1 /******************************************************************************
2 *
3 * (C)Copyright 1998,1999 SysKonnect,
4 * a business unit of Schneider & Koch & Co. Datensysteme GmbH.
5 *
6 * See the file "skfddi.c" for further information.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * The information in this file is provided "AS IS" without warranty.
14 *
15 ******************************************************************************/
16
17 /*
18 * FORMAC+ Driver for tag mode
19 */
20
21 #include "h/types.h"
22 #include "h/fddi.h"
23 #include "h/smc.h"
24 #include "h/supern_2.h"
25 #include <linux/bitrev.h>
26 #include <linux/etherdevice.h>
27
28 #ifndef lint
29 static const char ID_sccs[] = "@(#)fplustm.c 1.32 99/02/23 (C) SK " ;
30 #endif
31
32 #ifndef UNUSED
33 #ifdef lint
34 #define UNUSED(x) (x) = (x)
35 #else
36 #define UNUSED(x)
37 #endif
38 #endif
39
40 #define FM_ADDRX (FM_ADDET|FM_EXGPA0|FM_EXGPA1)
41 #define MS2BCLK(x) ((x)*12500L)
42 #define US2BCLK(x) ((x)*1250L)
43
44 /*
45 * prototypes for static function
46 */
47 static void build_claim_beacon(struct s_smc *smc, u_long t_request);
48 static int init_mac(struct s_smc *smc, int all);
49 static void rtm_init(struct s_smc *smc);
50 static void smt_split_up_fifo(struct s_smc *smc);
51
52 #if (!defined(NO_SMT_PANIC) || defined(DEBUG))
53 static char write_mdr_warning [] = "E350 write_mdr() FM_SNPPND is set\n";
54 static char cam_warning [] = "E_SMT_004: CAM still busy\n";
55 #endif
56
57 #define DUMMY_READ() smc->hw.mc_dummy = (u_short) inp(ADDR(B0_RAP))
58
59 #define CHECK_NPP() { unsigned int k = 10000 ;\
60 while ((inpw(FM_A(FM_STMCHN)) & FM_SNPPND) && k) k--;\
61 if (!k) { \
62 SMT_PANIC(smc,SMT_E0130, SMT_E0130_MSG) ; \
63 } \
64 }
65
66 #define CHECK_CAM() { unsigned int k = 10 ;\
67 while (!(inpw(FM_A(FM_AFSTAT)) & FM_DONE) && k) k--;\
68 if (!k) { \
69 SMT_PANIC(smc,SMT_E0131, SMT_E0131_MSG) ; \
70 } \
71 }
72
73 const struct fddi_addr fddi_broadcast = {{0xff,0xff,0xff,0xff,0xff,0xff}};
74 static const struct fddi_addr null_addr = {{0,0,0,0,0,0}};
75 static const struct fddi_addr dbeacon_multi = {{0x01,0x80,0xc2,0x00,0x01,0x00}};
76
77 static const u_short my_said = 0xffff ; /* short address (n.u.) */
78 static const u_short my_sagp = 0xffff ; /* short group address (n.u.) */
79
80 /*
81 * define my address
82 */
83 #ifdef USE_CAN_ADDR
84 #define MA smc->hw.fddi_canon_addr
85 #else
86 #define MA smc->hw.fddi_home_addr
87 #endif
88
89
90 /*
91 * useful interrupt bits
92 */
93 static const int mac_imsk1u = FM_STXABRS | FM_STXABRA0 | FM_SXMTABT ;
94 static const int mac_imsk1l = FM_SQLCKS | FM_SQLCKA0 | FM_SPCEPDS | FM_SPCEPDA0|
95 FM_STBURS | FM_STBURA0 ;
96
97 /* delete FM_SRBFL after tests */
98 static const int mac_imsk2u = FM_SERRSF | FM_SNFSLD | FM_SRCVOVR | FM_SRBFL |
99 FM_SMYCLM ;
100 static const int mac_imsk2l = FM_STRTEXR | FM_SDUPCLM | FM_SFRMCTR |
101 FM_SERRCTR | FM_SLSTCTR |
102 FM_STRTEXP | FM_SMULTDA | FM_SRNGOP ;
103
104 static const int mac_imsk3u = FM_SRCVOVR2 | FM_SRBFL2 ;
105 static const int mac_imsk3l = FM_SRPERRQ2 | FM_SRPERRQ1 ;
106
107 static const int mac_beacon_imsk2u = FM_SOTRBEC | FM_SMYBEC | FM_SBEC |
108 FM_SLOCLM | FM_SHICLM | FM_SMYCLM | FM_SCLM ;
109
110
mac_get_tneg(struct s_smc * smc)111 static u_long mac_get_tneg(struct s_smc *smc)
112 {
113 u_long tneg ;
114
115 tneg = (u_long)((long)inpw(FM_A(FM_TNEG))<<5) ;
116 return (u_long)((tneg + ((inpw(FM_A(FM_TMRS))>>10)&0x1f)) |
117 0xffe00000L) ;
118 }
119
mac_update_counter(struct s_smc * smc)120 void mac_update_counter(struct s_smc *smc)
121 {
122 smc->mib.m[MAC0].fddiMACFrame_Ct =
123 (smc->mib.m[MAC0].fddiMACFrame_Ct & 0xffff0000L)
124 + (u_short) inpw(FM_A(FM_FCNTR)) ;
125 smc->mib.m[MAC0].fddiMACLost_Ct =
126 (smc->mib.m[MAC0].fddiMACLost_Ct & 0xffff0000L)
127 + (u_short) inpw(FM_A(FM_LCNTR)) ;
128 smc->mib.m[MAC0].fddiMACError_Ct =
129 (smc->mib.m[MAC0].fddiMACError_Ct & 0xffff0000L)
130 + (u_short) inpw(FM_A(FM_ECNTR)) ;
131 smc->mib.m[MAC0].fddiMACT_Neg = mac_get_tneg(smc) ;
132 #ifdef SMT_REAL_TOKEN_CT
133 /*
134 * If the token counter is emulated it is updated in smt_event.
135 */
136 TBD
137 #else
138 smt_emulate_token_ct( smc, MAC0 );
139 #endif
140 }
141
142 /*
143 * write long value into buffer memory over memory data register (MDR),
144 */
write_mdr(struct s_smc * smc,u_long val)145 static void write_mdr(struct s_smc *smc, u_long val)
146 {
147 CHECK_NPP() ;
148 MDRW(val) ;
149 }
150
151 #if 0
152 /*
153 * read long value from buffer memory over memory data register (MDR),
154 */
155 static u_long read_mdr(struct s_smc *smc, unsigned int addr)
156 {
157 long p ;
158 CHECK_NPP() ;
159 MARR(addr) ;
160 outpw(FM_A(FM_CMDREG1),FM_IRMEMWO) ;
161 CHECK_NPP() ; /* needed for PCI to prevent from timeing violations */
162 /* p = MDRR() ; */ /* bad read values if the workaround */
163 /* smc->hw.mc_dummy = *((short volatile far *)(addr)))*/
164 /* is used */
165 p = (u_long)inpw(FM_A(FM_MDRU))<<16 ;
166 p += (u_long)inpw(FM_A(FM_MDRL)) ;
167 return p;
168 }
169 #endif
170
171 /*
172 * clear buffer memory
173 */
init_ram(struct s_smc * smc)174 static void init_ram(struct s_smc *smc)
175 {
176 u_short i ;
177
178 smc->hw.fp.fifo.rbc_ram_start = 0 ;
179 smc->hw.fp.fifo.rbc_ram_end =
180 smc->hw.fp.fifo.rbc_ram_start + RBC_MEM_SIZE ;
181 CHECK_NPP() ;
182 MARW(smc->hw.fp.fifo.rbc_ram_start) ;
183 for (i = smc->hw.fp.fifo.rbc_ram_start;
184 i < (u_short) (smc->hw.fp.fifo.rbc_ram_end-1); i++)
185 write_mdr(smc,0L) ;
186 /* Erase the last byte too */
187 write_mdr(smc,0L) ;
188 }
189
190 /*
191 * set receive FIFO pointer
192 */
set_recvptr(struct s_smc * smc)193 static void set_recvptr(struct s_smc *smc)
194 {
195 /*
196 * initialize the pointer for receive queue 1
197 */
198 outpw(FM_A(FM_RPR1),smc->hw.fp.fifo.rx1_fifo_start) ; /* RPR1 */
199 outpw(FM_A(FM_SWPR1),smc->hw.fp.fifo.rx1_fifo_start) ; /* SWPR1 */
200 outpw(FM_A(FM_WPR1),smc->hw.fp.fifo.rx1_fifo_start) ; /* WPR1 */
201 outpw(FM_A(FM_EARV1),smc->hw.fp.fifo.tx_s_start-1) ; /* EARV1 */
202
203 /*
204 * initialize the pointer for receive queue 2
205 */
206 if (smc->hw.fp.fifo.rx2_fifo_size) {
207 outpw(FM_A(FM_RPR2),smc->hw.fp.fifo.rx2_fifo_start) ;
208 outpw(FM_A(FM_SWPR2),smc->hw.fp.fifo.rx2_fifo_start) ;
209 outpw(FM_A(FM_WPR2),smc->hw.fp.fifo.rx2_fifo_start) ;
210 outpw(FM_A(FM_EARV2),smc->hw.fp.fifo.rbc_ram_end-1) ;
211 }
212 else {
213 outpw(FM_A(FM_RPR2),smc->hw.fp.fifo.rbc_ram_end-1) ;
214 outpw(FM_A(FM_SWPR2),smc->hw.fp.fifo.rbc_ram_end-1) ;
215 outpw(FM_A(FM_WPR2),smc->hw.fp.fifo.rbc_ram_end-1) ;
216 outpw(FM_A(FM_EARV2),smc->hw.fp.fifo.rbc_ram_end-1) ;
217 }
218 }
219
220 /*
221 * set transmit FIFO pointer
222 */
set_txptr(struct s_smc * smc)223 static void set_txptr(struct s_smc *smc)
224 {
225 outpw(FM_A(FM_CMDREG2),FM_IRSTQ) ; /* reset transmit queues */
226
227 /*
228 * initialize the pointer for asynchronous transmit queue
229 */
230 outpw(FM_A(FM_RPXA0),smc->hw.fp.fifo.tx_a0_start) ; /* RPXA0 */
231 outpw(FM_A(FM_SWPXA0),smc->hw.fp.fifo.tx_a0_start) ; /* SWPXA0 */
232 outpw(FM_A(FM_WPXA0),smc->hw.fp.fifo.tx_a0_start) ; /* WPXA0 */
233 outpw(FM_A(FM_EAA0),smc->hw.fp.fifo.rx2_fifo_start-1) ; /* EAA0 */
234
235 /*
236 * initialize the pointer for synchronous transmit queue
237 */
238 if (smc->hw.fp.fifo.tx_s_size) {
239 outpw(FM_A(FM_RPXS),smc->hw.fp.fifo.tx_s_start) ;
240 outpw(FM_A(FM_SWPXS),smc->hw.fp.fifo.tx_s_start) ;
241 outpw(FM_A(FM_WPXS),smc->hw.fp.fifo.tx_s_start) ;
242 outpw(FM_A(FM_EAS),smc->hw.fp.fifo.tx_a0_start-1) ;
243 }
244 else {
245 outpw(FM_A(FM_RPXS),smc->hw.fp.fifo.tx_a0_start-1) ;
246 outpw(FM_A(FM_SWPXS),smc->hw.fp.fifo.tx_a0_start-1) ;
247 outpw(FM_A(FM_WPXS),smc->hw.fp.fifo.tx_a0_start-1) ;
248 outpw(FM_A(FM_EAS),smc->hw.fp.fifo.tx_a0_start-1) ;
249 }
250 }
251
252 /*
253 * init memory buffer management registers
254 */
init_rbc(struct s_smc * smc)255 static void init_rbc(struct s_smc *smc)
256 {
257 u_short rbc_ram_addr ;
258
259 /*
260 * set unused pointers or permanent pointers
261 */
262 rbc_ram_addr = smc->hw.fp.fifo.rx2_fifo_start - 1 ;
263
264 outpw(FM_A(FM_RPXA1),rbc_ram_addr) ; /* a1-send pointer */
265 outpw(FM_A(FM_WPXA1),rbc_ram_addr) ;
266 outpw(FM_A(FM_SWPXA1),rbc_ram_addr) ;
267 outpw(FM_A(FM_EAA1),rbc_ram_addr) ;
268
269 set_recvptr(smc) ;
270 set_txptr(smc) ;
271 }
272
273 /*
274 * init rx pointer
275 */
init_rx(struct s_smc * smc)276 static void init_rx(struct s_smc *smc)
277 {
278 struct s_smt_rx_queue *queue ;
279
280 /*
281 * init all tx data structures for receive queue 1
282 */
283 smc->hw.fp.rx[QUEUE_R1] = queue = &smc->hw.fp.rx_q[QUEUE_R1] ;
284 queue->rx_bmu_ctl = (HW_PTR) ADDR(B0_R1_CSR) ;
285 queue->rx_bmu_dsc = (HW_PTR) ADDR(B4_R1_DA) ;
286
287 /*
288 * init all tx data structures for receive queue 2
289 */
290 smc->hw.fp.rx[QUEUE_R2] = queue = &smc->hw.fp.rx_q[QUEUE_R2] ;
291 queue->rx_bmu_ctl = (HW_PTR) ADDR(B0_R2_CSR) ;
292 queue->rx_bmu_dsc = (HW_PTR) ADDR(B4_R2_DA) ;
293 }
294
295 /*
296 * set the TSYNC register of the FORMAC to regulate synchronous transmission
297 */
set_formac_tsync(struct s_smc * smc,long sync_bw)298 void set_formac_tsync(struct s_smc *smc, long sync_bw)
299 {
300 outpw(FM_A(FM_TSYNC),(unsigned int) (((-sync_bw) >> 5) & 0xffff) ) ;
301 }
302
303 /*
304 * init all tx data structures
305 */
init_tx(struct s_smc * smc)306 static void init_tx(struct s_smc *smc)
307 {
308 struct s_smt_tx_queue *queue ;
309
310 /*
311 * init all tx data structures for the synchronous queue
312 */
313 smc->hw.fp.tx[QUEUE_S] = queue = &smc->hw.fp.tx_q[QUEUE_S] ;
314 queue->tx_bmu_ctl = (HW_PTR) ADDR(B0_XS_CSR) ;
315 queue->tx_bmu_dsc = (HW_PTR) ADDR(B5_XS_DA) ;
316
317 #ifdef ESS
318 set_formac_tsync(smc,smc->ess.sync_bw) ;
319 #endif
320
321 /*
322 * init all tx data structures for the asynchronous queue 0
323 */
324 smc->hw.fp.tx[QUEUE_A0] = queue = &smc->hw.fp.tx_q[QUEUE_A0] ;
325 queue->tx_bmu_ctl = (HW_PTR) ADDR(B0_XA_CSR) ;
326 queue->tx_bmu_dsc = (HW_PTR) ADDR(B5_XA_DA) ;
327
328
329 llc_recover_tx(smc) ;
330 }
331
mac_counter_init(struct s_smc * smc)332 static void mac_counter_init(struct s_smc *smc)
333 {
334 int i ;
335 u_long *ec ;
336
337 /*
338 * clear FORMAC+ frame-, lost- and error counter
339 */
340 outpw(FM_A(FM_FCNTR),0) ;
341 outpw(FM_A(FM_LCNTR),0) ;
342 outpw(FM_A(FM_ECNTR),0) ;
343 /*
344 * clear internal error counter structure
345 */
346 ec = (u_long *)&smc->hw.fp.err_stats ;
347 for (i = (sizeof(struct err_st)/sizeof(long)) ; i ; i--)
348 *ec++ = 0L ;
349 smc->mib.m[MAC0].fddiMACRingOp_Ct = 0 ;
350 }
351
352 /*
353 * set FORMAC address, and t_request
354 */
set_formac_addr(struct s_smc * smc)355 static void set_formac_addr(struct s_smc *smc)
356 {
357 long t_requ = smc->mib.m[MAC0].fddiMACT_Req ;
358
359 outpw(FM_A(FM_SAID),my_said) ; /* set short address */
360 outpw(FM_A(FM_LAIL),(unsigned short)((smc->hw.fddi_home_addr.a[4]<<8) +
361 smc->hw.fddi_home_addr.a[5])) ;
362 outpw(FM_A(FM_LAIC),(unsigned short)((smc->hw.fddi_home_addr.a[2]<<8) +
363 smc->hw.fddi_home_addr.a[3])) ;
364 outpw(FM_A(FM_LAIM),(unsigned short)((smc->hw.fddi_home_addr.a[0]<<8) +
365 smc->hw.fddi_home_addr.a[1])) ;
366
367 outpw(FM_A(FM_SAGP),my_sagp) ; /* set short group address */
368
369 outpw(FM_A(FM_LAGL),(unsigned short)((smc->hw.fp.group_addr.a[4]<<8) +
370 smc->hw.fp.group_addr.a[5])) ;
371 outpw(FM_A(FM_LAGC),(unsigned short)((smc->hw.fp.group_addr.a[2]<<8) +
372 smc->hw.fp.group_addr.a[3])) ;
373 outpw(FM_A(FM_LAGM),(unsigned short)((smc->hw.fp.group_addr.a[0]<<8) +
374 smc->hw.fp.group_addr.a[1])) ;
375
376 /* set r_request regs. (MSW & LSW of TRT ) */
377 outpw(FM_A(FM_TREQ1),(unsigned short)(t_requ>>16)) ;
378 outpw(FM_A(FM_TREQ0),(unsigned short)t_requ) ;
379 }
380
set_int(char * p,int l)381 static void set_int(char *p, int l)
382 {
383 p[0] = (char)(l >> 24) ;
384 p[1] = (char)(l >> 16) ;
385 p[2] = (char)(l >> 8) ;
386 p[3] = (char)(l >> 0) ;
387 }
388
389 /*
390 * copy TX descriptor to buffer mem
391 * append FC field and MAC frame
392 * if more bit is set in descr
393 * append pointer to descriptor (endless loop)
394 * else
395 * append 'end of chain' pointer
396 */
copy_tx_mac(struct s_smc * smc,u_long td,struct fddi_mac * mac,unsigned int off,int len)397 static void copy_tx_mac(struct s_smc *smc, u_long td, struct fddi_mac *mac,
398 unsigned int off, int len)
399 /* u_long td; transmit descriptor */
400 /* struct fddi_mac *mac; mac frame pointer */
401 /* unsigned int off; start address within buffer memory */
402 /* int len ; length of the frame including the FC */
403 {
404 int i ;
405 __le32 *p ;
406
407 CHECK_NPP() ;
408 MARW(off) ; /* set memory address reg for writes */
409
410 p = (__le32 *) mac ;
411 for (i = (len + 3)/4 ; i ; i--) {
412 if (i == 1) {
413 /* last word, set the tag bit */
414 outpw(FM_A(FM_CMDREG2),FM_ISTTB) ;
415 }
416 write_mdr(smc,le32_to_cpu(*p)) ;
417 p++ ;
418 }
419
420 outpw(FM_A(FM_CMDREG2),FM_ISTTB) ; /* set the tag bit */
421 write_mdr(smc,td) ; /* write over memory data reg to buffer */
422 }
423
424 /*
425 BEGIN_MANUAL_ENTRY(module;tests;3)
426 How to test directed beacon frames
427 ----------------------------------------------------------------
428
429 o Insert a break point in the function build_claim_beacon()
430 before calling copy_tx_mac() for building the claim frame.
431 o Modify the RM3_DETECT case so that the RM6_DETECT state
432 will always entered from the RM3_DETECT state (function rmt_fsm(),
433 rmt.c)
434 o Compile the driver.
435 o Set the parameter TREQ in the protocol.ini or net.cfg to a
436 small value to make sure your station will win the claim
437 process.
438 o Start the driver.
439 o When you reach the break point, modify the SA and DA address
440 of the claim frame (e.g. SA = DA = 10005affffff).
441 o When you see RM3_DETECT and RM6_DETECT, observe the direct
442 beacon frames on the UPPSLANA.
443
444 END_MANUAL_ENTRY
445 */
directed_beacon(struct s_smc * smc)446 static void directed_beacon(struct s_smc *smc)
447 {
448 SK_LOC_DECL(__le32,a[2]) ;
449
450 /*
451 * set UNA in frame
452 * enable FORMAC to send endless queue of directed beacon
453 * important: the UNA starts at byte 1 (not at byte 0)
454 */
455 * (char *) a = (char) ((long)DBEACON_INFO<<24L) ;
456 a[1] = 0 ;
457 memcpy((char *)a+1, (char *) &smc->mib.m[MAC0].fddiMACUpstreamNbr, ETH_ALEN);
458
459 CHECK_NPP() ;
460 /* set memory address reg for writes */
461 MARW(smc->hw.fp.fifo.rbc_ram_start+DBEACON_FRAME_OFF+4) ;
462 write_mdr(smc,le32_to_cpu(a[0])) ;
463 outpw(FM_A(FM_CMDREG2),FM_ISTTB) ; /* set the tag bit */
464 write_mdr(smc,le32_to_cpu(a[1])) ;
465
466 outpw(FM_A(FM_SABC),smc->hw.fp.fifo.rbc_ram_start + DBEACON_FRAME_OFF) ;
467 }
468
469 /*
470 setup claim & beacon pointer
471 NOTE :
472 special frame packets end with a pointer to their own
473 descriptor, and the MORE bit is set in the descriptor
474 */
build_claim_beacon(struct s_smc * smc,u_long t_request)475 static void build_claim_beacon(struct s_smc *smc, u_long t_request)
476 {
477 u_int td ;
478 int len ;
479 struct fddi_mac_sf *mac ;
480
481 /*
482 * build claim packet
483 */
484 len = 17 ;
485 td = TX_DESCRIPTOR | ((((u_int)len-1)&3)<<27) ;
486 mac = &smc->hw.fp.mac_sfb ;
487 mac->mac_fc = FC_CLAIM ;
488 /* DA == SA in claim frame */
489 mac->mac_source = mac->mac_dest = MA ;
490 /* 2's complement */
491 set_int((char *)mac->mac_info,(int)t_request) ;
492
493 copy_tx_mac(smc,td,(struct fddi_mac *)mac,
494 smc->hw.fp.fifo.rbc_ram_start + CLAIM_FRAME_OFF,len) ;
495 /* set CLAIM start pointer */
496 outpw(FM_A(FM_SACL),smc->hw.fp.fifo.rbc_ram_start + CLAIM_FRAME_OFF) ;
497
498 /*
499 * build beacon packet
500 */
501 len = 17 ;
502 td = TX_DESCRIPTOR | ((((u_int)len-1)&3)<<27) ;
503 mac->mac_fc = FC_BEACON ;
504 mac->mac_source = MA ;
505 mac->mac_dest = null_addr ; /* DA == 0 in beacon frame */
506 set_int((char *) mac->mac_info,((int)BEACON_INFO<<24) + 0 ) ;
507
508 copy_tx_mac(smc,td,(struct fddi_mac *)mac,
509 smc->hw.fp.fifo.rbc_ram_start + BEACON_FRAME_OFF,len) ;
510 /* set beacon start pointer */
511 outpw(FM_A(FM_SABC),smc->hw.fp.fifo.rbc_ram_start + BEACON_FRAME_OFF) ;
512
513 /*
514 * build directed beacon packet
515 * contains optional UNA
516 */
517 len = 23 ;
518 td = TX_DESCRIPTOR | ((((u_int)len-1)&3)<<27) ;
519 mac->mac_fc = FC_BEACON ;
520 mac->mac_source = MA ;
521 mac->mac_dest = dbeacon_multi ; /* multicast */
522 set_int((char *) mac->mac_info,((int)DBEACON_INFO<<24) + 0 ) ;
523 set_int((char *) mac->mac_info+4,0) ;
524 set_int((char *) mac->mac_info+8,0) ;
525
526 copy_tx_mac(smc,td,(struct fddi_mac *)mac,
527 smc->hw.fp.fifo.rbc_ram_start + DBEACON_FRAME_OFF,len) ;
528
529 /* end of claim/beacon queue */
530 outpw(FM_A(FM_EACB),smc->hw.fp.fifo.rx1_fifo_start-1) ;
531
532 outpw(FM_A(FM_WPXSF),0) ;
533 outpw(FM_A(FM_RPXSF),0) ;
534 }
535
formac_rcv_restart(struct s_smc * smc)536 static void formac_rcv_restart(struct s_smc *smc)
537 {
538 /* enable receive function */
539 SETMASK(FM_A(FM_MDREG1),smc->hw.fp.rx_mode,FM_ADDRX) ;
540
541 outpw(FM_A(FM_CMDREG1),FM_ICLLR) ; /* clear receive lock */
542 }
543
formac_tx_restart(struct s_smc * smc)544 void formac_tx_restart(struct s_smc *smc)
545 {
546 outpw(FM_A(FM_CMDREG1),FM_ICLLS) ; /* clear s-frame lock */
547 outpw(FM_A(FM_CMDREG1),FM_ICLLA0) ; /* clear a-frame lock */
548 }
549
enable_formac(struct s_smc * smc)550 static void enable_formac(struct s_smc *smc)
551 {
552 /* set formac IMSK : 0 enables irq */
553 outpw(FM_A(FM_IMSK1U),(unsigned short)~mac_imsk1u);
554 outpw(FM_A(FM_IMSK1L),(unsigned short)~mac_imsk1l);
555 outpw(FM_A(FM_IMSK2U),(unsigned short)~mac_imsk2u);
556 outpw(FM_A(FM_IMSK2L),(unsigned short)~mac_imsk2l);
557 outpw(FM_A(FM_IMSK3U),(unsigned short)~mac_imsk3u);
558 outpw(FM_A(FM_IMSK3L),(unsigned short)~mac_imsk3l);
559 }
560
561 #if 0 /* Removed because the driver should use the ASICs TX complete IRQ. */
562 /* The FORMACs tx complete IRQ should be used any longer */
563
564 /*
565 BEGIN_MANUAL_ENTRY(if,func;others;4)
566
567 void enable_tx_irq(smc, queue)
568 struct s_smc *smc ;
569 u_short queue ;
570
571 Function DOWNCALL (SMT, fplustm.c)
572 enable_tx_irq() enables the FORMACs transmit complete
573 interrupt of the queue.
574
575 Para queue = QUEUE_S: synchronous queue
576 = QUEUE_A0: asynchronous queue
577
578 Note After any ring operational change the transmit complete
579 interrupts are disabled.
580 The operating system dependent module must enable
581 the transmit complete interrupt of a queue,
582 - when it queues the first frame,
583 because of no transmit resources are beeing
584 available and
585 - when it escapes from the function llc_restart_tx
586 while some frames are still queued.
587
588 END_MANUAL_ENTRY
589 */
590 void enable_tx_irq(struct s_smc *smc, u_short queue)
591 /* u_short queue; 0 = synchronous queue, 1 = asynchronous queue 0 */
592 {
593 u_short imask ;
594
595 imask = ~(inpw(FM_A(FM_IMSK1U))) ;
596
597 if (queue == 0) {
598 outpw(FM_A(FM_IMSK1U),~(imask|FM_STEFRMS)) ;
599 }
600 if (queue == 1) {
601 outpw(FM_A(FM_IMSK1U),~(imask|FM_STEFRMA0)) ;
602 }
603 }
604
605 /*
606 BEGIN_MANUAL_ENTRY(if,func;others;4)
607
608 void disable_tx_irq(smc, queue)
609 struct s_smc *smc ;
610 u_short queue ;
611
612 Function DOWNCALL (SMT, fplustm.c)
613 disable_tx_irq disables the FORMACs transmit complete
614 interrupt of the queue
615
616 Para queue = QUEUE_S: synchronous queue
617 = QUEUE_A0: asynchronous queue
618
619 Note The operating system dependent module should disable
620 the transmit complete interrupts if it escapes from the
621 function llc_restart_tx and no frames are queued.
622
623 END_MANUAL_ENTRY
624 */
625 void disable_tx_irq(struct s_smc *smc, u_short queue)
626 /* u_short queue; 0 = synchronous queue, 1 = asynchronous queue 0 */
627 {
628 u_short imask ;
629
630 imask = ~(inpw(FM_A(FM_IMSK1U))) ;
631
632 if (queue == 0) {
633 outpw(FM_A(FM_IMSK1U),~(imask&~FM_STEFRMS)) ;
634 }
635 if (queue == 1) {
636 outpw(FM_A(FM_IMSK1U),~(imask&~FM_STEFRMA0)) ;
637 }
638 }
639 #endif
640
disable_formac(struct s_smc * smc)641 static void disable_formac(struct s_smc *smc)
642 {
643 /* clear formac IMSK : 1 disables irq */
644 outpw(FM_A(FM_IMSK1U),MW) ;
645 outpw(FM_A(FM_IMSK1L),MW) ;
646 outpw(FM_A(FM_IMSK2U),MW) ;
647 outpw(FM_A(FM_IMSK2L),MW) ;
648 outpw(FM_A(FM_IMSK3U),MW) ;
649 outpw(FM_A(FM_IMSK3L),MW) ;
650 }
651
652
mac_ring_up(struct s_smc * smc,int up)653 static void mac_ring_up(struct s_smc *smc, int up)
654 {
655 if (up) {
656 formac_rcv_restart(smc) ; /* enable receive function */
657 smc->hw.mac_ring_is_up = TRUE ;
658 llc_restart_tx(smc) ; /* TX queue */
659 }
660 else {
661 /* disable receive function */
662 SETMASK(FM_A(FM_MDREG1),FM_MDISRCV,FM_ADDET) ;
663
664 /* abort current transmit activity */
665 outpw(FM_A(FM_CMDREG2),FM_IACTR) ;
666
667 smc->hw.mac_ring_is_up = FALSE ;
668 }
669 }
670
671 /*--------------------------- ISR handling ----------------------------------*/
672 /*
673 * mac1_irq is in drvfbi.c
674 */
675
676 /*
677 * mac2_irq: status bits for the receive queue 1, and ring status
678 * ring status indication bits
679 */
mac2_irq(struct s_smc * smc,u_short code_s2u,u_short code_s2l)680 void mac2_irq(struct s_smc *smc, u_short code_s2u, u_short code_s2l)
681 {
682 u_short change_s2l ;
683 u_short change_s2u ;
684
685 /* (jd) 22-Feb-1999
686 * Restart 2_DMax Timer after end of claiming or beaconing
687 */
688 if (code_s2u & (FM_SCLM|FM_SHICLM|FM_SBEC|FM_SOTRBEC)) {
689 queue_event(smc,EVENT_RMT,RM_TX_STATE_CHANGE) ;
690 }
691 else if (code_s2l & (FM_STKISS)) {
692 queue_event(smc,EVENT_RMT,RM_TX_STATE_CHANGE) ;
693 }
694
695 /*
696 * XOR current st bits with the last to avoid useless RMT event queuing
697 */
698 change_s2l = smc->hw.fp.s2l ^ code_s2l ;
699 change_s2u = smc->hw.fp.s2u ^ code_s2u ;
700
701 if ((change_s2l & FM_SRNGOP) ||
702 (!smc->hw.mac_ring_is_up && ((code_s2l & FM_SRNGOP)))) {
703 if (code_s2l & FM_SRNGOP) {
704 mac_ring_up(smc,1) ;
705 queue_event(smc,EVENT_RMT,RM_RING_OP) ;
706 smc->mib.m[MAC0].fddiMACRingOp_Ct++ ;
707 }
708 else {
709 mac_ring_up(smc,0) ;
710 queue_event(smc,EVENT_RMT,RM_RING_NON_OP) ;
711 }
712 goto mac2_end ;
713 }
714 if (code_s2l & FM_SMISFRM) { /* missed frame */
715 smc->mib.m[MAC0].fddiMACNotCopied_Ct++ ;
716 }
717 if (code_s2u & (FM_SRCVOVR | /* recv. FIFO overflow */
718 FM_SRBFL)) { /* recv. buffer full */
719 smc->hw.mac_ct.mac_r_restart_counter++ ;
720 /* formac_rcv_restart(smc) ; */
721 smt_stat_counter(smc,1) ;
722 /* goto mac2_end ; */
723 }
724 if (code_s2u & FM_SOTRBEC)
725 queue_event(smc,EVENT_RMT,RM_OTHER_BEACON) ;
726 if (code_s2u & FM_SMYBEC)
727 queue_event(smc,EVENT_RMT,RM_MY_BEACON) ;
728 if (change_s2u & code_s2u & FM_SLOCLM) {
729 DB_RMTN(2, "RMT : lower claim received");
730 }
731 if ((code_s2u & FM_SMYCLM) && !(code_s2l & FM_SDUPCLM)) {
732 /*
733 * This is my claim and that claim is not detected as a
734 * duplicate one.
735 */
736 queue_event(smc,EVENT_RMT,RM_MY_CLAIM) ;
737 }
738 if (code_s2l & FM_SDUPCLM) {
739 /*
740 * If a duplicate claim frame (same SA but T_Bid != T_Req)
741 * this flag will be set.
742 * In the RMT state machine we need a RM_VALID_CLAIM event
743 * to do the appropriate state change.
744 * RM(34c)
745 */
746 queue_event(smc,EVENT_RMT,RM_VALID_CLAIM) ;
747 }
748 if (change_s2u & code_s2u & FM_SHICLM) {
749 DB_RMTN(2, "RMT : higher claim received");
750 }
751 if ( (code_s2l & FM_STRTEXP) ||
752 (code_s2l & FM_STRTEXR) )
753 queue_event(smc,EVENT_RMT,RM_TRT_EXP) ;
754 if (code_s2l & FM_SMULTDA) {
755 /*
756 * The MAC has found a 2. MAC with the same address.
757 * Signal dup_addr_test = failed to RMT state machine.
758 * RM(25)
759 */
760 smc->r.dup_addr_test = DA_FAILED ;
761 queue_event(smc,EVENT_RMT,RM_DUP_ADDR) ;
762 }
763 if (code_s2u & FM_SBEC)
764 smc->hw.fp.err_stats.err_bec_stat++ ;
765 if (code_s2u & FM_SCLM)
766 smc->hw.fp.err_stats.err_clm_stat++ ;
767 if (code_s2l & FM_STVXEXP)
768 smc->mib.m[MAC0].fddiMACTvxExpired_Ct++ ;
769 if ((code_s2u & (FM_SBEC|FM_SCLM))) {
770 if (!(change_s2l & FM_SRNGOP) && (smc->hw.fp.s2l & FM_SRNGOP)) {
771 mac_ring_up(smc,0) ;
772 queue_event(smc,EVENT_RMT,RM_RING_NON_OP) ;
773
774 mac_ring_up(smc,1) ;
775 queue_event(smc,EVENT_RMT,RM_RING_OP) ;
776 smc->mib.m[MAC0].fddiMACRingOp_Ct++ ;
777 }
778 }
779 if (code_s2l & FM_SPHINV)
780 smc->hw.fp.err_stats.err_phinv++ ;
781 if (code_s2l & FM_SSIFG)
782 smc->hw.fp.err_stats.err_sifg_det++ ;
783 if (code_s2l & FM_STKISS)
784 smc->hw.fp.err_stats.err_tkiss++ ;
785 if (code_s2l & FM_STKERR)
786 smc->hw.fp.err_stats.err_tkerr++ ;
787 if (code_s2l & FM_SFRMCTR)
788 smc->mib.m[MAC0].fddiMACFrame_Ct += 0x10000L ;
789 if (code_s2l & FM_SERRCTR)
790 smc->mib.m[MAC0].fddiMACError_Ct += 0x10000L ;
791 if (code_s2l & FM_SLSTCTR)
792 smc->mib.m[MAC0].fddiMACLost_Ct += 0x10000L ;
793 if (code_s2u & FM_SERRSF) {
794 SMT_PANIC(smc,SMT_E0114, SMT_E0114_MSG) ;
795 }
796 mac2_end:
797 /* notice old status */
798 smc->hw.fp.s2l = code_s2l ;
799 smc->hw.fp.s2u = code_s2u ;
800 outpw(FM_A(FM_IMSK2U),~mac_imsk2u) ;
801 }
802
803 /*
804 * mac3_irq: receive queue 2 bits and address detection bits
805 */
mac3_irq(struct s_smc * smc,u_short code_s3u,u_short code_s3l)806 void mac3_irq(struct s_smc *smc, u_short code_s3u, u_short code_s3l)
807 {
808 UNUSED(code_s3l) ;
809
810 if (code_s3u & (FM_SRCVOVR2 | /* recv. FIFO overflow */
811 FM_SRBFL2)) { /* recv. buffer full */
812 smc->hw.mac_ct.mac_r_restart_counter++ ;
813 smt_stat_counter(smc,1);
814 }
815
816
817 if (code_s3u & FM_SRPERRQ2) { /* parity error receive queue 2 */
818 SMT_PANIC(smc,SMT_E0115, SMT_E0115_MSG) ;
819 }
820 if (code_s3u & FM_SRPERRQ1) { /* parity error receive queue 2 */
821 SMT_PANIC(smc,SMT_E0116, SMT_E0116_MSG) ;
822 }
823 }
824
825
826 /*
827 * take formac offline
828 */
formac_offline(struct s_smc * smc)829 static void formac_offline(struct s_smc *smc)
830 {
831 outpw(FM_A(FM_CMDREG2),FM_IACTR) ;/* abort current transmit activity */
832
833 /* disable receive function */
834 SETMASK(FM_A(FM_MDREG1),FM_MDISRCV,FM_ADDET) ;
835
836 /* FORMAC+ 'Initialize Mode' */
837 SETMASK(FM_A(FM_MDREG1),FM_MINIT,FM_MMODE) ;
838
839 disable_formac(smc) ;
840 smc->hw.mac_ring_is_up = FALSE ;
841 smc->hw.hw_state = STOPPED ;
842 }
843
844 /*
845 * bring formac online
846 */
formac_online(struct s_smc * smc)847 static void formac_online(struct s_smc *smc)
848 {
849 enable_formac(smc) ;
850 SETMASK(FM_A(FM_MDREG1),FM_MONLINE | FM_SELRA | MDR1INIT |
851 smc->hw.fp.rx_mode, FM_MMODE | FM_SELRA | FM_ADDRX) ;
852 }
853
854 /*
855 * FORMAC+ full init. (tx, rx, timer, counter, claim & beacon)
856 */
init_fplus(struct s_smc * smc)857 int init_fplus(struct s_smc *smc)
858 {
859 smc->hw.fp.nsa_mode = FM_MRNNSAFNMA ;
860 smc->hw.fp.rx_mode = FM_MDAMA ;
861 smc->hw.fp.group_addr = fddi_broadcast ;
862 smc->hw.fp.func_addr = 0 ;
863 smc->hw.fp.frselreg_init = 0 ;
864
865 init_driver_fplus(smc) ;
866 if (smc->s.sas == SMT_DAS)
867 smc->hw.fp.mdr3init |= FM_MENDAS ;
868
869 smc->hw.mac_ct.mac_nobuf_counter = 0 ;
870 smc->hw.mac_ct.mac_r_restart_counter = 0 ;
871
872 smc->hw.fp.fm_st1u = (HW_PTR) ADDR(B0_ST1U) ;
873 smc->hw.fp.fm_st1l = (HW_PTR) ADDR(B0_ST1L) ;
874 smc->hw.fp.fm_st2u = (HW_PTR) ADDR(B0_ST2U) ;
875 smc->hw.fp.fm_st2l = (HW_PTR) ADDR(B0_ST2L) ;
876 smc->hw.fp.fm_st3u = (HW_PTR) ADDR(B0_ST3U) ;
877 smc->hw.fp.fm_st3l = (HW_PTR) ADDR(B0_ST3L) ;
878
879 smc->hw.fp.s2l = smc->hw.fp.s2u = 0 ;
880 smc->hw.mac_ring_is_up = 0 ;
881
882 mac_counter_init(smc) ;
883
884 /* convert BCKL units to symbol time */
885 smc->hw.mac_pa.t_neg = (u_long)0 ;
886 smc->hw.mac_pa.t_pri = (u_long)0 ;
887
888 /* make sure all PCI settings are correct */
889 mac_do_pci_fix(smc) ;
890
891 return init_mac(smc, 1);
892 /* enable_formac(smc) ; */
893 }
894
init_mac(struct s_smc * smc,int all)895 static int init_mac(struct s_smc *smc, int all)
896 {
897 u_short t_max,x ;
898 u_long time=0 ;
899
900 /*
901 * clear memory
902 */
903 outpw(FM_A(FM_MDREG1),FM_MINIT) ; /* FORMAC+ init mode */
904 set_formac_addr(smc) ;
905 outpw(FM_A(FM_MDREG1),FM_MMEMACT) ; /* FORMAC+ memory activ mode */
906 /* Note: Mode register 2 is set here, incase parity is enabled. */
907 outpw(FM_A(FM_MDREG2),smc->hw.fp.mdr2init) ;
908
909 if (all) {
910 init_ram(smc) ;
911 }
912 else {
913 /*
914 * reset the HPI, the Master and the BMUs
915 */
916 outp(ADDR(B0_CTRL), CTRL_HPI_SET) ;
917 time = hwt_quick_read(smc) ;
918 }
919
920 /*
921 * set all pointers, frames etc
922 */
923 smt_split_up_fifo(smc) ;
924
925 init_tx(smc) ;
926 init_rx(smc) ;
927 init_rbc(smc) ;
928
929 build_claim_beacon(smc,smc->mib.m[MAC0].fddiMACT_Req) ;
930
931 /* set RX threshold */
932 /* see Errata #SN2 Phantom receive overflow */
933 outpw(FM_A(FM_FRMTHR),14<<12) ; /* switch on */
934
935 /* set formac work mode */
936 outpw(FM_A(FM_MDREG1),MDR1INIT | FM_SELRA | smc->hw.fp.rx_mode) ;
937 outpw(FM_A(FM_MDREG2),smc->hw.fp.mdr2init) ;
938 outpw(FM_A(FM_MDREG3),smc->hw.fp.mdr3init) ;
939 outpw(FM_A(FM_FRSELREG),smc->hw.fp.frselreg_init) ;
940
941 /* set timer */
942 /*
943 * errata #22 fplus:
944 * T_MAX must not be FFFE
945 * or one of FFDF, FFB8, FF91 (-0x27 etc..)
946 */
947 t_max = (u_short)(smc->mib.m[MAC0].fddiMACT_Max/32) ;
948 x = t_max/0x27 ;
949 x *= 0x27 ;
950 if ((t_max == 0xfffe) || (t_max - x == 0x16))
951 t_max-- ;
952 outpw(FM_A(FM_TMAX),(u_short)t_max) ;
953
954 /* BugFix for report #10204 */
955 if (smc->mib.m[MAC0].fddiMACTvxValue < (u_long) (- US2BCLK(52))) {
956 outpw(FM_A(FM_TVX), (u_short) (- US2BCLK(52))/255 & MB) ;
957 } else {
958 outpw(FM_A(FM_TVX),
959 (u_short)((smc->mib.m[MAC0].fddiMACTvxValue/255) & MB)) ;
960 }
961
962 outpw(FM_A(FM_CMDREG1),FM_ICLLS) ; /* clear s-frame lock */
963 outpw(FM_A(FM_CMDREG1),FM_ICLLA0) ; /* clear a-frame lock */
964 outpw(FM_A(FM_CMDREG1),FM_ICLLR); /* clear receive lock */
965
966 /* Auto unlock receice threshold for receive queue 1 and 2 */
967 outpw(FM_A(FM_UNLCKDLY),(0xff|(0xff<<8))) ;
968
969 rtm_init(smc) ; /* RT-Monitor */
970
971 if (!all) {
972 /*
973 * after 10ms, reset the BMUs and repair the rings
974 */
975 hwt_wait_time(smc,time,MS2BCLK(10)) ;
976 outpd(ADDR(B0_R1_CSR),CSR_SET_RESET) ;
977 outpd(ADDR(B0_XA_CSR),CSR_SET_RESET) ;
978 outpd(ADDR(B0_XS_CSR),CSR_SET_RESET) ;
979 outp(ADDR(B0_CTRL), CTRL_HPI_CLR) ;
980 outpd(ADDR(B0_R1_CSR),CSR_CLR_RESET) ;
981 outpd(ADDR(B0_XA_CSR),CSR_CLR_RESET) ;
982 outpd(ADDR(B0_XS_CSR),CSR_CLR_RESET) ;
983 if (!smc->hw.hw_is_64bit) {
984 outpd(ADDR(B4_R1_F), RX_WATERMARK) ;
985 outpd(ADDR(B5_XA_F), TX_WATERMARK) ;
986 outpd(ADDR(B5_XS_F), TX_WATERMARK) ;
987 }
988 smc->hw.hw_state = STOPPED ;
989 mac_drv_repair_descr(smc) ;
990 }
991 smc->hw.hw_state = STARTED ;
992
993 return 0;
994 }
995
996
997 /*
998 * called by CFM
999 */
config_mux(struct s_smc * smc,int mux)1000 void config_mux(struct s_smc *smc, int mux)
1001 {
1002 plc_config_mux(smc,mux) ;
1003
1004 SETMASK(FM_A(FM_MDREG1),FM_SELRA,FM_SELRA) ;
1005 }
1006
1007 /*
1008 * called by RMT
1009 * enable CLAIM/BEACON interrupts
1010 * (only called if these events are of interest, e.g. in DETECT state
1011 * the interrupt must not be permanently enabled
1012 * RMT calls this function periodically (timer driven polling)
1013 */
sm_mac_check_beacon_claim(struct s_smc * smc)1014 void sm_mac_check_beacon_claim(struct s_smc *smc)
1015 {
1016 /* set formac IMSK : 0 enables irq */
1017 outpw(FM_A(FM_IMSK2U),~(mac_imsk2u | mac_beacon_imsk2u)) ;
1018 /* the driver must receive the directed beacons */
1019 formac_rcv_restart(smc) ;
1020 process_receive(smc) ;
1021 }
1022
1023 /*-------------------------- interface functions ----------------------------*/
1024 /*
1025 * control MAC layer (called by RMT)
1026 */
sm_ma_control(struct s_smc * smc,int mode)1027 void sm_ma_control(struct s_smc *smc, int mode)
1028 {
1029 switch(mode) {
1030 case MA_OFFLINE :
1031 /* Add to make the MAC offline in RM0_ISOLATED state */
1032 formac_offline(smc) ;
1033 break ;
1034 case MA_RESET :
1035 (void)init_mac(smc,0) ;
1036 break ;
1037 case MA_BEACON :
1038 formac_online(smc) ;
1039 break ;
1040 case MA_DIRECTED :
1041 directed_beacon(smc) ;
1042 break ;
1043 case MA_TREQ :
1044 /*
1045 * no actions necessary, TREQ is already set
1046 */
1047 break ;
1048 }
1049 }
1050
sm_mac_get_tx_state(struct s_smc * smc)1051 int sm_mac_get_tx_state(struct s_smc *smc)
1052 {
1053 return (inpw(FM_A(FM_STMCHN))>>4) & 7;
1054 }
1055
1056 /*
1057 * multicast functions
1058 */
1059
mac_get_mc_table(struct s_smc * smc,struct fddi_addr * user,struct fddi_addr * own,int del,int can)1060 static struct s_fpmc* mac_get_mc_table(struct s_smc *smc,
1061 struct fddi_addr *user,
1062 struct fddi_addr *own,
1063 int del, int can)
1064 {
1065 struct s_fpmc *tb ;
1066 struct s_fpmc *slot ;
1067 u_char *p ;
1068 int i ;
1069
1070 /*
1071 * set own = can(user)
1072 */
1073 *own = *user ;
1074 if (can) {
1075 p = own->a ;
1076 for (i = 0 ; i < 6 ; i++, p++)
1077 *p = bitrev8(*p);
1078 }
1079 slot = NULL;
1080 for (i = 0, tb = smc->hw.fp.mc.table ; i < FPMAX_MULTICAST ; i++, tb++){
1081 if (!tb->n) { /* not used */
1082 if (!del && !slot) /* if !del save first free */
1083 slot = tb ;
1084 continue ;
1085 }
1086 if (!ether_addr_equal((char *)&tb->a, (char *)own))
1087 continue ;
1088 return tb;
1089 }
1090 return slot; /* return first free or NULL */
1091 }
1092
1093 /*
1094 BEGIN_MANUAL_ENTRY(if,func;others;2)
1095
1096 void mac_clear_multicast(smc)
1097 struct s_smc *smc ;
1098
1099 Function DOWNCALL (SMT, fplustm.c)
1100 Clear all multicast entries
1101
1102 END_MANUAL_ENTRY()
1103 */
mac_clear_multicast(struct s_smc * smc)1104 void mac_clear_multicast(struct s_smc *smc)
1105 {
1106 struct s_fpmc *tb ;
1107 int i ;
1108
1109 smc->hw.fp.os_slots_used = 0 ; /* note the SMT addresses */
1110 /* will not be deleted */
1111 for (i = 0, tb = smc->hw.fp.mc.table ; i < FPMAX_MULTICAST ; i++, tb++){
1112 if (!tb->perm) {
1113 tb->n = 0 ;
1114 }
1115 }
1116 }
1117
1118 /*
1119 BEGIN_MANUAL_ENTRY(if,func;others;2)
1120
1121 int mac_add_multicast(smc,addr,can)
1122 struct s_smc *smc ;
1123 struct fddi_addr *addr ;
1124 int can ;
1125
1126 Function DOWNCALL (SMC, fplustm.c)
1127 Add an entry to the multicast table
1128
1129 Para addr pointer to a multicast address
1130 can = 0: the multicast address has the physical format
1131 = 1: the multicast address has the canonical format
1132 | 0x80 permanent
1133
1134 Returns 0: success
1135 1: address table full
1136
1137 Note After a 'driver reset' or a 'station set address' all
1138 entries of the multicast table are cleared.
1139 In this case the driver has to fill the multicast table again.
1140 After the operating system dependent module filled
1141 the multicast table it must call mac_update_multicast
1142 to activate the new multicast addresses!
1143
1144 END_MANUAL_ENTRY()
1145 */
mac_add_multicast(struct s_smc * smc,struct fddi_addr * addr,int can)1146 int mac_add_multicast(struct s_smc *smc, struct fddi_addr *addr, int can)
1147 {
1148 SK_LOC_DECL(struct fddi_addr,own) ;
1149 struct s_fpmc *tb ;
1150
1151 /*
1152 * check if there are free table entries
1153 */
1154 if (can & 0x80) {
1155 if (smc->hw.fp.smt_slots_used >= SMT_MAX_MULTI) {
1156 return 1;
1157 }
1158 }
1159 else {
1160 if (smc->hw.fp.os_slots_used >= FPMAX_MULTICAST-SMT_MAX_MULTI) {
1161 return 1;
1162 }
1163 }
1164
1165 /*
1166 * find empty slot
1167 */
1168 if (!(tb = mac_get_mc_table(smc,addr,&own,0,can & ~0x80)))
1169 return 1;
1170 tb->n++ ;
1171 tb->a = own ;
1172 tb->perm = (can & 0x80) ? 1 : 0 ;
1173
1174 if (can & 0x80)
1175 smc->hw.fp.smt_slots_used++ ;
1176 else
1177 smc->hw.fp.os_slots_used++ ;
1178
1179 return 0;
1180 }
1181
1182 /*
1183 * mode
1184 */
1185
1186 #define RX_MODE_PROM 0x1
1187 #define RX_MODE_ALL_MULTI 0x2
1188
1189 /*
1190 BEGIN_MANUAL_ENTRY(if,func;others;2)
1191
1192 void mac_update_multicast(smc)
1193 struct s_smc *smc ;
1194
1195 Function DOWNCALL (SMT, fplustm.c)
1196 Update FORMAC multicast registers
1197
1198 END_MANUAL_ENTRY()
1199 */
mac_update_multicast(struct s_smc * smc)1200 void mac_update_multicast(struct s_smc *smc)
1201 {
1202 struct s_fpmc *tb ;
1203 u_char *fu ;
1204 int i ;
1205
1206 /*
1207 * invalidate the CAM
1208 */
1209 outpw(FM_A(FM_AFCMD),FM_IINV_CAM) ;
1210
1211 /*
1212 * set the functional address
1213 */
1214 if (smc->hw.fp.func_addr) {
1215 fu = (u_char *) &smc->hw.fp.func_addr ;
1216 outpw(FM_A(FM_AFMASK2),0xffff) ;
1217 outpw(FM_A(FM_AFMASK1),(u_short) ~((fu[0] << 8) + fu[1])) ;
1218 outpw(FM_A(FM_AFMASK0),(u_short) ~((fu[2] << 8) + fu[3])) ;
1219 outpw(FM_A(FM_AFPERS),FM_VALID|FM_DA) ;
1220 outpw(FM_A(FM_AFCOMP2), 0xc000) ;
1221 outpw(FM_A(FM_AFCOMP1), 0x0000) ;
1222 outpw(FM_A(FM_AFCOMP0), 0x0000) ;
1223 outpw(FM_A(FM_AFCMD),FM_IWRITE_CAM) ;
1224 }
1225
1226 /*
1227 * set the mask and the personality register(s)
1228 */
1229 outpw(FM_A(FM_AFMASK0),0xffff) ;
1230 outpw(FM_A(FM_AFMASK1),0xffff) ;
1231 outpw(FM_A(FM_AFMASK2),0xffff) ;
1232 outpw(FM_A(FM_AFPERS),FM_VALID|FM_DA) ;
1233
1234 for (i = 0, tb = smc->hw.fp.mc.table; i < FPMAX_MULTICAST; i++, tb++) {
1235 if (tb->n) {
1236 CHECK_CAM() ;
1237
1238 /*
1239 * write the multicast address into the CAM
1240 */
1241 outpw(FM_A(FM_AFCOMP2),
1242 (u_short)((tb->a.a[0]<<8)+tb->a.a[1])) ;
1243 outpw(FM_A(FM_AFCOMP1),
1244 (u_short)((tb->a.a[2]<<8)+tb->a.a[3])) ;
1245 outpw(FM_A(FM_AFCOMP0),
1246 (u_short)((tb->a.a[4]<<8)+tb->a.a[5])) ;
1247 outpw(FM_A(FM_AFCMD),FM_IWRITE_CAM) ;
1248 }
1249 }
1250 }
1251
1252 /*
1253 BEGIN_MANUAL_ENTRY(if,func;others;3)
1254
1255 void mac_set_rx_mode(smc,mode)
1256 struct s_smc *smc ;
1257 int mode ;
1258
1259 Function DOWNCALL/INTERN (SMT, fplustm.c)
1260 This function enables / disables the selected receive.
1261 Don't call this function if the hardware module is
1262 used -- use mac_drv_rx_mode() instead of.
1263
1264 Para mode = 1 RX_ENABLE_ALLMULTI enable all multicasts
1265 2 RX_DISABLE_ALLMULTI disable "enable all multicasts"
1266 3 RX_ENABLE_PROMISC enable promiscuous
1267 4 RX_DISABLE_PROMISC disable promiscuous
1268 5 RX_ENABLE_NSA enable reception of NSA frames
1269 6 RX_DISABLE_NSA disable reception of NSA frames
1270
1271 Note The selected receive modes will be lost after 'driver reset'
1272 or 'set station address'
1273
1274 END_MANUAL_ENTRY
1275 */
mac_set_rx_mode(struct s_smc * smc,int mode)1276 void mac_set_rx_mode(struct s_smc *smc, int mode)
1277 {
1278 switch (mode) {
1279 case RX_ENABLE_ALLMULTI :
1280 smc->hw.fp.rx_prom |= RX_MODE_ALL_MULTI ;
1281 break ;
1282 case RX_DISABLE_ALLMULTI :
1283 smc->hw.fp.rx_prom &= ~RX_MODE_ALL_MULTI ;
1284 break ;
1285 case RX_ENABLE_PROMISC :
1286 smc->hw.fp.rx_prom |= RX_MODE_PROM ;
1287 break ;
1288 case RX_DISABLE_PROMISC :
1289 smc->hw.fp.rx_prom &= ~RX_MODE_PROM ;
1290 break ;
1291 case RX_ENABLE_NSA :
1292 smc->hw.fp.nsa_mode = FM_MDAMA ;
1293 smc->hw.fp.rx_mode = (smc->hw.fp.rx_mode & ~FM_ADDET) |
1294 smc->hw.fp.nsa_mode ;
1295 break ;
1296 case RX_DISABLE_NSA :
1297 smc->hw.fp.nsa_mode = FM_MRNNSAFNMA ;
1298 smc->hw.fp.rx_mode = (smc->hw.fp.rx_mode & ~FM_ADDET) |
1299 smc->hw.fp.nsa_mode ;
1300 break ;
1301 }
1302 if (smc->hw.fp.rx_prom & RX_MODE_PROM) {
1303 smc->hw.fp.rx_mode = FM_MLIMPROM ;
1304 }
1305 else if (smc->hw.fp.rx_prom & RX_MODE_ALL_MULTI) {
1306 smc->hw.fp.rx_mode = smc->hw.fp.nsa_mode | FM_EXGPA0 ;
1307 }
1308 else
1309 smc->hw.fp.rx_mode = smc->hw.fp.nsa_mode ;
1310 SETMASK(FM_A(FM_MDREG1),smc->hw.fp.rx_mode,FM_ADDRX) ;
1311 mac_update_multicast(smc) ;
1312 }
1313
1314 /*
1315 BEGIN_MANUAL_ENTRY(module;tests;3)
1316 How to test the Restricted Token Monitor
1317 ----------------------------------------------------------------
1318
1319 o Insert a break point in the function rtm_irq()
1320 o Remove all stations with a restricted token monitor from the
1321 network.
1322 o Connect a UPPS ISA or EISA station to the network.
1323 o Give the FORMAC of UPPS station the command to send
1324 restricted tokens until the ring becomes instable.
1325 o Now connect your test test client.
1326 o The restricted token monitor should detect the restricted token,
1327 and your break point will be reached.
1328 o You can ovserve how the station will clean the ring.
1329
1330 END_MANUAL_ENTRY
1331 */
rtm_irq(struct s_smc * smc)1332 void rtm_irq(struct s_smc *smc)
1333 {
1334 outpw(ADDR(B2_RTM_CRTL),TIM_CL_IRQ) ; /* clear IRQ */
1335 if (inpw(ADDR(B2_RTM_CRTL)) & TIM_RES_TOK) {
1336 outpw(FM_A(FM_CMDREG1),FM_ICL) ; /* force claim */
1337 DB_RMT("RMT: fddiPATHT_Rmode expired");
1338 AIX_EVENT(smc, (u_long) FDDI_RING_STATUS,
1339 (u_long) FDDI_SMT_EVENT,
1340 (u_long) FDDI_RTT, smt_get_event_word(smc));
1341 }
1342 outpw(ADDR(B2_RTM_CRTL),TIM_START) ; /* enable RTM monitoring */
1343 }
1344
rtm_init(struct s_smc * smc)1345 static void rtm_init(struct s_smc *smc)
1346 {
1347 outpd(ADDR(B2_RTM_INI),0) ; /* timer = 0 */
1348 outpw(ADDR(B2_RTM_CRTL),TIM_START) ; /* enable IRQ */
1349 }
1350
rtm_set_timer(struct s_smc * smc)1351 void rtm_set_timer(struct s_smc *smc)
1352 {
1353 /*
1354 * MIB timer and hardware timer have the same resolution of 80nS
1355 */
1356 DB_RMT("RMT: setting new fddiPATHT_Rmode, t = %d ns",
1357 (int)smc->mib.a[PATH0].fddiPATHT_Rmode);
1358 outpd(ADDR(B2_RTM_INI),smc->mib.a[PATH0].fddiPATHT_Rmode) ;
1359 }
1360
smt_split_up_fifo(struct s_smc * smc)1361 static void smt_split_up_fifo(struct s_smc *smc)
1362 {
1363
1364 /*
1365 BEGIN_MANUAL_ENTRY(module;mem;1)
1366 -------------------------------------------------------------
1367 RECEIVE BUFFER MEMORY DIVERSION
1368 -------------------------------------------------------------
1369
1370 R1_RxD == SMT_R1_RXD_COUNT
1371 R2_RxD == SMT_R2_RXD_COUNT
1372
1373 SMT_R1_RXD_COUNT must be unequal zero
1374
1375 | R1_RxD R2_RxD |R1_RxD R2_RxD | R1_RxD R2_RxD
1376 | x 0 | x 1-3 | x < 3
1377 ----------------------------------------------------------------------
1378 | 63,75 kB | 54,75 | R1_RxD
1379 rx queue 1 | RX_FIFO_SPACE | RX_LARGE_FIFO| ------------- * 63,75 kB
1380 | | | R1_RxD+R2_RxD
1381 ----------------------------------------------------------------------
1382 | | 9 kB | R2_RxD
1383 rx queue 2 | 0 kB | RX_SMALL_FIFO| ------------- * 63,75 kB
1384 | (not used) | | R1_RxD+R2_RxD
1385
1386 END_MANUAL_ENTRY
1387 */
1388
1389 if (SMT_R1_RXD_COUNT == 0) {
1390 SMT_PANIC(smc,SMT_E0117, SMT_E0117_MSG) ;
1391 }
1392
1393 switch(SMT_R2_RXD_COUNT) {
1394 case 0:
1395 smc->hw.fp.fifo.rx1_fifo_size = RX_FIFO_SPACE ;
1396 smc->hw.fp.fifo.rx2_fifo_size = 0 ;
1397 break ;
1398 case 1:
1399 case 2:
1400 case 3:
1401 smc->hw.fp.fifo.rx1_fifo_size = RX_LARGE_FIFO ;
1402 smc->hw.fp.fifo.rx2_fifo_size = RX_SMALL_FIFO ;
1403 break ;
1404 default: /* this is not the real defaule */
1405 smc->hw.fp.fifo.rx1_fifo_size = RX_FIFO_SPACE *
1406 SMT_R1_RXD_COUNT/(SMT_R1_RXD_COUNT+SMT_R2_RXD_COUNT) ;
1407 smc->hw.fp.fifo.rx2_fifo_size = RX_FIFO_SPACE *
1408 SMT_R2_RXD_COUNT/(SMT_R1_RXD_COUNT+SMT_R2_RXD_COUNT) ;
1409 break ;
1410 }
1411
1412 /*
1413 BEGIN_MANUAL_ENTRY(module;mem;1)
1414 -------------------------------------------------------------
1415 TRANSMIT BUFFER MEMORY DIVERSION
1416 -------------------------------------------------------------
1417
1418
1419 | no sync bw | sync bw available and | sync bw available and
1420 | available | SynchTxMode = SPLIT | SynchTxMode = ALL
1421 -----------------------------------------------------------------------
1422 sync tx | 0 kB | 32 kB | 55 kB
1423 queue | | TX_MEDIUM_FIFO | TX_LARGE_FIFO
1424 -----------------------------------------------------------------------
1425 async tx | 64 kB | 32 kB | 9 k
1426 queue | TX_FIFO_SPACE| TX_MEDIUM_FIFO | TX_SMALL_FIFO
1427
1428 END_MANUAL_ENTRY
1429 */
1430
1431 /*
1432 * set the tx mode bits
1433 */
1434 if (smc->mib.a[PATH0].fddiPATHSbaPayload) {
1435 #ifdef ESS
1436 smc->hw.fp.fifo.fifo_config_mode |=
1437 smc->mib.fddiESSSynchTxMode | SYNC_TRAFFIC_ON ;
1438 #endif
1439 }
1440 else {
1441 smc->hw.fp.fifo.fifo_config_mode &=
1442 ~(SEND_ASYNC_AS_SYNC|SYNC_TRAFFIC_ON) ;
1443 }
1444
1445 /*
1446 * split up the FIFO
1447 */
1448 if (smc->hw.fp.fifo.fifo_config_mode & SYNC_TRAFFIC_ON) {
1449 if (smc->hw.fp.fifo.fifo_config_mode & SEND_ASYNC_AS_SYNC) {
1450 smc->hw.fp.fifo.tx_s_size = TX_LARGE_FIFO ;
1451 smc->hw.fp.fifo.tx_a0_size = TX_SMALL_FIFO ;
1452 }
1453 else {
1454 smc->hw.fp.fifo.tx_s_size = TX_MEDIUM_FIFO ;
1455 smc->hw.fp.fifo.tx_a0_size = TX_MEDIUM_FIFO ;
1456 }
1457 }
1458 else {
1459 smc->hw.fp.fifo.tx_s_size = 0 ;
1460 smc->hw.fp.fifo.tx_a0_size = TX_FIFO_SPACE ;
1461 }
1462
1463 smc->hw.fp.fifo.rx1_fifo_start = smc->hw.fp.fifo.rbc_ram_start +
1464 RX_FIFO_OFF ;
1465 smc->hw.fp.fifo.tx_s_start = smc->hw.fp.fifo.rx1_fifo_start +
1466 smc->hw.fp.fifo.rx1_fifo_size ;
1467 smc->hw.fp.fifo.tx_a0_start = smc->hw.fp.fifo.tx_s_start +
1468 smc->hw.fp.fifo.tx_s_size ;
1469 smc->hw.fp.fifo.rx2_fifo_start = smc->hw.fp.fifo.tx_a0_start +
1470 smc->hw.fp.fifo.tx_a0_size ;
1471
1472 DB_SMT("FIFO split: mode = %x", smc->hw.fp.fifo.fifo_config_mode);
1473 DB_SMT("rbc_ram_start = %x rbc_ram_end = %x",
1474 smc->hw.fp.fifo.rbc_ram_start, smc->hw.fp.fifo.rbc_ram_end);
1475 DB_SMT("rx1_fifo_start = %x tx_s_start = %x",
1476 smc->hw.fp.fifo.rx1_fifo_start, smc->hw.fp.fifo.tx_s_start);
1477 DB_SMT("tx_a0_start = %x rx2_fifo_start = %x",
1478 smc->hw.fp.fifo.tx_a0_start, smc->hw.fp.fifo.rx2_fifo_start);
1479 }
1480
formac_reinit_tx(struct s_smc * smc)1481 void formac_reinit_tx(struct s_smc *smc)
1482 {
1483 /*
1484 * Split up the FIFO and reinitialize the MAC if synchronous
1485 * bandwidth becomes available but no synchronous queue is
1486 * configured.
1487 */
1488 if (!smc->hw.fp.fifo.tx_s_size && smc->mib.a[PATH0].fddiPATHSbaPayload){
1489 (void)init_mac(smc,0) ;
1490 }
1491 }
1492
1493