1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell RVU Ethernet driver
3 *
4 * Copyright (C) 2021 Marvell.
5 *
6 */
7
8 #include "cn10k.h"
9 #include "otx2_reg.h"
10 #include "otx2_struct.h"
11
12 static struct dev_hw_ops otx2_hw_ops = {
13 .sq_aq_init = otx2_sq_aq_init,
14 .sqe_flush = otx2_sqe_flush,
15 .aura_freeptr = otx2_aura_freeptr,
16 .refill_pool_ptrs = otx2_refill_pool_ptrs,
17 };
18
19 static struct dev_hw_ops cn10k_hw_ops = {
20 .sq_aq_init = cn10k_sq_aq_init,
21 .sqe_flush = cn10k_sqe_flush,
22 .aura_freeptr = cn10k_aura_freeptr,
23 .refill_pool_ptrs = cn10k_refill_pool_ptrs,
24 };
25
cn10k_lmtst_init(struct otx2_nic * pfvf)26 int cn10k_lmtst_init(struct otx2_nic *pfvf)
27 {
28
29 struct lmtst_tbl_setup_req *req;
30 struct otx2_lmt_info *lmt_info;
31 int err, cpu;
32
33 if (!test_bit(CN10K_LMTST, &pfvf->hw.cap_flag)) {
34 pfvf->hw_ops = &otx2_hw_ops;
35 return 0;
36 }
37
38 pfvf->hw_ops = &cn10k_hw_ops;
39 /* Total LMTLINES = num_online_cpus() * 32 (For Burst flush).*/
40 pfvf->tot_lmt_lines = (num_online_cpus() * LMT_BURST_SIZE);
41 pfvf->hw.lmt_info = alloc_percpu(struct otx2_lmt_info);
42
43 mutex_lock(&pfvf->mbox.lock);
44 req = otx2_mbox_alloc_msg_lmtst_tbl_setup(&pfvf->mbox);
45 if (!req) {
46 mutex_unlock(&pfvf->mbox.lock);
47 return -ENOMEM;
48 }
49
50 req->use_local_lmt_region = true;
51
52 err = qmem_alloc(pfvf->dev, &pfvf->dync_lmt, pfvf->tot_lmt_lines,
53 LMT_LINE_SIZE);
54 if (err) {
55 mutex_unlock(&pfvf->mbox.lock);
56 return err;
57 }
58 pfvf->hw.lmt_base = (u64 *)pfvf->dync_lmt->base;
59 req->lmt_iova = (u64)pfvf->dync_lmt->iova;
60
61 err = otx2_sync_mbox_msg(&pfvf->mbox);
62 mutex_unlock(&pfvf->mbox.lock);
63
64 for_each_possible_cpu(cpu) {
65 lmt_info = per_cpu_ptr(pfvf->hw.lmt_info, cpu);
66 lmt_info->lmt_addr = ((u64)pfvf->hw.lmt_base +
67 (cpu * LMT_BURST_SIZE * LMT_LINE_SIZE));
68 lmt_info->lmt_id = cpu * LMT_BURST_SIZE;
69 }
70
71 return 0;
72 }
73 EXPORT_SYMBOL(cn10k_lmtst_init);
74
cn10k_sq_aq_init(void * dev,u16 qidx,u16 sqb_aura)75 int cn10k_sq_aq_init(void *dev, u16 qidx, u16 sqb_aura)
76 {
77 struct nix_cn10k_aq_enq_req *aq;
78 struct otx2_nic *pfvf = dev;
79
80 /* Get memory to put this msg */
81 aq = otx2_mbox_alloc_msg_nix_cn10k_aq_enq(&pfvf->mbox);
82 if (!aq)
83 return -ENOMEM;
84
85 aq->sq.cq = pfvf->hw.rx_queues + qidx;
86 aq->sq.max_sqe_size = NIX_MAXSQESZ_W16; /* 128 byte */
87 aq->sq.cq_ena = 1;
88 aq->sq.ena = 1;
89 aq->sq.smq = otx2_get_smq_idx(pfvf, qidx);
90 aq->sq.smq_rr_weight = mtu_to_dwrr_weight(pfvf, pfvf->tx_max_pktlen);
91 aq->sq.default_chan = pfvf->hw.tx_chan_base;
92 aq->sq.sqe_stype = NIX_STYPE_STF; /* Cache SQB */
93 aq->sq.sqb_aura = sqb_aura;
94 aq->sq.sq_int_ena = NIX_SQINT_BITS;
95 aq->sq.qint_idx = 0;
96 /* Due pipelining impact minimum 2000 unused SQ CQE's
97 * need to maintain to avoid CQ overflow.
98 */
99 aq->sq.cq_limit = ((SEND_CQ_SKID * 256) / (pfvf->qset.sqe_cnt));
100
101 /* Fill AQ info */
102 aq->qidx = qidx;
103 aq->ctype = NIX_AQ_CTYPE_SQ;
104 aq->op = NIX_AQ_INSTOP_INIT;
105
106 return otx2_sync_mbox_msg(&pfvf->mbox);
107 }
108
109 #define NPA_MAX_BURST 16
cn10k_refill_pool_ptrs(void * dev,struct otx2_cq_queue * cq)110 void cn10k_refill_pool_ptrs(void *dev, struct otx2_cq_queue *cq)
111 {
112 struct otx2_nic *pfvf = dev;
113 u64 ptrs[NPA_MAX_BURST];
114 int num_ptrs = 1;
115 dma_addr_t bufptr;
116
117 /* Refill pool with new buffers */
118 while (cq->pool_ptrs) {
119 if (otx2_alloc_buffer(pfvf, cq, &bufptr)) {
120 if (num_ptrs--)
121 __cn10k_aura_freeptr(pfvf, cq->cq_idx, ptrs,
122 num_ptrs);
123 break;
124 }
125 cq->pool_ptrs--;
126 ptrs[num_ptrs] = (u64)bufptr + OTX2_HEAD_ROOM;
127 num_ptrs++;
128 if (num_ptrs == NPA_MAX_BURST || cq->pool_ptrs == 0) {
129 __cn10k_aura_freeptr(pfvf, cq->cq_idx, ptrs,
130 num_ptrs);
131 num_ptrs = 1;
132 }
133 }
134 }
135
cn10k_sqe_flush(void * dev,struct otx2_snd_queue * sq,int size,int qidx)136 void cn10k_sqe_flush(void *dev, struct otx2_snd_queue *sq, int size, int qidx)
137 {
138 struct otx2_lmt_info *lmt_info;
139 struct otx2_nic *pfvf = dev;
140 u64 val = 0, tar_addr = 0;
141
142 lmt_info = per_cpu_ptr(pfvf->hw.lmt_info, smp_processor_id());
143 /* FIXME: val[0:10] LMT_ID.
144 * [12:15] no of LMTST - 1 in the burst.
145 * [19:63] data size of each LMTST in the burst except first.
146 */
147 val = (lmt_info->lmt_id & 0x7FF);
148 /* Target address for LMTST flush tells HW how many 128bit
149 * words are present.
150 * tar_addr[6:4] size of first LMTST - 1 in units of 128b.
151 */
152 tar_addr |= sq->io_addr | (((size / 16) - 1) & 0x7) << 4;
153 dma_wmb();
154 memcpy((u64 *)lmt_info->lmt_addr, sq->sqe_base, size);
155 cn10k_lmt_flush(val, tar_addr);
156
157 sq->head++;
158 sq->head &= (sq->sqe_cnt - 1);
159 }
160
cn10k_free_all_ipolicers(struct otx2_nic * pfvf)161 int cn10k_free_all_ipolicers(struct otx2_nic *pfvf)
162 {
163 struct nix_bandprof_free_req *req;
164 int rc;
165
166 if (is_dev_otx2(pfvf->pdev))
167 return 0;
168
169 mutex_lock(&pfvf->mbox.lock);
170
171 req = otx2_mbox_alloc_msg_nix_bandprof_free(&pfvf->mbox);
172 if (!req) {
173 rc = -ENOMEM;
174 goto out;
175 }
176
177 /* Free all bandwidth profiles allocated */
178 req->free_all = true;
179
180 rc = otx2_sync_mbox_msg(&pfvf->mbox);
181 out:
182 mutex_unlock(&pfvf->mbox.lock);
183 return rc;
184 }
185
cn10k_alloc_leaf_profile(struct otx2_nic * pfvf,u16 * leaf)186 int cn10k_alloc_leaf_profile(struct otx2_nic *pfvf, u16 *leaf)
187 {
188 struct nix_bandprof_alloc_req *req;
189 struct nix_bandprof_alloc_rsp *rsp;
190 int rc;
191
192 req = otx2_mbox_alloc_msg_nix_bandprof_alloc(&pfvf->mbox);
193 if (!req)
194 return -ENOMEM;
195
196 req->prof_count[BAND_PROF_LEAF_LAYER] = 1;
197
198 rc = otx2_sync_mbox_msg(&pfvf->mbox);
199 if (rc)
200 goto out;
201
202 rsp = (struct nix_bandprof_alloc_rsp *)
203 otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &req->hdr);
204 if (!rsp->prof_count[BAND_PROF_LEAF_LAYER]) {
205 rc = -EIO;
206 goto out;
207 }
208
209 *leaf = rsp->prof_idx[BAND_PROF_LEAF_LAYER][0];
210 out:
211 if (rc) {
212 dev_warn(pfvf->dev,
213 "Failed to allocate ingress bandwidth policer\n");
214 }
215
216 return rc;
217 }
218
cn10k_alloc_matchall_ipolicer(struct otx2_nic * pfvf)219 int cn10k_alloc_matchall_ipolicer(struct otx2_nic *pfvf)
220 {
221 struct otx2_hw *hw = &pfvf->hw;
222 int ret;
223
224 mutex_lock(&pfvf->mbox.lock);
225
226 ret = cn10k_alloc_leaf_profile(pfvf, &hw->matchall_ipolicer);
227
228 mutex_unlock(&pfvf->mbox.lock);
229
230 return ret;
231 }
232
233 #define POLICER_TIMESTAMP 1 /* 1 second */
234 #define MAX_RATE_EXP 22 /* Valid rate exponent range: 0 - 22 */
235
cn10k_get_ingress_burst_cfg(u32 burst,u32 * burst_exp,u32 * burst_mantissa)236 static void cn10k_get_ingress_burst_cfg(u32 burst, u32 *burst_exp,
237 u32 *burst_mantissa)
238 {
239 int tmp;
240
241 /* Burst is calculated as
242 * (1+[BURST_MANTISSA]/256)*2^[BURST_EXPONENT]
243 * This is the upper limit on number tokens (bytes) that
244 * can be accumulated in the bucket.
245 */
246 *burst_exp = ilog2(burst);
247 if (burst < 256) {
248 /* No float: can't express mantissa in this case */
249 *burst_mantissa = 0;
250 return;
251 }
252
253 if (*burst_exp > MAX_RATE_EXP)
254 *burst_exp = MAX_RATE_EXP;
255
256 /* Calculate mantissa
257 * Find remaining bytes 'burst - 2^burst_exp'
258 * mantissa = (remaining bytes) / 2^ (burst_exp - 8)
259 */
260 tmp = burst - rounddown_pow_of_two(burst);
261 *burst_mantissa = tmp / (1UL << (*burst_exp - 8));
262 }
263
cn10k_get_ingress_rate_cfg(u64 rate,u32 * rate_exp,u32 * rate_mantissa,u32 * rdiv)264 static void cn10k_get_ingress_rate_cfg(u64 rate, u32 *rate_exp,
265 u32 *rate_mantissa, u32 *rdiv)
266 {
267 u32 div = 0;
268 u32 exp = 0;
269 u64 tmp;
270
271 /* Figure out mantissa, exponent and divider from given max pkt rate
272 *
273 * To achieve desired rate HW adds
274 * (1+[RATE_MANTISSA]/256)*2^[RATE_EXPONENT] tokens (bytes) at every
275 * policer timeunit * 2^rdiv ie 2 * 2^rdiv usecs, to the token bucket.
276 * Here policer timeunit is 2 usecs and rate is in bits per sec.
277 * Since floating point cannot be used below algorithm uses 1000000
278 * scale factor to support rates upto 100Gbps.
279 */
280 tmp = rate * 32 * 2;
281 if (tmp < 256000000) {
282 while (tmp < 256000000) {
283 tmp = tmp * 2;
284 div++;
285 }
286 } else {
287 for (exp = 0; tmp >= 512000000 && exp <= MAX_RATE_EXP; exp++)
288 tmp = tmp / 2;
289
290 if (exp > MAX_RATE_EXP)
291 exp = MAX_RATE_EXP;
292 }
293
294 *rate_mantissa = (tmp - 256000000) / 1000000;
295 *rate_exp = exp;
296 *rdiv = div;
297 }
298
cn10k_map_unmap_rq_policer(struct otx2_nic * pfvf,int rq_idx,u16 policer,bool map)299 int cn10k_map_unmap_rq_policer(struct otx2_nic *pfvf, int rq_idx,
300 u16 policer, bool map)
301 {
302 struct nix_cn10k_aq_enq_req *aq;
303
304 aq = otx2_mbox_alloc_msg_nix_cn10k_aq_enq(&pfvf->mbox);
305 if (!aq)
306 return -ENOMEM;
307
308 /* Enable policing and set the bandwidth profile (policer) index */
309 if (map)
310 aq->rq.policer_ena = 1;
311 else
312 aq->rq.policer_ena = 0;
313 aq->rq_mask.policer_ena = 1;
314
315 aq->rq.band_prof_id = policer;
316 aq->rq_mask.band_prof_id = GENMASK(9, 0);
317
318 /* Fill AQ info */
319 aq->qidx = rq_idx;
320 aq->ctype = NIX_AQ_CTYPE_RQ;
321 aq->op = NIX_AQ_INSTOP_WRITE;
322
323 return otx2_sync_mbox_msg(&pfvf->mbox);
324 }
325
cn10k_free_leaf_profile(struct otx2_nic * pfvf,u16 leaf)326 int cn10k_free_leaf_profile(struct otx2_nic *pfvf, u16 leaf)
327 {
328 struct nix_bandprof_free_req *req;
329
330 req = otx2_mbox_alloc_msg_nix_bandprof_free(&pfvf->mbox);
331 if (!req)
332 return -ENOMEM;
333
334 req->prof_count[BAND_PROF_LEAF_LAYER] = 1;
335 req->prof_idx[BAND_PROF_LEAF_LAYER][0] = leaf;
336
337 return otx2_sync_mbox_msg(&pfvf->mbox);
338 }
339
cn10k_free_matchall_ipolicer(struct otx2_nic * pfvf)340 int cn10k_free_matchall_ipolicer(struct otx2_nic *pfvf)
341 {
342 struct otx2_hw *hw = &pfvf->hw;
343 int qidx, rc;
344
345 mutex_lock(&pfvf->mbox.lock);
346
347 /* Remove RQ's policer mapping */
348 for (qidx = 0; qidx < hw->rx_queues; qidx++)
349 cn10k_map_unmap_rq_policer(pfvf, qidx,
350 hw->matchall_ipolicer, false);
351
352 rc = cn10k_free_leaf_profile(pfvf, hw->matchall_ipolicer);
353
354 mutex_unlock(&pfvf->mbox.lock);
355 return rc;
356 }
357
cn10k_set_ipolicer_rate(struct otx2_nic * pfvf,u16 profile,u32 burst,u64 rate,bool pps)358 int cn10k_set_ipolicer_rate(struct otx2_nic *pfvf, u16 profile,
359 u32 burst, u64 rate, bool pps)
360 {
361 struct nix_cn10k_aq_enq_req *aq;
362 u32 burst_exp, burst_mantissa;
363 u32 rate_exp, rate_mantissa;
364 u32 rdiv;
365
366 /* Get exponent and mantissa values for the desired rate */
367 cn10k_get_ingress_burst_cfg(burst, &burst_exp, &burst_mantissa);
368 cn10k_get_ingress_rate_cfg(rate, &rate_exp, &rate_mantissa, &rdiv);
369
370 /* Init bandwidth profile */
371 aq = otx2_mbox_alloc_msg_nix_cn10k_aq_enq(&pfvf->mbox);
372 if (!aq)
373 return -ENOMEM;
374
375 /* Set initial color mode to blind */
376 aq->prof.icolor = 0x03;
377 aq->prof_mask.icolor = 0x03;
378
379 /* Set rate and burst values */
380 aq->prof.cir_exponent = rate_exp;
381 aq->prof_mask.cir_exponent = 0x1F;
382
383 aq->prof.cir_mantissa = rate_mantissa;
384 aq->prof_mask.cir_mantissa = 0xFF;
385
386 aq->prof.cbs_exponent = burst_exp;
387 aq->prof_mask.cbs_exponent = 0x1F;
388
389 aq->prof.cbs_mantissa = burst_mantissa;
390 aq->prof_mask.cbs_mantissa = 0xFF;
391
392 aq->prof.rdiv = rdiv;
393 aq->prof_mask.rdiv = 0xF;
394
395 if (pps) {
396 /* The amount of decremented tokens is calculated according to
397 * the following equation:
398 * max([ LMODE ? 0 : (packet_length - LXPTR)] +
399 * ([ADJUST_MANTISSA]/256 - 1) * 2^[ADJUST_EXPONENT],
400 * 1/256)
401 * if LMODE is 1 then rate limiting will be based on
402 * PPS otherwise bps.
403 * The aim of the ADJUST value is to specify a token cost per
404 * packet in contrary to the packet length that specifies a
405 * cost per byte. To rate limit based on PPS adjust mantissa
406 * is set as 384 and exponent as 1 so that number of tokens
407 * decremented becomes 1 i.e, 1 token per packeet.
408 */
409 aq->prof.adjust_exponent = 1;
410 aq->prof_mask.adjust_exponent = 0x1F;
411
412 aq->prof.adjust_mantissa = 384;
413 aq->prof_mask.adjust_mantissa = 0x1FF;
414
415 aq->prof.lmode = 0x1;
416 aq->prof_mask.lmode = 0x1;
417 }
418
419 /* Two rate three color marker
420 * With PEIR/EIR set to zero, color will be either green or red
421 */
422 aq->prof.meter_algo = 2;
423 aq->prof_mask.meter_algo = 0x3;
424
425 aq->prof.rc_action = NIX_RX_BAND_PROF_ACTIONRESULT_DROP;
426 aq->prof_mask.rc_action = 0x3;
427
428 aq->prof.yc_action = NIX_RX_BAND_PROF_ACTIONRESULT_PASS;
429 aq->prof_mask.yc_action = 0x3;
430
431 aq->prof.gc_action = NIX_RX_BAND_PROF_ACTIONRESULT_PASS;
432 aq->prof_mask.gc_action = 0x3;
433
434 /* Setting exponent value as 24 and mantissa as 0 configures
435 * the bucket with zero values making bucket unused. Peak
436 * information rate and Excess information rate buckets are
437 * unused here.
438 */
439 aq->prof.peir_exponent = 24;
440 aq->prof_mask.peir_exponent = 0x1F;
441
442 aq->prof.peir_mantissa = 0;
443 aq->prof_mask.peir_mantissa = 0xFF;
444
445 aq->prof.pebs_exponent = 24;
446 aq->prof_mask.pebs_exponent = 0x1F;
447
448 aq->prof.pebs_mantissa = 0;
449 aq->prof_mask.pebs_mantissa = 0xFF;
450
451 /* Fill AQ info */
452 aq->qidx = profile;
453 aq->ctype = NIX_AQ_CTYPE_BANDPROF;
454 aq->op = NIX_AQ_INSTOP_WRITE;
455
456 return otx2_sync_mbox_msg(&pfvf->mbox);
457 }
458
cn10k_set_matchall_ipolicer_rate(struct otx2_nic * pfvf,u32 burst,u64 rate)459 int cn10k_set_matchall_ipolicer_rate(struct otx2_nic *pfvf,
460 u32 burst, u64 rate)
461 {
462 struct otx2_hw *hw = &pfvf->hw;
463 int qidx, rc;
464
465 mutex_lock(&pfvf->mbox.lock);
466
467 rc = cn10k_set_ipolicer_rate(pfvf, hw->matchall_ipolicer, burst,
468 rate, false);
469 if (rc)
470 goto out;
471
472 for (qidx = 0; qidx < hw->rx_queues; qidx++) {
473 rc = cn10k_map_unmap_rq_policer(pfvf, qidx,
474 hw->matchall_ipolicer, true);
475 if (rc)
476 break;
477 }
478
479 out:
480 mutex_unlock(&pfvf->mbox.lock);
481 return rc;
482 }
483