1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Time of day based timer functions.
4 *
5 * S390 version
6 * Copyright IBM Corp. 1999, 2008
7 * Author(s): Hartmut Penner (hp@de.ibm.com),
8 * Martin Schwidefsky (schwidefsky@de.ibm.com),
9 * Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
10 *
11 * Derived from "arch/i386/kernel/time.c"
12 * Copyright (C) 1991, 1992, 1995 Linus Torvalds
13 */
14
15 #define KMSG_COMPONENT "time"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18 #include <linux/kernel_stat.h>
19 #include <linux/errno.h>
20 #include <linux/export.h>
21 #include <linux/sched.h>
22 #include <linux/sched/clock.h>
23 #include <linux/kernel.h>
24 #include <linux/param.h>
25 #include <linux/string.h>
26 #include <linux/mm.h>
27 #include <linux/interrupt.h>
28 #include <linux/cpu.h>
29 #include <linux/stop_machine.h>
30 #include <linux/time.h>
31 #include <linux/device.h>
32 #include <linux/delay.h>
33 #include <linux/init.h>
34 #include <linux/smp.h>
35 #include <linux/types.h>
36 #include <linux/profile.h>
37 #include <linux/timex.h>
38 #include <linux/notifier.h>
39 #include <linux/timekeeper_internal.h>
40 #include <linux/clockchips.h>
41 #include <linux/gfp.h>
42 #include <linux/kprobes.h>
43 #include <linux/uaccess.h>
44 #include <vdso/vsyscall.h>
45 #include <vdso/clocksource.h>
46 #include <vdso/helpers.h>
47 #include <asm/facility.h>
48 #include <asm/delay.h>
49 #include <asm/div64.h>
50 #include <asm/vdso.h>
51 #include <asm/irq.h>
52 #include <asm/irq_regs.h>
53 #include <asm/vtimer.h>
54 #include <asm/stp.h>
55 #include <asm/cio.h>
56 #include "entry.h"
57
58 unsigned char tod_clock_base[16] __aligned(8) = {
59 /* Force to data section. */
60 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
61 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
62 };
63 EXPORT_SYMBOL_GPL(tod_clock_base);
64
65 u64 clock_comparator_max = -1ULL;
66 EXPORT_SYMBOL_GPL(clock_comparator_max);
67
68 static DEFINE_PER_CPU(struct clock_event_device, comparators);
69
70 ATOMIC_NOTIFIER_HEAD(s390_epoch_delta_notifier);
71 EXPORT_SYMBOL(s390_epoch_delta_notifier);
72
73 unsigned char ptff_function_mask[16];
74
75 static unsigned long long lpar_offset;
76 static unsigned long long initial_leap_seconds;
77 static unsigned long long tod_steering_end;
78 static long long tod_steering_delta;
79
80 /*
81 * Get time offsets with PTFF
82 */
time_early_init(void)83 void __init time_early_init(void)
84 {
85 struct ptff_qto qto;
86 struct ptff_qui qui;
87
88 /* Initialize TOD steering parameters */
89 tod_steering_end = *(unsigned long long *) &tod_clock_base[1];
90 vdso_data->arch_data.tod_steering_end = tod_steering_end;
91
92 if (!test_facility(28))
93 return;
94
95 ptff(&ptff_function_mask, sizeof(ptff_function_mask), PTFF_QAF);
96
97 /* get LPAR offset */
98 if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0)
99 lpar_offset = qto.tod_epoch_difference;
100
101 /* get initial leap seconds */
102 if (ptff_query(PTFF_QUI) && ptff(&qui, sizeof(qui), PTFF_QUI) == 0)
103 initial_leap_seconds = (unsigned long long)
104 ((long) qui.old_leap * 4096000000L);
105 }
106
107 /*
108 * Scheduler clock - returns current time in nanosec units.
109 */
sched_clock(void)110 unsigned long long notrace sched_clock(void)
111 {
112 return tod_to_ns(get_tod_clock_monotonic());
113 }
114 NOKPROBE_SYMBOL(sched_clock);
115
ext_to_timespec64(unsigned char * clk,struct timespec64 * xt)116 static void ext_to_timespec64(unsigned char *clk, struct timespec64 *xt)
117 {
118 unsigned long long high, low, rem, sec, nsec;
119
120 /* Split extendnd TOD clock to micro-seconds and sub-micro-seconds */
121 high = (*(unsigned long long *) clk) >> 4;
122 low = (*(unsigned long long *)&clk[7]) << 4;
123 /* Calculate seconds and nano-seconds */
124 sec = high;
125 rem = do_div(sec, 1000000);
126 nsec = (((low >> 32) + (rem << 32)) * 1000) >> 32;
127
128 xt->tv_sec = sec;
129 xt->tv_nsec = nsec;
130 }
131
clock_comparator_work(void)132 void clock_comparator_work(void)
133 {
134 struct clock_event_device *cd;
135
136 S390_lowcore.clock_comparator = clock_comparator_max;
137 cd = this_cpu_ptr(&comparators);
138 cd->event_handler(cd);
139 }
140
s390_next_event(unsigned long delta,struct clock_event_device * evt)141 static int s390_next_event(unsigned long delta,
142 struct clock_event_device *evt)
143 {
144 S390_lowcore.clock_comparator = get_tod_clock() + delta;
145 set_clock_comparator(S390_lowcore.clock_comparator);
146 return 0;
147 }
148
149 /*
150 * Set up lowcore and control register of the current cpu to
151 * enable TOD clock and clock comparator interrupts.
152 */
init_cpu_timer(void)153 void init_cpu_timer(void)
154 {
155 struct clock_event_device *cd;
156 int cpu;
157
158 S390_lowcore.clock_comparator = clock_comparator_max;
159 set_clock_comparator(S390_lowcore.clock_comparator);
160
161 cpu = smp_processor_id();
162 cd = &per_cpu(comparators, cpu);
163 cd->name = "comparator";
164 cd->features = CLOCK_EVT_FEAT_ONESHOT;
165 cd->mult = 16777;
166 cd->shift = 12;
167 cd->min_delta_ns = 1;
168 cd->min_delta_ticks = 1;
169 cd->max_delta_ns = LONG_MAX;
170 cd->max_delta_ticks = ULONG_MAX;
171 cd->rating = 400;
172 cd->cpumask = cpumask_of(cpu);
173 cd->set_next_event = s390_next_event;
174
175 clockevents_register_device(cd);
176
177 /* Enable clock comparator timer interrupt. */
178 __ctl_set_bit(0,11);
179
180 /* Always allow the timing alert external interrupt. */
181 __ctl_set_bit(0, 4);
182 }
183
clock_comparator_interrupt(struct ext_code ext_code,unsigned int param32,unsigned long param64)184 static void clock_comparator_interrupt(struct ext_code ext_code,
185 unsigned int param32,
186 unsigned long param64)
187 {
188 inc_irq_stat(IRQEXT_CLK);
189 if (S390_lowcore.clock_comparator == clock_comparator_max)
190 set_clock_comparator(S390_lowcore.clock_comparator);
191 }
192
193 static void stp_timing_alert(struct stp_irq_parm *);
194
timing_alert_interrupt(struct ext_code ext_code,unsigned int param32,unsigned long param64)195 static void timing_alert_interrupt(struct ext_code ext_code,
196 unsigned int param32, unsigned long param64)
197 {
198 inc_irq_stat(IRQEXT_TLA);
199 if (param32 & 0x00038000)
200 stp_timing_alert((struct stp_irq_parm *) ¶m32);
201 }
202
203 static void stp_reset(void);
204
read_persistent_clock64(struct timespec64 * ts)205 void read_persistent_clock64(struct timespec64 *ts)
206 {
207 unsigned char clk[STORE_CLOCK_EXT_SIZE];
208 __u64 delta;
209
210 delta = initial_leap_seconds + TOD_UNIX_EPOCH;
211 get_tod_clock_ext(clk);
212 *(__u64 *) &clk[1] -= delta;
213 if (*(__u64 *) &clk[1] > delta)
214 clk[0]--;
215 ext_to_timespec64(clk, ts);
216 }
217
read_persistent_wall_and_boot_offset(struct timespec64 * wall_time,struct timespec64 * boot_offset)218 void __init read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
219 struct timespec64 *boot_offset)
220 {
221 unsigned char clk[STORE_CLOCK_EXT_SIZE];
222 struct timespec64 boot_time;
223 __u64 delta;
224
225 delta = initial_leap_seconds + TOD_UNIX_EPOCH;
226 memcpy(clk, tod_clock_base, STORE_CLOCK_EXT_SIZE);
227 *(__u64 *)&clk[1] -= delta;
228 if (*(__u64 *)&clk[1] > delta)
229 clk[0]--;
230 ext_to_timespec64(clk, &boot_time);
231
232 read_persistent_clock64(wall_time);
233 *boot_offset = timespec64_sub(*wall_time, boot_time);
234 }
235
read_tod_clock(struct clocksource * cs)236 static u64 read_tod_clock(struct clocksource *cs)
237 {
238 unsigned long long now, adj;
239
240 preempt_disable(); /* protect from changes to steering parameters */
241 now = get_tod_clock();
242 adj = tod_steering_end - now;
243 if (unlikely((s64) adj > 0))
244 /*
245 * manually steer by 1 cycle every 2^16 cycles. This
246 * corresponds to shifting the tod delta by 15. 1s is
247 * therefore steered in ~9h. The adjust will decrease
248 * over time, until it finally reaches 0.
249 */
250 now += (tod_steering_delta < 0) ? (adj >> 15) : -(adj >> 15);
251 preempt_enable();
252 return now;
253 }
254
255 static struct clocksource clocksource_tod = {
256 .name = "tod",
257 .rating = 400,
258 .read = read_tod_clock,
259 .mask = CLOCKSOURCE_MASK(64),
260 .mult = 1000,
261 .shift = 12,
262 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
263 .vdso_clock_mode = VDSO_CLOCKMODE_TOD,
264 };
265
clocksource_default_clock(void)266 struct clocksource * __init clocksource_default_clock(void)
267 {
268 return &clocksource_tod;
269 }
270
271 /*
272 * Initialize the TOD clock and the CPU timer of
273 * the boot cpu.
274 */
time_init(void)275 void __init time_init(void)
276 {
277 /* Reset time synchronization interfaces. */
278 stp_reset();
279
280 /* request the clock comparator external interrupt */
281 if (register_external_irq(EXT_IRQ_CLK_COMP, clock_comparator_interrupt))
282 panic("Couldn't request external interrupt 0x1004");
283
284 /* request the timing alert external interrupt */
285 if (register_external_irq(EXT_IRQ_TIMING_ALERT, timing_alert_interrupt))
286 panic("Couldn't request external interrupt 0x1406");
287
288 if (__clocksource_register(&clocksource_tod) != 0)
289 panic("Could not register TOD clock source");
290
291 /* Enable TOD clock interrupts on the boot cpu. */
292 init_cpu_timer();
293
294 /* Enable cpu timer interrupts on the boot cpu. */
295 vtime_init();
296 }
297
298 static DEFINE_PER_CPU(atomic_t, clock_sync_word);
299 static DEFINE_MUTEX(stp_mutex);
300 static unsigned long clock_sync_flags;
301
302 #define CLOCK_SYNC_HAS_STP 0
303 #define CLOCK_SYNC_STP 1
304 #define CLOCK_SYNC_STPINFO_VALID 2
305
306 /*
307 * The get_clock function for the physical clock. It will get the current
308 * TOD clock, subtract the LPAR offset and write the result to *clock.
309 * The function returns 0 if the clock is in sync with the external time
310 * source. If the clock mode is local it will return -EOPNOTSUPP and
311 * -EAGAIN if the clock is not in sync with the external reference.
312 */
get_phys_clock(unsigned long * clock)313 int get_phys_clock(unsigned long *clock)
314 {
315 atomic_t *sw_ptr;
316 unsigned int sw0, sw1;
317
318 sw_ptr = &get_cpu_var(clock_sync_word);
319 sw0 = atomic_read(sw_ptr);
320 *clock = get_tod_clock() - lpar_offset;
321 sw1 = atomic_read(sw_ptr);
322 put_cpu_var(clock_sync_word);
323 if (sw0 == sw1 && (sw0 & 0x80000000U))
324 /* Success: time is in sync. */
325 return 0;
326 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
327 return -EOPNOTSUPP;
328 if (!test_bit(CLOCK_SYNC_STP, &clock_sync_flags))
329 return -EACCES;
330 return -EAGAIN;
331 }
332 EXPORT_SYMBOL(get_phys_clock);
333
334 /*
335 * Make get_phys_clock() return -EAGAIN.
336 */
disable_sync_clock(void * dummy)337 static void disable_sync_clock(void *dummy)
338 {
339 atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
340 /*
341 * Clear the in-sync bit 2^31. All get_phys_clock calls will
342 * fail until the sync bit is turned back on. In addition
343 * increase the "sequence" counter to avoid the race of an
344 * stp event and the complete recovery against get_phys_clock.
345 */
346 atomic_andnot(0x80000000, sw_ptr);
347 atomic_inc(sw_ptr);
348 }
349
350 /*
351 * Make get_phys_clock() return 0 again.
352 * Needs to be called from a context disabled for preemption.
353 */
enable_sync_clock(void)354 static void enable_sync_clock(void)
355 {
356 atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
357 atomic_or(0x80000000, sw_ptr);
358 }
359
360 /*
361 * Function to check if the clock is in sync.
362 */
check_sync_clock(void)363 static inline int check_sync_clock(void)
364 {
365 atomic_t *sw_ptr;
366 int rc;
367
368 sw_ptr = &get_cpu_var(clock_sync_word);
369 rc = (atomic_read(sw_ptr) & 0x80000000U) != 0;
370 put_cpu_var(clock_sync_word);
371 return rc;
372 }
373
374 /*
375 * Apply clock delta to the global data structures.
376 * This is called once on the CPU that performed the clock sync.
377 */
clock_sync_global(unsigned long long delta)378 static void clock_sync_global(unsigned long long delta)
379 {
380 unsigned long now, adj;
381 struct ptff_qto qto;
382
383 /* Fixup the monotonic sched clock. */
384 *(unsigned long long *) &tod_clock_base[1] += delta;
385 if (*(unsigned long long *) &tod_clock_base[1] < delta)
386 /* Epoch overflow */
387 tod_clock_base[0]++;
388 /* Adjust TOD steering parameters. */
389 now = get_tod_clock();
390 adj = tod_steering_end - now;
391 if (unlikely((s64) adj >= 0))
392 /* Calculate how much of the old adjustment is left. */
393 tod_steering_delta = (tod_steering_delta < 0) ?
394 -(adj >> 15) : (adj >> 15);
395 tod_steering_delta += delta;
396 if ((abs(tod_steering_delta) >> 48) != 0)
397 panic("TOD clock sync offset %lli is too large to drift\n",
398 tod_steering_delta);
399 tod_steering_end = now + (abs(tod_steering_delta) << 15);
400 vdso_data->arch_data.tod_steering_end = tod_steering_end;
401
402 /* Update LPAR offset. */
403 if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0)
404 lpar_offset = qto.tod_epoch_difference;
405 /* Call the TOD clock change notifier. */
406 atomic_notifier_call_chain(&s390_epoch_delta_notifier, 0, &delta);
407 }
408
409 /*
410 * Apply clock delta to the per-CPU data structures of this CPU.
411 * This is called for each online CPU after the call to clock_sync_global.
412 */
clock_sync_local(unsigned long long delta)413 static void clock_sync_local(unsigned long long delta)
414 {
415 /* Add the delta to the clock comparator. */
416 if (S390_lowcore.clock_comparator != clock_comparator_max) {
417 S390_lowcore.clock_comparator += delta;
418 set_clock_comparator(S390_lowcore.clock_comparator);
419 }
420 /* Adjust the last_update_clock time-stamp. */
421 S390_lowcore.last_update_clock += delta;
422 }
423
424 /* Single threaded workqueue used for stp sync events */
425 static struct workqueue_struct *time_sync_wq;
426
time_init_wq(void)427 static void __init time_init_wq(void)
428 {
429 if (time_sync_wq)
430 return;
431 time_sync_wq = create_singlethread_workqueue("timesync");
432 }
433
434 struct clock_sync_data {
435 atomic_t cpus;
436 int in_sync;
437 unsigned long long clock_delta;
438 };
439
440 /*
441 * Server Time Protocol (STP) code.
442 */
443 static bool stp_online;
444 static struct stp_sstpi stp_info;
445 static void *stp_page;
446
447 static void stp_work_fn(struct work_struct *work);
448 static DECLARE_WORK(stp_work, stp_work_fn);
449 static struct timer_list stp_timer;
450
early_parse_stp(char * p)451 static int __init early_parse_stp(char *p)
452 {
453 return kstrtobool(p, &stp_online);
454 }
455 early_param("stp", early_parse_stp);
456
457 /*
458 * Reset STP attachment.
459 */
stp_reset(void)460 static void __init stp_reset(void)
461 {
462 int rc;
463
464 stp_page = (void *) get_zeroed_page(GFP_ATOMIC);
465 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL);
466 if (rc == 0)
467 set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags);
468 else if (stp_online) {
469 pr_warn("The real or virtual hardware system does not provide an STP interface\n");
470 free_page((unsigned long) stp_page);
471 stp_page = NULL;
472 stp_online = false;
473 }
474 }
475
stp_timeout(struct timer_list * unused)476 static void stp_timeout(struct timer_list *unused)
477 {
478 queue_work(time_sync_wq, &stp_work);
479 }
480
stp_init(void)481 static int __init stp_init(void)
482 {
483 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
484 return 0;
485 timer_setup(&stp_timer, stp_timeout, 0);
486 time_init_wq();
487 if (!stp_online)
488 return 0;
489 queue_work(time_sync_wq, &stp_work);
490 return 0;
491 }
492
493 arch_initcall(stp_init);
494
495 /*
496 * STP timing alert. There are three causes:
497 * 1) timing status change
498 * 2) link availability change
499 * 3) time control parameter change
500 * In all three cases we are only interested in the clock source state.
501 * If a STP clock source is now available use it.
502 */
stp_timing_alert(struct stp_irq_parm * intparm)503 static void stp_timing_alert(struct stp_irq_parm *intparm)
504 {
505 if (intparm->tsc || intparm->lac || intparm->tcpc)
506 queue_work(time_sync_wq, &stp_work);
507 }
508
509 /*
510 * STP sync check machine check. This is called when the timing state
511 * changes from the synchronized state to the unsynchronized state.
512 * After a STP sync check the clock is not in sync. The machine check
513 * is broadcasted to all cpus at the same time.
514 */
stp_sync_check(void)515 int stp_sync_check(void)
516 {
517 disable_sync_clock(NULL);
518 return 1;
519 }
520
521 /*
522 * STP island condition machine check. This is called when an attached
523 * server attempts to communicate over an STP link and the servers
524 * have matching CTN ids and have a valid stratum-1 configuration
525 * but the configurations do not match.
526 */
stp_island_check(void)527 int stp_island_check(void)
528 {
529 disable_sync_clock(NULL);
530 return 1;
531 }
532
stp_queue_work(void)533 void stp_queue_work(void)
534 {
535 queue_work(time_sync_wq, &stp_work);
536 }
537
__store_stpinfo(void)538 static int __store_stpinfo(void)
539 {
540 int rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi));
541
542 if (rc)
543 clear_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags);
544 else
545 set_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags);
546 return rc;
547 }
548
stpinfo_valid(void)549 static int stpinfo_valid(void)
550 {
551 return stp_online && test_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags);
552 }
553
stp_sync_clock(void * data)554 static int stp_sync_clock(void *data)
555 {
556 struct clock_sync_data *sync = data;
557 unsigned long long clock_delta, flags;
558 static int first;
559 int rc;
560
561 enable_sync_clock();
562 if (xchg(&first, 1) == 0) {
563 /* Wait until all other cpus entered the sync function. */
564 while (atomic_read(&sync->cpus) != 0)
565 cpu_relax();
566 rc = 0;
567 if (stp_info.todoff[0] || stp_info.todoff[1] ||
568 stp_info.todoff[2] || stp_info.todoff[3] ||
569 stp_info.tmd != 2) {
570 flags = vdso_update_begin();
571 rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0,
572 &clock_delta);
573 if (rc == 0) {
574 sync->clock_delta = clock_delta;
575 clock_sync_global(clock_delta);
576 rc = __store_stpinfo();
577 if (rc == 0 && stp_info.tmd != 2)
578 rc = -EAGAIN;
579 }
580 vdso_update_end(flags);
581 }
582 sync->in_sync = rc ? -EAGAIN : 1;
583 xchg(&first, 0);
584 } else {
585 /* Slave */
586 atomic_dec(&sync->cpus);
587 /* Wait for in_sync to be set. */
588 while (READ_ONCE(sync->in_sync) == 0)
589 __udelay(1);
590 }
591 if (sync->in_sync != 1)
592 /* Didn't work. Clear per-cpu in sync bit again. */
593 disable_sync_clock(NULL);
594 /* Apply clock delta to per-CPU fields of this CPU. */
595 clock_sync_local(sync->clock_delta);
596
597 return 0;
598 }
599
stp_clear_leap(void)600 static int stp_clear_leap(void)
601 {
602 struct __kernel_timex txc;
603 int ret;
604
605 memset(&txc, 0, sizeof(txc));
606
607 ret = do_adjtimex(&txc);
608 if (ret < 0)
609 return ret;
610
611 txc.modes = ADJ_STATUS;
612 txc.status &= ~(STA_INS|STA_DEL);
613 return do_adjtimex(&txc);
614 }
615
stp_check_leap(void)616 static void stp_check_leap(void)
617 {
618 struct stp_stzi stzi;
619 struct stp_lsoib *lsoib = &stzi.lsoib;
620 struct __kernel_timex txc;
621 int64_t timediff;
622 int leapdiff, ret;
623
624 if (!stp_info.lu || !check_sync_clock()) {
625 /*
626 * Either a scheduled leap second was removed by the operator,
627 * or STP is out of sync. In both cases, clear the leap second
628 * kernel flags.
629 */
630 if (stp_clear_leap() < 0)
631 pr_err("failed to clear leap second flags\n");
632 return;
633 }
634
635 if (chsc_stzi(stp_page, &stzi, sizeof(stzi))) {
636 pr_err("stzi failed\n");
637 return;
638 }
639
640 timediff = tod_to_ns(lsoib->nlsout - get_tod_clock()) / NSEC_PER_SEC;
641 leapdiff = lsoib->nlso - lsoib->also;
642
643 if (leapdiff != 1 && leapdiff != -1) {
644 pr_err("Cannot schedule %d leap seconds\n", leapdiff);
645 return;
646 }
647
648 if (timediff < 0) {
649 if (stp_clear_leap() < 0)
650 pr_err("failed to clear leap second flags\n");
651 } else if (timediff < 7200) {
652 memset(&txc, 0, sizeof(txc));
653 ret = do_adjtimex(&txc);
654 if (ret < 0)
655 return;
656
657 txc.modes = ADJ_STATUS;
658 if (leapdiff > 0)
659 txc.status |= STA_INS;
660 else
661 txc.status |= STA_DEL;
662 ret = do_adjtimex(&txc);
663 if (ret < 0)
664 pr_err("failed to set leap second flags\n");
665 /* arm Timer to clear leap second flags */
666 mod_timer(&stp_timer, jiffies + msecs_to_jiffies(14400 * MSEC_PER_SEC));
667 } else {
668 /* The day the leap second is scheduled for hasn't been reached. Retry
669 * in one hour.
670 */
671 mod_timer(&stp_timer, jiffies + msecs_to_jiffies(3600 * MSEC_PER_SEC));
672 }
673 }
674
675 /*
676 * STP work. Check for the STP state and take over the clock
677 * synchronization if the STP clock source is usable.
678 */
stp_work_fn(struct work_struct * work)679 static void stp_work_fn(struct work_struct *work)
680 {
681 struct clock_sync_data stp_sync;
682 int rc;
683
684 /* prevent multiple execution. */
685 mutex_lock(&stp_mutex);
686
687 if (!stp_online) {
688 chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL);
689 del_timer_sync(&stp_timer);
690 goto out_unlock;
691 }
692
693 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xf0e0, NULL);
694 if (rc)
695 goto out_unlock;
696
697 rc = __store_stpinfo();
698 if (rc || stp_info.c == 0)
699 goto out_unlock;
700
701 /* Skip synchronization if the clock is already in sync. */
702 if (!check_sync_clock()) {
703 memset(&stp_sync, 0, sizeof(stp_sync));
704 cpus_read_lock();
705 atomic_set(&stp_sync.cpus, num_online_cpus() - 1);
706 stop_machine_cpuslocked(stp_sync_clock, &stp_sync, cpu_online_mask);
707 cpus_read_unlock();
708 }
709
710 if (!check_sync_clock())
711 /*
712 * There is a usable clock but the synchonization failed.
713 * Retry after a second.
714 */
715 mod_timer(&stp_timer, jiffies + msecs_to_jiffies(MSEC_PER_SEC));
716 else if (stp_info.lu)
717 stp_check_leap();
718
719 out_unlock:
720 mutex_unlock(&stp_mutex);
721 }
722
723 /*
724 * STP subsys sysfs interface functions
725 */
726 static struct bus_type stp_subsys = {
727 .name = "stp",
728 .dev_name = "stp",
729 };
730
ctn_id_show(struct device * dev,struct device_attribute * attr,char * buf)731 static ssize_t ctn_id_show(struct device *dev,
732 struct device_attribute *attr,
733 char *buf)
734 {
735 ssize_t ret = -ENODATA;
736
737 mutex_lock(&stp_mutex);
738 if (stpinfo_valid())
739 ret = sprintf(buf, "%016llx\n",
740 *(unsigned long long *) stp_info.ctnid);
741 mutex_unlock(&stp_mutex);
742 return ret;
743 }
744
745 static DEVICE_ATTR_RO(ctn_id);
746
ctn_type_show(struct device * dev,struct device_attribute * attr,char * buf)747 static ssize_t ctn_type_show(struct device *dev,
748 struct device_attribute *attr,
749 char *buf)
750 {
751 ssize_t ret = -ENODATA;
752
753 mutex_lock(&stp_mutex);
754 if (stpinfo_valid())
755 ret = sprintf(buf, "%i\n", stp_info.ctn);
756 mutex_unlock(&stp_mutex);
757 return ret;
758 }
759
760 static DEVICE_ATTR_RO(ctn_type);
761
dst_offset_show(struct device * dev,struct device_attribute * attr,char * buf)762 static ssize_t dst_offset_show(struct device *dev,
763 struct device_attribute *attr,
764 char *buf)
765 {
766 ssize_t ret = -ENODATA;
767
768 mutex_lock(&stp_mutex);
769 if (stpinfo_valid() && (stp_info.vbits & 0x2000))
770 ret = sprintf(buf, "%i\n", (int)(s16) stp_info.dsto);
771 mutex_unlock(&stp_mutex);
772 return ret;
773 }
774
775 static DEVICE_ATTR_RO(dst_offset);
776
leap_seconds_show(struct device * dev,struct device_attribute * attr,char * buf)777 static ssize_t leap_seconds_show(struct device *dev,
778 struct device_attribute *attr,
779 char *buf)
780 {
781 ssize_t ret = -ENODATA;
782
783 mutex_lock(&stp_mutex);
784 if (stpinfo_valid() && (stp_info.vbits & 0x8000))
785 ret = sprintf(buf, "%i\n", (int)(s16) stp_info.leaps);
786 mutex_unlock(&stp_mutex);
787 return ret;
788 }
789
790 static DEVICE_ATTR_RO(leap_seconds);
791
leap_seconds_scheduled_show(struct device * dev,struct device_attribute * attr,char * buf)792 static ssize_t leap_seconds_scheduled_show(struct device *dev,
793 struct device_attribute *attr,
794 char *buf)
795 {
796 struct stp_stzi stzi;
797 ssize_t ret;
798
799 mutex_lock(&stp_mutex);
800 if (!stpinfo_valid() || !(stp_info.vbits & 0x8000) || !stp_info.lu) {
801 mutex_unlock(&stp_mutex);
802 return -ENODATA;
803 }
804
805 ret = chsc_stzi(stp_page, &stzi, sizeof(stzi));
806 mutex_unlock(&stp_mutex);
807 if (ret < 0)
808 return ret;
809
810 if (!stzi.lsoib.p)
811 return sprintf(buf, "0,0\n");
812
813 return sprintf(buf, "%llu,%d\n",
814 tod_to_ns(stzi.lsoib.nlsout - TOD_UNIX_EPOCH) / NSEC_PER_SEC,
815 stzi.lsoib.nlso - stzi.lsoib.also);
816 }
817
818 static DEVICE_ATTR_RO(leap_seconds_scheduled);
819
stratum_show(struct device * dev,struct device_attribute * attr,char * buf)820 static ssize_t stratum_show(struct device *dev,
821 struct device_attribute *attr,
822 char *buf)
823 {
824 ssize_t ret = -ENODATA;
825
826 mutex_lock(&stp_mutex);
827 if (stpinfo_valid())
828 ret = sprintf(buf, "%i\n", (int)(s16) stp_info.stratum);
829 mutex_unlock(&stp_mutex);
830 return ret;
831 }
832
833 static DEVICE_ATTR_RO(stratum);
834
time_offset_show(struct device * dev,struct device_attribute * attr,char * buf)835 static ssize_t time_offset_show(struct device *dev,
836 struct device_attribute *attr,
837 char *buf)
838 {
839 ssize_t ret = -ENODATA;
840
841 mutex_lock(&stp_mutex);
842 if (stpinfo_valid() && (stp_info.vbits & 0x0800))
843 ret = sprintf(buf, "%i\n", (int) stp_info.tto);
844 mutex_unlock(&stp_mutex);
845 return ret;
846 }
847
848 static DEVICE_ATTR_RO(time_offset);
849
time_zone_offset_show(struct device * dev,struct device_attribute * attr,char * buf)850 static ssize_t time_zone_offset_show(struct device *dev,
851 struct device_attribute *attr,
852 char *buf)
853 {
854 ssize_t ret = -ENODATA;
855
856 mutex_lock(&stp_mutex);
857 if (stpinfo_valid() && (stp_info.vbits & 0x4000))
858 ret = sprintf(buf, "%i\n", (int)(s16) stp_info.tzo);
859 mutex_unlock(&stp_mutex);
860 return ret;
861 }
862
863 static DEVICE_ATTR_RO(time_zone_offset);
864
timing_mode_show(struct device * dev,struct device_attribute * attr,char * buf)865 static ssize_t timing_mode_show(struct device *dev,
866 struct device_attribute *attr,
867 char *buf)
868 {
869 ssize_t ret = -ENODATA;
870
871 mutex_lock(&stp_mutex);
872 if (stpinfo_valid())
873 ret = sprintf(buf, "%i\n", stp_info.tmd);
874 mutex_unlock(&stp_mutex);
875 return ret;
876 }
877
878 static DEVICE_ATTR_RO(timing_mode);
879
timing_state_show(struct device * dev,struct device_attribute * attr,char * buf)880 static ssize_t timing_state_show(struct device *dev,
881 struct device_attribute *attr,
882 char *buf)
883 {
884 ssize_t ret = -ENODATA;
885
886 mutex_lock(&stp_mutex);
887 if (stpinfo_valid())
888 ret = sprintf(buf, "%i\n", stp_info.tst);
889 mutex_unlock(&stp_mutex);
890 return ret;
891 }
892
893 static DEVICE_ATTR_RO(timing_state);
894
online_show(struct device * dev,struct device_attribute * attr,char * buf)895 static ssize_t online_show(struct device *dev,
896 struct device_attribute *attr,
897 char *buf)
898 {
899 return sprintf(buf, "%i\n", stp_online);
900 }
901
online_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)902 static ssize_t online_store(struct device *dev,
903 struct device_attribute *attr,
904 const char *buf, size_t count)
905 {
906 unsigned int value;
907
908 value = simple_strtoul(buf, NULL, 0);
909 if (value != 0 && value != 1)
910 return -EINVAL;
911 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
912 return -EOPNOTSUPP;
913 mutex_lock(&stp_mutex);
914 stp_online = value;
915 if (stp_online)
916 set_bit(CLOCK_SYNC_STP, &clock_sync_flags);
917 else
918 clear_bit(CLOCK_SYNC_STP, &clock_sync_flags);
919 queue_work(time_sync_wq, &stp_work);
920 mutex_unlock(&stp_mutex);
921 return count;
922 }
923
924 /*
925 * Can't use DEVICE_ATTR because the attribute should be named
926 * stp/online but dev_attr_online already exists in this file ..
927 */
928 static DEVICE_ATTR_RW(online);
929
930 static struct device_attribute *stp_attributes[] = {
931 &dev_attr_ctn_id,
932 &dev_attr_ctn_type,
933 &dev_attr_dst_offset,
934 &dev_attr_leap_seconds,
935 &dev_attr_online,
936 &dev_attr_leap_seconds_scheduled,
937 &dev_attr_stratum,
938 &dev_attr_time_offset,
939 &dev_attr_time_zone_offset,
940 &dev_attr_timing_mode,
941 &dev_attr_timing_state,
942 NULL
943 };
944
stp_init_sysfs(void)945 static int __init stp_init_sysfs(void)
946 {
947 struct device_attribute **attr;
948 int rc;
949
950 rc = subsys_system_register(&stp_subsys, NULL);
951 if (rc)
952 goto out;
953 for (attr = stp_attributes; *attr; attr++) {
954 rc = device_create_file(stp_subsys.dev_root, *attr);
955 if (rc)
956 goto out_unreg;
957 }
958 return 0;
959 out_unreg:
960 for (; attr >= stp_attributes; attr--)
961 device_remove_file(stp_subsys.dev_root, *attr);
962 bus_unregister(&stp_subsys);
963 out:
964 return rc;
965 }
966
967 device_initcall(stp_init_sysfs);
968