1 /* bnx2x_main.c: QLogic Everest network driver.
2 *
3 * Copyright (c) 2007-2013 Broadcom Corporation
4 * Copyright (c) 2014 QLogic Corporation
5 * All rights reserved
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation.
10 *
11 * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
12 * Written by: Eliezer Tamir
13 * Based on code from Michael Chan's bnx2 driver
14 * UDP CSUM errata workaround by Arik Gendelman
15 * Slowpath and fastpath rework by Vladislav Zolotarov
16 * Statistics and Link management by Yitchak Gertner
17 *
18 */
19
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22 #include <linux/module.h>
23 #include <linux/moduleparam.h>
24 #include <linux/kernel.h>
25 #include <linux/device.h> /* for dev_info() */
26 #include <linux/timer.h>
27 #include <linux/errno.h>
28 #include <linux/ioport.h>
29 #include <linux/slab.h>
30 #include <linux/interrupt.h>
31 #include <linux/pci.h>
32 #include <linux/aer.h>
33 #include <linux/init.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/skbuff.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/bitops.h>
39 #include <linux/irq.h>
40 #include <linux/delay.h>
41 #include <asm/byteorder.h>
42 #include <linux/time.h>
43 #include <linux/ethtool.h>
44 #include <linux/mii.h>
45 #include <linux/if_vlan.h>
46 #include <linux/crash_dump.h>
47 #include <net/ip.h>
48 #include <net/ipv6.h>
49 #include <net/tcp.h>
50 #include <net/vxlan.h>
51 #include <net/checksum.h>
52 #include <net/ip6_checksum.h>
53 #include <linux/workqueue.h>
54 #include <linux/crc32.h>
55 #include <linux/crc32c.h>
56 #include <linux/prefetch.h>
57 #include <linux/zlib.h>
58 #include <linux/io.h>
59 #include <linux/semaphore.h>
60 #include <linux/stringify.h>
61 #include <linux/vmalloc.h>
62 #include "bnx2x.h"
63 #include "bnx2x_init.h"
64 #include "bnx2x_init_ops.h"
65 #include "bnx2x_cmn.h"
66 #include "bnx2x_vfpf.h"
67 #include "bnx2x_dcb.h"
68 #include "bnx2x_sp.h"
69 #include <linux/firmware.h>
70 #include "bnx2x_fw_file_hdr.h"
71 /* FW files */
72 #define FW_FILE_VERSION \
73 __stringify(BCM_5710_FW_MAJOR_VERSION) "." \
74 __stringify(BCM_5710_FW_MINOR_VERSION) "." \
75 __stringify(BCM_5710_FW_REVISION_VERSION) "." \
76 __stringify(BCM_5710_FW_ENGINEERING_VERSION)
77 #define FW_FILE_NAME_E1 "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
78 #define FW_FILE_NAME_E1H "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
79 #define FW_FILE_NAME_E2 "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
80
81 /* Time in jiffies before concluding the transmitter is hung */
82 #define TX_TIMEOUT (5*HZ)
83
84 static char version[] =
85 "QLogic 5771x/578xx 10/20-Gigabit Ethernet Driver "
86 DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
87
88 MODULE_AUTHOR("Eliezer Tamir");
89 MODULE_DESCRIPTION("QLogic "
90 "BCM57710/57711/57711E/"
91 "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
92 "57840/57840_MF Driver");
93 MODULE_LICENSE("GPL");
94 MODULE_VERSION(DRV_MODULE_VERSION);
95 MODULE_FIRMWARE(FW_FILE_NAME_E1);
96 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
97 MODULE_FIRMWARE(FW_FILE_NAME_E2);
98
99 int bnx2x_num_queues;
100 module_param_named(num_queues, bnx2x_num_queues, int, 0444);
101 MODULE_PARM_DESC(num_queues,
102 " Set number of queues (default is as a number of CPUs)");
103
104 static int disable_tpa;
105 module_param(disable_tpa, int, 0444);
106 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
107
108 static int int_mode;
109 module_param(int_mode, int, 0444);
110 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
111 "(1 INT#x; 2 MSI)");
112
113 static int dropless_fc;
114 module_param(dropless_fc, int, 0444);
115 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
116
117 static int mrrs = -1;
118 module_param(mrrs, int, 0444);
119 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
120
121 static int debug;
122 module_param(debug, int, 0444);
123 MODULE_PARM_DESC(debug, " Default debug msglevel");
124
125 static struct workqueue_struct *bnx2x_wq;
126 struct workqueue_struct *bnx2x_iov_wq;
127
128 struct bnx2x_mac_vals {
129 u32 xmac_addr;
130 u32 xmac_val;
131 u32 emac_addr;
132 u32 emac_val;
133 u32 umac_addr[2];
134 u32 umac_val[2];
135 u32 bmac_addr;
136 u32 bmac_val[2];
137 };
138
139 enum bnx2x_board_type {
140 BCM57710 = 0,
141 BCM57711,
142 BCM57711E,
143 BCM57712,
144 BCM57712_MF,
145 BCM57712_VF,
146 BCM57800,
147 BCM57800_MF,
148 BCM57800_VF,
149 BCM57810,
150 BCM57810_MF,
151 BCM57810_VF,
152 BCM57840_4_10,
153 BCM57840_2_20,
154 BCM57840_MF,
155 BCM57840_VF,
156 BCM57811,
157 BCM57811_MF,
158 BCM57840_O,
159 BCM57840_MFO,
160 BCM57811_VF
161 };
162
163 /* indexed by board_type, above */
164 static struct {
165 char *name;
166 } board_info[] = {
167 [BCM57710] = { "QLogic BCM57710 10 Gigabit PCIe [Everest]" },
168 [BCM57711] = { "QLogic BCM57711 10 Gigabit PCIe" },
169 [BCM57711E] = { "QLogic BCM57711E 10 Gigabit PCIe" },
170 [BCM57712] = { "QLogic BCM57712 10 Gigabit Ethernet" },
171 [BCM57712_MF] = { "QLogic BCM57712 10 Gigabit Ethernet Multi Function" },
172 [BCM57712_VF] = { "QLogic BCM57712 10 Gigabit Ethernet Virtual Function" },
173 [BCM57800] = { "QLogic BCM57800 10 Gigabit Ethernet" },
174 [BCM57800_MF] = { "QLogic BCM57800 10 Gigabit Ethernet Multi Function" },
175 [BCM57800_VF] = { "QLogic BCM57800 10 Gigabit Ethernet Virtual Function" },
176 [BCM57810] = { "QLogic BCM57810 10 Gigabit Ethernet" },
177 [BCM57810_MF] = { "QLogic BCM57810 10 Gigabit Ethernet Multi Function" },
178 [BCM57810_VF] = { "QLogic BCM57810 10 Gigabit Ethernet Virtual Function" },
179 [BCM57840_4_10] = { "QLogic BCM57840 10 Gigabit Ethernet" },
180 [BCM57840_2_20] = { "QLogic BCM57840 20 Gigabit Ethernet" },
181 [BCM57840_MF] = { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
182 [BCM57840_VF] = { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" },
183 [BCM57811] = { "QLogic BCM57811 10 Gigabit Ethernet" },
184 [BCM57811_MF] = { "QLogic BCM57811 10 Gigabit Ethernet Multi Function" },
185 [BCM57840_O] = { "QLogic BCM57840 10/20 Gigabit Ethernet" },
186 [BCM57840_MFO] = { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
187 [BCM57811_VF] = { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" }
188 };
189
190 #ifndef PCI_DEVICE_ID_NX2_57710
191 #define PCI_DEVICE_ID_NX2_57710 CHIP_NUM_57710
192 #endif
193 #ifndef PCI_DEVICE_ID_NX2_57711
194 #define PCI_DEVICE_ID_NX2_57711 CHIP_NUM_57711
195 #endif
196 #ifndef PCI_DEVICE_ID_NX2_57711E
197 #define PCI_DEVICE_ID_NX2_57711E CHIP_NUM_57711E
198 #endif
199 #ifndef PCI_DEVICE_ID_NX2_57712
200 #define PCI_DEVICE_ID_NX2_57712 CHIP_NUM_57712
201 #endif
202 #ifndef PCI_DEVICE_ID_NX2_57712_MF
203 #define PCI_DEVICE_ID_NX2_57712_MF CHIP_NUM_57712_MF
204 #endif
205 #ifndef PCI_DEVICE_ID_NX2_57712_VF
206 #define PCI_DEVICE_ID_NX2_57712_VF CHIP_NUM_57712_VF
207 #endif
208 #ifndef PCI_DEVICE_ID_NX2_57800
209 #define PCI_DEVICE_ID_NX2_57800 CHIP_NUM_57800
210 #endif
211 #ifndef PCI_DEVICE_ID_NX2_57800_MF
212 #define PCI_DEVICE_ID_NX2_57800_MF CHIP_NUM_57800_MF
213 #endif
214 #ifndef PCI_DEVICE_ID_NX2_57800_VF
215 #define PCI_DEVICE_ID_NX2_57800_VF CHIP_NUM_57800_VF
216 #endif
217 #ifndef PCI_DEVICE_ID_NX2_57810
218 #define PCI_DEVICE_ID_NX2_57810 CHIP_NUM_57810
219 #endif
220 #ifndef PCI_DEVICE_ID_NX2_57810_MF
221 #define PCI_DEVICE_ID_NX2_57810_MF CHIP_NUM_57810_MF
222 #endif
223 #ifndef PCI_DEVICE_ID_NX2_57840_O
224 #define PCI_DEVICE_ID_NX2_57840_O CHIP_NUM_57840_OBSOLETE
225 #endif
226 #ifndef PCI_DEVICE_ID_NX2_57810_VF
227 #define PCI_DEVICE_ID_NX2_57810_VF CHIP_NUM_57810_VF
228 #endif
229 #ifndef PCI_DEVICE_ID_NX2_57840_4_10
230 #define PCI_DEVICE_ID_NX2_57840_4_10 CHIP_NUM_57840_4_10
231 #endif
232 #ifndef PCI_DEVICE_ID_NX2_57840_2_20
233 #define PCI_DEVICE_ID_NX2_57840_2_20 CHIP_NUM_57840_2_20
234 #endif
235 #ifndef PCI_DEVICE_ID_NX2_57840_MFO
236 #define PCI_DEVICE_ID_NX2_57840_MFO CHIP_NUM_57840_MF_OBSOLETE
237 #endif
238 #ifndef PCI_DEVICE_ID_NX2_57840_MF
239 #define PCI_DEVICE_ID_NX2_57840_MF CHIP_NUM_57840_MF
240 #endif
241 #ifndef PCI_DEVICE_ID_NX2_57840_VF
242 #define PCI_DEVICE_ID_NX2_57840_VF CHIP_NUM_57840_VF
243 #endif
244 #ifndef PCI_DEVICE_ID_NX2_57811
245 #define PCI_DEVICE_ID_NX2_57811 CHIP_NUM_57811
246 #endif
247 #ifndef PCI_DEVICE_ID_NX2_57811_MF
248 #define PCI_DEVICE_ID_NX2_57811_MF CHIP_NUM_57811_MF
249 #endif
250 #ifndef PCI_DEVICE_ID_NX2_57811_VF
251 #define PCI_DEVICE_ID_NX2_57811_VF CHIP_NUM_57811_VF
252 #endif
253
254 static const struct pci_device_id bnx2x_pci_tbl[] = {
255 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
256 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
257 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
258 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
259 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
260 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
261 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
262 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
263 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
264 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
265 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
266 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
267 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
268 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
269 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
270 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
271 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
272 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
273 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
274 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
275 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
276 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
277 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
278 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
279 { 0 }
280 };
281
282 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
283
284 /* Global resources for unloading a previously loaded device */
285 #define BNX2X_PREV_WAIT_NEEDED 1
286 static DEFINE_SEMAPHORE(bnx2x_prev_sem);
287 static LIST_HEAD(bnx2x_prev_list);
288
289 /* Forward declaration */
290 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
291 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp);
292 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp);
293
294 /****************************************************************************
295 * General service functions
296 ****************************************************************************/
297
298 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr);
299
__storm_memset_dma_mapping(struct bnx2x * bp,u32 addr,dma_addr_t mapping)300 static void __storm_memset_dma_mapping(struct bnx2x *bp,
301 u32 addr, dma_addr_t mapping)
302 {
303 REG_WR(bp, addr, U64_LO(mapping));
304 REG_WR(bp, addr + 4, U64_HI(mapping));
305 }
306
storm_memset_spq_addr(struct bnx2x * bp,dma_addr_t mapping,u16 abs_fid)307 static void storm_memset_spq_addr(struct bnx2x *bp,
308 dma_addr_t mapping, u16 abs_fid)
309 {
310 u32 addr = XSEM_REG_FAST_MEMORY +
311 XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
312
313 __storm_memset_dma_mapping(bp, addr, mapping);
314 }
315
storm_memset_vf_to_pf(struct bnx2x * bp,u16 abs_fid,u16 pf_id)316 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
317 u16 pf_id)
318 {
319 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
320 pf_id);
321 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
322 pf_id);
323 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
324 pf_id);
325 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
326 pf_id);
327 }
328
storm_memset_func_en(struct bnx2x * bp,u16 abs_fid,u8 enable)329 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
330 u8 enable)
331 {
332 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
333 enable);
334 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
335 enable);
336 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
337 enable);
338 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
339 enable);
340 }
341
storm_memset_eq_data(struct bnx2x * bp,struct event_ring_data * eq_data,u16 pfid)342 static void storm_memset_eq_data(struct bnx2x *bp,
343 struct event_ring_data *eq_data,
344 u16 pfid)
345 {
346 size_t size = sizeof(struct event_ring_data);
347
348 u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
349
350 __storm_memset_struct(bp, addr, size, (u32 *)eq_data);
351 }
352
storm_memset_eq_prod(struct bnx2x * bp,u16 eq_prod,u16 pfid)353 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
354 u16 pfid)
355 {
356 u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
357 REG_WR16(bp, addr, eq_prod);
358 }
359
360 /* used only at init
361 * locking is done by mcp
362 */
bnx2x_reg_wr_ind(struct bnx2x * bp,u32 addr,u32 val)363 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
364 {
365 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
366 pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
367 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
368 PCICFG_VENDOR_ID_OFFSET);
369 }
370
bnx2x_reg_rd_ind(struct bnx2x * bp,u32 addr)371 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
372 {
373 u32 val;
374
375 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
376 pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
377 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
378 PCICFG_VENDOR_ID_OFFSET);
379
380 return val;
381 }
382
383 #define DMAE_DP_SRC_GRC "grc src_addr [%08x]"
384 #define DMAE_DP_SRC_PCI "pci src_addr [%x:%08x]"
385 #define DMAE_DP_DST_GRC "grc dst_addr [%08x]"
386 #define DMAE_DP_DST_PCI "pci dst_addr [%x:%08x]"
387 #define DMAE_DP_DST_NONE "dst_addr [none]"
388
bnx2x_dp_dmae(struct bnx2x * bp,struct dmae_command * dmae,int msglvl)389 static void bnx2x_dp_dmae(struct bnx2x *bp,
390 struct dmae_command *dmae, int msglvl)
391 {
392 u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
393 int i;
394
395 switch (dmae->opcode & DMAE_COMMAND_DST) {
396 case DMAE_CMD_DST_PCI:
397 if (src_type == DMAE_CMD_SRC_PCI)
398 DP(msglvl, "DMAE: opcode 0x%08x\n"
399 "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
400 "comp_addr [%x:%08x], comp_val 0x%08x\n",
401 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
402 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
403 dmae->comp_addr_hi, dmae->comp_addr_lo,
404 dmae->comp_val);
405 else
406 DP(msglvl, "DMAE: opcode 0x%08x\n"
407 "src [%08x], len [%d*4], dst [%x:%08x]\n"
408 "comp_addr [%x:%08x], comp_val 0x%08x\n",
409 dmae->opcode, dmae->src_addr_lo >> 2,
410 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
411 dmae->comp_addr_hi, dmae->comp_addr_lo,
412 dmae->comp_val);
413 break;
414 case DMAE_CMD_DST_GRC:
415 if (src_type == DMAE_CMD_SRC_PCI)
416 DP(msglvl, "DMAE: opcode 0x%08x\n"
417 "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
418 "comp_addr [%x:%08x], comp_val 0x%08x\n",
419 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
420 dmae->len, dmae->dst_addr_lo >> 2,
421 dmae->comp_addr_hi, dmae->comp_addr_lo,
422 dmae->comp_val);
423 else
424 DP(msglvl, "DMAE: opcode 0x%08x\n"
425 "src [%08x], len [%d*4], dst [%08x]\n"
426 "comp_addr [%x:%08x], comp_val 0x%08x\n",
427 dmae->opcode, dmae->src_addr_lo >> 2,
428 dmae->len, dmae->dst_addr_lo >> 2,
429 dmae->comp_addr_hi, dmae->comp_addr_lo,
430 dmae->comp_val);
431 break;
432 default:
433 if (src_type == DMAE_CMD_SRC_PCI)
434 DP(msglvl, "DMAE: opcode 0x%08x\n"
435 "src_addr [%x:%08x] len [%d * 4] dst_addr [none]\n"
436 "comp_addr [%x:%08x] comp_val 0x%08x\n",
437 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
438 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
439 dmae->comp_val);
440 else
441 DP(msglvl, "DMAE: opcode 0x%08x\n"
442 "src_addr [%08x] len [%d * 4] dst_addr [none]\n"
443 "comp_addr [%x:%08x] comp_val 0x%08x\n",
444 dmae->opcode, dmae->src_addr_lo >> 2,
445 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
446 dmae->comp_val);
447 break;
448 }
449
450 for (i = 0; i < (sizeof(struct dmae_command)/4); i++)
451 DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n",
452 i, *(((u32 *)dmae) + i));
453 }
454
455 /* copy command into DMAE command memory and set DMAE command go */
bnx2x_post_dmae(struct bnx2x * bp,struct dmae_command * dmae,int idx)456 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
457 {
458 u32 cmd_offset;
459 int i;
460
461 cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
462 for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
463 REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
464 }
465 REG_WR(bp, dmae_reg_go_c[idx], 1);
466 }
467
bnx2x_dmae_opcode_add_comp(u32 opcode,u8 comp_type)468 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
469 {
470 return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
471 DMAE_CMD_C_ENABLE);
472 }
473
bnx2x_dmae_opcode_clr_src_reset(u32 opcode)474 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
475 {
476 return opcode & ~DMAE_CMD_SRC_RESET;
477 }
478
bnx2x_dmae_opcode(struct bnx2x * bp,u8 src_type,u8 dst_type,bool with_comp,u8 comp_type)479 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
480 bool with_comp, u8 comp_type)
481 {
482 u32 opcode = 0;
483
484 opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
485 (dst_type << DMAE_COMMAND_DST_SHIFT));
486
487 opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
488
489 opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
490 opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
491 (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
492 opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
493
494 #ifdef __BIG_ENDIAN
495 opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
496 #else
497 opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
498 #endif
499 if (with_comp)
500 opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
501 return opcode;
502 }
503
bnx2x_prep_dmae_with_comp(struct bnx2x * bp,struct dmae_command * dmae,u8 src_type,u8 dst_type)504 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
505 struct dmae_command *dmae,
506 u8 src_type, u8 dst_type)
507 {
508 memset(dmae, 0, sizeof(struct dmae_command));
509
510 /* set the opcode */
511 dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
512 true, DMAE_COMP_PCI);
513
514 /* fill in the completion parameters */
515 dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
516 dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
517 dmae->comp_val = DMAE_COMP_VAL;
518 }
519
520 /* issue a dmae command over the init-channel and wait for completion */
bnx2x_issue_dmae_with_comp(struct bnx2x * bp,struct dmae_command * dmae,u32 * comp)521 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
522 u32 *comp)
523 {
524 int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
525 int rc = 0;
526
527 bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE);
528
529 /* Lock the dmae channel. Disable BHs to prevent a dead-lock
530 * as long as this code is called both from syscall context and
531 * from ndo_set_rx_mode() flow that may be called from BH.
532 */
533
534 spin_lock_bh(&bp->dmae_lock);
535
536 /* reset completion */
537 *comp = 0;
538
539 /* post the command on the channel used for initializations */
540 bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
541
542 /* wait for completion */
543 udelay(5);
544 while ((*comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
545
546 if (!cnt ||
547 (bp->recovery_state != BNX2X_RECOVERY_DONE &&
548 bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
549 BNX2X_ERR("DMAE timeout!\n");
550 rc = DMAE_TIMEOUT;
551 goto unlock;
552 }
553 cnt--;
554 udelay(50);
555 }
556 if (*comp & DMAE_PCI_ERR_FLAG) {
557 BNX2X_ERR("DMAE PCI error!\n");
558 rc = DMAE_PCI_ERROR;
559 }
560
561 unlock:
562
563 spin_unlock_bh(&bp->dmae_lock);
564
565 return rc;
566 }
567
bnx2x_write_dmae(struct bnx2x * bp,dma_addr_t dma_addr,u32 dst_addr,u32 len32)568 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
569 u32 len32)
570 {
571 int rc;
572 struct dmae_command dmae;
573
574 if (!bp->dmae_ready) {
575 u32 *data = bnx2x_sp(bp, wb_data[0]);
576
577 if (CHIP_IS_E1(bp))
578 bnx2x_init_ind_wr(bp, dst_addr, data, len32);
579 else
580 bnx2x_init_str_wr(bp, dst_addr, data, len32);
581 return;
582 }
583
584 /* set opcode and fixed command fields */
585 bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
586
587 /* fill in addresses and len */
588 dmae.src_addr_lo = U64_LO(dma_addr);
589 dmae.src_addr_hi = U64_HI(dma_addr);
590 dmae.dst_addr_lo = dst_addr >> 2;
591 dmae.dst_addr_hi = 0;
592 dmae.len = len32;
593
594 /* issue the command and wait for completion */
595 rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
596 if (rc) {
597 BNX2X_ERR("DMAE returned failure %d\n", rc);
598 #ifdef BNX2X_STOP_ON_ERROR
599 bnx2x_panic();
600 #endif
601 }
602 }
603
bnx2x_read_dmae(struct bnx2x * bp,u32 src_addr,u32 len32)604 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
605 {
606 int rc;
607 struct dmae_command dmae;
608
609 if (!bp->dmae_ready) {
610 u32 *data = bnx2x_sp(bp, wb_data[0]);
611 int i;
612
613 if (CHIP_IS_E1(bp))
614 for (i = 0; i < len32; i++)
615 data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
616 else
617 for (i = 0; i < len32; i++)
618 data[i] = REG_RD(bp, src_addr + i*4);
619
620 return;
621 }
622
623 /* set opcode and fixed command fields */
624 bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
625
626 /* fill in addresses and len */
627 dmae.src_addr_lo = src_addr >> 2;
628 dmae.src_addr_hi = 0;
629 dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
630 dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
631 dmae.len = len32;
632
633 /* issue the command and wait for completion */
634 rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
635 if (rc) {
636 BNX2X_ERR("DMAE returned failure %d\n", rc);
637 #ifdef BNX2X_STOP_ON_ERROR
638 bnx2x_panic();
639 #endif
640 }
641 }
642
bnx2x_write_dmae_phys_len(struct bnx2x * bp,dma_addr_t phys_addr,u32 addr,u32 len)643 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
644 u32 addr, u32 len)
645 {
646 int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
647 int offset = 0;
648
649 while (len > dmae_wr_max) {
650 bnx2x_write_dmae(bp, phys_addr + offset,
651 addr + offset, dmae_wr_max);
652 offset += dmae_wr_max * 4;
653 len -= dmae_wr_max;
654 }
655
656 bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
657 }
658
659 enum storms {
660 XSTORM,
661 TSTORM,
662 CSTORM,
663 USTORM,
664 MAX_STORMS
665 };
666
667 #define STORMS_NUM 4
668 #define REGS_IN_ENTRY 4
669
bnx2x_get_assert_list_entry(struct bnx2x * bp,enum storms storm,int entry)670 static inline int bnx2x_get_assert_list_entry(struct bnx2x *bp,
671 enum storms storm,
672 int entry)
673 {
674 switch (storm) {
675 case XSTORM:
676 return XSTORM_ASSERT_LIST_OFFSET(entry);
677 case TSTORM:
678 return TSTORM_ASSERT_LIST_OFFSET(entry);
679 case CSTORM:
680 return CSTORM_ASSERT_LIST_OFFSET(entry);
681 case USTORM:
682 return USTORM_ASSERT_LIST_OFFSET(entry);
683 case MAX_STORMS:
684 default:
685 BNX2X_ERR("unknown storm\n");
686 }
687 return -EINVAL;
688 }
689
bnx2x_mc_assert(struct bnx2x * bp)690 static int bnx2x_mc_assert(struct bnx2x *bp)
691 {
692 char last_idx;
693 int i, j, rc = 0;
694 enum storms storm;
695 u32 regs[REGS_IN_ENTRY];
696 u32 bar_storm_intmem[STORMS_NUM] = {
697 BAR_XSTRORM_INTMEM,
698 BAR_TSTRORM_INTMEM,
699 BAR_CSTRORM_INTMEM,
700 BAR_USTRORM_INTMEM
701 };
702 u32 storm_assert_list_index[STORMS_NUM] = {
703 XSTORM_ASSERT_LIST_INDEX_OFFSET,
704 TSTORM_ASSERT_LIST_INDEX_OFFSET,
705 CSTORM_ASSERT_LIST_INDEX_OFFSET,
706 USTORM_ASSERT_LIST_INDEX_OFFSET
707 };
708 char *storms_string[STORMS_NUM] = {
709 "XSTORM",
710 "TSTORM",
711 "CSTORM",
712 "USTORM"
713 };
714
715 for (storm = XSTORM; storm < MAX_STORMS; storm++) {
716 last_idx = REG_RD8(bp, bar_storm_intmem[storm] +
717 storm_assert_list_index[storm]);
718 if (last_idx)
719 BNX2X_ERR("%s_ASSERT_LIST_INDEX 0x%x\n",
720 storms_string[storm], last_idx);
721
722 /* print the asserts */
723 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
724 /* read a single assert entry */
725 for (j = 0; j < REGS_IN_ENTRY; j++)
726 regs[j] = REG_RD(bp, bar_storm_intmem[storm] +
727 bnx2x_get_assert_list_entry(bp,
728 storm,
729 i) +
730 sizeof(u32) * j);
731
732 /* log entry if it contains a valid assert */
733 if (regs[0] != COMMON_ASM_INVALID_ASSERT_OPCODE) {
734 BNX2X_ERR("%s_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
735 storms_string[storm], i, regs[3],
736 regs[2], regs[1], regs[0]);
737 rc++;
738 } else {
739 break;
740 }
741 }
742 }
743
744 BNX2X_ERR("Chip Revision: %s, FW Version: %d_%d_%d\n",
745 CHIP_IS_E1(bp) ? "everest1" :
746 CHIP_IS_E1H(bp) ? "everest1h" :
747 CHIP_IS_E2(bp) ? "everest2" : "everest3",
748 BCM_5710_FW_MAJOR_VERSION,
749 BCM_5710_FW_MINOR_VERSION,
750 BCM_5710_FW_REVISION_VERSION);
751
752 return rc;
753 }
754
755 #define MCPR_TRACE_BUFFER_SIZE (0x800)
756 #define SCRATCH_BUFFER_SIZE(bp) \
757 (CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000))
758
bnx2x_fw_dump_lvl(struct bnx2x * bp,const char * lvl)759 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
760 {
761 u32 addr, val;
762 u32 mark, offset;
763 __be32 data[9];
764 int word;
765 u32 trace_shmem_base;
766 if (BP_NOMCP(bp)) {
767 BNX2X_ERR("NO MCP - can not dump\n");
768 return;
769 }
770 netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
771 (bp->common.bc_ver & 0xff0000) >> 16,
772 (bp->common.bc_ver & 0xff00) >> 8,
773 (bp->common.bc_ver & 0xff));
774
775 if (pci_channel_offline(bp->pdev)) {
776 BNX2X_ERR("Cannot dump MCP info while in PCI error\n");
777 return;
778 }
779
780 val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
781 if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
782 BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
783
784 if (BP_PATH(bp) == 0)
785 trace_shmem_base = bp->common.shmem_base;
786 else
787 trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
788
789 /* sanity */
790 if (trace_shmem_base < MCPR_SCRATCH_BASE(bp) + MCPR_TRACE_BUFFER_SIZE ||
791 trace_shmem_base >= MCPR_SCRATCH_BASE(bp) +
792 SCRATCH_BUFFER_SIZE(bp)) {
793 BNX2X_ERR("Unable to dump trace buffer (mark %x)\n",
794 trace_shmem_base);
795 return;
796 }
797
798 addr = trace_shmem_base - MCPR_TRACE_BUFFER_SIZE;
799
800 /* validate TRCB signature */
801 mark = REG_RD(bp, addr);
802 if (mark != MFW_TRACE_SIGNATURE) {
803 BNX2X_ERR("Trace buffer signature is missing.");
804 return ;
805 }
806
807 /* read cyclic buffer pointer */
808 addr += 4;
809 mark = REG_RD(bp, addr);
810 mark = MCPR_SCRATCH_BASE(bp) + ((mark + 0x3) & ~0x3) - 0x08000000;
811 if (mark >= trace_shmem_base || mark < addr + 4) {
812 BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n");
813 return;
814 }
815 printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
816
817 printk("%s", lvl);
818
819 /* dump buffer after the mark */
820 for (offset = mark; offset < trace_shmem_base; offset += 0x8*4) {
821 for (word = 0; word < 8; word++)
822 data[word] = htonl(REG_RD(bp, offset + 4*word));
823 data[8] = 0x0;
824 pr_cont("%s", (char *)data);
825 }
826
827 /* dump buffer before the mark */
828 for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
829 for (word = 0; word < 8; word++)
830 data[word] = htonl(REG_RD(bp, offset + 4*word));
831 data[8] = 0x0;
832 pr_cont("%s", (char *)data);
833 }
834 printk("%s" "end of fw dump\n", lvl);
835 }
836
bnx2x_fw_dump(struct bnx2x * bp)837 static void bnx2x_fw_dump(struct bnx2x *bp)
838 {
839 bnx2x_fw_dump_lvl(bp, KERN_ERR);
840 }
841
bnx2x_hc_int_disable(struct bnx2x * bp)842 static void bnx2x_hc_int_disable(struct bnx2x *bp)
843 {
844 int port = BP_PORT(bp);
845 u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
846 u32 val = REG_RD(bp, addr);
847
848 /* in E1 we must use only PCI configuration space to disable
849 * MSI/MSIX capability
850 * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
851 */
852 if (CHIP_IS_E1(bp)) {
853 /* Since IGU_PF_CONF_MSI_MSIX_EN still always on
854 * Use mask register to prevent from HC sending interrupts
855 * after we exit the function
856 */
857 REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
858
859 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
860 HC_CONFIG_0_REG_INT_LINE_EN_0 |
861 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
862 } else
863 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
864 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
865 HC_CONFIG_0_REG_INT_LINE_EN_0 |
866 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
867
868 DP(NETIF_MSG_IFDOWN,
869 "write %x to HC %d (addr 0x%x)\n",
870 val, port, addr);
871
872 REG_WR(bp, addr, val);
873 if (REG_RD(bp, addr) != val)
874 BNX2X_ERR("BUG! Proper val not read from IGU!\n");
875 }
876
bnx2x_igu_int_disable(struct bnx2x * bp)877 static void bnx2x_igu_int_disable(struct bnx2x *bp)
878 {
879 u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
880
881 val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
882 IGU_PF_CONF_INT_LINE_EN |
883 IGU_PF_CONF_ATTN_BIT_EN);
884
885 DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
886
887 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
888 if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
889 BNX2X_ERR("BUG! Proper val not read from IGU!\n");
890 }
891
bnx2x_int_disable(struct bnx2x * bp)892 static void bnx2x_int_disable(struct bnx2x *bp)
893 {
894 if (bp->common.int_block == INT_BLOCK_HC)
895 bnx2x_hc_int_disable(bp);
896 else
897 bnx2x_igu_int_disable(bp);
898 }
899
bnx2x_panic_dump(struct bnx2x * bp,bool disable_int)900 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
901 {
902 int i;
903 u16 j;
904 struct hc_sp_status_block_data sp_sb_data;
905 int func = BP_FUNC(bp);
906 #ifdef BNX2X_STOP_ON_ERROR
907 u16 start = 0, end = 0;
908 u8 cos;
909 #endif
910 if (IS_PF(bp) && disable_int)
911 bnx2x_int_disable(bp);
912
913 bp->stats_state = STATS_STATE_DISABLED;
914 bp->eth_stats.unrecoverable_error++;
915 DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
916
917 BNX2X_ERR("begin crash dump -----------------\n");
918
919 /* Indices */
920 /* Common */
921 if (IS_PF(bp)) {
922 struct host_sp_status_block *def_sb = bp->def_status_blk;
923 int data_size, cstorm_offset;
924
925 BNX2X_ERR("def_idx(0x%x) def_att_idx(0x%x) attn_state(0x%x) spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
926 bp->def_idx, bp->def_att_idx, bp->attn_state,
927 bp->spq_prod_idx, bp->stats_counter);
928 BNX2X_ERR("DSB: attn bits(0x%x) ack(0x%x) id(0x%x) idx(0x%x)\n",
929 def_sb->atten_status_block.attn_bits,
930 def_sb->atten_status_block.attn_bits_ack,
931 def_sb->atten_status_block.status_block_id,
932 def_sb->atten_status_block.attn_bits_index);
933 BNX2X_ERR(" def (");
934 for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
935 pr_cont("0x%x%s",
936 def_sb->sp_sb.index_values[i],
937 (i == HC_SP_SB_MAX_INDICES - 1) ? ") " : " ");
938
939 data_size = sizeof(struct hc_sp_status_block_data) /
940 sizeof(u32);
941 cstorm_offset = CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func);
942 for (i = 0; i < data_size; i++)
943 *((u32 *)&sp_sb_data + i) =
944 REG_RD(bp, BAR_CSTRORM_INTMEM + cstorm_offset +
945 i * sizeof(u32));
946
947 pr_cont("igu_sb_id(0x%x) igu_seg_id(0x%x) pf_id(0x%x) vnic_id(0x%x) vf_id(0x%x) vf_valid (0x%x) state(0x%x)\n",
948 sp_sb_data.igu_sb_id,
949 sp_sb_data.igu_seg_id,
950 sp_sb_data.p_func.pf_id,
951 sp_sb_data.p_func.vnic_id,
952 sp_sb_data.p_func.vf_id,
953 sp_sb_data.p_func.vf_valid,
954 sp_sb_data.state);
955 }
956
957 for_each_eth_queue(bp, i) {
958 struct bnx2x_fastpath *fp = &bp->fp[i];
959 int loop;
960 struct hc_status_block_data_e2 sb_data_e2;
961 struct hc_status_block_data_e1x sb_data_e1x;
962 struct hc_status_block_sm *hc_sm_p =
963 CHIP_IS_E1x(bp) ?
964 sb_data_e1x.common.state_machine :
965 sb_data_e2.common.state_machine;
966 struct hc_index_data *hc_index_p =
967 CHIP_IS_E1x(bp) ?
968 sb_data_e1x.index_data :
969 sb_data_e2.index_data;
970 u8 data_size, cos;
971 u32 *sb_data_p;
972 struct bnx2x_fp_txdata txdata;
973
974 if (!bp->fp)
975 break;
976
977 if (!fp->rx_cons_sb)
978 continue;
979
980 /* Rx */
981 BNX2X_ERR("fp%d: rx_bd_prod(0x%x) rx_bd_cons(0x%x) rx_comp_prod(0x%x) rx_comp_cons(0x%x) *rx_cons_sb(0x%x)\n",
982 i, fp->rx_bd_prod, fp->rx_bd_cons,
983 fp->rx_comp_prod,
984 fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
985 BNX2X_ERR(" rx_sge_prod(0x%x) last_max_sge(0x%x) fp_hc_idx(0x%x)\n",
986 fp->rx_sge_prod, fp->last_max_sge,
987 le16_to_cpu(fp->fp_hc_idx));
988
989 /* Tx */
990 for_each_cos_in_tx_queue(fp, cos)
991 {
992 if (!fp->txdata_ptr[cos])
993 break;
994
995 txdata = *fp->txdata_ptr[cos];
996
997 if (!txdata.tx_cons_sb)
998 continue;
999
1000 BNX2X_ERR("fp%d: tx_pkt_prod(0x%x) tx_pkt_cons(0x%x) tx_bd_prod(0x%x) tx_bd_cons(0x%x) *tx_cons_sb(0x%x)\n",
1001 i, txdata.tx_pkt_prod,
1002 txdata.tx_pkt_cons, txdata.tx_bd_prod,
1003 txdata.tx_bd_cons,
1004 le16_to_cpu(*txdata.tx_cons_sb));
1005 }
1006
1007 loop = CHIP_IS_E1x(bp) ?
1008 HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
1009
1010 /* host sb data */
1011
1012 if (IS_FCOE_FP(fp))
1013 continue;
1014
1015 BNX2X_ERR(" run indexes (");
1016 for (j = 0; j < HC_SB_MAX_SM; j++)
1017 pr_cont("0x%x%s",
1018 fp->sb_running_index[j],
1019 (j == HC_SB_MAX_SM - 1) ? ")" : " ");
1020
1021 BNX2X_ERR(" indexes (");
1022 for (j = 0; j < loop; j++)
1023 pr_cont("0x%x%s",
1024 fp->sb_index_values[j],
1025 (j == loop - 1) ? ")" : " ");
1026
1027 /* VF cannot access FW refelection for status block */
1028 if (IS_VF(bp))
1029 continue;
1030
1031 /* fw sb data */
1032 data_size = CHIP_IS_E1x(bp) ?
1033 sizeof(struct hc_status_block_data_e1x) :
1034 sizeof(struct hc_status_block_data_e2);
1035 data_size /= sizeof(u32);
1036 sb_data_p = CHIP_IS_E1x(bp) ?
1037 (u32 *)&sb_data_e1x :
1038 (u32 *)&sb_data_e2;
1039 /* copy sb data in here */
1040 for (j = 0; j < data_size; j++)
1041 *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
1042 CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
1043 j * sizeof(u32));
1044
1045 if (!CHIP_IS_E1x(bp)) {
1046 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) vnic_id(0x%x) same_igu_sb_1b(0x%x) state(0x%x)\n",
1047 sb_data_e2.common.p_func.pf_id,
1048 sb_data_e2.common.p_func.vf_id,
1049 sb_data_e2.common.p_func.vf_valid,
1050 sb_data_e2.common.p_func.vnic_id,
1051 sb_data_e2.common.same_igu_sb_1b,
1052 sb_data_e2.common.state);
1053 } else {
1054 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) vnic_id(0x%x) same_igu_sb_1b(0x%x) state(0x%x)\n",
1055 sb_data_e1x.common.p_func.pf_id,
1056 sb_data_e1x.common.p_func.vf_id,
1057 sb_data_e1x.common.p_func.vf_valid,
1058 sb_data_e1x.common.p_func.vnic_id,
1059 sb_data_e1x.common.same_igu_sb_1b,
1060 sb_data_e1x.common.state);
1061 }
1062
1063 /* SB_SMs data */
1064 for (j = 0; j < HC_SB_MAX_SM; j++) {
1065 pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x) igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1066 j, hc_sm_p[j].__flags,
1067 hc_sm_p[j].igu_sb_id,
1068 hc_sm_p[j].igu_seg_id,
1069 hc_sm_p[j].time_to_expire,
1070 hc_sm_p[j].timer_value);
1071 }
1072
1073 /* Indices data */
1074 for (j = 0; j < loop; j++) {
1075 pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1076 hc_index_p[j].flags,
1077 hc_index_p[j].timeout);
1078 }
1079 }
1080
1081 #ifdef BNX2X_STOP_ON_ERROR
1082 if (IS_PF(bp)) {
1083 /* event queue */
1084 BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod);
1085 for (i = 0; i < NUM_EQ_DESC; i++) {
1086 u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1087
1088 BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1089 i, bp->eq_ring[i].message.opcode,
1090 bp->eq_ring[i].message.error);
1091 BNX2X_ERR("data: %x %x %x\n",
1092 data[0], data[1], data[2]);
1093 }
1094 }
1095
1096 /* Rings */
1097 /* Rx */
1098 for_each_valid_rx_queue(bp, i) {
1099 struct bnx2x_fastpath *fp = &bp->fp[i];
1100
1101 if (!bp->fp)
1102 break;
1103
1104 if (!fp->rx_cons_sb)
1105 continue;
1106
1107 start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1108 end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1109 for (j = start; j != end; j = RX_BD(j + 1)) {
1110 u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1111 struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1112
1113 BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x] sw_bd=[%p]\n",
1114 i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1115 }
1116
1117 start = RX_SGE(fp->rx_sge_prod);
1118 end = RX_SGE(fp->last_max_sge);
1119 for (j = start; j != end; j = RX_SGE(j + 1)) {
1120 u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1121 struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1122
1123 BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x] sw_page=[%p]\n",
1124 i, j, rx_sge[1], rx_sge[0], sw_page->page);
1125 }
1126
1127 start = RCQ_BD(fp->rx_comp_cons - 10);
1128 end = RCQ_BD(fp->rx_comp_cons + 503);
1129 for (j = start; j != end; j = RCQ_BD(j + 1)) {
1130 u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1131
1132 BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1133 i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1134 }
1135 }
1136
1137 /* Tx */
1138 for_each_valid_tx_queue(bp, i) {
1139 struct bnx2x_fastpath *fp = &bp->fp[i];
1140
1141 if (!bp->fp)
1142 break;
1143
1144 for_each_cos_in_tx_queue(fp, cos) {
1145 struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1146
1147 if (!fp->txdata_ptr[cos])
1148 break;
1149
1150 if (!txdata->tx_cons_sb)
1151 continue;
1152
1153 start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1154 end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1155 for (j = start; j != end; j = TX_BD(j + 1)) {
1156 struct sw_tx_bd *sw_bd =
1157 &txdata->tx_buf_ring[j];
1158
1159 BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1160 i, cos, j, sw_bd->skb,
1161 sw_bd->first_bd);
1162 }
1163
1164 start = TX_BD(txdata->tx_bd_cons - 10);
1165 end = TX_BD(txdata->tx_bd_cons + 254);
1166 for (j = start; j != end; j = TX_BD(j + 1)) {
1167 u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1168
1169 BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1170 i, cos, j, tx_bd[0], tx_bd[1],
1171 tx_bd[2], tx_bd[3]);
1172 }
1173 }
1174 }
1175 #endif
1176 if (IS_PF(bp)) {
1177 bnx2x_fw_dump(bp);
1178 bnx2x_mc_assert(bp);
1179 }
1180 BNX2X_ERR("end crash dump -----------------\n");
1181 }
1182
1183 /*
1184 * FLR Support for E2
1185 *
1186 * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1187 * initialization.
1188 */
1189 #define FLR_WAIT_USEC 10000 /* 10 milliseconds */
1190 #define FLR_WAIT_INTERVAL 50 /* usec */
1191 #define FLR_POLL_CNT (FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1192
1193 struct pbf_pN_buf_regs {
1194 int pN;
1195 u32 init_crd;
1196 u32 crd;
1197 u32 crd_freed;
1198 };
1199
1200 struct pbf_pN_cmd_regs {
1201 int pN;
1202 u32 lines_occup;
1203 u32 lines_freed;
1204 };
1205
bnx2x_pbf_pN_buf_flushed(struct bnx2x * bp,struct pbf_pN_buf_regs * regs,u32 poll_count)1206 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1207 struct pbf_pN_buf_regs *regs,
1208 u32 poll_count)
1209 {
1210 u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1211 u32 cur_cnt = poll_count;
1212
1213 crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1214 crd = crd_start = REG_RD(bp, regs->crd);
1215 init_crd = REG_RD(bp, regs->init_crd);
1216
1217 DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1218 DP(BNX2X_MSG_SP, "CREDIT[%d] : s:%x\n", regs->pN, crd);
1219 DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1220
1221 while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1222 (init_crd - crd_start))) {
1223 if (cur_cnt--) {
1224 udelay(FLR_WAIT_INTERVAL);
1225 crd = REG_RD(bp, regs->crd);
1226 crd_freed = REG_RD(bp, regs->crd_freed);
1227 } else {
1228 DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1229 regs->pN);
1230 DP(BNX2X_MSG_SP, "CREDIT[%d] : c:%x\n",
1231 regs->pN, crd);
1232 DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1233 regs->pN, crd_freed);
1234 break;
1235 }
1236 }
1237 DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1238 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1239 }
1240
bnx2x_pbf_pN_cmd_flushed(struct bnx2x * bp,struct pbf_pN_cmd_regs * regs,u32 poll_count)1241 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1242 struct pbf_pN_cmd_regs *regs,
1243 u32 poll_count)
1244 {
1245 u32 occup, to_free, freed, freed_start;
1246 u32 cur_cnt = poll_count;
1247
1248 occup = to_free = REG_RD(bp, regs->lines_occup);
1249 freed = freed_start = REG_RD(bp, regs->lines_freed);
1250
1251 DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup);
1252 DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1253
1254 while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1255 if (cur_cnt--) {
1256 udelay(FLR_WAIT_INTERVAL);
1257 occup = REG_RD(bp, regs->lines_occup);
1258 freed = REG_RD(bp, regs->lines_freed);
1259 } else {
1260 DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1261 regs->pN);
1262 DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n",
1263 regs->pN, occup);
1264 DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1265 regs->pN, freed);
1266 break;
1267 }
1268 }
1269 DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1270 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1271 }
1272
bnx2x_flr_clnup_reg_poll(struct bnx2x * bp,u32 reg,u32 expected,u32 poll_count)1273 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1274 u32 expected, u32 poll_count)
1275 {
1276 u32 cur_cnt = poll_count;
1277 u32 val;
1278
1279 while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1280 udelay(FLR_WAIT_INTERVAL);
1281
1282 return val;
1283 }
1284
bnx2x_flr_clnup_poll_hw_counter(struct bnx2x * bp,u32 reg,char * msg,u32 poll_cnt)1285 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1286 char *msg, u32 poll_cnt)
1287 {
1288 u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1289 if (val != 0) {
1290 BNX2X_ERR("%s usage count=%d\n", msg, val);
1291 return 1;
1292 }
1293 return 0;
1294 }
1295
1296 /* Common routines with VF FLR cleanup */
bnx2x_flr_clnup_poll_count(struct bnx2x * bp)1297 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1298 {
1299 /* adjust polling timeout */
1300 if (CHIP_REV_IS_EMUL(bp))
1301 return FLR_POLL_CNT * 2000;
1302
1303 if (CHIP_REV_IS_FPGA(bp))
1304 return FLR_POLL_CNT * 120;
1305
1306 return FLR_POLL_CNT;
1307 }
1308
bnx2x_tx_hw_flushed(struct bnx2x * bp,u32 poll_count)1309 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1310 {
1311 struct pbf_pN_cmd_regs cmd_regs[] = {
1312 {0, (CHIP_IS_E3B0(bp)) ?
1313 PBF_REG_TQ_OCCUPANCY_Q0 :
1314 PBF_REG_P0_TQ_OCCUPANCY,
1315 (CHIP_IS_E3B0(bp)) ?
1316 PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1317 PBF_REG_P0_TQ_LINES_FREED_CNT},
1318 {1, (CHIP_IS_E3B0(bp)) ?
1319 PBF_REG_TQ_OCCUPANCY_Q1 :
1320 PBF_REG_P1_TQ_OCCUPANCY,
1321 (CHIP_IS_E3B0(bp)) ?
1322 PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1323 PBF_REG_P1_TQ_LINES_FREED_CNT},
1324 {4, (CHIP_IS_E3B0(bp)) ?
1325 PBF_REG_TQ_OCCUPANCY_LB_Q :
1326 PBF_REG_P4_TQ_OCCUPANCY,
1327 (CHIP_IS_E3B0(bp)) ?
1328 PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1329 PBF_REG_P4_TQ_LINES_FREED_CNT}
1330 };
1331
1332 struct pbf_pN_buf_regs buf_regs[] = {
1333 {0, (CHIP_IS_E3B0(bp)) ?
1334 PBF_REG_INIT_CRD_Q0 :
1335 PBF_REG_P0_INIT_CRD ,
1336 (CHIP_IS_E3B0(bp)) ?
1337 PBF_REG_CREDIT_Q0 :
1338 PBF_REG_P0_CREDIT,
1339 (CHIP_IS_E3B0(bp)) ?
1340 PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1341 PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1342 {1, (CHIP_IS_E3B0(bp)) ?
1343 PBF_REG_INIT_CRD_Q1 :
1344 PBF_REG_P1_INIT_CRD,
1345 (CHIP_IS_E3B0(bp)) ?
1346 PBF_REG_CREDIT_Q1 :
1347 PBF_REG_P1_CREDIT,
1348 (CHIP_IS_E3B0(bp)) ?
1349 PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1350 PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1351 {4, (CHIP_IS_E3B0(bp)) ?
1352 PBF_REG_INIT_CRD_LB_Q :
1353 PBF_REG_P4_INIT_CRD,
1354 (CHIP_IS_E3B0(bp)) ?
1355 PBF_REG_CREDIT_LB_Q :
1356 PBF_REG_P4_CREDIT,
1357 (CHIP_IS_E3B0(bp)) ?
1358 PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1359 PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1360 };
1361
1362 int i;
1363
1364 /* Verify the command queues are flushed P0, P1, P4 */
1365 for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1366 bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1367
1368 /* Verify the transmission buffers are flushed P0, P1, P4 */
1369 for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1370 bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1371 }
1372
1373 #define OP_GEN_PARAM(param) \
1374 (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1375
1376 #define OP_GEN_TYPE(type) \
1377 (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1378
1379 #define OP_GEN_AGG_VECT(index) \
1380 (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1381
bnx2x_send_final_clnup(struct bnx2x * bp,u8 clnup_func,u32 poll_cnt)1382 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1383 {
1384 u32 op_gen_command = 0;
1385 u32 comp_addr = BAR_CSTRORM_INTMEM +
1386 CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1387 int ret = 0;
1388
1389 if (REG_RD(bp, comp_addr)) {
1390 BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1391 return 1;
1392 }
1393
1394 op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1395 op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1396 op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1397 op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1398
1399 DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1400 REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1401
1402 if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1403 BNX2X_ERR("FW final cleanup did not succeed\n");
1404 DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1405 (REG_RD(bp, comp_addr)));
1406 bnx2x_panic();
1407 return 1;
1408 }
1409 /* Zero completion for next FLR */
1410 REG_WR(bp, comp_addr, 0);
1411
1412 return ret;
1413 }
1414
bnx2x_is_pcie_pending(struct pci_dev * dev)1415 u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1416 {
1417 u16 status;
1418
1419 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1420 return status & PCI_EXP_DEVSTA_TRPND;
1421 }
1422
1423 /* PF FLR specific routines
1424 */
bnx2x_poll_hw_usage_counters(struct bnx2x * bp,u32 poll_cnt)1425 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1426 {
1427 /* wait for CFC PF usage-counter to zero (includes all the VFs) */
1428 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1429 CFC_REG_NUM_LCIDS_INSIDE_PF,
1430 "CFC PF usage counter timed out",
1431 poll_cnt))
1432 return 1;
1433
1434 /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1435 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1436 DORQ_REG_PF_USAGE_CNT,
1437 "DQ PF usage counter timed out",
1438 poll_cnt))
1439 return 1;
1440
1441 /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1442 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1443 QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1444 "QM PF usage counter timed out",
1445 poll_cnt))
1446 return 1;
1447
1448 /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1449 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1450 TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1451 "Timers VNIC usage counter timed out",
1452 poll_cnt))
1453 return 1;
1454 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1455 TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1456 "Timers NUM_SCANS usage counter timed out",
1457 poll_cnt))
1458 return 1;
1459
1460 /* Wait DMAE PF usage counter to zero */
1461 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1462 dmae_reg_go_c[INIT_DMAE_C(bp)],
1463 "DMAE command register timed out",
1464 poll_cnt))
1465 return 1;
1466
1467 return 0;
1468 }
1469
bnx2x_hw_enable_status(struct bnx2x * bp)1470 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1471 {
1472 u32 val;
1473
1474 val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1475 DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1476
1477 val = REG_RD(bp, PBF_REG_DISABLE_PF);
1478 DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1479
1480 val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1481 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1482
1483 val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1484 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1485
1486 val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1487 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1488
1489 val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1490 DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1491
1492 val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1493 DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1494
1495 val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1496 DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1497 val);
1498 }
1499
bnx2x_pf_flr_clnup(struct bnx2x * bp)1500 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1501 {
1502 u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1503
1504 DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1505
1506 /* Re-enable PF target read access */
1507 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1508
1509 /* Poll HW usage counters */
1510 DP(BNX2X_MSG_SP, "Polling usage counters\n");
1511 if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1512 return -EBUSY;
1513
1514 /* Zero the igu 'trailing edge' and 'leading edge' */
1515
1516 /* Send the FW cleanup command */
1517 if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1518 return -EBUSY;
1519
1520 /* ATC cleanup */
1521
1522 /* Verify TX hw is flushed */
1523 bnx2x_tx_hw_flushed(bp, poll_cnt);
1524
1525 /* Wait 100ms (not adjusted according to platform) */
1526 msleep(100);
1527
1528 /* Verify no pending pci transactions */
1529 if (bnx2x_is_pcie_pending(bp->pdev))
1530 BNX2X_ERR("PCIE Transactions still pending\n");
1531
1532 /* Debug */
1533 bnx2x_hw_enable_status(bp);
1534
1535 /*
1536 * Master enable - Due to WB DMAE writes performed before this
1537 * register is re-initialized as part of the regular function init
1538 */
1539 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1540
1541 return 0;
1542 }
1543
bnx2x_hc_int_enable(struct bnx2x * bp)1544 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1545 {
1546 int port = BP_PORT(bp);
1547 u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1548 u32 val = REG_RD(bp, addr);
1549 bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1550 bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1551 bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1552
1553 if (msix) {
1554 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1555 HC_CONFIG_0_REG_INT_LINE_EN_0);
1556 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1557 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1558 if (single_msix)
1559 val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1560 } else if (msi) {
1561 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1562 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1563 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1564 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1565 } else {
1566 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1567 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1568 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1569 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1570
1571 if (!CHIP_IS_E1(bp)) {
1572 DP(NETIF_MSG_IFUP,
1573 "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1574
1575 REG_WR(bp, addr, val);
1576
1577 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1578 }
1579 }
1580
1581 if (CHIP_IS_E1(bp))
1582 REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1583
1584 DP(NETIF_MSG_IFUP,
1585 "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1586 (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1587
1588 REG_WR(bp, addr, val);
1589 /*
1590 * Ensure that HC_CONFIG is written before leading/trailing edge config
1591 */
1592 barrier();
1593
1594 if (!CHIP_IS_E1(bp)) {
1595 /* init leading/trailing edge */
1596 if (IS_MF(bp)) {
1597 val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1598 if (bp->port.pmf)
1599 /* enable nig and gpio3 attention */
1600 val |= 0x1100;
1601 } else
1602 val = 0xffff;
1603
1604 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1605 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1606 }
1607 }
1608
bnx2x_igu_int_enable(struct bnx2x * bp)1609 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1610 {
1611 u32 val;
1612 bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1613 bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1614 bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1615
1616 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1617
1618 if (msix) {
1619 val &= ~(IGU_PF_CONF_INT_LINE_EN |
1620 IGU_PF_CONF_SINGLE_ISR_EN);
1621 val |= (IGU_PF_CONF_MSI_MSIX_EN |
1622 IGU_PF_CONF_ATTN_BIT_EN);
1623
1624 if (single_msix)
1625 val |= IGU_PF_CONF_SINGLE_ISR_EN;
1626 } else if (msi) {
1627 val &= ~IGU_PF_CONF_INT_LINE_EN;
1628 val |= (IGU_PF_CONF_MSI_MSIX_EN |
1629 IGU_PF_CONF_ATTN_BIT_EN |
1630 IGU_PF_CONF_SINGLE_ISR_EN);
1631 } else {
1632 val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1633 val |= (IGU_PF_CONF_INT_LINE_EN |
1634 IGU_PF_CONF_ATTN_BIT_EN |
1635 IGU_PF_CONF_SINGLE_ISR_EN);
1636 }
1637
1638 /* Clean previous status - need to configure igu prior to ack*/
1639 if ((!msix) || single_msix) {
1640 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1641 bnx2x_ack_int(bp);
1642 }
1643
1644 val |= IGU_PF_CONF_FUNC_EN;
1645
1646 DP(NETIF_MSG_IFUP, "write 0x%x to IGU mode %s\n",
1647 val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1648
1649 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1650
1651 if (val & IGU_PF_CONF_INT_LINE_EN)
1652 pci_intx(bp->pdev, true);
1653
1654 barrier();
1655
1656 /* init leading/trailing edge */
1657 if (IS_MF(bp)) {
1658 val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1659 if (bp->port.pmf)
1660 /* enable nig and gpio3 attention */
1661 val |= 0x1100;
1662 } else
1663 val = 0xffff;
1664
1665 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1666 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1667 }
1668
bnx2x_int_enable(struct bnx2x * bp)1669 void bnx2x_int_enable(struct bnx2x *bp)
1670 {
1671 if (bp->common.int_block == INT_BLOCK_HC)
1672 bnx2x_hc_int_enable(bp);
1673 else
1674 bnx2x_igu_int_enable(bp);
1675 }
1676
bnx2x_int_disable_sync(struct bnx2x * bp,int disable_hw)1677 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1678 {
1679 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1680 int i, offset;
1681
1682 if (disable_hw)
1683 /* prevent the HW from sending interrupts */
1684 bnx2x_int_disable(bp);
1685
1686 /* make sure all ISRs are done */
1687 if (msix) {
1688 synchronize_irq(bp->msix_table[0].vector);
1689 offset = 1;
1690 if (CNIC_SUPPORT(bp))
1691 offset++;
1692 for_each_eth_queue(bp, i)
1693 synchronize_irq(bp->msix_table[offset++].vector);
1694 } else
1695 synchronize_irq(bp->pdev->irq);
1696
1697 /* make sure sp_task is not running */
1698 cancel_delayed_work(&bp->sp_task);
1699 cancel_delayed_work(&bp->period_task);
1700 flush_workqueue(bnx2x_wq);
1701 }
1702
1703 /* fast path */
1704
1705 /*
1706 * General service functions
1707 */
1708
1709 /* Return true if succeeded to acquire the lock */
bnx2x_trylock_hw_lock(struct bnx2x * bp,u32 resource)1710 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1711 {
1712 u32 lock_status;
1713 u32 resource_bit = (1 << resource);
1714 int func = BP_FUNC(bp);
1715 u32 hw_lock_control_reg;
1716
1717 DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1718 "Trying to take a lock on resource %d\n", resource);
1719
1720 /* Validating that the resource is within range */
1721 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1722 DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1723 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1724 resource, HW_LOCK_MAX_RESOURCE_VALUE);
1725 return false;
1726 }
1727
1728 if (func <= 5)
1729 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1730 else
1731 hw_lock_control_reg =
1732 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1733
1734 /* Try to acquire the lock */
1735 REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1736 lock_status = REG_RD(bp, hw_lock_control_reg);
1737 if (lock_status & resource_bit)
1738 return true;
1739
1740 DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1741 "Failed to get a lock on resource %d\n", resource);
1742 return false;
1743 }
1744
1745 /**
1746 * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1747 *
1748 * @bp: driver handle
1749 *
1750 * Returns the recovery leader resource id according to the engine this function
1751 * belongs to. Currently only only 2 engines is supported.
1752 */
bnx2x_get_leader_lock_resource(struct bnx2x * bp)1753 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1754 {
1755 if (BP_PATH(bp))
1756 return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1757 else
1758 return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1759 }
1760
1761 /**
1762 * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1763 *
1764 * @bp: driver handle
1765 *
1766 * Tries to acquire a leader lock for current engine.
1767 */
bnx2x_trylock_leader_lock(struct bnx2x * bp)1768 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1769 {
1770 return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1771 }
1772
1773 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1774
1775 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */
bnx2x_schedule_sp_task(struct bnx2x * bp)1776 static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1777 {
1778 /* Set the interrupt occurred bit for the sp-task to recognize it
1779 * must ack the interrupt and transition according to the IGU
1780 * state machine.
1781 */
1782 atomic_set(&bp->interrupt_occurred, 1);
1783
1784 /* The sp_task must execute only after this bit
1785 * is set, otherwise we will get out of sync and miss all
1786 * further interrupts. Hence, the barrier.
1787 */
1788 smp_wmb();
1789
1790 /* schedule sp_task to workqueue */
1791 return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1792 }
1793
bnx2x_sp_event(struct bnx2x_fastpath * fp,union eth_rx_cqe * rr_cqe)1794 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1795 {
1796 struct bnx2x *bp = fp->bp;
1797 int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1798 int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1799 enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1800 struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1801
1802 DP(BNX2X_MSG_SP,
1803 "fp %d cid %d got ramrod #%d state is %x type is %d\n",
1804 fp->index, cid, command, bp->state,
1805 rr_cqe->ramrod_cqe.ramrod_type);
1806
1807 /* If cid is within VF range, replace the slowpath object with the
1808 * one corresponding to this VF
1809 */
1810 if (cid >= BNX2X_FIRST_VF_CID &&
1811 cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1812 bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1813
1814 switch (command) {
1815 case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1816 DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1817 drv_cmd = BNX2X_Q_CMD_UPDATE;
1818 break;
1819
1820 case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1821 DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1822 drv_cmd = BNX2X_Q_CMD_SETUP;
1823 break;
1824
1825 case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1826 DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1827 drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1828 break;
1829
1830 case (RAMROD_CMD_ID_ETH_HALT):
1831 DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1832 drv_cmd = BNX2X_Q_CMD_HALT;
1833 break;
1834
1835 case (RAMROD_CMD_ID_ETH_TERMINATE):
1836 DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid);
1837 drv_cmd = BNX2X_Q_CMD_TERMINATE;
1838 break;
1839
1840 case (RAMROD_CMD_ID_ETH_EMPTY):
1841 DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1842 drv_cmd = BNX2X_Q_CMD_EMPTY;
1843 break;
1844
1845 case (RAMROD_CMD_ID_ETH_TPA_UPDATE):
1846 DP(BNX2X_MSG_SP, "got tpa update ramrod CID=%d\n", cid);
1847 drv_cmd = BNX2X_Q_CMD_UPDATE_TPA;
1848 break;
1849
1850 default:
1851 BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1852 command, fp->index);
1853 return;
1854 }
1855
1856 if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1857 q_obj->complete_cmd(bp, q_obj, drv_cmd))
1858 /* q_obj->complete_cmd() failure means that this was
1859 * an unexpected completion.
1860 *
1861 * In this case we don't want to increase the bp->spq_left
1862 * because apparently we haven't sent this command the first
1863 * place.
1864 */
1865 #ifdef BNX2X_STOP_ON_ERROR
1866 bnx2x_panic();
1867 #else
1868 return;
1869 #endif
1870
1871 smp_mb__before_atomic();
1872 atomic_inc(&bp->cq_spq_left);
1873 /* push the change in bp->spq_left and towards the memory */
1874 smp_mb__after_atomic();
1875
1876 DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1877
1878 if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1879 (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1880 /* if Q update ramrod is completed for last Q in AFEX vif set
1881 * flow, then ACK MCP at the end
1882 *
1883 * mark pending ACK to MCP bit.
1884 * prevent case that both bits are cleared.
1885 * At the end of load/unload driver checks that
1886 * sp_state is cleared, and this order prevents
1887 * races
1888 */
1889 smp_mb__before_atomic();
1890 set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1891 wmb();
1892 clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1893 smp_mb__after_atomic();
1894
1895 /* schedule the sp task as mcp ack is required */
1896 bnx2x_schedule_sp_task(bp);
1897 }
1898
1899 return;
1900 }
1901
bnx2x_interrupt(int irq,void * dev_instance)1902 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1903 {
1904 struct bnx2x *bp = netdev_priv(dev_instance);
1905 u16 status = bnx2x_ack_int(bp);
1906 u16 mask;
1907 int i;
1908 u8 cos;
1909
1910 /* Return here if interrupt is shared and it's not for us */
1911 if (unlikely(status == 0)) {
1912 DP(NETIF_MSG_INTR, "not our interrupt!\n");
1913 return IRQ_NONE;
1914 }
1915 DP(NETIF_MSG_INTR, "got an interrupt status 0x%x\n", status);
1916
1917 #ifdef BNX2X_STOP_ON_ERROR
1918 if (unlikely(bp->panic))
1919 return IRQ_HANDLED;
1920 #endif
1921
1922 for_each_eth_queue(bp, i) {
1923 struct bnx2x_fastpath *fp = &bp->fp[i];
1924
1925 mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1926 if (status & mask) {
1927 /* Handle Rx or Tx according to SB id */
1928 for_each_cos_in_tx_queue(fp, cos)
1929 prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1930 prefetch(&fp->sb_running_index[SM_RX_ID]);
1931 napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi));
1932 status &= ~mask;
1933 }
1934 }
1935
1936 if (CNIC_SUPPORT(bp)) {
1937 mask = 0x2;
1938 if (status & (mask | 0x1)) {
1939 struct cnic_ops *c_ops = NULL;
1940
1941 rcu_read_lock();
1942 c_ops = rcu_dereference(bp->cnic_ops);
1943 if (c_ops && (bp->cnic_eth_dev.drv_state &
1944 CNIC_DRV_STATE_HANDLES_IRQ))
1945 c_ops->cnic_handler(bp->cnic_data, NULL);
1946 rcu_read_unlock();
1947
1948 status &= ~mask;
1949 }
1950 }
1951
1952 if (unlikely(status & 0x1)) {
1953
1954 /* schedule sp task to perform default status block work, ack
1955 * attentions and enable interrupts.
1956 */
1957 bnx2x_schedule_sp_task(bp);
1958
1959 status &= ~0x1;
1960 if (!status)
1961 return IRQ_HANDLED;
1962 }
1963
1964 if (unlikely(status))
1965 DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1966 status);
1967
1968 return IRQ_HANDLED;
1969 }
1970
1971 /* Link */
1972
1973 /*
1974 * General service functions
1975 */
1976
bnx2x_acquire_hw_lock(struct bnx2x * bp,u32 resource)1977 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1978 {
1979 u32 lock_status;
1980 u32 resource_bit = (1 << resource);
1981 int func = BP_FUNC(bp);
1982 u32 hw_lock_control_reg;
1983 int cnt;
1984
1985 /* Validating that the resource is within range */
1986 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1987 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1988 resource, HW_LOCK_MAX_RESOURCE_VALUE);
1989 return -EINVAL;
1990 }
1991
1992 if (func <= 5) {
1993 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1994 } else {
1995 hw_lock_control_reg =
1996 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1997 }
1998
1999 /* Validating that the resource is not already taken */
2000 lock_status = REG_RD(bp, hw_lock_control_reg);
2001 if (lock_status & resource_bit) {
2002 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x\n",
2003 lock_status, resource_bit);
2004 return -EEXIST;
2005 }
2006
2007 /* Try for 5 second every 5ms */
2008 for (cnt = 0; cnt < 1000; cnt++) {
2009 /* Try to acquire the lock */
2010 REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
2011 lock_status = REG_RD(bp, hw_lock_control_reg);
2012 if (lock_status & resource_bit)
2013 return 0;
2014
2015 usleep_range(5000, 10000);
2016 }
2017 BNX2X_ERR("Timeout\n");
2018 return -EAGAIN;
2019 }
2020
bnx2x_release_leader_lock(struct bnx2x * bp)2021 int bnx2x_release_leader_lock(struct bnx2x *bp)
2022 {
2023 return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
2024 }
2025
bnx2x_release_hw_lock(struct bnx2x * bp,u32 resource)2026 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
2027 {
2028 u32 lock_status;
2029 u32 resource_bit = (1 << resource);
2030 int func = BP_FUNC(bp);
2031 u32 hw_lock_control_reg;
2032
2033 /* Validating that the resource is within range */
2034 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2035 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2036 resource, HW_LOCK_MAX_RESOURCE_VALUE);
2037 return -EINVAL;
2038 }
2039
2040 if (func <= 5) {
2041 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2042 } else {
2043 hw_lock_control_reg =
2044 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2045 }
2046
2047 /* Validating that the resource is currently taken */
2048 lock_status = REG_RD(bp, hw_lock_control_reg);
2049 if (!(lock_status & resource_bit)) {
2050 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
2051 lock_status, resource_bit);
2052 return -EFAULT;
2053 }
2054
2055 REG_WR(bp, hw_lock_control_reg, resource_bit);
2056 return 0;
2057 }
2058
bnx2x_get_gpio(struct bnx2x * bp,int gpio_num,u8 port)2059 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
2060 {
2061 /* The GPIO should be swapped if swap register is set and active */
2062 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2063 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2064 int gpio_shift = gpio_num +
2065 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2066 u32 gpio_mask = (1 << gpio_shift);
2067 u32 gpio_reg;
2068 int value;
2069
2070 if (gpio_num > MISC_REGISTERS_GPIO_3) {
2071 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2072 return -EINVAL;
2073 }
2074
2075 /* read GPIO value */
2076 gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2077
2078 /* get the requested pin value */
2079 if ((gpio_reg & gpio_mask) == gpio_mask)
2080 value = 1;
2081 else
2082 value = 0;
2083
2084 return value;
2085 }
2086
bnx2x_set_gpio(struct bnx2x * bp,int gpio_num,u32 mode,u8 port)2087 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2088 {
2089 /* The GPIO should be swapped if swap register is set and active */
2090 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2091 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2092 int gpio_shift = gpio_num +
2093 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2094 u32 gpio_mask = (1 << gpio_shift);
2095 u32 gpio_reg;
2096
2097 if (gpio_num > MISC_REGISTERS_GPIO_3) {
2098 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2099 return -EINVAL;
2100 }
2101
2102 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2103 /* read GPIO and mask except the float bits */
2104 gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2105
2106 switch (mode) {
2107 case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2108 DP(NETIF_MSG_LINK,
2109 "Set GPIO %d (shift %d) -> output low\n",
2110 gpio_num, gpio_shift);
2111 /* clear FLOAT and set CLR */
2112 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2113 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2114 break;
2115
2116 case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2117 DP(NETIF_MSG_LINK,
2118 "Set GPIO %d (shift %d) -> output high\n",
2119 gpio_num, gpio_shift);
2120 /* clear FLOAT and set SET */
2121 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2122 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2123 break;
2124
2125 case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2126 DP(NETIF_MSG_LINK,
2127 "Set GPIO %d (shift %d) -> input\n",
2128 gpio_num, gpio_shift);
2129 /* set FLOAT */
2130 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2131 break;
2132
2133 default:
2134 break;
2135 }
2136
2137 REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2138 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2139
2140 return 0;
2141 }
2142
bnx2x_set_mult_gpio(struct bnx2x * bp,u8 pins,u32 mode)2143 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2144 {
2145 u32 gpio_reg = 0;
2146 int rc = 0;
2147
2148 /* Any port swapping should be handled by caller. */
2149
2150 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2151 /* read GPIO and mask except the float bits */
2152 gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2153 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2154 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2155 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2156
2157 switch (mode) {
2158 case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2159 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2160 /* set CLR */
2161 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2162 break;
2163
2164 case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2165 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2166 /* set SET */
2167 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2168 break;
2169
2170 case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2171 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2172 /* set FLOAT */
2173 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2174 break;
2175
2176 default:
2177 BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2178 rc = -EINVAL;
2179 break;
2180 }
2181
2182 if (rc == 0)
2183 REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2184
2185 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2186
2187 return rc;
2188 }
2189
bnx2x_set_gpio_int(struct bnx2x * bp,int gpio_num,u32 mode,u8 port)2190 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2191 {
2192 /* The GPIO should be swapped if swap register is set and active */
2193 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2194 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2195 int gpio_shift = gpio_num +
2196 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2197 u32 gpio_mask = (1 << gpio_shift);
2198 u32 gpio_reg;
2199
2200 if (gpio_num > MISC_REGISTERS_GPIO_3) {
2201 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2202 return -EINVAL;
2203 }
2204
2205 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2206 /* read GPIO int */
2207 gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2208
2209 switch (mode) {
2210 case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2211 DP(NETIF_MSG_LINK,
2212 "Clear GPIO INT %d (shift %d) -> output low\n",
2213 gpio_num, gpio_shift);
2214 /* clear SET and set CLR */
2215 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2216 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2217 break;
2218
2219 case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2220 DP(NETIF_MSG_LINK,
2221 "Set GPIO INT %d (shift %d) -> output high\n",
2222 gpio_num, gpio_shift);
2223 /* clear CLR and set SET */
2224 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2225 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2226 break;
2227
2228 default:
2229 break;
2230 }
2231
2232 REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2233 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2234
2235 return 0;
2236 }
2237
bnx2x_set_spio(struct bnx2x * bp,int spio,u32 mode)2238 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2239 {
2240 u32 spio_reg;
2241
2242 /* Only 2 SPIOs are configurable */
2243 if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2244 BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2245 return -EINVAL;
2246 }
2247
2248 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2249 /* read SPIO and mask except the float bits */
2250 spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2251
2252 switch (mode) {
2253 case MISC_SPIO_OUTPUT_LOW:
2254 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2255 /* clear FLOAT and set CLR */
2256 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2257 spio_reg |= (spio << MISC_SPIO_CLR_POS);
2258 break;
2259
2260 case MISC_SPIO_OUTPUT_HIGH:
2261 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2262 /* clear FLOAT and set SET */
2263 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2264 spio_reg |= (spio << MISC_SPIO_SET_POS);
2265 break;
2266
2267 case MISC_SPIO_INPUT_HI_Z:
2268 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2269 /* set FLOAT */
2270 spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2271 break;
2272
2273 default:
2274 break;
2275 }
2276
2277 REG_WR(bp, MISC_REG_SPIO, spio_reg);
2278 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2279
2280 return 0;
2281 }
2282
bnx2x_calc_fc_adv(struct bnx2x * bp)2283 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2284 {
2285 u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2286
2287 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2288 ADVERTISED_Pause);
2289 switch (bp->link_vars.ieee_fc &
2290 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2291 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2292 bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2293 ADVERTISED_Pause);
2294 break;
2295
2296 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2297 bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2298 break;
2299
2300 default:
2301 break;
2302 }
2303 }
2304
bnx2x_set_requested_fc(struct bnx2x * bp)2305 static void bnx2x_set_requested_fc(struct bnx2x *bp)
2306 {
2307 /* Initialize link parameters structure variables
2308 * It is recommended to turn off RX FC for jumbo frames
2309 * for better performance
2310 */
2311 if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2312 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2313 else
2314 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2315 }
2316
bnx2x_init_dropless_fc(struct bnx2x * bp)2317 static void bnx2x_init_dropless_fc(struct bnx2x *bp)
2318 {
2319 u32 pause_enabled = 0;
2320
2321 if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) {
2322 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2323 pause_enabled = 1;
2324
2325 REG_WR(bp, BAR_USTRORM_INTMEM +
2326 USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)),
2327 pause_enabled);
2328 }
2329
2330 DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n",
2331 pause_enabled ? "enabled" : "disabled");
2332 }
2333
bnx2x_initial_phy_init(struct bnx2x * bp,int load_mode)2334 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2335 {
2336 int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2337 u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2338
2339 if (!BP_NOMCP(bp)) {
2340 bnx2x_set_requested_fc(bp);
2341 bnx2x_acquire_phy_lock(bp);
2342
2343 if (load_mode == LOAD_DIAG) {
2344 struct link_params *lp = &bp->link_params;
2345 lp->loopback_mode = LOOPBACK_XGXS;
2346 /* Prefer doing PHY loopback at highest speed */
2347 if (lp->req_line_speed[cfx_idx] < SPEED_20000) {
2348 if (lp->speed_cap_mask[cfx_idx] &
2349 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)
2350 lp->req_line_speed[cfx_idx] =
2351 SPEED_20000;
2352 else if (lp->speed_cap_mask[cfx_idx] &
2353 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2354 lp->req_line_speed[cfx_idx] =
2355 SPEED_10000;
2356 else
2357 lp->req_line_speed[cfx_idx] =
2358 SPEED_1000;
2359 }
2360 }
2361
2362 if (load_mode == LOAD_LOOPBACK_EXT) {
2363 struct link_params *lp = &bp->link_params;
2364 lp->loopback_mode = LOOPBACK_EXT;
2365 }
2366
2367 rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2368
2369 bnx2x_release_phy_lock(bp);
2370
2371 bnx2x_init_dropless_fc(bp);
2372
2373 bnx2x_calc_fc_adv(bp);
2374
2375 if (bp->link_vars.link_up) {
2376 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2377 bnx2x_link_report(bp);
2378 }
2379 queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2380 bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2381 return rc;
2382 }
2383 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2384 return -EINVAL;
2385 }
2386
bnx2x_link_set(struct bnx2x * bp)2387 void bnx2x_link_set(struct bnx2x *bp)
2388 {
2389 if (!BP_NOMCP(bp)) {
2390 bnx2x_acquire_phy_lock(bp);
2391 bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2392 bnx2x_release_phy_lock(bp);
2393
2394 bnx2x_init_dropless_fc(bp);
2395
2396 bnx2x_calc_fc_adv(bp);
2397 } else
2398 BNX2X_ERR("Bootcode is missing - can not set link\n");
2399 }
2400
bnx2x__link_reset(struct bnx2x * bp)2401 static void bnx2x__link_reset(struct bnx2x *bp)
2402 {
2403 if (!BP_NOMCP(bp)) {
2404 bnx2x_acquire_phy_lock(bp);
2405 bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2406 bnx2x_release_phy_lock(bp);
2407 } else
2408 BNX2X_ERR("Bootcode is missing - can not reset link\n");
2409 }
2410
bnx2x_force_link_reset(struct bnx2x * bp)2411 void bnx2x_force_link_reset(struct bnx2x *bp)
2412 {
2413 bnx2x_acquire_phy_lock(bp);
2414 bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2415 bnx2x_release_phy_lock(bp);
2416 }
2417
bnx2x_link_test(struct bnx2x * bp,u8 is_serdes)2418 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2419 {
2420 u8 rc = 0;
2421
2422 if (!BP_NOMCP(bp)) {
2423 bnx2x_acquire_phy_lock(bp);
2424 rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2425 is_serdes);
2426 bnx2x_release_phy_lock(bp);
2427 } else
2428 BNX2X_ERR("Bootcode is missing - can not test link\n");
2429
2430 return rc;
2431 }
2432
2433 /* Calculates the sum of vn_min_rates.
2434 It's needed for further normalizing of the min_rates.
2435 Returns:
2436 sum of vn_min_rates.
2437 or
2438 0 - if all the min_rates are 0.
2439 In the later case fairness algorithm should be deactivated.
2440 If not all min_rates are zero then those that are zeroes will be set to 1.
2441 */
bnx2x_calc_vn_min(struct bnx2x * bp,struct cmng_init_input * input)2442 static void bnx2x_calc_vn_min(struct bnx2x *bp,
2443 struct cmng_init_input *input)
2444 {
2445 int all_zero = 1;
2446 int vn;
2447
2448 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2449 u32 vn_cfg = bp->mf_config[vn];
2450 u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2451 FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2452
2453 /* Skip hidden vns */
2454 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2455 vn_min_rate = 0;
2456 /* If min rate is zero - set it to 1 */
2457 else if (!vn_min_rate)
2458 vn_min_rate = DEF_MIN_RATE;
2459 else
2460 all_zero = 0;
2461
2462 input->vnic_min_rate[vn] = vn_min_rate;
2463 }
2464
2465 /* if ETS or all min rates are zeros - disable fairness */
2466 if (BNX2X_IS_ETS_ENABLED(bp)) {
2467 input->flags.cmng_enables &=
2468 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2469 DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2470 } else if (all_zero) {
2471 input->flags.cmng_enables &=
2472 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2473 DP(NETIF_MSG_IFUP,
2474 "All MIN values are zeroes fairness will be disabled\n");
2475 } else
2476 input->flags.cmng_enables |=
2477 CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2478 }
2479
bnx2x_calc_vn_max(struct bnx2x * bp,int vn,struct cmng_init_input * input)2480 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2481 struct cmng_init_input *input)
2482 {
2483 u16 vn_max_rate;
2484 u32 vn_cfg = bp->mf_config[vn];
2485
2486 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2487 vn_max_rate = 0;
2488 else {
2489 u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2490
2491 if (IS_MF_PERCENT_BW(bp)) {
2492 /* maxCfg in percents of linkspeed */
2493 vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2494 } else /* SD modes */
2495 /* maxCfg is absolute in 100Mb units */
2496 vn_max_rate = maxCfg * 100;
2497 }
2498
2499 DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2500
2501 input->vnic_max_rate[vn] = vn_max_rate;
2502 }
2503
bnx2x_get_cmng_fns_mode(struct bnx2x * bp)2504 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2505 {
2506 if (CHIP_REV_IS_SLOW(bp))
2507 return CMNG_FNS_NONE;
2508 if (IS_MF(bp))
2509 return CMNG_FNS_MINMAX;
2510
2511 return CMNG_FNS_NONE;
2512 }
2513
bnx2x_read_mf_cfg(struct bnx2x * bp)2514 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2515 {
2516 int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2517
2518 if (BP_NOMCP(bp))
2519 return; /* what should be the default value in this case */
2520
2521 /* For 2 port configuration the absolute function number formula
2522 * is:
2523 * abs_func = 2 * vn + BP_PORT + BP_PATH
2524 *
2525 * and there are 4 functions per port
2526 *
2527 * For 4 port configuration it is
2528 * abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2529 *
2530 * and there are 2 functions per port
2531 */
2532 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2533 int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2534
2535 if (func >= E1H_FUNC_MAX)
2536 break;
2537
2538 bp->mf_config[vn] =
2539 MF_CFG_RD(bp, func_mf_config[func].config);
2540 }
2541 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2542 DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2543 bp->flags |= MF_FUNC_DIS;
2544 } else {
2545 DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2546 bp->flags &= ~MF_FUNC_DIS;
2547 }
2548 }
2549
bnx2x_cmng_fns_init(struct bnx2x * bp,u8 read_cfg,u8 cmng_type)2550 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2551 {
2552 struct cmng_init_input input;
2553 memset(&input, 0, sizeof(struct cmng_init_input));
2554
2555 input.port_rate = bp->link_vars.line_speed;
2556
2557 if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) {
2558 int vn;
2559
2560 /* read mf conf from shmem */
2561 if (read_cfg)
2562 bnx2x_read_mf_cfg(bp);
2563
2564 /* vn_weight_sum and enable fairness if not 0 */
2565 bnx2x_calc_vn_min(bp, &input);
2566
2567 /* calculate and set min-max rate for each vn */
2568 if (bp->port.pmf)
2569 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2570 bnx2x_calc_vn_max(bp, vn, &input);
2571
2572 /* always enable rate shaping and fairness */
2573 input.flags.cmng_enables |=
2574 CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2575
2576 bnx2x_init_cmng(&input, &bp->cmng);
2577 return;
2578 }
2579
2580 /* rate shaping and fairness are disabled */
2581 DP(NETIF_MSG_IFUP,
2582 "rate shaping and fairness are disabled\n");
2583 }
2584
storm_memset_cmng(struct bnx2x * bp,struct cmng_init * cmng,u8 port)2585 static void storm_memset_cmng(struct bnx2x *bp,
2586 struct cmng_init *cmng,
2587 u8 port)
2588 {
2589 int vn;
2590 size_t size = sizeof(struct cmng_struct_per_port);
2591
2592 u32 addr = BAR_XSTRORM_INTMEM +
2593 XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2594
2595 __storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2596
2597 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2598 int func = func_by_vn(bp, vn);
2599
2600 addr = BAR_XSTRORM_INTMEM +
2601 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2602 size = sizeof(struct rate_shaping_vars_per_vn);
2603 __storm_memset_struct(bp, addr, size,
2604 (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2605
2606 addr = BAR_XSTRORM_INTMEM +
2607 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2608 size = sizeof(struct fairness_vars_per_vn);
2609 __storm_memset_struct(bp, addr, size,
2610 (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2611 }
2612 }
2613
2614 /* init cmng mode in HW according to local configuration */
bnx2x_set_local_cmng(struct bnx2x * bp)2615 void bnx2x_set_local_cmng(struct bnx2x *bp)
2616 {
2617 int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2618
2619 if (cmng_fns != CMNG_FNS_NONE) {
2620 bnx2x_cmng_fns_init(bp, false, cmng_fns);
2621 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2622 } else {
2623 /* rate shaping and fairness are disabled */
2624 DP(NETIF_MSG_IFUP,
2625 "single function mode without fairness\n");
2626 }
2627 }
2628
2629 /* This function is called upon link interrupt */
bnx2x_link_attn(struct bnx2x * bp)2630 static void bnx2x_link_attn(struct bnx2x *bp)
2631 {
2632 /* Make sure that we are synced with the current statistics */
2633 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2634
2635 bnx2x_link_update(&bp->link_params, &bp->link_vars);
2636
2637 bnx2x_init_dropless_fc(bp);
2638
2639 if (bp->link_vars.link_up) {
2640
2641 if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2642 struct host_port_stats *pstats;
2643
2644 pstats = bnx2x_sp(bp, port_stats);
2645 /* reset old mac stats */
2646 memset(&(pstats->mac_stx[0]), 0,
2647 sizeof(struct mac_stx));
2648 }
2649 if (bp->state == BNX2X_STATE_OPEN)
2650 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2651 }
2652
2653 if (bp->link_vars.link_up && bp->link_vars.line_speed)
2654 bnx2x_set_local_cmng(bp);
2655
2656 __bnx2x_link_report(bp);
2657
2658 if (IS_MF(bp))
2659 bnx2x_link_sync_notify(bp);
2660 }
2661
bnx2x__link_status_update(struct bnx2x * bp)2662 void bnx2x__link_status_update(struct bnx2x *bp)
2663 {
2664 if (bp->state != BNX2X_STATE_OPEN)
2665 return;
2666
2667 /* read updated dcb configuration */
2668 if (IS_PF(bp)) {
2669 bnx2x_dcbx_pmf_update(bp);
2670 bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2671 if (bp->link_vars.link_up)
2672 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2673 else
2674 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2675 /* indicate link status */
2676 bnx2x_link_report(bp);
2677
2678 } else { /* VF */
2679 bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2680 SUPPORTED_10baseT_Full |
2681 SUPPORTED_100baseT_Half |
2682 SUPPORTED_100baseT_Full |
2683 SUPPORTED_1000baseT_Full |
2684 SUPPORTED_2500baseX_Full |
2685 SUPPORTED_10000baseT_Full |
2686 SUPPORTED_TP |
2687 SUPPORTED_FIBRE |
2688 SUPPORTED_Autoneg |
2689 SUPPORTED_Pause |
2690 SUPPORTED_Asym_Pause);
2691 bp->port.advertising[0] = bp->port.supported[0];
2692
2693 bp->link_params.bp = bp;
2694 bp->link_params.port = BP_PORT(bp);
2695 bp->link_params.req_duplex[0] = DUPLEX_FULL;
2696 bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2697 bp->link_params.req_line_speed[0] = SPEED_10000;
2698 bp->link_params.speed_cap_mask[0] = 0x7f0000;
2699 bp->link_params.switch_cfg = SWITCH_CFG_10G;
2700 bp->link_vars.mac_type = MAC_TYPE_BMAC;
2701 bp->link_vars.line_speed = SPEED_10000;
2702 bp->link_vars.link_status =
2703 (LINK_STATUS_LINK_UP |
2704 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2705 bp->link_vars.link_up = 1;
2706 bp->link_vars.duplex = DUPLEX_FULL;
2707 bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2708 __bnx2x_link_report(bp);
2709
2710 bnx2x_sample_bulletin(bp);
2711
2712 /* if bulletin board did not have an update for link status
2713 * __bnx2x_link_report will report current status
2714 * but it will NOT duplicate report in case of already reported
2715 * during sampling bulletin board.
2716 */
2717 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2718 }
2719 }
2720
bnx2x_afex_func_update(struct bnx2x * bp,u16 vifid,u16 vlan_val,u8 allowed_prio)2721 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2722 u16 vlan_val, u8 allowed_prio)
2723 {
2724 struct bnx2x_func_state_params func_params = {NULL};
2725 struct bnx2x_func_afex_update_params *f_update_params =
2726 &func_params.params.afex_update;
2727
2728 func_params.f_obj = &bp->func_obj;
2729 func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2730
2731 /* no need to wait for RAMROD completion, so don't
2732 * set RAMROD_COMP_WAIT flag
2733 */
2734
2735 f_update_params->vif_id = vifid;
2736 f_update_params->afex_default_vlan = vlan_val;
2737 f_update_params->allowed_priorities = allowed_prio;
2738
2739 /* if ramrod can not be sent, response to MCP immediately */
2740 if (bnx2x_func_state_change(bp, &func_params) < 0)
2741 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2742
2743 return 0;
2744 }
2745
bnx2x_afex_handle_vif_list_cmd(struct bnx2x * bp,u8 cmd_type,u16 vif_index,u8 func_bit_map)2746 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2747 u16 vif_index, u8 func_bit_map)
2748 {
2749 struct bnx2x_func_state_params func_params = {NULL};
2750 struct bnx2x_func_afex_viflists_params *update_params =
2751 &func_params.params.afex_viflists;
2752 int rc;
2753 u32 drv_msg_code;
2754
2755 /* validate only LIST_SET and LIST_GET are received from switch */
2756 if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2757 BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2758 cmd_type);
2759
2760 func_params.f_obj = &bp->func_obj;
2761 func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2762
2763 /* set parameters according to cmd_type */
2764 update_params->afex_vif_list_command = cmd_type;
2765 update_params->vif_list_index = vif_index;
2766 update_params->func_bit_map =
2767 (cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2768 update_params->func_to_clear = 0;
2769 drv_msg_code =
2770 (cmd_type == VIF_LIST_RULE_GET) ?
2771 DRV_MSG_CODE_AFEX_LISTGET_ACK :
2772 DRV_MSG_CODE_AFEX_LISTSET_ACK;
2773
2774 /* if ramrod can not be sent, respond to MCP immediately for
2775 * SET and GET requests (other are not triggered from MCP)
2776 */
2777 rc = bnx2x_func_state_change(bp, &func_params);
2778 if (rc < 0)
2779 bnx2x_fw_command(bp, drv_msg_code, 0);
2780
2781 return 0;
2782 }
2783
bnx2x_handle_afex_cmd(struct bnx2x * bp,u32 cmd)2784 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2785 {
2786 struct afex_stats afex_stats;
2787 u32 func = BP_ABS_FUNC(bp);
2788 u32 mf_config;
2789 u16 vlan_val;
2790 u32 vlan_prio;
2791 u16 vif_id;
2792 u8 allowed_prio;
2793 u8 vlan_mode;
2794 u32 addr_to_write, vifid, addrs, stats_type, i;
2795
2796 if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2797 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2798 DP(BNX2X_MSG_MCP,
2799 "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2800 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2801 }
2802
2803 if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2804 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2805 addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2806 DP(BNX2X_MSG_MCP,
2807 "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2808 vifid, addrs);
2809 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2810 addrs);
2811 }
2812
2813 if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2814 addr_to_write = SHMEM2_RD(bp,
2815 afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2816 stats_type = SHMEM2_RD(bp,
2817 afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2818
2819 DP(BNX2X_MSG_MCP,
2820 "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2821 addr_to_write);
2822
2823 bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2824
2825 /* write response to scratchpad, for MCP */
2826 for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2827 REG_WR(bp, addr_to_write + i*sizeof(u32),
2828 *(((u32 *)(&afex_stats))+i));
2829
2830 /* send ack message to MCP */
2831 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2832 }
2833
2834 if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2835 mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2836 bp->mf_config[BP_VN(bp)] = mf_config;
2837 DP(BNX2X_MSG_MCP,
2838 "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2839 mf_config);
2840
2841 /* if VIF_SET is "enabled" */
2842 if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2843 /* set rate limit directly to internal RAM */
2844 struct cmng_init_input cmng_input;
2845 struct rate_shaping_vars_per_vn m_rs_vn;
2846 size_t size = sizeof(struct rate_shaping_vars_per_vn);
2847 u32 addr = BAR_XSTRORM_INTMEM +
2848 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2849
2850 bp->mf_config[BP_VN(bp)] = mf_config;
2851
2852 bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2853 m_rs_vn.vn_counter.rate =
2854 cmng_input.vnic_max_rate[BP_VN(bp)];
2855 m_rs_vn.vn_counter.quota =
2856 (m_rs_vn.vn_counter.rate *
2857 RS_PERIODIC_TIMEOUT_USEC) / 8;
2858
2859 __storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2860
2861 /* read relevant values from mf_cfg struct in shmem */
2862 vif_id =
2863 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2864 FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2865 FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2866 vlan_val =
2867 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2868 FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2869 FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2870 vlan_prio = (mf_config &
2871 FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2872 FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2873 vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2874 vlan_mode =
2875 (MF_CFG_RD(bp,
2876 func_mf_config[func].afex_config) &
2877 FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2878 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2879 allowed_prio =
2880 (MF_CFG_RD(bp,
2881 func_mf_config[func].afex_config) &
2882 FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2883 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2884
2885 /* send ramrod to FW, return in case of failure */
2886 if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2887 allowed_prio))
2888 return;
2889
2890 bp->afex_def_vlan_tag = vlan_val;
2891 bp->afex_vlan_mode = vlan_mode;
2892 } else {
2893 /* notify link down because BP->flags is disabled */
2894 bnx2x_link_report(bp);
2895
2896 /* send INVALID VIF ramrod to FW */
2897 bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2898
2899 /* Reset the default afex VLAN */
2900 bp->afex_def_vlan_tag = -1;
2901 }
2902 }
2903 }
2904
bnx2x_handle_update_svid_cmd(struct bnx2x * bp)2905 static void bnx2x_handle_update_svid_cmd(struct bnx2x *bp)
2906 {
2907 struct bnx2x_func_switch_update_params *switch_update_params;
2908 struct bnx2x_func_state_params func_params;
2909
2910 memset(&func_params, 0, sizeof(struct bnx2x_func_state_params));
2911 switch_update_params = &func_params.params.switch_update;
2912 func_params.f_obj = &bp->func_obj;
2913 func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
2914
2915 /* Prepare parameters for function state transitions */
2916 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
2917 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
2918
2919 if (IS_MF_UFP(bp) || IS_MF_BD(bp)) {
2920 int func = BP_ABS_FUNC(bp);
2921 u32 val;
2922
2923 /* Re-learn the S-tag from shmem */
2924 val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2925 FUNC_MF_CFG_E1HOV_TAG_MASK;
2926 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
2927 bp->mf_ov = val;
2928 } else {
2929 BNX2X_ERR("Got an SVID event, but no tag is configured in shmem\n");
2930 goto fail;
2931 }
2932
2933 /* Configure new S-tag in LLH */
2934 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + BP_PORT(bp) * 8,
2935 bp->mf_ov);
2936
2937 /* Send Ramrod to update FW of change */
2938 __set_bit(BNX2X_F_UPDATE_SD_VLAN_TAG_CHNG,
2939 &switch_update_params->changes);
2940 switch_update_params->vlan = bp->mf_ov;
2941
2942 if (bnx2x_func_state_change(bp, &func_params) < 0) {
2943 BNX2X_ERR("Failed to configure FW of S-tag Change to %02x\n",
2944 bp->mf_ov);
2945 goto fail;
2946 } else {
2947 DP(BNX2X_MSG_MCP, "Configured S-tag %02x\n",
2948 bp->mf_ov);
2949 }
2950 } else {
2951 goto fail;
2952 }
2953
2954 bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_OK, 0);
2955 return;
2956 fail:
2957 bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_FAILURE, 0);
2958 }
2959
bnx2x_pmf_update(struct bnx2x * bp)2960 static void bnx2x_pmf_update(struct bnx2x *bp)
2961 {
2962 int port = BP_PORT(bp);
2963 u32 val;
2964
2965 bp->port.pmf = 1;
2966 DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2967
2968 /*
2969 * We need the mb() to ensure the ordering between the writing to
2970 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2971 */
2972 smp_mb();
2973
2974 /* queue a periodic task */
2975 queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2976
2977 bnx2x_dcbx_pmf_update(bp);
2978
2979 /* enable nig attention */
2980 val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2981 if (bp->common.int_block == INT_BLOCK_HC) {
2982 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2983 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2984 } else if (!CHIP_IS_E1x(bp)) {
2985 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2986 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2987 }
2988
2989 bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2990 }
2991
2992 /* end of Link */
2993
2994 /* slow path */
2995
2996 /*
2997 * General service functions
2998 */
2999
3000 /* send the MCP a request, block until there is a reply */
bnx2x_fw_command(struct bnx2x * bp,u32 command,u32 param)3001 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
3002 {
3003 int mb_idx = BP_FW_MB_IDX(bp);
3004 u32 seq;
3005 u32 rc = 0;
3006 u32 cnt = 1;
3007 u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
3008
3009 mutex_lock(&bp->fw_mb_mutex);
3010 seq = ++bp->fw_seq;
3011 SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
3012 SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
3013
3014 DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
3015 (command | seq), param);
3016
3017 do {
3018 /* let the FW do it's magic ... */
3019 msleep(delay);
3020
3021 rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
3022
3023 /* Give the FW up to 5 second (500*10ms) */
3024 } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
3025
3026 DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
3027 cnt*delay, rc, seq);
3028
3029 /* is this a reply to our command? */
3030 if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
3031 rc &= FW_MSG_CODE_MASK;
3032 else {
3033 /* FW BUG! */
3034 BNX2X_ERR("FW failed to respond!\n");
3035 bnx2x_fw_dump(bp);
3036 rc = 0;
3037 }
3038 mutex_unlock(&bp->fw_mb_mutex);
3039
3040 return rc;
3041 }
3042
storm_memset_func_cfg(struct bnx2x * bp,struct tstorm_eth_function_common_config * tcfg,u16 abs_fid)3043 static void storm_memset_func_cfg(struct bnx2x *bp,
3044 struct tstorm_eth_function_common_config *tcfg,
3045 u16 abs_fid)
3046 {
3047 size_t size = sizeof(struct tstorm_eth_function_common_config);
3048
3049 u32 addr = BAR_TSTRORM_INTMEM +
3050 TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
3051
3052 __storm_memset_struct(bp, addr, size, (u32 *)tcfg);
3053 }
3054
bnx2x_func_init(struct bnx2x * bp,struct bnx2x_func_init_params * p)3055 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
3056 {
3057 if (CHIP_IS_E1x(bp)) {
3058 struct tstorm_eth_function_common_config tcfg = {0};
3059
3060 storm_memset_func_cfg(bp, &tcfg, p->func_id);
3061 }
3062
3063 /* Enable the function in the FW */
3064 storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
3065 storm_memset_func_en(bp, p->func_id, 1);
3066
3067 /* spq */
3068 if (p->spq_active) {
3069 storm_memset_spq_addr(bp, p->spq_map, p->func_id);
3070 REG_WR(bp, XSEM_REG_FAST_MEMORY +
3071 XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
3072 }
3073 }
3074
3075 /**
3076 * bnx2x_get_common_flags - Return common flags
3077 *
3078 * @bp device handle
3079 * @fp queue handle
3080 * @zero_stats TRUE if statistics zeroing is needed
3081 *
3082 * Return the flags that are common for the Tx-only and not normal connections.
3083 */
bnx2x_get_common_flags(struct bnx2x * bp,struct bnx2x_fastpath * fp,bool zero_stats)3084 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
3085 struct bnx2x_fastpath *fp,
3086 bool zero_stats)
3087 {
3088 unsigned long flags = 0;
3089
3090 /* PF driver will always initialize the Queue to an ACTIVE state */
3091 __set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
3092
3093 /* tx only connections collect statistics (on the same index as the
3094 * parent connection). The statistics are zeroed when the parent
3095 * connection is initialized.
3096 */
3097
3098 __set_bit(BNX2X_Q_FLG_STATS, &flags);
3099 if (zero_stats)
3100 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
3101
3102 if (bp->flags & TX_SWITCHING)
3103 __set_bit(BNX2X_Q_FLG_TX_SWITCH, &flags);
3104
3105 __set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
3106 __set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
3107
3108 #ifdef BNX2X_STOP_ON_ERROR
3109 __set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
3110 #endif
3111
3112 return flags;
3113 }
3114
bnx2x_get_q_flags(struct bnx2x * bp,struct bnx2x_fastpath * fp,bool leading)3115 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
3116 struct bnx2x_fastpath *fp,
3117 bool leading)
3118 {
3119 unsigned long flags = 0;
3120
3121 /* calculate other queue flags */
3122 if (IS_MF_SD(bp))
3123 __set_bit(BNX2X_Q_FLG_OV, &flags);
3124
3125 if (IS_FCOE_FP(fp)) {
3126 __set_bit(BNX2X_Q_FLG_FCOE, &flags);
3127 /* For FCoE - force usage of default priority (for afex) */
3128 __set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
3129 }
3130
3131 if (fp->mode != TPA_MODE_DISABLED) {
3132 __set_bit(BNX2X_Q_FLG_TPA, &flags);
3133 __set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
3134 if (fp->mode == TPA_MODE_GRO)
3135 __set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
3136 }
3137
3138 if (leading) {
3139 __set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
3140 __set_bit(BNX2X_Q_FLG_MCAST, &flags);
3141 }
3142
3143 /* Always set HW VLAN stripping */
3144 __set_bit(BNX2X_Q_FLG_VLAN, &flags);
3145
3146 /* configure silent vlan removal */
3147 if (IS_MF_AFEX(bp))
3148 __set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3149
3150 return flags | bnx2x_get_common_flags(bp, fp, true);
3151 }
3152
bnx2x_pf_q_prep_general(struct bnx2x * bp,struct bnx2x_fastpath * fp,struct bnx2x_general_setup_params * gen_init,u8 cos)3153 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3154 struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3155 u8 cos)
3156 {
3157 gen_init->stat_id = bnx2x_stats_id(fp);
3158 gen_init->spcl_id = fp->cl_id;
3159
3160 /* Always use mini-jumbo MTU for FCoE L2 ring */
3161 if (IS_FCOE_FP(fp))
3162 gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3163 else
3164 gen_init->mtu = bp->dev->mtu;
3165
3166 gen_init->cos = cos;
3167
3168 gen_init->fp_hsi = ETH_FP_HSI_VERSION;
3169 }
3170
bnx2x_pf_rx_q_prep(struct bnx2x * bp,struct bnx2x_fastpath * fp,struct rxq_pause_params * pause,struct bnx2x_rxq_setup_params * rxq_init)3171 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3172 struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3173 struct bnx2x_rxq_setup_params *rxq_init)
3174 {
3175 u8 max_sge = 0;
3176 u16 sge_sz = 0;
3177 u16 tpa_agg_size = 0;
3178
3179 if (fp->mode != TPA_MODE_DISABLED) {
3180 pause->sge_th_lo = SGE_TH_LO(bp);
3181 pause->sge_th_hi = SGE_TH_HI(bp);
3182
3183 /* validate SGE ring has enough to cross high threshold */
3184 WARN_ON(bp->dropless_fc &&
3185 pause->sge_th_hi + FW_PREFETCH_CNT >
3186 MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3187
3188 tpa_agg_size = TPA_AGG_SIZE;
3189 max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3190 SGE_PAGE_SHIFT;
3191 max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3192 (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3193 sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3194 }
3195
3196 /* pause - not for e1 */
3197 if (!CHIP_IS_E1(bp)) {
3198 pause->bd_th_lo = BD_TH_LO(bp);
3199 pause->bd_th_hi = BD_TH_HI(bp);
3200
3201 pause->rcq_th_lo = RCQ_TH_LO(bp);
3202 pause->rcq_th_hi = RCQ_TH_HI(bp);
3203 /*
3204 * validate that rings have enough entries to cross
3205 * high thresholds
3206 */
3207 WARN_ON(bp->dropless_fc &&
3208 pause->bd_th_hi + FW_PREFETCH_CNT >
3209 bp->rx_ring_size);
3210 WARN_ON(bp->dropless_fc &&
3211 pause->rcq_th_hi + FW_PREFETCH_CNT >
3212 NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3213
3214 pause->pri_map = 1;
3215 }
3216
3217 /* rxq setup */
3218 rxq_init->dscr_map = fp->rx_desc_mapping;
3219 rxq_init->sge_map = fp->rx_sge_mapping;
3220 rxq_init->rcq_map = fp->rx_comp_mapping;
3221 rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3222
3223 /* This should be a maximum number of data bytes that may be
3224 * placed on the BD (not including paddings).
3225 */
3226 rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3227 BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
3228
3229 rxq_init->cl_qzone_id = fp->cl_qzone_id;
3230 rxq_init->tpa_agg_sz = tpa_agg_size;
3231 rxq_init->sge_buf_sz = sge_sz;
3232 rxq_init->max_sges_pkt = max_sge;
3233 rxq_init->rss_engine_id = BP_FUNC(bp);
3234 rxq_init->mcast_engine_id = BP_FUNC(bp);
3235
3236 /* Maximum number or simultaneous TPA aggregation for this Queue.
3237 *
3238 * For PF Clients it should be the maximum available number.
3239 * VF driver(s) may want to define it to a smaller value.
3240 */
3241 rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3242
3243 rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3244 rxq_init->fw_sb_id = fp->fw_sb_id;
3245
3246 if (IS_FCOE_FP(fp))
3247 rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3248 else
3249 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3250 /* configure silent vlan removal
3251 * if multi function mode is afex, then mask default vlan
3252 */
3253 if (IS_MF_AFEX(bp)) {
3254 rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3255 rxq_init->silent_removal_mask = VLAN_VID_MASK;
3256 }
3257 }
3258
bnx2x_pf_tx_q_prep(struct bnx2x * bp,struct bnx2x_fastpath * fp,struct bnx2x_txq_setup_params * txq_init,u8 cos)3259 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3260 struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3261 u8 cos)
3262 {
3263 txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3264 txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3265 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3266 txq_init->fw_sb_id = fp->fw_sb_id;
3267
3268 /*
3269 * set the tss leading client id for TX classification ==
3270 * leading RSS client id
3271 */
3272 txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3273
3274 if (IS_FCOE_FP(fp)) {
3275 txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3276 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3277 }
3278 }
3279
bnx2x_pf_init(struct bnx2x * bp)3280 static void bnx2x_pf_init(struct bnx2x *bp)
3281 {
3282 struct bnx2x_func_init_params func_init = {0};
3283 struct event_ring_data eq_data = { {0} };
3284
3285 if (!CHIP_IS_E1x(bp)) {
3286 /* reset IGU PF statistics: MSIX + ATTN */
3287 /* PF */
3288 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3289 BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3290 (CHIP_MODE_IS_4_PORT(bp) ?
3291 BP_FUNC(bp) : BP_VN(bp))*4, 0);
3292 /* ATTN */
3293 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3294 BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3295 BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3296 (CHIP_MODE_IS_4_PORT(bp) ?
3297 BP_FUNC(bp) : BP_VN(bp))*4, 0);
3298 }
3299
3300 func_init.spq_active = true;
3301 func_init.pf_id = BP_FUNC(bp);
3302 func_init.func_id = BP_FUNC(bp);
3303 func_init.spq_map = bp->spq_mapping;
3304 func_init.spq_prod = bp->spq_prod_idx;
3305
3306 bnx2x_func_init(bp, &func_init);
3307
3308 memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3309
3310 /*
3311 * Congestion management values depend on the link rate
3312 * There is no active link so initial link rate is set to 10 Gbps.
3313 * When the link comes up The congestion management values are
3314 * re-calculated according to the actual link rate.
3315 */
3316 bp->link_vars.line_speed = SPEED_10000;
3317 bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3318
3319 /* Only the PMF sets the HW */
3320 if (bp->port.pmf)
3321 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3322
3323 /* init Event Queue - PCI bus guarantees correct endianity*/
3324 eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3325 eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3326 eq_data.producer = bp->eq_prod;
3327 eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3328 eq_data.sb_id = DEF_SB_ID;
3329 storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3330 }
3331
bnx2x_e1h_disable(struct bnx2x * bp)3332 static void bnx2x_e1h_disable(struct bnx2x *bp)
3333 {
3334 int port = BP_PORT(bp);
3335
3336 bnx2x_tx_disable(bp);
3337
3338 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3339 }
3340
bnx2x_e1h_enable(struct bnx2x * bp)3341 static void bnx2x_e1h_enable(struct bnx2x *bp)
3342 {
3343 int port = BP_PORT(bp);
3344
3345 if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)))
3346 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
3347
3348 /* Tx queue should be only re-enabled */
3349 netif_tx_wake_all_queues(bp->dev);
3350
3351 /*
3352 * Should not call netif_carrier_on since it will be called if the link
3353 * is up when checking for link state
3354 */
3355 }
3356
3357 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3358
bnx2x_drv_info_ether_stat(struct bnx2x * bp)3359 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3360 {
3361 struct eth_stats_info *ether_stat =
3362 &bp->slowpath->drv_info_to_mcp.ether_stat;
3363 struct bnx2x_vlan_mac_obj *mac_obj =
3364 &bp->sp_objs->mac_obj;
3365 int i;
3366
3367 strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3368 ETH_STAT_INFO_VERSION_LEN);
3369
3370 /* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3371 * mac_local field in ether_stat struct. The base address is offset by 2
3372 * bytes to account for the field being 8 bytes but a mac address is
3373 * only 6 bytes. Likewise, the stride for the get_n_elements function is
3374 * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3375 * allocated by the ether_stat struct, so the macs will land in their
3376 * proper positions.
3377 */
3378 for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
3379 memset(ether_stat->mac_local + i, 0,
3380 sizeof(ether_stat->mac_local[0]));
3381 mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3382 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3383 ether_stat->mac_local + MAC_PAD, MAC_PAD,
3384 ETH_ALEN);
3385 ether_stat->mtu_size = bp->dev->mtu;
3386 if (bp->dev->features & NETIF_F_RXCSUM)
3387 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3388 if (bp->dev->features & NETIF_F_TSO)
3389 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3390 ether_stat->feature_flags |= bp->common.boot_mode;
3391
3392 ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3393
3394 ether_stat->txq_size = bp->tx_ring_size;
3395 ether_stat->rxq_size = bp->rx_ring_size;
3396
3397 #ifdef CONFIG_BNX2X_SRIOV
3398 ether_stat->vf_cnt = IS_SRIOV(bp) ? bp->vfdb->sriov.nr_virtfn : 0;
3399 #endif
3400 }
3401
bnx2x_drv_info_fcoe_stat(struct bnx2x * bp)3402 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3403 {
3404 struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3405 struct fcoe_stats_info *fcoe_stat =
3406 &bp->slowpath->drv_info_to_mcp.fcoe_stat;
3407
3408 if (!CNIC_LOADED(bp))
3409 return;
3410
3411 memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
3412
3413 fcoe_stat->qos_priority =
3414 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3415
3416 /* insert FCoE stats from ramrod response */
3417 if (!NO_FCOE(bp)) {
3418 struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3419 &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3420 tstorm_queue_statistics;
3421
3422 struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3423 &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3424 xstorm_queue_statistics;
3425
3426 struct fcoe_statistics_params *fw_fcoe_stat =
3427 &bp->fw_stats_data->fcoe;
3428
3429 ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3430 fcoe_stat->rx_bytes_lo,
3431 fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3432
3433 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3434 fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3435 fcoe_stat->rx_bytes_lo,
3436 fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3437
3438 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3439 fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3440 fcoe_stat->rx_bytes_lo,
3441 fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3442
3443 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3444 fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3445 fcoe_stat->rx_bytes_lo,
3446 fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3447
3448 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3449 fcoe_stat->rx_frames_lo,
3450 fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3451
3452 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3453 fcoe_stat->rx_frames_lo,
3454 fcoe_q_tstorm_stats->rcv_ucast_pkts);
3455
3456 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3457 fcoe_stat->rx_frames_lo,
3458 fcoe_q_tstorm_stats->rcv_bcast_pkts);
3459
3460 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3461 fcoe_stat->rx_frames_lo,
3462 fcoe_q_tstorm_stats->rcv_mcast_pkts);
3463
3464 ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3465 fcoe_stat->tx_bytes_lo,
3466 fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3467
3468 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3469 fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3470 fcoe_stat->tx_bytes_lo,
3471 fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3472
3473 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3474 fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3475 fcoe_stat->tx_bytes_lo,
3476 fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3477
3478 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3479 fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3480 fcoe_stat->tx_bytes_lo,
3481 fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3482
3483 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3484 fcoe_stat->tx_frames_lo,
3485 fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3486
3487 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3488 fcoe_stat->tx_frames_lo,
3489 fcoe_q_xstorm_stats->ucast_pkts_sent);
3490
3491 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3492 fcoe_stat->tx_frames_lo,
3493 fcoe_q_xstorm_stats->bcast_pkts_sent);
3494
3495 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3496 fcoe_stat->tx_frames_lo,
3497 fcoe_q_xstorm_stats->mcast_pkts_sent);
3498 }
3499
3500 /* ask L5 driver to add data to the struct */
3501 bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3502 }
3503
bnx2x_drv_info_iscsi_stat(struct bnx2x * bp)3504 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3505 {
3506 struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3507 struct iscsi_stats_info *iscsi_stat =
3508 &bp->slowpath->drv_info_to_mcp.iscsi_stat;
3509
3510 if (!CNIC_LOADED(bp))
3511 return;
3512
3513 memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
3514 ETH_ALEN);
3515
3516 iscsi_stat->qos_priority =
3517 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3518
3519 /* ask L5 driver to add data to the struct */
3520 bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3521 }
3522
3523 /* called due to MCP event (on pmf):
3524 * reread new bandwidth configuration
3525 * configure FW
3526 * notify others function about the change
3527 */
bnx2x_config_mf_bw(struct bnx2x * bp)3528 static void bnx2x_config_mf_bw(struct bnx2x *bp)
3529 {
3530 /* Workaround for MFW bug.
3531 * MFW is not supposed to generate BW attention in
3532 * single function mode.
3533 */
3534 if (!IS_MF(bp)) {
3535 DP(BNX2X_MSG_MCP,
3536 "Ignoring MF BW config in single function mode\n");
3537 return;
3538 }
3539
3540 if (bp->link_vars.link_up) {
3541 bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3542 bnx2x_link_sync_notify(bp);
3543 }
3544 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3545 }
3546
bnx2x_set_mf_bw(struct bnx2x * bp)3547 static void bnx2x_set_mf_bw(struct bnx2x *bp)
3548 {
3549 bnx2x_config_mf_bw(bp);
3550 bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3551 }
3552
bnx2x_handle_eee_event(struct bnx2x * bp)3553 static void bnx2x_handle_eee_event(struct bnx2x *bp)
3554 {
3555 DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3556 bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3557 }
3558
3559 #define BNX2X_UPDATE_DRV_INFO_IND_LENGTH (20)
3560 #define BNX2X_UPDATE_DRV_INFO_IND_COUNT (25)
3561
bnx2x_handle_drv_info_req(struct bnx2x * bp)3562 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3563 {
3564 enum drv_info_opcode op_code;
3565 u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3566 bool release = false;
3567 int wait;
3568
3569 /* if drv_info version supported by MFW doesn't match - send NACK */
3570 if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3571 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3572 return;
3573 }
3574
3575 op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3576 DRV_INFO_CONTROL_OP_CODE_SHIFT;
3577
3578 /* Must prevent other flows from accessing drv_info_to_mcp */
3579 mutex_lock(&bp->drv_info_mutex);
3580
3581 memset(&bp->slowpath->drv_info_to_mcp, 0,
3582 sizeof(union drv_info_to_mcp));
3583
3584 switch (op_code) {
3585 case ETH_STATS_OPCODE:
3586 bnx2x_drv_info_ether_stat(bp);
3587 break;
3588 case FCOE_STATS_OPCODE:
3589 bnx2x_drv_info_fcoe_stat(bp);
3590 break;
3591 case ISCSI_STATS_OPCODE:
3592 bnx2x_drv_info_iscsi_stat(bp);
3593 break;
3594 default:
3595 /* if op code isn't supported - send NACK */
3596 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3597 goto out;
3598 }
3599
3600 /* if we got drv_info attn from MFW then these fields are defined in
3601 * shmem2 for sure
3602 */
3603 SHMEM2_WR(bp, drv_info_host_addr_lo,
3604 U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3605 SHMEM2_WR(bp, drv_info_host_addr_hi,
3606 U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3607
3608 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3609
3610 /* Since possible management wants both this and get_driver_version
3611 * need to wait until management notifies us it finished utilizing
3612 * the buffer.
3613 */
3614 if (!SHMEM2_HAS(bp, mfw_drv_indication)) {
3615 DP(BNX2X_MSG_MCP, "Management does not support indication\n");
3616 } else if (!bp->drv_info_mng_owner) {
3617 u32 bit = MFW_DRV_IND_READ_DONE_OFFSET((BP_ABS_FUNC(bp) >> 1));
3618
3619 for (wait = 0; wait < BNX2X_UPDATE_DRV_INFO_IND_COUNT; wait++) {
3620 u32 indication = SHMEM2_RD(bp, mfw_drv_indication);
3621
3622 /* Management is done; need to clear indication */
3623 if (indication & bit) {
3624 SHMEM2_WR(bp, mfw_drv_indication,
3625 indication & ~bit);
3626 release = true;
3627 break;
3628 }
3629
3630 msleep(BNX2X_UPDATE_DRV_INFO_IND_LENGTH);
3631 }
3632 }
3633 if (!release) {
3634 DP(BNX2X_MSG_MCP, "Management did not release indication\n");
3635 bp->drv_info_mng_owner = true;
3636 }
3637
3638 out:
3639 mutex_unlock(&bp->drv_info_mutex);
3640 }
3641
bnx2x_update_mng_version_utility(u8 * version,bool bnx2x_format)3642 static u32 bnx2x_update_mng_version_utility(u8 *version, bool bnx2x_format)
3643 {
3644 u8 vals[4];
3645 int i = 0;
3646
3647 if (bnx2x_format) {
3648 i = sscanf(version, "1.%c%hhd.%hhd.%hhd",
3649 &vals[0], &vals[1], &vals[2], &vals[3]);
3650 if (i > 0)
3651 vals[0] -= '0';
3652 } else {
3653 i = sscanf(version, "%hhd.%hhd.%hhd.%hhd",
3654 &vals[0], &vals[1], &vals[2], &vals[3]);
3655 }
3656
3657 while (i < 4)
3658 vals[i++] = 0;
3659
3660 return (vals[0] << 24) | (vals[1] << 16) | (vals[2] << 8) | vals[3];
3661 }
3662
bnx2x_update_mng_version(struct bnx2x * bp)3663 void bnx2x_update_mng_version(struct bnx2x *bp)
3664 {
3665 u32 iscsiver = DRV_VER_NOT_LOADED;
3666 u32 fcoever = DRV_VER_NOT_LOADED;
3667 u32 ethver = DRV_VER_NOT_LOADED;
3668 int idx = BP_FW_MB_IDX(bp);
3669 u8 *version;
3670
3671 if (!SHMEM2_HAS(bp, func_os_drv_ver))
3672 return;
3673
3674 mutex_lock(&bp->drv_info_mutex);
3675 /* Must not proceed when `bnx2x_handle_drv_info_req' is feasible */
3676 if (bp->drv_info_mng_owner)
3677 goto out;
3678
3679 if (bp->state != BNX2X_STATE_OPEN)
3680 goto out;
3681
3682 /* Parse ethernet driver version */
3683 ethver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3684 if (!CNIC_LOADED(bp))
3685 goto out;
3686
3687 /* Try getting storage driver version via cnic */
3688 memset(&bp->slowpath->drv_info_to_mcp, 0,
3689 sizeof(union drv_info_to_mcp));
3690 bnx2x_drv_info_iscsi_stat(bp);
3691 version = bp->slowpath->drv_info_to_mcp.iscsi_stat.version;
3692 iscsiver = bnx2x_update_mng_version_utility(version, false);
3693
3694 memset(&bp->slowpath->drv_info_to_mcp, 0,
3695 sizeof(union drv_info_to_mcp));
3696 bnx2x_drv_info_fcoe_stat(bp);
3697 version = bp->slowpath->drv_info_to_mcp.fcoe_stat.version;
3698 fcoever = bnx2x_update_mng_version_utility(version, false);
3699
3700 out:
3701 SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ETHERNET], ethver);
3702 SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ISCSI], iscsiver);
3703 SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_FCOE], fcoever);
3704
3705 mutex_unlock(&bp->drv_info_mutex);
3706
3707 DP(BNX2X_MSG_MCP, "Setting driver version: ETH [%08x] iSCSI [%08x] FCoE [%08x]\n",
3708 ethver, iscsiver, fcoever);
3709 }
3710
bnx2x_update_mfw_dump(struct bnx2x * bp)3711 void bnx2x_update_mfw_dump(struct bnx2x *bp)
3712 {
3713 u32 drv_ver;
3714 u32 valid_dump;
3715
3716 if (!SHMEM2_HAS(bp, drv_info))
3717 return;
3718
3719 /* Update Driver load time, possibly broken in y2038 */
3720 SHMEM2_WR(bp, drv_info.epoc, (u32)ktime_get_real_seconds());
3721
3722 drv_ver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3723 SHMEM2_WR(bp, drv_info.drv_ver, drv_ver);
3724
3725 SHMEM2_WR(bp, drv_info.fw_ver, REG_RD(bp, XSEM_REG_PRAM));
3726
3727 /* Check & notify On-Chip dump. */
3728 valid_dump = SHMEM2_RD(bp, drv_info.valid_dump);
3729
3730 if (valid_dump & FIRST_DUMP_VALID)
3731 DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 1st partition\n");
3732
3733 if (valid_dump & SECOND_DUMP_VALID)
3734 DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 2nd partition\n");
3735 }
3736
bnx2x_oem_event(struct bnx2x * bp,u32 event)3737 static void bnx2x_oem_event(struct bnx2x *bp, u32 event)
3738 {
3739 u32 cmd_ok, cmd_fail;
3740
3741 /* sanity */
3742 if (event & DRV_STATUS_DCC_EVENT_MASK &&
3743 event & DRV_STATUS_OEM_EVENT_MASK) {
3744 BNX2X_ERR("Received simultaneous events %08x\n", event);
3745 return;
3746 }
3747
3748 if (event & DRV_STATUS_DCC_EVENT_MASK) {
3749 cmd_fail = DRV_MSG_CODE_DCC_FAILURE;
3750 cmd_ok = DRV_MSG_CODE_DCC_OK;
3751 } else /* if (event & DRV_STATUS_OEM_EVENT_MASK) */ {
3752 cmd_fail = DRV_MSG_CODE_OEM_FAILURE;
3753 cmd_ok = DRV_MSG_CODE_OEM_OK;
3754 }
3755
3756 DP(BNX2X_MSG_MCP, "oem_event 0x%x\n", event);
3757
3758 if (event & (DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3759 DRV_STATUS_OEM_DISABLE_ENABLE_PF)) {
3760 /* This is the only place besides the function initialization
3761 * where the bp->flags can change so it is done without any
3762 * locks
3763 */
3764 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3765 DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3766 bp->flags |= MF_FUNC_DIS;
3767
3768 bnx2x_e1h_disable(bp);
3769 } else {
3770 DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3771 bp->flags &= ~MF_FUNC_DIS;
3772
3773 bnx2x_e1h_enable(bp);
3774 }
3775 event &= ~(DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3776 DRV_STATUS_OEM_DISABLE_ENABLE_PF);
3777 }
3778
3779 if (event & (DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3780 DRV_STATUS_OEM_BANDWIDTH_ALLOCATION)) {
3781 bnx2x_config_mf_bw(bp);
3782 event &= ~(DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3783 DRV_STATUS_OEM_BANDWIDTH_ALLOCATION);
3784 }
3785
3786 /* Report results to MCP */
3787 if (event)
3788 bnx2x_fw_command(bp, cmd_fail, 0);
3789 else
3790 bnx2x_fw_command(bp, cmd_ok, 0);
3791 }
3792
3793 /* must be called under the spq lock */
bnx2x_sp_get_next(struct bnx2x * bp)3794 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3795 {
3796 struct eth_spe *next_spe = bp->spq_prod_bd;
3797
3798 if (bp->spq_prod_bd == bp->spq_last_bd) {
3799 bp->spq_prod_bd = bp->spq;
3800 bp->spq_prod_idx = 0;
3801 DP(BNX2X_MSG_SP, "end of spq\n");
3802 } else {
3803 bp->spq_prod_bd++;
3804 bp->spq_prod_idx++;
3805 }
3806 return next_spe;
3807 }
3808
3809 /* must be called under the spq lock */
bnx2x_sp_prod_update(struct bnx2x * bp)3810 static void bnx2x_sp_prod_update(struct bnx2x *bp)
3811 {
3812 int func = BP_FUNC(bp);
3813
3814 /*
3815 * Make sure that BD data is updated before writing the producer:
3816 * BD data is written to the memory, the producer is read from the
3817 * memory, thus we need a full memory barrier to ensure the ordering.
3818 */
3819 mb();
3820
3821 REG_WR16_RELAXED(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3822 bp->spq_prod_idx);
3823 }
3824
3825 /**
3826 * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3827 *
3828 * @cmd: command to check
3829 * @cmd_type: command type
3830 */
bnx2x_is_contextless_ramrod(int cmd,int cmd_type)3831 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3832 {
3833 if ((cmd_type == NONE_CONNECTION_TYPE) ||
3834 (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3835 (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3836 (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3837 (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3838 (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3839 (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3840 return true;
3841 else
3842 return false;
3843 }
3844
3845 /**
3846 * bnx2x_sp_post - place a single command on an SP ring
3847 *
3848 * @bp: driver handle
3849 * @command: command to place (e.g. SETUP, FILTER_RULES, etc.)
3850 * @cid: SW CID the command is related to
3851 * @data_hi: command private data address (high 32 bits)
3852 * @data_lo: command private data address (low 32 bits)
3853 * @cmd_type: command type (e.g. NONE, ETH)
3854 *
3855 * SP data is handled as if it's always an address pair, thus data fields are
3856 * not swapped to little endian in upper functions. Instead this function swaps
3857 * data as if it's two u32 fields.
3858 */
bnx2x_sp_post(struct bnx2x * bp,int command,int cid,u32 data_hi,u32 data_lo,int cmd_type)3859 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3860 u32 data_hi, u32 data_lo, int cmd_type)
3861 {
3862 struct eth_spe *spe;
3863 u16 type;
3864 bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3865
3866 #ifdef BNX2X_STOP_ON_ERROR
3867 if (unlikely(bp->panic)) {
3868 BNX2X_ERR("Can't post SP when there is panic\n");
3869 return -EIO;
3870 }
3871 #endif
3872
3873 spin_lock_bh(&bp->spq_lock);
3874
3875 if (common) {
3876 if (!atomic_read(&bp->eq_spq_left)) {
3877 BNX2X_ERR("BUG! EQ ring full!\n");
3878 spin_unlock_bh(&bp->spq_lock);
3879 bnx2x_panic();
3880 return -EBUSY;
3881 }
3882 } else if (!atomic_read(&bp->cq_spq_left)) {
3883 BNX2X_ERR("BUG! SPQ ring full!\n");
3884 spin_unlock_bh(&bp->spq_lock);
3885 bnx2x_panic();
3886 return -EBUSY;
3887 }
3888
3889 spe = bnx2x_sp_get_next(bp);
3890
3891 /* CID needs port number to be encoded int it */
3892 spe->hdr.conn_and_cmd_data =
3893 cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3894 HW_CID(bp, cid));
3895
3896 /* In some cases, type may already contain the func-id
3897 * mainly in SRIOV related use cases, so we add it here only
3898 * if it's not already set.
3899 */
3900 if (!(cmd_type & SPE_HDR_FUNCTION_ID)) {
3901 type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) &
3902 SPE_HDR_CONN_TYPE;
3903 type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3904 SPE_HDR_FUNCTION_ID);
3905 } else {
3906 type = cmd_type;
3907 }
3908
3909 spe->hdr.type = cpu_to_le16(type);
3910
3911 spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3912 spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3913
3914 /*
3915 * It's ok if the actual decrement is issued towards the memory
3916 * somewhere between the spin_lock and spin_unlock. Thus no
3917 * more explicit memory barrier is needed.
3918 */
3919 if (common)
3920 atomic_dec(&bp->eq_spq_left);
3921 else
3922 atomic_dec(&bp->cq_spq_left);
3923
3924 DP(BNX2X_MSG_SP,
3925 "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3926 bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3927 (u32)(U64_LO(bp->spq_mapping) +
3928 (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3929 HW_CID(bp, cid), data_hi, data_lo, type,
3930 atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3931
3932 bnx2x_sp_prod_update(bp);
3933 spin_unlock_bh(&bp->spq_lock);
3934 return 0;
3935 }
3936
3937 /* acquire split MCP access lock register */
bnx2x_acquire_alr(struct bnx2x * bp)3938 static int bnx2x_acquire_alr(struct bnx2x *bp)
3939 {
3940 u32 j, val;
3941 int rc = 0;
3942
3943 might_sleep();
3944 for (j = 0; j < 1000; j++) {
3945 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK);
3946 val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK);
3947 if (val & MCPR_ACCESS_LOCK_LOCK)
3948 break;
3949
3950 usleep_range(5000, 10000);
3951 }
3952 if (!(val & MCPR_ACCESS_LOCK_LOCK)) {
3953 BNX2X_ERR("Cannot acquire MCP access lock register\n");
3954 rc = -EBUSY;
3955 }
3956
3957 return rc;
3958 }
3959
3960 /* release split MCP access lock register */
bnx2x_release_alr(struct bnx2x * bp)3961 static void bnx2x_release_alr(struct bnx2x *bp)
3962 {
3963 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
3964 }
3965
3966 #define BNX2X_DEF_SB_ATT_IDX 0x0001
3967 #define BNX2X_DEF_SB_IDX 0x0002
3968
bnx2x_update_dsb_idx(struct bnx2x * bp)3969 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3970 {
3971 struct host_sp_status_block *def_sb = bp->def_status_blk;
3972 u16 rc = 0;
3973
3974 barrier(); /* status block is written to by the chip */
3975 if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3976 bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3977 rc |= BNX2X_DEF_SB_ATT_IDX;
3978 }
3979
3980 if (bp->def_idx != def_sb->sp_sb.running_index) {
3981 bp->def_idx = def_sb->sp_sb.running_index;
3982 rc |= BNX2X_DEF_SB_IDX;
3983 }
3984
3985 /* Do not reorder: indices reading should complete before handling */
3986 barrier();
3987 return rc;
3988 }
3989
3990 /*
3991 * slow path service functions
3992 */
3993
bnx2x_attn_int_asserted(struct bnx2x * bp,u32 asserted)3994 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3995 {
3996 int port = BP_PORT(bp);
3997 u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3998 MISC_REG_AEU_MASK_ATTN_FUNC_0;
3999 u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
4000 NIG_REG_MASK_INTERRUPT_PORT0;
4001 u32 aeu_mask;
4002 u32 nig_mask = 0;
4003 u32 reg_addr;
4004
4005 if (bp->attn_state & asserted)
4006 BNX2X_ERR("IGU ERROR\n");
4007
4008 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4009 aeu_mask = REG_RD(bp, aeu_addr);
4010
4011 DP(NETIF_MSG_HW, "aeu_mask %x newly asserted %x\n",
4012 aeu_mask, asserted);
4013 aeu_mask &= ~(asserted & 0x3ff);
4014 DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4015
4016 REG_WR(bp, aeu_addr, aeu_mask);
4017 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4018
4019 DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4020 bp->attn_state |= asserted;
4021 DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4022
4023 if (asserted & ATTN_HARD_WIRED_MASK) {
4024 if (asserted & ATTN_NIG_FOR_FUNC) {
4025
4026 bnx2x_acquire_phy_lock(bp);
4027
4028 /* save nig interrupt mask */
4029 nig_mask = REG_RD(bp, nig_int_mask_addr);
4030
4031 /* If nig_mask is not set, no need to call the update
4032 * function.
4033 */
4034 if (nig_mask) {
4035 REG_WR(bp, nig_int_mask_addr, 0);
4036
4037 bnx2x_link_attn(bp);
4038 }
4039
4040 /* handle unicore attn? */
4041 }
4042 if (asserted & ATTN_SW_TIMER_4_FUNC)
4043 DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
4044
4045 if (asserted & GPIO_2_FUNC)
4046 DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
4047
4048 if (asserted & GPIO_3_FUNC)
4049 DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
4050
4051 if (asserted & GPIO_4_FUNC)
4052 DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
4053
4054 if (port == 0) {
4055 if (asserted & ATTN_GENERAL_ATTN_1) {
4056 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
4057 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
4058 }
4059 if (asserted & ATTN_GENERAL_ATTN_2) {
4060 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
4061 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
4062 }
4063 if (asserted & ATTN_GENERAL_ATTN_3) {
4064 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
4065 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
4066 }
4067 } else {
4068 if (asserted & ATTN_GENERAL_ATTN_4) {
4069 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
4070 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
4071 }
4072 if (asserted & ATTN_GENERAL_ATTN_5) {
4073 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
4074 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
4075 }
4076 if (asserted & ATTN_GENERAL_ATTN_6) {
4077 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
4078 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
4079 }
4080 }
4081
4082 } /* if hardwired */
4083
4084 if (bp->common.int_block == INT_BLOCK_HC)
4085 reg_addr = (HC_REG_COMMAND_REG + port*32 +
4086 COMMAND_REG_ATTN_BITS_SET);
4087 else
4088 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
4089
4090 DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
4091 (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4092 REG_WR(bp, reg_addr, asserted);
4093
4094 /* now set back the mask */
4095 if (asserted & ATTN_NIG_FOR_FUNC) {
4096 /* Verify that IGU ack through BAR was written before restoring
4097 * NIG mask. This loop should exit after 2-3 iterations max.
4098 */
4099 if (bp->common.int_block != INT_BLOCK_HC) {
4100 u32 cnt = 0, igu_acked;
4101 do {
4102 igu_acked = REG_RD(bp,
4103 IGU_REG_ATTENTION_ACK_BITS);
4104 } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
4105 (++cnt < MAX_IGU_ATTN_ACK_TO));
4106 if (!igu_acked)
4107 DP(NETIF_MSG_HW,
4108 "Failed to verify IGU ack on time\n");
4109 barrier();
4110 }
4111 REG_WR(bp, nig_int_mask_addr, nig_mask);
4112 bnx2x_release_phy_lock(bp);
4113 }
4114 }
4115
bnx2x_fan_failure(struct bnx2x * bp)4116 static void bnx2x_fan_failure(struct bnx2x *bp)
4117 {
4118 int port = BP_PORT(bp);
4119 u32 ext_phy_config;
4120 /* mark the failure */
4121 ext_phy_config =
4122 SHMEM_RD(bp,
4123 dev_info.port_hw_config[port].external_phy_config);
4124
4125 ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
4126 ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
4127 SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
4128 ext_phy_config);
4129
4130 /* log the failure */
4131 netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
4132 "Please contact OEM Support for assistance\n");
4133
4134 /* Schedule device reset (unload)
4135 * This is due to some boards consuming sufficient power when driver is
4136 * up to overheat if fan fails.
4137 */
4138 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_FAN_FAILURE, 0);
4139 }
4140
bnx2x_attn_int_deasserted0(struct bnx2x * bp,u32 attn)4141 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
4142 {
4143 int port = BP_PORT(bp);
4144 int reg_offset;
4145 u32 val;
4146
4147 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
4148 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
4149
4150 if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
4151
4152 val = REG_RD(bp, reg_offset);
4153 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
4154 REG_WR(bp, reg_offset, val);
4155
4156 BNX2X_ERR("SPIO5 hw attention\n");
4157
4158 /* Fan failure attention */
4159 bnx2x_hw_reset_phy(&bp->link_params);
4160 bnx2x_fan_failure(bp);
4161 }
4162
4163 if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
4164 bnx2x_acquire_phy_lock(bp);
4165 bnx2x_handle_module_detect_int(&bp->link_params);
4166 bnx2x_release_phy_lock(bp);
4167 }
4168
4169 if (attn & HW_INTERRUPT_ASSERT_SET_0) {
4170
4171 val = REG_RD(bp, reg_offset);
4172 val &= ~(attn & HW_INTERRUPT_ASSERT_SET_0);
4173 REG_WR(bp, reg_offset, val);
4174
4175 BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
4176 (u32)(attn & HW_INTERRUPT_ASSERT_SET_0));
4177 bnx2x_panic();
4178 }
4179 }
4180
bnx2x_attn_int_deasserted1(struct bnx2x * bp,u32 attn)4181 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
4182 {
4183 u32 val;
4184
4185 if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
4186
4187 val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
4188 BNX2X_ERR("DB hw attention 0x%x\n", val);
4189 /* DORQ discard attention */
4190 if (val & 0x2)
4191 BNX2X_ERR("FATAL error from DORQ\n");
4192 }
4193
4194 if (attn & HW_INTERRUPT_ASSERT_SET_1) {
4195
4196 int port = BP_PORT(bp);
4197 int reg_offset;
4198
4199 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
4200 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
4201
4202 val = REG_RD(bp, reg_offset);
4203 val &= ~(attn & HW_INTERRUPT_ASSERT_SET_1);
4204 REG_WR(bp, reg_offset, val);
4205
4206 BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
4207 (u32)(attn & HW_INTERRUPT_ASSERT_SET_1));
4208 bnx2x_panic();
4209 }
4210 }
4211
bnx2x_attn_int_deasserted2(struct bnx2x * bp,u32 attn)4212 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
4213 {
4214 u32 val;
4215
4216 if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
4217
4218 val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
4219 BNX2X_ERR("CFC hw attention 0x%x\n", val);
4220 /* CFC error attention */
4221 if (val & 0x2)
4222 BNX2X_ERR("FATAL error from CFC\n");
4223 }
4224
4225 if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
4226 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
4227 BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
4228 /* RQ_USDMDP_FIFO_OVERFLOW */
4229 if (val & 0x18000)
4230 BNX2X_ERR("FATAL error from PXP\n");
4231
4232 if (!CHIP_IS_E1x(bp)) {
4233 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
4234 BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
4235 }
4236 }
4237
4238 if (attn & HW_INTERRUPT_ASSERT_SET_2) {
4239
4240 int port = BP_PORT(bp);
4241 int reg_offset;
4242
4243 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
4244 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
4245
4246 val = REG_RD(bp, reg_offset);
4247 val &= ~(attn & HW_INTERRUPT_ASSERT_SET_2);
4248 REG_WR(bp, reg_offset, val);
4249
4250 BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
4251 (u32)(attn & HW_INTERRUPT_ASSERT_SET_2));
4252 bnx2x_panic();
4253 }
4254 }
4255
bnx2x_attn_int_deasserted3(struct bnx2x * bp,u32 attn)4256 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
4257 {
4258 u32 val;
4259
4260 if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
4261
4262 if (attn & BNX2X_PMF_LINK_ASSERT) {
4263 int func = BP_FUNC(bp);
4264
4265 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
4266 bnx2x_read_mf_cfg(bp);
4267 bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
4268 func_mf_config[BP_ABS_FUNC(bp)].config);
4269 val = SHMEM_RD(bp,
4270 func_mb[BP_FW_MB_IDX(bp)].drv_status);
4271
4272 if (val & (DRV_STATUS_DCC_EVENT_MASK |
4273 DRV_STATUS_OEM_EVENT_MASK))
4274 bnx2x_oem_event(bp,
4275 (val & (DRV_STATUS_DCC_EVENT_MASK |
4276 DRV_STATUS_OEM_EVENT_MASK)));
4277
4278 if (val & DRV_STATUS_SET_MF_BW)
4279 bnx2x_set_mf_bw(bp);
4280
4281 if (val & DRV_STATUS_DRV_INFO_REQ)
4282 bnx2x_handle_drv_info_req(bp);
4283
4284 if (val & DRV_STATUS_VF_DISABLED)
4285 bnx2x_schedule_iov_task(bp,
4286 BNX2X_IOV_HANDLE_FLR);
4287
4288 if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
4289 bnx2x_pmf_update(bp);
4290
4291 if (bp->port.pmf &&
4292 (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
4293 bp->dcbx_enabled > 0)
4294 /* start dcbx state machine */
4295 bnx2x_dcbx_set_params(bp,
4296 BNX2X_DCBX_STATE_NEG_RECEIVED);
4297 if (val & DRV_STATUS_AFEX_EVENT_MASK)
4298 bnx2x_handle_afex_cmd(bp,
4299 val & DRV_STATUS_AFEX_EVENT_MASK);
4300 if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
4301 bnx2x_handle_eee_event(bp);
4302
4303 if (val & DRV_STATUS_OEM_UPDATE_SVID)
4304 bnx2x_schedule_sp_rtnl(bp,
4305 BNX2X_SP_RTNL_UPDATE_SVID, 0);
4306
4307 if (bp->link_vars.periodic_flags &
4308 PERIODIC_FLAGS_LINK_EVENT) {
4309 /* sync with link */
4310 bnx2x_acquire_phy_lock(bp);
4311 bp->link_vars.periodic_flags &=
4312 ~PERIODIC_FLAGS_LINK_EVENT;
4313 bnx2x_release_phy_lock(bp);
4314 if (IS_MF(bp))
4315 bnx2x_link_sync_notify(bp);
4316 bnx2x_link_report(bp);
4317 }
4318 /* Always call it here: bnx2x_link_report() will
4319 * prevent the link indication duplication.
4320 */
4321 bnx2x__link_status_update(bp);
4322 } else if (attn & BNX2X_MC_ASSERT_BITS) {
4323
4324 BNX2X_ERR("MC assert!\n");
4325 bnx2x_mc_assert(bp);
4326 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4327 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4328 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4329 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4330 bnx2x_panic();
4331
4332 } else if (attn & BNX2X_MCP_ASSERT) {
4333
4334 BNX2X_ERR("MCP assert!\n");
4335 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4336 bnx2x_fw_dump(bp);
4337
4338 } else
4339 BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4340 }
4341
4342 if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4343 BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4344 if (attn & BNX2X_GRC_TIMEOUT) {
4345 val = CHIP_IS_E1(bp) ? 0 :
4346 REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4347 BNX2X_ERR("GRC time-out 0x%08x\n", val);
4348 }
4349 if (attn & BNX2X_GRC_RSV) {
4350 val = CHIP_IS_E1(bp) ? 0 :
4351 REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4352 BNX2X_ERR("GRC reserved 0x%08x\n", val);
4353 }
4354 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4355 }
4356 }
4357
4358 /*
4359 * Bits map:
4360 * 0-7 - Engine0 load counter.
4361 * 8-15 - Engine1 load counter.
4362 * 16 - Engine0 RESET_IN_PROGRESS bit.
4363 * 17 - Engine1 RESET_IN_PROGRESS bit.
4364 * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4365 * on the engine
4366 * 19 - Engine1 ONE_IS_LOADED.
4367 * 20 - Chip reset flow bit. When set none-leader must wait for both engines
4368 * leader to complete (check for both RESET_IN_PROGRESS bits and not for
4369 * just the one belonging to its engine).
4370 *
4371 */
4372 #define BNX2X_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1
4373
4374 #define BNX2X_PATH0_LOAD_CNT_MASK 0x000000ff
4375 #define BNX2X_PATH0_LOAD_CNT_SHIFT 0
4376 #define BNX2X_PATH1_LOAD_CNT_MASK 0x0000ff00
4377 #define BNX2X_PATH1_LOAD_CNT_SHIFT 8
4378 #define BNX2X_PATH0_RST_IN_PROG_BIT 0x00010000
4379 #define BNX2X_PATH1_RST_IN_PROG_BIT 0x00020000
4380 #define BNX2X_GLOBAL_RESET_BIT 0x00040000
4381
4382 /*
4383 * Set the GLOBAL_RESET bit.
4384 *
4385 * Should be run under rtnl lock
4386 */
bnx2x_set_reset_global(struct bnx2x * bp)4387 void bnx2x_set_reset_global(struct bnx2x *bp)
4388 {
4389 u32 val;
4390 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4391 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4392 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4393 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4394 }
4395
4396 /*
4397 * Clear the GLOBAL_RESET bit.
4398 *
4399 * Should be run under rtnl lock
4400 */
bnx2x_clear_reset_global(struct bnx2x * bp)4401 static void bnx2x_clear_reset_global(struct bnx2x *bp)
4402 {
4403 u32 val;
4404 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4405 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4406 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4407 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4408 }
4409
4410 /*
4411 * Checks the GLOBAL_RESET bit.
4412 *
4413 * should be run under rtnl lock
4414 */
bnx2x_reset_is_global(struct bnx2x * bp)4415 static bool bnx2x_reset_is_global(struct bnx2x *bp)
4416 {
4417 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4418
4419 DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4420 return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4421 }
4422
4423 /*
4424 * Clear RESET_IN_PROGRESS bit for the current engine.
4425 *
4426 * Should be run under rtnl lock
4427 */
bnx2x_set_reset_done(struct bnx2x * bp)4428 static void bnx2x_set_reset_done(struct bnx2x *bp)
4429 {
4430 u32 val;
4431 u32 bit = BP_PATH(bp) ?
4432 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4433 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4434 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4435
4436 /* Clear the bit */
4437 val &= ~bit;
4438 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4439
4440 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4441 }
4442
4443 /*
4444 * Set RESET_IN_PROGRESS for the current engine.
4445 *
4446 * should be run under rtnl lock
4447 */
bnx2x_set_reset_in_progress(struct bnx2x * bp)4448 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4449 {
4450 u32 val;
4451 u32 bit = BP_PATH(bp) ?
4452 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4453 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4454 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4455
4456 /* Set the bit */
4457 val |= bit;
4458 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4459 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4460 }
4461
4462 /*
4463 * Checks the RESET_IN_PROGRESS bit for the given engine.
4464 * should be run under rtnl lock
4465 */
bnx2x_reset_is_done(struct bnx2x * bp,int engine)4466 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4467 {
4468 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4469 u32 bit = engine ?
4470 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4471
4472 /* return false if bit is set */
4473 return (val & bit) ? false : true;
4474 }
4475
4476 /*
4477 * set pf load for the current pf.
4478 *
4479 * should be run under rtnl lock
4480 */
bnx2x_set_pf_load(struct bnx2x * bp)4481 void bnx2x_set_pf_load(struct bnx2x *bp)
4482 {
4483 u32 val1, val;
4484 u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4485 BNX2X_PATH0_LOAD_CNT_MASK;
4486 u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4487 BNX2X_PATH0_LOAD_CNT_SHIFT;
4488
4489 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4490 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4491
4492 DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4493
4494 /* get the current counter value */
4495 val1 = (val & mask) >> shift;
4496
4497 /* set bit of that PF */
4498 val1 |= (1 << bp->pf_num);
4499
4500 /* clear the old value */
4501 val &= ~mask;
4502
4503 /* set the new one */
4504 val |= ((val1 << shift) & mask);
4505
4506 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4507 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4508 }
4509
4510 /**
4511 * bnx2x_clear_pf_load - clear pf load mark
4512 *
4513 * @bp: driver handle
4514 *
4515 * Should be run under rtnl lock.
4516 * Decrements the load counter for the current engine. Returns
4517 * whether other functions are still loaded
4518 */
bnx2x_clear_pf_load(struct bnx2x * bp)4519 bool bnx2x_clear_pf_load(struct bnx2x *bp)
4520 {
4521 u32 val1, val;
4522 u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4523 BNX2X_PATH0_LOAD_CNT_MASK;
4524 u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4525 BNX2X_PATH0_LOAD_CNT_SHIFT;
4526
4527 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4528 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4529 DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4530
4531 /* get the current counter value */
4532 val1 = (val & mask) >> shift;
4533
4534 /* clear bit of that PF */
4535 val1 &= ~(1 << bp->pf_num);
4536
4537 /* clear the old value */
4538 val &= ~mask;
4539
4540 /* set the new one */
4541 val |= ((val1 << shift) & mask);
4542
4543 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4544 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4545 return val1 != 0;
4546 }
4547
4548 /*
4549 * Read the load status for the current engine.
4550 *
4551 * should be run under rtnl lock
4552 */
bnx2x_get_load_status(struct bnx2x * bp,int engine)4553 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4554 {
4555 u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4556 BNX2X_PATH0_LOAD_CNT_MASK);
4557 u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4558 BNX2X_PATH0_LOAD_CNT_SHIFT);
4559 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4560
4561 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4562
4563 val = (val & mask) >> shift;
4564
4565 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4566 engine, val);
4567
4568 return val != 0;
4569 }
4570
_print_parity(struct bnx2x * bp,u32 reg)4571 static void _print_parity(struct bnx2x *bp, u32 reg)
4572 {
4573 pr_cont(" [0x%08x] ", REG_RD(bp, reg));
4574 }
4575
_print_next_block(int idx,const char * blk)4576 static void _print_next_block(int idx, const char *blk)
4577 {
4578 pr_cont("%s%s", idx ? ", " : "", blk);
4579 }
4580
bnx2x_check_blocks_with_parity0(struct bnx2x * bp,u32 sig,int * par_num,bool print)4581 static bool bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig,
4582 int *par_num, bool print)
4583 {
4584 u32 cur_bit;
4585 bool res;
4586 int i;
4587
4588 res = false;
4589
4590 for (i = 0; sig; i++) {
4591 cur_bit = (0x1UL << i);
4592 if (sig & cur_bit) {
4593 res |= true; /* Each bit is real error! */
4594
4595 if (print) {
4596 switch (cur_bit) {
4597 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4598 _print_next_block((*par_num)++, "BRB");
4599 _print_parity(bp,
4600 BRB1_REG_BRB1_PRTY_STS);
4601 break;
4602 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4603 _print_next_block((*par_num)++,
4604 "PARSER");
4605 _print_parity(bp, PRS_REG_PRS_PRTY_STS);
4606 break;
4607 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4608 _print_next_block((*par_num)++, "TSDM");
4609 _print_parity(bp,
4610 TSDM_REG_TSDM_PRTY_STS);
4611 break;
4612 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4613 _print_next_block((*par_num)++,
4614 "SEARCHER");
4615 _print_parity(bp, SRC_REG_SRC_PRTY_STS);
4616 break;
4617 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4618 _print_next_block((*par_num)++, "TCM");
4619 _print_parity(bp, TCM_REG_TCM_PRTY_STS);
4620 break;
4621 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4622 _print_next_block((*par_num)++,
4623 "TSEMI");
4624 _print_parity(bp,
4625 TSEM_REG_TSEM_PRTY_STS_0);
4626 _print_parity(bp,
4627 TSEM_REG_TSEM_PRTY_STS_1);
4628 break;
4629 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4630 _print_next_block((*par_num)++, "XPB");
4631 _print_parity(bp, GRCBASE_XPB +
4632 PB_REG_PB_PRTY_STS);
4633 break;
4634 }
4635 }
4636
4637 /* Clear the bit */
4638 sig &= ~cur_bit;
4639 }
4640 }
4641
4642 return res;
4643 }
4644
bnx2x_check_blocks_with_parity1(struct bnx2x * bp,u32 sig,int * par_num,bool * global,bool print)4645 static bool bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig,
4646 int *par_num, bool *global,
4647 bool print)
4648 {
4649 u32 cur_bit;
4650 bool res;
4651 int i;
4652
4653 res = false;
4654
4655 for (i = 0; sig; i++) {
4656 cur_bit = (0x1UL << i);
4657 if (sig & cur_bit) {
4658 res |= true; /* Each bit is real error! */
4659 switch (cur_bit) {
4660 case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4661 if (print) {
4662 _print_next_block((*par_num)++, "PBF");
4663 _print_parity(bp, PBF_REG_PBF_PRTY_STS);
4664 }
4665 break;
4666 case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4667 if (print) {
4668 _print_next_block((*par_num)++, "QM");
4669 _print_parity(bp, QM_REG_QM_PRTY_STS);
4670 }
4671 break;
4672 case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4673 if (print) {
4674 _print_next_block((*par_num)++, "TM");
4675 _print_parity(bp, TM_REG_TM_PRTY_STS);
4676 }
4677 break;
4678 case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4679 if (print) {
4680 _print_next_block((*par_num)++, "XSDM");
4681 _print_parity(bp,
4682 XSDM_REG_XSDM_PRTY_STS);
4683 }
4684 break;
4685 case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4686 if (print) {
4687 _print_next_block((*par_num)++, "XCM");
4688 _print_parity(bp, XCM_REG_XCM_PRTY_STS);
4689 }
4690 break;
4691 case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4692 if (print) {
4693 _print_next_block((*par_num)++,
4694 "XSEMI");
4695 _print_parity(bp,
4696 XSEM_REG_XSEM_PRTY_STS_0);
4697 _print_parity(bp,
4698 XSEM_REG_XSEM_PRTY_STS_1);
4699 }
4700 break;
4701 case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4702 if (print) {
4703 _print_next_block((*par_num)++,
4704 "DOORBELLQ");
4705 _print_parity(bp,
4706 DORQ_REG_DORQ_PRTY_STS);
4707 }
4708 break;
4709 case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4710 if (print) {
4711 _print_next_block((*par_num)++, "NIG");
4712 if (CHIP_IS_E1x(bp)) {
4713 _print_parity(bp,
4714 NIG_REG_NIG_PRTY_STS);
4715 } else {
4716 _print_parity(bp,
4717 NIG_REG_NIG_PRTY_STS_0);
4718 _print_parity(bp,
4719 NIG_REG_NIG_PRTY_STS_1);
4720 }
4721 }
4722 break;
4723 case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4724 if (print)
4725 _print_next_block((*par_num)++,
4726 "VAUX PCI CORE");
4727 *global = true;
4728 break;
4729 case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4730 if (print) {
4731 _print_next_block((*par_num)++,
4732 "DEBUG");
4733 _print_parity(bp, DBG_REG_DBG_PRTY_STS);
4734 }
4735 break;
4736 case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4737 if (print) {
4738 _print_next_block((*par_num)++, "USDM");
4739 _print_parity(bp,
4740 USDM_REG_USDM_PRTY_STS);
4741 }
4742 break;
4743 case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4744 if (print) {
4745 _print_next_block((*par_num)++, "UCM");
4746 _print_parity(bp, UCM_REG_UCM_PRTY_STS);
4747 }
4748 break;
4749 case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4750 if (print) {
4751 _print_next_block((*par_num)++,
4752 "USEMI");
4753 _print_parity(bp,
4754 USEM_REG_USEM_PRTY_STS_0);
4755 _print_parity(bp,
4756 USEM_REG_USEM_PRTY_STS_1);
4757 }
4758 break;
4759 case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4760 if (print) {
4761 _print_next_block((*par_num)++, "UPB");
4762 _print_parity(bp, GRCBASE_UPB +
4763 PB_REG_PB_PRTY_STS);
4764 }
4765 break;
4766 case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4767 if (print) {
4768 _print_next_block((*par_num)++, "CSDM");
4769 _print_parity(bp,
4770 CSDM_REG_CSDM_PRTY_STS);
4771 }
4772 break;
4773 case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4774 if (print) {
4775 _print_next_block((*par_num)++, "CCM");
4776 _print_parity(bp, CCM_REG_CCM_PRTY_STS);
4777 }
4778 break;
4779 }
4780
4781 /* Clear the bit */
4782 sig &= ~cur_bit;
4783 }
4784 }
4785
4786 return res;
4787 }
4788
bnx2x_check_blocks_with_parity2(struct bnx2x * bp,u32 sig,int * par_num,bool print)4789 static bool bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig,
4790 int *par_num, bool print)
4791 {
4792 u32 cur_bit;
4793 bool res;
4794 int i;
4795
4796 res = false;
4797
4798 for (i = 0; sig; i++) {
4799 cur_bit = (0x1UL << i);
4800 if (sig & cur_bit) {
4801 res = true; /* Each bit is real error! */
4802 if (print) {
4803 switch (cur_bit) {
4804 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4805 _print_next_block((*par_num)++,
4806 "CSEMI");
4807 _print_parity(bp,
4808 CSEM_REG_CSEM_PRTY_STS_0);
4809 _print_parity(bp,
4810 CSEM_REG_CSEM_PRTY_STS_1);
4811 break;
4812 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4813 _print_next_block((*par_num)++, "PXP");
4814 _print_parity(bp, PXP_REG_PXP_PRTY_STS);
4815 _print_parity(bp,
4816 PXP2_REG_PXP2_PRTY_STS_0);
4817 _print_parity(bp,
4818 PXP2_REG_PXP2_PRTY_STS_1);
4819 break;
4820 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4821 _print_next_block((*par_num)++,
4822 "PXPPCICLOCKCLIENT");
4823 break;
4824 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4825 _print_next_block((*par_num)++, "CFC");
4826 _print_parity(bp,
4827 CFC_REG_CFC_PRTY_STS);
4828 break;
4829 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4830 _print_next_block((*par_num)++, "CDU");
4831 _print_parity(bp, CDU_REG_CDU_PRTY_STS);
4832 break;
4833 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4834 _print_next_block((*par_num)++, "DMAE");
4835 _print_parity(bp,
4836 DMAE_REG_DMAE_PRTY_STS);
4837 break;
4838 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4839 _print_next_block((*par_num)++, "IGU");
4840 if (CHIP_IS_E1x(bp))
4841 _print_parity(bp,
4842 HC_REG_HC_PRTY_STS);
4843 else
4844 _print_parity(bp,
4845 IGU_REG_IGU_PRTY_STS);
4846 break;
4847 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4848 _print_next_block((*par_num)++, "MISC");
4849 _print_parity(bp,
4850 MISC_REG_MISC_PRTY_STS);
4851 break;
4852 }
4853 }
4854
4855 /* Clear the bit */
4856 sig &= ~cur_bit;
4857 }
4858 }
4859
4860 return res;
4861 }
4862
bnx2x_check_blocks_with_parity3(struct bnx2x * bp,u32 sig,int * par_num,bool * global,bool print)4863 static bool bnx2x_check_blocks_with_parity3(struct bnx2x *bp, u32 sig,
4864 int *par_num, bool *global,
4865 bool print)
4866 {
4867 bool res = false;
4868 u32 cur_bit;
4869 int i;
4870
4871 for (i = 0; sig; i++) {
4872 cur_bit = (0x1UL << i);
4873 if (sig & cur_bit) {
4874 switch (cur_bit) {
4875 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4876 if (print)
4877 _print_next_block((*par_num)++,
4878 "MCP ROM");
4879 *global = true;
4880 res = true;
4881 break;
4882 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4883 if (print)
4884 _print_next_block((*par_num)++,
4885 "MCP UMP RX");
4886 *global = true;
4887 res = true;
4888 break;
4889 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4890 if (print)
4891 _print_next_block((*par_num)++,
4892 "MCP UMP TX");
4893 *global = true;
4894 res = true;
4895 break;
4896 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4897 (*par_num)++;
4898 /* clear latched SCPAD PATIRY from MCP */
4899 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL,
4900 1UL << 10);
4901 break;
4902 }
4903
4904 /* Clear the bit */
4905 sig &= ~cur_bit;
4906 }
4907 }
4908
4909 return res;
4910 }
4911
bnx2x_check_blocks_with_parity4(struct bnx2x * bp,u32 sig,int * par_num,bool print)4912 static bool bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig,
4913 int *par_num, bool print)
4914 {
4915 u32 cur_bit;
4916 bool res;
4917 int i;
4918
4919 res = false;
4920
4921 for (i = 0; sig; i++) {
4922 cur_bit = (0x1UL << i);
4923 if (sig & cur_bit) {
4924 res = true; /* Each bit is real error! */
4925 if (print) {
4926 switch (cur_bit) {
4927 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4928 _print_next_block((*par_num)++,
4929 "PGLUE_B");
4930 _print_parity(bp,
4931 PGLUE_B_REG_PGLUE_B_PRTY_STS);
4932 break;
4933 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4934 _print_next_block((*par_num)++, "ATC");
4935 _print_parity(bp,
4936 ATC_REG_ATC_PRTY_STS);
4937 break;
4938 }
4939 }
4940 /* Clear the bit */
4941 sig &= ~cur_bit;
4942 }
4943 }
4944
4945 return res;
4946 }
4947
bnx2x_parity_attn(struct bnx2x * bp,bool * global,bool print,u32 * sig)4948 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4949 u32 *sig)
4950 {
4951 bool res = false;
4952
4953 if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4954 (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4955 (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4956 (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4957 (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4958 int par_num = 0;
4959
4960 DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4961 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4962 sig[0] & HW_PRTY_ASSERT_SET_0,
4963 sig[1] & HW_PRTY_ASSERT_SET_1,
4964 sig[2] & HW_PRTY_ASSERT_SET_2,
4965 sig[3] & HW_PRTY_ASSERT_SET_3,
4966 sig[4] & HW_PRTY_ASSERT_SET_4);
4967 if (print) {
4968 if (((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4969 (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4970 (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4971 (sig[4] & HW_PRTY_ASSERT_SET_4)) ||
4972 (sig[3] & HW_PRTY_ASSERT_SET_3_WITHOUT_SCPAD)) {
4973 netdev_err(bp->dev,
4974 "Parity errors detected in blocks: ");
4975 } else {
4976 print = false;
4977 }
4978 }
4979 res |= bnx2x_check_blocks_with_parity0(bp,
4980 sig[0] & HW_PRTY_ASSERT_SET_0, &par_num, print);
4981 res |= bnx2x_check_blocks_with_parity1(bp,
4982 sig[1] & HW_PRTY_ASSERT_SET_1, &par_num, global, print);
4983 res |= bnx2x_check_blocks_with_parity2(bp,
4984 sig[2] & HW_PRTY_ASSERT_SET_2, &par_num, print);
4985 res |= bnx2x_check_blocks_with_parity3(bp,
4986 sig[3] & HW_PRTY_ASSERT_SET_3, &par_num, global, print);
4987 res |= bnx2x_check_blocks_with_parity4(bp,
4988 sig[4] & HW_PRTY_ASSERT_SET_4, &par_num, print);
4989
4990 if (print)
4991 pr_cont("\n");
4992 }
4993
4994 return res;
4995 }
4996
4997 /**
4998 * bnx2x_chk_parity_attn - checks for parity attentions.
4999 *
5000 * @bp: driver handle
5001 * @global: true if there was a global attention
5002 * @print: show parity attention in syslog
5003 */
bnx2x_chk_parity_attn(struct bnx2x * bp,bool * global,bool print)5004 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
5005 {
5006 struct attn_route attn = { {0} };
5007 int port = BP_PORT(bp);
5008
5009 attn.sig[0] = REG_RD(bp,
5010 MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
5011 port*4);
5012 attn.sig[1] = REG_RD(bp,
5013 MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
5014 port*4);
5015 attn.sig[2] = REG_RD(bp,
5016 MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
5017 port*4);
5018 attn.sig[3] = REG_RD(bp,
5019 MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
5020 port*4);
5021 /* Since MCP attentions can't be disabled inside the block, we need to
5022 * read AEU registers to see whether they're currently disabled
5023 */
5024 attn.sig[3] &= ((REG_RD(bp,
5025 !port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
5026 : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0) &
5027 MISC_AEU_ENABLE_MCP_PRTY_BITS) |
5028 ~MISC_AEU_ENABLE_MCP_PRTY_BITS);
5029
5030 if (!CHIP_IS_E1x(bp))
5031 attn.sig[4] = REG_RD(bp,
5032 MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
5033 port*4);
5034
5035 return bnx2x_parity_attn(bp, global, print, attn.sig);
5036 }
5037
bnx2x_attn_int_deasserted4(struct bnx2x * bp,u32 attn)5038 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
5039 {
5040 u32 val;
5041 if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
5042
5043 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
5044 BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
5045 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
5046 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
5047 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
5048 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
5049 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
5050 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
5051 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
5052 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
5053 if (val &
5054 PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
5055 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
5056 if (val &
5057 PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
5058 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
5059 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
5060 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
5061 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
5062 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
5063 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
5064 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
5065 }
5066 if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
5067 val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
5068 BNX2X_ERR("ATC hw attention 0x%x\n", val);
5069 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
5070 BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
5071 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
5072 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
5073 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
5074 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
5075 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
5076 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
5077 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
5078 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
5079 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
5080 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
5081 }
5082
5083 if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5084 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
5085 BNX2X_ERR("FATAL parity attention set4 0x%x\n",
5086 (u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5087 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
5088 }
5089 }
5090
bnx2x_attn_int_deasserted(struct bnx2x * bp,u32 deasserted)5091 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
5092 {
5093 struct attn_route attn, *group_mask;
5094 int port = BP_PORT(bp);
5095 int index;
5096 u32 reg_addr;
5097 u32 val;
5098 u32 aeu_mask;
5099 bool global = false;
5100
5101 /* need to take HW lock because MCP or other port might also
5102 try to handle this event */
5103 bnx2x_acquire_alr(bp);
5104
5105 if (bnx2x_chk_parity_attn(bp, &global, true)) {
5106 #ifndef BNX2X_STOP_ON_ERROR
5107 bp->recovery_state = BNX2X_RECOVERY_INIT;
5108 schedule_delayed_work(&bp->sp_rtnl_task, 0);
5109 /* Disable HW interrupts */
5110 bnx2x_int_disable(bp);
5111 /* In case of parity errors don't handle attentions so that
5112 * other function would "see" parity errors.
5113 */
5114 #else
5115 bnx2x_panic();
5116 #endif
5117 bnx2x_release_alr(bp);
5118 return;
5119 }
5120
5121 attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
5122 attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
5123 attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
5124 attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
5125 if (!CHIP_IS_E1x(bp))
5126 attn.sig[4] =
5127 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
5128 else
5129 attn.sig[4] = 0;
5130
5131 DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
5132 attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
5133
5134 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5135 if (deasserted & (1 << index)) {
5136 group_mask = &bp->attn_group[index];
5137
5138 DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
5139 index,
5140 group_mask->sig[0], group_mask->sig[1],
5141 group_mask->sig[2], group_mask->sig[3],
5142 group_mask->sig[4]);
5143
5144 bnx2x_attn_int_deasserted4(bp,
5145 attn.sig[4] & group_mask->sig[4]);
5146 bnx2x_attn_int_deasserted3(bp,
5147 attn.sig[3] & group_mask->sig[3]);
5148 bnx2x_attn_int_deasserted1(bp,
5149 attn.sig[1] & group_mask->sig[1]);
5150 bnx2x_attn_int_deasserted2(bp,
5151 attn.sig[2] & group_mask->sig[2]);
5152 bnx2x_attn_int_deasserted0(bp,
5153 attn.sig[0] & group_mask->sig[0]);
5154 }
5155 }
5156
5157 bnx2x_release_alr(bp);
5158
5159 if (bp->common.int_block == INT_BLOCK_HC)
5160 reg_addr = (HC_REG_COMMAND_REG + port*32 +
5161 COMMAND_REG_ATTN_BITS_CLR);
5162 else
5163 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
5164
5165 val = ~deasserted;
5166 DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
5167 (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
5168 REG_WR(bp, reg_addr, val);
5169
5170 if (~bp->attn_state & deasserted)
5171 BNX2X_ERR("IGU ERROR\n");
5172
5173 reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
5174 MISC_REG_AEU_MASK_ATTN_FUNC_0;
5175
5176 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5177 aeu_mask = REG_RD(bp, reg_addr);
5178
5179 DP(NETIF_MSG_HW, "aeu_mask %x newly deasserted %x\n",
5180 aeu_mask, deasserted);
5181 aeu_mask |= (deasserted & 0x3ff);
5182 DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
5183
5184 REG_WR(bp, reg_addr, aeu_mask);
5185 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5186
5187 DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
5188 bp->attn_state &= ~deasserted;
5189 DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
5190 }
5191
bnx2x_attn_int(struct bnx2x * bp)5192 static void bnx2x_attn_int(struct bnx2x *bp)
5193 {
5194 /* read local copy of bits */
5195 u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
5196 attn_bits);
5197 u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
5198 attn_bits_ack);
5199 u32 attn_state = bp->attn_state;
5200
5201 /* look for changed bits */
5202 u32 asserted = attn_bits & ~attn_ack & ~attn_state;
5203 u32 deasserted = ~attn_bits & attn_ack & attn_state;
5204
5205 DP(NETIF_MSG_HW,
5206 "attn_bits %x attn_ack %x asserted %x deasserted %x\n",
5207 attn_bits, attn_ack, asserted, deasserted);
5208
5209 if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
5210 BNX2X_ERR("BAD attention state\n");
5211
5212 /* handle bits that were raised */
5213 if (asserted)
5214 bnx2x_attn_int_asserted(bp, asserted);
5215
5216 if (deasserted)
5217 bnx2x_attn_int_deasserted(bp, deasserted);
5218 }
5219
bnx2x_igu_ack_sb(struct bnx2x * bp,u8 igu_sb_id,u8 segment,u16 index,u8 op,u8 update)5220 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
5221 u16 index, u8 op, u8 update)
5222 {
5223 u32 igu_addr = bp->igu_base_addr;
5224 igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
5225 bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
5226 igu_addr);
5227 }
5228
bnx2x_update_eq_prod(struct bnx2x * bp,u16 prod)5229 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
5230 {
5231 /* No memory barriers */
5232 storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
5233 }
5234
bnx2x_cnic_handle_cfc_del(struct bnx2x * bp,u32 cid,union event_ring_elem * elem)5235 static int bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
5236 union event_ring_elem *elem)
5237 {
5238 u8 err = elem->message.error;
5239
5240 if (!bp->cnic_eth_dev.starting_cid ||
5241 (cid < bp->cnic_eth_dev.starting_cid &&
5242 cid != bp->cnic_eth_dev.iscsi_l2_cid))
5243 return 1;
5244
5245 DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
5246
5247 if (unlikely(err)) {
5248
5249 BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
5250 cid);
5251 bnx2x_panic_dump(bp, false);
5252 }
5253 bnx2x_cnic_cfc_comp(bp, cid, err);
5254 return 0;
5255 }
5256
bnx2x_handle_mcast_eqe(struct bnx2x * bp)5257 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
5258 {
5259 struct bnx2x_mcast_ramrod_params rparam;
5260 int rc;
5261
5262 memset(&rparam, 0, sizeof(rparam));
5263
5264 rparam.mcast_obj = &bp->mcast_obj;
5265
5266 netif_addr_lock_bh(bp->dev);
5267
5268 /* Clear pending state for the last command */
5269 bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
5270
5271 /* If there are pending mcast commands - send them */
5272 if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
5273 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
5274 if (rc < 0)
5275 BNX2X_ERR("Failed to send pending mcast commands: %d\n",
5276 rc);
5277 }
5278
5279 netif_addr_unlock_bh(bp->dev);
5280 }
5281
bnx2x_handle_classification_eqe(struct bnx2x * bp,union event_ring_elem * elem)5282 static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
5283 union event_ring_elem *elem)
5284 {
5285 unsigned long ramrod_flags = 0;
5286 int rc = 0;
5287 u32 echo = le32_to_cpu(elem->message.data.eth_event.echo);
5288 u32 cid = echo & BNX2X_SWCID_MASK;
5289 struct bnx2x_vlan_mac_obj *vlan_mac_obj;
5290
5291 /* Always push next commands out, don't wait here */
5292 __set_bit(RAMROD_CONT, &ramrod_flags);
5293
5294 switch (echo >> BNX2X_SWCID_SHIFT) {
5295 case BNX2X_FILTER_MAC_PENDING:
5296 DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
5297 if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
5298 vlan_mac_obj = &bp->iscsi_l2_mac_obj;
5299 else
5300 vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
5301
5302 break;
5303 case BNX2X_FILTER_VLAN_PENDING:
5304 DP(BNX2X_MSG_SP, "Got SETUP_VLAN completions\n");
5305 vlan_mac_obj = &bp->sp_objs[cid].vlan_obj;
5306 break;
5307 case BNX2X_FILTER_MCAST_PENDING:
5308 DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
5309 /* This is only relevant for 57710 where multicast MACs are
5310 * configured as unicast MACs using the same ramrod.
5311 */
5312 bnx2x_handle_mcast_eqe(bp);
5313 return;
5314 default:
5315 BNX2X_ERR("Unsupported classification command: 0x%x\n", echo);
5316 return;
5317 }
5318
5319 rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
5320
5321 if (rc < 0)
5322 BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
5323 else if (rc > 0)
5324 DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
5325 }
5326
5327 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
5328
bnx2x_handle_rx_mode_eqe(struct bnx2x * bp)5329 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
5330 {
5331 netif_addr_lock_bh(bp->dev);
5332
5333 clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5334
5335 /* Send rx_mode command again if was requested */
5336 if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
5337 bnx2x_set_storm_rx_mode(bp);
5338 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
5339 &bp->sp_state))
5340 bnx2x_set_iscsi_eth_rx_mode(bp, true);
5341 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
5342 &bp->sp_state))
5343 bnx2x_set_iscsi_eth_rx_mode(bp, false);
5344
5345 netif_addr_unlock_bh(bp->dev);
5346 }
5347
bnx2x_after_afex_vif_lists(struct bnx2x * bp,union event_ring_elem * elem)5348 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
5349 union event_ring_elem *elem)
5350 {
5351 if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
5352 DP(BNX2X_MSG_SP,
5353 "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
5354 elem->message.data.vif_list_event.func_bit_map);
5355 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
5356 elem->message.data.vif_list_event.func_bit_map);
5357 } else if (elem->message.data.vif_list_event.echo ==
5358 VIF_LIST_RULE_SET) {
5359 DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
5360 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
5361 }
5362 }
5363
5364 /* called with rtnl_lock */
bnx2x_after_function_update(struct bnx2x * bp)5365 static void bnx2x_after_function_update(struct bnx2x *bp)
5366 {
5367 int q, rc;
5368 struct bnx2x_fastpath *fp;
5369 struct bnx2x_queue_state_params queue_params = {NULL};
5370 struct bnx2x_queue_update_params *q_update_params =
5371 &queue_params.params.update;
5372
5373 /* Send Q update command with afex vlan removal values for all Qs */
5374 queue_params.cmd = BNX2X_Q_CMD_UPDATE;
5375
5376 /* set silent vlan removal values according to vlan mode */
5377 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5378 &q_update_params->update_flags);
5379 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
5380 &q_update_params->update_flags);
5381 __set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5382
5383 /* in access mode mark mask and value are 0 to strip all vlans */
5384 if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
5385 q_update_params->silent_removal_value = 0;
5386 q_update_params->silent_removal_mask = 0;
5387 } else {
5388 q_update_params->silent_removal_value =
5389 (bp->afex_def_vlan_tag & VLAN_VID_MASK);
5390 q_update_params->silent_removal_mask = VLAN_VID_MASK;
5391 }
5392
5393 for_each_eth_queue(bp, q) {
5394 /* Set the appropriate Queue object */
5395 fp = &bp->fp[q];
5396 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5397
5398 /* send the ramrod */
5399 rc = bnx2x_queue_state_change(bp, &queue_params);
5400 if (rc < 0)
5401 BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5402 q);
5403 }
5404
5405 if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
5406 fp = &bp->fp[FCOE_IDX(bp)];
5407 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5408
5409 /* clear pending completion bit */
5410 __clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5411
5412 /* mark latest Q bit */
5413 smp_mb__before_atomic();
5414 set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
5415 smp_mb__after_atomic();
5416
5417 /* send Q update ramrod for FCoE Q */
5418 rc = bnx2x_queue_state_change(bp, &queue_params);
5419 if (rc < 0)
5420 BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5421 q);
5422 } else {
5423 /* If no FCoE ring - ACK MCP now */
5424 bnx2x_link_report(bp);
5425 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5426 }
5427 }
5428
bnx2x_cid_to_q_obj(struct bnx2x * bp,u32 cid)5429 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
5430 struct bnx2x *bp, u32 cid)
5431 {
5432 DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
5433
5434 if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
5435 return &bnx2x_fcoe_sp_obj(bp, q_obj);
5436 else
5437 return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
5438 }
5439
bnx2x_eq_int(struct bnx2x * bp)5440 static void bnx2x_eq_int(struct bnx2x *bp)
5441 {
5442 u16 hw_cons, sw_cons, sw_prod;
5443 union event_ring_elem *elem;
5444 u8 echo;
5445 u32 cid;
5446 u8 opcode;
5447 int rc, spqe_cnt = 0;
5448 struct bnx2x_queue_sp_obj *q_obj;
5449 struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
5450 struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
5451
5452 hw_cons = le16_to_cpu(*bp->eq_cons_sb);
5453
5454 /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5455 * when we get the next-page we need to adjust so the loop
5456 * condition below will be met. The next element is the size of a
5457 * regular element and hence incrementing by 1
5458 */
5459 if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5460 hw_cons++;
5461
5462 /* This function may never run in parallel with itself for a
5463 * specific bp, thus there is no need in "paired" read memory
5464 * barrier here.
5465 */
5466 sw_cons = bp->eq_cons;
5467 sw_prod = bp->eq_prod;
5468
5469 DP(BNX2X_MSG_SP, "EQ: hw_cons %u sw_cons %u bp->eq_spq_left %x\n",
5470 hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5471
5472 for (; sw_cons != hw_cons;
5473 sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5474
5475 elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5476
5477 rc = bnx2x_iov_eq_sp_event(bp, elem);
5478 if (!rc) {
5479 DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5480 rc);
5481 goto next_spqe;
5482 }
5483
5484 opcode = elem->message.opcode;
5485
5486 /* handle eq element */
5487 switch (opcode) {
5488 case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5489 bnx2x_vf_mbx_schedule(bp,
5490 &elem->message.data.vf_pf_event);
5491 continue;
5492
5493 case EVENT_RING_OPCODE_STAT_QUERY:
5494 DP_AND((BNX2X_MSG_SP | BNX2X_MSG_STATS),
5495 "got statistics comp event %d\n",
5496 bp->stats_comp++);
5497 /* nothing to do with stats comp */
5498 goto next_spqe;
5499
5500 case EVENT_RING_OPCODE_CFC_DEL:
5501 /* handle according to cid range */
5502 /*
5503 * we may want to verify here that the bp state is
5504 * HALTING
5505 */
5506
5507 /* elem CID originates from FW; actually LE */
5508 cid = SW_CID(elem->message.data.cfc_del_event.cid);
5509
5510 DP(BNX2X_MSG_SP,
5511 "got delete ramrod for MULTI[%d]\n", cid);
5512
5513 if (CNIC_LOADED(bp) &&
5514 !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5515 goto next_spqe;
5516
5517 q_obj = bnx2x_cid_to_q_obj(bp, cid);
5518
5519 if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5520 break;
5521
5522 goto next_spqe;
5523
5524 case EVENT_RING_OPCODE_STOP_TRAFFIC:
5525 DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5526 bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5527 if (f_obj->complete_cmd(bp, f_obj,
5528 BNX2X_F_CMD_TX_STOP))
5529 break;
5530 goto next_spqe;
5531
5532 case EVENT_RING_OPCODE_START_TRAFFIC:
5533 DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5534 bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5535 if (f_obj->complete_cmd(bp, f_obj,
5536 BNX2X_F_CMD_TX_START))
5537 break;
5538 goto next_spqe;
5539
5540 case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5541 echo = elem->message.data.function_update_event.echo;
5542 if (echo == SWITCH_UPDATE) {
5543 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5544 "got FUNC_SWITCH_UPDATE ramrod\n");
5545 if (f_obj->complete_cmd(
5546 bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5547 break;
5548
5549 } else {
5550 int cmd = BNX2X_SP_RTNL_AFEX_F_UPDATE;
5551
5552 DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5553 "AFEX: ramrod completed FUNCTION_UPDATE\n");
5554 f_obj->complete_cmd(bp, f_obj,
5555 BNX2X_F_CMD_AFEX_UPDATE);
5556
5557 /* We will perform the Queues update from
5558 * sp_rtnl task as all Queue SP operations
5559 * should run under rtnl_lock.
5560 */
5561 bnx2x_schedule_sp_rtnl(bp, cmd, 0);
5562 }
5563
5564 goto next_spqe;
5565
5566 case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5567 f_obj->complete_cmd(bp, f_obj,
5568 BNX2X_F_CMD_AFEX_VIFLISTS);
5569 bnx2x_after_afex_vif_lists(bp, elem);
5570 goto next_spqe;
5571 case EVENT_RING_OPCODE_FUNCTION_START:
5572 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5573 "got FUNC_START ramrod\n");
5574 if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5575 break;
5576
5577 goto next_spqe;
5578
5579 case EVENT_RING_OPCODE_FUNCTION_STOP:
5580 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5581 "got FUNC_STOP ramrod\n");
5582 if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5583 break;
5584
5585 goto next_spqe;
5586
5587 case EVENT_RING_OPCODE_SET_TIMESYNC:
5588 DP(BNX2X_MSG_SP | BNX2X_MSG_PTP,
5589 "got set_timesync ramrod completion\n");
5590 if (f_obj->complete_cmd(bp, f_obj,
5591 BNX2X_F_CMD_SET_TIMESYNC))
5592 break;
5593 goto next_spqe;
5594 }
5595
5596 switch (opcode | bp->state) {
5597 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5598 BNX2X_STATE_OPEN):
5599 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5600 BNX2X_STATE_OPENING_WAIT4_PORT):
5601 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5602 BNX2X_STATE_CLOSING_WAIT4_HALT):
5603 DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5604 SW_CID(elem->message.data.eth_event.echo));
5605 rss_raw->clear_pending(rss_raw);
5606 break;
5607
5608 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5609 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5610 case (EVENT_RING_OPCODE_SET_MAC |
5611 BNX2X_STATE_CLOSING_WAIT4_HALT):
5612 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5613 BNX2X_STATE_OPEN):
5614 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5615 BNX2X_STATE_DIAG):
5616 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5617 BNX2X_STATE_CLOSING_WAIT4_HALT):
5618 DP(BNX2X_MSG_SP, "got (un)set vlan/mac ramrod\n");
5619 bnx2x_handle_classification_eqe(bp, elem);
5620 break;
5621
5622 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5623 BNX2X_STATE_OPEN):
5624 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5625 BNX2X_STATE_DIAG):
5626 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5627 BNX2X_STATE_CLOSING_WAIT4_HALT):
5628 DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5629 bnx2x_handle_mcast_eqe(bp);
5630 break;
5631
5632 case (EVENT_RING_OPCODE_FILTERS_RULES |
5633 BNX2X_STATE_OPEN):
5634 case (EVENT_RING_OPCODE_FILTERS_RULES |
5635 BNX2X_STATE_DIAG):
5636 case (EVENT_RING_OPCODE_FILTERS_RULES |
5637 BNX2X_STATE_CLOSING_WAIT4_HALT):
5638 DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5639 bnx2x_handle_rx_mode_eqe(bp);
5640 break;
5641 default:
5642 /* unknown event log error and continue */
5643 BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5644 elem->message.opcode, bp->state);
5645 }
5646 next_spqe:
5647 spqe_cnt++;
5648 } /* for */
5649
5650 smp_mb__before_atomic();
5651 atomic_add(spqe_cnt, &bp->eq_spq_left);
5652
5653 bp->eq_cons = sw_cons;
5654 bp->eq_prod = sw_prod;
5655 /* Make sure that above mem writes were issued towards the memory */
5656 smp_wmb();
5657
5658 /* update producer */
5659 bnx2x_update_eq_prod(bp, bp->eq_prod);
5660 }
5661
bnx2x_sp_task(struct work_struct * work)5662 static void bnx2x_sp_task(struct work_struct *work)
5663 {
5664 struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5665
5666 DP(BNX2X_MSG_SP, "sp task invoked\n");
5667
5668 /* make sure the atomic interrupt_occurred has been written */
5669 smp_rmb();
5670 if (atomic_read(&bp->interrupt_occurred)) {
5671
5672 /* what work needs to be performed? */
5673 u16 status = bnx2x_update_dsb_idx(bp);
5674
5675 DP(BNX2X_MSG_SP, "status %x\n", status);
5676 DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5677 atomic_set(&bp->interrupt_occurred, 0);
5678
5679 /* HW attentions */
5680 if (status & BNX2X_DEF_SB_ATT_IDX) {
5681 bnx2x_attn_int(bp);
5682 status &= ~BNX2X_DEF_SB_ATT_IDX;
5683 }
5684
5685 /* SP events: STAT_QUERY and others */
5686 if (status & BNX2X_DEF_SB_IDX) {
5687 struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5688
5689 if (FCOE_INIT(bp) &&
5690 (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5691 /* Prevent local bottom-halves from running as
5692 * we are going to change the local NAPI list.
5693 */
5694 local_bh_disable();
5695 napi_schedule(&bnx2x_fcoe(bp, napi));
5696 local_bh_enable();
5697 }
5698
5699 /* Handle EQ completions */
5700 bnx2x_eq_int(bp);
5701 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5702 le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5703
5704 status &= ~BNX2X_DEF_SB_IDX;
5705 }
5706
5707 /* if status is non zero then perhaps something went wrong */
5708 if (unlikely(status))
5709 DP(BNX2X_MSG_SP,
5710 "got an unknown interrupt! (status 0x%x)\n", status);
5711
5712 /* ack status block only if something was actually handled */
5713 bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5714 le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5715 }
5716
5717 /* afex - poll to check if VIFSET_ACK should be sent to MFW */
5718 if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5719 &bp->sp_state)) {
5720 bnx2x_link_report(bp);
5721 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5722 }
5723 }
5724
bnx2x_msix_sp_int(int irq,void * dev_instance)5725 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5726 {
5727 struct net_device *dev = dev_instance;
5728 struct bnx2x *bp = netdev_priv(dev);
5729
5730 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5731 IGU_INT_DISABLE, 0);
5732
5733 #ifdef BNX2X_STOP_ON_ERROR
5734 if (unlikely(bp->panic))
5735 return IRQ_HANDLED;
5736 #endif
5737
5738 if (CNIC_LOADED(bp)) {
5739 struct cnic_ops *c_ops;
5740
5741 rcu_read_lock();
5742 c_ops = rcu_dereference(bp->cnic_ops);
5743 if (c_ops)
5744 c_ops->cnic_handler(bp->cnic_data, NULL);
5745 rcu_read_unlock();
5746 }
5747
5748 /* schedule sp task to perform default status block work, ack
5749 * attentions and enable interrupts.
5750 */
5751 bnx2x_schedule_sp_task(bp);
5752
5753 return IRQ_HANDLED;
5754 }
5755
5756 /* end of slow path */
5757
bnx2x_drv_pulse(struct bnx2x * bp)5758 void bnx2x_drv_pulse(struct bnx2x *bp)
5759 {
5760 SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5761 bp->fw_drv_pulse_wr_seq);
5762 }
5763
bnx2x_timer(struct timer_list * t)5764 static void bnx2x_timer(struct timer_list *t)
5765 {
5766 struct bnx2x *bp = from_timer(bp, t, timer);
5767
5768 if (!netif_running(bp->dev))
5769 return;
5770
5771 if (IS_PF(bp) &&
5772 !BP_NOMCP(bp)) {
5773 int mb_idx = BP_FW_MB_IDX(bp);
5774 u16 drv_pulse;
5775 u16 mcp_pulse;
5776
5777 ++bp->fw_drv_pulse_wr_seq;
5778 bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5779 drv_pulse = bp->fw_drv_pulse_wr_seq;
5780 bnx2x_drv_pulse(bp);
5781
5782 mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5783 MCP_PULSE_SEQ_MASK);
5784 /* The delta between driver pulse and mcp response
5785 * should not get too big. If the MFW is more than 5 pulses
5786 * behind, we should worry about it enough to generate an error
5787 * log.
5788 */
5789 if (((drv_pulse - mcp_pulse) & MCP_PULSE_SEQ_MASK) > 5)
5790 BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5791 drv_pulse, mcp_pulse);
5792 }
5793
5794 if (bp->state == BNX2X_STATE_OPEN)
5795 bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5796
5797 /* sample pf vf bulletin board for new posts from pf */
5798 if (IS_VF(bp))
5799 bnx2x_timer_sriov(bp);
5800
5801 mod_timer(&bp->timer, jiffies + bp->current_interval);
5802 }
5803
5804 /* end of Statistics */
5805
5806 /* nic init */
5807
5808 /*
5809 * nic init service functions
5810 */
5811
bnx2x_fill(struct bnx2x * bp,u32 addr,int fill,u32 len)5812 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5813 {
5814 u32 i;
5815 if (!(len%4) && !(addr%4))
5816 for (i = 0; i < len; i += 4)
5817 REG_WR(bp, addr + i, fill);
5818 else
5819 for (i = 0; i < len; i++)
5820 REG_WR8(bp, addr + i, fill);
5821 }
5822
5823 /* helper: writes FP SP data to FW - data_size in dwords */
bnx2x_wr_fp_sb_data(struct bnx2x * bp,int fw_sb_id,u32 * sb_data_p,u32 data_size)5824 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5825 int fw_sb_id,
5826 u32 *sb_data_p,
5827 u32 data_size)
5828 {
5829 int index;
5830 for (index = 0; index < data_size; index++)
5831 REG_WR(bp, BAR_CSTRORM_INTMEM +
5832 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5833 sizeof(u32)*index,
5834 *(sb_data_p + index));
5835 }
5836
bnx2x_zero_fp_sb(struct bnx2x * bp,int fw_sb_id)5837 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5838 {
5839 u32 *sb_data_p;
5840 u32 data_size = 0;
5841 struct hc_status_block_data_e2 sb_data_e2;
5842 struct hc_status_block_data_e1x sb_data_e1x;
5843
5844 /* disable the function first */
5845 if (!CHIP_IS_E1x(bp)) {
5846 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5847 sb_data_e2.common.state = SB_DISABLED;
5848 sb_data_e2.common.p_func.vf_valid = false;
5849 sb_data_p = (u32 *)&sb_data_e2;
5850 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5851 } else {
5852 memset(&sb_data_e1x, 0,
5853 sizeof(struct hc_status_block_data_e1x));
5854 sb_data_e1x.common.state = SB_DISABLED;
5855 sb_data_e1x.common.p_func.vf_valid = false;
5856 sb_data_p = (u32 *)&sb_data_e1x;
5857 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5858 }
5859 bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5860
5861 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5862 CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5863 CSTORM_STATUS_BLOCK_SIZE);
5864 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5865 CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5866 CSTORM_SYNC_BLOCK_SIZE);
5867 }
5868
5869 /* helper: writes SP SB data to FW */
bnx2x_wr_sp_sb_data(struct bnx2x * bp,struct hc_sp_status_block_data * sp_sb_data)5870 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5871 struct hc_sp_status_block_data *sp_sb_data)
5872 {
5873 int func = BP_FUNC(bp);
5874 int i;
5875 for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5876 REG_WR(bp, BAR_CSTRORM_INTMEM +
5877 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5878 i*sizeof(u32),
5879 *((u32 *)sp_sb_data + i));
5880 }
5881
bnx2x_zero_sp_sb(struct bnx2x * bp)5882 static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5883 {
5884 int func = BP_FUNC(bp);
5885 struct hc_sp_status_block_data sp_sb_data;
5886 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5887
5888 sp_sb_data.state = SB_DISABLED;
5889 sp_sb_data.p_func.vf_valid = false;
5890
5891 bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5892
5893 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5894 CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5895 CSTORM_SP_STATUS_BLOCK_SIZE);
5896 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5897 CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5898 CSTORM_SP_SYNC_BLOCK_SIZE);
5899 }
5900
bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm * hc_sm,int igu_sb_id,int igu_seg_id)5901 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5902 int igu_sb_id, int igu_seg_id)
5903 {
5904 hc_sm->igu_sb_id = igu_sb_id;
5905 hc_sm->igu_seg_id = igu_seg_id;
5906 hc_sm->timer_value = 0xFF;
5907 hc_sm->time_to_expire = 0xFFFFFFFF;
5908 }
5909
5910 /* allocates state machine ids. */
bnx2x_map_sb_state_machines(struct hc_index_data * index_data)5911 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5912 {
5913 /* zero out state machine indices */
5914 /* rx indices */
5915 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5916
5917 /* tx indices */
5918 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5919 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5920 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5921 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5922
5923 /* map indices */
5924 /* rx indices */
5925 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5926 SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5927
5928 /* tx indices */
5929 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5930 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5931 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5932 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5933 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5934 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5935 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5936 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5937 }
5938
bnx2x_init_sb(struct bnx2x * bp,dma_addr_t mapping,int vfid,u8 vf_valid,int fw_sb_id,int igu_sb_id)5939 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5940 u8 vf_valid, int fw_sb_id, int igu_sb_id)
5941 {
5942 int igu_seg_id;
5943
5944 struct hc_status_block_data_e2 sb_data_e2;
5945 struct hc_status_block_data_e1x sb_data_e1x;
5946 struct hc_status_block_sm *hc_sm_p;
5947 int data_size;
5948 u32 *sb_data_p;
5949
5950 if (CHIP_INT_MODE_IS_BC(bp))
5951 igu_seg_id = HC_SEG_ACCESS_NORM;
5952 else
5953 igu_seg_id = IGU_SEG_ACCESS_NORM;
5954
5955 bnx2x_zero_fp_sb(bp, fw_sb_id);
5956
5957 if (!CHIP_IS_E1x(bp)) {
5958 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5959 sb_data_e2.common.state = SB_ENABLED;
5960 sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5961 sb_data_e2.common.p_func.vf_id = vfid;
5962 sb_data_e2.common.p_func.vf_valid = vf_valid;
5963 sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5964 sb_data_e2.common.same_igu_sb_1b = true;
5965 sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5966 sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5967 hc_sm_p = sb_data_e2.common.state_machine;
5968 sb_data_p = (u32 *)&sb_data_e2;
5969 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5970 bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5971 } else {
5972 memset(&sb_data_e1x, 0,
5973 sizeof(struct hc_status_block_data_e1x));
5974 sb_data_e1x.common.state = SB_ENABLED;
5975 sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5976 sb_data_e1x.common.p_func.vf_id = 0xff;
5977 sb_data_e1x.common.p_func.vf_valid = false;
5978 sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5979 sb_data_e1x.common.same_igu_sb_1b = true;
5980 sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5981 sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5982 hc_sm_p = sb_data_e1x.common.state_machine;
5983 sb_data_p = (u32 *)&sb_data_e1x;
5984 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5985 bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5986 }
5987
5988 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5989 igu_sb_id, igu_seg_id);
5990 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5991 igu_sb_id, igu_seg_id);
5992
5993 DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
5994
5995 /* write indices to HW - PCI guarantees endianity of regpairs */
5996 bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5997 }
5998
bnx2x_update_coalesce_sb(struct bnx2x * bp,u8 fw_sb_id,u16 tx_usec,u16 rx_usec)5999 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
6000 u16 tx_usec, u16 rx_usec)
6001 {
6002 bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
6003 false, rx_usec);
6004 bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6005 HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
6006 tx_usec);
6007 bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6008 HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
6009 tx_usec);
6010 bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6011 HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
6012 tx_usec);
6013 }
6014
bnx2x_init_def_sb(struct bnx2x * bp)6015 static void bnx2x_init_def_sb(struct bnx2x *bp)
6016 {
6017 struct host_sp_status_block *def_sb = bp->def_status_blk;
6018 dma_addr_t mapping = bp->def_status_blk_mapping;
6019 int igu_sp_sb_index;
6020 int igu_seg_id;
6021 int port = BP_PORT(bp);
6022 int func = BP_FUNC(bp);
6023 int reg_offset, reg_offset_en5;
6024 u64 section;
6025 int index;
6026 struct hc_sp_status_block_data sp_sb_data;
6027 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
6028
6029 if (CHIP_INT_MODE_IS_BC(bp)) {
6030 igu_sp_sb_index = DEF_SB_IGU_ID;
6031 igu_seg_id = HC_SEG_ACCESS_DEF;
6032 } else {
6033 igu_sp_sb_index = bp->igu_dsb_id;
6034 igu_seg_id = IGU_SEG_ACCESS_DEF;
6035 }
6036
6037 /* ATTN */
6038 section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6039 atten_status_block);
6040 def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
6041
6042 bp->attn_state = 0;
6043
6044 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6045 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
6046 reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
6047 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
6048 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
6049 int sindex;
6050 /* take care of sig[0]..sig[4] */
6051 for (sindex = 0; sindex < 4; sindex++)
6052 bp->attn_group[index].sig[sindex] =
6053 REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
6054
6055 if (!CHIP_IS_E1x(bp))
6056 /*
6057 * enable5 is separate from the rest of the registers,
6058 * and therefore the address skip is 4
6059 * and not 16 between the different groups
6060 */
6061 bp->attn_group[index].sig[4] = REG_RD(bp,
6062 reg_offset_en5 + 0x4*index);
6063 else
6064 bp->attn_group[index].sig[4] = 0;
6065 }
6066
6067 if (bp->common.int_block == INT_BLOCK_HC) {
6068 reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
6069 HC_REG_ATTN_MSG0_ADDR_L);
6070
6071 REG_WR(bp, reg_offset, U64_LO(section));
6072 REG_WR(bp, reg_offset + 4, U64_HI(section));
6073 } else if (!CHIP_IS_E1x(bp)) {
6074 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
6075 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
6076 }
6077
6078 section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6079 sp_sb);
6080
6081 bnx2x_zero_sp_sb(bp);
6082
6083 /* PCI guarantees endianity of regpairs */
6084 sp_sb_data.state = SB_ENABLED;
6085 sp_sb_data.host_sb_addr.lo = U64_LO(section);
6086 sp_sb_data.host_sb_addr.hi = U64_HI(section);
6087 sp_sb_data.igu_sb_id = igu_sp_sb_index;
6088 sp_sb_data.igu_seg_id = igu_seg_id;
6089 sp_sb_data.p_func.pf_id = func;
6090 sp_sb_data.p_func.vnic_id = BP_VN(bp);
6091 sp_sb_data.p_func.vf_id = 0xff;
6092
6093 bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
6094
6095 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
6096 }
6097
bnx2x_update_coalesce(struct bnx2x * bp)6098 void bnx2x_update_coalesce(struct bnx2x *bp)
6099 {
6100 int i;
6101
6102 for_each_eth_queue(bp, i)
6103 bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
6104 bp->tx_ticks, bp->rx_ticks);
6105 }
6106
bnx2x_init_sp_ring(struct bnx2x * bp)6107 static void bnx2x_init_sp_ring(struct bnx2x *bp)
6108 {
6109 spin_lock_init(&bp->spq_lock);
6110 atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
6111
6112 bp->spq_prod_idx = 0;
6113 bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
6114 bp->spq_prod_bd = bp->spq;
6115 bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
6116 }
6117
bnx2x_init_eq_ring(struct bnx2x * bp)6118 static void bnx2x_init_eq_ring(struct bnx2x *bp)
6119 {
6120 int i;
6121 for (i = 1; i <= NUM_EQ_PAGES; i++) {
6122 union event_ring_elem *elem =
6123 &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
6124
6125 elem->next_page.addr.hi =
6126 cpu_to_le32(U64_HI(bp->eq_mapping +
6127 BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
6128 elem->next_page.addr.lo =
6129 cpu_to_le32(U64_LO(bp->eq_mapping +
6130 BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
6131 }
6132 bp->eq_cons = 0;
6133 bp->eq_prod = NUM_EQ_DESC;
6134 bp->eq_cons_sb = BNX2X_EQ_INDEX;
6135 /* we want a warning message before it gets wrought... */
6136 atomic_set(&bp->eq_spq_left,
6137 min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
6138 }
6139
6140 /* called with netif_addr_lock_bh() */
bnx2x_set_q_rx_mode(struct bnx2x * bp,u8 cl_id,unsigned long rx_mode_flags,unsigned long rx_accept_flags,unsigned long tx_accept_flags,unsigned long ramrod_flags)6141 static int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
6142 unsigned long rx_mode_flags,
6143 unsigned long rx_accept_flags,
6144 unsigned long tx_accept_flags,
6145 unsigned long ramrod_flags)
6146 {
6147 struct bnx2x_rx_mode_ramrod_params ramrod_param;
6148 int rc;
6149
6150 memset(&ramrod_param, 0, sizeof(ramrod_param));
6151
6152 /* Prepare ramrod parameters */
6153 ramrod_param.cid = 0;
6154 ramrod_param.cl_id = cl_id;
6155 ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
6156 ramrod_param.func_id = BP_FUNC(bp);
6157
6158 ramrod_param.pstate = &bp->sp_state;
6159 ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
6160
6161 ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
6162 ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
6163
6164 set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
6165
6166 ramrod_param.ramrod_flags = ramrod_flags;
6167 ramrod_param.rx_mode_flags = rx_mode_flags;
6168
6169 ramrod_param.rx_accept_flags = rx_accept_flags;
6170 ramrod_param.tx_accept_flags = tx_accept_flags;
6171
6172 rc = bnx2x_config_rx_mode(bp, &ramrod_param);
6173 if (rc < 0) {
6174 BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
6175 return rc;
6176 }
6177
6178 return 0;
6179 }
6180
bnx2x_fill_accept_flags(struct bnx2x * bp,u32 rx_mode,unsigned long * rx_accept_flags,unsigned long * tx_accept_flags)6181 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
6182 unsigned long *rx_accept_flags,
6183 unsigned long *tx_accept_flags)
6184 {
6185 /* Clear the flags first */
6186 *rx_accept_flags = 0;
6187 *tx_accept_flags = 0;
6188
6189 switch (rx_mode) {
6190 case BNX2X_RX_MODE_NONE:
6191 /*
6192 * 'drop all' supersedes any accept flags that may have been
6193 * passed to the function.
6194 */
6195 break;
6196 case BNX2X_RX_MODE_NORMAL:
6197 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6198 __set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
6199 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6200
6201 /* internal switching mode */
6202 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6203 __set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
6204 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6205
6206 if (bp->accept_any_vlan) {
6207 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6208 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6209 }
6210
6211 break;
6212 case BNX2X_RX_MODE_ALLMULTI:
6213 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6214 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6215 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6216
6217 /* internal switching mode */
6218 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6219 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6220 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6221
6222 if (bp->accept_any_vlan) {
6223 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6224 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6225 }
6226
6227 break;
6228 case BNX2X_RX_MODE_PROMISC:
6229 /* According to definition of SI mode, iface in promisc mode
6230 * should receive matched and unmatched (in resolution of port)
6231 * unicast packets.
6232 */
6233 __set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
6234 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6235 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6236 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6237
6238 /* internal switching mode */
6239 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6240 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6241
6242 if (IS_MF_SI(bp))
6243 __set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
6244 else
6245 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6246
6247 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6248 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6249
6250 break;
6251 default:
6252 BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
6253 return -EINVAL;
6254 }
6255
6256 return 0;
6257 }
6258
6259 /* called with netif_addr_lock_bh() */
bnx2x_set_storm_rx_mode(struct bnx2x * bp)6260 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
6261 {
6262 unsigned long rx_mode_flags = 0, ramrod_flags = 0;
6263 unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
6264 int rc;
6265
6266 if (!NO_FCOE(bp))
6267 /* Configure rx_mode of FCoE Queue */
6268 __set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
6269
6270 rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
6271 &tx_accept_flags);
6272 if (rc)
6273 return rc;
6274
6275 __set_bit(RAMROD_RX, &ramrod_flags);
6276 __set_bit(RAMROD_TX, &ramrod_flags);
6277
6278 return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
6279 rx_accept_flags, tx_accept_flags,
6280 ramrod_flags);
6281 }
6282
bnx2x_init_internal_common(struct bnx2x * bp)6283 static void bnx2x_init_internal_common(struct bnx2x *bp)
6284 {
6285 int i;
6286
6287 /* Zero this manually as its initialization is
6288 currently missing in the initTool */
6289 for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
6290 REG_WR(bp, BAR_USTRORM_INTMEM +
6291 USTORM_AGG_DATA_OFFSET + i * 4, 0);
6292 if (!CHIP_IS_E1x(bp)) {
6293 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
6294 CHIP_INT_MODE_IS_BC(bp) ?
6295 HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
6296 }
6297 }
6298
bnx2x_init_internal(struct bnx2x * bp,u32 load_code)6299 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
6300 {
6301 switch (load_code) {
6302 case FW_MSG_CODE_DRV_LOAD_COMMON:
6303 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
6304 bnx2x_init_internal_common(bp);
6305 /* no break */
6306
6307 case FW_MSG_CODE_DRV_LOAD_PORT:
6308 /* nothing to do */
6309 /* no break */
6310
6311 case FW_MSG_CODE_DRV_LOAD_FUNCTION:
6312 /* internal memory per function is
6313 initialized inside bnx2x_pf_init */
6314 break;
6315
6316 default:
6317 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6318 break;
6319 }
6320 }
6321
bnx2x_fp_igu_sb_id(struct bnx2x_fastpath * fp)6322 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
6323 {
6324 return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
6325 }
6326
bnx2x_fp_fw_sb_id(struct bnx2x_fastpath * fp)6327 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
6328 {
6329 return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
6330 }
6331
bnx2x_fp_cl_id(struct bnx2x_fastpath * fp)6332 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
6333 {
6334 if (CHIP_IS_E1x(fp->bp))
6335 return BP_L_ID(fp->bp) + fp->index;
6336 else /* We want Client ID to be the same as IGU SB ID for 57712 */
6337 return bnx2x_fp_igu_sb_id(fp);
6338 }
6339
bnx2x_init_eth_fp(struct bnx2x * bp,int fp_idx)6340 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
6341 {
6342 struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
6343 u8 cos;
6344 unsigned long q_type = 0;
6345 u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
6346 fp->rx_queue = fp_idx;
6347 fp->cid = fp_idx;
6348 fp->cl_id = bnx2x_fp_cl_id(fp);
6349 fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
6350 fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
6351 /* qZone id equals to FW (per path) client id */
6352 fp->cl_qzone_id = bnx2x_fp_qzone_id(fp);
6353
6354 /* init shortcut */
6355 fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
6356
6357 /* Setup SB indices */
6358 fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
6359
6360 /* Configure Queue State object */
6361 __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6362 __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6363
6364 BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
6365
6366 /* init tx data */
6367 for_each_cos_in_tx_queue(fp, cos) {
6368 bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
6369 CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
6370 FP_COS_TO_TXQ(fp, cos, bp),
6371 BNX2X_TX_SB_INDEX_BASE + cos, fp);
6372 cids[cos] = fp->txdata_ptr[cos]->cid;
6373 }
6374
6375 /* nothing more for vf to do here */
6376 if (IS_VF(bp))
6377 return;
6378
6379 bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
6380 fp->fw_sb_id, fp->igu_sb_id);
6381 bnx2x_update_fpsb_idx(fp);
6382 bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
6383 fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6384 bnx2x_sp_mapping(bp, q_rdata), q_type);
6385
6386 /**
6387 * Configure classification DBs: Always enable Tx switching
6388 */
6389 bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
6390
6391 DP(NETIF_MSG_IFUP,
6392 "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
6393 fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6394 fp->igu_sb_id);
6395 }
6396
bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata * txdata)6397 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
6398 {
6399 int i;
6400
6401 for (i = 1; i <= NUM_TX_RINGS; i++) {
6402 struct eth_tx_next_bd *tx_next_bd =
6403 &txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
6404
6405 tx_next_bd->addr_hi =
6406 cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
6407 BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6408 tx_next_bd->addr_lo =
6409 cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
6410 BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6411 }
6412
6413 *txdata->tx_cons_sb = cpu_to_le16(0);
6414
6415 SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
6416 txdata->tx_db.data.zero_fill1 = 0;
6417 txdata->tx_db.data.prod = 0;
6418
6419 txdata->tx_pkt_prod = 0;
6420 txdata->tx_pkt_cons = 0;
6421 txdata->tx_bd_prod = 0;
6422 txdata->tx_bd_cons = 0;
6423 txdata->tx_pkt = 0;
6424 }
6425
bnx2x_init_tx_rings_cnic(struct bnx2x * bp)6426 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
6427 {
6428 int i;
6429
6430 for_each_tx_queue_cnic(bp, i)
6431 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
6432 }
6433
bnx2x_init_tx_rings(struct bnx2x * bp)6434 static void bnx2x_init_tx_rings(struct bnx2x *bp)
6435 {
6436 int i;
6437 u8 cos;
6438
6439 for_each_eth_queue(bp, i)
6440 for_each_cos_in_tx_queue(&bp->fp[i], cos)
6441 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6442 }
6443
bnx2x_init_fcoe_fp(struct bnx2x * bp)6444 static void bnx2x_init_fcoe_fp(struct bnx2x *bp)
6445 {
6446 struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
6447 unsigned long q_type = 0;
6448
6449 bnx2x_fcoe(bp, rx_queue) = BNX2X_NUM_ETH_QUEUES(bp);
6450 bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp,
6451 BNX2X_FCOE_ETH_CL_ID_IDX);
6452 bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID(bp);
6453 bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID;
6454 bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id;
6455 bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX;
6456 bnx2x_init_txdata(bp, bnx2x_fcoe(bp, txdata_ptr[0]),
6457 fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX,
6458 fp);
6459
6460 DP(NETIF_MSG_IFUP, "created fcoe tx data (fp index %d)\n", fp->index);
6461
6462 /* qZone id equals to FW (per path) client id */
6463 bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp);
6464 /* init shortcut */
6465 bnx2x_fcoe(bp, ustorm_rx_prods_offset) =
6466 bnx2x_rx_ustorm_prods_offset(fp);
6467
6468 /* Configure Queue State object */
6469 __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6470 __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6471
6472 /* No multi-CoS for FCoE L2 client */
6473 BUG_ON(fp->max_cos != 1);
6474
6475 bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id,
6476 &fp->cid, 1, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6477 bnx2x_sp_mapping(bp, q_rdata), q_type);
6478
6479 DP(NETIF_MSG_IFUP,
6480 "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
6481 fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6482 fp->igu_sb_id);
6483 }
6484
bnx2x_nic_init_cnic(struct bnx2x * bp)6485 void bnx2x_nic_init_cnic(struct bnx2x *bp)
6486 {
6487 if (!NO_FCOE(bp))
6488 bnx2x_init_fcoe_fp(bp);
6489
6490 bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6491 BNX2X_VF_ID_INVALID, false,
6492 bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6493
6494 /* ensure status block indices were read */
6495 rmb();
6496 bnx2x_init_rx_rings_cnic(bp);
6497 bnx2x_init_tx_rings_cnic(bp);
6498
6499 /* flush all */
6500 mb();
6501 }
6502
bnx2x_pre_irq_nic_init(struct bnx2x * bp)6503 void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
6504 {
6505 int i;
6506
6507 /* Setup NIC internals and enable interrupts */
6508 for_each_eth_queue(bp, i)
6509 bnx2x_init_eth_fp(bp, i);
6510
6511 /* ensure status block indices were read */
6512 rmb();
6513 bnx2x_init_rx_rings(bp);
6514 bnx2x_init_tx_rings(bp);
6515
6516 if (IS_PF(bp)) {
6517 /* Initialize MOD_ABS interrupts */
6518 bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6519 bp->common.shmem_base,
6520 bp->common.shmem2_base, BP_PORT(bp));
6521
6522 /* initialize the default status block and sp ring */
6523 bnx2x_init_def_sb(bp);
6524 bnx2x_update_dsb_idx(bp);
6525 bnx2x_init_sp_ring(bp);
6526 } else {
6527 bnx2x_memset_stats(bp);
6528 }
6529 }
6530
bnx2x_post_irq_nic_init(struct bnx2x * bp,u32 load_code)6531 void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
6532 {
6533 bnx2x_init_eq_ring(bp);
6534 bnx2x_init_internal(bp, load_code);
6535 bnx2x_pf_init(bp);
6536 bnx2x_stats_init(bp);
6537
6538 /* flush all before enabling interrupts */
6539 mb();
6540
6541 bnx2x_int_enable(bp);
6542
6543 /* Check for SPIO5 */
6544 bnx2x_attn_int_deasserted0(bp,
6545 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6546 AEU_INPUTS_ATTN_BITS_SPIO5);
6547 }
6548
6549 /* gzip service functions */
bnx2x_gunzip_init(struct bnx2x * bp)6550 static int bnx2x_gunzip_init(struct bnx2x *bp)
6551 {
6552 bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6553 &bp->gunzip_mapping, GFP_KERNEL);
6554 if (bp->gunzip_buf == NULL)
6555 goto gunzip_nomem1;
6556
6557 bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6558 if (bp->strm == NULL)
6559 goto gunzip_nomem2;
6560
6561 bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6562 if (bp->strm->workspace == NULL)
6563 goto gunzip_nomem3;
6564
6565 return 0;
6566
6567 gunzip_nomem3:
6568 kfree(bp->strm);
6569 bp->strm = NULL;
6570
6571 gunzip_nomem2:
6572 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6573 bp->gunzip_mapping);
6574 bp->gunzip_buf = NULL;
6575
6576 gunzip_nomem1:
6577 BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6578 return -ENOMEM;
6579 }
6580
bnx2x_gunzip_end(struct bnx2x * bp)6581 static void bnx2x_gunzip_end(struct bnx2x *bp)
6582 {
6583 if (bp->strm) {
6584 vfree(bp->strm->workspace);
6585 kfree(bp->strm);
6586 bp->strm = NULL;
6587 }
6588
6589 if (bp->gunzip_buf) {
6590 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6591 bp->gunzip_mapping);
6592 bp->gunzip_buf = NULL;
6593 }
6594 }
6595
bnx2x_gunzip(struct bnx2x * bp,const u8 * zbuf,int len)6596 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6597 {
6598 int n, rc;
6599
6600 /* check gzip header */
6601 if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6602 BNX2X_ERR("Bad gzip header\n");
6603 return -EINVAL;
6604 }
6605
6606 n = 10;
6607
6608 #define FNAME 0x8
6609
6610 if (zbuf[3] & FNAME)
6611 while ((zbuf[n++] != 0) && (n < len));
6612
6613 bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6614 bp->strm->avail_in = len - n;
6615 bp->strm->next_out = bp->gunzip_buf;
6616 bp->strm->avail_out = FW_BUF_SIZE;
6617
6618 rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6619 if (rc != Z_OK)
6620 return rc;
6621
6622 rc = zlib_inflate(bp->strm, Z_FINISH);
6623 if ((rc != Z_OK) && (rc != Z_STREAM_END))
6624 netdev_err(bp->dev, "Firmware decompression error: %s\n",
6625 bp->strm->msg);
6626
6627 bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6628 if (bp->gunzip_outlen & 0x3)
6629 netdev_err(bp->dev,
6630 "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6631 bp->gunzip_outlen);
6632 bp->gunzip_outlen >>= 2;
6633
6634 zlib_inflateEnd(bp->strm);
6635
6636 if (rc == Z_STREAM_END)
6637 return 0;
6638
6639 return rc;
6640 }
6641
6642 /* nic load/unload */
6643
6644 /*
6645 * General service functions
6646 */
6647
6648 /* send a NIG loopback debug packet */
bnx2x_lb_pckt(struct bnx2x * bp)6649 static void bnx2x_lb_pckt(struct bnx2x *bp)
6650 {
6651 u32 wb_write[3];
6652
6653 /* Ethernet source and destination addresses */
6654 wb_write[0] = 0x55555555;
6655 wb_write[1] = 0x55555555;
6656 wb_write[2] = 0x20; /* SOP */
6657 REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6658
6659 /* NON-IP protocol */
6660 wb_write[0] = 0x09000000;
6661 wb_write[1] = 0x55555555;
6662 wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */
6663 REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6664 }
6665
6666 /* some of the internal memories
6667 * are not directly readable from the driver
6668 * to test them we send debug packets
6669 */
bnx2x_int_mem_test(struct bnx2x * bp)6670 static int bnx2x_int_mem_test(struct bnx2x *bp)
6671 {
6672 int factor;
6673 int count, i;
6674 u32 val = 0;
6675
6676 if (CHIP_REV_IS_FPGA(bp))
6677 factor = 120;
6678 else if (CHIP_REV_IS_EMUL(bp))
6679 factor = 200;
6680 else
6681 factor = 1;
6682
6683 /* Disable inputs of parser neighbor blocks */
6684 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6685 REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6686 REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6687 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6688
6689 /* Write 0 to parser credits for CFC search request */
6690 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6691
6692 /* send Ethernet packet */
6693 bnx2x_lb_pckt(bp);
6694
6695 /* TODO do i reset NIG statistic? */
6696 /* Wait until NIG register shows 1 packet of size 0x10 */
6697 count = 1000 * factor;
6698 while (count) {
6699
6700 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6701 val = *bnx2x_sp(bp, wb_data[0]);
6702 if (val == 0x10)
6703 break;
6704
6705 usleep_range(10000, 20000);
6706 count--;
6707 }
6708 if (val != 0x10) {
6709 BNX2X_ERR("NIG timeout val = 0x%x\n", val);
6710 return -1;
6711 }
6712
6713 /* Wait until PRS register shows 1 packet */
6714 count = 1000 * factor;
6715 while (count) {
6716 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6717 if (val == 1)
6718 break;
6719
6720 usleep_range(10000, 20000);
6721 count--;
6722 }
6723 if (val != 0x1) {
6724 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6725 return -2;
6726 }
6727
6728 /* Reset and init BRB, PRS */
6729 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6730 msleep(50);
6731 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6732 msleep(50);
6733 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6734 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6735
6736 DP(NETIF_MSG_HW, "part2\n");
6737
6738 /* Disable inputs of parser neighbor blocks */
6739 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6740 REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6741 REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6742 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6743
6744 /* Write 0 to parser credits for CFC search request */
6745 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6746
6747 /* send 10 Ethernet packets */
6748 for (i = 0; i < 10; i++)
6749 bnx2x_lb_pckt(bp);
6750
6751 /* Wait until NIG register shows 10 + 1
6752 packets of size 11*0x10 = 0xb0 */
6753 count = 1000 * factor;
6754 while (count) {
6755
6756 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6757 val = *bnx2x_sp(bp, wb_data[0]);
6758 if (val == 0xb0)
6759 break;
6760
6761 usleep_range(10000, 20000);
6762 count--;
6763 }
6764 if (val != 0xb0) {
6765 BNX2X_ERR("NIG timeout val = 0x%x\n", val);
6766 return -3;
6767 }
6768
6769 /* Wait until PRS register shows 2 packets */
6770 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6771 if (val != 2)
6772 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6773
6774 /* Write 1 to parser credits for CFC search request */
6775 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6776
6777 /* Wait until PRS register shows 3 packets */
6778 msleep(10 * factor);
6779 /* Wait until NIG register shows 1 packet of size 0x10 */
6780 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6781 if (val != 3)
6782 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6783
6784 /* clear NIG EOP FIFO */
6785 for (i = 0; i < 11; i++)
6786 REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6787 val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6788 if (val != 1) {
6789 BNX2X_ERR("clear of NIG failed\n");
6790 return -4;
6791 }
6792
6793 /* Reset and init BRB, PRS, NIG */
6794 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6795 msleep(50);
6796 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6797 msleep(50);
6798 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6799 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6800 if (!CNIC_SUPPORT(bp))
6801 /* set NIC mode */
6802 REG_WR(bp, PRS_REG_NIC_MODE, 1);
6803
6804 /* Enable inputs of parser neighbor blocks */
6805 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6806 REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6807 REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6808 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6809
6810 DP(NETIF_MSG_HW, "done\n");
6811
6812 return 0; /* OK */
6813 }
6814
bnx2x_enable_blocks_attention(struct bnx2x * bp)6815 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6816 {
6817 u32 val;
6818
6819 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6820 if (!CHIP_IS_E1x(bp))
6821 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6822 else
6823 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6824 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6825 REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6826 /*
6827 * mask read length error interrupts in brb for parser
6828 * (parsing unit and 'checksum and crc' unit)
6829 * these errors are legal (PU reads fixed length and CAC can cause
6830 * read length error on truncated packets)
6831 */
6832 REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6833 REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6834 REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6835 REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6836 REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6837 REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6838 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6839 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6840 REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6841 REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6842 REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6843 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6844 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6845 REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6846 REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6847 REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6848 REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6849 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6850 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6851
6852 val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT |
6853 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6854 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6855 if (!CHIP_IS_E1x(bp))
6856 val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6857 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6858 REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6859
6860 REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6861 REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6862 REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6863 /* REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6864
6865 if (!CHIP_IS_E1x(bp))
6866 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6867 REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6868
6869 REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6870 REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6871 /* REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6872 REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */
6873 }
6874
bnx2x_reset_common(struct bnx2x * bp)6875 static void bnx2x_reset_common(struct bnx2x *bp)
6876 {
6877 u32 val = 0x1400;
6878
6879 /* reset_common */
6880 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6881 0xd3ffff7f);
6882
6883 if (CHIP_IS_E3(bp)) {
6884 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6885 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6886 }
6887
6888 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6889 }
6890
bnx2x_setup_dmae(struct bnx2x * bp)6891 static void bnx2x_setup_dmae(struct bnx2x *bp)
6892 {
6893 bp->dmae_ready = 0;
6894 spin_lock_init(&bp->dmae_lock);
6895 }
6896
bnx2x_init_pxp(struct bnx2x * bp)6897 static void bnx2x_init_pxp(struct bnx2x *bp)
6898 {
6899 u16 devctl;
6900 int r_order, w_order;
6901
6902 pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6903 DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6904 w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6905 if (bp->mrrs == -1)
6906 r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6907 else {
6908 DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6909 r_order = bp->mrrs;
6910 }
6911
6912 bnx2x_init_pxp_arb(bp, r_order, w_order);
6913 }
6914
bnx2x_setup_fan_failure_detection(struct bnx2x * bp)6915 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6916 {
6917 int is_required;
6918 u32 val;
6919 int port;
6920
6921 if (BP_NOMCP(bp))
6922 return;
6923
6924 is_required = 0;
6925 val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6926 SHARED_HW_CFG_FAN_FAILURE_MASK;
6927
6928 if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6929 is_required = 1;
6930
6931 /*
6932 * The fan failure mechanism is usually related to the PHY type since
6933 * the power consumption of the board is affected by the PHY. Currently,
6934 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6935 */
6936 else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6937 for (port = PORT_0; port < PORT_MAX; port++) {
6938 is_required |=
6939 bnx2x_fan_failure_det_req(
6940 bp,
6941 bp->common.shmem_base,
6942 bp->common.shmem2_base,
6943 port);
6944 }
6945
6946 DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6947
6948 if (is_required == 0)
6949 return;
6950
6951 /* Fan failure is indicated by SPIO 5 */
6952 bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6953
6954 /* set to active low mode */
6955 val = REG_RD(bp, MISC_REG_SPIO_INT);
6956 val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6957 REG_WR(bp, MISC_REG_SPIO_INT, val);
6958
6959 /* enable interrupt to signal the IGU */
6960 val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6961 val |= MISC_SPIO_SPIO5;
6962 REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6963 }
6964
bnx2x_pf_disable(struct bnx2x * bp)6965 void bnx2x_pf_disable(struct bnx2x *bp)
6966 {
6967 u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6968 val &= ~IGU_PF_CONF_FUNC_EN;
6969
6970 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6971 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6972 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6973 }
6974
bnx2x__common_init_phy(struct bnx2x * bp)6975 static void bnx2x__common_init_phy(struct bnx2x *bp)
6976 {
6977 u32 shmem_base[2], shmem2_base[2];
6978 /* Avoid common init in case MFW supports LFA */
6979 if (SHMEM2_RD(bp, size) >
6980 (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
6981 return;
6982 shmem_base[0] = bp->common.shmem_base;
6983 shmem2_base[0] = bp->common.shmem2_base;
6984 if (!CHIP_IS_E1x(bp)) {
6985 shmem_base[1] =
6986 SHMEM2_RD(bp, other_shmem_base_addr);
6987 shmem2_base[1] =
6988 SHMEM2_RD(bp, other_shmem2_base_addr);
6989 }
6990 bnx2x_acquire_phy_lock(bp);
6991 bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
6992 bp->common.chip_id);
6993 bnx2x_release_phy_lock(bp);
6994 }
6995
bnx2x_config_endianity(struct bnx2x * bp,u32 val)6996 static void bnx2x_config_endianity(struct bnx2x *bp, u32 val)
6997 {
6998 REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, val);
6999 REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, val);
7000 REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, val);
7001 REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, val);
7002 REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, val);
7003
7004 /* make sure this value is 0 */
7005 REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
7006
7007 REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, val);
7008 REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, val);
7009 REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, val);
7010 REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, val);
7011 }
7012
bnx2x_set_endianity(struct bnx2x * bp)7013 static void bnx2x_set_endianity(struct bnx2x *bp)
7014 {
7015 #ifdef __BIG_ENDIAN
7016 bnx2x_config_endianity(bp, 1);
7017 #else
7018 bnx2x_config_endianity(bp, 0);
7019 #endif
7020 }
7021
bnx2x_reset_endianity(struct bnx2x * bp)7022 static void bnx2x_reset_endianity(struct bnx2x *bp)
7023 {
7024 bnx2x_config_endianity(bp, 0);
7025 }
7026
7027 /**
7028 * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
7029 *
7030 * @bp: driver handle
7031 */
bnx2x_init_hw_common(struct bnx2x * bp)7032 static int bnx2x_init_hw_common(struct bnx2x *bp)
7033 {
7034 u32 val;
7035
7036 DP(NETIF_MSG_HW, "starting common init func %d\n", BP_ABS_FUNC(bp));
7037
7038 /*
7039 * take the RESET lock to protect undi_unload flow from accessing
7040 * registers while we're resetting the chip
7041 */
7042 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7043
7044 bnx2x_reset_common(bp);
7045 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
7046
7047 val = 0xfffc;
7048 if (CHIP_IS_E3(bp)) {
7049 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
7050 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
7051 }
7052 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
7053
7054 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7055
7056 bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
7057
7058 if (!CHIP_IS_E1x(bp)) {
7059 u8 abs_func_id;
7060
7061 /**
7062 * 4-port mode or 2-port mode we need to turn of master-enable
7063 * for everyone, after that, turn it back on for self.
7064 * so, we disregard multi-function or not, and always disable
7065 * for all functions on the given path, this means 0,2,4,6 for
7066 * path 0 and 1,3,5,7 for path 1
7067 */
7068 for (abs_func_id = BP_PATH(bp);
7069 abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
7070 if (abs_func_id == BP_ABS_FUNC(bp)) {
7071 REG_WR(bp,
7072 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
7073 1);
7074 continue;
7075 }
7076
7077 bnx2x_pretend_func(bp, abs_func_id);
7078 /* clear pf enable */
7079 bnx2x_pf_disable(bp);
7080 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7081 }
7082 }
7083
7084 bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
7085 if (CHIP_IS_E1(bp)) {
7086 /* enable HW interrupt from PXP on USDM overflow
7087 bit 16 on INT_MASK_0 */
7088 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
7089 }
7090
7091 bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
7092 bnx2x_init_pxp(bp);
7093 bnx2x_set_endianity(bp);
7094 bnx2x_ilt_init_page_size(bp, INITOP_SET);
7095
7096 if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
7097 REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
7098
7099 /* let the HW do it's magic ... */
7100 msleep(100);
7101 /* finish PXP init */
7102 val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
7103 if (val != 1) {
7104 BNX2X_ERR("PXP2 CFG failed\n");
7105 return -EBUSY;
7106 }
7107 val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
7108 if (val != 1) {
7109 BNX2X_ERR("PXP2 RD_INIT failed\n");
7110 return -EBUSY;
7111 }
7112
7113 /* Timers bug workaround E2 only. We need to set the entire ILT to
7114 * have entries with value "0" and valid bit on.
7115 * This needs to be done by the first PF that is loaded in a path
7116 * (i.e. common phase)
7117 */
7118 if (!CHIP_IS_E1x(bp)) {
7119 /* In E2 there is a bug in the timers block that can cause function 6 / 7
7120 * (i.e. vnic3) to start even if it is marked as "scan-off".
7121 * This occurs when a different function (func2,3) is being marked
7122 * as "scan-off". Real-life scenario for example: if a driver is being
7123 * load-unloaded while func6,7 are down. This will cause the timer to access
7124 * the ilt, translate to a logical address and send a request to read/write.
7125 * Since the ilt for the function that is down is not valid, this will cause
7126 * a translation error which is unrecoverable.
7127 * The Workaround is intended to make sure that when this happens nothing fatal
7128 * will occur. The workaround:
7129 * 1. First PF driver which loads on a path will:
7130 * a. After taking the chip out of reset, by using pretend,
7131 * it will write "0" to the following registers of
7132 * the other vnics.
7133 * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
7134 * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
7135 * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
7136 * And for itself it will write '1' to
7137 * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
7138 * dmae-operations (writing to pram for example.)
7139 * note: can be done for only function 6,7 but cleaner this
7140 * way.
7141 * b. Write zero+valid to the entire ILT.
7142 * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of
7143 * VNIC3 (of that port). The range allocated will be the
7144 * entire ILT. This is needed to prevent ILT range error.
7145 * 2. Any PF driver load flow:
7146 * a. ILT update with the physical addresses of the allocated
7147 * logical pages.
7148 * b. Wait 20msec. - note that this timeout is needed to make
7149 * sure there are no requests in one of the PXP internal
7150 * queues with "old" ILT addresses.
7151 * c. PF enable in the PGLC.
7152 * d. Clear the was_error of the PF in the PGLC. (could have
7153 * occurred while driver was down)
7154 * e. PF enable in the CFC (WEAK + STRONG)
7155 * f. Timers scan enable
7156 * 3. PF driver unload flow:
7157 * a. Clear the Timers scan_en.
7158 * b. Polling for scan_on=0 for that PF.
7159 * c. Clear the PF enable bit in the PXP.
7160 * d. Clear the PF enable in the CFC (WEAK + STRONG)
7161 * e. Write zero+valid to all ILT entries (The valid bit must
7162 * stay set)
7163 * f. If this is VNIC 3 of a port then also init
7164 * first_timers_ilt_entry to zero and last_timers_ilt_entry
7165 * to the last entry in the ILT.
7166 *
7167 * Notes:
7168 * Currently the PF error in the PGLC is non recoverable.
7169 * In the future the there will be a recovery routine for this error.
7170 * Currently attention is masked.
7171 * Having an MCP lock on the load/unload process does not guarantee that
7172 * there is no Timer disable during Func6/7 enable. This is because the
7173 * Timers scan is currently being cleared by the MCP on FLR.
7174 * Step 2.d can be done only for PF6/7 and the driver can also check if
7175 * there is error before clearing it. But the flow above is simpler and
7176 * more general.
7177 * All ILT entries are written by zero+valid and not just PF6/7
7178 * ILT entries since in the future the ILT entries allocation for
7179 * PF-s might be dynamic.
7180 */
7181 struct ilt_client_info ilt_cli;
7182 struct bnx2x_ilt ilt;
7183 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
7184 memset(&ilt, 0, sizeof(struct bnx2x_ilt));
7185
7186 /* initialize dummy TM client */
7187 ilt_cli.start = 0;
7188 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
7189 ilt_cli.client_num = ILT_CLIENT_TM;
7190
7191 /* Step 1: set zeroes to all ilt page entries with valid bit on
7192 * Step 2: set the timers first/last ilt entry to point
7193 * to the entire range to prevent ILT range error for 3rd/4th
7194 * vnic (this code assumes existence of the vnic)
7195 *
7196 * both steps performed by call to bnx2x_ilt_client_init_op()
7197 * with dummy TM client
7198 *
7199 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
7200 * and his brother are split registers
7201 */
7202 bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
7203 bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
7204 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7205
7206 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
7207 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
7208 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
7209 }
7210
7211 REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
7212 REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
7213
7214 if (!CHIP_IS_E1x(bp)) {
7215 int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
7216 (CHIP_REV_IS_FPGA(bp) ? 400 : 0);
7217 bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
7218
7219 bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
7220
7221 /* let the HW do it's magic ... */
7222 do {
7223 msleep(200);
7224 val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
7225 } while (factor-- && (val != 1));
7226
7227 if (val != 1) {
7228 BNX2X_ERR("ATC_INIT failed\n");
7229 return -EBUSY;
7230 }
7231 }
7232
7233 bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
7234
7235 bnx2x_iov_init_dmae(bp);
7236
7237 /* clean the DMAE memory */
7238 bp->dmae_ready = 1;
7239 bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
7240
7241 bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
7242
7243 bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
7244
7245 bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
7246
7247 bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
7248
7249 bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
7250 bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
7251 bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
7252 bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
7253
7254 bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
7255
7256 /* QM queues pointers table */
7257 bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
7258
7259 /* soft reset pulse */
7260 REG_WR(bp, QM_REG_SOFT_RESET, 1);
7261 REG_WR(bp, QM_REG_SOFT_RESET, 0);
7262
7263 if (CNIC_SUPPORT(bp))
7264 bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
7265
7266 bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
7267
7268 if (!CHIP_REV_IS_SLOW(bp))
7269 /* enable hw interrupt from doorbell Q */
7270 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
7271
7272 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
7273
7274 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
7275 REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
7276
7277 if (!CHIP_IS_E1(bp))
7278 REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
7279
7280 if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
7281 if (IS_MF_AFEX(bp)) {
7282 /* configure that VNTag and VLAN headers must be
7283 * received in afex mode
7284 */
7285 REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
7286 REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
7287 REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
7288 REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
7289 REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
7290 } else {
7291 /* Bit-map indicating which L2 hdrs may appear
7292 * after the basic Ethernet header
7293 */
7294 REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
7295 bp->path_has_ovlan ? 7 : 6);
7296 }
7297 }
7298
7299 bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
7300 bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
7301 bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
7302 bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
7303
7304 if (!CHIP_IS_E1x(bp)) {
7305 /* reset VFC memories */
7306 REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7307 VFC_MEMORIES_RST_REG_CAM_RST |
7308 VFC_MEMORIES_RST_REG_RAM_RST);
7309 REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7310 VFC_MEMORIES_RST_REG_CAM_RST |
7311 VFC_MEMORIES_RST_REG_RAM_RST);
7312
7313 msleep(20);
7314 }
7315
7316 bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
7317 bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
7318 bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
7319 bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
7320
7321 /* sync semi rtc */
7322 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
7323 0x80000000);
7324 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
7325 0x80000000);
7326
7327 bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
7328 bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
7329 bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
7330
7331 if (!CHIP_IS_E1x(bp)) {
7332 if (IS_MF_AFEX(bp)) {
7333 /* configure that VNTag and VLAN headers must be
7334 * sent in afex mode
7335 */
7336 REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
7337 REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
7338 REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
7339 REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
7340 REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
7341 } else {
7342 REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
7343 bp->path_has_ovlan ? 7 : 6);
7344 }
7345 }
7346
7347 REG_WR(bp, SRC_REG_SOFT_RST, 1);
7348
7349 bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
7350
7351 if (CNIC_SUPPORT(bp)) {
7352 REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
7353 REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
7354 REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
7355 REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
7356 REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
7357 REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
7358 REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
7359 REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
7360 REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
7361 REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
7362 }
7363 REG_WR(bp, SRC_REG_SOFT_RST, 0);
7364
7365 if (sizeof(union cdu_context) != 1024)
7366 /* we currently assume that a context is 1024 bytes */
7367 dev_alert(&bp->pdev->dev,
7368 "please adjust the size of cdu_context(%ld)\n",
7369 (long)sizeof(union cdu_context));
7370
7371 bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
7372 val = (4 << 24) + (0 << 12) + 1024;
7373 REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
7374
7375 bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
7376 REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
7377 /* enable context validation interrupt from CFC */
7378 REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
7379
7380 /* set the thresholds to prevent CFC/CDU race */
7381 REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
7382
7383 bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
7384
7385 if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
7386 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
7387
7388 bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
7389 bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
7390
7391 /* Reset PCIE errors for debug */
7392 REG_WR(bp, 0x2814, 0xffffffff);
7393 REG_WR(bp, 0x3820, 0xffffffff);
7394
7395 if (!CHIP_IS_E1x(bp)) {
7396 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
7397 (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
7398 PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
7399 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
7400 (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
7401 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
7402 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
7403 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
7404 (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
7405 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
7406 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
7407 }
7408
7409 bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
7410 if (!CHIP_IS_E1(bp)) {
7411 /* in E3 this done in per-port section */
7412 if (!CHIP_IS_E3(bp))
7413 REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
7414 }
7415 if (CHIP_IS_E1H(bp))
7416 /* not applicable for E2 (and above ...) */
7417 REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
7418
7419 if (CHIP_REV_IS_SLOW(bp))
7420 msleep(200);
7421
7422 /* finish CFC init */
7423 val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
7424 if (val != 1) {
7425 BNX2X_ERR("CFC LL_INIT failed\n");
7426 return -EBUSY;
7427 }
7428 val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
7429 if (val != 1) {
7430 BNX2X_ERR("CFC AC_INIT failed\n");
7431 return -EBUSY;
7432 }
7433 val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
7434 if (val != 1) {
7435 BNX2X_ERR("CFC CAM_INIT failed\n");
7436 return -EBUSY;
7437 }
7438 REG_WR(bp, CFC_REG_DEBUG0, 0);
7439
7440 if (CHIP_IS_E1(bp)) {
7441 /* read NIG statistic
7442 to see if this is our first up since powerup */
7443 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
7444 val = *bnx2x_sp(bp, wb_data[0]);
7445
7446 /* do internal memory self test */
7447 if ((val == 0) && bnx2x_int_mem_test(bp)) {
7448 BNX2X_ERR("internal mem self test failed\n");
7449 return -EBUSY;
7450 }
7451 }
7452
7453 bnx2x_setup_fan_failure_detection(bp);
7454
7455 /* clear PXP2 attentions */
7456 REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
7457
7458 bnx2x_enable_blocks_attention(bp);
7459 bnx2x_enable_blocks_parity(bp);
7460
7461 if (!BP_NOMCP(bp)) {
7462 if (CHIP_IS_E1x(bp))
7463 bnx2x__common_init_phy(bp);
7464 } else
7465 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
7466
7467 if (SHMEM2_HAS(bp, netproc_fw_ver))
7468 SHMEM2_WR(bp, netproc_fw_ver, REG_RD(bp, XSEM_REG_PRAM));
7469
7470 return 0;
7471 }
7472
7473 /**
7474 * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
7475 *
7476 * @bp: driver handle
7477 */
bnx2x_init_hw_common_chip(struct bnx2x * bp)7478 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
7479 {
7480 int rc = bnx2x_init_hw_common(bp);
7481
7482 if (rc)
7483 return rc;
7484
7485 /* In E2 2-PORT mode, same ext phy is used for the two paths */
7486 if (!BP_NOMCP(bp))
7487 bnx2x__common_init_phy(bp);
7488
7489 return 0;
7490 }
7491
bnx2x_init_hw_port(struct bnx2x * bp)7492 static int bnx2x_init_hw_port(struct bnx2x *bp)
7493 {
7494 int port = BP_PORT(bp);
7495 int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
7496 u32 low, high;
7497 u32 val, reg;
7498
7499 DP(NETIF_MSG_HW, "starting port init port %d\n", port);
7500
7501 REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7502
7503 bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7504 bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7505 bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7506
7507 /* Timers bug workaround: disables the pf_master bit in pglue at
7508 * common phase, we need to enable it here before any dmae access are
7509 * attempted. Therefore we manually added the enable-master to the
7510 * port phase (it also happens in the function phase)
7511 */
7512 if (!CHIP_IS_E1x(bp))
7513 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7514
7515 bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7516 bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7517 bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7518 bnx2x_init_block(bp, BLOCK_QM, init_phase);
7519
7520 bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7521 bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7522 bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7523 bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7524
7525 /* QM cid (connection) count */
7526 bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7527
7528 if (CNIC_SUPPORT(bp)) {
7529 bnx2x_init_block(bp, BLOCK_TM, init_phase);
7530 REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7531 REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7532 }
7533
7534 bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7535
7536 bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7537
7538 if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7539
7540 if (IS_MF(bp))
7541 low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7542 else if (bp->dev->mtu > 4096) {
7543 if (bp->flags & ONE_PORT_FLAG)
7544 low = 160;
7545 else {
7546 val = bp->dev->mtu;
7547 /* (24*1024 + val*4)/256 */
7548 low = 96 + (val/64) +
7549 ((val % 64) ? 1 : 0);
7550 }
7551 } else
7552 low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7553 high = low + 56; /* 14*1024/256 */
7554 REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7555 REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7556 }
7557
7558 if (CHIP_MODE_IS_4_PORT(bp))
7559 REG_WR(bp, (BP_PORT(bp) ?
7560 BRB1_REG_MAC_GUARANTIED_1 :
7561 BRB1_REG_MAC_GUARANTIED_0), 40);
7562
7563 bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7564 if (CHIP_IS_E3B0(bp)) {
7565 if (IS_MF_AFEX(bp)) {
7566 /* configure headers for AFEX mode */
7567 REG_WR(bp, BP_PORT(bp) ?
7568 PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7569 PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7570 REG_WR(bp, BP_PORT(bp) ?
7571 PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7572 PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7573 REG_WR(bp, BP_PORT(bp) ?
7574 PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7575 PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7576 } else {
7577 /* Ovlan exists only if we are in multi-function +
7578 * switch-dependent mode, in switch-independent there
7579 * is no ovlan headers
7580 */
7581 REG_WR(bp, BP_PORT(bp) ?
7582 PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7583 PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7584 (bp->path_has_ovlan ? 7 : 6));
7585 }
7586 }
7587
7588 bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7589 bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7590 bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7591 bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7592
7593 bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7594 bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7595 bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7596 bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7597
7598 bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7599 bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7600
7601 bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7602
7603 if (CHIP_IS_E1x(bp)) {
7604 /* configure PBF to work without PAUSE mtu 9000 */
7605 REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7606
7607 /* update threshold */
7608 REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7609 /* update init credit */
7610 REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7611
7612 /* probe changes */
7613 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7614 udelay(50);
7615 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7616 }
7617
7618 if (CNIC_SUPPORT(bp))
7619 bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7620
7621 bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7622 bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7623
7624 if (CHIP_IS_E1(bp)) {
7625 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7626 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7627 }
7628 bnx2x_init_block(bp, BLOCK_HC, init_phase);
7629
7630 bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7631
7632 bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7633 /* init aeu_mask_attn_func_0/1:
7634 * - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
7635 * - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
7636 * bits 4-7 are used for "per vn group attention" */
7637 val = IS_MF(bp) ? 0xF7 : 0x7;
7638 /* Enable DCBX attention for all but E1 */
7639 val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7640 REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7641
7642 /* SCPAD_PARITY should NOT trigger close the gates */
7643 reg = port ? MISC_REG_AEU_ENABLE4_NIG_1 : MISC_REG_AEU_ENABLE4_NIG_0;
7644 REG_WR(bp, reg,
7645 REG_RD(bp, reg) &
7646 ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7647
7648 reg = port ? MISC_REG_AEU_ENABLE4_PXP_1 : MISC_REG_AEU_ENABLE4_PXP_0;
7649 REG_WR(bp, reg,
7650 REG_RD(bp, reg) &
7651 ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7652
7653 bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7654
7655 if (!CHIP_IS_E1x(bp)) {
7656 /* Bit-map indicating which L2 hdrs may appear after the
7657 * basic Ethernet header
7658 */
7659 if (IS_MF_AFEX(bp))
7660 REG_WR(bp, BP_PORT(bp) ?
7661 NIG_REG_P1_HDRS_AFTER_BASIC :
7662 NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7663 else
7664 REG_WR(bp, BP_PORT(bp) ?
7665 NIG_REG_P1_HDRS_AFTER_BASIC :
7666 NIG_REG_P0_HDRS_AFTER_BASIC,
7667 IS_MF_SD(bp) ? 7 : 6);
7668
7669 if (CHIP_IS_E3(bp))
7670 REG_WR(bp, BP_PORT(bp) ?
7671 NIG_REG_LLH1_MF_MODE :
7672 NIG_REG_LLH_MF_MODE, IS_MF(bp));
7673 }
7674 if (!CHIP_IS_E3(bp))
7675 REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7676
7677 if (!CHIP_IS_E1(bp)) {
7678 /* 0x2 disable mf_ov, 0x1 enable */
7679 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7680 (IS_MF_SD(bp) ? 0x1 : 0x2));
7681
7682 if (!CHIP_IS_E1x(bp)) {
7683 val = 0;
7684 switch (bp->mf_mode) {
7685 case MULTI_FUNCTION_SD:
7686 val = 1;
7687 break;
7688 case MULTI_FUNCTION_SI:
7689 case MULTI_FUNCTION_AFEX:
7690 val = 2;
7691 break;
7692 }
7693
7694 REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7695 NIG_REG_LLH0_CLS_TYPE), val);
7696 }
7697 {
7698 REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7699 REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7700 REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7701 }
7702 }
7703
7704 /* If SPIO5 is set to generate interrupts, enable it for this port */
7705 val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7706 if (val & MISC_SPIO_SPIO5) {
7707 u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7708 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7709 val = REG_RD(bp, reg_addr);
7710 val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7711 REG_WR(bp, reg_addr, val);
7712 }
7713
7714 if (CHIP_IS_E3B0(bp))
7715 bp->flags |= PTP_SUPPORTED;
7716
7717 return 0;
7718 }
7719
bnx2x_ilt_wr(struct bnx2x * bp,u32 index,dma_addr_t addr)7720 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7721 {
7722 int reg;
7723 u32 wb_write[2];
7724
7725 if (CHIP_IS_E1(bp))
7726 reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7727 else
7728 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7729
7730 wb_write[0] = ONCHIP_ADDR1(addr);
7731 wb_write[1] = ONCHIP_ADDR2(addr);
7732 REG_WR_DMAE(bp, reg, wb_write, 2);
7733 }
7734
bnx2x_igu_clear_sb_gen(struct bnx2x * bp,u8 func,u8 idu_sb_id,bool is_pf)7735 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7736 {
7737 u32 data, ctl, cnt = 100;
7738 u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7739 u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7740 u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7741 u32 sb_bit = 1 << (idu_sb_id%32);
7742 u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7743 u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7744
7745 /* Not supported in BC mode */
7746 if (CHIP_INT_MODE_IS_BC(bp))
7747 return;
7748
7749 data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7750 << IGU_REGULAR_CLEANUP_TYPE_SHIFT) |
7751 IGU_REGULAR_CLEANUP_SET |
7752 IGU_REGULAR_BCLEANUP;
7753
7754 ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT |
7755 func_encode << IGU_CTRL_REG_FID_SHIFT |
7756 IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7757
7758 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7759 data, igu_addr_data);
7760 REG_WR(bp, igu_addr_data, data);
7761 barrier();
7762 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7763 ctl, igu_addr_ctl);
7764 REG_WR(bp, igu_addr_ctl, ctl);
7765 barrier();
7766
7767 /* wait for clean up to finish */
7768 while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7769 msleep(20);
7770
7771 if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7772 DP(NETIF_MSG_HW,
7773 "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7774 idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7775 }
7776 }
7777
bnx2x_igu_clear_sb(struct bnx2x * bp,u8 idu_sb_id)7778 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7779 {
7780 bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7781 }
7782
bnx2x_clear_func_ilt(struct bnx2x * bp,u32 func)7783 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7784 {
7785 u32 i, base = FUNC_ILT_BASE(func);
7786 for (i = base; i < base + ILT_PER_FUNC; i++)
7787 bnx2x_ilt_wr(bp, i, 0);
7788 }
7789
bnx2x_init_searcher(struct bnx2x * bp)7790 static void bnx2x_init_searcher(struct bnx2x *bp)
7791 {
7792 int port = BP_PORT(bp);
7793 bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7794 /* T1 hash bits value determines the T1 number of entries */
7795 REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7796 }
7797
bnx2x_func_switch_update(struct bnx2x * bp,int suspend)7798 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7799 {
7800 int rc;
7801 struct bnx2x_func_state_params func_params = {NULL};
7802 struct bnx2x_func_switch_update_params *switch_update_params =
7803 &func_params.params.switch_update;
7804
7805 /* Prepare parameters for function state transitions */
7806 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7807 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7808
7809 func_params.f_obj = &bp->func_obj;
7810 func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7811
7812 /* Function parameters */
7813 __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND_CHNG,
7814 &switch_update_params->changes);
7815 if (suspend)
7816 __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND,
7817 &switch_update_params->changes);
7818
7819 rc = bnx2x_func_state_change(bp, &func_params);
7820
7821 return rc;
7822 }
7823
bnx2x_reset_nic_mode(struct bnx2x * bp)7824 static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7825 {
7826 int rc, i, port = BP_PORT(bp);
7827 int vlan_en = 0, mac_en[NUM_MACS];
7828
7829 /* Close input from network */
7830 if (bp->mf_mode == SINGLE_FUNCTION) {
7831 bnx2x_set_rx_filter(&bp->link_params, 0);
7832 } else {
7833 vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7834 NIG_REG_LLH0_FUNC_EN);
7835 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7836 NIG_REG_LLH0_FUNC_EN, 0);
7837 for (i = 0; i < NUM_MACS; i++) {
7838 mac_en[i] = REG_RD(bp, port ?
7839 (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7840 4 * i) :
7841 (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7842 4 * i));
7843 REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7844 4 * i) :
7845 (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7846 }
7847 }
7848
7849 /* Close BMC to host */
7850 REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7851 NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7852
7853 /* Suspend Tx switching to the PF. Completion of this ramrod
7854 * further guarantees that all the packets of that PF / child
7855 * VFs in BRB were processed by the Parser, so it is safe to
7856 * change the NIC_MODE register.
7857 */
7858 rc = bnx2x_func_switch_update(bp, 1);
7859 if (rc) {
7860 BNX2X_ERR("Can't suspend tx-switching!\n");
7861 return rc;
7862 }
7863
7864 /* Change NIC_MODE register */
7865 REG_WR(bp, PRS_REG_NIC_MODE, 0);
7866
7867 /* Open input from network */
7868 if (bp->mf_mode == SINGLE_FUNCTION) {
7869 bnx2x_set_rx_filter(&bp->link_params, 1);
7870 } else {
7871 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7872 NIG_REG_LLH0_FUNC_EN, vlan_en);
7873 for (i = 0; i < NUM_MACS; i++) {
7874 REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7875 4 * i) :
7876 (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7877 mac_en[i]);
7878 }
7879 }
7880
7881 /* Enable BMC to host */
7882 REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7883 NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7884
7885 /* Resume Tx switching to the PF */
7886 rc = bnx2x_func_switch_update(bp, 0);
7887 if (rc) {
7888 BNX2X_ERR("Can't resume tx-switching!\n");
7889 return rc;
7890 }
7891
7892 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7893 return 0;
7894 }
7895
bnx2x_init_hw_func_cnic(struct bnx2x * bp)7896 int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7897 {
7898 int rc;
7899
7900 bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7901
7902 if (CONFIGURE_NIC_MODE(bp)) {
7903 /* Configure searcher as part of function hw init */
7904 bnx2x_init_searcher(bp);
7905
7906 /* Reset NIC mode */
7907 rc = bnx2x_reset_nic_mode(bp);
7908 if (rc)
7909 BNX2X_ERR("Can't change NIC mode!\n");
7910 return rc;
7911 }
7912
7913 return 0;
7914 }
7915
7916 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
7917 * and boot began, or when kdump kernel was loaded. Either case would invalidate
7918 * the addresses of the transaction, resulting in was-error bit set in the pci
7919 * causing all hw-to-host pcie transactions to timeout. If this happened we want
7920 * to clear the interrupt which detected this from the pglueb and the was done
7921 * bit
7922 */
bnx2x_clean_pglue_errors(struct bnx2x * bp)7923 static void bnx2x_clean_pglue_errors(struct bnx2x *bp)
7924 {
7925 if (!CHIP_IS_E1x(bp))
7926 REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
7927 1 << BP_ABS_FUNC(bp));
7928 }
7929
bnx2x_init_hw_func(struct bnx2x * bp)7930 static int bnx2x_init_hw_func(struct bnx2x *bp)
7931 {
7932 int port = BP_PORT(bp);
7933 int func = BP_FUNC(bp);
7934 int init_phase = PHASE_PF0 + func;
7935 struct bnx2x_ilt *ilt = BP_ILT(bp);
7936 u16 cdu_ilt_start;
7937 u32 addr, val;
7938 u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7939 int i, main_mem_width, rc;
7940
7941 DP(NETIF_MSG_HW, "starting func init func %d\n", func);
7942
7943 /* FLR cleanup - hmmm */
7944 if (!CHIP_IS_E1x(bp)) {
7945 rc = bnx2x_pf_flr_clnup(bp);
7946 if (rc) {
7947 bnx2x_fw_dump(bp);
7948 return rc;
7949 }
7950 }
7951
7952 /* set MSI reconfigure capability */
7953 if (bp->common.int_block == INT_BLOCK_HC) {
7954 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7955 val = REG_RD(bp, addr);
7956 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7957 REG_WR(bp, addr, val);
7958 }
7959
7960 bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7961 bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7962
7963 ilt = BP_ILT(bp);
7964 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7965
7966 if (IS_SRIOV(bp))
7967 cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7968 cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7969
7970 /* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7971 * those of the VFs, so start line should be reset
7972 */
7973 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7974 for (i = 0; i < L2_ILT_LINES(bp); i++) {
7975 ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7976 ilt->lines[cdu_ilt_start + i].page_mapping =
7977 bp->context[i].cxt_mapping;
7978 ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7979 }
7980
7981 bnx2x_ilt_init_op(bp, INITOP_SET);
7982
7983 if (!CONFIGURE_NIC_MODE(bp)) {
7984 bnx2x_init_searcher(bp);
7985 REG_WR(bp, PRS_REG_NIC_MODE, 0);
7986 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7987 } else {
7988 /* Set NIC mode */
7989 REG_WR(bp, PRS_REG_NIC_MODE, 1);
7990 DP(NETIF_MSG_IFUP, "NIC MODE configured\n");
7991 }
7992
7993 if (!CHIP_IS_E1x(bp)) {
7994 u32 pf_conf = IGU_PF_CONF_FUNC_EN;
7995
7996 /* Turn on a single ISR mode in IGU if driver is going to use
7997 * INT#x or MSI
7998 */
7999 if (!(bp->flags & USING_MSIX_FLAG))
8000 pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
8001 /*
8002 * Timers workaround bug: function init part.
8003 * Need to wait 20msec after initializing ILT,
8004 * needed to make sure there are no requests in
8005 * one of the PXP internal queues with "old" ILT addresses
8006 */
8007 msleep(20);
8008 /*
8009 * Master enable - Due to WB DMAE writes performed before this
8010 * register is re-initialized as part of the regular function
8011 * init
8012 */
8013 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
8014 /* Enable the function in IGU */
8015 REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
8016 }
8017
8018 bp->dmae_ready = 1;
8019
8020 bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
8021
8022 bnx2x_clean_pglue_errors(bp);
8023
8024 bnx2x_init_block(bp, BLOCK_ATC, init_phase);
8025 bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
8026 bnx2x_init_block(bp, BLOCK_NIG, init_phase);
8027 bnx2x_init_block(bp, BLOCK_SRC, init_phase);
8028 bnx2x_init_block(bp, BLOCK_MISC, init_phase);
8029 bnx2x_init_block(bp, BLOCK_TCM, init_phase);
8030 bnx2x_init_block(bp, BLOCK_UCM, init_phase);
8031 bnx2x_init_block(bp, BLOCK_CCM, init_phase);
8032 bnx2x_init_block(bp, BLOCK_XCM, init_phase);
8033 bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
8034 bnx2x_init_block(bp, BLOCK_USEM, init_phase);
8035 bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
8036 bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
8037
8038 if (!CHIP_IS_E1x(bp))
8039 REG_WR(bp, QM_REG_PF_EN, 1);
8040
8041 if (!CHIP_IS_E1x(bp)) {
8042 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8043 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8044 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8045 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8046 }
8047 bnx2x_init_block(bp, BLOCK_QM, init_phase);
8048
8049 bnx2x_init_block(bp, BLOCK_TM, init_phase);
8050 bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
8051 REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */
8052
8053 bnx2x_iov_init_dq(bp);
8054
8055 bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
8056 bnx2x_init_block(bp, BLOCK_PRS, init_phase);
8057 bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
8058 bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
8059 bnx2x_init_block(bp, BLOCK_USDM, init_phase);
8060 bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
8061 bnx2x_init_block(bp, BLOCK_UPB, init_phase);
8062 bnx2x_init_block(bp, BLOCK_XPB, init_phase);
8063 bnx2x_init_block(bp, BLOCK_PBF, init_phase);
8064 if (!CHIP_IS_E1x(bp))
8065 REG_WR(bp, PBF_REG_DISABLE_PF, 0);
8066
8067 bnx2x_init_block(bp, BLOCK_CDU, init_phase);
8068
8069 bnx2x_init_block(bp, BLOCK_CFC, init_phase);
8070
8071 if (!CHIP_IS_E1x(bp))
8072 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
8073
8074 if (IS_MF(bp)) {
8075 if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))) {
8076 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
8077 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port * 8,
8078 bp->mf_ov);
8079 }
8080 }
8081
8082 bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
8083
8084 /* HC init per function */
8085 if (bp->common.int_block == INT_BLOCK_HC) {
8086 if (CHIP_IS_E1H(bp)) {
8087 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8088
8089 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8090 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8091 }
8092 bnx2x_init_block(bp, BLOCK_HC, init_phase);
8093
8094 } else {
8095 int num_segs, sb_idx, prod_offset;
8096
8097 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8098
8099 if (!CHIP_IS_E1x(bp)) {
8100 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8101 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8102 }
8103
8104 bnx2x_init_block(bp, BLOCK_IGU, init_phase);
8105
8106 if (!CHIP_IS_E1x(bp)) {
8107 int dsb_idx = 0;
8108 /**
8109 * Producer memory:
8110 * E2 mode: address 0-135 match to the mapping memory;
8111 * 136 - PF0 default prod; 137 - PF1 default prod;
8112 * 138 - PF2 default prod; 139 - PF3 default prod;
8113 * 140 - PF0 attn prod; 141 - PF1 attn prod;
8114 * 142 - PF2 attn prod; 143 - PF3 attn prod;
8115 * 144-147 reserved.
8116 *
8117 * E1.5 mode - In backward compatible mode;
8118 * for non default SB; each even line in the memory
8119 * holds the U producer and each odd line hold
8120 * the C producer. The first 128 producers are for
8121 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
8122 * producers are for the DSB for each PF.
8123 * Each PF has five segments: (the order inside each
8124 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
8125 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
8126 * 144-147 attn prods;
8127 */
8128 /* non-default-status-blocks */
8129 num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8130 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
8131 for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
8132 prod_offset = (bp->igu_base_sb + sb_idx) *
8133 num_segs;
8134
8135 for (i = 0; i < num_segs; i++) {
8136 addr = IGU_REG_PROD_CONS_MEMORY +
8137 (prod_offset + i) * 4;
8138 REG_WR(bp, addr, 0);
8139 }
8140 /* send consumer update with value 0 */
8141 bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
8142 USTORM_ID, 0, IGU_INT_NOP, 1);
8143 bnx2x_igu_clear_sb(bp,
8144 bp->igu_base_sb + sb_idx);
8145 }
8146
8147 /* default-status-blocks */
8148 num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8149 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
8150
8151 if (CHIP_MODE_IS_4_PORT(bp))
8152 dsb_idx = BP_FUNC(bp);
8153 else
8154 dsb_idx = BP_VN(bp);
8155
8156 prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
8157 IGU_BC_BASE_DSB_PROD + dsb_idx :
8158 IGU_NORM_BASE_DSB_PROD + dsb_idx);
8159
8160 /*
8161 * igu prods come in chunks of E1HVN_MAX (4) -
8162 * does not matters what is the current chip mode
8163 */
8164 for (i = 0; i < (num_segs * E1HVN_MAX);
8165 i += E1HVN_MAX) {
8166 addr = IGU_REG_PROD_CONS_MEMORY +
8167 (prod_offset + i)*4;
8168 REG_WR(bp, addr, 0);
8169 }
8170 /* send consumer update with 0 */
8171 if (CHIP_INT_MODE_IS_BC(bp)) {
8172 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8173 USTORM_ID, 0, IGU_INT_NOP, 1);
8174 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8175 CSTORM_ID, 0, IGU_INT_NOP, 1);
8176 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8177 XSTORM_ID, 0, IGU_INT_NOP, 1);
8178 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8179 TSTORM_ID, 0, IGU_INT_NOP, 1);
8180 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8181 ATTENTION_ID, 0, IGU_INT_NOP, 1);
8182 } else {
8183 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8184 USTORM_ID, 0, IGU_INT_NOP, 1);
8185 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8186 ATTENTION_ID, 0, IGU_INT_NOP, 1);
8187 }
8188 bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
8189
8190 /* !!! These should become driver const once
8191 rf-tool supports split-68 const */
8192 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
8193 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
8194 REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
8195 REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
8196 REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
8197 REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
8198 }
8199 }
8200
8201 /* Reset PCIE errors for debug */
8202 REG_WR(bp, 0x2114, 0xffffffff);
8203 REG_WR(bp, 0x2120, 0xffffffff);
8204
8205 if (CHIP_IS_E1x(bp)) {
8206 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
8207 main_mem_base = HC_REG_MAIN_MEMORY +
8208 BP_PORT(bp) * (main_mem_size * 4);
8209 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
8210 main_mem_width = 8;
8211
8212 val = REG_RD(bp, main_mem_prty_clr);
8213 if (val)
8214 DP(NETIF_MSG_HW,
8215 "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
8216 val);
8217
8218 /* Clear "false" parity errors in MSI-X table */
8219 for (i = main_mem_base;
8220 i < main_mem_base + main_mem_size * 4;
8221 i += main_mem_width) {
8222 bnx2x_read_dmae(bp, i, main_mem_width / 4);
8223 bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
8224 i, main_mem_width / 4);
8225 }
8226 /* Clear HC parity attention */
8227 REG_RD(bp, main_mem_prty_clr);
8228 }
8229
8230 #ifdef BNX2X_STOP_ON_ERROR
8231 /* Enable STORMs SP logging */
8232 REG_WR8(bp, BAR_USTRORM_INTMEM +
8233 USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8234 REG_WR8(bp, BAR_TSTRORM_INTMEM +
8235 TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8236 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8237 CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8238 REG_WR8(bp, BAR_XSTRORM_INTMEM +
8239 XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8240 #endif
8241
8242 bnx2x_phy_probe(&bp->link_params);
8243
8244 return 0;
8245 }
8246
bnx2x_free_mem_cnic(struct bnx2x * bp)8247 void bnx2x_free_mem_cnic(struct bnx2x *bp)
8248 {
8249 bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
8250
8251 if (!CHIP_IS_E1x(bp))
8252 BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
8253 sizeof(struct host_hc_status_block_e2));
8254 else
8255 BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
8256 sizeof(struct host_hc_status_block_e1x));
8257
8258 BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8259 }
8260
bnx2x_free_mem(struct bnx2x * bp)8261 void bnx2x_free_mem(struct bnx2x *bp)
8262 {
8263 int i;
8264
8265 BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
8266 bp->fw_stats_data_sz + bp->fw_stats_req_sz);
8267
8268 if (IS_VF(bp))
8269 return;
8270
8271 BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
8272 sizeof(struct host_sp_status_block));
8273
8274 BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
8275 sizeof(struct bnx2x_slowpath));
8276
8277 for (i = 0; i < L2_ILT_LINES(bp); i++)
8278 BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
8279 bp->context[i].size);
8280 bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
8281
8282 BNX2X_FREE(bp->ilt->lines);
8283
8284 BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
8285
8286 BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
8287 BCM_PAGE_SIZE * NUM_EQ_PAGES);
8288
8289 BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8290
8291 bnx2x_iov_free_mem(bp);
8292 }
8293
bnx2x_alloc_mem_cnic(struct bnx2x * bp)8294 int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
8295 {
8296 if (!CHIP_IS_E1x(bp)) {
8297 /* size = the status block + ramrod buffers */
8298 bp->cnic_sb.e2_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8299 sizeof(struct host_hc_status_block_e2));
8300 if (!bp->cnic_sb.e2_sb)
8301 goto alloc_mem_err;
8302 } else {
8303 bp->cnic_sb.e1x_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8304 sizeof(struct host_hc_status_block_e1x));
8305 if (!bp->cnic_sb.e1x_sb)
8306 goto alloc_mem_err;
8307 }
8308
8309 if (CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8310 /* allocate searcher T2 table, as it wasn't allocated before */
8311 bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8312 if (!bp->t2)
8313 goto alloc_mem_err;
8314 }
8315
8316 /* write address to which L5 should insert its values */
8317 bp->cnic_eth_dev.addr_drv_info_to_mcp =
8318 &bp->slowpath->drv_info_to_mcp;
8319
8320 if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
8321 goto alloc_mem_err;
8322
8323 return 0;
8324
8325 alloc_mem_err:
8326 bnx2x_free_mem_cnic(bp);
8327 BNX2X_ERR("Can't allocate memory\n");
8328 return -ENOMEM;
8329 }
8330
bnx2x_alloc_mem(struct bnx2x * bp)8331 int bnx2x_alloc_mem(struct bnx2x *bp)
8332 {
8333 int i, allocated, context_size;
8334
8335 if (!CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8336 /* allocate searcher T2 table */
8337 bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8338 if (!bp->t2)
8339 goto alloc_mem_err;
8340 }
8341
8342 bp->def_status_blk = BNX2X_PCI_ALLOC(&bp->def_status_blk_mapping,
8343 sizeof(struct host_sp_status_block));
8344 if (!bp->def_status_blk)
8345 goto alloc_mem_err;
8346
8347 bp->slowpath = BNX2X_PCI_ALLOC(&bp->slowpath_mapping,
8348 sizeof(struct bnx2x_slowpath));
8349 if (!bp->slowpath)
8350 goto alloc_mem_err;
8351
8352 /* Allocate memory for CDU context:
8353 * This memory is allocated separately and not in the generic ILT
8354 * functions because CDU differs in few aspects:
8355 * 1. There are multiple entities allocating memory for context -
8356 * 'regular' driver, CNIC and SRIOV driver. Each separately controls
8357 * its own ILT lines.
8358 * 2. Since CDU page-size is not a single 4KB page (which is the case
8359 * for the other ILT clients), to be efficient we want to support
8360 * allocation of sub-page-size in the last entry.
8361 * 3. Context pointers are used by the driver to pass to FW / update
8362 * the context (for the other ILT clients the pointers are used just to
8363 * free the memory during unload).
8364 */
8365 context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
8366
8367 for (i = 0, allocated = 0; allocated < context_size; i++) {
8368 bp->context[i].size = min(CDU_ILT_PAGE_SZ,
8369 (context_size - allocated));
8370 bp->context[i].vcxt = BNX2X_PCI_ALLOC(&bp->context[i].cxt_mapping,
8371 bp->context[i].size);
8372 if (!bp->context[i].vcxt)
8373 goto alloc_mem_err;
8374 allocated += bp->context[i].size;
8375 }
8376 bp->ilt->lines = kcalloc(ILT_MAX_LINES, sizeof(struct ilt_line),
8377 GFP_KERNEL);
8378 if (!bp->ilt->lines)
8379 goto alloc_mem_err;
8380
8381 if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
8382 goto alloc_mem_err;
8383
8384 if (bnx2x_iov_alloc_mem(bp))
8385 goto alloc_mem_err;
8386
8387 /* Slow path ring */
8388 bp->spq = BNX2X_PCI_ALLOC(&bp->spq_mapping, BCM_PAGE_SIZE);
8389 if (!bp->spq)
8390 goto alloc_mem_err;
8391
8392 /* EQ */
8393 bp->eq_ring = BNX2X_PCI_ALLOC(&bp->eq_mapping,
8394 BCM_PAGE_SIZE * NUM_EQ_PAGES);
8395 if (!bp->eq_ring)
8396 goto alloc_mem_err;
8397
8398 return 0;
8399
8400 alloc_mem_err:
8401 bnx2x_free_mem(bp);
8402 BNX2X_ERR("Can't allocate memory\n");
8403 return -ENOMEM;
8404 }
8405
8406 /*
8407 * Init service functions
8408 */
8409
bnx2x_set_mac_one(struct bnx2x * bp,u8 * mac,struct bnx2x_vlan_mac_obj * obj,bool set,int mac_type,unsigned long * ramrod_flags)8410 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
8411 struct bnx2x_vlan_mac_obj *obj, bool set,
8412 int mac_type, unsigned long *ramrod_flags)
8413 {
8414 int rc;
8415 struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8416
8417 memset(&ramrod_param, 0, sizeof(ramrod_param));
8418
8419 /* Fill general parameters */
8420 ramrod_param.vlan_mac_obj = obj;
8421 ramrod_param.ramrod_flags = *ramrod_flags;
8422
8423 /* Fill a user request section if needed */
8424 if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8425 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
8426
8427 __set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
8428
8429 /* Set the command: ADD or DEL */
8430 if (set)
8431 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8432 else
8433 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8434 }
8435
8436 rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8437
8438 if (rc == -EEXIST) {
8439 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8440 /* do not treat adding same MAC as error */
8441 rc = 0;
8442 } else if (rc < 0)
8443 BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
8444
8445 return rc;
8446 }
8447
bnx2x_set_vlan_one(struct bnx2x * bp,u16 vlan,struct bnx2x_vlan_mac_obj * obj,bool set,unsigned long * ramrod_flags)8448 int bnx2x_set_vlan_one(struct bnx2x *bp, u16 vlan,
8449 struct bnx2x_vlan_mac_obj *obj, bool set,
8450 unsigned long *ramrod_flags)
8451 {
8452 int rc;
8453 struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8454
8455 memset(&ramrod_param, 0, sizeof(ramrod_param));
8456
8457 /* Fill general parameters */
8458 ramrod_param.vlan_mac_obj = obj;
8459 ramrod_param.ramrod_flags = *ramrod_flags;
8460
8461 /* Fill a user request section if needed */
8462 if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8463 ramrod_param.user_req.u.vlan.vlan = vlan;
8464 __set_bit(BNX2X_VLAN, &ramrod_param.user_req.vlan_mac_flags);
8465 /* Set the command: ADD or DEL */
8466 if (set)
8467 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8468 else
8469 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8470 }
8471
8472 rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8473
8474 if (rc == -EEXIST) {
8475 /* Do not treat adding same vlan as error. */
8476 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8477 rc = 0;
8478 } else if (rc < 0) {
8479 BNX2X_ERR("%s VLAN failed\n", (set ? "Set" : "Del"));
8480 }
8481
8482 return rc;
8483 }
8484
bnx2x_clear_vlan_info(struct bnx2x * bp)8485 void bnx2x_clear_vlan_info(struct bnx2x *bp)
8486 {
8487 struct bnx2x_vlan_entry *vlan;
8488
8489 /* Mark that hw forgot all entries */
8490 list_for_each_entry(vlan, &bp->vlan_reg, link)
8491 vlan->hw = false;
8492
8493 bp->vlan_cnt = 0;
8494 }
8495
bnx2x_del_all_vlans(struct bnx2x * bp)8496 static int bnx2x_del_all_vlans(struct bnx2x *bp)
8497 {
8498 struct bnx2x_vlan_mac_obj *vlan_obj = &bp->sp_objs[0].vlan_obj;
8499 unsigned long ramrod_flags = 0, vlan_flags = 0;
8500 int rc;
8501
8502 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8503 __set_bit(BNX2X_VLAN, &vlan_flags);
8504 rc = vlan_obj->delete_all(bp, vlan_obj, &vlan_flags, &ramrod_flags);
8505 if (rc)
8506 return rc;
8507
8508 bnx2x_clear_vlan_info(bp);
8509
8510 return 0;
8511 }
8512
bnx2x_del_all_macs(struct bnx2x * bp,struct bnx2x_vlan_mac_obj * mac_obj,int mac_type,bool wait_for_comp)8513 int bnx2x_del_all_macs(struct bnx2x *bp,
8514 struct bnx2x_vlan_mac_obj *mac_obj,
8515 int mac_type, bool wait_for_comp)
8516 {
8517 int rc;
8518 unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
8519
8520 /* Wait for completion of requested */
8521 if (wait_for_comp)
8522 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8523
8524 /* Set the mac type of addresses we want to clear */
8525 __set_bit(mac_type, &vlan_mac_flags);
8526
8527 rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
8528 if (rc < 0)
8529 BNX2X_ERR("Failed to delete MACs: %d\n", rc);
8530
8531 return rc;
8532 }
8533
bnx2x_set_eth_mac(struct bnx2x * bp,bool set)8534 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
8535 {
8536 if (IS_PF(bp)) {
8537 unsigned long ramrod_flags = 0;
8538
8539 DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
8540 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8541 return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
8542 &bp->sp_objs->mac_obj, set,
8543 BNX2X_ETH_MAC, &ramrod_flags);
8544 } else { /* vf */
8545 return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
8546 bp->fp->index, set);
8547 }
8548 }
8549
bnx2x_setup_leading(struct bnx2x * bp)8550 int bnx2x_setup_leading(struct bnx2x *bp)
8551 {
8552 if (IS_PF(bp))
8553 return bnx2x_setup_queue(bp, &bp->fp[0], true);
8554 else /* VF */
8555 return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true);
8556 }
8557
8558 /**
8559 * bnx2x_set_int_mode - configure interrupt mode
8560 *
8561 * @bp: driver handle
8562 *
8563 * In case of MSI-X it will also try to enable MSI-X.
8564 */
bnx2x_set_int_mode(struct bnx2x * bp)8565 int bnx2x_set_int_mode(struct bnx2x *bp)
8566 {
8567 int rc = 0;
8568
8569 if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) {
8570 BNX2X_ERR("VF not loaded since interrupt mode not msix\n");
8571 return -EINVAL;
8572 }
8573
8574 switch (int_mode) {
8575 case BNX2X_INT_MODE_MSIX:
8576 /* attempt to enable msix */
8577 rc = bnx2x_enable_msix(bp);
8578
8579 /* msix attained */
8580 if (!rc)
8581 return 0;
8582
8583 /* vfs use only msix */
8584 if (rc && IS_VF(bp))
8585 return rc;
8586
8587 /* failed to enable multiple MSI-X */
8588 BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
8589 bp->num_queues,
8590 1 + bp->num_cnic_queues);
8591
8592 /* fall through */
8593 case BNX2X_INT_MODE_MSI:
8594 bnx2x_enable_msi(bp);
8595
8596 /* fall through */
8597 case BNX2X_INT_MODE_INTX:
8598 bp->num_ethernet_queues = 1;
8599 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
8600 BNX2X_DEV_INFO("set number of queues to 1\n");
8601 break;
8602 default:
8603 BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8604 return -EINVAL;
8605 }
8606 return 0;
8607 }
8608
8609 /* must be called prior to any HW initializations */
bnx2x_cid_ilt_lines(struct bnx2x * bp)8610 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
8611 {
8612 if (IS_SRIOV(bp))
8613 return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
8614 return L2_ILT_LINES(bp);
8615 }
8616
bnx2x_ilt_set_info(struct bnx2x * bp)8617 void bnx2x_ilt_set_info(struct bnx2x *bp)
8618 {
8619 struct ilt_client_info *ilt_client;
8620 struct bnx2x_ilt *ilt = BP_ILT(bp);
8621 u16 line = 0;
8622
8623 ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8624 DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8625
8626 /* CDU */
8627 ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8628 ilt_client->client_num = ILT_CLIENT_CDU;
8629 ilt_client->page_size = CDU_ILT_PAGE_SZ;
8630 ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8631 ilt_client->start = line;
8632 line += bnx2x_cid_ilt_lines(bp);
8633
8634 if (CNIC_SUPPORT(bp))
8635 line += CNIC_ILT_LINES;
8636 ilt_client->end = line - 1;
8637
8638 DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8639 ilt_client->start,
8640 ilt_client->end,
8641 ilt_client->page_size,
8642 ilt_client->flags,
8643 ilog2(ilt_client->page_size >> 12));
8644
8645 /* QM */
8646 if (QM_INIT(bp->qm_cid_count)) {
8647 ilt_client = &ilt->clients[ILT_CLIENT_QM];
8648 ilt_client->client_num = ILT_CLIENT_QM;
8649 ilt_client->page_size = QM_ILT_PAGE_SZ;
8650 ilt_client->flags = 0;
8651 ilt_client->start = line;
8652
8653 /* 4 bytes for each cid */
8654 line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8655 QM_ILT_PAGE_SZ);
8656
8657 ilt_client->end = line - 1;
8658
8659 DP(NETIF_MSG_IFUP,
8660 "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8661 ilt_client->start,
8662 ilt_client->end,
8663 ilt_client->page_size,
8664 ilt_client->flags,
8665 ilog2(ilt_client->page_size >> 12));
8666 }
8667
8668 if (CNIC_SUPPORT(bp)) {
8669 /* SRC */
8670 ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8671 ilt_client->client_num = ILT_CLIENT_SRC;
8672 ilt_client->page_size = SRC_ILT_PAGE_SZ;
8673 ilt_client->flags = 0;
8674 ilt_client->start = line;
8675 line += SRC_ILT_LINES;
8676 ilt_client->end = line - 1;
8677
8678 DP(NETIF_MSG_IFUP,
8679 "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8680 ilt_client->start,
8681 ilt_client->end,
8682 ilt_client->page_size,
8683 ilt_client->flags,
8684 ilog2(ilt_client->page_size >> 12));
8685
8686 /* TM */
8687 ilt_client = &ilt->clients[ILT_CLIENT_TM];
8688 ilt_client->client_num = ILT_CLIENT_TM;
8689 ilt_client->page_size = TM_ILT_PAGE_SZ;
8690 ilt_client->flags = 0;
8691 ilt_client->start = line;
8692 line += TM_ILT_LINES;
8693 ilt_client->end = line - 1;
8694
8695 DP(NETIF_MSG_IFUP,
8696 "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8697 ilt_client->start,
8698 ilt_client->end,
8699 ilt_client->page_size,
8700 ilt_client->flags,
8701 ilog2(ilt_client->page_size >> 12));
8702 }
8703
8704 BUG_ON(line > ILT_MAX_LINES);
8705 }
8706
8707 /**
8708 * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8709 *
8710 * @bp: driver handle
8711 * @fp: pointer to fastpath
8712 * @init_params: pointer to parameters structure
8713 *
8714 * parameters configured:
8715 * - HC configuration
8716 * - Queue's CDU context
8717 */
bnx2x_pf_q_prep_init(struct bnx2x * bp,struct bnx2x_fastpath * fp,struct bnx2x_queue_init_params * init_params)8718 static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8719 struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8720 {
8721 u8 cos;
8722 int cxt_index, cxt_offset;
8723
8724 /* FCoE Queue uses Default SB, thus has no HC capabilities */
8725 if (!IS_FCOE_FP(fp)) {
8726 __set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8727 __set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8728
8729 /* If HC is supported, enable host coalescing in the transition
8730 * to INIT state.
8731 */
8732 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8733 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8734
8735 /* HC rate */
8736 init_params->rx.hc_rate = bp->rx_ticks ?
8737 (1000000 / bp->rx_ticks) : 0;
8738 init_params->tx.hc_rate = bp->tx_ticks ?
8739 (1000000 / bp->tx_ticks) : 0;
8740
8741 /* FW SB ID */
8742 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8743 fp->fw_sb_id;
8744
8745 /*
8746 * CQ index among the SB indices: FCoE clients uses the default
8747 * SB, therefore it's different.
8748 */
8749 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8750 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8751 }
8752
8753 /* set maximum number of COSs supported by this queue */
8754 init_params->max_cos = fp->max_cos;
8755
8756 DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8757 fp->index, init_params->max_cos);
8758
8759 /* set the context pointers queue object */
8760 for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8761 cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8762 cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8763 ILT_PAGE_CIDS);
8764 init_params->cxts[cos] =
8765 &bp->context[cxt_index].vcxt[cxt_offset].eth;
8766 }
8767 }
8768
bnx2x_setup_tx_only(struct bnx2x * bp,struct bnx2x_fastpath * fp,struct bnx2x_queue_state_params * q_params,struct bnx2x_queue_setup_tx_only_params * tx_only_params,int tx_index,bool leading)8769 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8770 struct bnx2x_queue_state_params *q_params,
8771 struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8772 int tx_index, bool leading)
8773 {
8774 memset(tx_only_params, 0, sizeof(*tx_only_params));
8775
8776 /* Set the command */
8777 q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8778
8779 /* Set tx-only QUEUE flags: don't zero statistics */
8780 tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8781
8782 /* choose the index of the cid to send the slow path on */
8783 tx_only_params->cid_index = tx_index;
8784
8785 /* Set general TX_ONLY_SETUP parameters */
8786 bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8787
8788 /* Set Tx TX_ONLY_SETUP parameters */
8789 bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8790
8791 DP(NETIF_MSG_IFUP,
8792 "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8793 tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8794 q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8795 tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8796
8797 /* send the ramrod */
8798 return bnx2x_queue_state_change(bp, q_params);
8799 }
8800
8801 /**
8802 * bnx2x_setup_queue - setup queue
8803 *
8804 * @bp: driver handle
8805 * @fp: pointer to fastpath
8806 * @leading: is leading
8807 *
8808 * This function performs 2 steps in a Queue state machine
8809 * actually: 1) RESET->INIT 2) INIT->SETUP
8810 */
8811
bnx2x_setup_queue(struct bnx2x * bp,struct bnx2x_fastpath * fp,bool leading)8812 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8813 bool leading)
8814 {
8815 struct bnx2x_queue_state_params q_params = {NULL};
8816 struct bnx2x_queue_setup_params *setup_params =
8817 &q_params.params.setup;
8818 struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8819 &q_params.params.tx_only;
8820 int rc;
8821 u8 tx_index;
8822
8823 DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8824
8825 /* reset IGU state skip FCoE L2 queue */
8826 if (!IS_FCOE_FP(fp))
8827 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8828 IGU_INT_ENABLE, 0);
8829
8830 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8831 /* We want to wait for completion in this context */
8832 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8833
8834 /* Prepare the INIT parameters */
8835 bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8836
8837 /* Set the command */
8838 q_params.cmd = BNX2X_Q_CMD_INIT;
8839
8840 /* Change the state to INIT */
8841 rc = bnx2x_queue_state_change(bp, &q_params);
8842 if (rc) {
8843 BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8844 return rc;
8845 }
8846
8847 DP(NETIF_MSG_IFUP, "init complete\n");
8848
8849 /* Now move the Queue to the SETUP state... */
8850 memset(setup_params, 0, sizeof(*setup_params));
8851
8852 /* Set QUEUE flags */
8853 setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8854
8855 /* Set general SETUP parameters */
8856 bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8857 FIRST_TX_COS_INDEX);
8858
8859 bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8860 &setup_params->rxq_params);
8861
8862 bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8863 FIRST_TX_COS_INDEX);
8864
8865 /* Set the command */
8866 q_params.cmd = BNX2X_Q_CMD_SETUP;
8867
8868 if (IS_FCOE_FP(fp))
8869 bp->fcoe_init = true;
8870
8871 /* Change the state to SETUP */
8872 rc = bnx2x_queue_state_change(bp, &q_params);
8873 if (rc) {
8874 BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8875 return rc;
8876 }
8877
8878 /* loop through the relevant tx-only indices */
8879 for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8880 tx_index < fp->max_cos;
8881 tx_index++) {
8882
8883 /* prepare and send tx-only ramrod*/
8884 rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8885 tx_only_params, tx_index, leading);
8886 if (rc) {
8887 BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8888 fp->index, tx_index);
8889 return rc;
8890 }
8891 }
8892
8893 return rc;
8894 }
8895
bnx2x_stop_queue(struct bnx2x * bp,int index)8896 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8897 {
8898 struct bnx2x_fastpath *fp = &bp->fp[index];
8899 struct bnx2x_fp_txdata *txdata;
8900 struct bnx2x_queue_state_params q_params = {NULL};
8901 int rc, tx_index;
8902
8903 DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8904
8905 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8906 /* We want to wait for completion in this context */
8907 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8908
8909 /* close tx-only connections */
8910 for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8911 tx_index < fp->max_cos;
8912 tx_index++){
8913
8914 /* ascertain this is a normal queue*/
8915 txdata = fp->txdata_ptr[tx_index];
8916
8917 DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8918 txdata->txq_index);
8919
8920 /* send halt terminate on tx-only connection */
8921 q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8922 memset(&q_params.params.terminate, 0,
8923 sizeof(q_params.params.terminate));
8924 q_params.params.terminate.cid_index = tx_index;
8925
8926 rc = bnx2x_queue_state_change(bp, &q_params);
8927 if (rc)
8928 return rc;
8929
8930 /* send halt terminate on tx-only connection */
8931 q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8932 memset(&q_params.params.cfc_del, 0,
8933 sizeof(q_params.params.cfc_del));
8934 q_params.params.cfc_del.cid_index = tx_index;
8935 rc = bnx2x_queue_state_change(bp, &q_params);
8936 if (rc)
8937 return rc;
8938 }
8939 /* Stop the primary connection: */
8940 /* ...halt the connection */
8941 q_params.cmd = BNX2X_Q_CMD_HALT;
8942 rc = bnx2x_queue_state_change(bp, &q_params);
8943 if (rc)
8944 return rc;
8945
8946 /* ...terminate the connection */
8947 q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8948 memset(&q_params.params.terminate, 0,
8949 sizeof(q_params.params.terminate));
8950 q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8951 rc = bnx2x_queue_state_change(bp, &q_params);
8952 if (rc)
8953 return rc;
8954 /* ...delete cfc entry */
8955 q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8956 memset(&q_params.params.cfc_del, 0,
8957 sizeof(q_params.params.cfc_del));
8958 q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8959 return bnx2x_queue_state_change(bp, &q_params);
8960 }
8961
bnx2x_reset_func(struct bnx2x * bp)8962 static void bnx2x_reset_func(struct bnx2x *bp)
8963 {
8964 int port = BP_PORT(bp);
8965 int func = BP_FUNC(bp);
8966 int i;
8967
8968 /* Disable the function in the FW */
8969 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8970 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8971 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8972 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8973
8974 /* FP SBs */
8975 for_each_eth_queue(bp, i) {
8976 struct bnx2x_fastpath *fp = &bp->fp[i];
8977 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8978 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8979 SB_DISABLED);
8980 }
8981
8982 if (CNIC_LOADED(bp))
8983 /* CNIC SB */
8984 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8985 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
8986 (bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
8987
8988 /* SP SB */
8989 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8990 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
8991 SB_DISABLED);
8992
8993 for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
8994 REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
8995 0);
8996
8997 /* Configure IGU */
8998 if (bp->common.int_block == INT_BLOCK_HC) {
8999 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
9000 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
9001 } else {
9002 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
9003 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
9004 }
9005
9006 if (CNIC_LOADED(bp)) {
9007 /* Disable Timer scan */
9008 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
9009 /*
9010 * Wait for at least 10ms and up to 2 second for the timers
9011 * scan to complete
9012 */
9013 for (i = 0; i < 200; i++) {
9014 usleep_range(10000, 20000);
9015 if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
9016 break;
9017 }
9018 }
9019 /* Clear ILT */
9020 bnx2x_clear_func_ilt(bp, func);
9021
9022 /* Timers workaround bug for E2: if this is vnic-3,
9023 * we need to set the entire ilt range for this timers.
9024 */
9025 if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
9026 struct ilt_client_info ilt_cli;
9027 /* use dummy TM client */
9028 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
9029 ilt_cli.start = 0;
9030 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
9031 ilt_cli.client_num = ILT_CLIENT_TM;
9032
9033 bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
9034 }
9035
9036 /* this assumes that reset_port() called before reset_func()*/
9037 if (!CHIP_IS_E1x(bp))
9038 bnx2x_pf_disable(bp);
9039
9040 bp->dmae_ready = 0;
9041 }
9042
bnx2x_reset_port(struct bnx2x * bp)9043 static void bnx2x_reset_port(struct bnx2x *bp)
9044 {
9045 int port = BP_PORT(bp);
9046 u32 val;
9047
9048 /* Reset physical Link */
9049 bnx2x__link_reset(bp);
9050
9051 REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
9052
9053 /* Do not rcv packets to BRB */
9054 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
9055 /* Do not direct rcv packets that are not for MCP to the BRB */
9056 REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
9057 NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
9058
9059 /* Configure AEU */
9060 REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
9061
9062 msleep(100);
9063 /* Check for BRB port occupancy */
9064 val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
9065 if (val)
9066 DP(NETIF_MSG_IFDOWN,
9067 "BRB1 is not empty %d blocks are occupied\n", val);
9068
9069 /* TODO: Close Doorbell port? */
9070 }
9071
bnx2x_reset_hw(struct bnx2x * bp,u32 load_code)9072 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
9073 {
9074 struct bnx2x_func_state_params func_params = {NULL};
9075
9076 /* Prepare parameters for function state transitions */
9077 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9078
9079 func_params.f_obj = &bp->func_obj;
9080 func_params.cmd = BNX2X_F_CMD_HW_RESET;
9081
9082 func_params.params.hw_init.load_phase = load_code;
9083
9084 return bnx2x_func_state_change(bp, &func_params);
9085 }
9086
bnx2x_func_stop(struct bnx2x * bp)9087 static int bnx2x_func_stop(struct bnx2x *bp)
9088 {
9089 struct bnx2x_func_state_params func_params = {NULL};
9090 int rc;
9091
9092 /* Prepare parameters for function state transitions */
9093 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9094 func_params.f_obj = &bp->func_obj;
9095 func_params.cmd = BNX2X_F_CMD_STOP;
9096
9097 /*
9098 * Try to stop the function the 'good way'. If fails (in case
9099 * of a parity error during bnx2x_chip_cleanup()) and we are
9100 * not in a debug mode, perform a state transaction in order to
9101 * enable further HW_RESET transaction.
9102 */
9103 rc = bnx2x_func_state_change(bp, &func_params);
9104 if (rc) {
9105 #ifdef BNX2X_STOP_ON_ERROR
9106 return rc;
9107 #else
9108 BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
9109 __set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
9110 return bnx2x_func_state_change(bp, &func_params);
9111 #endif
9112 }
9113
9114 return 0;
9115 }
9116
9117 /**
9118 * bnx2x_send_unload_req - request unload mode from the MCP.
9119 *
9120 * @bp: driver handle
9121 * @unload_mode: requested function's unload mode
9122 *
9123 * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
9124 */
bnx2x_send_unload_req(struct bnx2x * bp,int unload_mode)9125 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
9126 {
9127 u32 reset_code = 0;
9128 int port = BP_PORT(bp);
9129
9130 /* Select the UNLOAD request mode */
9131 if (unload_mode == UNLOAD_NORMAL)
9132 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9133
9134 else if (bp->flags & NO_WOL_FLAG)
9135 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
9136
9137 else if (bp->wol) {
9138 u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
9139 u8 *mac_addr = bp->dev->dev_addr;
9140 struct pci_dev *pdev = bp->pdev;
9141 u32 val;
9142 u16 pmc;
9143
9144 /* The mac address is written to entries 1-4 to
9145 * preserve entry 0 which is used by the PMF
9146 */
9147 u8 entry = (BP_VN(bp) + 1)*8;
9148
9149 val = (mac_addr[0] << 8) | mac_addr[1];
9150 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
9151
9152 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
9153 (mac_addr[4] << 8) | mac_addr[5];
9154 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
9155
9156 /* Enable the PME and clear the status */
9157 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc);
9158 pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
9159 pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc);
9160
9161 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
9162
9163 } else
9164 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9165
9166 /* Send the request to the MCP */
9167 if (!BP_NOMCP(bp))
9168 reset_code = bnx2x_fw_command(bp, reset_code, 0);
9169 else {
9170 int path = BP_PATH(bp);
9171
9172 DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d] %d, %d, %d\n",
9173 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9174 bnx2x_load_count[path][2]);
9175 bnx2x_load_count[path][0]--;
9176 bnx2x_load_count[path][1 + port]--;
9177 DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d] %d, %d, %d\n",
9178 path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9179 bnx2x_load_count[path][2]);
9180 if (bnx2x_load_count[path][0] == 0)
9181 reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
9182 else if (bnx2x_load_count[path][1 + port] == 0)
9183 reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
9184 else
9185 reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
9186 }
9187
9188 return reset_code;
9189 }
9190
9191 /**
9192 * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
9193 *
9194 * @bp: driver handle
9195 * @keep_link: true iff link should be kept up
9196 */
bnx2x_send_unload_done(struct bnx2x * bp,bool keep_link)9197 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
9198 {
9199 u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
9200
9201 /* Report UNLOAD_DONE to MCP */
9202 if (!BP_NOMCP(bp))
9203 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
9204 }
9205
bnx2x_func_wait_started(struct bnx2x * bp)9206 static int bnx2x_func_wait_started(struct bnx2x *bp)
9207 {
9208 int tout = 50;
9209 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
9210
9211 if (!bp->port.pmf)
9212 return 0;
9213
9214 /*
9215 * (assumption: No Attention from MCP at this stage)
9216 * PMF probably in the middle of TX disable/enable transaction
9217 * 1. Sync IRS for default SB
9218 * 2. Sync SP queue - this guarantees us that attention handling started
9219 * 3. Wait, that TX disable/enable transaction completes
9220 *
9221 * 1+2 guarantee that if DCBx attention was scheduled it already changed
9222 * pending bit of transaction from STARTED-->TX_STOPPED, if we already
9223 * received completion for the transaction the state is TX_STOPPED.
9224 * State will return to STARTED after completion of TX_STOPPED-->STARTED
9225 * transaction.
9226 */
9227
9228 /* make sure default SB ISR is done */
9229 if (msix)
9230 synchronize_irq(bp->msix_table[0].vector);
9231 else
9232 synchronize_irq(bp->pdev->irq);
9233
9234 flush_workqueue(bnx2x_wq);
9235 flush_workqueue(bnx2x_iov_wq);
9236
9237 while (bnx2x_func_get_state(bp, &bp->func_obj) !=
9238 BNX2X_F_STATE_STARTED && tout--)
9239 msleep(20);
9240
9241 if (bnx2x_func_get_state(bp, &bp->func_obj) !=
9242 BNX2X_F_STATE_STARTED) {
9243 #ifdef BNX2X_STOP_ON_ERROR
9244 BNX2X_ERR("Wrong function state\n");
9245 return -EBUSY;
9246 #else
9247 /*
9248 * Failed to complete the transaction in a "good way"
9249 * Force both transactions with CLR bit
9250 */
9251 struct bnx2x_func_state_params func_params = {NULL};
9252
9253 DP(NETIF_MSG_IFDOWN,
9254 "Hmmm... Unexpected function state! Forcing STARTED-->TX_STOPPED-->STARTED\n");
9255
9256 func_params.f_obj = &bp->func_obj;
9257 __set_bit(RAMROD_DRV_CLR_ONLY,
9258 &func_params.ramrod_flags);
9259
9260 /* STARTED-->TX_ST0PPED */
9261 func_params.cmd = BNX2X_F_CMD_TX_STOP;
9262 bnx2x_func_state_change(bp, &func_params);
9263
9264 /* TX_ST0PPED-->STARTED */
9265 func_params.cmd = BNX2X_F_CMD_TX_START;
9266 return bnx2x_func_state_change(bp, &func_params);
9267 #endif
9268 }
9269
9270 return 0;
9271 }
9272
bnx2x_disable_ptp(struct bnx2x * bp)9273 static void bnx2x_disable_ptp(struct bnx2x *bp)
9274 {
9275 int port = BP_PORT(bp);
9276
9277 /* Disable sending PTP packets to host */
9278 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
9279 NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
9280
9281 /* Reset PTP event detection rules */
9282 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
9283 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
9284 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
9285 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
9286 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
9287 NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
9288 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
9289 NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
9290
9291 /* Disable the PTP feature */
9292 REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
9293 NIG_REG_P0_PTP_EN, 0x0);
9294 }
9295
9296 /* Called during unload, to stop PTP-related stuff */
bnx2x_stop_ptp(struct bnx2x * bp)9297 static void bnx2x_stop_ptp(struct bnx2x *bp)
9298 {
9299 /* Cancel PTP work queue. Should be done after the Tx queues are
9300 * drained to prevent additional scheduling.
9301 */
9302 cancel_work_sync(&bp->ptp_task);
9303
9304 if (bp->ptp_tx_skb) {
9305 dev_kfree_skb_any(bp->ptp_tx_skb);
9306 bp->ptp_tx_skb = NULL;
9307 }
9308
9309 /* Disable PTP in HW */
9310 bnx2x_disable_ptp(bp);
9311
9312 DP(BNX2X_MSG_PTP, "PTP stop ended successfully\n");
9313 }
9314
bnx2x_chip_cleanup(struct bnx2x * bp,int unload_mode,bool keep_link)9315 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
9316 {
9317 int port = BP_PORT(bp);
9318 int i, rc = 0;
9319 u8 cos;
9320 struct bnx2x_mcast_ramrod_params rparam = {NULL};
9321 u32 reset_code;
9322
9323 /* Wait until tx fastpath tasks complete */
9324 for_each_tx_queue(bp, i) {
9325 struct bnx2x_fastpath *fp = &bp->fp[i];
9326
9327 for_each_cos_in_tx_queue(fp, cos)
9328 rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
9329 #ifdef BNX2X_STOP_ON_ERROR
9330 if (rc)
9331 return;
9332 #endif
9333 }
9334
9335 /* Give HW time to discard old tx messages */
9336 usleep_range(1000, 2000);
9337
9338 /* Clean all ETH MACs */
9339 rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
9340 false);
9341 if (rc < 0)
9342 BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
9343
9344 /* Clean up UC list */
9345 rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
9346 true);
9347 if (rc < 0)
9348 BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
9349 rc);
9350
9351 /* The whole *vlan_obj structure may be not initialized if VLAN
9352 * filtering offload is not supported by hardware. Currently this is
9353 * true for all hardware covered by CHIP_IS_E1x().
9354 */
9355 if (!CHIP_IS_E1x(bp)) {
9356 /* Remove all currently configured VLANs */
9357 rc = bnx2x_del_all_vlans(bp);
9358 if (rc < 0)
9359 BNX2X_ERR("Failed to delete all VLANs\n");
9360 }
9361
9362 /* Disable LLH */
9363 if (!CHIP_IS_E1(bp))
9364 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
9365
9366 /* Set "drop all" (stop Rx).
9367 * We need to take a netif_addr_lock() here in order to prevent
9368 * a race between the completion code and this code.
9369 */
9370 netif_addr_lock_bh(bp->dev);
9371 /* Schedule the rx_mode command */
9372 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
9373 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
9374 else if (bp->slowpath)
9375 bnx2x_set_storm_rx_mode(bp);
9376
9377 /* Cleanup multicast configuration */
9378 rparam.mcast_obj = &bp->mcast_obj;
9379 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
9380 if (rc < 0)
9381 BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
9382
9383 netif_addr_unlock_bh(bp->dev);
9384
9385 bnx2x_iov_chip_cleanup(bp);
9386
9387 /*
9388 * Send the UNLOAD_REQUEST to the MCP. This will return if
9389 * this function should perform FUNC, PORT or COMMON HW
9390 * reset.
9391 */
9392 reset_code = bnx2x_send_unload_req(bp, unload_mode);
9393
9394 /*
9395 * (assumption: No Attention from MCP at this stage)
9396 * PMF probably in the middle of TX disable/enable transaction
9397 */
9398 rc = bnx2x_func_wait_started(bp);
9399 if (rc) {
9400 BNX2X_ERR("bnx2x_func_wait_started failed\n");
9401 #ifdef BNX2X_STOP_ON_ERROR
9402 return;
9403 #endif
9404 }
9405
9406 /* Close multi and leading connections
9407 * Completions for ramrods are collected in a synchronous way
9408 */
9409 for_each_eth_queue(bp, i)
9410 if (bnx2x_stop_queue(bp, i))
9411 #ifdef BNX2X_STOP_ON_ERROR
9412 return;
9413 #else
9414 goto unload_error;
9415 #endif
9416
9417 if (CNIC_LOADED(bp)) {
9418 for_each_cnic_queue(bp, i)
9419 if (bnx2x_stop_queue(bp, i))
9420 #ifdef BNX2X_STOP_ON_ERROR
9421 return;
9422 #else
9423 goto unload_error;
9424 #endif
9425 }
9426
9427 /* If SP settings didn't get completed so far - something
9428 * very wrong has happen.
9429 */
9430 if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
9431 BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
9432
9433 #ifndef BNX2X_STOP_ON_ERROR
9434 unload_error:
9435 #endif
9436 rc = bnx2x_func_stop(bp);
9437 if (rc) {
9438 BNX2X_ERR("Function stop failed!\n");
9439 #ifdef BNX2X_STOP_ON_ERROR
9440 return;
9441 #endif
9442 }
9443
9444 /* stop_ptp should be after the Tx queues are drained to prevent
9445 * scheduling to the cancelled PTP work queue. It should also be after
9446 * function stop ramrod is sent, since as part of this ramrod FW access
9447 * PTP registers.
9448 */
9449 if (bp->flags & PTP_SUPPORTED) {
9450 bnx2x_stop_ptp(bp);
9451 if (bp->ptp_clock) {
9452 ptp_clock_unregister(bp->ptp_clock);
9453 bp->ptp_clock = NULL;
9454 }
9455 }
9456
9457 /* Disable HW interrupts, NAPI */
9458 bnx2x_netif_stop(bp, 1);
9459 /* Delete all NAPI objects */
9460 bnx2x_del_all_napi(bp);
9461 if (CNIC_LOADED(bp))
9462 bnx2x_del_all_napi_cnic(bp);
9463
9464 /* Release IRQs */
9465 bnx2x_free_irq(bp);
9466
9467 /* Reset the chip, unless PCI function is offline. If we reach this
9468 * point following a PCI error handling, it means device is really
9469 * in a bad state and we're about to remove it, so reset the chip
9470 * is not a good idea.
9471 */
9472 if (!pci_channel_offline(bp->pdev)) {
9473 rc = bnx2x_reset_hw(bp, reset_code);
9474 if (rc)
9475 BNX2X_ERR("HW_RESET failed\n");
9476 }
9477
9478 /* Report UNLOAD_DONE to MCP */
9479 bnx2x_send_unload_done(bp, keep_link);
9480 }
9481
bnx2x_disable_close_the_gate(struct bnx2x * bp)9482 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
9483 {
9484 u32 val;
9485
9486 DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
9487
9488 if (CHIP_IS_E1(bp)) {
9489 int port = BP_PORT(bp);
9490 u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
9491 MISC_REG_AEU_MASK_ATTN_FUNC_0;
9492
9493 val = REG_RD(bp, addr);
9494 val &= ~(0x300);
9495 REG_WR(bp, addr, val);
9496 } else {
9497 val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
9498 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
9499 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
9500 REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
9501 }
9502 }
9503
9504 /* Close gates #2, #3 and #4: */
bnx2x_set_234_gates(struct bnx2x * bp,bool close)9505 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
9506 {
9507 u32 val;
9508
9509 /* Gates #2 and #4a are closed/opened for "not E1" only */
9510 if (!CHIP_IS_E1(bp)) {
9511 /* #4 */
9512 REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
9513 /* #2 */
9514 REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
9515 }
9516
9517 /* #3 */
9518 if (CHIP_IS_E1x(bp)) {
9519 /* Prevent interrupts from HC on both ports */
9520 val = REG_RD(bp, HC_REG_CONFIG_1);
9521 REG_WR(bp, HC_REG_CONFIG_1,
9522 (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
9523 (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
9524
9525 val = REG_RD(bp, HC_REG_CONFIG_0);
9526 REG_WR(bp, HC_REG_CONFIG_0,
9527 (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
9528 (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
9529 } else {
9530 /* Prevent incoming interrupts in IGU */
9531 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9532
9533 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
9534 (!close) ?
9535 (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
9536 (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
9537 }
9538
9539 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
9540 close ? "closing" : "opening");
9541 }
9542
9543 #define SHARED_MF_CLP_MAGIC 0x80000000 /* `magic' bit */
9544
bnx2x_clp_reset_prep(struct bnx2x * bp,u32 * magic_val)9545 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
9546 {
9547 /* Do some magic... */
9548 u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9549 *magic_val = val & SHARED_MF_CLP_MAGIC;
9550 MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
9551 }
9552
9553 /**
9554 * bnx2x_clp_reset_done - restore the value of the `magic' bit.
9555 *
9556 * @bp: driver handle
9557 * @magic_val: old value of the `magic' bit.
9558 */
bnx2x_clp_reset_done(struct bnx2x * bp,u32 magic_val)9559 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
9560 {
9561 /* Restore the `magic' bit value... */
9562 u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9563 MF_CFG_WR(bp, shared_mf_config.clp_mb,
9564 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
9565 }
9566
9567 /**
9568 * bnx2x_reset_mcp_prep - prepare for MCP reset.
9569 *
9570 * @bp: driver handle
9571 * @magic_val: old value of 'magic' bit.
9572 *
9573 * Takes care of CLP configurations.
9574 */
bnx2x_reset_mcp_prep(struct bnx2x * bp,u32 * magic_val)9575 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
9576 {
9577 u32 shmem;
9578 u32 validity_offset;
9579
9580 DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
9581
9582 /* Set `magic' bit in order to save MF config */
9583 if (!CHIP_IS_E1(bp))
9584 bnx2x_clp_reset_prep(bp, magic_val);
9585
9586 /* Get shmem offset */
9587 shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9588 validity_offset =
9589 offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
9590
9591 /* Clear validity map flags */
9592 if (shmem > 0)
9593 REG_WR(bp, shmem + validity_offset, 0);
9594 }
9595
9596 #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */
9597 #define MCP_ONE_TIMEOUT 100 /* 100 ms */
9598
9599 /**
9600 * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
9601 *
9602 * @bp: driver handle
9603 */
bnx2x_mcp_wait_one(struct bnx2x * bp)9604 static void bnx2x_mcp_wait_one(struct bnx2x *bp)
9605 {
9606 /* special handling for emulation and FPGA,
9607 wait 10 times longer */
9608 if (CHIP_REV_IS_SLOW(bp))
9609 msleep(MCP_ONE_TIMEOUT*10);
9610 else
9611 msleep(MCP_ONE_TIMEOUT);
9612 }
9613
9614 /*
9615 * initializes bp->common.shmem_base and waits for validity signature to appear
9616 */
bnx2x_init_shmem(struct bnx2x * bp)9617 static int bnx2x_init_shmem(struct bnx2x *bp)
9618 {
9619 int cnt = 0;
9620 u32 val = 0;
9621
9622 do {
9623 bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9624
9625 /* If we read all 0xFFs, means we are in PCI error state and
9626 * should bail out to avoid crashes on adapter's FW reads.
9627 */
9628 if (bp->common.shmem_base == 0xFFFFFFFF) {
9629 bp->flags |= NO_MCP_FLAG;
9630 return -ENODEV;
9631 }
9632
9633 if (bp->common.shmem_base) {
9634 val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
9635 if (val & SHR_MEM_VALIDITY_MB)
9636 return 0;
9637 }
9638
9639 bnx2x_mcp_wait_one(bp);
9640
9641 } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
9642
9643 BNX2X_ERR("BAD MCP validity signature\n");
9644
9645 return -ENODEV;
9646 }
9647
bnx2x_reset_mcp_comp(struct bnx2x * bp,u32 magic_val)9648 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
9649 {
9650 int rc = bnx2x_init_shmem(bp);
9651
9652 /* Restore the `magic' bit value */
9653 if (!CHIP_IS_E1(bp))
9654 bnx2x_clp_reset_done(bp, magic_val);
9655
9656 return rc;
9657 }
9658
bnx2x_pxp_prep(struct bnx2x * bp)9659 static void bnx2x_pxp_prep(struct bnx2x *bp)
9660 {
9661 if (!CHIP_IS_E1(bp)) {
9662 REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
9663 REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
9664 }
9665 }
9666
9667 /*
9668 * Reset the whole chip except for:
9669 * - PCIE core
9670 * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9671 * one reset bit)
9672 * - IGU
9673 * - MISC (including AEU)
9674 * - GRC
9675 * - RBCN, RBCP
9676 */
bnx2x_process_kill_chip_reset(struct bnx2x * bp,bool global)9677 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
9678 {
9679 u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
9680 u32 global_bits2, stay_reset2;
9681
9682 /*
9683 * Bits that have to be set in reset_mask2 if we want to reset 'global'
9684 * (per chip) blocks.
9685 */
9686 global_bits2 =
9687 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
9688 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
9689
9690 /* Don't reset the following blocks.
9691 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9692 * reset, as in 4 port device they might still be owned
9693 * by the MCP (there is only one leader per path).
9694 */
9695 not_reset_mask1 =
9696 MISC_REGISTERS_RESET_REG_1_RST_HC |
9697 MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9698 MISC_REGISTERS_RESET_REG_1_RST_PXP;
9699
9700 not_reset_mask2 =
9701 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9702 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9703 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9704 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9705 MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9706 MISC_REGISTERS_RESET_REG_2_RST_GRC |
9707 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9708 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9709 MISC_REGISTERS_RESET_REG_2_RST_ATC |
9710 MISC_REGISTERS_RESET_REG_2_PGLC |
9711 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9712 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9713 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9714 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9715 MISC_REGISTERS_RESET_REG_2_UMAC0 |
9716 MISC_REGISTERS_RESET_REG_2_UMAC1;
9717
9718 /*
9719 * Keep the following blocks in reset:
9720 * - all xxMACs are handled by the bnx2x_link code.
9721 */
9722 stay_reset2 =
9723 MISC_REGISTERS_RESET_REG_2_XMAC |
9724 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9725
9726 /* Full reset masks according to the chip */
9727 reset_mask1 = 0xffffffff;
9728
9729 if (CHIP_IS_E1(bp))
9730 reset_mask2 = 0xffff;
9731 else if (CHIP_IS_E1H(bp))
9732 reset_mask2 = 0x1ffff;
9733 else if (CHIP_IS_E2(bp))
9734 reset_mask2 = 0xfffff;
9735 else /* CHIP_IS_E3 */
9736 reset_mask2 = 0x3ffffff;
9737
9738 /* Don't reset global blocks unless we need to */
9739 if (!global)
9740 reset_mask2 &= ~global_bits2;
9741
9742 /*
9743 * In case of attention in the QM, we need to reset PXP
9744 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9745 * because otherwise QM reset would release 'close the gates' shortly
9746 * before resetting the PXP, then the PSWRQ would send a write
9747 * request to PGLUE. Then when PXP is reset, PGLUE would try to
9748 * read the payload data from PSWWR, but PSWWR would not
9749 * respond. The write queue in PGLUE would stuck, dmae commands
9750 * would not return. Therefore it's important to reset the second
9751 * reset register (containing the
9752 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9753 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9754 * bit).
9755 */
9756 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9757 reset_mask2 & (~not_reset_mask2));
9758
9759 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9760 reset_mask1 & (~not_reset_mask1));
9761
9762 barrier();
9763
9764 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9765 reset_mask2 & (~stay_reset2));
9766
9767 barrier();
9768
9769 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9770 }
9771
9772 /**
9773 * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9774 * It should get cleared in no more than 1s.
9775 *
9776 * @bp: driver handle
9777 *
9778 * It should get cleared in no more than 1s. Returns 0 if
9779 * pending writes bit gets cleared.
9780 */
bnx2x_er_poll_igu_vq(struct bnx2x * bp)9781 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9782 {
9783 u32 cnt = 1000;
9784 u32 pend_bits = 0;
9785
9786 do {
9787 pend_bits = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9788
9789 if (pend_bits == 0)
9790 break;
9791
9792 usleep_range(1000, 2000);
9793 } while (cnt-- > 0);
9794
9795 if (cnt <= 0) {
9796 BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9797 pend_bits);
9798 return -EBUSY;
9799 }
9800
9801 return 0;
9802 }
9803
bnx2x_process_kill(struct bnx2x * bp,bool global)9804 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9805 {
9806 int cnt = 1000;
9807 u32 val = 0;
9808 u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9809 u32 tags_63_32 = 0;
9810
9811 /* Empty the Tetris buffer, wait for 1s */
9812 do {
9813 sr_cnt = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9814 blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9815 port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9816 port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9817 pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9818 if (CHIP_IS_E3(bp))
9819 tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9820
9821 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9822 ((port_is_idle_0 & 0x1) == 0x1) &&
9823 ((port_is_idle_1 & 0x1) == 0x1) &&
9824 (pgl_exp_rom2 == 0xffffffff) &&
9825 (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9826 break;
9827 usleep_range(1000, 2000);
9828 } while (cnt-- > 0);
9829
9830 if (cnt <= 0) {
9831 BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9832 BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9833 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9834 pgl_exp_rom2);
9835 return -EAGAIN;
9836 }
9837
9838 barrier();
9839
9840 /* Close gates #2, #3 and #4 */
9841 bnx2x_set_234_gates(bp, true);
9842
9843 /* Poll for IGU VQs for 57712 and newer chips */
9844 if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9845 return -EAGAIN;
9846
9847 /* TBD: Indicate that "process kill" is in progress to MCP */
9848
9849 /* Clear "unprepared" bit */
9850 REG_WR(bp, MISC_REG_UNPREPARED, 0);
9851 barrier();
9852
9853 /* Wait for 1ms to empty GLUE and PCI-E core queues,
9854 * PSWHST, GRC and PSWRD Tetris buffer.
9855 */
9856 usleep_range(1000, 2000);
9857
9858 /* Prepare to chip reset: */
9859 /* MCP */
9860 if (global)
9861 bnx2x_reset_mcp_prep(bp, &val);
9862
9863 /* PXP */
9864 bnx2x_pxp_prep(bp);
9865 barrier();
9866
9867 /* reset the chip */
9868 bnx2x_process_kill_chip_reset(bp, global);
9869 barrier();
9870
9871 /* clear errors in PGB */
9872 if (!CHIP_IS_E1x(bp))
9873 REG_WR(bp, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
9874
9875 /* Recover after reset: */
9876 /* MCP */
9877 if (global && bnx2x_reset_mcp_comp(bp, val))
9878 return -EAGAIN;
9879
9880 /* TBD: Add resetting the NO_MCP mode DB here */
9881
9882 /* Open the gates #2, #3 and #4 */
9883 bnx2x_set_234_gates(bp, false);
9884
9885 /* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9886 * reset state, re-enable attentions. */
9887
9888 return 0;
9889 }
9890
bnx2x_leader_reset(struct bnx2x * bp)9891 static int bnx2x_leader_reset(struct bnx2x *bp)
9892 {
9893 int rc = 0;
9894 bool global = bnx2x_reset_is_global(bp);
9895 u32 load_code;
9896
9897 /* if not going to reset MCP - load "fake" driver to reset HW while
9898 * driver is owner of the HW
9899 */
9900 if (!global && !BP_NOMCP(bp)) {
9901 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9902 DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9903 if (!load_code) {
9904 BNX2X_ERR("MCP response failure, aborting\n");
9905 rc = -EAGAIN;
9906 goto exit_leader_reset;
9907 }
9908 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9909 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9910 BNX2X_ERR("MCP unexpected resp, aborting\n");
9911 rc = -EAGAIN;
9912 goto exit_leader_reset2;
9913 }
9914 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9915 if (!load_code) {
9916 BNX2X_ERR("MCP response failure, aborting\n");
9917 rc = -EAGAIN;
9918 goto exit_leader_reset2;
9919 }
9920 }
9921
9922 /* Try to recover after the failure */
9923 if (bnx2x_process_kill(bp, global)) {
9924 BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9925 BP_PATH(bp));
9926 rc = -EAGAIN;
9927 goto exit_leader_reset2;
9928 }
9929
9930 /*
9931 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9932 * state.
9933 */
9934 bnx2x_set_reset_done(bp);
9935 if (global)
9936 bnx2x_clear_reset_global(bp);
9937
9938 exit_leader_reset2:
9939 /* unload "fake driver" if it was loaded */
9940 if (!global && !BP_NOMCP(bp)) {
9941 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9942 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9943 }
9944 exit_leader_reset:
9945 bp->is_leader = 0;
9946 bnx2x_release_leader_lock(bp);
9947 smp_mb();
9948 return rc;
9949 }
9950
bnx2x_recovery_failed(struct bnx2x * bp)9951 static void bnx2x_recovery_failed(struct bnx2x *bp)
9952 {
9953 netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9954
9955 /* Disconnect this device */
9956 netif_device_detach(bp->dev);
9957
9958 /*
9959 * Block ifup for all function on this engine until "process kill"
9960 * or power cycle.
9961 */
9962 bnx2x_set_reset_in_progress(bp);
9963
9964 /* Shut down the power */
9965 bnx2x_set_power_state(bp, PCI_D3hot);
9966
9967 bp->recovery_state = BNX2X_RECOVERY_FAILED;
9968
9969 smp_mb();
9970 }
9971
9972 /*
9973 * Assumption: runs under rtnl lock. This together with the fact
9974 * that it's called only from bnx2x_sp_rtnl() ensure that it
9975 * will never be called when netif_running(bp->dev) is false.
9976 */
bnx2x_parity_recover(struct bnx2x * bp)9977 static void bnx2x_parity_recover(struct bnx2x *bp)
9978 {
9979 bool global = false;
9980 u32 error_recovered, error_unrecovered;
9981 bool is_parity;
9982
9983 DP(NETIF_MSG_HW, "Handling parity\n");
9984 while (1) {
9985 switch (bp->recovery_state) {
9986 case BNX2X_RECOVERY_INIT:
9987 DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
9988 is_parity = bnx2x_chk_parity_attn(bp, &global, false);
9989 WARN_ON(!is_parity);
9990
9991 /* Try to get a LEADER_LOCK HW lock */
9992 if (bnx2x_trylock_leader_lock(bp)) {
9993 bnx2x_set_reset_in_progress(bp);
9994 /*
9995 * Check if there is a global attention and if
9996 * there was a global attention, set the global
9997 * reset bit.
9998 */
9999
10000 if (global)
10001 bnx2x_set_reset_global(bp);
10002
10003 bp->is_leader = 1;
10004 }
10005
10006 /* Stop the driver */
10007 /* If interface has been removed - break */
10008 if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
10009 return;
10010
10011 bp->recovery_state = BNX2X_RECOVERY_WAIT;
10012
10013 /* Ensure "is_leader", MCP command sequence and
10014 * "recovery_state" update values are seen on other
10015 * CPUs.
10016 */
10017 smp_mb();
10018 break;
10019
10020 case BNX2X_RECOVERY_WAIT:
10021 DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
10022 if (bp->is_leader) {
10023 int other_engine = BP_PATH(bp) ? 0 : 1;
10024 bool other_load_status =
10025 bnx2x_get_load_status(bp, other_engine);
10026 bool load_status =
10027 bnx2x_get_load_status(bp, BP_PATH(bp));
10028 global = bnx2x_reset_is_global(bp);
10029
10030 /*
10031 * In case of a parity in a global block, let
10032 * the first leader that performs a
10033 * leader_reset() reset the global blocks in
10034 * order to clear global attentions. Otherwise
10035 * the gates will remain closed for that
10036 * engine.
10037 */
10038 if (load_status ||
10039 (global && other_load_status)) {
10040 /* Wait until all other functions get
10041 * down.
10042 */
10043 schedule_delayed_work(&bp->sp_rtnl_task,
10044 HZ/10);
10045 return;
10046 } else {
10047 /* If all other functions got down -
10048 * try to bring the chip back to
10049 * normal. In any case it's an exit
10050 * point for a leader.
10051 */
10052 if (bnx2x_leader_reset(bp)) {
10053 bnx2x_recovery_failed(bp);
10054 return;
10055 }
10056
10057 /* If we are here, means that the
10058 * leader has succeeded and doesn't
10059 * want to be a leader any more. Try
10060 * to continue as a none-leader.
10061 */
10062 break;
10063 }
10064 } else { /* non-leader */
10065 if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
10066 /* Try to get a LEADER_LOCK HW lock as
10067 * long as a former leader may have
10068 * been unloaded by the user or
10069 * released a leadership by another
10070 * reason.
10071 */
10072 if (bnx2x_trylock_leader_lock(bp)) {
10073 /* I'm a leader now! Restart a
10074 * switch case.
10075 */
10076 bp->is_leader = 1;
10077 break;
10078 }
10079
10080 schedule_delayed_work(&bp->sp_rtnl_task,
10081 HZ/10);
10082 return;
10083
10084 } else {
10085 /*
10086 * If there was a global attention, wait
10087 * for it to be cleared.
10088 */
10089 if (bnx2x_reset_is_global(bp)) {
10090 schedule_delayed_work(
10091 &bp->sp_rtnl_task,
10092 HZ/10);
10093 return;
10094 }
10095
10096 error_recovered =
10097 bp->eth_stats.recoverable_error;
10098 error_unrecovered =
10099 bp->eth_stats.unrecoverable_error;
10100 bp->recovery_state =
10101 BNX2X_RECOVERY_NIC_LOADING;
10102 if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
10103 error_unrecovered++;
10104 netdev_err(bp->dev,
10105 "Recovery failed. Power cycle needed\n");
10106 /* Disconnect this device */
10107 netif_device_detach(bp->dev);
10108 /* Shut down the power */
10109 bnx2x_set_power_state(
10110 bp, PCI_D3hot);
10111 smp_mb();
10112 } else {
10113 bp->recovery_state =
10114 BNX2X_RECOVERY_DONE;
10115 error_recovered++;
10116 smp_mb();
10117 }
10118 bp->eth_stats.recoverable_error =
10119 error_recovered;
10120 bp->eth_stats.unrecoverable_error =
10121 error_unrecovered;
10122
10123 return;
10124 }
10125 }
10126 default:
10127 return;
10128 }
10129 }
10130 }
10131
bnx2x_udp_port_update(struct bnx2x * bp)10132 static int bnx2x_udp_port_update(struct bnx2x *bp)
10133 {
10134 struct bnx2x_func_switch_update_params *switch_update_params;
10135 struct bnx2x_func_state_params func_params = {NULL};
10136 struct bnx2x_udp_tunnel *udp_tunnel;
10137 u16 vxlan_port = 0, geneve_port = 0;
10138 int rc;
10139
10140 switch_update_params = &func_params.params.switch_update;
10141
10142 /* Prepare parameters for function state transitions */
10143 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
10144 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
10145
10146 func_params.f_obj = &bp->func_obj;
10147 func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
10148
10149 /* Function parameters */
10150 __set_bit(BNX2X_F_UPDATE_TUNNEL_CFG_CHNG,
10151 &switch_update_params->changes);
10152
10153 if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE].count) {
10154 udp_tunnel = &bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE];
10155 geneve_port = udp_tunnel->dst_port;
10156 switch_update_params->geneve_dst_port = geneve_port;
10157 }
10158
10159 if (bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN].count) {
10160 udp_tunnel = &bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN];
10161 vxlan_port = udp_tunnel->dst_port;
10162 switch_update_params->vxlan_dst_port = vxlan_port;
10163 }
10164
10165 /* Re-enable inner-rss for the offloaded UDP tunnels */
10166 __set_bit(BNX2X_F_UPDATE_TUNNEL_INNER_RSS,
10167 &switch_update_params->changes);
10168
10169 rc = bnx2x_func_state_change(bp, &func_params);
10170 if (rc)
10171 BNX2X_ERR("failed to set UDP dst port to %04x %04x (rc = 0x%x)\n",
10172 vxlan_port, geneve_port, rc);
10173 else
10174 DP(BNX2X_MSG_SP,
10175 "Configured UDP ports: Vxlan [%04x] Geneve [%04x]\n",
10176 vxlan_port, geneve_port);
10177
10178 return rc;
10179 }
10180
__bnx2x_add_udp_port(struct bnx2x * bp,u16 port,enum bnx2x_udp_port_type type)10181 static void __bnx2x_add_udp_port(struct bnx2x *bp, u16 port,
10182 enum bnx2x_udp_port_type type)
10183 {
10184 struct bnx2x_udp_tunnel *udp_port = &bp->udp_tunnel_ports[type];
10185
10186 if (!netif_running(bp->dev) || !IS_PF(bp) || CHIP_IS_E1x(bp))
10187 return;
10188
10189 if (udp_port->count && udp_port->dst_port == port) {
10190 udp_port->count++;
10191 return;
10192 }
10193
10194 if (udp_port->count) {
10195 DP(BNX2X_MSG_SP,
10196 "UDP tunnel [%d] - destination port limit reached\n",
10197 type);
10198 return;
10199 }
10200
10201 udp_port->dst_port = port;
10202 udp_port->count = 1;
10203 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_CHANGE_UDP_PORT, 0);
10204 }
10205
__bnx2x_del_udp_port(struct bnx2x * bp,u16 port,enum bnx2x_udp_port_type type)10206 static void __bnx2x_del_udp_port(struct bnx2x *bp, u16 port,
10207 enum bnx2x_udp_port_type type)
10208 {
10209 struct bnx2x_udp_tunnel *udp_port = &bp->udp_tunnel_ports[type];
10210
10211 if (!IS_PF(bp) || CHIP_IS_E1x(bp))
10212 return;
10213
10214 if (!udp_port->count || udp_port->dst_port != port) {
10215 DP(BNX2X_MSG_SP, "Invalid UDP tunnel [%d] port\n",
10216 type);
10217 return;
10218 }
10219
10220 /* Remove reference, and make certain it's no longer in use */
10221 udp_port->count--;
10222 if (udp_port->count)
10223 return;
10224 udp_port->dst_port = 0;
10225
10226 if (netif_running(bp->dev))
10227 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_CHANGE_UDP_PORT, 0);
10228 else
10229 DP(BNX2X_MSG_SP, "Deleted UDP tunnel [%d] port %d\n",
10230 type, port);
10231 }
10232
bnx2x_udp_tunnel_add(struct net_device * netdev,struct udp_tunnel_info * ti)10233 static void bnx2x_udp_tunnel_add(struct net_device *netdev,
10234 struct udp_tunnel_info *ti)
10235 {
10236 struct bnx2x *bp = netdev_priv(netdev);
10237 u16 t_port = ntohs(ti->port);
10238
10239 switch (ti->type) {
10240 case UDP_TUNNEL_TYPE_VXLAN:
10241 __bnx2x_add_udp_port(bp, t_port, BNX2X_UDP_PORT_VXLAN);
10242 break;
10243 case UDP_TUNNEL_TYPE_GENEVE:
10244 __bnx2x_add_udp_port(bp, t_port, BNX2X_UDP_PORT_GENEVE);
10245 break;
10246 default:
10247 break;
10248 }
10249 }
10250
bnx2x_udp_tunnel_del(struct net_device * netdev,struct udp_tunnel_info * ti)10251 static void bnx2x_udp_tunnel_del(struct net_device *netdev,
10252 struct udp_tunnel_info *ti)
10253 {
10254 struct bnx2x *bp = netdev_priv(netdev);
10255 u16 t_port = ntohs(ti->port);
10256
10257 switch (ti->type) {
10258 case UDP_TUNNEL_TYPE_VXLAN:
10259 __bnx2x_del_udp_port(bp, t_port, BNX2X_UDP_PORT_VXLAN);
10260 break;
10261 case UDP_TUNNEL_TYPE_GENEVE:
10262 __bnx2x_del_udp_port(bp, t_port, BNX2X_UDP_PORT_GENEVE);
10263 break;
10264 default:
10265 break;
10266 }
10267 }
10268
10269 static int bnx2x_close(struct net_device *dev);
10270
10271 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
10272 * scheduled on a general queue in order to prevent a dead lock.
10273 */
bnx2x_sp_rtnl_task(struct work_struct * work)10274 static void bnx2x_sp_rtnl_task(struct work_struct *work)
10275 {
10276 struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
10277
10278 rtnl_lock();
10279
10280 if (!netif_running(bp->dev)) {
10281 rtnl_unlock();
10282 return;
10283 }
10284
10285 if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
10286 #ifdef BNX2X_STOP_ON_ERROR
10287 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10288 "you will need to reboot when done\n");
10289 goto sp_rtnl_not_reset;
10290 #endif
10291 /*
10292 * Clear all pending SP commands as we are going to reset the
10293 * function anyway.
10294 */
10295 bp->sp_rtnl_state = 0;
10296 smp_mb();
10297
10298 bnx2x_parity_recover(bp);
10299
10300 rtnl_unlock();
10301 return;
10302 }
10303
10304 if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
10305 #ifdef BNX2X_STOP_ON_ERROR
10306 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10307 "you will need to reboot when done\n");
10308 goto sp_rtnl_not_reset;
10309 #endif
10310
10311 /*
10312 * Clear all pending SP commands as we are going to reset the
10313 * function anyway.
10314 */
10315 bp->sp_rtnl_state = 0;
10316 smp_mb();
10317
10318 /* Immediately indicate link as down */
10319 bp->link_vars.link_up = 0;
10320 bp->force_link_down = true;
10321 netif_carrier_off(bp->dev);
10322 BNX2X_ERR("Indicating link is down due to Tx-timeout\n");
10323
10324 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
10325 /* When ret value shows failure of allocation failure,
10326 * the nic is rebooted again. If open still fails, a error
10327 * message to notify the user.
10328 */
10329 if (bnx2x_nic_load(bp, LOAD_NORMAL) == -ENOMEM) {
10330 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
10331 if (bnx2x_nic_load(bp, LOAD_NORMAL))
10332 BNX2X_ERR("Open the NIC fails again!\n");
10333 }
10334 rtnl_unlock();
10335 return;
10336 }
10337 #ifdef BNX2X_STOP_ON_ERROR
10338 sp_rtnl_not_reset:
10339 #endif
10340 if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
10341 bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
10342 if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
10343 bnx2x_after_function_update(bp);
10344 /*
10345 * in case of fan failure we need to reset id if the "stop on error"
10346 * debug flag is set, since we trying to prevent permanent overheating
10347 * damage
10348 */
10349 if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
10350 DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
10351 netif_device_detach(bp->dev);
10352 bnx2x_close(bp->dev);
10353 rtnl_unlock();
10354 return;
10355 }
10356
10357 if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
10358 DP(BNX2X_MSG_SP,
10359 "sending set mcast vf pf channel message from rtnl sp-task\n");
10360 bnx2x_vfpf_set_mcast(bp->dev);
10361 }
10362 if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
10363 &bp->sp_rtnl_state)){
10364 if (netif_carrier_ok(bp->dev)) {
10365 bnx2x_tx_disable(bp);
10366 BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n");
10367 }
10368 }
10369
10370 if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) {
10371 DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n");
10372 bnx2x_set_rx_mode_inner(bp);
10373 }
10374
10375 if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
10376 &bp->sp_rtnl_state))
10377 bnx2x_pf_set_vfs_vlan(bp);
10378
10379 if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state)) {
10380 bnx2x_dcbx_stop_hw_tx(bp);
10381 bnx2x_dcbx_resume_hw_tx(bp);
10382 }
10383
10384 if (test_and_clear_bit(BNX2X_SP_RTNL_GET_DRV_VERSION,
10385 &bp->sp_rtnl_state))
10386 bnx2x_update_mng_version(bp);
10387
10388 if (test_and_clear_bit(BNX2X_SP_RTNL_UPDATE_SVID, &bp->sp_rtnl_state))
10389 bnx2x_handle_update_svid_cmd(bp);
10390
10391 if (test_and_clear_bit(BNX2X_SP_RTNL_CHANGE_UDP_PORT,
10392 &bp->sp_rtnl_state)) {
10393 if (bnx2x_udp_port_update(bp)) {
10394 /* On error, forget configuration */
10395 memset(bp->udp_tunnel_ports, 0,
10396 sizeof(struct bnx2x_udp_tunnel) *
10397 BNX2X_UDP_PORT_MAX);
10398 } else {
10399 /* Since we don't store additional port information,
10400 * if no ports are configured for any feature ask for
10401 * information about currently configured ports.
10402 */
10403 if (!bp->udp_tunnel_ports[BNX2X_UDP_PORT_VXLAN].count &&
10404 !bp->udp_tunnel_ports[BNX2X_UDP_PORT_GENEVE].count)
10405 udp_tunnel_get_rx_info(bp->dev);
10406 }
10407 }
10408
10409 /* work which needs rtnl lock not-taken (as it takes the lock itself and
10410 * can be called from other contexts as well)
10411 */
10412 rtnl_unlock();
10413
10414 /* enable SR-IOV if applicable */
10415 if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
10416 &bp->sp_rtnl_state)) {
10417 bnx2x_disable_sriov(bp);
10418 bnx2x_enable_sriov(bp);
10419 }
10420 }
10421
bnx2x_period_task(struct work_struct * work)10422 static void bnx2x_period_task(struct work_struct *work)
10423 {
10424 struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
10425
10426 if (!netif_running(bp->dev))
10427 goto period_task_exit;
10428
10429 if (CHIP_REV_IS_SLOW(bp)) {
10430 BNX2X_ERR("period task called on emulation, ignoring\n");
10431 goto period_task_exit;
10432 }
10433
10434 bnx2x_acquire_phy_lock(bp);
10435 /*
10436 * The barrier is needed to ensure the ordering between the writing to
10437 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
10438 * the reading here.
10439 */
10440 smp_mb();
10441 if (bp->port.pmf) {
10442 bnx2x_period_func(&bp->link_params, &bp->link_vars);
10443
10444 /* Re-queue task in 1 sec */
10445 queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
10446 }
10447
10448 bnx2x_release_phy_lock(bp);
10449 period_task_exit:
10450 return;
10451 }
10452
10453 /*
10454 * Init service functions
10455 */
10456
bnx2x_get_pretend_reg(struct bnx2x * bp)10457 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
10458 {
10459 u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
10460 u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
10461 return base + (BP_ABS_FUNC(bp)) * stride;
10462 }
10463
bnx2x_prev_unload_close_umac(struct bnx2x * bp,u8 port,u32 reset_reg,struct bnx2x_mac_vals * vals)10464 static bool bnx2x_prev_unload_close_umac(struct bnx2x *bp,
10465 u8 port, u32 reset_reg,
10466 struct bnx2x_mac_vals *vals)
10467 {
10468 u32 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
10469 u32 base_addr;
10470
10471 if (!(mask & reset_reg))
10472 return false;
10473
10474 BNX2X_DEV_INFO("Disable umac Rx %02x\n", port);
10475 base_addr = port ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
10476 vals->umac_addr[port] = base_addr + UMAC_REG_COMMAND_CONFIG;
10477 vals->umac_val[port] = REG_RD(bp, vals->umac_addr[port]);
10478 REG_WR(bp, vals->umac_addr[port], 0);
10479
10480 return true;
10481 }
10482
bnx2x_prev_unload_close_mac(struct bnx2x * bp,struct bnx2x_mac_vals * vals)10483 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
10484 struct bnx2x_mac_vals *vals)
10485 {
10486 u32 val, base_addr, offset, mask, reset_reg;
10487 bool mac_stopped = false;
10488 u8 port = BP_PORT(bp);
10489
10490 /* reset addresses as they also mark which values were changed */
10491 memset(vals, 0, sizeof(*vals));
10492
10493 reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
10494
10495 if (!CHIP_IS_E3(bp)) {
10496 val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
10497 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
10498 if ((mask & reset_reg) && val) {
10499 u32 wb_data[2];
10500 BNX2X_DEV_INFO("Disable bmac Rx\n");
10501 base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
10502 : NIG_REG_INGRESS_BMAC0_MEM;
10503 offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
10504 : BIGMAC_REGISTER_BMAC_CONTROL;
10505
10506 /*
10507 * use rd/wr since we cannot use dmae. This is safe
10508 * since MCP won't access the bus due to the request
10509 * to unload, and no function on the path can be
10510 * loaded at this time.
10511 */
10512 wb_data[0] = REG_RD(bp, base_addr + offset);
10513 wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
10514 vals->bmac_addr = base_addr + offset;
10515 vals->bmac_val[0] = wb_data[0];
10516 vals->bmac_val[1] = wb_data[1];
10517 wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
10518 REG_WR(bp, vals->bmac_addr, wb_data[0]);
10519 REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
10520 }
10521 BNX2X_DEV_INFO("Disable emac Rx\n");
10522 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
10523 vals->emac_val = REG_RD(bp, vals->emac_addr);
10524 REG_WR(bp, vals->emac_addr, 0);
10525 mac_stopped = true;
10526 } else {
10527 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
10528 BNX2X_DEV_INFO("Disable xmac Rx\n");
10529 base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
10530 val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
10531 REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10532 val & ~(1 << 1));
10533 REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10534 val | (1 << 1));
10535 vals->xmac_addr = base_addr + XMAC_REG_CTRL;
10536 vals->xmac_val = REG_RD(bp, vals->xmac_addr);
10537 REG_WR(bp, vals->xmac_addr, 0);
10538 mac_stopped = true;
10539 }
10540
10541 mac_stopped |= bnx2x_prev_unload_close_umac(bp, 0,
10542 reset_reg, vals);
10543 mac_stopped |= bnx2x_prev_unload_close_umac(bp, 1,
10544 reset_reg, vals);
10545 }
10546
10547 if (mac_stopped)
10548 msleep(20);
10549 }
10550
10551 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
10552 #define BNX2X_PREV_UNDI_PROD_ADDR_H(f) (BAR_TSTRORM_INTMEM + \
10553 0x1848 + ((f) << 4))
10554 #define BNX2X_PREV_UNDI_RCQ(val) ((val) & 0xffff)
10555 #define BNX2X_PREV_UNDI_BD(val) ((val) >> 16 & 0xffff)
10556 #define BNX2X_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq))
10557
10558 #define BCM_5710_UNDI_FW_MF_MAJOR (0x07)
10559 #define BCM_5710_UNDI_FW_MF_MINOR (0x08)
10560 #define BCM_5710_UNDI_FW_MF_VERS (0x05)
10561
bnx2x_prev_is_after_undi(struct bnx2x * bp)10562 static bool bnx2x_prev_is_after_undi(struct bnx2x *bp)
10563 {
10564 /* UNDI marks its presence in DORQ -
10565 * it initializes CID offset for normal bell to 0x7
10566 */
10567 if (!(REG_RD(bp, MISC_REG_RESET_REG_1) &
10568 MISC_REGISTERS_RESET_REG_1_RST_DORQ))
10569 return false;
10570
10571 if (REG_RD(bp, DORQ_REG_NORM_CID_OFST) == 0x7) {
10572 BNX2X_DEV_INFO("UNDI previously loaded\n");
10573 return true;
10574 }
10575
10576 return false;
10577 }
10578
bnx2x_prev_unload_undi_inc(struct bnx2x * bp,u8 inc)10579 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 inc)
10580 {
10581 u16 rcq, bd;
10582 u32 addr, tmp_reg;
10583
10584 if (BP_FUNC(bp) < 2)
10585 addr = BNX2X_PREV_UNDI_PROD_ADDR(BP_PORT(bp));
10586 else
10587 addr = BNX2X_PREV_UNDI_PROD_ADDR_H(BP_FUNC(bp) - 2);
10588
10589 tmp_reg = REG_RD(bp, addr);
10590 rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
10591 bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
10592
10593 tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
10594 REG_WR(bp, addr, tmp_reg);
10595
10596 BNX2X_DEV_INFO("UNDI producer [%d/%d][%08x] rings bd -> 0x%04x, rcq -> 0x%04x\n",
10597 BP_PORT(bp), BP_FUNC(bp), addr, bd, rcq);
10598 }
10599
bnx2x_prev_mcp_done(struct bnx2x * bp)10600 static int bnx2x_prev_mcp_done(struct bnx2x *bp)
10601 {
10602 u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
10603 DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
10604 if (!rc) {
10605 BNX2X_ERR("MCP response failure, aborting\n");
10606 return -EBUSY;
10607 }
10608
10609 return 0;
10610 }
10611
10612 static struct bnx2x_prev_path_list *
bnx2x_prev_path_get_entry(struct bnx2x * bp)10613 bnx2x_prev_path_get_entry(struct bnx2x *bp)
10614 {
10615 struct bnx2x_prev_path_list *tmp_list;
10616
10617 list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
10618 if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
10619 bp->pdev->bus->number == tmp_list->bus &&
10620 BP_PATH(bp) == tmp_list->path)
10621 return tmp_list;
10622
10623 return NULL;
10624 }
10625
bnx2x_prev_path_mark_eeh(struct bnx2x * bp)10626 static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
10627 {
10628 struct bnx2x_prev_path_list *tmp_list;
10629 int rc;
10630
10631 rc = down_interruptible(&bnx2x_prev_sem);
10632 if (rc) {
10633 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10634 return rc;
10635 }
10636
10637 tmp_list = bnx2x_prev_path_get_entry(bp);
10638 if (tmp_list) {
10639 tmp_list->aer = 1;
10640 rc = 0;
10641 } else {
10642 BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
10643 BP_PATH(bp));
10644 }
10645
10646 up(&bnx2x_prev_sem);
10647
10648 return rc;
10649 }
10650
bnx2x_prev_is_path_marked(struct bnx2x * bp)10651 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
10652 {
10653 struct bnx2x_prev_path_list *tmp_list;
10654 bool rc = false;
10655
10656 if (down_trylock(&bnx2x_prev_sem))
10657 return false;
10658
10659 tmp_list = bnx2x_prev_path_get_entry(bp);
10660 if (tmp_list) {
10661 if (tmp_list->aer) {
10662 DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
10663 BP_PATH(bp));
10664 } else {
10665 rc = true;
10666 BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
10667 BP_PATH(bp));
10668 }
10669 }
10670
10671 up(&bnx2x_prev_sem);
10672
10673 return rc;
10674 }
10675
bnx2x_port_after_undi(struct bnx2x * bp)10676 bool bnx2x_port_after_undi(struct bnx2x *bp)
10677 {
10678 struct bnx2x_prev_path_list *entry;
10679 bool val;
10680
10681 down(&bnx2x_prev_sem);
10682
10683 entry = bnx2x_prev_path_get_entry(bp);
10684 val = !!(entry && (entry->undi & (1 << BP_PORT(bp))));
10685
10686 up(&bnx2x_prev_sem);
10687
10688 return val;
10689 }
10690
bnx2x_prev_mark_path(struct bnx2x * bp,bool after_undi)10691 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
10692 {
10693 struct bnx2x_prev_path_list *tmp_list;
10694 int rc;
10695
10696 rc = down_interruptible(&bnx2x_prev_sem);
10697 if (rc) {
10698 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10699 return rc;
10700 }
10701
10702 /* Check whether the entry for this path already exists */
10703 tmp_list = bnx2x_prev_path_get_entry(bp);
10704 if (tmp_list) {
10705 if (!tmp_list->aer) {
10706 BNX2X_ERR("Re-Marking the path.\n");
10707 } else {
10708 DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
10709 BP_PATH(bp));
10710 tmp_list->aer = 0;
10711 }
10712 up(&bnx2x_prev_sem);
10713 return 0;
10714 }
10715 up(&bnx2x_prev_sem);
10716
10717 /* Create an entry for this path and add it */
10718 tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
10719 if (!tmp_list) {
10720 BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
10721 return -ENOMEM;
10722 }
10723
10724 tmp_list->bus = bp->pdev->bus->number;
10725 tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
10726 tmp_list->path = BP_PATH(bp);
10727 tmp_list->aer = 0;
10728 tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
10729
10730 rc = down_interruptible(&bnx2x_prev_sem);
10731 if (rc) {
10732 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10733 kfree(tmp_list);
10734 } else {
10735 DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
10736 BP_PATH(bp));
10737 list_add(&tmp_list->list, &bnx2x_prev_list);
10738 up(&bnx2x_prev_sem);
10739 }
10740
10741 return rc;
10742 }
10743
bnx2x_do_flr(struct bnx2x * bp)10744 static int bnx2x_do_flr(struct bnx2x *bp)
10745 {
10746 struct pci_dev *dev = bp->pdev;
10747
10748 if (CHIP_IS_E1x(bp)) {
10749 BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
10750 return -EINVAL;
10751 }
10752
10753 /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
10754 if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
10755 BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
10756 bp->common.bc_ver);
10757 return -EINVAL;
10758 }
10759
10760 if (!pci_wait_for_pending_transaction(dev))
10761 dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
10762
10763 BNX2X_DEV_INFO("Initiating FLR\n");
10764 bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
10765
10766 return 0;
10767 }
10768
bnx2x_prev_unload_uncommon(struct bnx2x * bp)10769 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
10770 {
10771 int rc;
10772
10773 BNX2X_DEV_INFO("Uncommon unload Flow\n");
10774
10775 /* Test if previous unload process was already finished for this path */
10776 if (bnx2x_prev_is_path_marked(bp))
10777 return bnx2x_prev_mcp_done(bp);
10778
10779 BNX2X_DEV_INFO("Path is unmarked\n");
10780
10781 /* Cannot proceed with FLR if UNDI is loaded, since FW does not match */
10782 if (bnx2x_prev_is_after_undi(bp))
10783 goto out;
10784
10785 /* If function has FLR capabilities, and existing FW version matches
10786 * the one required, then FLR will be sufficient to clean any residue
10787 * left by previous driver
10788 */
10789 rc = bnx2x_compare_fw_ver(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION, false);
10790
10791 if (!rc) {
10792 /* fw version is good */
10793 BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
10794 rc = bnx2x_do_flr(bp);
10795 }
10796
10797 if (!rc) {
10798 /* FLR was performed */
10799 BNX2X_DEV_INFO("FLR successful\n");
10800 return 0;
10801 }
10802
10803 BNX2X_DEV_INFO("Could not FLR\n");
10804
10805 out:
10806 /* Close the MCP request, return failure*/
10807 rc = bnx2x_prev_mcp_done(bp);
10808 if (!rc)
10809 rc = BNX2X_PREV_WAIT_NEEDED;
10810
10811 return rc;
10812 }
10813
bnx2x_prev_unload_common(struct bnx2x * bp)10814 static int bnx2x_prev_unload_common(struct bnx2x *bp)
10815 {
10816 u32 reset_reg, tmp_reg = 0, rc;
10817 bool prev_undi = false;
10818 struct bnx2x_mac_vals mac_vals;
10819
10820 /* It is possible a previous function received 'common' answer,
10821 * but hasn't loaded yet, therefore creating a scenario of
10822 * multiple functions receiving 'common' on the same path.
10823 */
10824 BNX2X_DEV_INFO("Common unload Flow\n");
10825
10826 memset(&mac_vals, 0, sizeof(mac_vals));
10827
10828 if (bnx2x_prev_is_path_marked(bp))
10829 return bnx2x_prev_mcp_done(bp);
10830
10831 reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
10832
10833 /* Reset should be performed after BRB is emptied */
10834 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
10835 u32 timer_count = 1000;
10836
10837 /* Close the MAC Rx to prevent BRB from filling up */
10838 bnx2x_prev_unload_close_mac(bp, &mac_vals);
10839
10840 /* close LLH filters for both ports towards the BRB */
10841 bnx2x_set_rx_filter(&bp->link_params, 0);
10842 bp->link_params.port ^= 1;
10843 bnx2x_set_rx_filter(&bp->link_params, 0);
10844 bp->link_params.port ^= 1;
10845
10846 /* Check if the UNDI driver was previously loaded */
10847 if (bnx2x_prev_is_after_undi(bp)) {
10848 prev_undi = true;
10849 /* clear the UNDI indication */
10850 REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
10851 /* clear possible idle check errors */
10852 REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
10853 }
10854 if (!CHIP_IS_E1x(bp))
10855 /* block FW from writing to host */
10856 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10857
10858 /* wait until BRB is empty */
10859 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10860 while (timer_count) {
10861 u32 prev_brb = tmp_reg;
10862
10863 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10864 if (!tmp_reg)
10865 break;
10866
10867 BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
10868
10869 /* reset timer as long as BRB actually gets emptied */
10870 if (prev_brb > tmp_reg)
10871 timer_count = 1000;
10872 else
10873 timer_count--;
10874
10875 /* If UNDI resides in memory, manually increment it */
10876 if (prev_undi)
10877 bnx2x_prev_unload_undi_inc(bp, 1);
10878
10879 udelay(10);
10880 }
10881
10882 if (!timer_count)
10883 BNX2X_ERR("Failed to empty BRB, hope for the best\n");
10884 }
10885
10886 /* No packets are in the pipeline, path is ready for reset */
10887 bnx2x_reset_common(bp);
10888
10889 if (mac_vals.xmac_addr)
10890 REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
10891 if (mac_vals.umac_addr[0])
10892 REG_WR(bp, mac_vals.umac_addr[0], mac_vals.umac_val[0]);
10893 if (mac_vals.umac_addr[1])
10894 REG_WR(bp, mac_vals.umac_addr[1], mac_vals.umac_val[1]);
10895 if (mac_vals.emac_addr)
10896 REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
10897 if (mac_vals.bmac_addr) {
10898 REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
10899 REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
10900 }
10901
10902 rc = bnx2x_prev_mark_path(bp, prev_undi);
10903 if (rc) {
10904 bnx2x_prev_mcp_done(bp);
10905 return rc;
10906 }
10907
10908 return bnx2x_prev_mcp_done(bp);
10909 }
10910
bnx2x_prev_unload(struct bnx2x * bp)10911 static int bnx2x_prev_unload(struct bnx2x *bp)
10912 {
10913 int time_counter = 10;
10914 u32 rc, fw, hw_lock_reg, hw_lock_val;
10915 BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10916
10917 /* clear hw from errors which may have resulted from an interrupted
10918 * dmae transaction.
10919 */
10920 bnx2x_clean_pglue_errors(bp);
10921
10922 /* Release previously held locks */
10923 hw_lock_reg = (BP_FUNC(bp) <= 5) ?
10924 (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
10925 (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
10926
10927 hw_lock_val = REG_RD(bp, hw_lock_reg);
10928 if (hw_lock_val) {
10929 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
10930 BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10931 REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
10932 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
10933 }
10934
10935 BNX2X_DEV_INFO("Release Previously held hw lock\n");
10936 REG_WR(bp, hw_lock_reg, 0xffffffff);
10937 } else
10938 BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10939
10940 if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
10941 BNX2X_DEV_INFO("Release previously held alr\n");
10942 bnx2x_release_alr(bp);
10943 }
10944
10945 do {
10946 int aer = 0;
10947 /* Lock MCP using an unload request */
10948 fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
10949 if (!fw) {
10950 BNX2X_ERR("MCP response failure, aborting\n");
10951 rc = -EBUSY;
10952 break;
10953 }
10954
10955 rc = down_interruptible(&bnx2x_prev_sem);
10956 if (rc) {
10957 BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10958 rc);
10959 } else {
10960 /* If Path is marked by EEH, ignore unload status */
10961 aer = !!(bnx2x_prev_path_get_entry(bp) &&
10962 bnx2x_prev_path_get_entry(bp)->aer);
10963 up(&bnx2x_prev_sem);
10964 }
10965
10966 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
10967 rc = bnx2x_prev_unload_common(bp);
10968 break;
10969 }
10970
10971 /* non-common reply from MCP might require looping */
10972 rc = bnx2x_prev_unload_uncommon(bp);
10973 if (rc != BNX2X_PREV_WAIT_NEEDED)
10974 break;
10975
10976 msleep(20);
10977 } while (--time_counter);
10978
10979 if (!time_counter || rc) {
10980 BNX2X_DEV_INFO("Unloading previous driver did not occur, Possibly due to MF UNDI\n");
10981 rc = -EPROBE_DEFER;
10982 }
10983
10984 /* Mark function if its port was used to boot from SAN */
10985 if (bnx2x_port_after_undi(bp))
10986 bp->link_params.feature_config_flags |=
10987 FEATURE_CONFIG_BOOT_FROM_SAN;
10988
10989 BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
10990
10991 return rc;
10992 }
10993
bnx2x_get_common_hwinfo(struct bnx2x * bp)10994 static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
10995 {
10996 u32 val, val2, val3, val4, id, boot_mode;
10997 u16 pmc;
10998
10999 /* Get the chip revision id and number. */
11000 /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
11001 val = REG_RD(bp, MISC_REG_CHIP_NUM);
11002 id = ((val & 0xffff) << 16);
11003 val = REG_RD(bp, MISC_REG_CHIP_REV);
11004 id |= ((val & 0xf) << 12);
11005
11006 /* Metal is read from PCI regs, but we can't access >=0x400 from
11007 * the configuration space (so we need to reg_rd)
11008 */
11009 val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
11010 id |= (((val >> 24) & 0xf) << 4);
11011 val = REG_RD(bp, MISC_REG_BOND_ID);
11012 id |= (val & 0xf);
11013 bp->common.chip_id = id;
11014
11015 /* force 57811 according to MISC register */
11016 if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
11017 if (CHIP_IS_57810(bp))
11018 bp->common.chip_id = (CHIP_NUM_57811 << 16) |
11019 (bp->common.chip_id & 0x0000FFFF);
11020 else if (CHIP_IS_57810_MF(bp))
11021 bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
11022 (bp->common.chip_id & 0x0000FFFF);
11023 bp->common.chip_id |= 0x1;
11024 }
11025
11026 /* Set doorbell size */
11027 bp->db_size = (1 << BNX2X_DB_SHIFT);
11028
11029 if (!CHIP_IS_E1x(bp)) {
11030 val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
11031 if ((val & 1) == 0)
11032 val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
11033 else
11034 val = (val >> 1) & 1;
11035 BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
11036 "2_PORT_MODE");
11037 bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
11038 CHIP_2_PORT_MODE;
11039
11040 if (CHIP_MODE_IS_4_PORT(bp))
11041 bp->pfid = (bp->pf_num >> 1); /* 0..3 */
11042 else
11043 bp->pfid = (bp->pf_num & 0x6); /* 0, 2, 4, 6 */
11044 } else {
11045 bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
11046 bp->pfid = bp->pf_num; /* 0..7 */
11047 }
11048
11049 BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
11050
11051 bp->link_params.chip_id = bp->common.chip_id;
11052 BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
11053
11054 val = (REG_RD(bp, 0x2874) & 0x55);
11055 if ((bp->common.chip_id & 0x1) ||
11056 (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
11057 bp->flags |= ONE_PORT_FLAG;
11058 BNX2X_DEV_INFO("single port device\n");
11059 }
11060
11061 val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
11062 bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
11063 (val & MCPR_NVM_CFG4_FLASH_SIZE));
11064 BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
11065 bp->common.flash_size, bp->common.flash_size);
11066
11067 bnx2x_init_shmem(bp);
11068
11069 bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
11070 MISC_REG_GENERIC_CR_1 :
11071 MISC_REG_GENERIC_CR_0));
11072
11073 bp->link_params.shmem_base = bp->common.shmem_base;
11074 bp->link_params.shmem2_base = bp->common.shmem2_base;
11075 if (SHMEM2_RD(bp, size) >
11076 (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
11077 bp->link_params.lfa_base =
11078 REG_RD(bp, bp->common.shmem2_base +
11079 (u32)offsetof(struct shmem2_region,
11080 lfa_host_addr[BP_PORT(bp)]));
11081 else
11082 bp->link_params.lfa_base = 0;
11083 BNX2X_DEV_INFO("shmem offset 0x%x shmem2 offset 0x%x\n",
11084 bp->common.shmem_base, bp->common.shmem2_base);
11085
11086 if (!bp->common.shmem_base) {
11087 BNX2X_DEV_INFO("MCP not active\n");
11088 bp->flags |= NO_MCP_FLAG;
11089 return;
11090 }
11091
11092 bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
11093 BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
11094
11095 bp->link_params.hw_led_mode = ((bp->common.hw_config &
11096 SHARED_HW_CFG_LED_MODE_MASK) >>
11097 SHARED_HW_CFG_LED_MODE_SHIFT);
11098
11099 bp->link_params.feature_config_flags = 0;
11100 val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
11101 if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
11102 bp->link_params.feature_config_flags |=
11103 FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
11104 else
11105 bp->link_params.feature_config_flags &=
11106 ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
11107
11108 val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
11109 bp->common.bc_ver = val;
11110 BNX2X_DEV_INFO("bc_ver %X\n", val);
11111 if (val < BNX2X_BC_VER) {
11112 /* for now only warn
11113 * later we might need to enforce this */
11114 BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
11115 BNX2X_BC_VER, val);
11116 }
11117 bp->link_params.feature_config_flags |=
11118 (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
11119 FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
11120
11121 bp->link_params.feature_config_flags |=
11122 (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
11123 FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
11124 bp->link_params.feature_config_flags |=
11125 (val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
11126 FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
11127 bp->link_params.feature_config_flags |=
11128 (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
11129 FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
11130
11131 bp->link_params.feature_config_flags |=
11132 (val >= REQ_BC_VER_4_MT_SUPPORTED) ?
11133 FEATURE_CONFIG_MT_SUPPORT : 0;
11134
11135 bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
11136 BC_SUPPORTS_PFC_STATS : 0;
11137
11138 bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
11139 BC_SUPPORTS_FCOE_FEATURES : 0;
11140
11141 bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
11142 BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
11143
11144 bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ?
11145 BC_SUPPORTS_RMMOD_CMD : 0;
11146
11147 boot_mode = SHMEM_RD(bp,
11148 dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
11149 PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
11150 switch (boot_mode) {
11151 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
11152 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
11153 break;
11154 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
11155 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
11156 break;
11157 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
11158 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
11159 break;
11160 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
11161 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
11162 break;
11163 }
11164
11165 pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc);
11166 bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
11167
11168 BNX2X_DEV_INFO("%sWoL capable\n",
11169 (bp->flags & NO_WOL_FLAG) ? "not " : "");
11170
11171 val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
11172 val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
11173 val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
11174 val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
11175
11176 dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
11177 val, val2, val3, val4);
11178 }
11179
11180 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
11181 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
11182
bnx2x_get_igu_cam_info(struct bnx2x * bp)11183 static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
11184 {
11185 int pfid = BP_FUNC(bp);
11186 int igu_sb_id;
11187 u32 val;
11188 u8 fid, igu_sb_cnt = 0;
11189
11190 bp->igu_base_sb = 0xff;
11191 if (CHIP_INT_MODE_IS_BC(bp)) {
11192 int vn = BP_VN(bp);
11193 igu_sb_cnt = bp->igu_sb_cnt;
11194 bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
11195 FP_SB_MAX_E1x;
11196
11197 bp->igu_dsb_id = E1HVN_MAX * FP_SB_MAX_E1x +
11198 (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
11199
11200 return 0;
11201 }
11202
11203 /* IGU in normal mode - read CAM */
11204 for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
11205 igu_sb_id++) {
11206 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
11207 if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
11208 continue;
11209 fid = IGU_FID(val);
11210 if ((fid & IGU_FID_ENCODE_IS_PF)) {
11211 if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
11212 continue;
11213 if (IGU_VEC(val) == 0)
11214 /* default status block */
11215 bp->igu_dsb_id = igu_sb_id;
11216 else {
11217 if (bp->igu_base_sb == 0xff)
11218 bp->igu_base_sb = igu_sb_id;
11219 igu_sb_cnt++;
11220 }
11221 }
11222 }
11223
11224 #ifdef CONFIG_PCI_MSI
11225 /* Due to new PF resource allocation by MFW T7.4 and above, it's
11226 * optional that number of CAM entries will not be equal to the value
11227 * advertised in PCI.
11228 * Driver should use the minimal value of both as the actual status
11229 * block count
11230 */
11231 bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
11232 #endif
11233
11234 if (igu_sb_cnt == 0) {
11235 BNX2X_ERR("CAM configuration error\n");
11236 return -EINVAL;
11237 }
11238
11239 return 0;
11240 }
11241
bnx2x_link_settings_supported(struct bnx2x * bp,u32 switch_cfg)11242 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
11243 {
11244 int cfg_size = 0, idx, port = BP_PORT(bp);
11245
11246 /* Aggregation of supported attributes of all external phys */
11247 bp->port.supported[0] = 0;
11248 bp->port.supported[1] = 0;
11249 switch (bp->link_params.num_phys) {
11250 case 1:
11251 bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
11252 cfg_size = 1;
11253 break;
11254 case 2:
11255 bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
11256 cfg_size = 1;
11257 break;
11258 case 3:
11259 if (bp->link_params.multi_phy_config &
11260 PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
11261 bp->port.supported[1] =
11262 bp->link_params.phy[EXT_PHY1].supported;
11263 bp->port.supported[0] =
11264 bp->link_params.phy[EXT_PHY2].supported;
11265 } else {
11266 bp->port.supported[0] =
11267 bp->link_params.phy[EXT_PHY1].supported;
11268 bp->port.supported[1] =
11269 bp->link_params.phy[EXT_PHY2].supported;
11270 }
11271 cfg_size = 2;
11272 break;
11273 }
11274
11275 if (!(bp->port.supported[0] || bp->port.supported[1])) {
11276 BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
11277 SHMEM_RD(bp,
11278 dev_info.port_hw_config[port].external_phy_config),
11279 SHMEM_RD(bp,
11280 dev_info.port_hw_config[port].external_phy_config2));
11281 return;
11282 }
11283
11284 if (CHIP_IS_E3(bp))
11285 bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
11286 else {
11287 switch (switch_cfg) {
11288 case SWITCH_CFG_1G:
11289 bp->port.phy_addr = REG_RD(
11290 bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
11291 break;
11292 case SWITCH_CFG_10G:
11293 bp->port.phy_addr = REG_RD(
11294 bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
11295 break;
11296 default:
11297 BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
11298 bp->port.link_config[0]);
11299 return;
11300 }
11301 }
11302 BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
11303 /* mask what we support according to speed_cap_mask per configuration */
11304 for (idx = 0; idx < cfg_size; idx++) {
11305 if (!(bp->link_params.speed_cap_mask[idx] &
11306 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
11307 bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
11308
11309 if (!(bp->link_params.speed_cap_mask[idx] &
11310 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
11311 bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
11312
11313 if (!(bp->link_params.speed_cap_mask[idx] &
11314 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
11315 bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
11316
11317 if (!(bp->link_params.speed_cap_mask[idx] &
11318 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
11319 bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
11320
11321 if (!(bp->link_params.speed_cap_mask[idx] &
11322 PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
11323 bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
11324 SUPPORTED_1000baseT_Full);
11325
11326 if (!(bp->link_params.speed_cap_mask[idx] &
11327 PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
11328 bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
11329
11330 if (!(bp->link_params.speed_cap_mask[idx] &
11331 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
11332 bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
11333
11334 if (!(bp->link_params.speed_cap_mask[idx] &
11335 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G))
11336 bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full;
11337 }
11338
11339 BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
11340 bp->port.supported[1]);
11341 }
11342
bnx2x_link_settings_requested(struct bnx2x * bp)11343 static void bnx2x_link_settings_requested(struct bnx2x *bp)
11344 {
11345 u32 link_config, idx, cfg_size = 0;
11346 bp->port.advertising[0] = 0;
11347 bp->port.advertising[1] = 0;
11348 switch (bp->link_params.num_phys) {
11349 case 1:
11350 case 2:
11351 cfg_size = 1;
11352 break;
11353 case 3:
11354 cfg_size = 2;
11355 break;
11356 }
11357 for (idx = 0; idx < cfg_size; idx++) {
11358 bp->link_params.req_duplex[idx] = DUPLEX_FULL;
11359 link_config = bp->port.link_config[idx];
11360 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
11361 case PORT_FEATURE_LINK_SPEED_AUTO:
11362 if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
11363 bp->link_params.req_line_speed[idx] =
11364 SPEED_AUTO_NEG;
11365 bp->port.advertising[idx] |=
11366 bp->port.supported[idx];
11367 if (bp->link_params.phy[EXT_PHY1].type ==
11368 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
11369 bp->port.advertising[idx] |=
11370 (SUPPORTED_100baseT_Half |
11371 SUPPORTED_100baseT_Full);
11372 } else {
11373 /* force 10G, no AN */
11374 bp->link_params.req_line_speed[idx] =
11375 SPEED_10000;
11376 bp->port.advertising[idx] |=
11377 (ADVERTISED_10000baseT_Full |
11378 ADVERTISED_FIBRE);
11379 continue;
11380 }
11381 break;
11382
11383 case PORT_FEATURE_LINK_SPEED_10M_FULL:
11384 if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
11385 bp->link_params.req_line_speed[idx] =
11386 SPEED_10;
11387 bp->port.advertising[idx] |=
11388 (ADVERTISED_10baseT_Full |
11389 ADVERTISED_TP);
11390 } else {
11391 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11392 link_config,
11393 bp->link_params.speed_cap_mask[idx]);
11394 return;
11395 }
11396 break;
11397
11398 case PORT_FEATURE_LINK_SPEED_10M_HALF:
11399 if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
11400 bp->link_params.req_line_speed[idx] =
11401 SPEED_10;
11402 bp->link_params.req_duplex[idx] =
11403 DUPLEX_HALF;
11404 bp->port.advertising[idx] |=
11405 (ADVERTISED_10baseT_Half |
11406 ADVERTISED_TP);
11407 } else {
11408 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11409 link_config,
11410 bp->link_params.speed_cap_mask[idx]);
11411 return;
11412 }
11413 break;
11414
11415 case PORT_FEATURE_LINK_SPEED_100M_FULL:
11416 if (bp->port.supported[idx] &
11417 SUPPORTED_100baseT_Full) {
11418 bp->link_params.req_line_speed[idx] =
11419 SPEED_100;
11420 bp->port.advertising[idx] |=
11421 (ADVERTISED_100baseT_Full |
11422 ADVERTISED_TP);
11423 } else {
11424 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11425 link_config,
11426 bp->link_params.speed_cap_mask[idx]);
11427 return;
11428 }
11429 break;
11430
11431 case PORT_FEATURE_LINK_SPEED_100M_HALF:
11432 if (bp->port.supported[idx] &
11433 SUPPORTED_100baseT_Half) {
11434 bp->link_params.req_line_speed[idx] =
11435 SPEED_100;
11436 bp->link_params.req_duplex[idx] =
11437 DUPLEX_HALF;
11438 bp->port.advertising[idx] |=
11439 (ADVERTISED_100baseT_Half |
11440 ADVERTISED_TP);
11441 } else {
11442 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11443 link_config,
11444 bp->link_params.speed_cap_mask[idx]);
11445 return;
11446 }
11447 break;
11448
11449 case PORT_FEATURE_LINK_SPEED_1G:
11450 if (bp->port.supported[idx] &
11451 SUPPORTED_1000baseT_Full) {
11452 bp->link_params.req_line_speed[idx] =
11453 SPEED_1000;
11454 bp->port.advertising[idx] |=
11455 (ADVERTISED_1000baseT_Full |
11456 ADVERTISED_TP);
11457 } else if (bp->port.supported[idx] &
11458 SUPPORTED_1000baseKX_Full) {
11459 bp->link_params.req_line_speed[idx] =
11460 SPEED_1000;
11461 bp->port.advertising[idx] |=
11462 ADVERTISED_1000baseKX_Full;
11463 } else {
11464 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11465 link_config,
11466 bp->link_params.speed_cap_mask[idx]);
11467 return;
11468 }
11469 break;
11470
11471 case PORT_FEATURE_LINK_SPEED_2_5G:
11472 if (bp->port.supported[idx] &
11473 SUPPORTED_2500baseX_Full) {
11474 bp->link_params.req_line_speed[idx] =
11475 SPEED_2500;
11476 bp->port.advertising[idx] |=
11477 (ADVERTISED_2500baseX_Full |
11478 ADVERTISED_TP);
11479 } else {
11480 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11481 link_config,
11482 bp->link_params.speed_cap_mask[idx]);
11483 return;
11484 }
11485 break;
11486
11487 case PORT_FEATURE_LINK_SPEED_10G_CX4:
11488 if (bp->port.supported[idx] &
11489 SUPPORTED_10000baseT_Full) {
11490 bp->link_params.req_line_speed[idx] =
11491 SPEED_10000;
11492 bp->port.advertising[idx] |=
11493 (ADVERTISED_10000baseT_Full |
11494 ADVERTISED_FIBRE);
11495 } else if (bp->port.supported[idx] &
11496 SUPPORTED_10000baseKR_Full) {
11497 bp->link_params.req_line_speed[idx] =
11498 SPEED_10000;
11499 bp->port.advertising[idx] |=
11500 (ADVERTISED_10000baseKR_Full |
11501 ADVERTISED_FIBRE);
11502 } else {
11503 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
11504 link_config,
11505 bp->link_params.speed_cap_mask[idx]);
11506 return;
11507 }
11508 break;
11509 case PORT_FEATURE_LINK_SPEED_20G:
11510 bp->link_params.req_line_speed[idx] = SPEED_20000;
11511
11512 break;
11513 default:
11514 BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
11515 link_config);
11516 bp->link_params.req_line_speed[idx] =
11517 SPEED_AUTO_NEG;
11518 bp->port.advertising[idx] =
11519 bp->port.supported[idx];
11520 break;
11521 }
11522
11523 bp->link_params.req_flow_ctrl[idx] = (link_config &
11524 PORT_FEATURE_FLOW_CONTROL_MASK);
11525 if (bp->link_params.req_flow_ctrl[idx] ==
11526 BNX2X_FLOW_CTRL_AUTO) {
11527 if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
11528 bp->link_params.req_flow_ctrl[idx] =
11529 BNX2X_FLOW_CTRL_NONE;
11530 else
11531 bnx2x_set_requested_fc(bp);
11532 }
11533
11534 BNX2X_DEV_INFO("req_line_speed %d req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
11535 bp->link_params.req_line_speed[idx],
11536 bp->link_params.req_duplex[idx],
11537 bp->link_params.req_flow_ctrl[idx],
11538 bp->port.advertising[idx]);
11539 }
11540 }
11541
bnx2x_set_mac_buf(u8 * mac_buf,u32 mac_lo,u16 mac_hi)11542 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
11543 {
11544 __be16 mac_hi_be = cpu_to_be16(mac_hi);
11545 __be32 mac_lo_be = cpu_to_be32(mac_lo);
11546 memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
11547 memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
11548 }
11549
bnx2x_get_port_hwinfo(struct bnx2x * bp)11550 static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
11551 {
11552 int port = BP_PORT(bp);
11553 u32 config;
11554 u32 ext_phy_type, ext_phy_config, eee_mode;
11555
11556 bp->link_params.bp = bp;
11557 bp->link_params.port = port;
11558
11559 bp->link_params.lane_config =
11560 SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
11561
11562 bp->link_params.speed_cap_mask[0] =
11563 SHMEM_RD(bp,
11564 dev_info.port_hw_config[port].speed_capability_mask) &
11565 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11566 bp->link_params.speed_cap_mask[1] =
11567 SHMEM_RD(bp,
11568 dev_info.port_hw_config[port].speed_capability_mask2) &
11569 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11570 bp->port.link_config[0] =
11571 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
11572
11573 bp->port.link_config[1] =
11574 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
11575
11576 bp->link_params.multi_phy_config =
11577 SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
11578 /* If the device is capable of WoL, set the default state according
11579 * to the HW
11580 */
11581 config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
11582 bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
11583 (config & PORT_FEATURE_WOL_ENABLED));
11584
11585 if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11586 PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
11587 bp->flags |= NO_ISCSI_FLAG;
11588 if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11589 PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
11590 bp->flags |= NO_FCOE_FLAG;
11591
11592 BNX2X_DEV_INFO("lane_config 0x%08x speed_cap_mask0 0x%08x link_config0 0x%08x\n",
11593 bp->link_params.lane_config,
11594 bp->link_params.speed_cap_mask[0],
11595 bp->port.link_config[0]);
11596
11597 bp->link_params.switch_cfg = (bp->port.link_config[0] &
11598 PORT_FEATURE_CONNECTED_SWITCH_MASK);
11599 bnx2x_phy_probe(&bp->link_params);
11600 bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
11601
11602 bnx2x_link_settings_requested(bp);
11603
11604 /*
11605 * If connected directly, work with the internal PHY, otherwise, work
11606 * with the external PHY
11607 */
11608 ext_phy_config =
11609 SHMEM_RD(bp,
11610 dev_info.port_hw_config[port].external_phy_config);
11611 ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
11612 if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
11613 bp->mdio.prtad = bp->port.phy_addr;
11614
11615 else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
11616 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
11617 bp->mdio.prtad =
11618 XGXS_EXT_PHY_ADDR(ext_phy_config);
11619
11620 /* Configure link feature according to nvram value */
11621 eee_mode = (((SHMEM_RD(bp, dev_info.
11622 port_feature_config[port].eee_power_mode)) &
11623 PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
11624 PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
11625 if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
11626 bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
11627 EEE_MODE_ENABLE_LPI |
11628 EEE_MODE_OUTPUT_TIME;
11629 } else {
11630 bp->link_params.eee_mode = 0;
11631 }
11632 }
11633
bnx2x_get_iscsi_info(struct bnx2x * bp)11634 void bnx2x_get_iscsi_info(struct bnx2x *bp)
11635 {
11636 u32 no_flags = NO_ISCSI_FLAG;
11637 int port = BP_PORT(bp);
11638 u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11639 drv_lic_key[port].max_iscsi_conn);
11640
11641 if (!CNIC_SUPPORT(bp)) {
11642 bp->flags |= no_flags;
11643 return;
11644 }
11645
11646 /* Get the number of maximum allowed iSCSI connections */
11647 bp->cnic_eth_dev.max_iscsi_conn =
11648 (max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
11649 BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
11650
11651 BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
11652 bp->cnic_eth_dev.max_iscsi_conn);
11653
11654 /*
11655 * If maximum allowed number of connections is zero -
11656 * disable the feature.
11657 */
11658 if (!bp->cnic_eth_dev.max_iscsi_conn)
11659 bp->flags |= no_flags;
11660 }
11661
bnx2x_get_ext_wwn_info(struct bnx2x * bp,int func)11662 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
11663 {
11664 /* Port info */
11665 bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11666 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
11667 bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11668 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
11669
11670 /* Node info */
11671 bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11672 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
11673 bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11674 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
11675 }
11676
bnx2x_shared_fcoe_funcs(struct bnx2x * bp)11677 static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp)
11678 {
11679 u8 count = 0;
11680
11681 if (IS_MF(bp)) {
11682 u8 fid;
11683
11684 /* iterate over absolute function ids for this path: */
11685 for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) {
11686 if (IS_MF_SD(bp)) {
11687 u32 cfg = MF_CFG_RD(bp,
11688 func_mf_config[fid].config);
11689
11690 if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) &&
11691 ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) ==
11692 FUNC_MF_CFG_PROTOCOL_FCOE))
11693 count++;
11694 } else {
11695 u32 cfg = MF_CFG_RD(bp,
11696 func_ext_config[fid].
11697 func_cfg);
11698
11699 if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) &&
11700 (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD))
11701 count++;
11702 }
11703 }
11704 } else { /* SF */
11705 int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1;
11706
11707 for (port = 0; port < port_cnt; port++) {
11708 u32 lic = SHMEM_RD(bp,
11709 drv_lic_key[port].max_fcoe_conn) ^
11710 FW_ENCODE_32BIT_PATTERN;
11711 if (lic)
11712 count++;
11713 }
11714 }
11715
11716 return count;
11717 }
11718
bnx2x_get_fcoe_info(struct bnx2x * bp)11719 static void bnx2x_get_fcoe_info(struct bnx2x *bp)
11720 {
11721 int port = BP_PORT(bp);
11722 int func = BP_ABS_FUNC(bp);
11723 u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11724 drv_lic_key[port].max_fcoe_conn);
11725 u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp);
11726
11727 if (!CNIC_SUPPORT(bp)) {
11728 bp->flags |= NO_FCOE_FLAG;
11729 return;
11730 }
11731
11732 /* Get the number of maximum allowed FCoE connections */
11733 bp->cnic_eth_dev.max_fcoe_conn =
11734 (max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
11735 BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
11736
11737 /* Calculate the number of maximum allowed FCoE tasks */
11738 bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
11739
11740 /* check if FCoE resources must be shared between different functions */
11741 if (num_fcoe_func)
11742 bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func;
11743
11744 /* Read the WWN: */
11745 if (!IS_MF(bp)) {
11746 /* Port info */
11747 bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11748 SHMEM_RD(bp,
11749 dev_info.port_hw_config[port].
11750 fcoe_wwn_port_name_upper);
11751 bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11752 SHMEM_RD(bp,
11753 dev_info.port_hw_config[port].
11754 fcoe_wwn_port_name_lower);
11755
11756 /* Node info */
11757 bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11758 SHMEM_RD(bp,
11759 dev_info.port_hw_config[port].
11760 fcoe_wwn_node_name_upper);
11761 bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11762 SHMEM_RD(bp,
11763 dev_info.port_hw_config[port].
11764 fcoe_wwn_node_name_lower);
11765 } else if (!IS_MF_SD(bp)) {
11766 /* Read the WWN info only if the FCoE feature is enabled for
11767 * this function.
11768 */
11769 if (BNX2X_HAS_MF_EXT_PROTOCOL_FCOE(bp))
11770 bnx2x_get_ext_wwn_info(bp, func);
11771 } else {
11772 if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
11773 bnx2x_get_ext_wwn_info(bp, func);
11774 }
11775
11776 BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
11777
11778 /*
11779 * If maximum allowed number of connections is zero -
11780 * disable the feature.
11781 */
11782 if (!bp->cnic_eth_dev.max_fcoe_conn) {
11783 bp->flags |= NO_FCOE_FLAG;
11784 eth_zero_addr(bp->fip_mac);
11785 }
11786 }
11787
bnx2x_get_cnic_info(struct bnx2x * bp)11788 static void bnx2x_get_cnic_info(struct bnx2x *bp)
11789 {
11790 /*
11791 * iSCSI may be dynamically disabled but reading
11792 * info here we will decrease memory usage by driver
11793 * if the feature is disabled for good
11794 */
11795 bnx2x_get_iscsi_info(bp);
11796 bnx2x_get_fcoe_info(bp);
11797 }
11798
bnx2x_get_cnic_mac_hwinfo(struct bnx2x * bp)11799 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
11800 {
11801 u32 val, val2;
11802 int func = BP_ABS_FUNC(bp);
11803 int port = BP_PORT(bp);
11804 u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
11805 u8 *fip_mac = bp->fip_mac;
11806
11807 if (IS_MF(bp)) {
11808 /* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
11809 * FCoE MAC then the appropriate feature should be disabled.
11810 * In non SD mode features configuration comes from struct
11811 * func_ext_config.
11812 */
11813 if (!IS_MF_SD(bp)) {
11814 u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
11815 if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
11816 val2 = MF_CFG_RD(bp, func_ext_config[func].
11817 iscsi_mac_addr_upper);
11818 val = MF_CFG_RD(bp, func_ext_config[func].
11819 iscsi_mac_addr_lower);
11820 bnx2x_set_mac_buf(iscsi_mac, val, val2);
11821 BNX2X_DEV_INFO
11822 ("Read iSCSI MAC: %pM\n", iscsi_mac);
11823 } else {
11824 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11825 }
11826
11827 if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
11828 val2 = MF_CFG_RD(bp, func_ext_config[func].
11829 fcoe_mac_addr_upper);
11830 val = MF_CFG_RD(bp, func_ext_config[func].
11831 fcoe_mac_addr_lower);
11832 bnx2x_set_mac_buf(fip_mac, val, val2);
11833 BNX2X_DEV_INFO
11834 ("Read FCoE L2 MAC: %pM\n", fip_mac);
11835 } else {
11836 bp->flags |= NO_FCOE_FLAG;
11837 }
11838
11839 bp->mf_ext_config = cfg;
11840
11841 } else { /* SD MODE */
11842 if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
11843 /* use primary mac as iscsi mac */
11844 memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
11845
11846 BNX2X_DEV_INFO("SD ISCSI MODE\n");
11847 BNX2X_DEV_INFO
11848 ("Read iSCSI MAC: %pM\n", iscsi_mac);
11849 } else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
11850 /* use primary mac as fip mac */
11851 memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
11852 BNX2X_DEV_INFO("SD FCoE MODE\n");
11853 BNX2X_DEV_INFO
11854 ("Read FIP MAC: %pM\n", fip_mac);
11855 }
11856 }
11857
11858 /* If this is a storage-only interface, use SAN mac as
11859 * primary MAC. Notice that for SD this is already the case,
11860 * as the SAN mac was copied from the primary MAC.
11861 */
11862 if (IS_MF_FCOE_AFEX(bp))
11863 memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
11864 } else {
11865 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11866 iscsi_mac_upper);
11867 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11868 iscsi_mac_lower);
11869 bnx2x_set_mac_buf(iscsi_mac, val, val2);
11870
11871 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11872 fcoe_fip_mac_upper);
11873 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11874 fcoe_fip_mac_lower);
11875 bnx2x_set_mac_buf(fip_mac, val, val2);
11876 }
11877
11878 /* Disable iSCSI OOO if MAC configuration is invalid. */
11879 if (!is_valid_ether_addr(iscsi_mac)) {
11880 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11881 eth_zero_addr(iscsi_mac);
11882 }
11883
11884 /* Disable FCoE if MAC configuration is invalid. */
11885 if (!is_valid_ether_addr(fip_mac)) {
11886 bp->flags |= NO_FCOE_FLAG;
11887 eth_zero_addr(bp->fip_mac);
11888 }
11889 }
11890
bnx2x_get_mac_hwinfo(struct bnx2x * bp)11891 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
11892 {
11893 u32 val, val2;
11894 int func = BP_ABS_FUNC(bp);
11895 int port = BP_PORT(bp);
11896
11897 /* Zero primary MAC configuration */
11898 eth_zero_addr(bp->dev->dev_addr);
11899
11900 if (BP_NOMCP(bp)) {
11901 BNX2X_ERROR("warning: random MAC workaround active\n");
11902 eth_hw_addr_random(bp->dev);
11903 } else if (IS_MF(bp)) {
11904 val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11905 val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
11906 if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
11907 (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
11908 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11909
11910 if (CNIC_SUPPORT(bp))
11911 bnx2x_get_cnic_mac_hwinfo(bp);
11912 } else {
11913 /* in SF read MACs from port configuration */
11914 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11915 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11916 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11917
11918 if (CNIC_SUPPORT(bp))
11919 bnx2x_get_cnic_mac_hwinfo(bp);
11920 }
11921
11922 if (!BP_NOMCP(bp)) {
11923 /* Read physical port identifier from shmem */
11924 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11925 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11926 bnx2x_set_mac_buf(bp->phys_port_id, val, val2);
11927 bp->flags |= HAS_PHYS_PORT_ID;
11928 }
11929
11930 memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
11931
11932 if (!is_valid_ether_addr(bp->dev->dev_addr))
11933 dev_err(&bp->pdev->dev,
11934 "bad Ethernet MAC address configuration: %pM\n"
11935 "change it manually before bringing up the appropriate network interface\n",
11936 bp->dev->dev_addr);
11937 }
11938
bnx2x_get_dropless_info(struct bnx2x * bp)11939 static bool bnx2x_get_dropless_info(struct bnx2x *bp)
11940 {
11941 int tmp;
11942 u32 cfg;
11943
11944 if (IS_VF(bp))
11945 return false;
11946
11947 if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
11948 /* Take function: tmp = func */
11949 tmp = BP_ABS_FUNC(bp);
11950 cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
11951 cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
11952 } else {
11953 /* Take port: tmp = port */
11954 tmp = BP_PORT(bp);
11955 cfg = SHMEM_RD(bp,
11956 dev_info.port_hw_config[tmp].generic_features);
11957 cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
11958 }
11959 return cfg;
11960 }
11961
validate_set_si_mode(struct bnx2x * bp)11962 static void validate_set_si_mode(struct bnx2x *bp)
11963 {
11964 u8 func = BP_ABS_FUNC(bp);
11965 u32 val;
11966
11967 val = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11968
11969 /* check for legal mac (upper bytes) */
11970 if (val != 0xffff) {
11971 bp->mf_mode = MULTI_FUNCTION_SI;
11972 bp->mf_config[BP_VN(bp)] =
11973 MF_CFG_RD(bp, func_mf_config[func].config);
11974 } else
11975 BNX2X_DEV_INFO("illegal MAC address for SI\n");
11976 }
11977
bnx2x_get_hwinfo(struct bnx2x * bp)11978 static int bnx2x_get_hwinfo(struct bnx2x *bp)
11979 {
11980 int /*abs*/func = BP_ABS_FUNC(bp);
11981 int vn;
11982 u32 val = 0, val2 = 0;
11983 int rc = 0;
11984
11985 /* Validate that chip access is feasible */
11986 if (REG_RD(bp, MISC_REG_CHIP_NUM) == 0xffffffff) {
11987 dev_err(&bp->pdev->dev,
11988 "Chip read returns all Fs. Preventing probe from continuing\n");
11989 return -EINVAL;
11990 }
11991
11992 bnx2x_get_common_hwinfo(bp);
11993
11994 /*
11995 * initialize IGU parameters
11996 */
11997 if (CHIP_IS_E1x(bp)) {
11998 bp->common.int_block = INT_BLOCK_HC;
11999
12000 bp->igu_dsb_id = DEF_SB_IGU_ID;
12001 bp->igu_base_sb = 0;
12002 } else {
12003 bp->common.int_block = INT_BLOCK_IGU;
12004
12005 /* do not allow device reset during IGU info processing */
12006 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
12007
12008 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
12009
12010 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
12011 int tout = 5000;
12012
12013 BNX2X_DEV_INFO("FORCING Normal Mode\n");
12014
12015 val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
12016 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
12017 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
12018
12019 while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
12020 tout--;
12021 usleep_range(1000, 2000);
12022 }
12023
12024 if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
12025 dev_err(&bp->pdev->dev,
12026 "FORCING Normal Mode failed!!!\n");
12027 bnx2x_release_hw_lock(bp,
12028 HW_LOCK_RESOURCE_RESET);
12029 return -EPERM;
12030 }
12031 }
12032
12033 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
12034 BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
12035 bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
12036 } else
12037 BNX2X_DEV_INFO("IGU Normal Mode\n");
12038
12039 rc = bnx2x_get_igu_cam_info(bp);
12040 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
12041 if (rc)
12042 return rc;
12043 }
12044
12045 /*
12046 * set base FW non-default (fast path) status block id, this value is
12047 * used to initialize the fw_sb_id saved on the fp/queue structure to
12048 * determine the id used by the FW.
12049 */
12050 if (CHIP_IS_E1x(bp))
12051 bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
12052 else /*
12053 * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
12054 * the same queue are indicated on the same IGU SB). So we prefer
12055 * FW and IGU SBs to be the same value.
12056 */
12057 bp->base_fw_ndsb = bp->igu_base_sb;
12058
12059 BNX2X_DEV_INFO("igu_dsb_id %d igu_base_sb %d igu_sb_cnt %d\n"
12060 "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
12061 bp->igu_sb_cnt, bp->base_fw_ndsb);
12062
12063 /*
12064 * Initialize MF configuration
12065 */
12066 bp->mf_ov = 0;
12067 bp->mf_mode = 0;
12068 bp->mf_sub_mode = 0;
12069 vn = BP_VN(bp);
12070
12071 if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
12072 BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
12073 bp->common.shmem2_base, SHMEM2_RD(bp, size),
12074 (u32)offsetof(struct shmem2_region, mf_cfg_addr));
12075
12076 if (SHMEM2_HAS(bp, mf_cfg_addr))
12077 bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
12078 else
12079 bp->common.mf_cfg_base = bp->common.shmem_base +
12080 offsetof(struct shmem_region, func_mb) +
12081 E1H_FUNC_MAX * sizeof(struct drv_func_mb);
12082 /*
12083 * get mf configuration:
12084 * 1. Existence of MF configuration
12085 * 2. MAC address must be legal (check only upper bytes)
12086 * for Switch-Independent mode;
12087 * OVLAN must be legal for Switch-Dependent mode
12088 * 3. SF_MODE configures specific MF mode
12089 */
12090 if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
12091 /* get mf configuration */
12092 val = SHMEM_RD(bp,
12093 dev_info.shared_feature_config.config);
12094 val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
12095
12096 switch (val) {
12097 case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
12098 validate_set_si_mode(bp);
12099 break;
12100 case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
12101 if ((!CHIP_IS_E1x(bp)) &&
12102 (MF_CFG_RD(bp, func_mf_config[func].
12103 mac_upper) != 0xffff) &&
12104 (SHMEM2_HAS(bp,
12105 afex_driver_support))) {
12106 bp->mf_mode = MULTI_FUNCTION_AFEX;
12107 bp->mf_config[vn] = MF_CFG_RD(bp,
12108 func_mf_config[func].config);
12109 } else {
12110 BNX2X_DEV_INFO("can not configure afex mode\n");
12111 }
12112 break;
12113 case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
12114 /* get OV configuration */
12115 val = MF_CFG_RD(bp,
12116 func_mf_config[FUNC_0].e1hov_tag);
12117 val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
12118
12119 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
12120 bp->mf_mode = MULTI_FUNCTION_SD;
12121 bp->mf_config[vn] = MF_CFG_RD(bp,
12122 func_mf_config[func].config);
12123 } else
12124 BNX2X_DEV_INFO("illegal OV for SD\n");
12125 break;
12126 case SHARED_FEAT_CFG_FORCE_SF_MODE_BD_MODE:
12127 bp->mf_mode = MULTI_FUNCTION_SD;
12128 bp->mf_sub_mode = SUB_MF_MODE_BD;
12129 bp->mf_config[vn] =
12130 MF_CFG_RD(bp,
12131 func_mf_config[func].config);
12132
12133 if (SHMEM2_HAS(bp, mtu_size)) {
12134 int mtu_idx = BP_FW_MB_IDX(bp);
12135 u16 mtu_size;
12136 u32 mtu;
12137
12138 mtu = SHMEM2_RD(bp, mtu_size[mtu_idx]);
12139 mtu_size = (u16)mtu;
12140 DP(NETIF_MSG_IFUP, "Read MTU size %04x [%08x]\n",
12141 mtu_size, mtu);
12142
12143 /* if valid: update device mtu */
12144 if ((mtu_size >= ETH_MIN_PACKET_SIZE) &&
12145 (mtu_size <=
12146 ETH_MAX_JUMBO_PACKET_SIZE))
12147 bp->dev->mtu = mtu_size;
12148 }
12149 break;
12150 case SHARED_FEAT_CFG_FORCE_SF_MODE_UFP_MODE:
12151 bp->mf_mode = MULTI_FUNCTION_SD;
12152 bp->mf_sub_mode = SUB_MF_MODE_UFP;
12153 bp->mf_config[vn] =
12154 MF_CFG_RD(bp,
12155 func_mf_config[func].config);
12156 break;
12157 case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
12158 bp->mf_config[vn] = 0;
12159 break;
12160 case SHARED_FEAT_CFG_FORCE_SF_MODE_EXTENDED_MODE:
12161 val2 = SHMEM_RD(bp,
12162 dev_info.shared_hw_config.config_3);
12163 val2 &= SHARED_HW_CFG_EXTENDED_MF_MODE_MASK;
12164 switch (val2) {
12165 case SHARED_HW_CFG_EXTENDED_MF_MODE_NPAR1_DOT_5:
12166 validate_set_si_mode(bp);
12167 bp->mf_sub_mode =
12168 SUB_MF_MODE_NPAR1_DOT_5;
12169 break;
12170 default:
12171 /* Unknown configuration */
12172 bp->mf_config[vn] = 0;
12173 BNX2X_DEV_INFO("unknown extended MF mode 0x%x\n",
12174 val);
12175 }
12176 break;
12177 default:
12178 /* Unknown configuration: reset mf_config */
12179 bp->mf_config[vn] = 0;
12180 BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
12181 }
12182 }
12183
12184 BNX2X_DEV_INFO("%s function mode\n",
12185 IS_MF(bp) ? "multi" : "single");
12186
12187 switch (bp->mf_mode) {
12188 case MULTI_FUNCTION_SD:
12189 val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
12190 FUNC_MF_CFG_E1HOV_TAG_MASK;
12191 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
12192 bp->mf_ov = val;
12193 bp->path_has_ovlan = true;
12194
12195 BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
12196 func, bp->mf_ov, bp->mf_ov);
12197 } else if ((bp->mf_sub_mode == SUB_MF_MODE_UFP) ||
12198 (bp->mf_sub_mode == SUB_MF_MODE_BD)) {
12199 dev_err(&bp->pdev->dev,
12200 "Unexpected - no valid MF OV for func %d in UFP/BD mode\n",
12201 func);
12202 bp->path_has_ovlan = true;
12203 } else {
12204 dev_err(&bp->pdev->dev,
12205 "No valid MF OV for func %d, aborting\n",
12206 func);
12207 return -EPERM;
12208 }
12209 break;
12210 case MULTI_FUNCTION_AFEX:
12211 BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
12212 break;
12213 case MULTI_FUNCTION_SI:
12214 BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
12215 func);
12216 break;
12217 default:
12218 if (vn) {
12219 dev_err(&bp->pdev->dev,
12220 "VN %d is in a single function mode, aborting\n",
12221 vn);
12222 return -EPERM;
12223 }
12224 break;
12225 }
12226
12227 /* check if other port on the path needs ovlan:
12228 * Since MF configuration is shared between ports
12229 * Possible mixed modes are only
12230 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
12231 */
12232 if (CHIP_MODE_IS_4_PORT(bp) &&
12233 !bp->path_has_ovlan &&
12234 !IS_MF(bp) &&
12235 bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
12236 u8 other_port = !BP_PORT(bp);
12237 u8 other_func = BP_PATH(bp) + 2*other_port;
12238 val = MF_CFG_RD(bp,
12239 func_mf_config[other_func].e1hov_tag);
12240 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
12241 bp->path_has_ovlan = true;
12242 }
12243 }
12244
12245 /* adjust igu_sb_cnt to MF for E1H */
12246 if (CHIP_IS_E1H(bp) && IS_MF(bp))
12247 bp->igu_sb_cnt = min_t(u8, bp->igu_sb_cnt, E1H_MAX_MF_SB_COUNT);
12248
12249 /* port info */
12250 bnx2x_get_port_hwinfo(bp);
12251
12252 /* Get MAC addresses */
12253 bnx2x_get_mac_hwinfo(bp);
12254
12255 bnx2x_get_cnic_info(bp);
12256
12257 return rc;
12258 }
12259
bnx2x_read_fwinfo(struct bnx2x * bp)12260 static void bnx2x_read_fwinfo(struct bnx2x *bp)
12261 {
12262 int cnt, i, block_end, rodi;
12263 char vpd_start[BNX2X_VPD_LEN+1];
12264 char str_id_reg[VENDOR_ID_LEN+1];
12265 char str_id_cap[VENDOR_ID_LEN+1];
12266 char *vpd_data;
12267 char *vpd_extended_data = NULL;
12268 u8 len;
12269
12270 cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
12271 memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
12272
12273 if (cnt < BNX2X_VPD_LEN)
12274 goto out_not_found;
12275
12276 /* VPD RO tag should be first tag after identifier string, hence
12277 * we should be able to find it in first BNX2X_VPD_LEN chars
12278 */
12279 i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
12280 PCI_VPD_LRDT_RO_DATA);
12281 if (i < 0)
12282 goto out_not_found;
12283
12284 block_end = i + PCI_VPD_LRDT_TAG_SIZE +
12285 pci_vpd_lrdt_size(&vpd_start[i]);
12286
12287 i += PCI_VPD_LRDT_TAG_SIZE;
12288
12289 if (block_end > BNX2X_VPD_LEN) {
12290 vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
12291 if (vpd_extended_data == NULL)
12292 goto out_not_found;
12293
12294 /* read rest of vpd image into vpd_extended_data */
12295 memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
12296 cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
12297 block_end - BNX2X_VPD_LEN,
12298 vpd_extended_data + BNX2X_VPD_LEN);
12299 if (cnt < (block_end - BNX2X_VPD_LEN))
12300 goto out_not_found;
12301 vpd_data = vpd_extended_data;
12302 } else
12303 vpd_data = vpd_start;
12304
12305 /* now vpd_data holds full vpd content in both cases */
12306
12307 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
12308 PCI_VPD_RO_KEYWORD_MFR_ID);
12309 if (rodi < 0)
12310 goto out_not_found;
12311
12312 len = pci_vpd_info_field_size(&vpd_data[rodi]);
12313
12314 if (len != VENDOR_ID_LEN)
12315 goto out_not_found;
12316
12317 rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
12318
12319 /* vendor specific info */
12320 snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
12321 snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
12322 if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
12323 !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
12324
12325 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
12326 PCI_VPD_RO_KEYWORD_VENDOR0);
12327 if (rodi >= 0) {
12328 len = pci_vpd_info_field_size(&vpd_data[rodi]);
12329
12330 rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
12331
12332 if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
12333 memcpy(bp->fw_ver, &vpd_data[rodi], len);
12334 bp->fw_ver[len] = ' ';
12335 }
12336 }
12337 kfree(vpd_extended_data);
12338 return;
12339 }
12340 out_not_found:
12341 kfree(vpd_extended_data);
12342 return;
12343 }
12344
bnx2x_set_modes_bitmap(struct bnx2x * bp)12345 static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
12346 {
12347 u32 flags = 0;
12348
12349 if (CHIP_REV_IS_FPGA(bp))
12350 SET_FLAGS(flags, MODE_FPGA);
12351 else if (CHIP_REV_IS_EMUL(bp))
12352 SET_FLAGS(flags, MODE_EMUL);
12353 else
12354 SET_FLAGS(flags, MODE_ASIC);
12355
12356 if (CHIP_MODE_IS_4_PORT(bp))
12357 SET_FLAGS(flags, MODE_PORT4);
12358 else
12359 SET_FLAGS(flags, MODE_PORT2);
12360
12361 if (CHIP_IS_E2(bp))
12362 SET_FLAGS(flags, MODE_E2);
12363 else if (CHIP_IS_E3(bp)) {
12364 SET_FLAGS(flags, MODE_E3);
12365 if (CHIP_REV(bp) == CHIP_REV_Ax)
12366 SET_FLAGS(flags, MODE_E3_A0);
12367 else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
12368 SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
12369 }
12370
12371 if (IS_MF(bp)) {
12372 SET_FLAGS(flags, MODE_MF);
12373 switch (bp->mf_mode) {
12374 case MULTI_FUNCTION_SD:
12375 SET_FLAGS(flags, MODE_MF_SD);
12376 break;
12377 case MULTI_FUNCTION_SI:
12378 SET_FLAGS(flags, MODE_MF_SI);
12379 break;
12380 case MULTI_FUNCTION_AFEX:
12381 SET_FLAGS(flags, MODE_MF_AFEX);
12382 break;
12383 }
12384 } else
12385 SET_FLAGS(flags, MODE_SF);
12386
12387 #if defined(__LITTLE_ENDIAN)
12388 SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
12389 #else /*(__BIG_ENDIAN)*/
12390 SET_FLAGS(flags, MODE_BIG_ENDIAN);
12391 #endif
12392 INIT_MODE_FLAGS(bp) = flags;
12393 }
12394
bnx2x_init_bp(struct bnx2x * bp)12395 static int bnx2x_init_bp(struct bnx2x *bp)
12396 {
12397 int func;
12398 int rc;
12399
12400 mutex_init(&bp->port.phy_mutex);
12401 mutex_init(&bp->fw_mb_mutex);
12402 mutex_init(&bp->drv_info_mutex);
12403 sema_init(&bp->stats_lock, 1);
12404 bp->drv_info_mng_owner = false;
12405 INIT_LIST_HEAD(&bp->vlan_reg);
12406
12407 INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
12408 INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
12409 INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
12410 INIT_DELAYED_WORK(&bp->iov_task, bnx2x_iov_task);
12411 if (IS_PF(bp)) {
12412 rc = bnx2x_get_hwinfo(bp);
12413 if (rc)
12414 return rc;
12415 } else {
12416 eth_zero_addr(bp->dev->dev_addr);
12417 }
12418
12419 bnx2x_set_modes_bitmap(bp);
12420
12421 rc = bnx2x_alloc_mem_bp(bp);
12422 if (rc)
12423 return rc;
12424
12425 bnx2x_read_fwinfo(bp);
12426
12427 func = BP_FUNC(bp);
12428
12429 /* need to reset chip if undi was active */
12430 if (IS_PF(bp) && !BP_NOMCP(bp)) {
12431 /* init fw_seq */
12432 bp->fw_seq =
12433 SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
12434 DRV_MSG_SEQ_NUMBER_MASK;
12435 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
12436
12437 rc = bnx2x_prev_unload(bp);
12438 if (rc) {
12439 bnx2x_free_mem_bp(bp);
12440 return rc;
12441 }
12442 }
12443
12444 if (CHIP_REV_IS_FPGA(bp))
12445 dev_err(&bp->pdev->dev, "FPGA detected\n");
12446
12447 if (BP_NOMCP(bp) && (func == 0))
12448 dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
12449
12450 bp->disable_tpa = disable_tpa;
12451 bp->disable_tpa |= !!IS_MF_STORAGE_ONLY(bp);
12452 /* Reduce memory usage in kdump environment by disabling TPA */
12453 bp->disable_tpa |= is_kdump_kernel();
12454
12455 /* Set TPA flags */
12456 if (bp->disable_tpa) {
12457 bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
12458 bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW);
12459 }
12460
12461 if (CHIP_IS_E1(bp))
12462 bp->dropless_fc = 0;
12463 else
12464 bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
12465
12466 bp->mrrs = mrrs;
12467
12468 bp->tx_ring_size = IS_MF_STORAGE_ONLY(bp) ? 0 : MAX_TX_AVAIL;
12469 if (IS_VF(bp))
12470 bp->rx_ring_size = MAX_RX_AVAIL;
12471
12472 /* make sure that the numbers are in the right granularity */
12473 bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
12474 bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
12475
12476 bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
12477
12478 timer_setup(&bp->timer, bnx2x_timer, 0);
12479 bp->timer.expires = jiffies + bp->current_interval;
12480
12481 if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
12482 SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
12483 SHMEM2_HAS(bp, dcbx_en) &&
12484 SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
12485 SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset) &&
12486 SHMEM2_RD(bp, dcbx_en[BP_PORT(bp)])) {
12487 bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
12488 bnx2x_dcbx_init_params(bp);
12489 } else {
12490 bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
12491 }
12492
12493 if (CHIP_IS_E1x(bp))
12494 bp->cnic_base_cl_id = FP_SB_MAX_E1x;
12495 else
12496 bp->cnic_base_cl_id = FP_SB_MAX_E2;
12497
12498 /* multiple tx priority */
12499 if (IS_VF(bp))
12500 bp->max_cos = 1;
12501 else if (CHIP_IS_E1x(bp))
12502 bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
12503 else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
12504 bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
12505 else if (CHIP_IS_E3B0(bp))
12506 bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
12507 else
12508 BNX2X_ERR("unknown chip %x revision %x\n",
12509 CHIP_NUM(bp), CHIP_REV(bp));
12510 BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
12511
12512 /* We need at least one default status block for slow-path events,
12513 * second status block for the L2 queue, and a third status block for
12514 * CNIC if supported.
12515 */
12516 if (IS_VF(bp))
12517 bp->min_msix_vec_cnt = 1;
12518 else if (CNIC_SUPPORT(bp))
12519 bp->min_msix_vec_cnt = 3;
12520 else /* PF w/o cnic */
12521 bp->min_msix_vec_cnt = 2;
12522 BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
12523
12524 bp->dump_preset_idx = 1;
12525
12526 return rc;
12527 }
12528
12529 /****************************************************************************
12530 * General service functions
12531 ****************************************************************************/
12532
12533 /*
12534 * net_device service functions
12535 */
12536
12537 /* called with rtnl_lock */
bnx2x_open(struct net_device * dev)12538 static int bnx2x_open(struct net_device *dev)
12539 {
12540 struct bnx2x *bp = netdev_priv(dev);
12541 int rc;
12542
12543 bp->stats_init = true;
12544
12545 netif_carrier_off(dev);
12546
12547 bnx2x_set_power_state(bp, PCI_D0);
12548
12549 /* If parity had happen during the unload, then attentions
12550 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
12551 * want the first function loaded on the current engine to
12552 * complete the recovery.
12553 * Parity recovery is only relevant for PF driver.
12554 */
12555 if (IS_PF(bp)) {
12556 int other_engine = BP_PATH(bp) ? 0 : 1;
12557 bool other_load_status, load_status;
12558 bool global = false;
12559
12560 other_load_status = bnx2x_get_load_status(bp, other_engine);
12561 load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
12562 if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
12563 bnx2x_chk_parity_attn(bp, &global, true)) {
12564 do {
12565 /* If there are attentions and they are in a
12566 * global blocks, set the GLOBAL_RESET bit
12567 * regardless whether it will be this function
12568 * that will complete the recovery or not.
12569 */
12570 if (global)
12571 bnx2x_set_reset_global(bp);
12572
12573 /* Only the first function on the current
12574 * engine should try to recover in open. In case
12575 * of attentions in global blocks only the first
12576 * in the chip should try to recover.
12577 */
12578 if ((!load_status &&
12579 (!global || !other_load_status)) &&
12580 bnx2x_trylock_leader_lock(bp) &&
12581 !bnx2x_leader_reset(bp)) {
12582 netdev_info(bp->dev,
12583 "Recovered in open\n");
12584 break;
12585 }
12586
12587 /* recovery has failed... */
12588 bnx2x_set_power_state(bp, PCI_D3hot);
12589 bp->recovery_state = BNX2X_RECOVERY_FAILED;
12590
12591 BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
12592 "If you still see this message after a few retries then power cycle is required.\n");
12593
12594 return -EAGAIN;
12595 } while (0);
12596 }
12597 }
12598
12599 bp->recovery_state = BNX2X_RECOVERY_DONE;
12600 rc = bnx2x_nic_load(bp, LOAD_OPEN);
12601 if (rc)
12602 return rc;
12603
12604 if (IS_PF(bp))
12605 udp_tunnel_get_rx_info(dev);
12606
12607 return 0;
12608 }
12609
12610 /* called with rtnl_lock */
bnx2x_close(struct net_device * dev)12611 static int bnx2x_close(struct net_device *dev)
12612 {
12613 struct bnx2x *bp = netdev_priv(dev);
12614
12615 /* Unload the driver, release IRQs */
12616 bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
12617
12618 return 0;
12619 }
12620
12621 struct bnx2x_mcast_list_elem_group
12622 {
12623 struct list_head mcast_group_link;
12624 struct bnx2x_mcast_list_elem mcast_elems[];
12625 };
12626
12627 #define MCAST_ELEMS_PER_PG \
12628 ((PAGE_SIZE - sizeof(struct bnx2x_mcast_list_elem_group)) / \
12629 sizeof(struct bnx2x_mcast_list_elem))
12630
bnx2x_free_mcast_macs_list(struct list_head * mcast_group_list)12631 static void bnx2x_free_mcast_macs_list(struct list_head *mcast_group_list)
12632 {
12633 struct bnx2x_mcast_list_elem_group *current_mcast_group;
12634
12635 while (!list_empty(mcast_group_list)) {
12636 current_mcast_group = list_first_entry(mcast_group_list,
12637 struct bnx2x_mcast_list_elem_group,
12638 mcast_group_link);
12639 list_del(¤t_mcast_group->mcast_group_link);
12640 free_page((unsigned long)current_mcast_group);
12641 }
12642 }
12643
bnx2x_init_mcast_macs_list(struct bnx2x * bp,struct bnx2x_mcast_ramrod_params * p,struct list_head * mcast_group_list)12644 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
12645 struct bnx2x_mcast_ramrod_params *p,
12646 struct list_head *mcast_group_list)
12647 {
12648 struct bnx2x_mcast_list_elem *mc_mac;
12649 struct netdev_hw_addr *ha;
12650 struct bnx2x_mcast_list_elem_group *current_mcast_group = NULL;
12651 int mc_count = netdev_mc_count(bp->dev);
12652 int offset = 0;
12653
12654 INIT_LIST_HEAD(&p->mcast_list);
12655 netdev_for_each_mc_addr(ha, bp->dev) {
12656 if (!offset) {
12657 current_mcast_group =
12658 (struct bnx2x_mcast_list_elem_group *)
12659 __get_free_page(GFP_ATOMIC);
12660 if (!current_mcast_group) {
12661 bnx2x_free_mcast_macs_list(mcast_group_list);
12662 BNX2X_ERR("Failed to allocate mc MAC list\n");
12663 return -ENOMEM;
12664 }
12665 list_add(¤t_mcast_group->mcast_group_link,
12666 mcast_group_list);
12667 }
12668 mc_mac = ¤t_mcast_group->mcast_elems[offset];
12669 mc_mac->mac = bnx2x_mc_addr(ha);
12670 list_add_tail(&mc_mac->link, &p->mcast_list);
12671 offset++;
12672 if (offset == MCAST_ELEMS_PER_PG)
12673 offset = 0;
12674 }
12675 p->mcast_list_len = mc_count;
12676 return 0;
12677 }
12678
12679 /**
12680 * bnx2x_set_uc_list - configure a new unicast MACs list.
12681 *
12682 * @bp: driver handle
12683 *
12684 * We will use zero (0) as a MAC type for these MACs.
12685 */
bnx2x_set_uc_list(struct bnx2x * bp)12686 static int bnx2x_set_uc_list(struct bnx2x *bp)
12687 {
12688 int rc;
12689 struct net_device *dev = bp->dev;
12690 struct netdev_hw_addr *ha;
12691 struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
12692 unsigned long ramrod_flags = 0;
12693
12694 /* First schedule a cleanup up of old configuration */
12695 rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
12696 if (rc < 0) {
12697 BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
12698 return rc;
12699 }
12700
12701 netdev_for_each_uc_addr(ha, dev) {
12702 rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
12703 BNX2X_UC_LIST_MAC, &ramrod_flags);
12704 if (rc == -EEXIST) {
12705 DP(BNX2X_MSG_SP,
12706 "Failed to schedule ADD operations: %d\n", rc);
12707 /* do not treat adding same MAC as error */
12708 rc = 0;
12709
12710 } else if (rc < 0) {
12711
12712 BNX2X_ERR("Failed to schedule ADD operations: %d\n",
12713 rc);
12714 return rc;
12715 }
12716 }
12717
12718 /* Execute the pending commands */
12719 __set_bit(RAMROD_CONT, &ramrod_flags);
12720 return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
12721 BNX2X_UC_LIST_MAC, &ramrod_flags);
12722 }
12723
bnx2x_set_mc_list_e1x(struct bnx2x * bp)12724 static int bnx2x_set_mc_list_e1x(struct bnx2x *bp)
12725 {
12726 LIST_HEAD(mcast_group_list);
12727 struct net_device *dev = bp->dev;
12728 struct bnx2x_mcast_ramrod_params rparam = {NULL};
12729 int rc = 0;
12730
12731 rparam.mcast_obj = &bp->mcast_obj;
12732
12733 /* first, clear all configured multicast MACs */
12734 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12735 if (rc < 0) {
12736 BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
12737 return rc;
12738 }
12739
12740 /* then, configure a new MACs list */
12741 if (netdev_mc_count(dev)) {
12742 rc = bnx2x_init_mcast_macs_list(bp, &rparam, &mcast_group_list);
12743 if (rc)
12744 return rc;
12745
12746 /* Now add the new MACs */
12747 rc = bnx2x_config_mcast(bp, &rparam,
12748 BNX2X_MCAST_CMD_ADD);
12749 if (rc < 0)
12750 BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12751 rc);
12752
12753 bnx2x_free_mcast_macs_list(&mcast_group_list);
12754 }
12755
12756 return rc;
12757 }
12758
bnx2x_set_mc_list(struct bnx2x * bp)12759 static int bnx2x_set_mc_list(struct bnx2x *bp)
12760 {
12761 LIST_HEAD(mcast_group_list);
12762 struct bnx2x_mcast_ramrod_params rparam = {NULL};
12763 struct net_device *dev = bp->dev;
12764 int rc = 0;
12765
12766 /* On older adapters, we need to flush and re-add filters */
12767 if (CHIP_IS_E1x(bp))
12768 return bnx2x_set_mc_list_e1x(bp);
12769
12770 rparam.mcast_obj = &bp->mcast_obj;
12771
12772 if (netdev_mc_count(dev)) {
12773 rc = bnx2x_init_mcast_macs_list(bp, &rparam, &mcast_group_list);
12774 if (rc)
12775 return rc;
12776
12777 /* Override the curently configured set of mc filters */
12778 rc = bnx2x_config_mcast(bp, &rparam,
12779 BNX2X_MCAST_CMD_SET);
12780 if (rc < 0)
12781 BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12782 rc);
12783
12784 bnx2x_free_mcast_macs_list(&mcast_group_list);
12785 } else {
12786 /* If no mc addresses are required, flush the configuration */
12787 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12788 if (rc < 0)
12789 BNX2X_ERR("Failed to clear multicast configuration %d\n",
12790 rc);
12791 }
12792
12793 return rc;
12794 }
12795
12796 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
bnx2x_set_rx_mode(struct net_device * dev)12797 static void bnx2x_set_rx_mode(struct net_device *dev)
12798 {
12799 struct bnx2x *bp = netdev_priv(dev);
12800
12801 if (bp->state != BNX2X_STATE_OPEN) {
12802 DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
12803 return;
12804 } else {
12805 /* Schedule an SP task to handle rest of change */
12806 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_RX_MODE,
12807 NETIF_MSG_IFUP);
12808 }
12809 }
12810
bnx2x_set_rx_mode_inner(struct bnx2x * bp)12811 void bnx2x_set_rx_mode_inner(struct bnx2x *bp)
12812 {
12813 u32 rx_mode = BNX2X_RX_MODE_NORMAL;
12814
12815 DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
12816
12817 netif_addr_lock_bh(bp->dev);
12818
12819 if (bp->dev->flags & IFF_PROMISC) {
12820 rx_mode = BNX2X_RX_MODE_PROMISC;
12821 } else if ((bp->dev->flags & IFF_ALLMULTI) ||
12822 ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) &&
12823 CHIP_IS_E1(bp))) {
12824 rx_mode = BNX2X_RX_MODE_ALLMULTI;
12825 } else {
12826 if (IS_PF(bp)) {
12827 /* some multicasts */
12828 if (bnx2x_set_mc_list(bp) < 0)
12829 rx_mode = BNX2X_RX_MODE_ALLMULTI;
12830
12831 /* release bh lock, as bnx2x_set_uc_list might sleep */
12832 netif_addr_unlock_bh(bp->dev);
12833 if (bnx2x_set_uc_list(bp) < 0)
12834 rx_mode = BNX2X_RX_MODE_PROMISC;
12835 netif_addr_lock_bh(bp->dev);
12836 } else {
12837 /* configuring mcast to a vf involves sleeping (when we
12838 * wait for the pf's response).
12839 */
12840 bnx2x_schedule_sp_rtnl(bp,
12841 BNX2X_SP_RTNL_VFPF_MCAST, 0);
12842 }
12843 }
12844
12845 bp->rx_mode = rx_mode;
12846 /* handle ISCSI SD mode */
12847 if (IS_MF_ISCSI_ONLY(bp))
12848 bp->rx_mode = BNX2X_RX_MODE_NONE;
12849
12850 /* Schedule the rx_mode command */
12851 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
12852 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
12853 netif_addr_unlock_bh(bp->dev);
12854 return;
12855 }
12856
12857 if (IS_PF(bp)) {
12858 bnx2x_set_storm_rx_mode(bp);
12859 netif_addr_unlock_bh(bp->dev);
12860 } else {
12861 /* VF will need to request the PF to make this change, and so
12862 * the VF needs to release the bottom-half lock prior to the
12863 * request (as it will likely require sleep on the VF side)
12864 */
12865 netif_addr_unlock_bh(bp->dev);
12866 bnx2x_vfpf_storm_rx_mode(bp);
12867 }
12868 }
12869
12870 /* called with rtnl_lock */
bnx2x_mdio_read(struct net_device * netdev,int prtad,int devad,u16 addr)12871 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
12872 int devad, u16 addr)
12873 {
12874 struct bnx2x *bp = netdev_priv(netdev);
12875 u16 value;
12876 int rc;
12877
12878 DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
12879 prtad, devad, addr);
12880
12881 /* The HW expects different devad if CL22 is used */
12882 devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12883
12884 bnx2x_acquire_phy_lock(bp);
12885 rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
12886 bnx2x_release_phy_lock(bp);
12887 DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
12888
12889 if (!rc)
12890 rc = value;
12891 return rc;
12892 }
12893
12894 /* called with rtnl_lock */
bnx2x_mdio_write(struct net_device * netdev,int prtad,int devad,u16 addr,u16 value)12895 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
12896 u16 addr, u16 value)
12897 {
12898 struct bnx2x *bp = netdev_priv(netdev);
12899 int rc;
12900
12901 DP(NETIF_MSG_LINK,
12902 "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
12903 prtad, devad, addr, value);
12904
12905 /* The HW expects different devad if CL22 is used */
12906 devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12907
12908 bnx2x_acquire_phy_lock(bp);
12909 rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
12910 bnx2x_release_phy_lock(bp);
12911 return rc;
12912 }
12913
12914 /* called with rtnl_lock */
bnx2x_ioctl(struct net_device * dev,struct ifreq * ifr,int cmd)12915 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
12916 {
12917 struct bnx2x *bp = netdev_priv(dev);
12918 struct mii_ioctl_data *mdio = if_mii(ifr);
12919
12920 if (!netif_running(dev))
12921 return -EAGAIN;
12922
12923 switch (cmd) {
12924 case SIOCSHWTSTAMP:
12925 return bnx2x_hwtstamp_ioctl(bp, ifr);
12926 default:
12927 DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
12928 mdio->phy_id, mdio->reg_num, mdio->val_in);
12929 return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
12930 }
12931 }
12932
bnx2x_validate_addr(struct net_device * dev)12933 static int bnx2x_validate_addr(struct net_device *dev)
12934 {
12935 struct bnx2x *bp = netdev_priv(dev);
12936
12937 /* query the bulletin board for mac address configured by the PF */
12938 if (IS_VF(bp))
12939 bnx2x_sample_bulletin(bp);
12940
12941 if (!is_valid_ether_addr(dev->dev_addr)) {
12942 BNX2X_ERR("Non-valid Ethernet address\n");
12943 return -EADDRNOTAVAIL;
12944 }
12945 return 0;
12946 }
12947
bnx2x_get_phys_port_id(struct net_device * netdev,struct netdev_phys_item_id * ppid)12948 static int bnx2x_get_phys_port_id(struct net_device *netdev,
12949 struct netdev_phys_item_id *ppid)
12950 {
12951 struct bnx2x *bp = netdev_priv(netdev);
12952
12953 if (!(bp->flags & HAS_PHYS_PORT_ID))
12954 return -EOPNOTSUPP;
12955
12956 ppid->id_len = sizeof(bp->phys_port_id);
12957 memcpy(ppid->id, bp->phys_port_id, ppid->id_len);
12958
12959 return 0;
12960 }
12961
bnx2x_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)12962 static netdev_features_t bnx2x_features_check(struct sk_buff *skb,
12963 struct net_device *dev,
12964 netdev_features_t features)
12965 {
12966 /*
12967 * A skb with gso_size + header length > 9700 will cause a
12968 * firmware panic. Drop GSO support.
12969 *
12970 * Eventually the upper layer should not pass these packets down.
12971 *
12972 * For speed, if the gso_size is <= 9000, assume there will
12973 * not be 700 bytes of headers and pass it through. Only do a
12974 * full (slow) validation if the gso_size is > 9000.
12975 *
12976 * (Due to the way SKB_BY_FRAGS works this will also do a full
12977 * validation in that case.)
12978 */
12979 if (unlikely(skb_is_gso(skb) &&
12980 (skb_shinfo(skb)->gso_size > 9000) &&
12981 !skb_gso_validate_mac_len(skb, 9700)))
12982 features &= ~NETIF_F_GSO_MASK;
12983
12984 features = vlan_features_check(skb, features);
12985 return vxlan_features_check(skb, features);
12986 }
12987
__bnx2x_vlan_configure_vid(struct bnx2x * bp,u16 vid,bool add)12988 static int __bnx2x_vlan_configure_vid(struct bnx2x *bp, u16 vid, bool add)
12989 {
12990 int rc;
12991
12992 if (IS_PF(bp)) {
12993 unsigned long ramrod_flags = 0;
12994
12995 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
12996 rc = bnx2x_set_vlan_one(bp, vid, &bp->sp_objs->vlan_obj,
12997 add, &ramrod_flags);
12998 } else {
12999 rc = bnx2x_vfpf_update_vlan(bp, vid, bp->fp->index, add);
13000 }
13001
13002 return rc;
13003 }
13004
bnx2x_vlan_configure_vid_list(struct bnx2x * bp)13005 static int bnx2x_vlan_configure_vid_list(struct bnx2x *bp)
13006 {
13007 struct bnx2x_vlan_entry *vlan;
13008 int rc = 0;
13009
13010 /* Configure all non-configured entries */
13011 list_for_each_entry(vlan, &bp->vlan_reg, link) {
13012 if (vlan->hw)
13013 continue;
13014
13015 if (bp->vlan_cnt >= bp->vlan_credit)
13016 return -ENOBUFS;
13017
13018 rc = __bnx2x_vlan_configure_vid(bp, vlan->vid, true);
13019 if (rc) {
13020 BNX2X_ERR("Unable to config VLAN %d\n", vlan->vid);
13021 return rc;
13022 }
13023
13024 DP(NETIF_MSG_IFUP, "HW configured for VLAN %d\n", vlan->vid);
13025 vlan->hw = true;
13026 bp->vlan_cnt++;
13027 }
13028
13029 return 0;
13030 }
13031
bnx2x_vlan_configure(struct bnx2x * bp,bool set_rx_mode)13032 static void bnx2x_vlan_configure(struct bnx2x *bp, bool set_rx_mode)
13033 {
13034 bool need_accept_any_vlan;
13035
13036 need_accept_any_vlan = !!bnx2x_vlan_configure_vid_list(bp);
13037
13038 if (bp->accept_any_vlan != need_accept_any_vlan) {
13039 bp->accept_any_vlan = need_accept_any_vlan;
13040 DP(NETIF_MSG_IFUP, "Accept all VLAN %s\n",
13041 bp->accept_any_vlan ? "raised" : "cleared");
13042 if (set_rx_mode) {
13043 if (IS_PF(bp))
13044 bnx2x_set_rx_mode_inner(bp);
13045 else
13046 bnx2x_vfpf_storm_rx_mode(bp);
13047 }
13048 }
13049 }
13050
bnx2x_vlan_reconfigure_vid(struct bnx2x * bp)13051 int bnx2x_vlan_reconfigure_vid(struct bnx2x *bp)
13052 {
13053 /* Don't set rx mode here. Our caller will do it. */
13054 bnx2x_vlan_configure(bp, false);
13055
13056 return 0;
13057 }
13058
bnx2x_vlan_rx_add_vid(struct net_device * dev,__be16 proto,u16 vid)13059 static int bnx2x_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
13060 {
13061 struct bnx2x *bp = netdev_priv(dev);
13062 struct bnx2x_vlan_entry *vlan;
13063
13064 DP(NETIF_MSG_IFUP, "Adding VLAN %d\n", vid);
13065
13066 vlan = kmalloc(sizeof(*vlan), GFP_KERNEL);
13067 if (!vlan)
13068 return -ENOMEM;
13069
13070 vlan->vid = vid;
13071 vlan->hw = false;
13072 list_add_tail(&vlan->link, &bp->vlan_reg);
13073
13074 if (netif_running(dev))
13075 bnx2x_vlan_configure(bp, true);
13076
13077 return 0;
13078 }
13079
bnx2x_vlan_rx_kill_vid(struct net_device * dev,__be16 proto,u16 vid)13080 static int bnx2x_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
13081 {
13082 struct bnx2x *bp = netdev_priv(dev);
13083 struct bnx2x_vlan_entry *vlan;
13084 bool found = false;
13085 int rc = 0;
13086
13087 DP(NETIF_MSG_IFUP, "Removing VLAN %d\n", vid);
13088
13089 list_for_each_entry(vlan, &bp->vlan_reg, link)
13090 if (vlan->vid == vid) {
13091 found = true;
13092 break;
13093 }
13094
13095 if (!found) {
13096 BNX2X_ERR("Unable to kill VLAN %d - not found\n", vid);
13097 return -EINVAL;
13098 }
13099
13100 if (netif_running(dev) && vlan->hw) {
13101 rc = __bnx2x_vlan_configure_vid(bp, vid, false);
13102 DP(NETIF_MSG_IFUP, "HW deconfigured for VLAN %d\n", vid);
13103 bp->vlan_cnt--;
13104 }
13105
13106 list_del(&vlan->link);
13107 kfree(vlan);
13108
13109 if (netif_running(dev))
13110 bnx2x_vlan_configure(bp, true);
13111
13112 DP(NETIF_MSG_IFUP, "Removing VLAN result %d\n", rc);
13113
13114 return rc;
13115 }
13116
13117 static const struct net_device_ops bnx2x_netdev_ops = {
13118 .ndo_open = bnx2x_open,
13119 .ndo_stop = bnx2x_close,
13120 .ndo_start_xmit = bnx2x_start_xmit,
13121 .ndo_select_queue = bnx2x_select_queue,
13122 .ndo_set_rx_mode = bnx2x_set_rx_mode,
13123 .ndo_set_mac_address = bnx2x_change_mac_addr,
13124 .ndo_validate_addr = bnx2x_validate_addr,
13125 .ndo_do_ioctl = bnx2x_ioctl,
13126 .ndo_change_mtu = bnx2x_change_mtu,
13127 .ndo_fix_features = bnx2x_fix_features,
13128 .ndo_set_features = bnx2x_set_features,
13129 .ndo_tx_timeout = bnx2x_tx_timeout,
13130 .ndo_vlan_rx_add_vid = bnx2x_vlan_rx_add_vid,
13131 .ndo_vlan_rx_kill_vid = bnx2x_vlan_rx_kill_vid,
13132 .ndo_setup_tc = __bnx2x_setup_tc,
13133 #ifdef CONFIG_BNX2X_SRIOV
13134 .ndo_set_vf_mac = bnx2x_set_vf_mac,
13135 .ndo_set_vf_vlan = bnx2x_set_vf_vlan,
13136 .ndo_get_vf_config = bnx2x_get_vf_config,
13137 .ndo_set_vf_spoofchk = bnx2x_set_vf_spoofchk,
13138 #endif
13139 #ifdef NETDEV_FCOE_WWNN
13140 .ndo_fcoe_get_wwn = bnx2x_fcoe_get_wwn,
13141 #endif
13142
13143 .ndo_get_phys_port_id = bnx2x_get_phys_port_id,
13144 .ndo_set_vf_link_state = bnx2x_set_vf_link_state,
13145 .ndo_features_check = bnx2x_features_check,
13146 .ndo_udp_tunnel_add = bnx2x_udp_tunnel_add,
13147 .ndo_udp_tunnel_del = bnx2x_udp_tunnel_del,
13148 };
13149
bnx2x_set_coherency_mask(struct bnx2x * bp)13150 static int bnx2x_set_coherency_mask(struct bnx2x *bp)
13151 {
13152 struct device *dev = &bp->pdev->dev;
13153
13154 if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)) != 0 &&
13155 dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)) != 0) {
13156 dev_err(dev, "System does not support DMA, aborting\n");
13157 return -EIO;
13158 }
13159
13160 return 0;
13161 }
13162
bnx2x_disable_pcie_error_reporting(struct bnx2x * bp)13163 static void bnx2x_disable_pcie_error_reporting(struct bnx2x *bp)
13164 {
13165 if (bp->flags & AER_ENABLED) {
13166 pci_disable_pcie_error_reporting(bp->pdev);
13167 bp->flags &= ~AER_ENABLED;
13168 }
13169 }
13170
bnx2x_init_dev(struct bnx2x * bp,struct pci_dev * pdev,struct net_device * dev,unsigned long board_type)13171 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
13172 struct net_device *dev, unsigned long board_type)
13173 {
13174 int rc;
13175 u32 pci_cfg_dword;
13176 bool chip_is_e1x = (board_type == BCM57710 ||
13177 board_type == BCM57711 ||
13178 board_type == BCM57711E);
13179
13180 SET_NETDEV_DEV(dev, &pdev->dev);
13181
13182 bp->dev = dev;
13183 bp->pdev = pdev;
13184
13185 rc = pci_enable_device(pdev);
13186 if (rc) {
13187 dev_err(&bp->pdev->dev,
13188 "Cannot enable PCI device, aborting\n");
13189 goto err_out;
13190 }
13191
13192 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
13193 dev_err(&bp->pdev->dev,
13194 "Cannot find PCI device base address, aborting\n");
13195 rc = -ENODEV;
13196 goto err_out_disable;
13197 }
13198
13199 if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
13200 dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
13201 rc = -ENODEV;
13202 goto err_out_disable;
13203 }
13204
13205 pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
13206 if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
13207 PCICFG_REVESION_ID_ERROR_VAL) {
13208 pr_err("PCI device error, probably due to fan failure, aborting\n");
13209 rc = -ENODEV;
13210 goto err_out_disable;
13211 }
13212
13213 if (atomic_read(&pdev->enable_cnt) == 1) {
13214 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
13215 if (rc) {
13216 dev_err(&bp->pdev->dev,
13217 "Cannot obtain PCI resources, aborting\n");
13218 goto err_out_disable;
13219 }
13220
13221 pci_set_master(pdev);
13222 pci_save_state(pdev);
13223 }
13224
13225 if (IS_PF(bp)) {
13226 if (!pdev->pm_cap) {
13227 dev_err(&bp->pdev->dev,
13228 "Cannot find power management capability, aborting\n");
13229 rc = -EIO;
13230 goto err_out_release;
13231 }
13232 }
13233
13234 if (!pci_is_pcie(pdev)) {
13235 dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
13236 rc = -EIO;
13237 goto err_out_release;
13238 }
13239
13240 rc = bnx2x_set_coherency_mask(bp);
13241 if (rc)
13242 goto err_out_release;
13243
13244 dev->mem_start = pci_resource_start(pdev, 0);
13245 dev->base_addr = dev->mem_start;
13246 dev->mem_end = pci_resource_end(pdev, 0);
13247
13248 dev->irq = pdev->irq;
13249
13250 bp->regview = pci_ioremap_bar(pdev, 0);
13251 if (!bp->regview) {
13252 dev_err(&bp->pdev->dev,
13253 "Cannot map register space, aborting\n");
13254 rc = -ENOMEM;
13255 goto err_out_release;
13256 }
13257
13258 /* In E1/E1H use pci device function given by kernel.
13259 * In E2/E3 read physical function from ME register since these chips
13260 * support Physical Device Assignment where kernel BDF maybe arbitrary
13261 * (depending on hypervisor).
13262 */
13263 if (chip_is_e1x) {
13264 bp->pf_num = PCI_FUNC(pdev->devfn);
13265 } else {
13266 /* chip is E2/3*/
13267 pci_read_config_dword(bp->pdev,
13268 PCICFG_ME_REGISTER, &pci_cfg_dword);
13269 bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
13270 ME_REG_ABS_PF_NUM_SHIFT);
13271 }
13272 BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
13273
13274 /* clean indirect addresses */
13275 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
13276 PCICFG_VENDOR_ID_OFFSET);
13277
13278 /* Set PCIe reset type to fundamental for EEH recovery */
13279 pdev->needs_freset = 1;
13280
13281 /* AER (Advanced Error reporting) configuration */
13282 rc = pci_enable_pcie_error_reporting(pdev);
13283 if (!rc)
13284 bp->flags |= AER_ENABLED;
13285 else
13286 BNX2X_DEV_INFO("Failed To configure PCIe AER [%d]\n", rc);
13287
13288 /*
13289 * Clean the following indirect addresses for all functions since it
13290 * is not used by the driver.
13291 */
13292 if (IS_PF(bp)) {
13293 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
13294 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
13295 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
13296 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
13297
13298 if (chip_is_e1x) {
13299 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
13300 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
13301 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
13302 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
13303 }
13304
13305 /* Enable internal target-read (in case we are probed after PF
13306 * FLR). Must be done prior to any BAR read access. Only for
13307 * 57712 and up
13308 */
13309 if (!chip_is_e1x)
13310 REG_WR(bp,
13311 PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
13312 }
13313
13314 dev->watchdog_timeo = TX_TIMEOUT;
13315
13316 dev->netdev_ops = &bnx2x_netdev_ops;
13317 bnx2x_set_ethtool_ops(bp, dev);
13318
13319 dev->priv_flags |= IFF_UNICAST_FLT;
13320
13321 dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13322 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13323 NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO | NETIF_F_GRO_HW |
13324 NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
13325 if (!chip_is_e1x) {
13326 dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM |
13327 NETIF_F_GSO_IPXIP4 |
13328 NETIF_F_GSO_UDP_TUNNEL |
13329 NETIF_F_GSO_UDP_TUNNEL_CSUM |
13330 NETIF_F_GSO_PARTIAL;
13331
13332 dev->hw_enc_features =
13333 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
13334 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13335 NETIF_F_GSO_IPXIP4 |
13336 NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM |
13337 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_UDP_TUNNEL_CSUM |
13338 NETIF_F_GSO_PARTIAL;
13339
13340 dev->gso_partial_features = NETIF_F_GSO_GRE_CSUM |
13341 NETIF_F_GSO_UDP_TUNNEL_CSUM;
13342 }
13343
13344 dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13345 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
13346
13347 if (IS_PF(bp)) {
13348 if (chip_is_e1x)
13349 bp->accept_any_vlan = true;
13350 else
13351 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
13352 }
13353 /* For VF we'll know whether to enable VLAN filtering after
13354 * getting a response to CHANNEL_TLV_ACQUIRE from PF.
13355 */
13356
13357 dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
13358 dev->features |= NETIF_F_HIGHDMA;
13359 if (dev->features & NETIF_F_LRO)
13360 dev->features &= ~NETIF_F_GRO_HW;
13361
13362 /* Add Loopback capability to the device */
13363 dev->hw_features |= NETIF_F_LOOPBACK;
13364
13365 #ifdef BCM_DCBNL
13366 dev->dcbnl_ops = &bnx2x_dcbnl_ops;
13367 #endif
13368
13369 /* MTU range, 46 - 9600 */
13370 dev->min_mtu = ETH_MIN_PACKET_SIZE;
13371 dev->max_mtu = ETH_MAX_JUMBO_PACKET_SIZE;
13372
13373 /* get_port_hwinfo() will set prtad and mmds properly */
13374 bp->mdio.prtad = MDIO_PRTAD_NONE;
13375 bp->mdio.mmds = 0;
13376 bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
13377 bp->mdio.dev = dev;
13378 bp->mdio.mdio_read = bnx2x_mdio_read;
13379 bp->mdio.mdio_write = bnx2x_mdio_write;
13380
13381 return 0;
13382
13383 err_out_release:
13384 if (atomic_read(&pdev->enable_cnt) == 1)
13385 pci_release_regions(pdev);
13386
13387 err_out_disable:
13388 pci_disable_device(pdev);
13389
13390 err_out:
13391 return rc;
13392 }
13393
bnx2x_check_firmware(struct bnx2x * bp)13394 static int bnx2x_check_firmware(struct bnx2x *bp)
13395 {
13396 const struct firmware *firmware = bp->firmware;
13397 struct bnx2x_fw_file_hdr *fw_hdr;
13398 struct bnx2x_fw_file_section *sections;
13399 u32 offset, len, num_ops;
13400 __be16 *ops_offsets;
13401 int i;
13402 const u8 *fw_ver;
13403
13404 if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
13405 BNX2X_ERR("Wrong FW size\n");
13406 return -EINVAL;
13407 }
13408
13409 fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
13410 sections = (struct bnx2x_fw_file_section *)fw_hdr;
13411
13412 /* Make sure none of the offsets and sizes make us read beyond
13413 * the end of the firmware data */
13414 for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
13415 offset = be32_to_cpu(sections[i].offset);
13416 len = be32_to_cpu(sections[i].len);
13417 if (offset + len > firmware->size) {
13418 BNX2X_ERR("Section %d length is out of bounds\n", i);
13419 return -EINVAL;
13420 }
13421 }
13422
13423 /* Likewise for the init_ops offsets */
13424 offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
13425 ops_offsets = (__force __be16 *)(firmware->data + offset);
13426 num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
13427
13428 for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
13429 if (be16_to_cpu(ops_offsets[i]) > num_ops) {
13430 BNX2X_ERR("Section offset %d is out of bounds\n", i);
13431 return -EINVAL;
13432 }
13433 }
13434
13435 /* Check FW version */
13436 offset = be32_to_cpu(fw_hdr->fw_version.offset);
13437 fw_ver = firmware->data + offset;
13438 if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
13439 (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
13440 (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
13441 (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
13442 BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
13443 fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
13444 BCM_5710_FW_MAJOR_VERSION,
13445 BCM_5710_FW_MINOR_VERSION,
13446 BCM_5710_FW_REVISION_VERSION,
13447 BCM_5710_FW_ENGINEERING_VERSION);
13448 return -EINVAL;
13449 }
13450
13451 return 0;
13452 }
13453
be32_to_cpu_n(const u8 * _source,u8 * _target,u32 n)13454 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13455 {
13456 const __be32 *source = (const __be32 *)_source;
13457 u32 *target = (u32 *)_target;
13458 u32 i;
13459
13460 for (i = 0; i < n/4; i++)
13461 target[i] = be32_to_cpu(source[i]);
13462 }
13463
13464 /*
13465 Ops array is stored in the following format:
13466 {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
13467 */
bnx2x_prep_ops(const u8 * _source,u8 * _target,u32 n)13468 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
13469 {
13470 const __be32 *source = (const __be32 *)_source;
13471 struct raw_op *target = (struct raw_op *)_target;
13472 u32 i, j, tmp;
13473
13474 for (i = 0, j = 0; i < n/8; i++, j += 2) {
13475 tmp = be32_to_cpu(source[j]);
13476 target[i].op = (tmp >> 24) & 0xff;
13477 target[i].offset = tmp & 0xffffff;
13478 target[i].raw_data = be32_to_cpu(source[j + 1]);
13479 }
13480 }
13481
13482 /* IRO array is stored in the following format:
13483 * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
13484 */
bnx2x_prep_iro(const u8 * _source,u8 * _target,u32 n)13485 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
13486 {
13487 const __be32 *source = (const __be32 *)_source;
13488 struct iro *target = (struct iro *)_target;
13489 u32 i, j, tmp;
13490
13491 for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
13492 target[i].base = be32_to_cpu(source[j]);
13493 j++;
13494 tmp = be32_to_cpu(source[j]);
13495 target[i].m1 = (tmp >> 16) & 0xffff;
13496 target[i].m2 = tmp & 0xffff;
13497 j++;
13498 tmp = be32_to_cpu(source[j]);
13499 target[i].m3 = (tmp >> 16) & 0xffff;
13500 target[i].size = tmp & 0xffff;
13501 j++;
13502 }
13503 }
13504
be16_to_cpu_n(const u8 * _source,u8 * _target,u32 n)13505 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13506 {
13507 const __be16 *source = (const __be16 *)_source;
13508 u16 *target = (u16 *)_target;
13509 u32 i;
13510
13511 for (i = 0; i < n/2; i++)
13512 target[i] = be16_to_cpu(source[i]);
13513 }
13514
13515 #define BNX2X_ALLOC_AND_SET(arr, lbl, func) \
13516 do { \
13517 u32 len = be32_to_cpu(fw_hdr->arr.len); \
13518 bp->arr = kmalloc(len, GFP_KERNEL); \
13519 if (!bp->arr) \
13520 goto lbl; \
13521 func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset), \
13522 (u8 *)bp->arr, len); \
13523 } while (0)
13524
bnx2x_init_firmware(struct bnx2x * bp)13525 static int bnx2x_init_firmware(struct bnx2x *bp)
13526 {
13527 const char *fw_file_name;
13528 struct bnx2x_fw_file_hdr *fw_hdr;
13529 int rc;
13530
13531 if (bp->firmware)
13532 return 0;
13533
13534 if (CHIP_IS_E1(bp))
13535 fw_file_name = FW_FILE_NAME_E1;
13536 else if (CHIP_IS_E1H(bp))
13537 fw_file_name = FW_FILE_NAME_E1H;
13538 else if (!CHIP_IS_E1x(bp))
13539 fw_file_name = FW_FILE_NAME_E2;
13540 else {
13541 BNX2X_ERR("Unsupported chip revision\n");
13542 return -EINVAL;
13543 }
13544 BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
13545
13546 rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
13547 if (rc) {
13548 BNX2X_ERR("Can't load firmware file %s\n",
13549 fw_file_name);
13550 goto request_firmware_exit;
13551 }
13552
13553 rc = bnx2x_check_firmware(bp);
13554 if (rc) {
13555 BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
13556 goto request_firmware_exit;
13557 }
13558
13559 fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
13560
13561 /* Initialize the pointers to the init arrays */
13562 /* Blob */
13563 rc = -ENOMEM;
13564 BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
13565
13566 /* Opcodes */
13567 BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
13568
13569 /* Offsets */
13570 BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
13571 be16_to_cpu_n);
13572
13573 /* STORMs firmware */
13574 INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13575 be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
13576 INIT_TSEM_PRAM_DATA(bp) = bp->firmware->data +
13577 be32_to_cpu(fw_hdr->tsem_pram_data.offset);
13578 INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13579 be32_to_cpu(fw_hdr->usem_int_table_data.offset);
13580 INIT_USEM_PRAM_DATA(bp) = bp->firmware->data +
13581 be32_to_cpu(fw_hdr->usem_pram_data.offset);
13582 INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13583 be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
13584 INIT_XSEM_PRAM_DATA(bp) = bp->firmware->data +
13585 be32_to_cpu(fw_hdr->xsem_pram_data.offset);
13586 INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13587 be32_to_cpu(fw_hdr->csem_int_table_data.offset);
13588 INIT_CSEM_PRAM_DATA(bp) = bp->firmware->data +
13589 be32_to_cpu(fw_hdr->csem_pram_data.offset);
13590 /* IRO */
13591 BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
13592
13593 return 0;
13594
13595 iro_alloc_err:
13596 kfree(bp->init_ops_offsets);
13597 init_offsets_alloc_err:
13598 kfree(bp->init_ops);
13599 init_ops_alloc_err:
13600 kfree(bp->init_data);
13601 request_firmware_exit:
13602 release_firmware(bp->firmware);
13603 bp->firmware = NULL;
13604
13605 return rc;
13606 }
13607
bnx2x_release_firmware(struct bnx2x * bp)13608 static void bnx2x_release_firmware(struct bnx2x *bp)
13609 {
13610 kfree(bp->init_ops_offsets);
13611 kfree(bp->init_ops);
13612 kfree(bp->init_data);
13613 release_firmware(bp->firmware);
13614 bp->firmware = NULL;
13615 }
13616
13617 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
13618 .init_hw_cmn_chip = bnx2x_init_hw_common_chip,
13619 .init_hw_cmn = bnx2x_init_hw_common,
13620 .init_hw_port = bnx2x_init_hw_port,
13621 .init_hw_func = bnx2x_init_hw_func,
13622
13623 .reset_hw_cmn = bnx2x_reset_common,
13624 .reset_hw_port = bnx2x_reset_port,
13625 .reset_hw_func = bnx2x_reset_func,
13626
13627 .gunzip_init = bnx2x_gunzip_init,
13628 .gunzip_end = bnx2x_gunzip_end,
13629
13630 .init_fw = bnx2x_init_firmware,
13631 .release_fw = bnx2x_release_firmware,
13632 };
13633
bnx2x__init_func_obj(struct bnx2x * bp)13634 void bnx2x__init_func_obj(struct bnx2x *bp)
13635 {
13636 /* Prepare DMAE related driver resources */
13637 bnx2x_setup_dmae(bp);
13638
13639 bnx2x_init_func_obj(bp, &bp->func_obj,
13640 bnx2x_sp(bp, func_rdata),
13641 bnx2x_sp_mapping(bp, func_rdata),
13642 bnx2x_sp(bp, func_afex_rdata),
13643 bnx2x_sp_mapping(bp, func_afex_rdata),
13644 &bnx2x_func_sp_drv);
13645 }
13646
13647 /* must be called after sriov-enable */
bnx2x_set_qm_cid_count(struct bnx2x * bp)13648 static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
13649 {
13650 int cid_count = BNX2X_L2_MAX_CID(bp);
13651
13652 if (IS_SRIOV(bp))
13653 cid_count += BNX2X_VF_CIDS;
13654
13655 if (CNIC_SUPPORT(bp))
13656 cid_count += CNIC_CID_MAX;
13657
13658 return roundup(cid_count, QM_CID_ROUND);
13659 }
13660
13661 /**
13662 * bnx2x_get_num_none_def_sbs - return the number of none default SBs
13663 *
13664 * @dev: pci device
13665 *
13666 */
bnx2x_get_num_non_def_sbs(struct pci_dev * pdev,int cnic_cnt)13667 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt)
13668 {
13669 int index;
13670 u16 control = 0;
13671
13672 /*
13673 * If MSI-X is not supported - return number of SBs needed to support
13674 * one fast path queue: one FP queue + SB for CNIC
13675 */
13676 if (!pdev->msix_cap) {
13677 dev_info(&pdev->dev, "no msix capability found\n");
13678 return 1 + cnic_cnt;
13679 }
13680 dev_info(&pdev->dev, "msix capability found\n");
13681
13682 /*
13683 * The value in the PCI configuration space is the index of the last
13684 * entry, namely one less than the actual size of the table, which is
13685 * exactly what we want to return from this function: number of all SBs
13686 * without the default SB.
13687 * For VFs there is no default SB, then we return (index+1).
13688 */
13689 pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &control);
13690
13691 index = control & PCI_MSIX_FLAGS_QSIZE;
13692
13693 return index;
13694 }
13695
set_max_cos_est(int chip_id)13696 static int set_max_cos_est(int chip_id)
13697 {
13698 switch (chip_id) {
13699 case BCM57710:
13700 case BCM57711:
13701 case BCM57711E:
13702 return BNX2X_MULTI_TX_COS_E1X;
13703 case BCM57712:
13704 case BCM57712_MF:
13705 return BNX2X_MULTI_TX_COS_E2_E3A0;
13706 case BCM57800:
13707 case BCM57800_MF:
13708 case BCM57810:
13709 case BCM57810_MF:
13710 case BCM57840_4_10:
13711 case BCM57840_2_20:
13712 case BCM57840_O:
13713 case BCM57840_MFO:
13714 case BCM57840_MF:
13715 case BCM57811:
13716 case BCM57811_MF:
13717 return BNX2X_MULTI_TX_COS_E3B0;
13718 case BCM57712_VF:
13719 case BCM57800_VF:
13720 case BCM57810_VF:
13721 case BCM57840_VF:
13722 case BCM57811_VF:
13723 return 1;
13724 default:
13725 pr_err("Unknown board_type (%d), aborting\n", chip_id);
13726 return -ENODEV;
13727 }
13728 }
13729
set_is_vf(int chip_id)13730 static int set_is_vf(int chip_id)
13731 {
13732 switch (chip_id) {
13733 case BCM57712_VF:
13734 case BCM57800_VF:
13735 case BCM57810_VF:
13736 case BCM57840_VF:
13737 case BCM57811_VF:
13738 return true;
13739 default:
13740 return false;
13741 }
13742 }
13743
13744 /* nig_tsgen registers relative address */
13745 #define tsgen_ctrl 0x0
13746 #define tsgen_freecount 0x10
13747 #define tsgen_synctime_t0 0x20
13748 #define tsgen_offset_t0 0x28
13749 #define tsgen_drift_t0 0x30
13750 #define tsgen_synctime_t1 0x58
13751 #define tsgen_offset_t1 0x60
13752 #define tsgen_drift_t1 0x68
13753
13754 /* FW workaround for setting drift */
bnx2x_send_update_drift_ramrod(struct bnx2x * bp,int drift_dir,int best_val,int best_period)13755 static int bnx2x_send_update_drift_ramrod(struct bnx2x *bp, int drift_dir,
13756 int best_val, int best_period)
13757 {
13758 struct bnx2x_func_state_params func_params = {NULL};
13759 struct bnx2x_func_set_timesync_params *set_timesync_params =
13760 &func_params.params.set_timesync;
13761
13762 /* Prepare parameters for function state transitions */
13763 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
13764 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
13765
13766 func_params.f_obj = &bp->func_obj;
13767 func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
13768
13769 /* Function parameters */
13770 set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_SET;
13771 set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
13772 set_timesync_params->add_sub_drift_adjust_value =
13773 drift_dir ? TS_ADD_VALUE : TS_SUB_VALUE;
13774 set_timesync_params->drift_adjust_value = best_val;
13775 set_timesync_params->drift_adjust_period = best_period;
13776
13777 return bnx2x_func_state_change(bp, &func_params);
13778 }
13779
bnx2x_ptp_adjfreq(struct ptp_clock_info * ptp,s32 ppb)13780 static int bnx2x_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
13781 {
13782 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13783 int rc;
13784 int drift_dir = 1;
13785 int val, period, period1, period2, dif, dif1, dif2;
13786 int best_dif = BNX2X_MAX_PHC_DRIFT, best_period = 0, best_val = 0;
13787
13788 DP(BNX2X_MSG_PTP, "PTP adjfreq called, ppb = %d\n", ppb);
13789
13790 if (!netif_running(bp->dev)) {
13791 DP(BNX2X_MSG_PTP,
13792 "PTP adjfreq called while the interface is down\n");
13793 return -ENETDOWN;
13794 }
13795
13796 if (ppb < 0) {
13797 ppb = -ppb;
13798 drift_dir = 0;
13799 }
13800
13801 if (ppb == 0) {
13802 best_val = 1;
13803 best_period = 0x1FFFFFF;
13804 } else if (ppb >= BNX2X_MAX_PHC_DRIFT) {
13805 best_val = 31;
13806 best_period = 1;
13807 } else {
13808 /* Changed not to allow val = 8, 16, 24 as these values
13809 * are not supported in workaround.
13810 */
13811 for (val = 0; val <= 31; val++) {
13812 if ((val & 0x7) == 0)
13813 continue;
13814 period1 = val * 1000000 / ppb;
13815 period2 = period1 + 1;
13816 if (period1 != 0)
13817 dif1 = ppb - (val * 1000000 / period1);
13818 else
13819 dif1 = BNX2X_MAX_PHC_DRIFT;
13820 if (dif1 < 0)
13821 dif1 = -dif1;
13822 dif2 = ppb - (val * 1000000 / period2);
13823 if (dif2 < 0)
13824 dif2 = -dif2;
13825 dif = (dif1 < dif2) ? dif1 : dif2;
13826 period = (dif1 < dif2) ? period1 : period2;
13827 if (dif < best_dif) {
13828 best_dif = dif;
13829 best_val = val;
13830 best_period = period;
13831 }
13832 }
13833 }
13834
13835 rc = bnx2x_send_update_drift_ramrod(bp, drift_dir, best_val,
13836 best_period);
13837 if (rc) {
13838 BNX2X_ERR("Failed to set drift\n");
13839 return -EFAULT;
13840 }
13841
13842 DP(BNX2X_MSG_PTP, "Configured val = %d, period = %d\n", best_val,
13843 best_period);
13844
13845 return 0;
13846 }
13847
bnx2x_ptp_adjtime(struct ptp_clock_info * ptp,s64 delta)13848 static int bnx2x_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
13849 {
13850 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13851
13852 if (!netif_running(bp->dev)) {
13853 DP(BNX2X_MSG_PTP,
13854 "PTP adjtime called while the interface is down\n");
13855 return -ENETDOWN;
13856 }
13857
13858 DP(BNX2X_MSG_PTP, "PTP adjtime called, delta = %llx\n", delta);
13859
13860 timecounter_adjtime(&bp->timecounter, delta);
13861
13862 return 0;
13863 }
13864
bnx2x_ptp_gettime(struct ptp_clock_info * ptp,struct timespec64 * ts)13865 static int bnx2x_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
13866 {
13867 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13868 u64 ns;
13869
13870 if (!netif_running(bp->dev)) {
13871 DP(BNX2X_MSG_PTP,
13872 "PTP gettime called while the interface is down\n");
13873 return -ENETDOWN;
13874 }
13875
13876 ns = timecounter_read(&bp->timecounter);
13877
13878 DP(BNX2X_MSG_PTP, "PTP gettime called, ns = %llu\n", ns);
13879
13880 *ts = ns_to_timespec64(ns);
13881
13882 return 0;
13883 }
13884
bnx2x_ptp_settime(struct ptp_clock_info * ptp,const struct timespec64 * ts)13885 static int bnx2x_ptp_settime(struct ptp_clock_info *ptp,
13886 const struct timespec64 *ts)
13887 {
13888 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13889 u64 ns;
13890
13891 if (!netif_running(bp->dev)) {
13892 DP(BNX2X_MSG_PTP,
13893 "PTP settime called while the interface is down\n");
13894 return -ENETDOWN;
13895 }
13896
13897 ns = timespec64_to_ns(ts);
13898
13899 DP(BNX2X_MSG_PTP, "PTP settime called, ns = %llu\n", ns);
13900
13901 /* Re-init the timecounter */
13902 timecounter_init(&bp->timecounter, &bp->cyclecounter, ns);
13903
13904 return 0;
13905 }
13906
13907 /* Enable (or disable) ancillary features of the phc subsystem */
bnx2x_ptp_enable(struct ptp_clock_info * ptp,struct ptp_clock_request * rq,int on)13908 static int bnx2x_ptp_enable(struct ptp_clock_info *ptp,
13909 struct ptp_clock_request *rq, int on)
13910 {
13911 struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13912
13913 BNX2X_ERR("PHC ancillary features are not supported\n");
13914 return -ENOTSUPP;
13915 }
13916
bnx2x_register_phc(struct bnx2x * bp)13917 void bnx2x_register_phc(struct bnx2x *bp)
13918 {
13919 /* Fill the ptp_clock_info struct and register PTP clock*/
13920 bp->ptp_clock_info.owner = THIS_MODULE;
13921 snprintf(bp->ptp_clock_info.name, 16, "%s", bp->dev->name);
13922 bp->ptp_clock_info.max_adj = BNX2X_MAX_PHC_DRIFT; /* In PPB */
13923 bp->ptp_clock_info.n_alarm = 0;
13924 bp->ptp_clock_info.n_ext_ts = 0;
13925 bp->ptp_clock_info.n_per_out = 0;
13926 bp->ptp_clock_info.pps = 0;
13927 bp->ptp_clock_info.adjfreq = bnx2x_ptp_adjfreq;
13928 bp->ptp_clock_info.adjtime = bnx2x_ptp_adjtime;
13929 bp->ptp_clock_info.gettime64 = bnx2x_ptp_gettime;
13930 bp->ptp_clock_info.settime64 = bnx2x_ptp_settime;
13931 bp->ptp_clock_info.enable = bnx2x_ptp_enable;
13932
13933 bp->ptp_clock = ptp_clock_register(&bp->ptp_clock_info, &bp->pdev->dev);
13934 if (IS_ERR(bp->ptp_clock)) {
13935 bp->ptp_clock = NULL;
13936 BNX2X_ERR("PTP clock registration failed\n");
13937 }
13938 }
13939
bnx2x_init_one(struct pci_dev * pdev,const struct pci_device_id * ent)13940 static int bnx2x_init_one(struct pci_dev *pdev,
13941 const struct pci_device_id *ent)
13942 {
13943 struct net_device *dev = NULL;
13944 struct bnx2x *bp;
13945 int rc, max_non_def_sbs;
13946 int rx_count, tx_count, rss_count, doorbell_size;
13947 int max_cos_est;
13948 bool is_vf;
13949 int cnic_cnt;
13950
13951 /* Management FW 'remembers' living interfaces. Allow it some time
13952 * to forget previously living interfaces, allowing a proper re-load.
13953 */
13954 if (is_kdump_kernel()) {
13955 ktime_t now = ktime_get_boottime();
13956 ktime_t fw_ready_time = ktime_set(5, 0);
13957
13958 if (ktime_before(now, fw_ready_time))
13959 msleep(ktime_ms_delta(fw_ready_time, now));
13960 }
13961
13962 /* An estimated maximum supported CoS number according to the chip
13963 * version.
13964 * We will try to roughly estimate the maximum number of CoSes this chip
13965 * may support in order to minimize the memory allocated for Tx
13966 * netdev_queue's. This number will be accurately calculated during the
13967 * initialization of bp->max_cos based on the chip versions AND chip
13968 * revision in the bnx2x_init_bp().
13969 */
13970 max_cos_est = set_max_cos_est(ent->driver_data);
13971 if (max_cos_est < 0)
13972 return max_cos_est;
13973 is_vf = set_is_vf(ent->driver_data);
13974 cnic_cnt = is_vf ? 0 : 1;
13975
13976 max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt);
13977
13978 /* add another SB for VF as it has no default SB */
13979 max_non_def_sbs += is_vf ? 1 : 0;
13980
13981 /* Maximum number of RSS queues: one IGU SB goes to CNIC */
13982 rss_count = max_non_def_sbs - cnic_cnt;
13983
13984 if (rss_count < 1)
13985 return -EINVAL;
13986
13987 /* Maximum number of netdev Rx queues: RSS + FCoE L2 */
13988 rx_count = rss_count + cnic_cnt;
13989
13990 /* Maximum number of netdev Tx queues:
13991 * Maximum TSS queues * Maximum supported number of CoS + FCoE L2
13992 */
13993 tx_count = rss_count * max_cos_est + cnic_cnt;
13994
13995 /* dev zeroed in init_etherdev */
13996 dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
13997 if (!dev)
13998 return -ENOMEM;
13999
14000 bp = netdev_priv(dev);
14001
14002 bp->flags = 0;
14003 if (is_vf)
14004 bp->flags |= IS_VF_FLAG;
14005
14006 bp->igu_sb_cnt = max_non_def_sbs;
14007 bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
14008 bp->msg_enable = debug;
14009 bp->cnic_support = cnic_cnt;
14010 bp->cnic_probe = bnx2x_cnic_probe;
14011
14012 pci_set_drvdata(pdev, dev);
14013
14014 rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
14015 if (rc < 0) {
14016 free_netdev(dev);
14017 return rc;
14018 }
14019
14020 BNX2X_DEV_INFO("This is a %s function\n",
14021 IS_PF(bp) ? "physical" : "virtual");
14022 BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
14023 BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
14024 BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
14025 tx_count, rx_count);
14026
14027 rc = bnx2x_init_bp(bp);
14028 if (rc)
14029 goto init_one_exit;
14030
14031 /* Map doorbells here as we need the real value of bp->max_cos which
14032 * is initialized in bnx2x_init_bp() to determine the number of
14033 * l2 connections.
14034 */
14035 if (IS_VF(bp)) {
14036 bp->doorbells = bnx2x_vf_doorbells(bp);
14037 rc = bnx2x_vf_pci_alloc(bp);
14038 if (rc)
14039 goto init_one_freemem;
14040 } else {
14041 doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
14042 if (doorbell_size > pci_resource_len(pdev, 2)) {
14043 dev_err(&bp->pdev->dev,
14044 "Cannot map doorbells, bar size too small, aborting\n");
14045 rc = -ENOMEM;
14046 goto init_one_freemem;
14047 }
14048 bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
14049 doorbell_size);
14050 }
14051 if (!bp->doorbells) {
14052 dev_err(&bp->pdev->dev,
14053 "Cannot map doorbell space, aborting\n");
14054 rc = -ENOMEM;
14055 goto init_one_freemem;
14056 }
14057
14058 if (IS_VF(bp)) {
14059 rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
14060 if (rc)
14061 goto init_one_freemem;
14062
14063 #ifdef CONFIG_BNX2X_SRIOV
14064 /* VF with OLD Hypervisor or old PF do not support filtering */
14065 if (bp->acquire_resp.pfdev_info.pf_cap & PFVF_CAP_VLAN_FILTER) {
14066 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
14067 dev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
14068 }
14069 #endif
14070 }
14071
14072 /* Enable SRIOV if capability found in configuration space */
14073 rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
14074 if (rc)
14075 goto init_one_freemem;
14076
14077 /* calc qm_cid_count */
14078 bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
14079 BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
14080
14081 /* disable FCOE L2 queue for E1x*/
14082 if (CHIP_IS_E1x(bp))
14083 bp->flags |= NO_FCOE_FLAG;
14084
14085 /* Set bp->num_queues for MSI-X mode*/
14086 bnx2x_set_num_queues(bp);
14087
14088 /* Configure interrupt mode: try to enable MSI-X/MSI if
14089 * needed.
14090 */
14091 rc = bnx2x_set_int_mode(bp);
14092 if (rc) {
14093 dev_err(&pdev->dev, "Cannot set interrupts\n");
14094 goto init_one_freemem;
14095 }
14096 BNX2X_DEV_INFO("set interrupts successfully\n");
14097
14098 /* register the net device */
14099 rc = register_netdev(dev);
14100 if (rc) {
14101 dev_err(&pdev->dev, "Cannot register net device\n");
14102 goto init_one_freemem;
14103 }
14104 BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
14105
14106 if (!NO_FCOE(bp)) {
14107 /* Add storage MAC address */
14108 rtnl_lock();
14109 dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
14110 rtnl_unlock();
14111 }
14112 BNX2X_DEV_INFO(
14113 "%s (%c%d) PCI-E found at mem %lx, IRQ %d, node addr %pM\n",
14114 board_info[ent->driver_data].name,
14115 (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
14116 dev->base_addr, bp->pdev->irq, dev->dev_addr);
14117 pcie_print_link_status(bp->pdev);
14118
14119 if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
14120 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED);
14121
14122 return 0;
14123
14124 init_one_freemem:
14125 bnx2x_free_mem_bp(bp);
14126
14127 init_one_exit:
14128 bnx2x_disable_pcie_error_reporting(bp);
14129
14130 if (bp->regview)
14131 iounmap(bp->regview);
14132
14133 if (IS_PF(bp) && bp->doorbells)
14134 iounmap(bp->doorbells);
14135
14136 free_netdev(dev);
14137
14138 if (atomic_read(&pdev->enable_cnt) == 1)
14139 pci_release_regions(pdev);
14140
14141 pci_disable_device(pdev);
14142
14143 return rc;
14144 }
14145
__bnx2x_remove(struct pci_dev * pdev,struct net_device * dev,struct bnx2x * bp,bool remove_netdev)14146 static void __bnx2x_remove(struct pci_dev *pdev,
14147 struct net_device *dev,
14148 struct bnx2x *bp,
14149 bool remove_netdev)
14150 {
14151 /* Delete storage MAC address */
14152 if (!NO_FCOE(bp)) {
14153 rtnl_lock();
14154 dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
14155 rtnl_unlock();
14156 }
14157
14158 #ifdef BCM_DCBNL
14159 /* Delete app tlvs from dcbnl */
14160 bnx2x_dcbnl_update_applist(bp, true);
14161 #endif
14162
14163 if (IS_PF(bp) &&
14164 !BP_NOMCP(bp) &&
14165 (bp->flags & BC_SUPPORTS_RMMOD_CMD))
14166 bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0);
14167
14168 /* Close the interface - either directly or implicitly */
14169 if (remove_netdev) {
14170 unregister_netdev(dev);
14171 } else {
14172 rtnl_lock();
14173 dev_close(dev);
14174 rtnl_unlock();
14175 }
14176
14177 bnx2x_iov_remove_one(bp);
14178
14179 /* Power on: we can't let PCI layer write to us while we are in D3 */
14180 if (IS_PF(bp)) {
14181 bnx2x_set_power_state(bp, PCI_D0);
14182 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_NOT_LOADED);
14183
14184 /* Set endianity registers to reset values in case next driver
14185 * boots in different endianty environment.
14186 */
14187 bnx2x_reset_endianity(bp);
14188 }
14189
14190 /* Disable MSI/MSI-X */
14191 bnx2x_disable_msi(bp);
14192
14193 /* Power off */
14194 if (IS_PF(bp))
14195 bnx2x_set_power_state(bp, PCI_D3hot);
14196
14197 /* Make sure RESET task is not scheduled before continuing */
14198 cancel_delayed_work_sync(&bp->sp_rtnl_task);
14199
14200 /* send message via vfpf channel to release the resources of this vf */
14201 if (IS_VF(bp))
14202 bnx2x_vfpf_release(bp);
14203
14204 /* Assumes no further PCIe PM changes will occur */
14205 if (system_state == SYSTEM_POWER_OFF) {
14206 pci_wake_from_d3(pdev, bp->wol);
14207 pci_set_power_state(pdev, PCI_D3hot);
14208 }
14209
14210 bnx2x_disable_pcie_error_reporting(bp);
14211 if (remove_netdev) {
14212 if (bp->regview)
14213 iounmap(bp->regview);
14214
14215 /* For vfs, doorbells are part of the regview and were unmapped
14216 * along with it. FW is only loaded by PF.
14217 */
14218 if (IS_PF(bp)) {
14219 if (bp->doorbells)
14220 iounmap(bp->doorbells);
14221
14222 bnx2x_release_firmware(bp);
14223 } else {
14224 bnx2x_vf_pci_dealloc(bp);
14225 }
14226 bnx2x_free_mem_bp(bp);
14227
14228 free_netdev(dev);
14229
14230 if (atomic_read(&pdev->enable_cnt) == 1)
14231 pci_release_regions(pdev);
14232
14233 pci_disable_device(pdev);
14234 }
14235 }
14236
bnx2x_remove_one(struct pci_dev * pdev)14237 static void bnx2x_remove_one(struct pci_dev *pdev)
14238 {
14239 struct net_device *dev = pci_get_drvdata(pdev);
14240 struct bnx2x *bp;
14241
14242 if (!dev) {
14243 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
14244 return;
14245 }
14246 bp = netdev_priv(dev);
14247
14248 __bnx2x_remove(pdev, dev, bp, true);
14249 }
14250
bnx2x_eeh_nic_unload(struct bnx2x * bp)14251 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
14252 {
14253 bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
14254
14255 bp->rx_mode = BNX2X_RX_MODE_NONE;
14256
14257 if (CNIC_LOADED(bp))
14258 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
14259
14260 /* Stop Tx */
14261 bnx2x_tx_disable(bp);
14262 /* Delete all NAPI objects */
14263 bnx2x_del_all_napi(bp);
14264 if (CNIC_LOADED(bp))
14265 bnx2x_del_all_napi_cnic(bp);
14266 netdev_reset_tc(bp->dev);
14267
14268 del_timer_sync(&bp->timer);
14269 cancel_delayed_work_sync(&bp->sp_task);
14270 cancel_delayed_work_sync(&bp->period_task);
14271
14272 if (!down_timeout(&bp->stats_lock, HZ / 10)) {
14273 bp->stats_state = STATS_STATE_DISABLED;
14274 up(&bp->stats_lock);
14275 }
14276
14277 bnx2x_save_statistics(bp);
14278
14279 netif_carrier_off(bp->dev);
14280
14281 return 0;
14282 }
14283
14284 /**
14285 * bnx2x_io_error_detected - called when PCI error is detected
14286 * @pdev: Pointer to PCI device
14287 * @state: The current pci connection state
14288 *
14289 * This function is called after a PCI bus error affecting
14290 * this device has been detected.
14291 */
bnx2x_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)14292 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
14293 pci_channel_state_t state)
14294 {
14295 struct net_device *dev = pci_get_drvdata(pdev);
14296 struct bnx2x *bp = netdev_priv(dev);
14297
14298 rtnl_lock();
14299
14300 BNX2X_ERR("IO error detected\n");
14301
14302 netif_device_detach(dev);
14303
14304 if (state == pci_channel_io_perm_failure) {
14305 rtnl_unlock();
14306 return PCI_ERS_RESULT_DISCONNECT;
14307 }
14308
14309 if (netif_running(dev))
14310 bnx2x_eeh_nic_unload(bp);
14311
14312 bnx2x_prev_path_mark_eeh(bp);
14313
14314 pci_disable_device(pdev);
14315
14316 rtnl_unlock();
14317
14318 /* Request a slot reset */
14319 return PCI_ERS_RESULT_NEED_RESET;
14320 }
14321
14322 /**
14323 * bnx2x_io_slot_reset - called after the PCI bus has been reset
14324 * @pdev: Pointer to PCI device
14325 *
14326 * Restart the card from scratch, as if from a cold-boot.
14327 */
bnx2x_io_slot_reset(struct pci_dev * pdev)14328 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
14329 {
14330 struct net_device *dev = pci_get_drvdata(pdev);
14331 struct bnx2x *bp = netdev_priv(dev);
14332 int i;
14333
14334 rtnl_lock();
14335 BNX2X_ERR("IO slot reset initializing...\n");
14336 if (pci_enable_device(pdev)) {
14337 dev_err(&pdev->dev,
14338 "Cannot re-enable PCI device after reset\n");
14339 rtnl_unlock();
14340 return PCI_ERS_RESULT_DISCONNECT;
14341 }
14342
14343 pci_set_master(pdev);
14344 pci_restore_state(pdev);
14345 pci_save_state(pdev);
14346
14347 if (netif_running(dev))
14348 bnx2x_set_power_state(bp, PCI_D0);
14349
14350 if (netif_running(dev)) {
14351 BNX2X_ERR("IO slot reset --> driver unload\n");
14352
14353 /* MCP should have been reset; Need to wait for validity */
14354 if (bnx2x_init_shmem(bp)) {
14355 rtnl_unlock();
14356 return PCI_ERS_RESULT_DISCONNECT;
14357 }
14358
14359 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
14360 u32 v;
14361
14362 v = SHMEM2_RD(bp,
14363 drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
14364 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
14365 v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
14366 }
14367 bnx2x_drain_tx_queues(bp);
14368 bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
14369 bnx2x_netif_stop(bp, 1);
14370 bnx2x_free_irq(bp);
14371
14372 /* Report UNLOAD_DONE to MCP */
14373 bnx2x_send_unload_done(bp, true);
14374
14375 bp->sp_state = 0;
14376 bp->port.pmf = 0;
14377
14378 bnx2x_prev_unload(bp);
14379
14380 /* We should have reseted the engine, so It's fair to
14381 * assume the FW will no longer write to the bnx2x driver.
14382 */
14383 bnx2x_squeeze_objects(bp);
14384 bnx2x_free_skbs(bp);
14385 for_each_rx_queue(bp, i)
14386 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
14387 bnx2x_free_fp_mem(bp);
14388 bnx2x_free_mem(bp);
14389
14390 bp->state = BNX2X_STATE_CLOSED;
14391 }
14392
14393 rtnl_unlock();
14394
14395 return PCI_ERS_RESULT_RECOVERED;
14396 }
14397
14398 /**
14399 * bnx2x_io_resume - called when traffic can start flowing again
14400 * @pdev: Pointer to PCI device
14401 *
14402 * This callback is called when the error recovery driver tells us that
14403 * its OK to resume normal operation.
14404 */
bnx2x_io_resume(struct pci_dev * pdev)14405 static void bnx2x_io_resume(struct pci_dev *pdev)
14406 {
14407 struct net_device *dev = pci_get_drvdata(pdev);
14408 struct bnx2x *bp = netdev_priv(dev);
14409
14410 if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
14411 netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
14412 return;
14413 }
14414
14415 rtnl_lock();
14416
14417 bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
14418 DRV_MSG_SEQ_NUMBER_MASK;
14419
14420 if (netif_running(dev))
14421 bnx2x_nic_load(bp, LOAD_NORMAL);
14422
14423 netif_device_attach(dev);
14424
14425 rtnl_unlock();
14426 }
14427
14428 static const struct pci_error_handlers bnx2x_err_handler = {
14429 .error_detected = bnx2x_io_error_detected,
14430 .slot_reset = bnx2x_io_slot_reset,
14431 .resume = bnx2x_io_resume,
14432 };
14433
bnx2x_shutdown(struct pci_dev * pdev)14434 static void bnx2x_shutdown(struct pci_dev *pdev)
14435 {
14436 struct net_device *dev = pci_get_drvdata(pdev);
14437 struct bnx2x *bp;
14438
14439 if (!dev)
14440 return;
14441
14442 bp = netdev_priv(dev);
14443 if (!bp)
14444 return;
14445
14446 rtnl_lock();
14447 netif_device_detach(dev);
14448 rtnl_unlock();
14449
14450 /* Don't remove the netdevice, as there are scenarios which will cause
14451 * the kernel to hang, e.g., when trying to remove bnx2i while the
14452 * rootfs is mounted from SAN.
14453 */
14454 __bnx2x_remove(pdev, dev, bp, false);
14455 }
14456
14457 static struct pci_driver bnx2x_pci_driver = {
14458 .name = DRV_MODULE_NAME,
14459 .id_table = bnx2x_pci_tbl,
14460 .probe = bnx2x_init_one,
14461 .remove = bnx2x_remove_one,
14462 .suspend = bnx2x_suspend,
14463 .resume = bnx2x_resume,
14464 .err_handler = &bnx2x_err_handler,
14465 #ifdef CONFIG_BNX2X_SRIOV
14466 .sriov_configure = bnx2x_sriov_configure,
14467 #endif
14468 .shutdown = bnx2x_shutdown,
14469 };
14470
bnx2x_init(void)14471 static int __init bnx2x_init(void)
14472 {
14473 int ret;
14474
14475 pr_info("%s", version);
14476
14477 bnx2x_wq = create_singlethread_workqueue("bnx2x");
14478 if (bnx2x_wq == NULL) {
14479 pr_err("Cannot create workqueue\n");
14480 return -ENOMEM;
14481 }
14482 bnx2x_iov_wq = create_singlethread_workqueue("bnx2x_iov");
14483 if (!bnx2x_iov_wq) {
14484 pr_err("Cannot create iov workqueue\n");
14485 destroy_workqueue(bnx2x_wq);
14486 return -ENOMEM;
14487 }
14488
14489 ret = pci_register_driver(&bnx2x_pci_driver);
14490 if (ret) {
14491 pr_err("Cannot register driver\n");
14492 destroy_workqueue(bnx2x_wq);
14493 destroy_workqueue(bnx2x_iov_wq);
14494 }
14495 return ret;
14496 }
14497
bnx2x_cleanup(void)14498 static void __exit bnx2x_cleanup(void)
14499 {
14500 struct list_head *pos, *q;
14501
14502 pci_unregister_driver(&bnx2x_pci_driver);
14503
14504 destroy_workqueue(bnx2x_wq);
14505 destroy_workqueue(bnx2x_iov_wq);
14506
14507 /* Free globally allocated resources */
14508 list_for_each_safe(pos, q, &bnx2x_prev_list) {
14509 struct bnx2x_prev_path_list *tmp =
14510 list_entry(pos, struct bnx2x_prev_path_list, list);
14511 list_del(pos);
14512 kfree(tmp);
14513 }
14514 }
14515
bnx2x_notify_link_changed(struct bnx2x * bp)14516 void bnx2x_notify_link_changed(struct bnx2x *bp)
14517 {
14518 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
14519 }
14520
14521 module_init(bnx2x_init);
14522 module_exit(bnx2x_cleanup);
14523
14524 /**
14525 * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
14526 *
14527 * @bp: driver handle
14528 * @set: set or clear the CAM entry
14529 *
14530 * This function will wait until the ramrod completion returns.
14531 * Return 0 if success, -ENODEV if ramrod doesn't return.
14532 */
bnx2x_set_iscsi_eth_mac_addr(struct bnx2x * bp)14533 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
14534 {
14535 unsigned long ramrod_flags = 0;
14536
14537 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
14538 return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
14539 &bp->iscsi_l2_mac_obj, true,
14540 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
14541 }
14542
14543 /* count denotes the number of new completions we have seen */
bnx2x_cnic_sp_post(struct bnx2x * bp,int count)14544 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
14545 {
14546 struct eth_spe *spe;
14547 int cxt_index, cxt_offset;
14548
14549 #ifdef BNX2X_STOP_ON_ERROR
14550 if (unlikely(bp->panic))
14551 return;
14552 #endif
14553
14554 spin_lock_bh(&bp->spq_lock);
14555 BUG_ON(bp->cnic_spq_pending < count);
14556 bp->cnic_spq_pending -= count;
14557
14558 for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
14559 u16 type = (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
14560 & SPE_HDR_CONN_TYPE) >>
14561 SPE_HDR_CONN_TYPE_SHIFT;
14562 u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
14563 >> SPE_HDR_CMD_ID_SHIFT) & 0xff;
14564
14565 /* Set validation for iSCSI L2 client before sending SETUP
14566 * ramrod
14567 */
14568 if (type == ETH_CONNECTION_TYPE) {
14569 if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
14570 cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
14571 ILT_PAGE_CIDS;
14572 cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
14573 (cxt_index * ILT_PAGE_CIDS);
14574 bnx2x_set_ctx_validation(bp,
14575 &bp->context[cxt_index].
14576 vcxt[cxt_offset].eth,
14577 BNX2X_ISCSI_ETH_CID(bp));
14578 }
14579 }
14580
14581 /*
14582 * There may be not more than 8 L2, not more than 8 L5 SPEs
14583 * and in the air. We also check that number of outstanding
14584 * COMMON ramrods is not more than the EQ and SPQ can
14585 * accommodate.
14586 */
14587 if (type == ETH_CONNECTION_TYPE) {
14588 if (!atomic_read(&bp->cq_spq_left))
14589 break;
14590 else
14591 atomic_dec(&bp->cq_spq_left);
14592 } else if (type == NONE_CONNECTION_TYPE) {
14593 if (!atomic_read(&bp->eq_spq_left))
14594 break;
14595 else
14596 atomic_dec(&bp->eq_spq_left);
14597 } else if ((type == ISCSI_CONNECTION_TYPE) ||
14598 (type == FCOE_CONNECTION_TYPE)) {
14599 if (bp->cnic_spq_pending >=
14600 bp->cnic_eth_dev.max_kwqe_pending)
14601 break;
14602 else
14603 bp->cnic_spq_pending++;
14604 } else {
14605 BNX2X_ERR("Unknown SPE type: %d\n", type);
14606 bnx2x_panic();
14607 break;
14608 }
14609
14610 spe = bnx2x_sp_get_next(bp);
14611 *spe = *bp->cnic_kwq_cons;
14612
14613 DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
14614 bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
14615
14616 if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
14617 bp->cnic_kwq_cons = bp->cnic_kwq;
14618 else
14619 bp->cnic_kwq_cons++;
14620 }
14621 bnx2x_sp_prod_update(bp);
14622 spin_unlock_bh(&bp->spq_lock);
14623 }
14624
bnx2x_cnic_sp_queue(struct net_device * dev,struct kwqe_16 * kwqes[],u32 count)14625 static int bnx2x_cnic_sp_queue(struct net_device *dev,
14626 struct kwqe_16 *kwqes[], u32 count)
14627 {
14628 struct bnx2x *bp = netdev_priv(dev);
14629 int i;
14630
14631 #ifdef BNX2X_STOP_ON_ERROR
14632 if (unlikely(bp->panic)) {
14633 BNX2X_ERR("Can't post to SP queue while panic\n");
14634 return -EIO;
14635 }
14636 #endif
14637
14638 if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
14639 (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
14640 BNX2X_ERR("Handling parity error recovery. Try again later\n");
14641 return -EAGAIN;
14642 }
14643
14644 spin_lock_bh(&bp->spq_lock);
14645
14646 for (i = 0; i < count; i++) {
14647 struct eth_spe *spe = (struct eth_spe *)kwqes[i];
14648
14649 if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
14650 break;
14651
14652 *bp->cnic_kwq_prod = *spe;
14653
14654 bp->cnic_kwq_pending++;
14655
14656 DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
14657 spe->hdr.conn_and_cmd_data, spe->hdr.type,
14658 spe->data.update_data_addr.hi,
14659 spe->data.update_data_addr.lo,
14660 bp->cnic_kwq_pending);
14661
14662 if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
14663 bp->cnic_kwq_prod = bp->cnic_kwq;
14664 else
14665 bp->cnic_kwq_prod++;
14666 }
14667
14668 spin_unlock_bh(&bp->spq_lock);
14669
14670 if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
14671 bnx2x_cnic_sp_post(bp, 0);
14672
14673 return i;
14674 }
14675
bnx2x_cnic_ctl_send(struct bnx2x * bp,struct cnic_ctl_info * ctl)14676 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14677 {
14678 struct cnic_ops *c_ops;
14679 int rc = 0;
14680
14681 mutex_lock(&bp->cnic_mutex);
14682 c_ops = rcu_dereference_protected(bp->cnic_ops,
14683 lockdep_is_held(&bp->cnic_mutex));
14684 if (c_ops)
14685 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14686 mutex_unlock(&bp->cnic_mutex);
14687
14688 return rc;
14689 }
14690
bnx2x_cnic_ctl_send_bh(struct bnx2x * bp,struct cnic_ctl_info * ctl)14691 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14692 {
14693 struct cnic_ops *c_ops;
14694 int rc = 0;
14695
14696 rcu_read_lock();
14697 c_ops = rcu_dereference(bp->cnic_ops);
14698 if (c_ops)
14699 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14700 rcu_read_unlock();
14701
14702 return rc;
14703 }
14704
14705 /*
14706 * for commands that have no data
14707 */
bnx2x_cnic_notify(struct bnx2x * bp,int cmd)14708 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
14709 {
14710 struct cnic_ctl_info ctl = {0};
14711
14712 ctl.cmd = cmd;
14713
14714 return bnx2x_cnic_ctl_send(bp, &ctl);
14715 }
14716
bnx2x_cnic_cfc_comp(struct bnx2x * bp,int cid,u8 err)14717 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
14718 {
14719 struct cnic_ctl_info ctl = {0};
14720
14721 /* first we tell CNIC and only then we count this as a completion */
14722 ctl.cmd = CNIC_CTL_COMPLETION_CMD;
14723 ctl.data.comp.cid = cid;
14724 ctl.data.comp.error = err;
14725
14726 bnx2x_cnic_ctl_send_bh(bp, &ctl);
14727 bnx2x_cnic_sp_post(bp, 0);
14728 }
14729
14730 /* Called with netif_addr_lock_bh() taken.
14731 * Sets an rx_mode config for an iSCSI ETH client.
14732 * Doesn't block.
14733 * Completion should be checked outside.
14734 */
bnx2x_set_iscsi_eth_rx_mode(struct bnx2x * bp,bool start)14735 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
14736 {
14737 unsigned long accept_flags = 0, ramrod_flags = 0;
14738 u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
14739 int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
14740
14741 if (start) {
14742 /* Start accepting on iSCSI L2 ring. Accept all multicasts
14743 * because it's the only way for UIO Queue to accept
14744 * multicasts (in non-promiscuous mode only one Queue per
14745 * function will receive multicast packets (leading in our
14746 * case).
14747 */
14748 __set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
14749 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
14750 __set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
14751 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
14752
14753 /* Clear STOP_PENDING bit if START is requested */
14754 clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
14755
14756 sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
14757 } else
14758 /* Clear START_PENDING bit if STOP is requested */
14759 clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
14760
14761 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
14762 set_bit(sched_state, &bp->sp_state);
14763 else {
14764 __set_bit(RAMROD_RX, &ramrod_flags);
14765 bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
14766 ramrod_flags);
14767 }
14768 }
14769
bnx2x_drv_ctl(struct net_device * dev,struct drv_ctl_info * ctl)14770 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
14771 {
14772 struct bnx2x *bp = netdev_priv(dev);
14773 int rc = 0;
14774
14775 switch (ctl->cmd) {
14776 case DRV_CTL_CTXTBL_WR_CMD: {
14777 u32 index = ctl->data.io.offset;
14778 dma_addr_t addr = ctl->data.io.dma_addr;
14779
14780 bnx2x_ilt_wr(bp, index, addr);
14781 break;
14782 }
14783
14784 case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
14785 int count = ctl->data.credit.credit_count;
14786
14787 bnx2x_cnic_sp_post(bp, count);
14788 break;
14789 }
14790
14791 /* rtnl_lock is held. */
14792 case DRV_CTL_START_L2_CMD: {
14793 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14794 unsigned long sp_bits = 0;
14795
14796 /* Configure the iSCSI classification object */
14797 bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
14798 cp->iscsi_l2_client_id,
14799 cp->iscsi_l2_cid, BP_FUNC(bp),
14800 bnx2x_sp(bp, mac_rdata),
14801 bnx2x_sp_mapping(bp, mac_rdata),
14802 BNX2X_FILTER_MAC_PENDING,
14803 &bp->sp_state, BNX2X_OBJ_TYPE_RX,
14804 &bp->macs_pool);
14805
14806 /* Set iSCSI MAC address */
14807 rc = bnx2x_set_iscsi_eth_mac_addr(bp);
14808 if (rc)
14809 break;
14810
14811 barrier();
14812
14813 /* Start accepting on iSCSI L2 ring */
14814
14815 netif_addr_lock_bh(dev);
14816 bnx2x_set_iscsi_eth_rx_mode(bp, true);
14817 netif_addr_unlock_bh(dev);
14818
14819 /* bits to wait on */
14820 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14821 __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
14822
14823 if (!bnx2x_wait_sp_comp(bp, sp_bits))
14824 BNX2X_ERR("rx_mode completion timed out!\n");
14825
14826 break;
14827 }
14828
14829 /* rtnl_lock is held. */
14830 case DRV_CTL_STOP_L2_CMD: {
14831 unsigned long sp_bits = 0;
14832
14833 /* Stop accepting on iSCSI L2 ring */
14834 netif_addr_lock_bh(dev);
14835 bnx2x_set_iscsi_eth_rx_mode(bp, false);
14836 netif_addr_unlock_bh(dev);
14837
14838 /* bits to wait on */
14839 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14840 __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
14841
14842 if (!bnx2x_wait_sp_comp(bp, sp_bits))
14843 BNX2X_ERR("rx_mode completion timed out!\n");
14844
14845 barrier();
14846
14847 /* Unset iSCSI L2 MAC */
14848 rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
14849 BNX2X_ISCSI_ETH_MAC, true);
14850 break;
14851 }
14852 case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
14853 int count = ctl->data.credit.credit_count;
14854
14855 smp_mb__before_atomic();
14856 atomic_add(count, &bp->cq_spq_left);
14857 smp_mb__after_atomic();
14858 break;
14859 }
14860 case DRV_CTL_ULP_REGISTER_CMD: {
14861 int ulp_type = ctl->data.register_data.ulp_type;
14862
14863 if (CHIP_IS_E3(bp)) {
14864 int idx = BP_FW_MB_IDX(bp);
14865 u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14866 int path = BP_PATH(bp);
14867 int port = BP_PORT(bp);
14868 int i;
14869 u32 scratch_offset;
14870 u32 *host_addr;
14871
14872 /* first write capability to shmem2 */
14873 if (ulp_type == CNIC_ULP_ISCSI)
14874 cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14875 else if (ulp_type == CNIC_ULP_FCOE)
14876 cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14877 SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14878
14879 if ((ulp_type != CNIC_ULP_FCOE) ||
14880 (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
14881 (!(bp->flags & BC_SUPPORTS_FCOE_FEATURES)))
14882 break;
14883
14884 /* if reached here - should write fcoe capabilities */
14885 scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
14886 if (!scratch_offset)
14887 break;
14888 scratch_offset += offsetof(struct glob_ncsi_oem_data,
14889 fcoe_features[path][port]);
14890 host_addr = (u32 *) &(ctl->data.register_data.
14891 fcoe_features);
14892 for (i = 0; i < sizeof(struct fcoe_capabilities);
14893 i += 4)
14894 REG_WR(bp, scratch_offset + i,
14895 *(host_addr + i/4));
14896 }
14897 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14898 break;
14899 }
14900
14901 case DRV_CTL_ULP_UNREGISTER_CMD: {
14902 int ulp_type = ctl->data.ulp_type;
14903
14904 if (CHIP_IS_E3(bp)) {
14905 int idx = BP_FW_MB_IDX(bp);
14906 u32 cap;
14907
14908 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14909 if (ulp_type == CNIC_ULP_ISCSI)
14910 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14911 else if (ulp_type == CNIC_ULP_FCOE)
14912 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14913 SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14914 }
14915 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14916 break;
14917 }
14918
14919 default:
14920 BNX2X_ERR("unknown command %x\n", ctl->cmd);
14921 rc = -EINVAL;
14922 }
14923
14924 /* For storage-only interfaces, change driver state */
14925 if (IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp)) {
14926 switch (ctl->drv_state) {
14927 case DRV_NOP:
14928 break;
14929 case DRV_ACTIVE:
14930 bnx2x_set_os_driver_state(bp,
14931 OS_DRIVER_STATE_ACTIVE);
14932 break;
14933 case DRV_INACTIVE:
14934 bnx2x_set_os_driver_state(bp,
14935 OS_DRIVER_STATE_DISABLED);
14936 break;
14937 case DRV_UNLOADED:
14938 bnx2x_set_os_driver_state(bp,
14939 OS_DRIVER_STATE_NOT_LOADED);
14940 break;
14941 default:
14942 BNX2X_ERR("Unknown cnic driver state: %d\n", ctl->drv_state);
14943 }
14944 }
14945
14946 return rc;
14947 }
14948
bnx2x_get_fc_npiv(struct net_device * dev,struct cnic_fc_npiv_tbl * cnic_tbl)14949 static int bnx2x_get_fc_npiv(struct net_device *dev,
14950 struct cnic_fc_npiv_tbl *cnic_tbl)
14951 {
14952 struct bnx2x *bp = netdev_priv(dev);
14953 struct bdn_fc_npiv_tbl *tbl = NULL;
14954 u32 offset, entries;
14955 int rc = -EINVAL;
14956 int i;
14957
14958 if (!SHMEM2_HAS(bp, fc_npiv_nvram_tbl_addr[0]))
14959 goto out;
14960
14961 DP(BNX2X_MSG_MCP, "About to read the FC-NPIV table\n");
14962
14963 tbl = kmalloc(sizeof(*tbl), GFP_KERNEL);
14964 if (!tbl) {
14965 BNX2X_ERR("Failed to allocate fc_npiv table\n");
14966 goto out;
14967 }
14968
14969 offset = SHMEM2_RD(bp, fc_npiv_nvram_tbl_addr[BP_PORT(bp)]);
14970 if (!offset) {
14971 DP(BNX2X_MSG_MCP, "No FC-NPIV in NVRAM\n");
14972 goto out;
14973 }
14974 DP(BNX2X_MSG_MCP, "Offset of FC-NPIV in NVRAM: %08x\n", offset);
14975
14976 /* Read the table contents from nvram */
14977 if (bnx2x_nvram_read(bp, offset, (u8 *)tbl, sizeof(*tbl))) {
14978 BNX2X_ERR("Failed to read FC-NPIV table\n");
14979 goto out;
14980 }
14981
14982 /* Since bnx2x_nvram_read() returns data in be32, we need to convert
14983 * the number of entries back to cpu endianness.
14984 */
14985 entries = tbl->fc_npiv_cfg.num_of_npiv;
14986 entries = (__force u32)be32_to_cpu((__force __be32)entries);
14987 tbl->fc_npiv_cfg.num_of_npiv = entries;
14988
14989 if (!tbl->fc_npiv_cfg.num_of_npiv) {
14990 DP(BNX2X_MSG_MCP,
14991 "No FC-NPIV table [valid, simply not present]\n");
14992 goto out;
14993 } else if (tbl->fc_npiv_cfg.num_of_npiv > MAX_NUMBER_NPIV) {
14994 BNX2X_ERR("FC-NPIV table with bad length 0x%08x\n",
14995 tbl->fc_npiv_cfg.num_of_npiv);
14996 goto out;
14997 } else {
14998 DP(BNX2X_MSG_MCP, "Read 0x%08x entries from NVRAM\n",
14999 tbl->fc_npiv_cfg.num_of_npiv);
15000 }
15001
15002 /* Copy the data into cnic-provided struct */
15003 cnic_tbl->count = tbl->fc_npiv_cfg.num_of_npiv;
15004 for (i = 0; i < cnic_tbl->count; i++) {
15005 memcpy(cnic_tbl->wwpn[i], tbl->settings[i].npiv_wwpn, 8);
15006 memcpy(cnic_tbl->wwnn[i], tbl->settings[i].npiv_wwnn, 8);
15007 }
15008
15009 rc = 0;
15010 out:
15011 kfree(tbl);
15012 return rc;
15013 }
15014
bnx2x_setup_cnic_irq_info(struct bnx2x * bp)15015 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
15016 {
15017 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15018
15019 if (bp->flags & USING_MSIX_FLAG) {
15020 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
15021 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
15022 cp->irq_arr[0].vector = bp->msix_table[1].vector;
15023 } else {
15024 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
15025 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
15026 }
15027 if (!CHIP_IS_E1x(bp))
15028 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
15029 else
15030 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
15031
15032 cp->irq_arr[0].status_blk_num = bnx2x_cnic_fw_sb_id(bp);
15033 cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
15034 cp->irq_arr[1].status_blk = bp->def_status_blk;
15035 cp->irq_arr[1].status_blk_num = DEF_SB_ID;
15036 cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
15037
15038 cp->num_irq = 2;
15039 }
15040
bnx2x_setup_cnic_info(struct bnx2x * bp)15041 void bnx2x_setup_cnic_info(struct bnx2x *bp)
15042 {
15043 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15044
15045 cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
15046 bnx2x_cid_ilt_lines(bp);
15047 cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
15048 cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
15049 cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
15050
15051 DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n",
15052 BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid,
15053 cp->iscsi_l2_cid);
15054
15055 if (NO_ISCSI_OOO(bp))
15056 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
15057 }
15058
bnx2x_register_cnic(struct net_device * dev,struct cnic_ops * ops,void * data)15059 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
15060 void *data)
15061 {
15062 struct bnx2x *bp = netdev_priv(dev);
15063 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15064 int rc;
15065
15066 DP(NETIF_MSG_IFUP, "Register_cnic called\n");
15067
15068 if (ops == NULL) {
15069 BNX2X_ERR("NULL ops received\n");
15070 return -EINVAL;
15071 }
15072
15073 if (!CNIC_SUPPORT(bp)) {
15074 BNX2X_ERR("Can't register CNIC when not supported\n");
15075 return -EOPNOTSUPP;
15076 }
15077
15078 if (!CNIC_LOADED(bp)) {
15079 rc = bnx2x_load_cnic(bp);
15080 if (rc) {
15081 BNX2X_ERR("CNIC-related load failed\n");
15082 return rc;
15083 }
15084 }
15085
15086 bp->cnic_enabled = true;
15087
15088 bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
15089 if (!bp->cnic_kwq)
15090 return -ENOMEM;
15091
15092 bp->cnic_kwq_cons = bp->cnic_kwq;
15093 bp->cnic_kwq_prod = bp->cnic_kwq;
15094 bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
15095
15096 bp->cnic_spq_pending = 0;
15097 bp->cnic_kwq_pending = 0;
15098
15099 bp->cnic_data = data;
15100
15101 cp->num_irq = 0;
15102 cp->drv_state |= CNIC_DRV_STATE_REGD;
15103 cp->iro_arr = bp->iro_arr;
15104
15105 bnx2x_setup_cnic_irq_info(bp);
15106
15107 rcu_assign_pointer(bp->cnic_ops, ops);
15108
15109 /* Schedule driver to read CNIC driver versions */
15110 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
15111
15112 return 0;
15113 }
15114
bnx2x_unregister_cnic(struct net_device * dev)15115 static int bnx2x_unregister_cnic(struct net_device *dev)
15116 {
15117 struct bnx2x *bp = netdev_priv(dev);
15118 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15119
15120 mutex_lock(&bp->cnic_mutex);
15121 cp->drv_state = 0;
15122 RCU_INIT_POINTER(bp->cnic_ops, NULL);
15123 mutex_unlock(&bp->cnic_mutex);
15124 synchronize_rcu();
15125 bp->cnic_enabled = false;
15126 kfree(bp->cnic_kwq);
15127 bp->cnic_kwq = NULL;
15128
15129 return 0;
15130 }
15131
bnx2x_cnic_probe(struct net_device * dev)15132 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
15133 {
15134 struct bnx2x *bp = netdev_priv(dev);
15135 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
15136
15137 /* If both iSCSI and FCoE are disabled - return NULL in
15138 * order to indicate CNIC that it should not try to work
15139 * with this device.
15140 */
15141 if (NO_ISCSI(bp) && NO_FCOE(bp))
15142 return NULL;
15143
15144 cp->drv_owner = THIS_MODULE;
15145 cp->chip_id = CHIP_ID(bp);
15146 cp->pdev = bp->pdev;
15147 cp->io_base = bp->regview;
15148 cp->io_base2 = bp->doorbells;
15149 cp->max_kwqe_pending = 8;
15150 cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
15151 cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
15152 bnx2x_cid_ilt_lines(bp);
15153 cp->ctx_tbl_len = CNIC_ILT_LINES;
15154 cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
15155 cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
15156 cp->drv_ctl = bnx2x_drv_ctl;
15157 cp->drv_get_fc_npiv_tbl = bnx2x_get_fc_npiv;
15158 cp->drv_register_cnic = bnx2x_register_cnic;
15159 cp->drv_unregister_cnic = bnx2x_unregister_cnic;
15160 cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
15161 cp->iscsi_l2_client_id =
15162 bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
15163 cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
15164
15165 if (NO_ISCSI_OOO(bp))
15166 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
15167
15168 if (NO_ISCSI(bp))
15169 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
15170
15171 if (NO_FCOE(bp))
15172 cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
15173
15174 BNX2X_DEV_INFO(
15175 "page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
15176 cp->ctx_blk_size,
15177 cp->ctx_tbl_offset,
15178 cp->ctx_tbl_len,
15179 cp->starting_cid);
15180 return cp;
15181 }
15182
bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath * fp)15183 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
15184 {
15185 struct bnx2x *bp = fp->bp;
15186 u32 offset = BAR_USTRORM_INTMEM;
15187
15188 if (IS_VF(bp))
15189 return bnx2x_vf_ustorm_prods_offset(bp, fp);
15190 else if (!CHIP_IS_E1x(bp))
15191 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
15192 else
15193 offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
15194
15195 return offset;
15196 }
15197
15198 /* called only on E1H or E2.
15199 * When pretending to be PF, the pretend value is the function number 0...7
15200 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
15201 * combination
15202 */
bnx2x_pretend_func(struct bnx2x * bp,u16 pretend_func_val)15203 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
15204 {
15205 u32 pretend_reg;
15206
15207 if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
15208 return -1;
15209
15210 /* get my own pretend register */
15211 pretend_reg = bnx2x_get_pretend_reg(bp);
15212 REG_WR(bp, pretend_reg, pretend_func_val);
15213 REG_RD(bp, pretend_reg);
15214 return 0;
15215 }
15216
bnx2x_ptp_task(struct work_struct * work)15217 static void bnx2x_ptp_task(struct work_struct *work)
15218 {
15219 struct bnx2x *bp = container_of(work, struct bnx2x, ptp_task);
15220 int port = BP_PORT(bp);
15221 u32 val_seq;
15222 u64 timestamp, ns;
15223 struct skb_shared_hwtstamps shhwtstamps;
15224 bool bail = true;
15225 int i;
15226
15227 /* FW may take a while to complete timestamping; try a bit and if it's
15228 * still not complete, may indicate an error state - bail out then.
15229 */
15230 for (i = 0; i < 10; i++) {
15231 /* Read Tx timestamp registers */
15232 val_seq = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15233 NIG_REG_P0_TLLH_PTP_BUF_SEQID);
15234 if (val_seq & 0x10000) {
15235 bail = false;
15236 break;
15237 }
15238 msleep(1 << i);
15239 }
15240
15241 if (!bail) {
15242 /* There is a valid timestamp value */
15243 timestamp = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_MSB :
15244 NIG_REG_P0_TLLH_PTP_BUF_TS_MSB);
15245 timestamp <<= 32;
15246 timestamp |= REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_LSB :
15247 NIG_REG_P0_TLLH_PTP_BUF_TS_LSB);
15248 /* Reset timestamp register to allow new timestamp */
15249 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15250 NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15251 ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15252
15253 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
15254 shhwtstamps.hwtstamp = ns_to_ktime(ns);
15255 skb_tstamp_tx(bp->ptp_tx_skb, &shhwtstamps);
15256
15257 DP(BNX2X_MSG_PTP, "Tx timestamp, timestamp cycles = %llu, ns = %llu\n",
15258 timestamp, ns);
15259 } else {
15260 DP(BNX2X_MSG_PTP,
15261 "Tx timestamp is not recorded (register read=%u)\n",
15262 val_seq);
15263 bp->eth_stats.ptp_skip_tx_ts++;
15264 }
15265
15266 dev_kfree_skb_any(bp->ptp_tx_skb);
15267 bp->ptp_tx_skb = NULL;
15268 }
15269
bnx2x_set_rx_ts(struct bnx2x * bp,struct sk_buff * skb)15270 void bnx2x_set_rx_ts(struct bnx2x *bp, struct sk_buff *skb)
15271 {
15272 int port = BP_PORT(bp);
15273 u64 timestamp, ns;
15274
15275 timestamp = REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_MSB :
15276 NIG_REG_P0_LLH_PTP_HOST_BUF_TS_MSB);
15277 timestamp <<= 32;
15278 timestamp |= REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_LSB :
15279 NIG_REG_P0_LLH_PTP_HOST_BUF_TS_LSB);
15280
15281 /* Reset timestamp register to allow new timestamp */
15282 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15283 NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15284
15285 ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15286
15287 skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
15288
15289 DP(BNX2X_MSG_PTP, "Rx timestamp, timestamp cycles = %llu, ns = %llu\n",
15290 timestamp, ns);
15291 }
15292
15293 /* Read the PHC */
bnx2x_cyclecounter_read(const struct cyclecounter * cc)15294 static u64 bnx2x_cyclecounter_read(const struct cyclecounter *cc)
15295 {
15296 struct bnx2x *bp = container_of(cc, struct bnx2x, cyclecounter);
15297 int port = BP_PORT(bp);
15298 u32 wb_data[2];
15299 u64 phc_cycles;
15300
15301 REG_RD_DMAE(bp, port ? NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t1 :
15302 NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t0, wb_data, 2);
15303 phc_cycles = wb_data[1];
15304 phc_cycles = (phc_cycles << 32) + wb_data[0];
15305
15306 DP(BNX2X_MSG_PTP, "PHC read cycles = %llu\n", phc_cycles);
15307
15308 return phc_cycles;
15309 }
15310
bnx2x_init_cyclecounter(struct bnx2x * bp)15311 static void bnx2x_init_cyclecounter(struct bnx2x *bp)
15312 {
15313 memset(&bp->cyclecounter, 0, sizeof(bp->cyclecounter));
15314 bp->cyclecounter.read = bnx2x_cyclecounter_read;
15315 bp->cyclecounter.mask = CYCLECOUNTER_MASK(64);
15316 bp->cyclecounter.shift = 0;
15317 bp->cyclecounter.mult = 1;
15318 }
15319
bnx2x_send_reset_timesync_ramrod(struct bnx2x * bp)15320 static int bnx2x_send_reset_timesync_ramrod(struct bnx2x *bp)
15321 {
15322 struct bnx2x_func_state_params func_params = {NULL};
15323 struct bnx2x_func_set_timesync_params *set_timesync_params =
15324 &func_params.params.set_timesync;
15325
15326 /* Prepare parameters for function state transitions */
15327 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
15328 __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
15329
15330 func_params.f_obj = &bp->func_obj;
15331 func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
15332
15333 /* Function parameters */
15334 set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_RESET;
15335 set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
15336
15337 return bnx2x_func_state_change(bp, &func_params);
15338 }
15339
bnx2x_enable_ptp_packets(struct bnx2x * bp)15340 static int bnx2x_enable_ptp_packets(struct bnx2x *bp)
15341 {
15342 struct bnx2x_queue_state_params q_params;
15343 int rc, i;
15344
15345 /* send queue update ramrod to enable PTP packets */
15346 memset(&q_params, 0, sizeof(q_params));
15347 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
15348 q_params.cmd = BNX2X_Q_CMD_UPDATE;
15349 __set_bit(BNX2X_Q_UPDATE_PTP_PKTS_CHNG,
15350 &q_params.params.update.update_flags);
15351 __set_bit(BNX2X_Q_UPDATE_PTP_PKTS,
15352 &q_params.params.update.update_flags);
15353
15354 /* send the ramrod on all the queues of the PF */
15355 for_each_eth_queue(bp, i) {
15356 struct bnx2x_fastpath *fp = &bp->fp[i];
15357
15358 /* Set the appropriate Queue object */
15359 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
15360
15361 /* Update the Queue state */
15362 rc = bnx2x_queue_state_change(bp, &q_params);
15363 if (rc) {
15364 BNX2X_ERR("Failed to enable PTP packets\n");
15365 return rc;
15366 }
15367 }
15368
15369 return 0;
15370 }
15371
15372 #define BNX2X_P2P_DETECT_PARAM_MASK 0x5F5
15373 #define BNX2X_P2P_DETECT_RULE_MASK 0x3DBB
15374 #define BNX2X_PTP_TX_ON_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6AA)
15375 #define BNX2X_PTP_TX_ON_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EEE)
15376 #define BNX2X_PTP_V1_L4_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x7EE)
15377 #define BNX2X_PTP_V1_L4_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3FFE)
15378 #define BNX2X_PTP_V2_L4_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x7EA)
15379 #define BNX2X_PTP_V2_L4_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3FEE)
15380 #define BNX2X_PTP_V2_L2_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6BF)
15381 #define BNX2X_PTP_V2_L2_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EFF)
15382 #define BNX2X_PTP_V2_PARAM_MASK (BNX2X_P2P_DETECT_PARAM_MASK & 0x6AA)
15383 #define BNX2X_PTP_V2_RULE_MASK (BNX2X_P2P_DETECT_RULE_MASK & 0x3EEE)
15384
bnx2x_configure_ptp_filters(struct bnx2x * bp)15385 int bnx2x_configure_ptp_filters(struct bnx2x *bp)
15386 {
15387 int port = BP_PORT(bp);
15388 u32 param, rule;
15389 int rc;
15390
15391 if (!bp->hwtstamp_ioctl_called)
15392 return 0;
15393
15394 param = port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15395 NIG_REG_P0_TLLH_PTP_PARAM_MASK;
15396 rule = port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15397 NIG_REG_P0_TLLH_PTP_RULE_MASK;
15398 switch (bp->tx_type) {
15399 case HWTSTAMP_TX_ON:
15400 bp->flags |= TX_TIMESTAMPING_EN;
15401 REG_WR(bp, param, BNX2X_PTP_TX_ON_PARAM_MASK);
15402 REG_WR(bp, rule, BNX2X_PTP_TX_ON_RULE_MASK);
15403 break;
15404 case HWTSTAMP_TX_ONESTEP_SYNC:
15405 BNX2X_ERR("One-step timestamping is not supported\n");
15406 return -ERANGE;
15407 }
15408
15409 param = port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15410 NIG_REG_P0_LLH_PTP_PARAM_MASK;
15411 rule = port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15412 NIG_REG_P0_LLH_PTP_RULE_MASK;
15413 switch (bp->rx_filter) {
15414 case HWTSTAMP_FILTER_NONE:
15415 break;
15416 case HWTSTAMP_FILTER_ALL:
15417 case HWTSTAMP_FILTER_SOME:
15418 case HWTSTAMP_FILTER_NTP_ALL:
15419 bp->rx_filter = HWTSTAMP_FILTER_NONE;
15420 break;
15421 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
15422 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
15423 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
15424 bp->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
15425 /* Initialize PTP detection for UDP/IPv4 events */
15426 REG_WR(bp, param, BNX2X_PTP_V1_L4_PARAM_MASK);
15427 REG_WR(bp, rule, BNX2X_PTP_V1_L4_RULE_MASK);
15428 break;
15429 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
15430 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
15431 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
15432 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
15433 /* Initialize PTP detection for UDP/IPv4 or UDP/IPv6 events */
15434 REG_WR(bp, param, BNX2X_PTP_V2_L4_PARAM_MASK);
15435 REG_WR(bp, rule, BNX2X_PTP_V2_L4_RULE_MASK);
15436 break;
15437 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
15438 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
15439 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
15440 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
15441 /* Initialize PTP detection L2 events */
15442 REG_WR(bp, param, BNX2X_PTP_V2_L2_PARAM_MASK);
15443 REG_WR(bp, rule, BNX2X_PTP_V2_L2_RULE_MASK);
15444
15445 break;
15446 case HWTSTAMP_FILTER_PTP_V2_EVENT:
15447 case HWTSTAMP_FILTER_PTP_V2_SYNC:
15448 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
15449 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
15450 /* Initialize PTP detection L2, UDP/IPv4 or UDP/IPv6 events */
15451 REG_WR(bp, param, BNX2X_PTP_V2_PARAM_MASK);
15452 REG_WR(bp, rule, BNX2X_PTP_V2_RULE_MASK);
15453 break;
15454 }
15455
15456 /* Indicate to FW that this PF expects recorded PTP packets */
15457 rc = bnx2x_enable_ptp_packets(bp);
15458 if (rc)
15459 return rc;
15460
15461 /* Enable sending PTP packets to host */
15462 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15463 NIG_REG_P0_LLH_PTP_TO_HOST, 0x1);
15464
15465 return 0;
15466 }
15467
bnx2x_hwtstamp_ioctl(struct bnx2x * bp,struct ifreq * ifr)15468 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr)
15469 {
15470 struct hwtstamp_config config;
15471 int rc;
15472
15473 DP(BNX2X_MSG_PTP, "HWTSTAMP IOCTL called\n");
15474
15475 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
15476 return -EFAULT;
15477
15478 DP(BNX2X_MSG_PTP, "Requested tx_type: %d, requested rx_filters = %d\n",
15479 config.tx_type, config.rx_filter);
15480
15481 if (config.flags) {
15482 BNX2X_ERR("config.flags is reserved for future use\n");
15483 return -EINVAL;
15484 }
15485
15486 bp->hwtstamp_ioctl_called = 1;
15487 bp->tx_type = config.tx_type;
15488 bp->rx_filter = config.rx_filter;
15489
15490 rc = bnx2x_configure_ptp_filters(bp);
15491 if (rc)
15492 return rc;
15493
15494 config.rx_filter = bp->rx_filter;
15495
15496 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
15497 -EFAULT : 0;
15498 }
15499
15500 /* Configures HW for PTP */
bnx2x_configure_ptp(struct bnx2x * bp)15501 static int bnx2x_configure_ptp(struct bnx2x *bp)
15502 {
15503 int rc, port = BP_PORT(bp);
15504 u32 wb_data[2];
15505
15506 /* Reset PTP event detection rules - will be configured in the IOCTL */
15507 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15508 NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
15509 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15510 NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
15511 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15512 NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
15513 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15514 NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
15515
15516 /* Disable PTP packets to host - will be configured in the IOCTL*/
15517 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15518 NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
15519
15520 /* Enable the PTP feature */
15521 REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
15522 NIG_REG_P0_PTP_EN, 0x3F);
15523
15524 /* Enable the free-running counter */
15525 wb_data[0] = 0;
15526 wb_data[1] = 0;
15527 REG_WR_DMAE(bp, NIG_REG_TIMESYNC_GEN_REG + tsgen_ctrl, wb_data, 2);
15528
15529 /* Reset drift register (offset register is not reset) */
15530 rc = bnx2x_send_reset_timesync_ramrod(bp);
15531 if (rc) {
15532 BNX2X_ERR("Failed to reset PHC drift register\n");
15533 return -EFAULT;
15534 }
15535
15536 /* Reset possibly old timestamps */
15537 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15538 NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15539 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15540 NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15541
15542 return 0;
15543 }
15544
15545 /* Called during load, to initialize PTP-related stuff */
bnx2x_init_ptp(struct bnx2x * bp)15546 void bnx2x_init_ptp(struct bnx2x *bp)
15547 {
15548 int rc;
15549
15550 /* Configure PTP in HW */
15551 rc = bnx2x_configure_ptp(bp);
15552 if (rc) {
15553 BNX2X_ERR("Stopping PTP initialization\n");
15554 return;
15555 }
15556
15557 /* Init work queue for Tx timestamping */
15558 INIT_WORK(&bp->ptp_task, bnx2x_ptp_task);
15559
15560 /* Init cyclecounter and timecounter. This is done only in the first
15561 * load. If done in every load, PTP application will fail when doing
15562 * unload / load (e.g. MTU change) while it is running.
15563 */
15564 if (!bp->timecounter_init_done) {
15565 bnx2x_init_cyclecounter(bp);
15566 timecounter_init(&bp->timecounter, &bp->cyclecounter,
15567 ktime_to_ns(ktime_get_real()));
15568 bp->timecounter_init_done = 1;
15569 }
15570
15571 DP(BNX2X_MSG_PTP, "PTP initialization ended successfully\n");
15572 }
15573