1 // SPDX-License-Identifier: GPL-2.0
2 #include "builtin.h"
3 #include "perf.h"
4 #include "perf-sys.h"
5
6 #include "util/cpumap.h"
7 #include "util/evlist.h"
8 #include "util/evsel.h"
9 #include "util/evsel_fprintf.h"
10 #include "util/mutex.h"
11 #include "util/symbol.h"
12 #include "util/thread.h"
13 #include "util/header.h"
14 #include "util/session.h"
15 #include "util/tool.h"
16 #include "util/cloexec.h"
17 #include "util/thread_map.h"
18 #include "util/color.h"
19 #include "util/stat.h"
20 #include "util/string2.h"
21 #include "util/callchain.h"
22 #include "util/time-utils.h"
23
24 #include <subcmd/pager.h>
25 #include <subcmd/parse-options.h>
26 #include "util/trace-event.h"
27
28 #include "util/debug.h"
29 #include "util/event.h"
30
31 #include <linux/kernel.h>
32 #include <linux/log2.h>
33 #include <linux/zalloc.h>
34 #include <sys/prctl.h>
35 #include <sys/resource.h>
36 #include <inttypes.h>
37
38 #include <errno.h>
39 #include <semaphore.h>
40 #include <pthread.h>
41 #include <math.h>
42 #include <api/fs/fs.h>
43 #include <perf/cpumap.h>
44 #include <linux/time64.h>
45 #include <linux/err.h>
46
47 #include <linux/ctype.h>
48
49 #define PR_SET_NAME 15 /* Set process name */
50 #define MAX_CPUS 4096
51 #define COMM_LEN 20
52 #define SYM_LEN 129
53 #define MAX_PID 1024000
54
55 static const char *cpu_list;
56 static DECLARE_BITMAP(cpu_bitmap, MAX_NR_CPUS);
57
58 struct sched_atom;
59
60 struct task_desc {
61 unsigned long nr;
62 unsigned long pid;
63 char comm[COMM_LEN];
64
65 unsigned long nr_events;
66 unsigned long curr_event;
67 struct sched_atom **atoms;
68
69 pthread_t thread;
70 sem_t sleep_sem;
71
72 sem_t ready_for_work;
73 sem_t work_done_sem;
74
75 u64 cpu_usage;
76 };
77
78 enum sched_event_type {
79 SCHED_EVENT_RUN,
80 SCHED_EVENT_SLEEP,
81 SCHED_EVENT_WAKEUP,
82 SCHED_EVENT_MIGRATION,
83 };
84
85 struct sched_atom {
86 enum sched_event_type type;
87 int specific_wait;
88 u64 timestamp;
89 u64 duration;
90 unsigned long nr;
91 sem_t *wait_sem;
92 struct task_desc *wakee;
93 };
94
95 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
96
97 /* task state bitmask, copied from include/linux/sched.h */
98 #define TASK_RUNNING 0
99 #define TASK_INTERRUPTIBLE 1
100 #define TASK_UNINTERRUPTIBLE 2
101 #define __TASK_STOPPED 4
102 #define __TASK_TRACED 8
103 /* in tsk->exit_state */
104 #define EXIT_DEAD 16
105 #define EXIT_ZOMBIE 32
106 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
107 /* in tsk->state again */
108 #define TASK_DEAD 64
109 #define TASK_WAKEKILL 128
110 #define TASK_WAKING 256
111 #define TASK_PARKED 512
112
113 enum thread_state {
114 THREAD_SLEEPING = 0,
115 THREAD_WAIT_CPU,
116 THREAD_SCHED_IN,
117 THREAD_IGNORE
118 };
119
120 struct work_atom {
121 struct list_head list;
122 enum thread_state state;
123 u64 sched_out_time;
124 u64 wake_up_time;
125 u64 sched_in_time;
126 u64 runtime;
127 };
128
129 struct work_atoms {
130 struct list_head work_list;
131 struct thread *thread;
132 struct rb_node node;
133 u64 max_lat;
134 u64 max_lat_start;
135 u64 max_lat_end;
136 u64 total_lat;
137 u64 nb_atoms;
138 u64 total_runtime;
139 int num_merged;
140 };
141
142 typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
143
144 struct perf_sched;
145
146 struct trace_sched_handler {
147 int (*switch_event)(struct perf_sched *sched, struct evsel *evsel,
148 struct perf_sample *sample, struct machine *machine);
149
150 int (*runtime_event)(struct perf_sched *sched, struct evsel *evsel,
151 struct perf_sample *sample, struct machine *machine);
152
153 int (*wakeup_event)(struct perf_sched *sched, struct evsel *evsel,
154 struct perf_sample *sample, struct machine *machine);
155
156 /* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
157 int (*fork_event)(struct perf_sched *sched, union perf_event *event,
158 struct machine *machine);
159
160 int (*migrate_task_event)(struct perf_sched *sched,
161 struct evsel *evsel,
162 struct perf_sample *sample,
163 struct machine *machine);
164 };
165
166 #define COLOR_PIDS PERF_COLOR_BLUE
167 #define COLOR_CPUS PERF_COLOR_BG_RED
168
169 struct perf_sched_map {
170 DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS);
171 struct perf_cpu *comp_cpus;
172 bool comp;
173 struct perf_thread_map *color_pids;
174 const char *color_pids_str;
175 struct perf_cpu_map *color_cpus;
176 const char *color_cpus_str;
177 struct perf_cpu_map *cpus;
178 const char *cpus_str;
179 };
180
181 struct perf_sched {
182 struct perf_tool tool;
183 const char *sort_order;
184 unsigned long nr_tasks;
185 struct task_desc **pid_to_task;
186 struct task_desc **tasks;
187 const struct trace_sched_handler *tp_handler;
188 struct mutex start_work_mutex;
189 struct mutex work_done_wait_mutex;
190 int profile_cpu;
191 /*
192 * Track the current task - that way we can know whether there's any
193 * weird events, such as a task being switched away that is not current.
194 */
195 struct perf_cpu max_cpu;
196 u32 curr_pid[MAX_CPUS];
197 struct thread *curr_thread[MAX_CPUS];
198 char next_shortname1;
199 char next_shortname2;
200 unsigned int replay_repeat;
201 unsigned long nr_run_events;
202 unsigned long nr_sleep_events;
203 unsigned long nr_wakeup_events;
204 unsigned long nr_sleep_corrections;
205 unsigned long nr_run_events_optimized;
206 unsigned long targetless_wakeups;
207 unsigned long multitarget_wakeups;
208 unsigned long nr_runs;
209 unsigned long nr_timestamps;
210 unsigned long nr_unordered_timestamps;
211 unsigned long nr_context_switch_bugs;
212 unsigned long nr_events;
213 unsigned long nr_lost_chunks;
214 unsigned long nr_lost_events;
215 u64 run_measurement_overhead;
216 u64 sleep_measurement_overhead;
217 u64 start_time;
218 u64 cpu_usage;
219 u64 runavg_cpu_usage;
220 u64 parent_cpu_usage;
221 u64 runavg_parent_cpu_usage;
222 u64 sum_runtime;
223 u64 sum_fluct;
224 u64 run_avg;
225 u64 all_runtime;
226 u64 all_count;
227 u64 cpu_last_switched[MAX_CPUS];
228 struct rb_root_cached atom_root, sorted_atom_root, merged_atom_root;
229 struct list_head sort_list, cmp_pid;
230 bool force;
231 bool skip_merge;
232 struct perf_sched_map map;
233
234 /* options for timehist command */
235 bool summary;
236 bool summary_only;
237 bool idle_hist;
238 bool show_callchain;
239 unsigned int max_stack;
240 bool show_cpu_visual;
241 bool show_wakeups;
242 bool show_next;
243 bool show_migrations;
244 bool show_state;
245 u64 skipped_samples;
246 const char *time_str;
247 struct perf_time_interval ptime;
248 struct perf_time_interval hist_time;
249 volatile bool thread_funcs_exit;
250 };
251
252 /* per thread run time data */
253 struct thread_runtime {
254 u64 last_time; /* time of previous sched in/out event */
255 u64 dt_run; /* run time */
256 u64 dt_sleep; /* time between CPU access by sleep (off cpu) */
257 u64 dt_iowait; /* time between CPU access by iowait (off cpu) */
258 u64 dt_preempt; /* time between CPU access by preempt (off cpu) */
259 u64 dt_delay; /* time between wakeup and sched-in */
260 u64 ready_to_run; /* time of wakeup */
261
262 struct stats run_stats;
263 u64 total_run_time;
264 u64 total_sleep_time;
265 u64 total_iowait_time;
266 u64 total_preempt_time;
267 u64 total_delay_time;
268
269 int last_state;
270
271 char shortname[3];
272 bool comm_changed;
273
274 u64 migrations;
275 };
276
277 /* per event run time data */
278 struct evsel_runtime {
279 u64 *last_time; /* time this event was last seen per cpu */
280 u32 ncpu; /* highest cpu slot allocated */
281 };
282
283 /* per cpu idle time data */
284 struct idle_thread_runtime {
285 struct thread_runtime tr;
286 struct thread *last_thread;
287 struct rb_root_cached sorted_root;
288 struct callchain_root callchain;
289 struct callchain_cursor cursor;
290 };
291
292 /* track idle times per cpu */
293 static struct thread **idle_threads;
294 static int idle_max_cpu;
295 static char idle_comm[] = "<idle>";
296
get_nsecs(void)297 static u64 get_nsecs(void)
298 {
299 struct timespec ts;
300
301 clock_gettime(CLOCK_MONOTONIC, &ts);
302
303 return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec;
304 }
305
burn_nsecs(struct perf_sched * sched,u64 nsecs)306 static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
307 {
308 u64 T0 = get_nsecs(), T1;
309
310 do {
311 T1 = get_nsecs();
312 } while (T1 + sched->run_measurement_overhead < T0 + nsecs);
313 }
314
sleep_nsecs(u64 nsecs)315 static void sleep_nsecs(u64 nsecs)
316 {
317 struct timespec ts;
318
319 ts.tv_nsec = nsecs % 999999999;
320 ts.tv_sec = nsecs / 999999999;
321
322 nanosleep(&ts, NULL);
323 }
324
calibrate_run_measurement_overhead(struct perf_sched * sched)325 static void calibrate_run_measurement_overhead(struct perf_sched *sched)
326 {
327 u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
328 int i;
329
330 for (i = 0; i < 10; i++) {
331 T0 = get_nsecs();
332 burn_nsecs(sched, 0);
333 T1 = get_nsecs();
334 delta = T1-T0;
335 min_delta = min(min_delta, delta);
336 }
337 sched->run_measurement_overhead = min_delta;
338
339 printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
340 }
341
calibrate_sleep_measurement_overhead(struct perf_sched * sched)342 static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
343 {
344 u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
345 int i;
346
347 for (i = 0; i < 10; i++) {
348 T0 = get_nsecs();
349 sleep_nsecs(10000);
350 T1 = get_nsecs();
351 delta = T1-T0;
352 min_delta = min(min_delta, delta);
353 }
354 min_delta -= 10000;
355 sched->sleep_measurement_overhead = min_delta;
356
357 printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
358 }
359
360 static struct sched_atom *
get_new_event(struct task_desc * task,u64 timestamp)361 get_new_event(struct task_desc *task, u64 timestamp)
362 {
363 struct sched_atom *event = zalloc(sizeof(*event));
364 unsigned long idx = task->nr_events;
365 size_t size;
366
367 event->timestamp = timestamp;
368 event->nr = idx;
369
370 task->nr_events++;
371 size = sizeof(struct sched_atom *) * task->nr_events;
372 task->atoms = realloc(task->atoms, size);
373 BUG_ON(!task->atoms);
374
375 task->atoms[idx] = event;
376
377 return event;
378 }
379
last_event(struct task_desc * task)380 static struct sched_atom *last_event(struct task_desc *task)
381 {
382 if (!task->nr_events)
383 return NULL;
384
385 return task->atoms[task->nr_events - 1];
386 }
387
add_sched_event_run(struct perf_sched * sched,struct task_desc * task,u64 timestamp,u64 duration)388 static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
389 u64 timestamp, u64 duration)
390 {
391 struct sched_atom *event, *curr_event = last_event(task);
392
393 /*
394 * optimize an existing RUN event by merging this one
395 * to it:
396 */
397 if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
398 sched->nr_run_events_optimized++;
399 curr_event->duration += duration;
400 return;
401 }
402
403 event = get_new_event(task, timestamp);
404
405 event->type = SCHED_EVENT_RUN;
406 event->duration = duration;
407
408 sched->nr_run_events++;
409 }
410
add_sched_event_wakeup(struct perf_sched * sched,struct task_desc * task,u64 timestamp,struct task_desc * wakee)411 static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
412 u64 timestamp, struct task_desc *wakee)
413 {
414 struct sched_atom *event, *wakee_event;
415
416 event = get_new_event(task, timestamp);
417 event->type = SCHED_EVENT_WAKEUP;
418 event->wakee = wakee;
419
420 wakee_event = last_event(wakee);
421 if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
422 sched->targetless_wakeups++;
423 return;
424 }
425 if (wakee_event->wait_sem) {
426 sched->multitarget_wakeups++;
427 return;
428 }
429
430 wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
431 sem_init(wakee_event->wait_sem, 0, 0);
432 wakee_event->specific_wait = 1;
433 event->wait_sem = wakee_event->wait_sem;
434
435 sched->nr_wakeup_events++;
436 }
437
add_sched_event_sleep(struct perf_sched * sched,struct task_desc * task,u64 timestamp,u64 task_state __maybe_unused)438 static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
439 u64 timestamp, u64 task_state __maybe_unused)
440 {
441 struct sched_atom *event = get_new_event(task, timestamp);
442
443 event->type = SCHED_EVENT_SLEEP;
444
445 sched->nr_sleep_events++;
446 }
447
register_pid(struct perf_sched * sched,unsigned long pid,const char * comm)448 static struct task_desc *register_pid(struct perf_sched *sched,
449 unsigned long pid, const char *comm)
450 {
451 struct task_desc *task;
452 static int pid_max;
453
454 if (sched->pid_to_task == NULL) {
455 if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
456 pid_max = MAX_PID;
457 BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
458 }
459 if (pid >= (unsigned long)pid_max) {
460 BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
461 sizeof(struct task_desc *))) == NULL);
462 while (pid >= (unsigned long)pid_max)
463 sched->pid_to_task[pid_max++] = NULL;
464 }
465
466 task = sched->pid_to_task[pid];
467
468 if (task)
469 return task;
470
471 task = zalloc(sizeof(*task));
472 task->pid = pid;
473 task->nr = sched->nr_tasks;
474 strcpy(task->comm, comm);
475 /*
476 * every task starts in sleeping state - this gets ignored
477 * if there's no wakeup pointing to this sleep state:
478 */
479 add_sched_event_sleep(sched, task, 0, 0);
480
481 sched->pid_to_task[pid] = task;
482 sched->nr_tasks++;
483 sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
484 BUG_ON(!sched->tasks);
485 sched->tasks[task->nr] = task;
486
487 if (verbose > 0)
488 printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
489
490 return task;
491 }
492
493
print_task_traces(struct perf_sched * sched)494 static void print_task_traces(struct perf_sched *sched)
495 {
496 struct task_desc *task;
497 unsigned long i;
498
499 for (i = 0; i < sched->nr_tasks; i++) {
500 task = sched->tasks[i];
501 printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
502 task->nr, task->comm, task->pid, task->nr_events);
503 }
504 }
505
add_cross_task_wakeups(struct perf_sched * sched)506 static void add_cross_task_wakeups(struct perf_sched *sched)
507 {
508 struct task_desc *task1, *task2;
509 unsigned long i, j;
510
511 for (i = 0; i < sched->nr_tasks; i++) {
512 task1 = sched->tasks[i];
513 j = i + 1;
514 if (j == sched->nr_tasks)
515 j = 0;
516 task2 = sched->tasks[j];
517 add_sched_event_wakeup(sched, task1, 0, task2);
518 }
519 }
520
perf_sched__process_event(struct perf_sched * sched,struct sched_atom * atom)521 static void perf_sched__process_event(struct perf_sched *sched,
522 struct sched_atom *atom)
523 {
524 int ret = 0;
525
526 switch (atom->type) {
527 case SCHED_EVENT_RUN:
528 burn_nsecs(sched, atom->duration);
529 break;
530 case SCHED_EVENT_SLEEP:
531 if (atom->wait_sem)
532 ret = sem_wait(atom->wait_sem);
533 BUG_ON(ret);
534 break;
535 case SCHED_EVENT_WAKEUP:
536 if (atom->wait_sem)
537 ret = sem_post(atom->wait_sem);
538 BUG_ON(ret);
539 break;
540 case SCHED_EVENT_MIGRATION:
541 break;
542 default:
543 BUG_ON(1);
544 }
545 }
546
get_cpu_usage_nsec_parent(void)547 static u64 get_cpu_usage_nsec_parent(void)
548 {
549 struct rusage ru;
550 u64 sum;
551 int err;
552
553 err = getrusage(RUSAGE_SELF, &ru);
554 BUG_ON(err);
555
556 sum = ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC;
557 sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC;
558
559 return sum;
560 }
561
self_open_counters(struct perf_sched * sched,unsigned long cur_task)562 static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
563 {
564 struct perf_event_attr attr;
565 char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
566 int fd;
567 struct rlimit limit;
568 bool need_privilege = false;
569
570 memset(&attr, 0, sizeof(attr));
571
572 attr.type = PERF_TYPE_SOFTWARE;
573 attr.config = PERF_COUNT_SW_TASK_CLOCK;
574
575 force_again:
576 fd = sys_perf_event_open(&attr, 0, -1, -1,
577 perf_event_open_cloexec_flag());
578
579 if (fd < 0) {
580 if (errno == EMFILE) {
581 if (sched->force) {
582 BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
583 limit.rlim_cur += sched->nr_tasks - cur_task;
584 if (limit.rlim_cur > limit.rlim_max) {
585 limit.rlim_max = limit.rlim_cur;
586 need_privilege = true;
587 }
588 if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
589 if (need_privilege && errno == EPERM)
590 strcpy(info, "Need privilege\n");
591 } else
592 goto force_again;
593 } else
594 strcpy(info, "Have a try with -f option\n");
595 }
596 pr_err("Error: sys_perf_event_open() syscall returned "
597 "with %d (%s)\n%s", fd,
598 str_error_r(errno, sbuf, sizeof(sbuf)), info);
599 exit(EXIT_FAILURE);
600 }
601 return fd;
602 }
603
get_cpu_usage_nsec_self(int fd)604 static u64 get_cpu_usage_nsec_self(int fd)
605 {
606 u64 runtime;
607 int ret;
608
609 ret = read(fd, &runtime, sizeof(runtime));
610 BUG_ON(ret != sizeof(runtime));
611
612 return runtime;
613 }
614
615 struct sched_thread_parms {
616 struct task_desc *task;
617 struct perf_sched *sched;
618 int fd;
619 };
620
thread_func(void * ctx)621 static void *thread_func(void *ctx)
622 {
623 struct sched_thread_parms *parms = ctx;
624 struct task_desc *this_task = parms->task;
625 struct perf_sched *sched = parms->sched;
626 u64 cpu_usage_0, cpu_usage_1;
627 unsigned long i, ret;
628 char comm2[22];
629 int fd = parms->fd;
630
631 zfree(&parms);
632
633 sprintf(comm2, ":%s", this_task->comm);
634 prctl(PR_SET_NAME, comm2);
635 if (fd < 0)
636 return NULL;
637
638 while (!sched->thread_funcs_exit) {
639 ret = sem_post(&this_task->ready_for_work);
640 BUG_ON(ret);
641 mutex_lock(&sched->start_work_mutex);
642 mutex_unlock(&sched->start_work_mutex);
643
644 cpu_usage_0 = get_cpu_usage_nsec_self(fd);
645
646 for (i = 0; i < this_task->nr_events; i++) {
647 this_task->curr_event = i;
648 perf_sched__process_event(sched, this_task->atoms[i]);
649 }
650
651 cpu_usage_1 = get_cpu_usage_nsec_self(fd);
652 this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
653 ret = sem_post(&this_task->work_done_sem);
654 BUG_ON(ret);
655
656 mutex_lock(&sched->work_done_wait_mutex);
657 mutex_unlock(&sched->work_done_wait_mutex);
658 }
659 return NULL;
660 }
661
create_tasks(struct perf_sched * sched)662 static void create_tasks(struct perf_sched *sched)
663 EXCLUSIVE_LOCK_FUNCTION(sched->start_work_mutex)
664 EXCLUSIVE_LOCK_FUNCTION(sched->work_done_wait_mutex)
665 {
666 struct task_desc *task;
667 pthread_attr_t attr;
668 unsigned long i;
669 int err;
670
671 err = pthread_attr_init(&attr);
672 BUG_ON(err);
673 err = pthread_attr_setstacksize(&attr,
674 (size_t) max(16 * 1024, (int)PTHREAD_STACK_MIN));
675 BUG_ON(err);
676 mutex_lock(&sched->start_work_mutex);
677 mutex_lock(&sched->work_done_wait_mutex);
678 for (i = 0; i < sched->nr_tasks; i++) {
679 struct sched_thread_parms *parms = malloc(sizeof(*parms));
680 BUG_ON(parms == NULL);
681 parms->task = task = sched->tasks[i];
682 parms->sched = sched;
683 parms->fd = self_open_counters(sched, i);
684 sem_init(&task->sleep_sem, 0, 0);
685 sem_init(&task->ready_for_work, 0, 0);
686 sem_init(&task->work_done_sem, 0, 0);
687 task->curr_event = 0;
688 err = pthread_create(&task->thread, &attr, thread_func, parms);
689 BUG_ON(err);
690 }
691 }
692
destroy_tasks(struct perf_sched * sched)693 static void destroy_tasks(struct perf_sched *sched)
694 UNLOCK_FUNCTION(sched->start_work_mutex)
695 UNLOCK_FUNCTION(sched->work_done_wait_mutex)
696 {
697 struct task_desc *task;
698 unsigned long i;
699 int err;
700
701 mutex_unlock(&sched->start_work_mutex);
702 mutex_unlock(&sched->work_done_wait_mutex);
703 /* Get rid of threads so they won't be upset by mutex destrunction */
704 for (i = 0; i < sched->nr_tasks; i++) {
705 task = sched->tasks[i];
706 err = pthread_join(task->thread, NULL);
707 BUG_ON(err);
708 sem_destroy(&task->sleep_sem);
709 sem_destroy(&task->ready_for_work);
710 sem_destroy(&task->work_done_sem);
711 }
712 }
713
wait_for_tasks(struct perf_sched * sched)714 static void wait_for_tasks(struct perf_sched *sched)
715 EXCLUSIVE_LOCKS_REQUIRED(sched->work_done_wait_mutex)
716 EXCLUSIVE_LOCKS_REQUIRED(sched->start_work_mutex)
717 {
718 u64 cpu_usage_0, cpu_usage_1;
719 struct task_desc *task;
720 unsigned long i, ret;
721
722 sched->start_time = get_nsecs();
723 sched->cpu_usage = 0;
724 mutex_unlock(&sched->work_done_wait_mutex);
725
726 for (i = 0; i < sched->nr_tasks; i++) {
727 task = sched->tasks[i];
728 ret = sem_wait(&task->ready_for_work);
729 BUG_ON(ret);
730 sem_init(&task->ready_for_work, 0, 0);
731 }
732 mutex_lock(&sched->work_done_wait_mutex);
733
734 cpu_usage_0 = get_cpu_usage_nsec_parent();
735
736 mutex_unlock(&sched->start_work_mutex);
737
738 for (i = 0; i < sched->nr_tasks; i++) {
739 task = sched->tasks[i];
740 ret = sem_wait(&task->work_done_sem);
741 BUG_ON(ret);
742 sem_init(&task->work_done_sem, 0, 0);
743 sched->cpu_usage += task->cpu_usage;
744 task->cpu_usage = 0;
745 }
746
747 cpu_usage_1 = get_cpu_usage_nsec_parent();
748 if (!sched->runavg_cpu_usage)
749 sched->runavg_cpu_usage = sched->cpu_usage;
750 sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
751
752 sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
753 if (!sched->runavg_parent_cpu_usage)
754 sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
755 sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
756 sched->parent_cpu_usage)/sched->replay_repeat;
757
758 mutex_lock(&sched->start_work_mutex);
759
760 for (i = 0; i < sched->nr_tasks; i++) {
761 task = sched->tasks[i];
762 sem_init(&task->sleep_sem, 0, 0);
763 task->curr_event = 0;
764 }
765 }
766
run_one_test(struct perf_sched * sched)767 static void run_one_test(struct perf_sched *sched)
768 EXCLUSIVE_LOCKS_REQUIRED(sched->work_done_wait_mutex)
769 EXCLUSIVE_LOCKS_REQUIRED(sched->start_work_mutex)
770 {
771 u64 T0, T1, delta, avg_delta, fluct;
772
773 T0 = get_nsecs();
774 wait_for_tasks(sched);
775 T1 = get_nsecs();
776
777 delta = T1 - T0;
778 sched->sum_runtime += delta;
779 sched->nr_runs++;
780
781 avg_delta = sched->sum_runtime / sched->nr_runs;
782 if (delta < avg_delta)
783 fluct = avg_delta - delta;
784 else
785 fluct = delta - avg_delta;
786 sched->sum_fluct += fluct;
787 if (!sched->run_avg)
788 sched->run_avg = delta;
789 sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
790
791 printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC);
792
793 printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC);
794
795 printf("cpu: %0.2f / %0.2f",
796 (double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC);
797
798 #if 0
799 /*
800 * rusage statistics done by the parent, these are less
801 * accurate than the sched->sum_exec_runtime based statistics:
802 */
803 printf(" [%0.2f / %0.2f]",
804 (double)sched->parent_cpu_usage / NSEC_PER_MSEC,
805 (double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC);
806 #endif
807
808 printf("\n");
809
810 if (sched->nr_sleep_corrections)
811 printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
812 sched->nr_sleep_corrections = 0;
813 }
814
test_calibrations(struct perf_sched * sched)815 static void test_calibrations(struct perf_sched *sched)
816 {
817 u64 T0, T1;
818
819 T0 = get_nsecs();
820 burn_nsecs(sched, NSEC_PER_MSEC);
821 T1 = get_nsecs();
822
823 printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
824
825 T0 = get_nsecs();
826 sleep_nsecs(NSEC_PER_MSEC);
827 T1 = get_nsecs();
828
829 printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
830 }
831
832 static int
replay_wakeup_event(struct perf_sched * sched,struct evsel * evsel,struct perf_sample * sample,struct machine * machine __maybe_unused)833 replay_wakeup_event(struct perf_sched *sched,
834 struct evsel *evsel, struct perf_sample *sample,
835 struct machine *machine __maybe_unused)
836 {
837 const char *comm = evsel__strval(evsel, sample, "comm");
838 const u32 pid = evsel__intval(evsel, sample, "pid");
839 struct task_desc *waker, *wakee;
840
841 if (verbose > 0) {
842 printf("sched_wakeup event %p\n", evsel);
843
844 printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
845 }
846
847 waker = register_pid(sched, sample->tid, "<unknown>");
848 wakee = register_pid(sched, pid, comm);
849
850 add_sched_event_wakeup(sched, waker, sample->time, wakee);
851 return 0;
852 }
853
replay_switch_event(struct perf_sched * sched,struct evsel * evsel,struct perf_sample * sample,struct machine * machine __maybe_unused)854 static int replay_switch_event(struct perf_sched *sched,
855 struct evsel *evsel,
856 struct perf_sample *sample,
857 struct machine *machine __maybe_unused)
858 {
859 const char *prev_comm = evsel__strval(evsel, sample, "prev_comm"),
860 *next_comm = evsel__strval(evsel, sample, "next_comm");
861 const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
862 next_pid = evsel__intval(evsel, sample, "next_pid");
863 const u64 prev_state = evsel__intval(evsel, sample, "prev_state");
864 struct task_desc *prev, __maybe_unused *next;
865 u64 timestamp0, timestamp = sample->time;
866 int cpu = sample->cpu;
867 s64 delta;
868
869 if (verbose > 0)
870 printf("sched_switch event %p\n", evsel);
871
872 if (cpu >= MAX_CPUS || cpu < 0)
873 return 0;
874
875 timestamp0 = sched->cpu_last_switched[cpu];
876 if (timestamp0)
877 delta = timestamp - timestamp0;
878 else
879 delta = 0;
880
881 if (delta < 0) {
882 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
883 return -1;
884 }
885
886 pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
887 prev_comm, prev_pid, next_comm, next_pid, delta);
888
889 prev = register_pid(sched, prev_pid, prev_comm);
890 next = register_pid(sched, next_pid, next_comm);
891
892 sched->cpu_last_switched[cpu] = timestamp;
893
894 add_sched_event_run(sched, prev, timestamp, delta);
895 add_sched_event_sleep(sched, prev, timestamp, prev_state);
896
897 return 0;
898 }
899
replay_fork_event(struct perf_sched * sched,union perf_event * event,struct machine * machine)900 static int replay_fork_event(struct perf_sched *sched,
901 union perf_event *event,
902 struct machine *machine)
903 {
904 struct thread *child, *parent;
905
906 child = machine__findnew_thread(machine, event->fork.pid,
907 event->fork.tid);
908 parent = machine__findnew_thread(machine, event->fork.ppid,
909 event->fork.ptid);
910
911 if (child == NULL || parent == NULL) {
912 pr_debug("thread does not exist on fork event: child %p, parent %p\n",
913 child, parent);
914 goto out_put;
915 }
916
917 if (verbose > 0) {
918 printf("fork event\n");
919 printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid);
920 printf("... child: %s/%d\n", thread__comm_str(child), child->tid);
921 }
922
923 register_pid(sched, parent->tid, thread__comm_str(parent));
924 register_pid(sched, child->tid, thread__comm_str(child));
925 out_put:
926 thread__put(child);
927 thread__put(parent);
928 return 0;
929 }
930
931 struct sort_dimension {
932 const char *name;
933 sort_fn_t cmp;
934 struct list_head list;
935 };
936
937 /*
938 * handle runtime stats saved per thread
939 */
thread__init_runtime(struct thread * thread)940 static struct thread_runtime *thread__init_runtime(struct thread *thread)
941 {
942 struct thread_runtime *r;
943
944 r = zalloc(sizeof(struct thread_runtime));
945 if (!r)
946 return NULL;
947
948 init_stats(&r->run_stats);
949 thread__set_priv(thread, r);
950
951 return r;
952 }
953
thread__get_runtime(struct thread * thread)954 static struct thread_runtime *thread__get_runtime(struct thread *thread)
955 {
956 struct thread_runtime *tr;
957
958 tr = thread__priv(thread);
959 if (tr == NULL) {
960 tr = thread__init_runtime(thread);
961 if (tr == NULL)
962 pr_debug("Failed to malloc memory for runtime data.\n");
963 }
964
965 return tr;
966 }
967
968 static int
thread_lat_cmp(struct list_head * list,struct work_atoms * l,struct work_atoms * r)969 thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
970 {
971 struct sort_dimension *sort;
972 int ret = 0;
973
974 BUG_ON(list_empty(list));
975
976 list_for_each_entry(sort, list, list) {
977 ret = sort->cmp(l, r);
978 if (ret)
979 return ret;
980 }
981
982 return ret;
983 }
984
985 static struct work_atoms *
thread_atoms_search(struct rb_root_cached * root,struct thread * thread,struct list_head * sort_list)986 thread_atoms_search(struct rb_root_cached *root, struct thread *thread,
987 struct list_head *sort_list)
988 {
989 struct rb_node *node = root->rb_root.rb_node;
990 struct work_atoms key = { .thread = thread };
991
992 while (node) {
993 struct work_atoms *atoms;
994 int cmp;
995
996 atoms = container_of(node, struct work_atoms, node);
997
998 cmp = thread_lat_cmp(sort_list, &key, atoms);
999 if (cmp > 0)
1000 node = node->rb_left;
1001 else if (cmp < 0)
1002 node = node->rb_right;
1003 else {
1004 BUG_ON(thread != atoms->thread);
1005 return atoms;
1006 }
1007 }
1008 return NULL;
1009 }
1010
1011 static void
__thread_latency_insert(struct rb_root_cached * root,struct work_atoms * data,struct list_head * sort_list)1012 __thread_latency_insert(struct rb_root_cached *root, struct work_atoms *data,
1013 struct list_head *sort_list)
1014 {
1015 struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
1016 bool leftmost = true;
1017
1018 while (*new) {
1019 struct work_atoms *this;
1020 int cmp;
1021
1022 this = container_of(*new, struct work_atoms, node);
1023 parent = *new;
1024
1025 cmp = thread_lat_cmp(sort_list, data, this);
1026
1027 if (cmp > 0)
1028 new = &((*new)->rb_left);
1029 else {
1030 new = &((*new)->rb_right);
1031 leftmost = false;
1032 }
1033 }
1034
1035 rb_link_node(&data->node, parent, new);
1036 rb_insert_color_cached(&data->node, root, leftmost);
1037 }
1038
thread_atoms_insert(struct perf_sched * sched,struct thread * thread)1039 static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
1040 {
1041 struct work_atoms *atoms = zalloc(sizeof(*atoms));
1042 if (!atoms) {
1043 pr_err("No memory at %s\n", __func__);
1044 return -1;
1045 }
1046
1047 atoms->thread = thread__get(thread);
1048 INIT_LIST_HEAD(&atoms->work_list);
1049 __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
1050 return 0;
1051 }
1052
sched_out_state(u64 prev_state)1053 static char sched_out_state(u64 prev_state)
1054 {
1055 const char *str = TASK_STATE_TO_CHAR_STR;
1056
1057 return str[prev_state];
1058 }
1059
1060 static int
add_sched_out_event(struct work_atoms * atoms,char run_state,u64 timestamp)1061 add_sched_out_event(struct work_atoms *atoms,
1062 char run_state,
1063 u64 timestamp)
1064 {
1065 struct work_atom *atom = zalloc(sizeof(*atom));
1066 if (!atom) {
1067 pr_err("Non memory at %s", __func__);
1068 return -1;
1069 }
1070
1071 atom->sched_out_time = timestamp;
1072
1073 if (run_state == 'R') {
1074 atom->state = THREAD_WAIT_CPU;
1075 atom->wake_up_time = atom->sched_out_time;
1076 }
1077
1078 list_add_tail(&atom->list, &atoms->work_list);
1079 return 0;
1080 }
1081
1082 static void
add_runtime_event(struct work_atoms * atoms,u64 delta,u64 timestamp __maybe_unused)1083 add_runtime_event(struct work_atoms *atoms, u64 delta,
1084 u64 timestamp __maybe_unused)
1085 {
1086 struct work_atom *atom;
1087
1088 BUG_ON(list_empty(&atoms->work_list));
1089
1090 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1091
1092 atom->runtime += delta;
1093 atoms->total_runtime += delta;
1094 }
1095
1096 static void
add_sched_in_event(struct work_atoms * atoms,u64 timestamp)1097 add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
1098 {
1099 struct work_atom *atom;
1100 u64 delta;
1101
1102 if (list_empty(&atoms->work_list))
1103 return;
1104
1105 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1106
1107 if (atom->state != THREAD_WAIT_CPU)
1108 return;
1109
1110 if (timestamp < atom->wake_up_time) {
1111 atom->state = THREAD_IGNORE;
1112 return;
1113 }
1114
1115 atom->state = THREAD_SCHED_IN;
1116 atom->sched_in_time = timestamp;
1117
1118 delta = atom->sched_in_time - atom->wake_up_time;
1119 atoms->total_lat += delta;
1120 if (delta > atoms->max_lat) {
1121 atoms->max_lat = delta;
1122 atoms->max_lat_start = atom->wake_up_time;
1123 atoms->max_lat_end = timestamp;
1124 }
1125 atoms->nb_atoms++;
1126 }
1127
latency_switch_event(struct perf_sched * sched,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)1128 static int latency_switch_event(struct perf_sched *sched,
1129 struct evsel *evsel,
1130 struct perf_sample *sample,
1131 struct machine *machine)
1132 {
1133 const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
1134 next_pid = evsel__intval(evsel, sample, "next_pid");
1135 const u64 prev_state = evsel__intval(evsel, sample, "prev_state");
1136 struct work_atoms *out_events, *in_events;
1137 struct thread *sched_out, *sched_in;
1138 u64 timestamp0, timestamp = sample->time;
1139 int cpu = sample->cpu, err = -1;
1140 s64 delta;
1141
1142 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1143
1144 timestamp0 = sched->cpu_last_switched[cpu];
1145 sched->cpu_last_switched[cpu] = timestamp;
1146 if (timestamp0)
1147 delta = timestamp - timestamp0;
1148 else
1149 delta = 0;
1150
1151 if (delta < 0) {
1152 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1153 return -1;
1154 }
1155
1156 sched_out = machine__findnew_thread(machine, -1, prev_pid);
1157 sched_in = machine__findnew_thread(machine, -1, next_pid);
1158 if (sched_out == NULL || sched_in == NULL)
1159 goto out_put;
1160
1161 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1162 if (!out_events) {
1163 if (thread_atoms_insert(sched, sched_out))
1164 goto out_put;
1165 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1166 if (!out_events) {
1167 pr_err("out-event: Internal tree error");
1168 goto out_put;
1169 }
1170 }
1171 if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
1172 return -1;
1173
1174 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1175 if (!in_events) {
1176 if (thread_atoms_insert(sched, sched_in))
1177 goto out_put;
1178 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1179 if (!in_events) {
1180 pr_err("in-event: Internal tree error");
1181 goto out_put;
1182 }
1183 /*
1184 * Take came in we have not heard about yet,
1185 * add in an initial atom in runnable state:
1186 */
1187 if (add_sched_out_event(in_events, 'R', timestamp))
1188 goto out_put;
1189 }
1190 add_sched_in_event(in_events, timestamp);
1191 err = 0;
1192 out_put:
1193 thread__put(sched_out);
1194 thread__put(sched_in);
1195 return err;
1196 }
1197
latency_runtime_event(struct perf_sched * sched,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)1198 static int latency_runtime_event(struct perf_sched *sched,
1199 struct evsel *evsel,
1200 struct perf_sample *sample,
1201 struct machine *machine)
1202 {
1203 const u32 pid = evsel__intval(evsel, sample, "pid");
1204 const u64 runtime = evsel__intval(evsel, sample, "runtime");
1205 struct thread *thread = machine__findnew_thread(machine, -1, pid);
1206 struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1207 u64 timestamp = sample->time;
1208 int cpu = sample->cpu, err = -1;
1209
1210 if (thread == NULL)
1211 return -1;
1212
1213 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1214 if (!atoms) {
1215 if (thread_atoms_insert(sched, thread))
1216 goto out_put;
1217 atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1218 if (!atoms) {
1219 pr_err("in-event: Internal tree error");
1220 goto out_put;
1221 }
1222 if (add_sched_out_event(atoms, 'R', timestamp))
1223 goto out_put;
1224 }
1225
1226 add_runtime_event(atoms, runtime, timestamp);
1227 err = 0;
1228 out_put:
1229 thread__put(thread);
1230 return err;
1231 }
1232
latency_wakeup_event(struct perf_sched * sched,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)1233 static int latency_wakeup_event(struct perf_sched *sched,
1234 struct evsel *evsel,
1235 struct perf_sample *sample,
1236 struct machine *machine)
1237 {
1238 const u32 pid = evsel__intval(evsel, sample, "pid");
1239 struct work_atoms *atoms;
1240 struct work_atom *atom;
1241 struct thread *wakee;
1242 u64 timestamp = sample->time;
1243 int err = -1;
1244
1245 wakee = machine__findnew_thread(machine, -1, pid);
1246 if (wakee == NULL)
1247 return -1;
1248 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1249 if (!atoms) {
1250 if (thread_atoms_insert(sched, wakee))
1251 goto out_put;
1252 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1253 if (!atoms) {
1254 pr_err("wakeup-event: Internal tree error");
1255 goto out_put;
1256 }
1257 if (add_sched_out_event(atoms, 'S', timestamp))
1258 goto out_put;
1259 }
1260
1261 BUG_ON(list_empty(&atoms->work_list));
1262
1263 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1264
1265 /*
1266 * As we do not guarantee the wakeup event happens when
1267 * task is out of run queue, also may happen when task is
1268 * on run queue and wakeup only change ->state to TASK_RUNNING,
1269 * then we should not set the ->wake_up_time when wake up a
1270 * task which is on run queue.
1271 *
1272 * You WILL be missing events if you've recorded only
1273 * one CPU, or are only looking at only one, so don't
1274 * skip in this case.
1275 */
1276 if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1277 goto out_ok;
1278
1279 sched->nr_timestamps++;
1280 if (atom->sched_out_time > timestamp) {
1281 sched->nr_unordered_timestamps++;
1282 goto out_ok;
1283 }
1284
1285 atom->state = THREAD_WAIT_CPU;
1286 atom->wake_up_time = timestamp;
1287 out_ok:
1288 err = 0;
1289 out_put:
1290 thread__put(wakee);
1291 return err;
1292 }
1293
latency_migrate_task_event(struct perf_sched * sched,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)1294 static int latency_migrate_task_event(struct perf_sched *sched,
1295 struct evsel *evsel,
1296 struct perf_sample *sample,
1297 struct machine *machine)
1298 {
1299 const u32 pid = evsel__intval(evsel, sample, "pid");
1300 u64 timestamp = sample->time;
1301 struct work_atoms *atoms;
1302 struct work_atom *atom;
1303 struct thread *migrant;
1304 int err = -1;
1305
1306 /*
1307 * Only need to worry about migration when profiling one CPU.
1308 */
1309 if (sched->profile_cpu == -1)
1310 return 0;
1311
1312 migrant = machine__findnew_thread(machine, -1, pid);
1313 if (migrant == NULL)
1314 return -1;
1315 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1316 if (!atoms) {
1317 if (thread_atoms_insert(sched, migrant))
1318 goto out_put;
1319 register_pid(sched, migrant->tid, thread__comm_str(migrant));
1320 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1321 if (!atoms) {
1322 pr_err("migration-event: Internal tree error");
1323 goto out_put;
1324 }
1325 if (add_sched_out_event(atoms, 'R', timestamp))
1326 goto out_put;
1327 }
1328
1329 BUG_ON(list_empty(&atoms->work_list));
1330
1331 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1332 atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1333
1334 sched->nr_timestamps++;
1335
1336 if (atom->sched_out_time > timestamp)
1337 sched->nr_unordered_timestamps++;
1338 err = 0;
1339 out_put:
1340 thread__put(migrant);
1341 return err;
1342 }
1343
output_lat_thread(struct perf_sched * sched,struct work_atoms * work_list)1344 static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1345 {
1346 int i;
1347 int ret;
1348 u64 avg;
1349 char max_lat_start[32], max_lat_end[32];
1350
1351 if (!work_list->nb_atoms)
1352 return;
1353 /*
1354 * Ignore idle threads:
1355 */
1356 if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1357 return;
1358
1359 sched->all_runtime += work_list->total_runtime;
1360 sched->all_count += work_list->nb_atoms;
1361
1362 if (work_list->num_merged > 1)
1363 ret = printf(" %s:(%d) ", thread__comm_str(work_list->thread), work_list->num_merged);
1364 else
1365 ret = printf(" %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid);
1366
1367 for (i = 0; i < 24 - ret; i++)
1368 printf(" ");
1369
1370 avg = work_list->total_lat / work_list->nb_atoms;
1371 timestamp__scnprintf_usec(work_list->max_lat_start, max_lat_start, sizeof(max_lat_start));
1372 timestamp__scnprintf_usec(work_list->max_lat_end, max_lat_end, sizeof(max_lat_end));
1373
1374 printf("|%11.3f ms |%9" PRIu64 " | avg:%8.3f ms | max:%8.3f ms | max start: %12s s | max end: %12s s\n",
1375 (double)work_list->total_runtime / NSEC_PER_MSEC,
1376 work_list->nb_atoms, (double)avg / NSEC_PER_MSEC,
1377 (double)work_list->max_lat / NSEC_PER_MSEC,
1378 max_lat_start, max_lat_end);
1379 }
1380
pid_cmp(struct work_atoms * l,struct work_atoms * r)1381 static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1382 {
1383 if (l->thread == r->thread)
1384 return 0;
1385 if (l->thread->tid < r->thread->tid)
1386 return -1;
1387 if (l->thread->tid > r->thread->tid)
1388 return 1;
1389 return (int)(l->thread - r->thread);
1390 }
1391
avg_cmp(struct work_atoms * l,struct work_atoms * r)1392 static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1393 {
1394 u64 avgl, avgr;
1395
1396 if (!l->nb_atoms)
1397 return -1;
1398
1399 if (!r->nb_atoms)
1400 return 1;
1401
1402 avgl = l->total_lat / l->nb_atoms;
1403 avgr = r->total_lat / r->nb_atoms;
1404
1405 if (avgl < avgr)
1406 return -1;
1407 if (avgl > avgr)
1408 return 1;
1409
1410 return 0;
1411 }
1412
max_cmp(struct work_atoms * l,struct work_atoms * r)1413 static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1414 {
1415 if (l->max_lat < r->max_lat)
1416 return -1;
1417 if (l->max_lat > r->max_lat)
1418 return 1;
1419
1420 return 0;
1421 }
1422
switch_cmp(struct work_atoms * l,struct work_atoms * r)1423 static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1424 {
1425 if (l->nb_atoms < r->nb_atoms)
1426 return -1;
1427 if (l->nb_atoms > r->nb_atoms)
1428 return 1;
1429
1430 return 0;
1431 }
1432
runtime_cmp(struct work_atoms * l,struct work_atoms * r)1433 static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1434 {
1435 if (l->total_runtime < r->total_runtime)
1436 return -1;
1437 if (l->total_runtime > r->total_runtime)
1438 return 1;
1439
1440 return 0;
1441 }
1442
sort_dimension__add(const char * tok,struct list_head * list)1443 static int sort_dimension__add(const char *tok, struct list_head *list)
1444 {
1445 size_t i;
1446 static struct sort_dimension avg_sort_dimension = {
1447 .name = "avg",
1448 .cmp = avg_cmp,
1449 };
1450 static struct sort_dimension max_sort_dimension = {
1451 .name = "max",
1452 .cmp = max_cmp,
1453 };
1454 static struct sort_dimension pid_sort_dimension = {
1455 .name = "pid",
1456 .cmp = pid_cmp,
1457 };
1458 static struct sort_dimension runtime_sort_dimension = {
1459 .name = "runtime",
1460 .cmp = runtime_cmp,
1461 };
1462 static struct sort_dimension switch_sort_dimension = {
1463 .name = "switch",
1464 .cmp = switch_cmp,
1465 };
1466 struct sort_dimension *available_sorts[] = {
1467 &pid_sort_dimension,
1468 &avg_sort_dimension,
1469 &max_sort_dimension,
1470 &switch_sort_dimension,
1471 &runtime_sort_dimension,
1472 };
1473
1474 for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1475 if (!strcmp(available_sorts[i]->name, tok)) {
1476 list_add_tail(&available_sorts[i]->list, list);
1477
1478 return 0;
1479 }
1480 }
1481
1482 return -1;
1483 }
1484
perf_sched__sort_lat(struct perf_sched * sched)1485 static void perf_sched__sort_lat(struct perf_sched *sched)
1486 {
1487 struct rb_node *node;
1488 struct rb_root_cached *root = &sched->atom_root;
1489 again:
1490 for (;;) {
1491 struct work_atoms *data;
1492 node = rb_first_cached(root);
1493 if (!node)
1494 break;
1495
1496 rb_erase_cached(node, root);
1497 data = rb_entry(node, struct work_atoms, node);
1498 __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1499 }
1500 if (root == &sched->atom_root) {
1501 root = &sched->merged_atom_root;
1502 goto again;
1503 }
1504 }
1505
process_sched_wakeup_event(struct perf_tool * tool,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)1506 static int process_sched_wakeup_event(struct perf_tool *tool,
1507 struct evsel *evsel,
1508 struct perf_sample *sample,
1509 struct machine *machine)
1510 {
1511 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1512
1513 if (sched->tp_handler->wakeup_event)
1514 return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1515
1516 return 0;
1517 }
1518
1519 union map_priv {
1520 void *ptr;
1521 bool color;
1522 };
1523
thread__has_color(struct thread * thread)1524 static bool thread__has_color(struct thread *thread)
1525 {
1526 union map_priv priv = {
1527 .ptr = thread__priv(thread),
1528 };
1529
1530 return priv.color;
1531 }
1532
1533 static struct thread*
map__findnew_thread(struct perf_sched * sched,struct machine * machine,pid_t pid,pid_t tid)1534 map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid)
1535 {
1536 struct thread *thread = machine__findnew_thread(machine, pid, tid);
1537 union map_priv priv = {
1538 .color = false,
1539 };
1540
1541 if (!sched->map.color_pids || !thread || thread__priv(thread))
1542 return thread;
1543
1544 if (thread_map__has(sched->map.color_pids, tid))
1545 priv.color = true;
1546
1547 thread__set_priv(thread, priv.ptr);
1548 return thread;
1549 }
1550
map_switch_event(struct perf_sched * sched,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)1551 static int map_switch_event(struct perf_sched *sched, struct evsel *evsel,
1552 struct perf_sample *sample, struct machine *machine)
1553 {
1554 const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
1555 struct thread *sched_in;
1556 struct thread_runtime *tr;
1557 int new_shortname;
1558 u64 timestamp0, timestamp = sample->time;
1559 s64 delta;
1560 int i;
1561 struct perf_cpu this_cpu = {
1562 .cpu = sample->cpu,
1563 };
1564 int cpus_nr;
1565 bool new_cpu = false;
1566 const char *color = PERF_COLOR_NORMAL;
1567 char stimestamp[32];
1568
1569 BUG_ON(this_cpu.cpu >= MAX_CPUS || this_cpu.cpu < 0);
1570
1571 if (this_cpu.cpu > sched->max_cpu.cpu)
1572 sched->max_cpu = this_cpu;
1573
1574 if (sched->map.comp) {
1575 cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS);
1576 if (!test_and_set_bit(this_cpu.cpu, sched->map.comp_cpus_mask)) {
1577 sched->map.comp_cpus[cpus_nr++] = this_cpu;
1578 new_cpu = true;
1579 }
1580 } else
1581 cpus_nr = sched->max_cpu.cpu;
1582
1583 timestamp0 = sched->cpu_last_switched[this_cpu.cpu];
1584 sched->cpu_last_switched[this_cpu.cpu] = timestamp;
1585 if (timestamp0)
1586 delta = timestamp - timestamp0;
1587 else
1588 delta = 0;
1589
1590 if (delta < 0) {
1591 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1592 return -1;
1593 }
1594
1595 sched_in = map__findnew_thread(sched, machine, -1, next_pid);
1596 if (sched_in == NULL)
1597 return -1;
1598
1599 tr = thread__get_runtime(sched_in);
1600 if (tr == NULL) {
1601 thread__put(sched_in);
1602 return -1;
1603 }
1604
1605 sched->curr_thread[this_cpu.cpu] = thread__get(sched_in);
1606
1607 printf(" ");
1608
1609 new_shortname = 0;
1610 if (!tr->shortname[0]) {
1611 if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1612 /*
1613 * Don't allocate a letter-number for swapper:0
1614 * as a shortname. Instead, we use '.' for it.
1615 */
1616 tr->shortname[0] = '.';
1617 tr->shortname[1] = ' ';
1618 } else {
1619 tr->shortname[0] = sched->next_shortname1;
1620 tr->shortname[1] = sched->next_shortname2;
1621
1622 if (sched->next_shortname1 < 'Z') {
1623 sched->next_shortname1++;
1624 } else {
1625 sched->next_shortname1 = 'A';
1626 if (sched->next_shortname2 < '9')
1627 sched->next_shortname2++;
1628 else
1629 sched->next_shortname2 = '0';
1630 }
1631 }
1632 new_shortname = 1;
1633 }
1634
1635 for (i = 0; i < cpus_nr; i++) {
1636 struct perf_cpu cpu = {
1637 .cpu = sched->map.comp ? sched->map.comp_cpus[i].cpu : i,
1638 };
1639 struct thread *curr_thread = sched->curr_thread[cpu.cpu];
1640 struct thread_runtime *curr_tr;
1641 const char *pid_color = color;
1642 const char *cpu_color = color;
1643
1644 if (curr_thread && thread__has_color(curr_thread))
1645 pid_color = COLOR_PIDS;
1646
1647 if (sched->map.cpus && !perf_cpu_map__has(sched->map.cpus, cpu))
1648 continue;
1649
1650 if (sched->map.color_cpus && perf_cpu_map__has(sched->map.color_cpus, cpu))
1651 cpu_color = COLOR_CPUS;
1652
1653 if (cpu.cpu != this_cpu.cpu)
1654 color_fprintf(stdout, color, " ");
1655 else
1656 color_fprintf(stdout, cpu_color, "*");
1657
1658 if (sched->curr_thread[cpu.cpu]) {
1659 curr_tr = thread__get_runtime(sched->curr_thread[cpu.cpu]);
1660 if (curr_tr == NULL) {
1661 thread__put(sched_in);
1662 return -1;
1663 }
1664 color_fprintf(stdout, pid_color, "%2s ", curr_tr->shortname);
1665 } else
1666 color_fprintf(stdout, color, " ");
1667 }
1668
1669 if (sched->map.cpus && !perf_cpu_map__has(sched->map.cpus, this_cpu))
1670 goto out;
1671
1672 timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
1673 color_fprintf(stdout, color, " %12s secs ", stimestamp);
1674 if (new_shortname || tr->comm_changed || (verbose > 0 && sched_in->tid)) {
1675 const char *pid_color = color;
1676
1677 if (thread__has_color(sched_in))
1678 pid_color = COLOR_PIDS;
1679
1680 color_fprintf(stdout, pid_color, "%s => %s:%d",
1681 tr->shortname, thread__comm_str(sched_in), sched_in->tid);
1682 tr->comm_changed = false;
1683 }
1684
1685 if (sched->map.comp && new_cpu)
1686 color_fprintf(stdout, color, " (CPU %d)", this_cpu);
1687
1688 out:
1689 color_fprintf(stdout, color, "\n");
1690
1691 thread__put(sched_in);
1692
1693 return 0;
1694 }
1695
process_sched_switch_event(struct perf_tool * tool,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)1696 static int process_sched_switch_event(struct perf_tool *tool,
1697 struct evsel *evsel,
1698 struct perf_sample *sample,
1699 struct machine *machine)
1700 {
1701 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1702 int this_cpu = sample->cpu, err = 0;
1703 u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
1704 next_pid = evsel__intval(evsel, sample, "next_pid");
1705
1706 if (sched->curr_pid[this_cpu] != (u32)-1) {
1707 /*
1708 * Are we trying to switch away a PID that is
1709 * not current?
1710 */
1711 if (sched->curr_pid[this_cpu] != prev_pid)
1712 sched->nr_context_switch_bugs++;
1713 }
1714
1715 if (sched->tp_handler->switch_event)
1716 err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1717
1718 sched->curr_pid[this_cpu] = next_pid;
1719 return err;
1720 }
1721
process_sched_runtime_event(struct perf_tool * tool,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)1722 static int process_sched_runtime_event(struct perf_tool *tool,
1723 struct evsel *evsel,
1724 struct perf_sample *sample,
1725 struct machine *machine)
1726 {
1727 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1728
1729 if (sched->tp_handler->runtime_event)
1730 return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1731
1732 return 0;
1733 }
1734
perf_sched__process_fork_event(struct perf_tool * tool,union perf_event * event,struct perf_sample * sample,struct machine * machine)1735 static int perf_sched__process_fork_event(struct perf_tool *tool,
1736 union perf_event *event,
1737 struct perf_sample *sample,
1738 struct machine *machine)
1739 {
1740 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1741
1742 /* run the fork event through the perf machinery */
1743 perf_event__process_fork(tool, event, sample, machine);
1744
1745 /* and then run additional processing needed for this command */
1746 if (sched->tp_handler->fork_event)
1747 return sched->tp_handler->fork_event(sched, event, machine);
1748
1749 return 0;
1750 }
1751
process_sched_migrate_task_event(struct perf_tool * tool,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)1752 static int process_sched_migrate_task_event(struct perf_tool *tool,
1753 struct evsel *evsel,
1754 struct perf_sample *sample,
1755 struct machine *machine)
1756 {
1757 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1758
1759 if (sched->tp_handler->migrate_task_event)
1760 return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1761
1762 return 0;
1763 }
1764
1765 typedef int (*tracepoint_handler)(struct perf_tool *tool,
1766 struct evsel *evsel,
1767 struct perf_sample *sample,
1768 struct machine *machine);
1769
perf_sched__process_tracepoint_sample(struct perf_tool * tool __maybe_unused,union perf_event * event __maybe_unused,struct perf_sample * sample,struct evsel * evsel,struct machine * machine)1770 static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1771 union perf_event *event __maybe_unused,
1772 struct perf_sample *sample,
1773 struct evsel *evsel,
1774 struct machine *machine)
1775 {
1776 int err = 0;
1777
1778 if (evsel->handler != NULL) {
1779 tracepoint_handler f = evsel->handler;
1780 err = f(tool, evsel, sample, machine);
1781 }
1782
1783 return err;
1784 }
1785
perf_sched__process_comm(struct perf_tool * tool __maybe_unused,union perf_event * event,struct perf_sample * sample,struct machine * machine)1786 static int perf_sched__process_comm(struct perf_tool *tool __maybe_unused,
1787 union perf_event *event,
1788 struct perf_sample *sample,
1789 struct machine *machine)
1790 {
1791 struct thread *thread;
1792 struct thread_runtime *tr;
1793 int err;
1794
1795 err = perf_event__process_comm(tool, event, sample, machine);
1796 if (err)
1797 return err;
1798
1799 thread = machine__find_thread(machine, sample->pid, sample->tid);
1800 if (!thread) {
1801 pr_err("Internal error: can't find thread\n");
1802 return -1;
1803 }
1804
1805 tr = thread__get_runtime(thread);
1806 if (tr == NULL) {
1807 thread__put(thread);
1808 return -1;
1809 }
1810
1811 tr->comm_changed = true;
1812 thread__put(thread);
1813
1814 return 0;
1815 }
1816
perf_sched__read_events(struct perf_sched * sched)1817 static int perf_sched__read_events(struct perf_sched *sched)
1818 {
1819 const struct evsel_str_handler handlers[] = {
1820 { "sched:sched_switch", process_sched_switch_event, },
1821 { "sched:sched_stat_runtime", process_sched_runtime_event, },
1822 { "sched:sched_wakeup", process_sched_wakeup_event, },
1823 { "sched:sched_wakeup_new", process_sched_wakeup_event, },
1824 { "sched:sched_migrate_task", process_sched_migrate_task_event, },
1825 };
1826 struct perf_session *session;
1827 struct perf_data data = {
1828 .path = input_name,
1829 .mode = PERF_DATA_MODE_READ,
1830 .force = sched->force,
1831 };
1832 int rc = -1;
1833
1834 session = perf_session__new(&data, &sched->tool);
1835 if (IS_ERR(session)) {
1836 pr_debug("Error creating perf session");
1837 return PTR_ERR(session);
1838 }
1839
1840 symbol__init(&session->header.env);
1841
1842 if (perf_session__set_tracepoints_handlers(session, handlers))
1843 goto out_delete;
1844
1845 if (perf_session__has_traces(session, "record -R")) {
1846 int err = perf_session__process_events(session);
1847 if (err) {
1848 pr_err("Failed to process events, error %d", err);
1849 goto out_delete;
1850 }
1851
1852 sched->nr_events = session->evlist->stats.nr_events[0];
1853 sched->nr_lost_events = session->evlist->stats.total_lost;
1854 sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1855 }
1856
1857 rc = 0;
1858 out_delete:
1859 perf_session__delete(session);
1860 return rc;
1861 }
1862
1863 /*
1864 * scheduling times are printed as msec.usec
1865 */
print_sched_time(unsigned long long nsecs,int width)1866 static inline void print_sched_time(unsigned long long nsecs, int width)
1867 {
1868 unsigned long msecs;
1869 unsigned long usecs;
1870
1871 msecs = nsecs / NSEC_PER_MSEC;
1872 nsecs -= msecs * NSEC_PER_MSEC;
1873 usecs = nsecs / NSEC_PER_USEC;
1874 printf("%*lu.%03lu ", width, msecs, usecs);
1875 }
1876
1877 /*
1878 * returns runtime data for event, allocating memory for it the
1879 * first time it is used.
1880 */
evsel__get_runtime(struct evsel * evsel)1881 static struct evsel_runtime *evsel__get_runtime(struct evsel *evsel)
1882 {
1883 struct evsel_runtime *r = evsel->priv;
1884
1885 if (r == NULL) {
1886 r = zalloc(sizeof(struct evsel_runtime));
1887 evsel->priv = r;
1888 }
1889
1890 return r;
1891 }
1892
1893 /*
1894 * save last time event was seen per cpu
1895 */
evsel__save_time(struct evsel * evsel,u64 timestamp,u32 cpu)1896 static void evsel__save_time(struct evsel *evsel, u64 timestamp, u32 cpu)
1897 {
1898 struct evsel_runtime *r = evsel__get_runtime(evsel);
1899
1900 if (r == NULL)
1901 return;
1902
1903 if ((cpu >= r->ncpu) || (r->last_time == NULL)) {
1904 int i, n = __roundup_pow_of_two(cpu+1);
1905 void *p = r->last_time;
1906
1907 p = realloc(r->last_time, n * sizeof(u64));
1908 if (!p)
1909 return;
1910
1911 r->last_time = p;
1912 for (i = r->ncpu; i < n; ++i)
1913 r->last_time[i] = (u64) 0;
1914
1915 r->ncpu = n;
1916 }
1917
1918 r->last_time[cpu] = timestamp;
1919 }
1920
1921 /* returns last time this event was seen on the given cpu */
evsel__get_time(struct evsel * evsel,u32 cpu)1922 static u64 evsel__get_time(struct evsel *evsel, u32 cpu)
1923 {
1924 struct evsel_runtime *r = evsel__get_runtime(evsel);
1925
1926 if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu))
1927 return 0;
1928
1929 return r->last_time[cpu];
1930 }
1931
1932 static int comm_width = 30;
1933
timehist_get_commstr(struct thread * thread)1934 static char *timehist_get_commstr(struct thread *thread)
1935 {
1936 static char str[32];
1937 const char *comm = thread__comm_str(thread);
1938 pid_t tid = thread->tid;
1939 pid_t pid = thread->pid_;
1940 int n;
1941
1942 if (pid == 0)
1943 n = scnprintf(str, sizeof(str), "%s", comm);
1944
1945 else if (tid != pid)
1946 n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid);
1947
1948 else
1949 n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid);
1950
1951 if (n > comm_width)
1952 comm_width = n;
1953
1954 return str;
1955 }
1956
timehist_header(struct perf_sched * sched)1957 static void timehist_header(struct perf_sched *sched)
1958 {
1959 u32 ncpus = sched->max_cpu.cpu + 1;
1960 u32 i, j;
1961
1962 printf("%15s %6s ", "time", "cpu");
1963
1964 if (sched->show_cpu_visual) {
1965 printf(" ");
1966 for (i = 0, j = 0; i < ncpus; ++i) {
1967 printf("%x", j++);
1968 if (j > 15)
1969 j = 0;
1970 }
1971 printf(" ");
1972 }
1973
1974 printf(" %-*s %9s %9s %9s", comm_width,
1975 "task name", "wait time", "sch delay", "run time");
1976
1977 if (sched->show_state)
1978 printf(" %s", "state");
1979
1980 printf("\n");
1981
1982 /*
1983 * units row
1984 */
1985 printf("%15s %-6s ", "", "");
1986
1987 if (sched->show_cpu_visual)
1988 printf(" %*s ", ncpus, "");
1989
1990 printf(" %-*s %9s %9s %9s", comm_width,
1991 "[tid/pid]", "(msec)", "(msec)", "(msec)");
1992
1993 if (sched->show_state)
1994 printf(" %5s", "");
1995
1996 printf("\n");
1997
1998 /*
1999 * separator
2000 */
2001 printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line);
2002
2003 if (sched->show_cpu_visual)
2004 printf(" %.*s ", ncpus, graph_dotted_line);
2005
2006 printf(" %.*s %.9s %.9s %.9s", comm_width,
2007 graph_dotted_line, graph_dotted_line, graph_dotted_line,
2008 graph_dotted_line);
2009
2010 if (sched->show_state)
2011 printf(" %.5s", graph_dotted_line);
2012
2013 printf("\n");
2014 }
2015
task_state_char(struct thread * thread,int state)2016 static char task_state_char(struct thread *thread, int state)
2017 {
2018 static const char state_to_char[] = TASK_STATE_TO_CHAR_STR;
2019 unsigned bit = state ? ffs(state) : 0;
2020
2021 /* 'I' for idle */
2022 if (thread->tid == 0)
2023 return 'I';
2024
2025 return bit < sizeof(state_to_char) - 1 ? state_to_char[bit] : '?';
2026 }
2027
timehist_print_sample(struct perf_sched * sched,struct evsel * evsel,struct perf_sample * sample,struct addr_location * al,struct thread * thread,u64 t,int state)2028 static void timehist_print_sample(struct perf_sched *sched,
2029 struct evsel *evsel,
2030 struct perf_sample *sample,
2031 struct addr_location *al,
2032 struct thread *thread,
2033 u64 t, int state)
2034 {
2035 struct thread_runtime *tr = thread__priv(thread);
2036 const char *next_comm = evsel__strval(evsel, sample, "next_comm");
2037 const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
2038 u32 max_cpus = sched->max_cpu.cpu + 1;
2039 char tstr[64];
2040 char nstr[30];
2041 u64 wait_time;
2042
2043 if (cpu_list && !test_bit(sample->cpu, cpu_bitmap))
2044 return;
2045
2046 timestamp__scnprintf_usec(t, tstr, sizeof(tstr));
2047 printf("%15s [%04d] ", tstr, sample->cpu);
2048
2049 if (sched->show_cpu_visual) {
2050 u32 i;
2051 char c;
2052
2053 printf(" ");
2054 for (i = 0; i < max_cpus; ++i) {
2055 /* flag idle times with 'i'; others are sched events */
2056 if (i == sample->cpu)
2057 c = (thread->tid == 0) ? 'i' : 's';
2058 else
2059 c = ' ';
2060 printf("%c", c);
2061 }
2062 printf(" ");
2063 }
2064
2065 printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2066
2067 wait_time = tr->dt_sleep + tr->dt_iowait + tr->dt_preempt;
2068 print_sched_time(wait_time, 6);
2069
2070 print_sched_time(tr->dt_delay, 6);
2071 print_sched_time(tr->dt_run, 6);
2072
2073 if (sched->show_state)
2074 printf(" %5c ", task_state_char(thread, state));
2075
2076 if (sched->show_next) {
2077 snprintf(nstr, sizeof(nstr), "next: %s[%d]", next_comm, next_pid);
2078 printf(" %-*s", comm_width, nstr);
2079 }
2080
2081 if (sched->show_wakeups && !sched->show_next)
2082 printf(" %-*s", comm_width, "");
2083
2084 if (thread->tid == 0)
2085 goto out;
2086
2087 if (sched->show_callchain)
2088 printf(" ");
2089
2090 sample__fprintf_sym(sample, al, 0,
2091 EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE |
2092 EVSEL__PRINT_CALLCHAIN_ARROW |
2093 EVSEL__PRINT_SKIP_IGNORED,
2094 &callchain_cursor, symbol_conf.bt_stop_list, stdout);
2095
2096 out:
2097 printf("\n");
2098 }
2099
2100 /*
2101 * Explanation of delta-time stats:
2102 *
2103 * t = time of current schedule out event
2104 * tprev = time of previous sched out event
2105 * also time of schedule-in event for current task
2106 * last_time = time of last sched change event for current task
2107 * (i.e, time process was last scheduled out)
2108 * ready_to_run = time of wakeup for current task
2109 *
2110 * -----|------------|------------|------------|------
2111 * last ready tprev t
2112 * time to run
2113 *
2114 * |-------- dt_wait --------|
2115 * |- dt_delay -|-- dt_run --|
2116 *
2117 * dt_run = run time of current task
2118 * dt_wait = time between last schedule out event for task and tprev
2119 * represents time spent off the cpu
2120 * dt_delay = time between wakeup and schedule-in of task
2121 */
2122
timehist_update_runtime_stats(struct thread_runtime * r,u64 t,u64 tprev)2123 static void timehist_update_runtime_stats(struct thread_runtime *r,
2124 u64 t, u64 tprev)
2125 {
2126 r->dt_delay = 0;
2127 r->dt_sleep = 0;
2128 r->dt_iowait = 0;
2129 r->dt_preempt = 0;
2130 r->dt_run = 0;
2131
2132 if (tprev) {
2133 r->dt_run = t - tprev;
2134 if (r->ready_to_run) {
2135 if (r->ready_to_run > tprev)
2136 pr_debug("time travel: wakeup time for task > previous sched_switch event\n");
2137 else
2138 r->dt_delay = tprev - r->ready_to_run;
2139 }
2140
2141 if (r->last_time > tprev)
2142 pr_debug("time travel: last sched out time for task > previous sched_switch event\n");
2143 else if (r->last_time) {
2144 u64 dt_wait = tprev - r->last_time;
2145
2146 if (r->last_state == TASK_RUNNING)
2147 r->dt_preempt = dt_wait;
2148 else if (r->last_state == TASK_UNINTERRUPTIBLE)
2149 r->dt_iowait = dt_wait;
2150 else
2151 r->dt_sleep = dt_wait;
2152 }
2153 }
2154
2155 update_stats(&r->run_stats, r->dt_run);
2156
2157 r->total_run_time += r->dt_run;
2158 r->total_delay_time += r->dt_delay;
2159 r->total_sleep_time += r->dt_sleep;
2160 r->total_iowait_time += r->dt_iowait;
2161 r->total_preempt_time += r->dt_preempt;
2162 }
2163
is_idle_sample(struct perf_sample * sample,struct evsel * evsel)2164 static bool is_idle_sample(struct perf_sample *sample,
2165 struct evsel *evsel)
2166 {
2167 /* pid 0 == swapper == idle task */
2168 if (strcmp(evsel__name(evsel), "sched:sched_switch") == 0)
2169 return evsel__intval(evsel, sample, "prev_pid") == 0;
2170
2171 return sample->pid == 0;
2172 }
2173
save_task_callchain(struct perf_sched * sched,struct perf_sample * sample,struct evsel * evsel,struct machine * machine)2174 static void save_task_callchain(struct perf_sched *sched,
2175 struct perf_sample *sample,
2176 struct evsel *evsel,
2177 struct machine *machine)
2178 {
2179 struct callchain_cursor *cursor = &callchain_cursor;
2180 struct thread *thread;
2181
2182 /* want main thread for process - has maps */
2183 thread = machine__findnew_thread(machine, sample->pid, sample->pid);
2184 if (thread == NULL) {
2185 pr_debug("Failed to get thread for pid %d.\n", sample->pid);
2186 return;
2187 }
2188
2189 if (!sched->show_callchain || sample->callchain == NULL)
2190 return;
2191
2192 if (thread__resolve_callchain(thread, cursor, evsel, sample,
2193 NULL, NULL, sched->max_stack + 2) != 0) {
2194 if (verbose > 0)
2195 pr_err("Failed to resolve callchain. Skipping\n");
2196
2197 return;
2198 }
2199
2200 callchain_cursor_commit(cursor);
2201
2202 while (true) {
2203 struct callchain_cursor_node *node;
2204 struct symbol *sym;
2205
2206 node = callchain_cursor_current(cursor);
2207 if (node == NULL)
2208 break;
2209
2210 sym = node->ms.sym;
2211 if (sym) {
2212 if (!strcmp(sym->name, "schedule") ||
2213 !strcmp(sym->name, "__schedule") ||
2214 !strcmp(sym->name, "preempt_schedule"))
2215 sym->ignore = 1;
2216 }
2217
2218 callchain_cursor_advance(cursor);
2219 }
2220 }
2221
init_idle_thread(struct thread * thread)2222 static int init_idle_thread(struct thread *thread)
2223 {
2224 struct idle_thread_runtime *itr;
2225
2226 thread__set_comm(thread, idle_comm, 0);
2227
2228 itr = zalloc(sizeof(*itr));
2229 if (itr == NULL)
2230 return -ENOMEM;
2231
2232 init_stats(&itr->tr.run_stats);
2233 callchain_init(&itr->callchain);
2234 callchain_cursor_reset(&itr->cursor);
2235 thread__set_priv(thread, itr);
2236
2237 return 0;
2238 }
2239
2240 /*
2241 * Track idle stats per cpu by maintaining a local thread
2242 * struct for the idle task on each cpu.
2243 */
init_idle_threads(int ncpu)2244 static int init_idle_threads(int ncpu)
2245 {
2246 int i, ret;
2247
2248 idle_threads = zalloc(ncpu * sizeof(struct thread *));
2249 if (!idle_threads)
2250 return -ENOMEM;
2251
2252 idle_max_cpu = ncpu;
2253
2254 /* allocate the actual thread struct if needed */
2255 for (i = 0; i < ncpu; ++i) {
2256 idle_threads[i] = thread__new(0, 0);
2257 if (idle_threads[i] == NULL)
2258 return -ENOMEM;
2259
2260 ret = init_idle_thread(idle_threads[i]);
2261 if (ret < 0)
2262 return ret;
2263 }
2264
2265 return 0;
2266 }
2267
free_idle_threads(void)2268 static void free_idle_threads(void)
2269 {
2270 int i;
2271
2272 if (idle_threads == NULL)
2273 return;
2274
2275 for (i = 0; i < idle_max_cpu; ++i) {
2276 if ((idle_threads[i]))
2277 thread__delete(idle_threads[i]);
2278 }
2279
2280 free(idle_threads);
2281 }
2282
get_idle_thread(int cpu)2283 static struct thread *get_idle_thread(int cpu)
2284 {
2285 /*
2286 * expand/allocate array of pointers to local thread
2287 * structs if needed
2288 */
2289 if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) {
2290 int i, j = __roundup_pow_of_two(cpu+1);
2291 void *p;
2292
2293 p = realloc(idle_threads, j * sizeof(struct thread *));
2294 if (!p)
2295 return NULL;
2296
2297 idle_threads = (struct thread **) p;
2298 for (i = idle_max_cpu; i < j; ++i)
2299 idle_threads[i] = NULL;
2300
2301 idle_max_cpu = j;
2302 }
2303
2304 /* allocate a new thread struct if needed */
2305 if (idle_threads[cpu] == NULL) {
2306 idle_threads[cpu] = thread__new(0, 0);
2307
2308 if (idle_threads[cpu]) {
2309 if (init_idle_thread(idle_threads[cpu]) < 0)
2310 return NULL;
2311 }
2312 }
2313
2314 return idle_threads[cpu];
2315 }
2316
save_idle_callchain(struct perf_sched * sched,struct idle_thread_runtime * itr,struct perf_sample * sample)2317 static void save_idle_callchain(struct perf_sched *sched,
2318 struct idle_thread_runtime *itr,
2319 struct perf_sample *sample)
2320 {
2321 if (!sched->show_callchain || sample->callchain == NULL)
2322 return;
2323
2324 callchain_cursor__copy(&itr->cursor, &callchain_cursor);
2325 }
2326
timehist_get_thread(struct perf_sched * sched,struct perf_sample * sample,struct machine * machine,struct evsel * evsel)2327 static struct thread *timehist_get_thread(struct perf_sched *sched,
2328 struct perf_sample *sample,
2329 struct machine *machine,
2330 struct evsel *evsel)
2331 {
2332 struct thread *thread;
2333
2334 if (is_idle_sample(sample, evsel)) {
2335 thread = get_idle_thread(sample->cpu);
2336 if (thread == NULL)
2337 pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2338
2339 } else {
2340 /* there were samples with tid 0 but non-zero pid */
2341 thread = machine__findnew_thread(machine, sample->pid,
2342 sample->tid ?: sample->pid);
2343 if (thread == NULL) {
2344 pr_debug("Failed to get thread for tid %d. skipping sample.\n",
2345 sample->tid);
2346 }
2347
2348 save_task_callchain(sched, sample, evsel, machine);
2349 if (sched->idle_hist) {
2350 struct thread *idle;
2351 struct idle_thread_runtime *itr;
2352
2353 idle = get_idle_thread(sample->cpu);
2354 if (idle == NULL) {
2355 pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2356 return NULL;
2357 }
2358
2359 itr = thread__priv(idle);
2360 if (itr == NULL)
2361 return NULL;
2362
2363 itr->last_thread = thread;
2364
2365 /* copy task callchain when entering to idle */
2366 if (evsel__intval(evsel, sample, "next_pid") == 0)
2367 save_idle_callchain(sched, itr, sample);
2368 }
2369 }
2370
2371 return thread;
2372 }
2373
timehist_skip_sample(struct perf_sched * sched,struct thread * thread,struct evsel * evsel,struct perf_sample * sample)2374 static bool timehist_skip_sample(struct perf_sched *sched,
2375 struct thread *thread,
2376 struct evsel *evsel,
2377 struct perf_sample *sample)
2378 {
2379 bool rc = false;
2380
2381 if (thread__is_filtered(thread)) {
2382 rc = true;
2383 sched->skipped_samples++;
2384 }
2385
2386 if (sched->idle_hist) {
2387 if (strcmp(evsel__name(evsel), "sched:sched_switch"))
2388 rc = true;
2389 else if (evsel__intval(evsel, sample, "prev_pid") != 0 &&
2390 evsel__intval(evsel, sample, "next_pid") != 0)
2391 rc = true;
2392 }
2393
2394 return rc;
2395 }
2396
timehist_print_wakeup_event(struct perf_sched * sched,struct evsel * evsel,struct perf_sample * sample,struct machine * machine,struct thread * awakened)2397 static void timehist_print_wakeup_event(struct perf_sched *sched,
2398 struct evsel *evsel,
2399 struct perf_sample *sample,
2400 struct machine *machine,
2401 struct thread *awakened)
2402 {
2403 struct thread *thread;
2404 char tstr[64];
2405
2406 thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2407 if (thread == NULL)
2408 return;
2409
2410 /* show wakeup unless both awakee and awaker are filtered */
2411 if (timehist_skip_sample(sched, thread, evsel, sample) &&
2412 timehist_skip_sample(sched, awakened, evsel, sample)) {
2413 return;
2414 }
2415
2416 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2417 printf("%15s [%04d] ", tstr, sample->cpu);
2418 if (sched->show_cpu_visual)
2419 printf(" %*s ", sched->max_cpu.cpu + 1, "");
2420
2421 printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2422
2423 /* dt spacer */
2424 printf(" %9s %9s %9s ", "", "", "");
2425
2426 printf("awakened: %s", timehist_get_commstr(awakened));
2427
2428 printf("\n");
2429 }
2430
timehist_sched_wakeup_ignore(struct perf_tool * tool __maybe_unused,union perf_event * event __maybe_unused,struct evsel * evsel __maybe_unused,struct perf_sample * sample __maybe_unused,struct machine * machine __maybe_unused)2431 static int timehist_sched_wakeup_ignore(struct perf_tool *tool __maybe_unused,
2432 union perf_event *event __maybe_unused,
2433 struct evsel *evsel __maybe_unused,
2434 struct perf_sample *sample __maybe_unused,
2435 struct machine *machine __maybe_unused)
2436 {
2437 return 0;
2438 }
2439
timehist_sched_wakeup_event(struct perf_tool * tool,union perf_event * event __maybe_unused,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)2440 static int timehist_sched_wakeup_event(struct perf_tool *tool,
2441 union perf_event *event __maybe_unused,
2442 struct evsel *evsel,
2443 struct perf_sample *sample,
2444 struct machine *machine)
2445 {
2446 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2447 struct thread *thread;
2448 struct thread_runtime *tr = NULL;
2449 /* want pid of awakened task not pid in sample */
2450 const u32 pid = evsel__intval(evsel, sample, "pid");
2451
2452 thread = machine__findnew_thread(machine, 0, pid);
2453 if (thread == NULL)
2454 return -1;
2455
2456 tr = thread__get_runtime(thread);
2457 if (tr == NULL)
2458 return -1;
2459
2460 if (tr->ready_to_run == 0)
2461 tr->ready_to_run = sample->time;
2462
2463 /* show wakeups if requested */
2464 if (sched->show_wakeups &&
2465 !perf_time__skip_sample(&sched->ptime, sample->time))
2466 timehist_print_wakeup_event(sched, evsel, sample, machine, thread);
2467
2468 return 0;
2469 }
2470
timehist_print_migration_event(struct perf_sched * sched,struct evsel * evsel,struct perf_sample * sample,struct machine * machine,struct thread * migrated)2471 static void timehist_print_migration_event(struct perf_sched *sched,
2472 struct evsel *evsel,
2473 struct perf_sample *sample,
2474 struct machine *machine,
2475 struct thread *migrated)
2476 {
2477 struct thread *thread;
2478 char tstr[64];
2479 u32 max_cpus;
2480 u32 ocpu, dcpu;
2481
2482 if (sched->summary_only)
2483 return;
2484
2485 max_cpus = sched->max_cpu.cpu + 1;
2486 ocpu = evsel__intval(evsel, sample, "orig_cpu");
2487 dcpu = evsel__intval(evsel, sample, "dest_cpu");
2488
2489 thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2490 if (thread == NULL)
2491 return;
2492
2493 if (timehist_skip_sample(sched, thread, evsel, sample) &&
2494 timehist_skip_sample(sched, migrated, evsel, sample)) {
2495 return;
2496 }
2497
2498 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2499 printf("%15s [%04d] ", tstr, sample->cpu);
2500
2501 if (sched->show_cpu_visual) {
2502 u32 i;
2503 char c;
2504
2505 printf(" ");
2506 for (i = 0; i < max_cpus; ++i) {
2507 c = (i == sample->cpu) ? 'm' : ' ';
2508 printf("%c", c);
2509 }
2510 printf(" ");
2511 }
2512
2513 printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2514
2515 /* dt spacer */
2516 printf(" %9s %9s %9s ", "", "", "");
2517
2518 printf("migrated: %s", timehist_get_commstr(migrated));
2519 printf(" cpu %d => %d", ocpu, dcpu);
2520
2521 printf("\n");
2522 }
2523
timehist_migrate_task_event(struct perf_tool * tool,union perf_event * event __maybe_unused,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)2524 static int timehist_migrate_task_event(struct perf_tool *tool,
2525 union perf_event *event __maybe_unused,
2526 struct evsel *evsel,
2527 struct perf_sample *sample,
2528 struct machine *machine)
2529 {
2530 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2531 struct thread *thread;
2532 struct thread_runtime *tr = NULL;
2533 /* want pid of migrated task not pid in sample */
2534 const u32 pid = evsel__intval(evsel, sample, "pid");
2535
2536 thread = machine__findnew_thread(machine, 0, pid);
2537 if (thread == NULL)
2538 return -1;
2539
2540 tr = thread__get_runtime(thread);
2541 if (tr == NULL)
2542 return -1;
2543
2544 tr->migrations++;
2545
2546 /* show migrations if requested */
2547 timehist_print_migration_event(sched, evsel, sample, machine, thread);
2548
2549 return 0;
2550 }
2551
timehist_sched_change_event(struct perf_tool * tool,union perf_event * event,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)2552 static int timehist_sched_change_event(struct perf_tool *tool,
2553 union perf_event *event,
2554 struct evsel *evsel,
2555 struct perf_sample *sample,
2556 struct machine *machine)
2557 {
2558 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2559 struct perf_time_interval *ptime = &sched->ptime;
2560 struct addr_location al;
2561 struct thread *thread;
2562 struct thread_runtime *tr = NULL;
2563 u64 tprev, t = sample->time;
2564 int rc = 0;
2565 int state = evsel__intval(evsel, sample, "prev_state");
2566
2567 if (machine__resolve(machine, &al, sample) < 0) {
2568 pr_err("problem processing %d event. skipping it\n",
2569 event->header.type);
2570 rc = -1;
2571 goto out;
2572 }
2573
2574 thread = timehist_get_thread(sched, sample, machine, evsel);
2575 if (thread == NULL) {
2576 rc = -1;
2577 goto out;
2578 }
2579
2580 if (timehist_skip_sample(sched, thread, evsel, sample))
2581 goto out;
2582
2583 tr = thread__get_runtime(thread);
2584 if (tr == NULL) {
2585 rc = -1;
2586 goto out;
2587 }
2588
2589 tprev = evsel__get_time(evsel, sample->cpu);
2590
2591 /*
2592 * If start time given:
2593 * - sample time is under window user cares about - skip sample
2594 * - tprev is under window user cares about - reset to start of window
2595 */
2596 if (ptime->start && ptime->start > t)
2597 goto out;
2598
2599 if (tprev && ptime->start > tprev)
2600 tprev = ptime->start;
2601
2602 /*
2603 * If end time given:
2604 * - previous sched event is out of window - we are done
2605 * - sample time is beyond window user cares about - reset it
2606 * to close out stats for time window interest
2607 */
2608 if (ptime->end) {
2609 if (tprev > ptime->end)
2610 goto out;
2611
2612 if (t > ptime->end)
2613 t = ptime->end;
2614 }
2615
2616 if (!sched->idle_hist || thread->tid == 0) {
2617 if (!cpu_list || test_bit(sample->cpu, cpu_bitmap))
2618 timehist_update_runtime_stats(tr, t, tprev);
2619
2620 if (sched->idle_hist) {
2621 struct idle_thread_runtime *itr = (void *)tr;
2622 struct thread_runtime *last_tr;
2623
2624 BUG_ON(thread->tid != 0);
2625
2626 if (itr->last_thread == NULL)
2627 goto out;
2628
2629 /* add current idle time as last thread's runtime */
2630 last_tr = thread__get_runtime(itr->last_thread);
2631 if (last_tr == NULL)
2632 goto out;
2633
2634 timehist_update_runtime_stats(last_tr, t, tprev);
2635 /*
2636 * remove delta time of last thread as it's not updated
2637 * and otherwise it will show an invalid value next
2638 * time. we only care total run time and run stat.
2639 */
2640 last_tr->dt_run = 0;
2641 last_tr->dt_delay = 0;
2642 last_tr->dt_sleep = 0;
2643 last_tr->dt_iowait = 0;
2644 last_tr->dt_preempt = 0;
2645
2646 if (itr->cursor.nr)
2647 callchain_append(&itr->callchain, &itr->cursor, t - tprev);
2648
2649 itr->last_thread = NULL;
2650 }
2651 }
2652
2653 if (!sched->summary_only)
2654 timehist_print_sample(sched, evsel, sample, &al, thread, t, state);
2655
2656 out:
2657 if (sched->hist_time.start == 0 && t >= ptime->start)
2658 sched->hist_time.start = t;
2659 if (ptime->end == 0 || t <= ptime->end)
2660 sched->hist_time.end = t;
2661
2662 if (tr) {
2663 /* time of this sched_switch event becomes last time task seen */
2664 tr->last_time = sample->time;
2665
2666 /* last state is used to determine where to account wait time */
2667 tr->last_state = state;
2668
2669 /* sched out event for task so reset ready to run time */
2670 tr->ready_to_run = 0;
2671 }
2672
2673 evsel__save_time(evsel, sample->time, sample->cpu);
2674
2675 return rc;
2676 }
2677
timehist_sched_switch_event(struct perf_tool * tool,union perf_event * event,struct evsel * evsel,struct perf_sample * sample,struct machine * machine __maybe_unused)2678 static int timehist_sched_switch_event(struct perf_tool *tool,
2679 union perf_event *event,
2680 struct evsel *evsel,
2681 struct perf_sample *sample,
2682 struct machine *machine __maybe_unused)
2683 {
2684 return timehist_sched_change_event(tool, event, evsel, sample, machine);
2685 }
2686
process_lost(struct perf_tool * tool __maybe_unused,union perf_event * event,struct perf_sample * sample,struct machine * machine __maybe_unused)2687 static int process_lost(struct perf_tool *tool __maybe_unused,
2688 union perf_event *event,
2689 struct perf_sample *sample,
2690 struct machine *machine __maybe_unused)
2691 {
2692 char tstr[64];
2693
2694 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2695 printf("%15s ", tstr);
2696 printf("lost %" PRI_lu64 " events on cpu %d\n", event->lost.lost, sample->cpu);
2697
2698 return 0;
2699 }
2700
2701
print_thread_runtime(struct thread * t,struct thread_runtime * r)2702 static void print_thread_runtime(struct thread *t,
2703 struct thread_runtime *r)
2704 {
2705 double mean = avg_stats(&r->run_stats);
2706 float stddev;
2707
2708 printf("%*s %5d %9" PRIu64 " ",
2709 comm_width, timehist_get_commstr(t), t->ppid,
2710 (u64) r->run_stats.n);
2711
2712 print_sched_time(r->total_run_time, 8);
2713 stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean);
2714 print_sched_time(r->run_stats.min, 6);
2715 printf(" ");
2716 print_sched_time((u64) mean, 6);
2717 printf(" ");
2718 print_sched_time(r->run_stats.max, 6);
2719 printf(" ");
2720 printf("%5.2f", stddev);
2721 printf(" %5" PRIu64, r->migrations);
2722 printf("\n");
2723 }
2724
print_thread_waittime(struct thread * t,struct thread_runtime * r)2725 static void print_thread_waittime(struct thread *t,
2726 struct thread_runtime *r)
2727 {
2728 printf("%*s %5d %9" PRIu64 " ",
2729 comm_width, timehist_get_commstr(t), t->ppid,
2730 (u64) r->run_stats.n);
2731
2732 print_sched_time(r->total_run_time, 8);
2733 print_sched_time(r->total_sleep_time, 6);
2734 printf(" ");
2735 print_sched_time(r->total_iowait_time, 6);
2736 printf(" ");
2737 print_sched_time(r->total_preempt_time, 6);
2738 printf(" ");
2739 print_sched_time(r->total_delay_time, 6);
2740 printf("\n");
2741 }
2742
2743 struct total_run_stats {
2744 struct perf_sched *sched;
2745 u64 sched_count;
2746 u64 task_count;
2747 u64 total_run_time;
2748 };
2749
__show_thread_runtime(struct thread * t,void * priv)2750 static int __show_thread_runtime(struct thread *t, void *priv)
2751 {
2752 struct total_run_stats *stats = priv;
2753 struct thread_runtime *r;
2754
2755 if (thread__is_filtered(t))
2756 return 0;
2757
2758 r = thread__priv(t);
2759 if (r && r->run_stats.n) {
2760 stats->task_count++;
2761 stats->sched_count += r->run_stats.n;
2762 stats->total_run_time += r->total_run_time;
2763
2764 if (stats->sched->show_state)
2765 print_thread_waittime(t, r);
2766 else
2767 print_thread_runtime(t, r);
2768 }
2769
2770 return 0;
2771 }
2772
show_thread_runtime(struct thread * t,void * priv)2773 static int show_thread_runtime(struct thread *t, void *priv)
2774 {
2775 if (t->dead)
2776 return 0;
2777
2778 return __show_thread_runtime(t, priv);
2779 }
2780
show_deadthread_runtime(struct thread * t,void * priv)2781 static int show_deadthread_runtime(struct thread *t, void *priv)
2782 {
2783 if (!t->dead)
2784 return 0;
2785
2786 return __show_thread_runtime(t, priv);
2787 }
2788
callchain__fprintf_folded(FILE * fp,struct callchain_node * node)2789 static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node)
2790 {
2791 const char *sep = " <- ";
2792 struct callchain_list *chain;
2793 size_t ret = 0;
2794 char bf[1024];
2795 bool first;
2796
2797 if (node == NULL)
2798 return 0;
2799
2800 ret = callchain__fprintf_folded(fp, node->parent);
2801 first = (ret == 0);
2802
2803 list_for_each_entry(chain, &node->val, list) {
2804 if (chain->ip >= PERF_CONTEXT_MAX)
2805 continue;
2806 if (chain->ms.sym && chain->ms.sym->ignore)
2807 continue;
2808 ret += fprintf(fp, "%s%s", first ? "" : sep,
2809 callchain_list__sym_name(chain, bf, sizeof(bf),
2810 false));
2811 first = false;
2812 }
2813
2814 return ret;
2815 }
2816
timehist_print_idlehist_callchain(struct rb_root_cached * root)2817 static size_t timehist_print_idlehist_callchain(struct rb_root_cached *root)
2818 {
2819 size_t ret = 0;
2820 FILE *fp = stdout;
2821 struct callchain_node *chain;
2822 struct rb_node *rb_node = rb_first_cached(root);
2823
2824 printf(" %16s %8s %s\n", "Idle time (msec)", "Count", "Callchains");
2825 printf(" %.16s %.8s %.50s\n", graph_dotted_line, graph_dotted_line,
2826 graph_dotted_line);
2827
2828 while (rb_node) {
2829 chain = rb_entry(rb_node, struct callchain_node, rb_node);
2830 rb_node = rb_next(rb_node);
2831
2832 ret += fprintf(fp, " ");
2833 print_sched_time(chain->hit, 12);
2834 ret += 16; /* print_sched_time returns 2nd arg + 4 */
2835 ret += fprintf(fp, " %8d ", chain->count);
2836 ret += callchain__fprintf_folded(fp, chain);
2837 ret += fprintf(fp, "\n");
2838 }
2839
2840 return ret;
2841 }
2842
timehist_print_summary(struct perf_sched * sched,struct perf_session * session)2843 static void timehist_print_summary(struct perf_sched *sched,
2844 struct perf_session *session)
2845 {
2846 struct machine *m = &session->machines.host;
2847 struct total_run_stats totals;
2848 u64 task_count;
2849 struct thread *t;
2850 struct thread_runtime *r;
2851 int i;
2852 u64 hist_time = sched->hist_time.end - sched->hist_time.start;
2853
2854 memset(&totals, 0, sizeof(totals));
2855 totals.sched = sched;
2856
2857 if (sched->idle_hist) {
2858 printf("\nIdle-time summary\n");
2859 printf("%*s parent sched-out ", comm_width, "comm");
2860 printf(" idle-time min-idle avg-idle max-idle stddev migrations\n");
2861 } else if (sched->show_state) {
2862 printf("\nWait-time summary\n");
2863 printf("%*s parent sched-in ", comm_width, "comm");
2864 printf(" run-time sleep iowait preempt delay\n");
2865 } else {
2866 printf("\nRuntime summary\n");
2867 printf("%*s parent sched-in ", comm_width, "comm");
2868 printf(" run-time min-run avg-run max-run stddev migrations\n");
2869 }
2870 printf("%*s (count) ", comm_width, "");
2871 printf(" (msec) (msec) (msec) (msec) %s\n",
2872 sched->show_state ? "(msec)" : "%");
2873 printf("%.117s\n", graph_dotted_line);
2874
2875 machine__for_each_thread(m, show_thread_runtime, &totals);
2876 task_count = totals.task_count;
2877 if (!task_count)
2878 printf("<no still running tasks>\n");
2879
2880 printf("\nTerminated tasks:\n");
2881 machine__for_each_thread(m, show_deadthread_runtime, &totals);
2882 if (task_count == totals.task_count)
2883 printf("<no terminated tasks>\n");
2884
2885 /* CPU idle stats not tracked when samples were skipped */
2886 if (sched->skipped_samples && !sched->idle_hist)
2887 return;
2888
2889 printf("\nIdle stats:\n");
2890 for (i = 0; i < idle_max_cpu; ++i) {
2891 if (cpu_list && !test_bit(i, cpu_bitmap))
2892 continue;
2893
2894 t = idle_threads[i];
2895 if (!t)
2896 continue;
2897
2898 r = thread__priv(t);
2899 if (r && r->run_stats.n) {
2900 totals.sched_count += r->run_stats.n;
2901 printf(" CPU %2d idle for ", i);
2902 print_sched_time(r->total_run_time, 6);
2903 printf(" msec (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time);
2904 } else
2905 printf(" CPU %2d idle entire time window\n", i);
2906 }
2907
2908 if (sched->idle_hist && sched->show_callchain) {
2909 callchain_param.mode = CHAIN_FOLDED;
2910 callchain_param.value = CCVAL_PERIOD;
2911
2912 callchain_register_param(&callchain_param);
2913
2914 printf("\nIdle stats by callchain:\n");
2915 for (i = 0; i < idle_max_cpu; ++i) {
2916 struct idle_thread_runtime *itr;
2917
2918 t = idle_threads[i];
2919 if (!t)
2920 continue;
2921
2922 itr = thread__priv(t);
2923 if (itr == NULL)
2924 continue;
2925
2926 callchain_param.sort(&itr->sorted_root.rb_root, &itr->callchain,
2927 0, &callchain_param);
2928
2929 printf(" CPU %2d:", i);
2930 print_sched_time(itr->tr.total_run_time, 6);
2931 printf(" msec\n");
2932 timehist_print_idlehist_callchain(&itr->sorted_root);
2933 printf("\n");
2934 }
2935 }
2936
2937 printf("\n"
2938 " Total number of unique tasks: %" PRIu64 "\n"
2939 "Total number of context switches: %" PRIu64 "\n",
2940 totals.task_count, totals.sched_count);
2941
2942 printf(" Total run time (msec): ");
2943 print_sched_time(totals.total_run_time, 2);
2944 printf("\n");
2945
2946 printf(" Total scheduling time (msec): ");
2947 print_sched_time(hist_time, 2);
2948 printf(" (x %d)\n", sched->max_cpu.cpu);
2949 }
2950
2951 typedef int (*sched_handler)(struct perf_tool *tool,
2952 union perf_event *event,
2953 struct evsel *evsel,
2954 struct perf_sample *sample,
2955 struct machine *machine);
2956
perf_timehist__process_sample(struct perf_tool * tool,union perf_event * event,struct perf_sample * sample,struct evsel * evsel,struct machine * machine)2957 static int perf_timehist__process_sample(struct perf_tool *tool,
2958 union perf_event *event,
2959 struct perf_sample *sample,
2960 struct evsel *evsel,
2961 struct machine *machine)
2962 {
2963 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2964 int err = 0;
2965 struct perf_cpu this_cpu = {
2966 .cpu = sample->cpu,
2967 };
2968
2969 if (this_cpu.cpu > sched->max_cpu.cpu)
2970 sched->max_cpu = this_cpu;
2971
2972 if (evsel->handler != NULL) {
2973 sched_handler f = evsel->handler;
2974
2975 err = f(tool, event, evsel, sample, machine);
2976 }
2977
2978 return err;
2979 }
2980
timehist_check_attr(struct perf_sched * sched,struct evlist * evlist)2981 static int timehist_check_attr(struct perf_sched *sched,
2982 struct evlist *evlist)
2983 {
2984 struct evsel *evsel;
2985 struct evsel_runtime *er;
2986
2987 list_for_each_entry(evsel, &evlist->core.entries, core.node) {
2988 er = evsel__get_runtime(evsel);
2989 if (er == NULL) {
2990 pr_err("Failed to allocate memory for evsel runtime data\n");
2991 return -1;
2992 }
2993
2994 if (sched->show_callchain && !evsel__has_callchain(evsel)) {
2995 pr_info("Samples do not have callchains.\n");
2996 sched->show_callchain = 0;
2997 symbol_conf.use_callchain = 0;
2998 }
2999 }
3000
3001 return 0;
3002 }
3003
perf_sched__timehist(struct perf_sched * sched)3004 static int perf_sched__timehist(struct perf_sched *sched)
3005 {
3006 struct evsel_str_handler handlers[] = {
3007 { "sched:sched_switch", timehist_sched_switch_event, },
3008 { "sched:sched_wakeup", timehist_sched_wakeup_event, },
3009 { "sched:sched_waking", timehist_sched_wakeup_event, },
3010 { "sched:sched_wakeup_new", timehist_sched_wakeup_event, },
3011 };
3012 const struct evsel_str_handler migrate_handlers[] = {
3013 { "sched:sched_migrate_task", timehist_migrate_task_event, },
3014 };
3015 struct perf_data data = {
3016 .path = input_name,
3017 .mode = PERF_DATA_MODE_READ,
3018 .force = sched->force,
3019 };
3020
3021 struct perf_session *session;
3022 struct evlist *evlist;
3023 int err = -1;
3024
3025 /*
3026 * event handlers for timehist option
3027 */
3028 sched->tool.sample = perf_timehist__process_sample;
3029 sched->tool.mmap = perf_event__process_mmap;
3030 sched->tool.comm = perf_event__process_comm;
3031 sched->tool.exit = perf_event__process_exit;
3032 sched->tool.fork = perf_event__process_fork;
3033 sched->tool.lost = process_lost;
3034 sched->tool.attr = perf_event__process_attr;
3035 sched->tool.tracing_data = perf_event__process_tracing_data;
3036 sched->tool.build_id = perf_event__process_build_id;
3037
3038 sched->tool.ordered_events = true;
3039 sched->tool.ordering_requires_timestamps = true;
3040
3041 symbol_conf.use_callchain = sched->show_callchain;
3042
3043 session = perf_session__new(&data, &sched->tool);
3044 if (IS_ERR(session))
3045 return PTR_ERR(session);
3046
3047 if (cpu_list) {
3048 err = perf_session__cpu_bitmap(session, cpu_list, cpu_bitmap);
3049 if (err < 0)
3050 goto out;
3051 }
3052
3053 evlist = session->evlist;
3054
3055 symbol__init(&session->header.env);
3056
3057 if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) {
3058 pr_err("Invalid time string\n");
3059 return -EINVAL;
3060 }
3061
3062 if (timehist_check_attr(sched, evlist) != 0)
3063 goto out;
3064
3065 setup_pager();
3066
3067 /* prefer sched_waking if it is captured */
3068 if (evlist__find_tracepoint_by_name(session->evlist, "sched:sched_waking"))
3069 handlers[1].handler = timehist_sched_wakeup_ignore;
3070
3071 /* setup per-evsel handlers */
3072 if (perf_session__set_tracepoints_handlers(session, handlers))
3073 goto out;
3074
3075 /* sched_switch event at a minimum needs to exist */
3076 if (!evlist__find_tracepoint_by_name(session->evlist, "sched:sched_switch")) {
3077 pr_err("No sched_switch events found. Have you run 'perf sched record'?\n");
3078 goto out;
3079 }
3080
3081 if (sched->show_migrations &&
3082 perf_session__set_tracepoints_handlers(session, migrate_handlers))
3083 goto out;
3084
3085 /* pre-allocate struct for per-CPU idle stats */
3086 sched->max_cpu.cpu = session->header.env.nr_cpus_online;
3087 if (sched->max_cpu.cpu == 0)
3088 sched->max_cpu.cpu = 4;
3089 if (init_idle_threads(sched->max_cpu.cpu))
3090 goto out;
3091
3092 /* summary_only implies summary option, but don't overwrite summary if set */
3093 if (sched->summary_only)
3094 sched->summary = sched->summary_only;
3095
3096 if (!sched->summary_only)
3097 timehist_header(sched);
3098
3099 err = perf_session__process_events(session);
3100 if (err) {
3101 pr_err("Failed to process events, error %d", err);
3102 goto out;
3103 }
3104
3105 sched->nr_events = evlist->stats.nr_events[0];
3106 sched->nr_lost_events = evlist->stats.total_lost;
3107 sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST];
3108
3109 if (sched->summary)
3110 timehist_print_summary(sched, session);
3111
3112 out:
3113 free_idle_threads();
3114 perf_session__delete(session);
3115
3116 return err;
3117 }
3118
3119
print_bad_events(struct perf_sched * sched)3120 static void print_bad_events(struct perf_sched *sched)
3121 {
3122 if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
3123 printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
3124 (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
3125 sched->nr_unordered_timestamps, sched->nr_timestamps);
3126 }
3127 if (sched->nr_lost_events && sched->nr_events) {
3128 printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
3129 (double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
3130 sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
3131 }
3132 if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
3133 printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)",
3134 (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
3135 sched->nr_context_switch_bugs, sched->nr_timestamps);
3136 if (sched->nr_lost_events)
3137 printf(" (due to lost events?)");
3138 printf("\n");
3139 }
3140 }
3141
__merge_work_atoms(struct rb_root_cached * root,struct work_atoms * data)3142 static void __merge_work_atoms(struct rb_root_cached *root, struct work_atoms *data)
3143 {
3144 struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
3145 struct work_atoms *this;
3146 const char *comm = thread__comm_str(data->thread), *this_comm;
3147 bool leftmost = true;
3148
3149 while (*new) {
3150 int cmp;
3151
3152 this = container_of(*new, struct work_atoms, node);
3153 parent = *new;
3154
3155 this_comm = thread__comm_str(this->thread);
3156 cmp = strcmp(comm, this_comm);
3157 if (cmp > 0) {
3158 new = &((*new)->rb_left);
3159 } else if (cmp < 0) {
3160 new = &((*new)->rb_right);
3161 leftmost = false;
3162 } else {
3163 this->num_merged++;
3164 this->total_runtime += data->total_runtime;
3165 this->nb_atoms += data->nb_atoms;
3166 this->total_lat += data->total_lat;
3167 list_splice(&data->work_list, &this->work_list);
3168 if (this->max_lat < data->max_lat) {
3169 this->max_lat = data->max_lat;
3170 this->max_lat_start = data->max_lat_start;
3171 this->max_lat_end = data->max_lat_end;
3172 }
3173 zfree(&data);
3174 return;
3175 }
3176 }
3177
3178 data->num_merged++;
3179 rb_link_node(&data->node, parent, new);
3180 rb_insert_color_cached(&data->node, root, leftmost);
3181 }
3182
perf_sched__merge_lat(struct perf_sched * sched)3183 static void perf_sched__merge_lat(struct perf_sched *sched)
3184 {
3185 struct work_atoms *data;
3186 struct rb_node *node;
3187
3188 if (sched->skip_merge)
3189 return;
3190
3191 while ((node = rb_first_cached(&sched->atom_root))) {
3192 rb_erase_cached(node, &sched->atom_root);
3193 data = rb_entry(node, struct work_atoms, node);
3194 __merge_work_atoms(&sched->merged_atom_root, data);
3195 }
3196 }
3197
perf_sched__lat(struct perf_sched * sched)3198 static int perf_sched__lat(struct perf_sched *sched)
3199 {
3200 struct rb_node *next;
3201
3202 setup_pager();
3203
3204 if (perf_sched__read_events(sched))
3205 return -1;
3206
3207 perf_sched__merge_lat(sched);
3208 perf_sched__sort_lat(sched);
3209
3210 printf("\n -------------------------------------------------------------------------------------------------------------------------------------------\n");
3211 printf(" Task | Runtime ms | Switches | Avg delay ms | Max delay ms | Max delay start | Max delay end |\n");
3212 printf(" -------------------------------------------------------------------------------------------------------------------------------------------\n");
3213
3214 next = rb_first_cached(&sched->sorted_atom_root);
3215
3216 while (next) {
3217 struct work_atoms *work_list;
3218
3219 work_list = rb_entry(next, struct work_atoms, node);
3220 output_lat_thread(sched, work_list);
3221 next = rb_next(next);
3222 thread__zput(work_list->thread);
3223 }
3224
3225 printf(" -----------------------------------------------------------------------------------------------------------------\n");
3226 printf(" TOTAL: |%11.3f ms |%9" PRIu64 " |\n",
3227 (double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count);
3228
3229 printf(" ---------------------------------------------------\n");
3230
3231 print_bad_events(sched);
3232 printf("\n");
3233
3234 return 0;
3235 }
3236
setup_map_cpus(struct perf_sched * sched)3237 static int setup_map_cpus(struct perf_sched *sched)
3238 {
3239 struct perf_cpu_map *map;
3240
3241 sched->max_cpu.cpu = sysconf(_SC_NPROCESSORS_CONF);
3242
3243 if (sched->map.comp) {
3244 sched->map.comp_cpus = zalloc(sched->max_cpu.cpu * sizeof(int));
3245 if (!sched->map.comp_cpus)
3246 return -1;
3247 }
3248
3249 if (!sched->map.cpus_str)
3250 return 0;
3251
3252 map = perf_cpu_map__new(sched->map.cpus_str);
3253 if (!map) {
3254 pr_err("failed to get cpus map from %s\n", sched->map.cpus_str);
3255 return -1;
3256 }
3257
3258 sched->map.cpus = map;
3259 return 0;
3260 }
3261
setup_color_pids(struct perf_sched * sched)3262 static int setup_color_pids(struct perf_sched *sched)
3263 {
3264 struct perf_thread_map *map;
3265
3266 if (!sched->map.color_pids_str)
3267 return 0;
3268
3269 map = thread_map__new_by_tid_str(sched->map.color_pids_str);
3270 if (!map) {
3271 pr_err("failed to get thread map from %s\n", sched->map.color_pids_str);
3272 return -1;
3273 }
3274
3275 sched->map.color_pids = map;
3276 return 0;
3277 }
3278
setup_color_cpus(struct perf_sched * sched)3279 static int setup_color_cpus(struct perf_sched *sched)
3280 {
3281 struct perf_cpu_map *map;
3282
3283 if (!sched->map.color_cpus_str)
3284 return 0;
3285
3286 map = perf_cpu_map__new(sched->map.color_cpus_str);
3287 if (!map) {
3288 pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str);
3289 return -1;
3290 }
3291
3292 sched->map.color_cpus = map;
3293 return 0;
3294 }
3295
perf_sched__map(struct perf_sched * sched)3296 static int perf_sched__map(struct perf_sched *sched)
3297 {
3298 if (setup_map_cpus(sched))
3299 return -1;
3300
3301 if (setup_color_pids(sched))
3302 return -1;
3303
3304 if (setup_color_cpus(sched))
3305 return -1;
3306
3307 setup_pager();
3308 if (perf_sched__read_events(sched))
3309 return -1;
3310 print_bad_events(sched);
3311 return 0;
3312 }
3313
perf_sched__replay(struct perf_sched * sched)3314 static int perf_sched__replay(struct perf_sched *sched)
3315 {
3316 unsigned long i;
3317
3318 calibrate_run_measurement_overhead(sched);
3319 calibrate_sleep_measurement_overhead(sched);
3320
3321 test_calibrations(sched);
3322
3323 if (perf_sched__read_events(sched))
3324 return -1;
3325
3326 printf("nr_run_events: %ld\n", sched->nr_run_events);
3327 printf("nr_sleep_events: %ld\n", sched->nr_sleep_events);
3328 printf("nr_wakeup_events: %ld\n", sched->nr_wakeup_events);
3329
3330 if (sched->targetless_wakeups)
3331 printf("target-less wakeups: %ld\n", sched->targetless_wakeups);
3332 if (sched->multitarget_wakeups)
3333 printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
3334 if (sched->nr_run_events_optimized)
3335 printf("run atoms optimized: %ld\n",
3336 sched->nr_run_events_optimized);
3337
3338 print_task_traces(sched);
3339 add_cross_task_wakeups(sched);
3340
3341 sched->thread_funcs_exit = false;
3342 create_tasks(sched);
3343 printf("------------------------------------------------------------\n");
3344 for (i = 0; i < sched->replay_repeat; i++)
3345 run_one_test(sched);
3346
3347 sched->thread_funcs_exit = true;
3348 destroy_tasks(sched);
3349 return 0;
3350 }
3351
setup_sorting(struct perf_sched * sched,const struct option * options,const char * const usage_msg[])3352 static void setup_sorting(struct perf_sched *sched, const struct option *options,
3353 const char * const usage_msg[])
3354 {
3355 char *tmp, *tok, *str = strdup(sched->sort_order);
3356
3357 for (tok = strtok_r(str, ", ", &tmp);
3358 tok; tok = strtok_r(NULL, ", ", &tmp)) {
3359 if (sort_dimension__add(tok, &sched->sort_list) < 0) {
3360 usage_with_options_msg(usage_msg, options,
3361 "Unknown --sort key: `%s'", tok);
3362 }
3363 }
3364
3365 free(str);
3366
3367 sort_dimension__add("pid", &sched->cmp_pid);
3368 }
3369
schedstat_events_exposed(void)3370 static bool schedstat_events_exposed(void)
3371 {
3372 /*
3373 * Select "sched:sched_stat_wait" event to check
3374 * whether schedstat tracepoints are exposed.
3375 */
3376 return IS_ERR(trace_event__tp_format("sched", "sched_stat_wait")) ?
3377 false : true;
3378 }
3379
__cmd_record(int argc,const char ** argv)3380 static int __cmd_record(int argc, const char **argv)
3381 {
3382 unsigned int rec_argc, i, j;
3383 char **rec_argv;
3384 const char **rec_argv_copy;
3385 const char * const record_args[] = {
3386 "record",
3387 "-a",
3388 "-R",
3389 "-m", "1024",
3390 "-c", "1",
3391 "-e", "sched:sched_switch",
3392 "-e", "sched:sched_stat_runtime",
3393 "-e", "sched:sched_process_fork",
3394 "-e", "sched:sched_wakeup_new",
3395 "-e", "sched:sched_migrate_task",
3396 };
3397
3398 /*
3399 * The tracepoints trace_sched_stat_{wait, sleep, iowait}
3400 * are not exposed to user if CONFIG_SCHEDSTATS is not set,
3401 * to prevent "perf sched record" execution failure, determine
3402 * whether to record schedstat events according to actual situation.
3403 */
3404 const char * const schedstat_args[] = {
3405 "-e", "sched:sched_stat_wait",
3406 "-e", "sched:sched_stat_sleep",
3407 "-e", "sched:sched_stat_iowait",
3408 };
3409 unsigned int schedstat_argc = schedstat_events_exposed() ?
3410 ARRAY_SIZE(schedstat_args) : 0;
3411
3412 struct tep_event *waking_event;
3413 int ret;
3414
3415 /*
3416 * +2 for either "-e", "sched:sched_wakeup" or
3417 * "-e", "sched:sched_waking"
3418 */
3419 rec_argc = ARRAY_SIZE(record_args) + 2 + schedstat_argc + argc - 1;
3420 rec_argv = calloc(rec_argc + 1, sizeof(char *));
3421 if (rec_argv == NULL)
3422 return -ENOMEM;
3423 rec_argv_copy = calloc(rec_argc + 1, sizeof(char *));
3424 if (rec_argv_copy == NULL) {
3425 free(rec_argv);
3426 return -ENOMEM;
3427 }
3428
3429 for (i = 0; i < ARRAY_SIZE(record_args); i++)
3430 rec_argv[i] = strdup(record_args[i]);
3431
3432 rec_argv[i++] = strdup("-e");
3433 waking_event = trace_event__tp_format("sched", "sched_waking");
3434 if (!IS_ERR(waking_event))
3435 rec_argv[i++] = strdup("sched:sched_waking");
3436 else
3437 rec_argv[i++] = strdup("sched:sched_wakeup");
3438
3439 for (j = 0; j < schedstat_argc; j++)
3440 rec_argv[i++] = strdup(schedstat_args[j]);
3441
3442 for (j = 1; j < (unsigned int)argc; j++, i++)
3443 rec_argv[i] = strdup(argv[j]);
3444
3445 BUG_ON(i != rec_argc);
3446
3447 memcpy(rec_argv_copy, rec_argv, sizeof(char *) * rec_argc);
3448 ret = cmd_record(rec_argc, rec_argv_copy);
3449
3450 for (i = 0; i < rec_argc; i++)
3451 free(rec_argv[i]);
3452 free(rec_argv);
3453 free(rec_argv_copy);
3454
3455 return ret;
3456 }
3457
cmd_sched(int argc,const char ** argv)3458 int cmd_sched(int argc, const char **argv)
3459 {
3460 static const char default_sort_order[] = "avg, max, switch, runtime";
3461 struct perf_sched sched = {
3462 .tool = {
3463 .sample = perf_sched__process_tracepoint_sample,
3464 .comm = perf_sched__process_comm,
3465 .namespaces = perf_event__process_namespaces,
3466 .lost = perf_event__process_lost,
3467 .fork = perf_sched__process_fork_event,
3468 .ordered_events = true,
3469 },
3470 .cmp_pid = LIST_HEAD_INIT(sched.cmp_pid),
3471 .sort_list = LIST_HEAD_INIT(sched.sort_list),
3472 .sort_order = default_sort_order,
3473 .replay_repeat = 10,
3474 .profile_cpu = -1,
3475 .next_shortname1 = 'A',
3476 .next_shortname2 = '0',
3477 .skip_merge = 0,
3478 .show_callchain = 1,
3479 .max_stack = 5,
3480 };
3481 const struct option sched_options[] = {
3482 OPT_STRING('i', "input", &input_name, "file",
3483 "input file name"),
3484 OPT_INCR('v', "verbose", &verbose,
3485 "be more verbose (show symbol address, etc)"),
3486 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
3487 "dump raw trace in ASCII"),
3488 OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
3489 OPT_END()
3490 };
3491 const struct option latency_options[] = {
3492 OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
3493 "sort by key(s): runtime, switch, avg, max"),
3494 OPT_INTEGER('C', "CPU", &sched.profile_cpu,
3495 "CPU to profile on"),
3496 OPT_BOOLEAN('p', "pids", &sched.skip_merge,
3497 "latency stats per pid instead of per comm"),
3498 OPT_PARENT(sched_options)
3499 };
3500 const struct option replay_options[] = {
3501 OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
3502 "repeat the workload replay N times (-1: infinite)"),
3503 OPT_PARENT(sched_options)
3504 };
3505 const struct option map_options[] = {
3506 OPT_BOOLEAN(0, "compact", &sched.map.comp,
3507 "map output in compact mode"),
3508 OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids",
3509 "highlight given pids in map"),
3510 OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus",
3511 "highlight given CPUs in map"),
3512 OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus",
3513 "display given CPUs in map"),
3514 OPT_PARENT(sched_options)
3515 };
3516 const struct option timehist_options[] = {
3517 OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name,
3518 "file", "vmlinux pathname"),
3519 OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name,
3520 "file", "kallsyms pathname"),
3521 OPT_BOOLEAN('g', "call-graph", &sched.show_callchain,
3522 "Display call chains if present (default on)"),
3523 OPT_UINTEGER(0, "max-stack", &sched.max_stack,
3524 "Maximum number of functions to display backtrace."),
3525 OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
3526 "Look for files with symbols relative to this directory"),
3527 OPT_BOOLEAN('s', "summary", &sched.summary_only,
3528 "Show only syscall summary with statistics"),
3529 OPT_BOOLEAN('S', "with-summary", &sched.summary,
3530 "Show all syscalls and summary with statistics"),
3531 OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"),
3532 OPT_BOOLEAN('n', "next", &sched.show_next, "Show next task"),
3533 OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"),
3534 OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"),
3535 OPT_BOOLEAN('I', "idle-hist", &sched.idle_hist, "Show idle events only"),
3536 OPT_STRING(0, "time", &sched.time_str, "str",
3537 "Time span for analysis (start,stop)"),
3538 OPT_BOOLEAN(0, "state", &sched.show_state, "Show task state when sched-out"),
3539 OPT_STRING('p', "pid", &symbol_conf.pid_list_str, "pid[,pid...]",
3540 "analyze events only for given process id(s)"),
3541 OPT_STRING('t', "tid", &symbol_conf.tid_list_str, "tid[,tid...]",
3542 "analyze events only for given thread id(s)"),
3543 OPT_STRING('C', "cpu", &cpu_list, "cpu", "list of cpus to profile"),
3544 OPT_PARENT(sched_options)
3545 };
3546
3547 const char * const latency_usage[] = {
3548 "perf sched latency [<options>]",
3549 NULL
3550 };
3551 const char * const replay_usage[] = {
3552 "perf sched replay [<options>]",
3553 NULL
3554 };
3555 const char * const map_usage[] = {
3556 "perf sched map [<options>]",
3557 NULL
3558 };
3559 const char * const timehist_usage[] = {
3560 "perf sched timehist [<options>]",
3561 NULL
3562 };
3563 const char *const sched_subcommands[] = { "record", "latency", "map",
3564 "replay", "script",
3565 "timehist", NULL };
3566 const char *sched_usage[] = {
3567 NULL,
3568 NULL
3569 };
3570 struct trace_sched_handler lat_ops = {
3571 .wakeup_event = latency_wakeup_event,
3572 .switch_event = latency_switch_event,
3573 .runtime_event = latency_runtime_event,
3574 .migrate_task_event = latency_migrate_task_event,
3575 };
3576 struct trace_sched_handler map_ops = {
3577 .switch_event = map_switch_event,
3578 };
3579 struct trace_sched_handler replay_ops = {
3580 .wakeup_event = replay_wakeup_event,
3581 .switch_event = replay_switch_event,
3582 .fork_event = replay_fork_event,
3583 };
3584 unsigned int i;
3585 int ret = 0;
3586
3587 mutex_init(&sched.start_work_mutex);
3588 mutex_init(&sched.work_done_wait_mutex);
3589 for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++)
3590 sched.curr_pid[i] = -1;
3591
3592 argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
3593 sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
3594 if (!argc)
3595 usage_with_options(sched_usage, sched_options);
3596
3597 /*
3598 * Aliased to 'perf script' for now:
3599 */
3600 if (!strcmp(argv[0], "script")) {
3601 ret = cmd_script(argc, argv);
3602 } else if (strlen(argv[0]) > 2 && strstarts("record", argv[0])) {
3603 ret = __cmd_record(argc, argv);
3604 } else if (strlen(argv[0]) > 2 && strstarts("latency", argv[0])) {
3605 sched.tp_handler = &lat_ops;
3606 if (argc > 1) {
3607 argc = parse_options(argc, argv, latency_options, latency_usage, 0);
3608 if (argc)
3609 usage_with_options(latency_usage, latency_options);
3610 }
3611 setup_sorting(&sched, latency_options, latency_usage);
3612 ret = perf_sched__lat(&sched);
3613 } else if (!strcmp(argv[0], "map")) {
3614 if (argc) {
3615 argc = parse_options(argc, argv, map_options, map_usage, 0);
3616 if (argc)
3617 usage_with_options(map_usage, map_options);
3618 }
3619 sched.tp_handler = &map_ops;
3620 setup_sorting(&sched, latency_options, latency_usage);
3621 ret = perf_sched__map(&sched);
3622 } else if (strlen(argv[0]) > 2 && strstarts("replay", argv[0])) {
3623 sched.tp_handler = &replay_ops;
3624 if (argc) {
3625 argc = parse_options(argc, argv, replay_options, replay_usage, 0);
3626 if (argc)
3627 usage_with_options(replay_usage, replay_options);
3628 }
3629 ret = perf_sched__replay(&sched);
3630 } else if (!strcmp(argv[0], "timehist")) {
3631 if (argc) {
3632 argc = parse_options(argc, argv, timehist_options,
3633 timehist_usage, 0);
3634 if (argc)
3635 usage_with_options(timehist_usage, timehist_options);
3636 }
3637 if ((sched.show_wakeups || sched.show_next) &&
3638 sched.summary_only) {
3639 pr_err(" Error: -s and -[n|w] are mutually exclusive.\n");
3640 parse_options_usage(timehist_usage, timehist_options, "s", true);
3641 if (sched.show_wakeups)
3642 parse_options_usage(NULL, timehist_options, "w", true);
3643 if (sched.show_next)
3644 parse_options_usage(NULL, timehist_options, "n", true);
3645 ret = -EINVAL;
3646 goto out;
3647 }
3648 ret = symbol__validate_sym_arguments();
3649 if (ret)
3650 goto out;
3651
3652 ret = perf_sched__timehist(&sched);
3653 } else {
3654 usage_with_options(sched_usage, sched_options);
3655 }
3656
3657 out:
3658 mutex_destroy(&sched.start_work_mutex);
3659 mutex_destroy(&sched.work_done_wait_mutex);
3660
3661 return ret;
3662 }
3663