rc;
607 	struct device *ci_dev, *parent;
608 	struct cacheinfo *this_leaf;
609 	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
610 	const struct attribute_group **cache_groups;
611 
612 	rc = cpu_cache_sysfs_init(cpu);
613 	if (unlikely(rc < 0))
614 		return rc;
615 
616 	parent = per_cpu_cache_dev(cpu);
617 	for (i = 0; i < cache_leaves(cpu); i++) {
618 		this_leaf = this_cpu_ci->info_list + i;
619 		if (this_leaf->disable_sysfs)
620 			continue;
621 		if (this_leaf->type == CACHE_TYPE_NOCACHE)
622 			break;
623 		cache_groups = cache_get_attribute_groups(this_leaf);
624 		ci_dev = cpu_device_create(parent, this_leaf, cache_groups,
625 					   "index%1u", i);
626 		if (IS_ERR(ci_dev)) {
627 			rc = PTR_ERR(ci_dev);
628 			goto err;
629 		}
630 		per_cache_index_dev(cpu, i) = ci_dev;
631 	}
632 	cpumask_set_cpu(cpu, &cache_dev_map);
633 
634 	return 0;
635 err:
636 	cpu_cache_sysfs_exit(cpu);
637 	return rc;
638 }
639 
cacheinfo_cpu_online(unsigned int cpu)640 static int cacheinfo_cpu_online(unsigned int cpu)
641 {
642 	int rc = detect_cache_attributes(cpu);
643 
644 	if (rc)
645 		return rc;
646 	rc = cache_add_dev(cpu);
647 	if (rc)
648 		free_cache_attributes(cpu);
649 	return rc;
650 }
651 
cacheinfo_cpu_pre_down(unsigned int cpu)652 static int cacheinfo_cpu_pre_down(unsigned int cpu)
653 {
654 	if (cpumask_test_and_clear_cpu(cpu, &cache_dev_map))
655 		cpu_cache_sysfs_exit(cpu);
656 
657 	free_cache_attributes(cpu);
658 	return 0;
659 }
660 
cacheinfo_sysfs_init(void)661 static int __init cacheinfo_sysfs_init(void)
662 {
663 	return cpuhp_setup_state(CPUHP_AP_BASE_CACHEINFO_ONLINE,
664 				 "base/cacheinfo:online",
665 				 cacheinfo_cpu_online, cacheinfo_cpu_pre_down);
666 }
667 device_initcall(cacheinfo_sysfs_init);
668