1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/kernel/power/snapshot.c
4  *
5  * This file provides system snapshot/restore functionality for swsusp.
6  *
7  * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
8  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
9  */
10 
11 #define pr_fmt(fmt) "PM: " fmt
12 
13 #include <linux/version.h>
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/suspend.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/spinlock.h>
20 #include <linux/kernel.h>
21 #include <linux/pm.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/memblock.h>
25 #include <linux/nmi.h>
26 #include <linux/syscalls.h>
27 #include <linux/console.h>
28 #include <linux/highmem.h>
29 #include <linux/list.h>
30 #include <linux/slab.h>
31 #include <linux/compiler.h>
32 #include <linux/ktime.h>
33 #include <linux/set_memory.h>
34 
35 #include <linux/uaccess.h>
36 #include <asm/mmu_context.h>
37 #include <asm/pgtable.h>
38 #include <asm/tlbflush.h>
39 #include <asm/io.h>
40 
41 #include "power.h"
42 
43 #if defined(CONFIG_STRICT_KERNEL_RWX) && defined(CONFIG_ARCH_HAS_SET_MEMORY)
44 static bool hibernate_restore_protection;
45 static bool hibernate_restore_protection_active;
46 
enable_restore_image_protection(void)47 void enable_restore_image_protection(void)
48 {
49 	hibernate_restore_protection = true;
50 }
51 
hibernate_restore_protection_begin(void)52 static inline void hibernate_restore_protection_begin(void)
53 {
54 	hibernate_restore_protection_active = hibernate_restore_protection;
55 }
56 
hibernate_restore_protection_end(void)57 static inline void hibernate_restore_protection_end(void)
58 {
59 	hibernate_restore_protection_active = false;
60 }
61 
hibernate_restore_protect_page(void * page_address)62 static inline void hibernate_restore_protect_page(void *page_address)
63 {
64 	if (hibernate_restore_protection_active)
65 		set_memory_ro((unsigned long)page_address, 1);
66 }
67 
hibernate_restore_unprotect_page(void * page_address)68 static inline void hibernate_restore_unprotect_page(void *page_address)
69 {
70 	if (hibernate_restore_protection_active)
71 		set_memory_rw((unsigned long)page_address, 1);
72 }
73 #else
hibernate_restore_protection_begin(void)74 static inline void hibernate_restore_protection_begin(void) {}
hibernate_restore_protection_end(void)75 static inline void hibernate_restore_protection_end(void) {}
hibernate_restore_protect_page(void * page_address)76 static inline void hibernate_restore_protect_page(void *page_address) {}
hibernate_restore_unprotect_page(void * page_address)77 static inline void hibernate_restore_unprotect_page(void *page_address) {}
78 #endif /* CONFIG_STRICT_KERNEL_RWX  && CONFIG_ARCH_HAS_SET_MEMORY */
79 
80 static int swsusp_page_is_free(struct page *);
81 static void swsusp_set_page_forbidden(struct page *);
82 static void swsusp_unset_page_forbidden(struct page *);
83 
84 /*
85  * Number of bytes to reserve for memory allocations made by device drivers
86  * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
87  * cause image creation to fail (tunable via /sys/power/reserved_size).
88  */
89 unsigned long reserved_size;
90 
hibernate_reserved_size_init(void)91 void __init hibernate_reserved_size_init(void)
92 {
93 	reserved_size = SPARE_PAGES * PAGE_SIZE;
94 }
95 
96 /*
97  * Preferred image size in bytes (tunable via /sys/power/image_size).
98  * When it is set to N, swsusp will do its best to ensure the image
99  * size will not exceed N bytes, but if that is impossible, it will
100  * try to create the smallest image possible.
101  */
102 unsigned long image_size;
103 
hibernate_image_size_init(void)104 void __init hibernate_image_size_init(void)
105 {
106 	image_size = ((totalram_pages() * 2) / 5) * PAGE_SIZE;
107 }
108 
109 /*
110  * List of PBEs needed for restoring the pages that were allocated before
111  * the suspend and included in the suspend image, but have also been
112  * allocated by the "resume" kernel, so their contents cannot be written
113  * directly to their "original" page frames.
114  */
115 struct pbe *restore_pblist;
116 
117 /* struct linked_page is used to build chains of pages */
118 
119 #define LINKED_PAGE_DATA_SIZE	(PAGE_SIZE - sizeof(void *))
120 
121 struct linked_page {
122 	struct linked_page *next;
123 	char data[LINKED_PAGE_DATA_SIZE];
124 } __packed;
125 
126 /*
127  * List of "safe" pages (ie. pages that were not used by the image kernel
128  * before hibernation) that may be used as temporary storage for image kernel
129  * memory contents.
130  */
131 static struct linked_page *safe_pages_list;
132 
133 /* Pointer to an auxiliary buffer (1 page) */
134 static void *buffer;
135 
136 #define PG_ANY		0
137 #define PG_SAFE		1
138 #define PG_UNSAFE_CLEAR	1
139 #define PG_UNSAFE_KEEP	0
140 
141 static unsigned int allocated_unsafe_pages;
142 
143 /**
144  * get_image_page - Allocate a page for a hibernation image.
145  * @gfp_mask: GFP mask for the allocation.
146  * @safe_needed: Get pages that were not used before hibernation (restore only)
147  *
148  * During image restoration, for storing the PBE list and the image data, we can
149  * only use memory pages that do not conflict with the pages used before
150  * hibernation.  The "unsafe" pages have PageNosaveFree set and we count them
151  * using allocated_unsafe_pages.
152  *
153  * Each allocated image page is marked as PageNosave and PageNosaveFree so that
154  * swsusp_free() can release it.
155  */
get_image_page(gfp_t gfp_mask,int safe_needed)156 static void *get_image_page(gfp_t gfp_mask, int safe_needed)
157 {
158 	void *res;
159 
160 	res = (void *)get_zeroed_page(gfp_mask);
161 	if (safe_needed)
162 		while (res && swsusp_page_is_free(virt_to_page(res))) {
163 			/* The page is unsafe, mark it for swsusp_free() */
164 			swsusp_set_page_forbidden(virt_to_page(res));
165 			allocated_unsafe_pages++;
166 			res = (void *)get_zeroed_page(gfp_mask);
167 		}
168 	if (res) {
169 		swsusp_set_page_forbidden(virt_to_page(res));
170 		swsusp_set_page_free(virt_to_page(res));
171 	}
172 	return res;
173 }
174 
__get_safe_page(gfp_t gfp_mask)175 static void *__get_safe_page(gfp_t gfp_mask)
176 {
177 	if (safe_pages_list) {
178 		void *ret = safe_pages_list;
179 
180 		safe_pages_list = safe_pages_list->next;
181 		memset(ret, 0, PAGE_SIZE);
182 		return ret;
183 	}
184 	return get_image_page(gfp_mask, PG_SAFE);
185 }
186 
get_safe_page(gfp_t gfp_mask)187 unsigned long get_safe_page(gfp_t gfp_mask)
188 {
189 	return (unsigned long)__get_safe_page(gfp_mask);
190 }
191 
alloc_image_page(gfp_t gfp_mask)192 static struct page *alloc_image_page(gfp_t gfp_mask)
193 {
194 	struct page *page;
195 
196 	page = alloc_page(gfp_mask);
197 	if (page) {
198 		swsusp_set_page_forbidden(page);
199 		swsusp_set_page_free(page);
200 	}
201 	return page;
202 }
203 
recycle_safe_page(void * page_address)204 static void recycle_safe_page(void *page_address)
205 {
206 	struct linked_page *lp = page_address;
207 
208 	lp->next = safe_pages_list;
209 	safe_pages_list = lp;
210 }
211 
212 /**
213  * free_image_page - Free a page allocated for hibernation image.
214  * @addr: Address of the page to free.
215  * @clear_nosave_free: If set, clear the PageNosaveFree bit for the page.
216  *
217  * The page to free should have been allocated by get_image_page() (page flags
218  * set by it are affected).
219  */
free_image_page(void * addr,int clear_nosave_free)220 static inline void free_image_page(void *addr, int clear_nosave_free)
221 {
222 	struct page *page;
223 
224 	BUG_ON(!virt_addr_valid(addr));
225 
226 	page = virt_to_page(addr);
227 
228 	swsusp_unset_page_forbidden(page);
229 	if (clear_nosave_free)
230 		swsusp_unset_page_free(page);
231 
232 	__free_page(page);
233 }
234 
free_list_of_pages(struct linked_page * list,int clear_page_nosave)235 static inline void free_list_of_pages(struct linked_page *list,
236 				      int clear_page_nosave)
237 {
238 	while (list) {
239 		struct linked_page *lp = list->next;
240 
241 		free_image_page(list, clear_page_nosave);
242 		list = lp;
243 	}
244 }
245 
246 /*
247  * struct chain_allocator is used for allocating small objects out of
248  * a linked list of pages called 'the chain'.
249  *
250  * The chain grows each time when there is no room for a new object in
251  * the current page.  The allocated objects cannot be freed individually.
252  * It is only possible to free them all at once, by freeing the entire
253  * chain.
254  *
255  * NOTE: The chain allocator may be inefficient if the allocated objects
256  * are not much smaller than PAGE_SIZE.
257  */
258 struct chain_allocator {
259 	struct linked_page *chain;	/* the chain */
260 	unsigned int used_space;	/* total size of objects allocated out
261 					   of the current page */
262 	gfp_t gfp_mask;		/* mask for allocating pages */
263 	int safe_needed;	/* if set, only "safe" pages are allocated */
264 };
265 
chain_init(struct chain_allocator * ca,gfp_t gfp_mask,int safe_needed)266 static void chain_init(struct chain_allocator *ca, gfp_t gfp_mask,
267 		       int safe_needed)
268 {
269 	ca->chain = NULL;
270 	ca->used_space = LINKED_PAGE_DATA_SIZE;
271 	ca->gfp_mask = gfp_mask;
272 	ca->safe_needed = safe_needed;
273 }
274 
chain_alloc(struct chain_allocator * ca,unsigned int size)275 static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
276 {
277 	void *ret;
278 
279 	if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
280 		struct linked_page *lp;
281 
282 		lp = ca->safe_needed ? __get_safe_page(ca->gfp_mask) :
283 					get_image_page(ca->gfp_mask, PG_ANY);
284 		if (!lp)
285 			return NULL;
286 
287 		lp->next = ca->chain;
288 		ca->chain = lp;
289 		ca->used_space = 0;
290 	}
291 	ret = ca->chain->data + ca->used_space;
292 	ca->used_space += size;
293 	return ret;
294 }
295 
296 /**
297  * Data types related to memory bitmaps.
298  *
299  * Memory bitmap is a structure consiting of many linked lists of
300  * objects.  The main list's elements are of type struct zone_bitmap
301  * and each of them corresonds to one zone.  For each zone bitmap
302  * object there is a list of objects of type struct bm_block that
303  * represent each blocks of bitmap in which information is stored.
304  *
305  * struct memory_bitmap contains a pointer to the main list of zone
306  * bitmap objects, a struct bm_position used for browsing the bitmap,
307  * and a pointer to the list of pages used for allocating all of the
308  * zone bitmap objects and bitmap block objects.
309  *
310  * NOTE: It has to be possible to lay out the bitmap in memory
311  * using only allocations of order 0.  Additionally, the bitmap is
312  * designed to work with arbitrary number of zones (this is over the
313  * top for now, but let's avoid making unnecessary assumptions ;-).
314  *
315  * struct zone_bitmap contains a pointer to a list of bitmap block
316  * objects and a pointer to the bitmap block object that has been
317  * most recently used for setting bits.  Additionally, it contains the
318  * PFNs that correspond to the start and end of the represented zone.
319  *
320  * struct bm_block contains a pointer to the memory page in which
321  * information is stored (in the form of a block of bitmap)
322  * It also contains the pfns that correspond to the start and end of
323  * the represented memory area.
324  *
325  * The memory bitmap is organized as a radix tree to guarantee fast random
326  * access to the bits. There is one radix tree for each zone (as returned
327  * from create_mem_extents).
328  *
329  * One radix tree is represented by one struct mem_zone_bm_rtree. There are
330  * two linked lists for the nodes of the tree, one for the inner nodes and
331  * one for the leave nodes. The linked leave nodes are used for fast linear
332  * access of the memory bitmap.
333  *
334  * The struct rtree_node represents one node of the radix tree.
335  */
336 
337 #define BM_END_OF_MAP	(~0UL)
338 
339 #define BM_BITS_PER_BLOCK	(PAGE_SIZE * BITS_PER_BYTE)
340 #define BM_BLOCK_SHIFT		(PAGE_SHIFT + 3)
341 #define BM_BLOCK_MASK		((1UL << BM_BLOCK_SHIFT) - 1)
342 
343 /*
344  * struct rtree_node is a wrapper struct to link the nodes
345  * of the rtree together for easy linear iteration over
346  * bits and easy freeing
347  */
348 struct rtree_node {
349 	struct list_head list;
350 	unsigned long *data;
351 };
352 
353 /*
354  * struct mem_zone_bm_rtree represents a bitmap used for one
355  * populated memory zone.
356  */
357 struct mem_zone_bm_rtree {
358 	struct list_head list;		/* Link Zones together         */
359 	struct list_head nodes;		/* Radix Tree inner nodes      */
360 	struct list_head leaves;	/* Radix Tree leaves           */
361 	unsigned long start_pfn;	/* Zone start page frame       */
362 	unsigned long end_pfn;		/* Zone end page frame + 1     */
363 	struct rtree_node *rtree;	/* Radix Tree Root             */
364 	int levels;			/* Number of Radix Tree Levels */
365 	unsigned int blocks;		/* Number of Bitmap Blocks     */
366 };
367 
368 /* strcut bm_position is used for browsing memory bitmaps */
369 
370 struct bm_position {
371 	struct mem_zone_bm_rtree *zone;
372 	struct rtree_node *node;
373 	unsigned long node_pfn;
374 	int node_bit;
375 };
376 
377 struct memory_bitmap {
378 	struct list_head zones;
379 	struct linked_page *p_list;	/* list of pages used to store zone
380 					   bitmap objects and bitmap block
381 					   objects */
382 	struct bm_position cur;	/* most recently used bit position */
383 };
384 
385 /* Functions that operate on memory bitmaps */
386 
387 #define BM_ENTRIES_PER_LEVEL	(PAGE_SIZE / sizeof(unsigned long))
388 #if BITS_PER_LONG == 32
389 #define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 2)
390 #else
391 #define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 3)
392 #endif
393 #define BM_RTREE_LEVEL_MASK	((1UL << BM_RTREE_LEVEL_SHIFT) - 1)
394 
395 /**
396  * alloc_rtree_node - Allocate a new node and add it to the radix tree.
397  *
398  * This function is used to allocate inner nodes as well as the
399  * leave nodes of the radix tree. It also adds the node to the
400  * corresponding linked list passed in by the *list parameter.
401  */
alloc_rtree_node(gfp_t gfp_mask,int safe_needed,struct chain_allocator * ca,struct list_head * list)402 static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed,
403 					   struct chain_allocator *ca,
404 					   struct list_head *list)
405 {
406 	struct rtree_node *node;
407 
408 	node = chain_alloc(ca, sizeof(struct rtree_node));
409 	if (!node)
410 		return NULL;
411 
412 	node->data = get_image_page(gfp_mask, safe_needed);
413 	if (!node->data)
414 		return NULL;
415 
416 	list_add_tail(&node->list, list);
417 
418 	return node;
419 }
420 
421 /**
422  * add_rtree_block - Add a new leave node to the radix tree.
423  *
424  * The leave nodes need to be allocated in order to keep the leaves
425  * linked list in order. This is guaranteed by the zone->blocks
426  * counter.
427  */
add_rtree_block(struct mem_zone_bm_rtree * zone,gfp_t gfp_mask,int safe_needed,struct chain_allocator * ca)428 static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask,
429 			   int safe_needed, struct chain_allocator *ca)
430 {
431 	struct rtree_node *node, *block, **dst;
432 	unsigned int levels_needed, block_nr;
433 	int i;
434 
435 	block_nr = zone->blocks;
436 	levels_needed = 0;
437 
438 	/* How many levels do we need for this block nr? */
439 	while (block_nr) {
440 		levels_needed += 1;
441 		block_nr >>= BM_RTREE_LEVEL_SHIFT;
442 	}
443 
444 	/* Make sure the rtree has enough levels */
445 	for (i = zone->levels; i < levels_needed; i++) {
446 		node = alloc_rtree_node(gfp_mask, safe_needed, ca,
447 					&zone->nodes);
448 		if (!node)
449 			return -ENOMEM;
450 
451 		node->data[0] = (unsigned long)zone->rtree;
452 		zone->rtree = node;
453 		zone->levels += 1;
454 	}
455 
456 	/* Allocate new block */
457 	block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves);
458 	if (!block)
459 		return -ENOMEM;
460 
461 	/* Now walk the rtree to insert the block */
462 	node = zone->rtree;
463 	dst = &zone->rtree;
464 	block_nr = zone->blocks;
465 	for (i = zone->levels; i > 0; i--) {
466 		int index;
467 
468 		if (!node) {
469 			node = alloc_rtree_node(gfp_mask, safe_needed, ca,
470 						&zone->nodes);
471 			if (!node)
472 				return -ENOMEM;
473 			*dst = node;
474 		}
475 
476 		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
477 		index &= BM_RTREE_LEVEL_MASK;
478 		dst = (struct rtree_node **)&((*dst)->data[index]);
479 		node = *dst;
480 	}
481 
482 	zone->blocks += 1;
483 	*dst = block;
484 
485 	return 0;
486 }
487 
488 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
489 			       int clear_nosave_free);
490 
491 /**
492  * create_zone_bm_rtree - Create a radix tree for one zone.
493  *
494  * Allocated the mem_zone_bm_rtree structure and initializes it.
495  * This function also allocated and builds the radix tree for the
496  * zone.
497  */
create_zone_bm_rtree(gfp_t gfp_mask,int safe_needed,struct chain_allocator * ca,unsigned long start,unsigned long end)498 static struct mem_zone_bm_rtree *create_zone_bm_rtree(gfp_t gfp_mask,
499 						      int safe_needed,
500 						      struct chain_allocator *ca,
501 						      unsigned long start,
502 						      unsigned long end)
503 {
504 	struct mem_zone_bm_rtree *zone;
505 	unsigned int i, nr_blocks;
506 	unsigned long pages;
507 
508 	pages = end - start;
509 	zone  = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree));
510 	if (!zone)
511 		return NULL;
512 
513 	INIT_LIST_HEAD(&zone->nodes);
514 	INIT_LIST_HEAD(&zone->leaves);
515 	zone->start_pfn = start;
516 	zone->end_pfn = end;
517 	nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
518 
519 	for (i = 0; i < nr_blocks; i++) {
520 		if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) {
521 			free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR);
522 			return NULL;
523 		}
524 	}
525 
526 	return zone;
527 }
528 
529 /**
530  * free_zone_bm_rtree - Free the memory of the radix tree.
531  *
532  * Free all node pages of the radix tree. The mem_zone_bm_rtree
533  * structure itself is not freed here nor are the rtree_node
534  * structs.
535  */
free_zone_bm_rtree(struct mem_zone_bm_rtree * zone,int clear_nosave_free)536 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
537 			       int clear_nosave_free)
538 {
539 	struct rtree_node *node;
540 
541 	list_for_each_entry(node, &zone->nodes, list)
542 		free_image_page(node->data, clear_nosave_free);
543 
544 	list_for_each_entry(node, &zone->leaves, list)
545 		free_image_page(node->data, clear_nosave_free);
546 }
547 
memory_bm_position_reset(struct memory_bitmap * bm)548 static void memory_bm_position_reset(struct memory_bitmap *bm)
549 {
550 	bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree,
551 				  list);
552 	bm->cur.node = list_entry(bm->cur.zone->leaves.next,
553 				  struct rtree_node, list);
554 	bm->cur.node_pfn = 0;
555 	bm->cur.node_bit = 0;
556 }
557 
558 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
559 
560 struct mem_extent {
561 	struct list_head hook;
562 	unsigned long start;
563 	unsigned long end;
564 };
565 
566 /**
567  * free_mem_extents - Free a list of memory extents.
568  * @list: List of extents to free.
569  */
free_mem_extents(struct list_head * list)570 static void free_mem_extents(struct list_head *list)
571 {
572 	struct mem_extent *ext, *aux;
573 
574 	list_for_each_entry_safe(ext, aux, list, hook) {
575 		list_del(&ext->hook);
576 		kfree(ext);
577 	}
578 }
579 
580 /**
581  * create_mem_extents - Create a list of memory extents.
582  * @list: List to put the extents into.
583  * @gfp_mask: Mask to use for memory allocations.
584  *
585  * The extents represent contiguous ranges of PFNs.
586  */
create_mem_extents(struct list_head * list,gfp_t gfp_mask)587 static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
588 {
589 	struct zone *zone;
590 
591 	INIT_LIST_HEAD(list);
592 
593 	for_each_populated_zone(zone) {
594 		unsigned long zone_start, zone_end;
595 		struct mem_extent *ext, *cur, *aux;
596 
597 		zone_start = zone->zone_start_pfn;
598 		zone_end = zone_end_pfn(zone);
599 
600 		list_for_each_entry(ext, list, hook)
601 			if (zone_start <= ext->end)
602 				break;
603 
604 		if (&ext->hook == list || zone_end < ext->start) {
605 			/* New extent is necessary */
606 			struct mem_extent *new_ext;
607 
608 			new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
609 			if (!new_ext) {
610 				free_mem_extents(list);
611 				return -ENOMEM;
612 			}
613 			new_ext->start = zone_start;
614 			new_ext->end = zone_end;
615 			list_add_tail(&new_ext->hook, &ext->hook);
616 			continue;
617 		}
618 
619 		/* Merge this zone's range of PFNs with the existing one */
620 		if (zone_start < ext->start)
621 			ext->start = zone_start;
622 		if (zone_end > ext->end)
623 			ext->end = zone_end;
624 
625 		/* More merging may be possible */
626 		cur = ext;
627 		list_for_each_entry_safe_continue(cur, aux, list, hook) {
628 			if (zone_end < cur->start)
629 				break;
630 			if (zone_end < cur->end)
631 				ext->end = cur->end;
632 			list_del(&cur->hook);
633 			kfree(cur);
634 		}
635 	}
636 
637 	return 0;
638 }
639 
640 /**
641  * memory_bm_create - Allocate memory for a memory bitmap.
642  */
memory_bm_create(struct memory_bitmap * bm,gfp_t gfp_mask,int safe_needed)643 static int memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask,
644 			    int safe_needed)
645 {
646 	struct chain_allocator ca;
647 	struct list_head mem_extents;
648 	struct mem_extent *ext;
649 	int error;
650 
651 	chain_init(&ca, gfp_mask, safe_needed);
652 	INIT_LIST_HEAD(&bm->zones);
653 
654 	error = create_mem_extents(&mem_extents, gfp_mask);
655 	if (error)
656 		return error;
657 
658 	list_for_each_entry(ext, &mem_extents, hook) {
659 		struct mem_zone_bm_rtree *zone;
660 
661 		zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca,
662 					    ext->start, ext->end);
663 		if (!zone) {
664 			error = -ENOMEM;
665 			goto Error;
666 		}
667 		list_add_tail(&zone->list, &bm->zones);
668 	}
669 
670 	bm->p_list = ca.chain;
671 	memory_bm_position_reset(bm);
672  Exit:
673 	free_mem_extents(&mem_extents);
674 	return error;
675 
676  Error:
677 	bm->p_list = ca.chain;
678 	memory_bm_free(bm, PG_UNSAFE_CLEAR);
679 	goto Exit;
680 }
681 
682 /**
683  * memory_bm_free - Free memory occupied by the memory bitmap.
684  * @bm: Memory bitmap.
685  */
memory_bm_free(struct memory_bitmap * bm,int clear_nosave_free)686 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
687 {
688 	struct mem_zone_bm_rtree *zone;
689 
690 	list_for_each_entry(zone, &bm->zones, list)
691 		free_zone_bm_rtree(zone, clear_nosave_free);
692 
693 	free_list_of_pages(bm->p_list, clear_nosave_free);
694 
695 	INIT_LIST_HEAD(&bm->zones);
696 }
697 
698 /**
699  * memory_bm_find_bit - Find the bit for a given PFN in a memory bitmap.
700  *
701  * Find the bit in memory bitmap @bm that corresponds to the given PFN.
702  * The cur.zone, cur.block and cur.node_pfn members of @bm are updated.
703  *
704  * Walk the radix tree to find the page containing the bit that represents @pfn
705  * and return the position of the bit in @addr and @bit_nr.
706  */
memory_bm_find_bit(struct memory_bitmap * bm,unsigned long pfn,void ** addr,unsigned int * bit_nr)707 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
708 			      void **addr, unsigned int *bit_nr)
709 {
710 	struct mem_zone_bm_rtree *curr, *zone;
711 	struct rtree_node *node;
712 	int i, block_nr;
713 
714 	zone = bm->cur.zone;
715 
716 	if (pfn >= zone->start_pfn && pfn < zone->end_pfn)
717 		goto zone_found;
718 
719 	zone = NULL;
720 
721 	/* Find the right zone */
722 	list_for_each_entry(curr, &bm->zones, list) {
723 		if (pfn >= curr->start_pfn && pfn < curr->end_pfn) {
724 			zone = curr;
725 			break;
726 		}
727 	}
728 
729 	if (!zone)
730 		return -EFAULT;
731 
732 zone_found:
733 	/*
734 	 * We have found the zone. Now walk the radix tree to find the leaf node
735 	 * for our PFN.
736 	 */
737 	node = bm->cur.node;
738 	if (((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn)
739 		goto node_found;
740 
741 	node      = zone->rtree;
742 	block_nr  = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT;
743 
744 	for (i = zone->levels; i > 0; i--) {
745 		int index;
746 
747 		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
748 		index &= BM_RTREE_LEVEL_MASK;
749 		BUG_ON(node->data[index] == 0);
750 		node = (struct rtree_node *)node->data[index];
751 	}
752 
753 node_found:
754 	/* Update last position */
755 	bm->cur.zone = zone;
756 	bm->cur.node = node;
757 	bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK;
758 
759 	/* Set return values */
760 	*addr = node->data;
761 	*bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK;
762 
763 	return 0;
764 }
765 
memory_bm_set_bit(struct memory_bitmap * bm,unsigned long pfn)766 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
767 {
768 	void *addr;
769 	unsigned int bit;
770 	int error;
771 
772 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
773 	BUG_ON(error);
774 	set_bit(bit, addr);
775 }
776 
mem_bm_set_bit_check(struct memory_bitmap * bm,unsigned long pfn)777 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
778 {
779 	void *addr;
780 	unsigned int bit;
781 	int error;
782 
783 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
784 	if (!error)
785 		set_bit(bit, addr);
786 
787 	return error;
788 }
789 
memory_bm_clear_bit(struct memory_bitmap * bm,unsigned long pfn)790 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
791 {
792 	void *addr;
793 	unsigned int bit;
794 	int error;
795 
796 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
797 	BUG_ON(error);
798 	clear_bit(bit, addr);
799 }
800 
memory_bm_clear_current(struct memory_bitmap * bm)801 static void memory_bm_clear_current(struct memory_bitmap *bm)
802 {
803 	int bit;
804 
805 	bit = max(bm->cur.node_bit - 1, 0);
806 	clear_bit(bit, bm->cur.node->data);
807 }
808 
memory_bm_test_bit(struct memory_bitmap * bm,unsigned long pfn)809 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
810 {
811 	void *addr;
812 	unsigned int bit;
813 	int error;
814 
815 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
816 	BUG_ON(error);
817 	return test_bit(bit, addr);
818 }
819 
memory_bm_pfn_present(struct memory_bitmap * bm,unsigned long pfn)820 static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
821 {
822 	void *addr;
823 	unsigned int bit;
824 
825 	return !memory_bm_find_bit(bm, pfn, &addr, &bit);
826 }
827 
828 /*
829  * rtree_next_node - Jump to the next leaf node.
830  *
831  * Set the position to the beginning of the next node in the
832  * memory bitmap. This is either the next node in the current
833  * zone's radix tree or the first node in the radix tree of the
834  * next zone.
835  *
836  * Return true if there is a next node, false otherwise.
837  */
rtree_next_node(struct memory_bitmap * bm)838 static bool rtree_next_node(struct memory_bitmap *bm)
839 {
840 	if (!list_is_last(&bm->cur.node->list, &bm->cur.zone->leaves)) {
841 		bm->cur.node = list_entry(bm->cur.node->list.next,
842 					  struct rtree_node, list);
843 		bm->cur.node_pfn += BM_BITS_PER_BLOCK;
844 		bm->cur.node_bit  = 0;
845 		touch_softlockup_watchdog();
846 		return true;
847 	}
848 
849 	/* No more nodes, goto next zone */
850 	if (!list_is_last(&bm->cur.zone->list, &bm->zones)) {
851 		bm->cur.zone = list_entry(bm->cur.zone->list.next,
852 				  struct mem_zone_bm_rtree, list);
853 		bm->cur.node = list_entry(bm->cur.zone->leaves.next,
854 					  struct rtree_node, list);
855 		bm->cur.node_pfn = 0;
856 		bm->cur.node_bit = 0;
857 		return true;
858 	}
859 
860 	/* No more zones */
861 	return false;
862 }
863 
864 /**
865  * memory_bm_rtree_next_pfn - Find the next set bit in a memory bitmap.
866  * @bm: Memory bitmap.
867  *
868  * Starting from the last returned position this function searches for the next
869  * set bit in @bm and returns the PFN represented by it.  If no more bits are
870  * set, BM_END_OF_MAP is returned.
871  *
872  * It is required to run memory_bm_position_reset() before the first call to
873  * this function for the given memory bitmap.
874  */
memory_bm_next_pfn(struct memory_bitmap * bm)875 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
876 {
877 	unsigned long bits, pfn, pages;
878 	int bit;
879 
880 	do {
881 		pages	  = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn;
882 		bits      = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK);
883 		bit	  = find_next_bit(bm->cur.node->data, bits,
884 					  bm->cur.node_bit);
885 		if (bit < bits) {
886 			pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit;
887 			bm->cur.node_bit = bit + 1;
888 			return pfn;
889 		}
890 	} while (rtree_next_node(bm));
891 
892 	return BM_END_OF_MAP;
893 }
894 
895 /*
896  * This structure represents a range of page frames the contents of which
897  * should not be saved during hibernation.
898  */
899 struct nosave_region {
900 	struct list_head list;
901 	unsigned long start_pfn;
902 	unsigned long end_pfn;
903 };
904 
905 static LIST_HEAD(nosave_regions);
906 
recycle_zone_bm_rtree(struct mem_zone_bm_rtree * zone)907 static void recycle_zone_bm_rtree(struct mem_zone_bm_rtree *zone)
908 {
909 	struct rtree_node *node;
910 
911 	list_for_each_entry(node, &zone->nodes, list)
912 		recycle_safe_page(node->data);
913 
914 	list_for_each_entry(node, &zone->leaves, list)
915 		recycle_safe_page(node->data);
916 }
917 
memory_bm_recycle(struct memory_bitmap * bm)918 static void memory_bm_recycle(struct memory_bitmap *bm)
919 {
920 	struct mem_zone_bm_rtree *zone;
921 	struct linked_page *p_list;
922 
923 	list_for_each_entry(zone, &bm->zones, list)
924 		recycle_zone_bm_rtree(zone);
925 
926 	p_list = bm->p_list;
927 	while (p_list) {
928 		struct linked_page *lp = p_list;
929 
930 		p_list = lp->next;
931 		recycle_safe_page(lp);
932 	}
933 }
934 
935 /**
936  * register_nosave_region - Register a region of unsaveable memory.
937  *
938  * Register a range of page frames the contents of which should not be saved
939  * during hibernation (to be used in the early initialization code).
940  */
__register_nosave_region(unsigned long start_pfn,unsigned long end_pfn,int use_kmalloc)941 void __init __register_nosave_region(unsigned long start_pfn,
942 				     unsigned long end_pfn, int use_kmalloc)
943 {
944 	struct nosave_region *region;
945 
946 	if (start_pfn >= end_pfn)
947 		return;
948 
949 	if (!list_empty(&nosave_regions)) {
950 		/* Try to extend the previous region (they should be sorted) */
951 		region = list_entry(nosave_regions.prev,
952 					struct nosave_region, list);
953 		if (region->end_pfn == start_pfn) {
954 			region->end_pfn = end_pfn;
955 			goto Report;
956 		}
957 	}
958 	if (use_kmalloc) {
959 		/* During init, this shouldn't fail */
960 		region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
961 		BUG_ON(!region);
962 	} else {
963 		/* This allocation cannot fail */
964 		region = memblock_alloc(sizeof(struct nosave_region),
965 					SMP_CACHE_BYTES);
966 		if (!region)
967 			panic("%s: Failed to allocate %zu bytes\n", __func__,
968 			      sizeof(struct nosave_region));
969 	}
970 	region->start_pfn = start_pfn;
971 	region->end_pfn = end_pfn;
972 	list_add_tail(&region->list, &nosave_regions);
973  Report:
974 	pr_info("Registered nosave memory: [mem %#010llx-%#010llx]\n",
975 		(unsigned long long) start_pfn << PAGE_SHIFT,
976 		((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
977 }
978 
979 /*
980  * Set bits in this map correspond to the page frames the contents of which
981  * should not be saved during the suspend.
982  */
983 static struct memory_bitmap *forbidden_pages_map;
984 
985 /* Set bits in this map correspond to free page frames. */
986 static struct memory_bitmap *free_pages_map;
987 
988 /*
989  * Each page frame allocated for creating the image is marked by setting the
990  * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
991  */
992 
swsusp_set_page_free(struct page * page)993 void swsusp_set_page_free(struct page *page)
994 {
995 	if (free_pages_map)
996 		memory_bm_set_bit(free_pages_map, page_to_pfn(page));
997 }
998 
swsusp_page_is_free(struct page * page)999 static int swsusp_page_is_free(struct page *page)
1000 {
1001 	return free_pages_map ?
1002 		memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
1003 }
1004 
swsusp_unset_page_free(struct page * page)1005 void swsusp_unset_page_free(struct page *page)
1006 {
1007 	if (free_pages_map)
1008 		memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
1009 }
1010 
swsusp_set_page_forbidden(struct page * page)1011 static void swsusp_set_page_forbidden(struct page *page)
1012 {
1013 	if (forbidden_pages_map)
1014 		memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
1015 }
1016 
swsusp_page_is_forbidden(struct page * page)1017 int swsusp_page_is_forbidden(struct page *page)
1018 {
1019 	return forbidden_pages_map ?
1020 		memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
1021 }
1022 
swsusp_unset_page_forbidden(struct page * page)1023 static void swsusp_unset_page_forbidden(struct page *page)
1024 {
1025 	if (forbidden_pages_map)
1026 		memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
1027 }
1028 
1029 /**
1030  * mark_nosave_pages - Mark pages that should not be saved.
1031  * @bm: Memory bitmap.
1032  *
1033  * Set the bits in @bm that correspond to the page frames the contents of which
1034  * should not be saved.
1035  */
mark_nosave_pages(struct memory_bitmap * bm)1036 static void mark_nosave_pages(struct memory_bitmap *bm)
1037 {
1038 	struct nosave_region *region;
1039 
1040 	if (list_empty(&nosave_regions))
1041 		return;
1042 
1043 	list_for_each_entry(region, &nosave_regions, list) {
1044 		unsigned long pfn;
1045 
1046 		pr_debug("Marking nosave pages: [mem %#010llx-%#010llx]\n",
1047 			 (unsigned long long) region->start_pfn << PAGE_SHIFT,
1048 			 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
1049 				- 1);
1050 
1051 		for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
1052 			if (pfn_valid(pfn)) {
1053 				/*
1054 				 * It is safe to ignore the result of
1055 				 * mem_bm_set_bit_check() here, since we won't
1056 				 * touch the PFNs for which the error is
1057 				 * returned anyway.
1058 				 */
1059 				mem_bm_set_bit_check(bm, pfn);
1060 			}
1061 	}
1062 }
1063 
1064 /**
1065  * create_basic_memory_bitmaps - Create bitmaps to hold basic page information.
1066  *
1067  * Create bitmaps needed for marking page frames that should not be saved and
1068  * free page frames.  The forbidden_pages_map and free_pages_map pointers are
1069  * only modified if everything goes well, because we don't want the bits to be
1070  * touched before both bitmaps are set up.
1071  */
create_basic_memory_bitmaps(void)1072 int create_basic_memory_bitmaps(void)
1073 {
1074 	struct memory_bitmap *bm1, *bm2;
1075 	int error = 0;
1076 
1077 	if (forbidden_pages_map && free_pages_map)
1078 		return 0;
1079 	else
1080 		BUG_ON(forbidden_pages_map || free_pages_map);
1081 
1082 	bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1083 	if (!bm1)
1084 		return -ENOMEM;
1085 
1086 	error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
1087 	if (error)
1088 		goto Free_first_object;
1089 
1090 	bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1091 	if (!bm2)
1092 		goto Free_first_bitmap;
1093 
1094 	error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
1095 	if (error)
1096 		goto Free_second_object;
1097 
1098 	forbidden_pages_map = bm1;
1099 	free_pages_map = bm2;
1100 	mark_nosave_pages(forbidden_pages_map);
1101 
1102 	pr_debug("Basic memory bitmaps created\n");
1103 
1104 	return 0;
1105 
1106  Free_second_object:
1107 	kfree(bm2);
1108  Free_first_bitmap:
1109  	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1110  Free_first_object:
1111 	kfree(bm1);
1112 	return -ENOMEM;
1113 }
1114 
1115 /**
1116  * free_basic_memory_bitmaps - Free memory bitmaps holding basic information.
1117  *
1118  * Free memory bitmaps allocated by create_basic_memory_bitmaps().  The
1119  * auxiliary pointers are necessary so that the bitmaps themselves are not
1120  * referred to while they are being freed.
1121  */
free_basic_memory_bitmaps(void)1122 void free_basic_memory_bitmaps(void)
1123 {
1124 	struct memory_bitmap *bm1, *bm2;
1125 
1126 	if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
1127 		return;
1128 
1129 	bm1 = forbidden_pages_map;
1130 	bm2 = free_pages_map;
1131 	forbidden_pages_map = NULL;
1132 	free_pages_map = NULL;
1133 	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1134 	kfree(bm1);
1135 	memory_bm_free(bm2, PG_UNSAFE_CLEAR);
1136 	kfree(bm2);
1137 
1138 	pr_debug("Basic memory bitmaps freed\n");
1139 }
1140 
clear_free_pages(void)1141 void clear_free_pages(void)
1142 {
1143 #ifdef CONFIG_PAGE_POISONING_ZERO
1144 	struct memory_bitmap *bm = free_pages_map;
1145 	unsigned long pfn;
1146 
1147 	if (WARN_ON(!(free_pages_map)))
1148 		return;
1149 
1150 	memory_bm_position_reset(bm);
1151 	pfn = memory_bm_next_pfn(bm);
1152 	while (pfn != BM_END_OF_MAP) {
1153 		if (pfn_valid(pfn))
1154 			clear_highpage(pfn_to_page(pfn));
1155 
1156 		pfn = memory_bm_next_pfn(bm);
1157 	}
1158 	memory_bm_position_reset(bm);
1159 	pr_info("free pages cleared after restore\n");
1160 #endif /* PAGE_POISONING_ZERO */
1161 }
1162 
1163 /**
1164  * snapshot_additional_pages - Estimate the number of extra pages needed.
1165  * @zone: Memory zone to carry out the computation for.
1166  *
1167  * Estimate the number of additional pages needed for setting up a hibernation
1168  * image data structures for @zone (usually, the returned value is greater than
1169  * the exact number).
1170  */
snapshot_additional_pages(struct zone * zone)1171 unsigned int snapshot_additional_pages(struct zone *zone)
1172 {
1173 	unsigned int rtree, nodes;
1174 
1175 	rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
1176 	rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node),
1177 			      LINKED_PAGE_DATA_SIZE);
1178 	while (nodes > 1) {
1179 		nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL);
1180 		rtree += nodes;
1181 	}
1182 
1183 	return 2 * rtree;
1184 }
1185 
1186 #ifdef CONFIG_HIGHMEM
1187 /**
1188  * count_free_highmem_pages - Compute the total number of free highmem pages.
1189  *
1190  * The returned number is system-wide.
1191  */
count_free_highmem_pages(void)1192 static unsigned int count_free_highmem_pages(void)
1193 {
1194 	struct zone *zone;
1195 	unsigned int cnt = 0;
1196 
1197 	for_each_populated_zone(zone)
1198 		if (is_highmem(zone))
1199 			cnt += zone_page_state(zone, NR_FREE_PAGES);
1200 
1201 	return cnt;
1202 }
1203 
1204 /**
1205  * saveable_highmem_page - Check if a highmem page is saveable.
1206  *
1207  * Determine whether a highmem page should be included in a hibernation image.
1208  *
1209  * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
1210  * and it isn't part of a free chunk of pages.
1211  */
saveable_highmem_page(struct zone * zone,unsigned long pfn)1212 static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
1213 {
1214 	struct page *page;
1215 
1216 	if (!pfn_valid(pfn))
1217 		return NULL;
1218 
1219 	page = pfn_to_online_page(pfn);
1220 	if (!page || page_zone(page) != zone)
1221 		return NULL;
1222 
1223 	BUG_ON(!PageHighMem(page));
1224 
1225 	if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page))
1226 		return NULL;
1227 
1228 	if (PageReserved(page) || PageOffline(page))
1229 		return NULL;
1230 
1231 	if (page_is_guard(page))
1232 		return NULL;
1233 
1234 	return page;
1235 }
1236 
1237 /**
1238  * count_highmem_pages - Compute the total number of saveable highmem pages.
1239  */
count_highmem_pages(void)1240 static unsigned int count_highmem_pages(void)
1241 {
1242 	struct zone *zone;
1243 	unsigned int n = 0;
1244 
1245 	for_each_populated_zone(zone) {
1246 		unsigned long pfn, max_zone_pfn;
1247 
1248 		if (!is_highmem(zone))
1249 			continue;
1250 
1251 		mark_free_pages(zone);
1252 		max_zone_pfn = zone_end_pfn(zone);
1253 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1254 			if (saveable_highmem_page(zone, pfn))
1255 				n++;
1256 	}
1257 	return n;
1258 }
1259 #else
saveable_highmem_page(struct zone * z,unsigned long p)1260 static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
1261 {
1262 	return NULL;
1263 }
1264 #endif /* CONFIG_HIGHMEM */
1265 
1266 /**
1267  * saveable_page - Check if the given page is saveable.
1268  *
1269  * Determine whether a non-highmem page should be included in a hibernation
1270  * image.
1271  *
1272  * We should save the page if it isn't Nosave, and is not in the range
1273  * of pages statically defined as 'unsaveable', and it isn't part of
1274  * a free chunk of pages.
1275  */
saveable_page(struct zone * zone,unsigned long pfn)1276 static struct page *saveable_page(struct zone *zone, unsigned long pfn)
1277 {
1278 	struct page *page;
1279 
1280 	if (!pfn_valid(pfn))
1281 		return NULL;
1282 
1283 	page = pfn_to_online_page(pfn);
1284 	if (!page || page_zone(page) != zone)
1285 		return NULL;
1286 
1287 	BUG_ON(PageHighMem(page));
1288 
1289 	if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
1290 		return NULL;
1291 
1292 	if (PageOffline(page))
1293 		return NULL;
1294 
1295 	if (PageReserved(page)
1296 	    && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
1297 		return NULL;
1298 
1299 	if (page_is_guard(page))
1300 		return NULL;
1301 
1302 	return page;
1303 }
1304 
1305 /**
1306  * count_data_pages - Compute the total number of saveable non-highmem pages.
1307  */
count_data_pages(void)1308 static unsigned int count_data_pages(void)
1309 {
1310 	struct zone *zone;
1311 	unsigned long pfn, max_zone_pfn;
1312 	unsigned int n = 0;
1313 
1314 	for_each_populated_zone(zone) {
1315 		if (is_highmem(zone))
1316 			continue;
1317 
1318 		mark_free_pages(zone);
1319 		max_zone_pfn = zone_end_pfn(zone);
1320 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1321 			if (saveable_page(zone, pfn))
1322 				n++;
1323 	}
1324 	return n;
1325 }
1326 
1327 /*
1328  * This is needed, because copy_page and memcpy are not usable for copying
1329  * task structs.
1330  */
do_copy_page(long * dst,long * src)1331 static inline void do_copy_page(long *dst, long *src)
1332 {
1333 	int n;
1334 
1335 	for (n = PAGE_SIZE / sizeof(long); n; n--)
1336 		*dst++ = *src++;
1337 }
1338 
1339 /**
1340  * safe_copy_page - Copy a page in a safe way.
1341  *
1342  * Check if the page we are going to copy is marked as present in the kernel
1343  * page tables. This always is the case if CONFIG_DEBUG_PAGEALLOC or
1344  * CONFIG_ARCH_HAS_SET_DIRECT_MAP is not set. In that case kernel_page_present()
1345  * always returns 'true'.
1346  */
safe_copy_page(void * dst,struct page * s_page)1347 static void safe_copy_page(void *dst, struct page *s_page)
1348 {
1349 	if (kernel_page_present(s_page)) {
1350 		do_copy_page(dst, page_address(s_page));
1351 	} else {
1352 		kernel_map_pages(s_page, 1, 1);
1353 		do_copy_page(dst, page_address(s_page));
1354 		kernel_map_pages(s_page, 1, 0);
1355 	}
1356 }
1357 
1358 #ifdef CONFIG_HIGHMEM
page_is_saveable(struct zone * zone,unsigned long pfn)1359 static inline struct page *page_is_saveable(struct zone *zone, unsigned long pfn)
1360 {
1361 	return is_highmem(zone) ?
1362 		saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
1363 }
1364 
copy_data_page(unsigned long dst_pfn,unsigned long src_pfn)1365 static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1366 {
1367 	struct page *s_page, *d_page;
1368 	void *src, *dst;
1369 
1370 	s_page = pfn_to_page(src_pfn);
1371 	d_page = pfn_to_page(dst_pfn);
1372 	if (PageHighMem(s_page)) {
1373 		src = kmap_atomic(s_page);
1374 		dst = kmap_atomic(d_page);
1375 		do_copy_page(dst, src);
1376 		kunmap_atomic(dst);
1377 		kunmap_atomic(src);
1378 	} else {
1379 		if (PageHighMem(d_page)) {
1380 			/*
1381 			 * The page pointed to by src may contain some kernel
1382 			 * data modified by kmap_atomic()
1383 			 */
1384 			safe_copy_page(buffer, s_page);
1385 			dst = kmap_atomic(d_page);
1386 			copy_page(dst, buffer);
1387 			kunmap_atomic(dst);
1388 		} else {
1389 			safe_copy_page(page_address(d_page), s_page);
1390 		}
1391 	}
1392 }
1393 #else
1394 #define page_is_saveable(zone, pfn)	saveable_page(zone, pfn)
1395 
copy_data_page(unsigned long dst_pfn,unsigned long src_pfn)1396 static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1397 {
1398 	safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1399 				pfn_to_page(src_pfn));
1400 }
1401 #endif /* CONFIG_HIGHMEM */
1402 
copy_data_pages(struct memory_bitmap * copy_bm,struct memory_bitmap * orig_bm)1403 static void copy_data_pages(struct memory_bitmap *copy_bm,
1404 			    struct memory_bitmap *orig_bm)
1405 {
1406 	struct zone *zone;
1407 	unsigned long pfn;
1408 
1409 	for_each_populated_zone(zone) {
1410 		unsigned long max_zone_pfn;
1411 
1412 		mark_free_pages(zone);
1413 		max_zone_pfn = zone_end_pfn(zone);
1414 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1415 			if (page_is_saveable(zone, pfn))
1416 				memory_bm_set_bit(orig_bm, pfn);
1417 	}
1418 	memory_bm_position_reset(orig_bm);
1419 	memory_bm_position_reset(copy_bm);
1420 	for(;;) {
1421 		pfn = memory_bm_next_pfn(orig_bm);
1422 		if (unlikely(pfn == BM_END_OF_MAP))
1423 			break;
1424 		copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1425 	}
1426 }
1427 
1428 /* Total number of image pages */
1429 static unsigned int nr_copy_pages;
1430 /* Number of pages needed for saving the original pfns of the image pages */
1431 static unsigned int nr_meta_pages;
1432 /*
1433  * Numbers of normal and highmem page frames allocated for hibernation image
1434  * before suspending devices.
1435  */
1436 static unsigned int alloc_normal, alloc_highmem;
1437 /*
1438  * Memory bitmap used for marking saveable pages (during hibernation) or
1439  * hibernation image pages (during restore)
1440  */
1441 static struct memory_bitmap orig_bm;
1442 /*
1443  * Memory bitmap used during hibernation for marking allocated page frames that
1444  * will contain copies of saveable pages.  During restore it is initially used
1445  * for marking hibernation image pages, but then the set bits from it are
1446  * duplicated in @orig_bm and it is released.  On highmem systems it is next
1447  * used for marking "safe" highmem pages, but it has to be reinitialized for
1448  * this purpose.
1449  */
1450 static struct memory_bitmap copy_bm;
1451 
1452 /**
1453  * swsusp_free - Free pages allocated for hibernation image.
1454  *
1455  * Image pages are alocated before snapshot creation, so they need to be
1456  * released after resume.
1457  */
swsusp_free(void)1458 void swsusp_free(void)
1459 {
1460 	unsigned long fb_pfn, fr_pfn;
1461 
1462 	if (!forbidden_pages_map || !free_pages_map)
1463 		goto out;
1464 
1465 	memory_bm_position_reset(forbidden_pages_map);
1466 	memory_bm_position_reset(free_pages_map);
1467 
1468 loop:
1469 	fr_pfn = memory_bm_next_pfn(free_pages_map);
1470 	fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1471 
1472 	/*
1473 	 * Find the next bit set in both bitmaps. This is guaranteed to
1474 	 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP.
1475 	 */
1476 	do {
1477 		if (fb_pfn < fr_pfn)
1478 			fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1479 		if (fr_pfn < fb_pfn)
1480 			fr_pfn = memory_bm_next_pfn(free_pages_map);
1481 	} while (fb_pfn != fr_pfn);
1482 
1483 	if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) {
1484 		struct page *page = pfn_to_page(fr_pfn);
1485 
1486 		memory_bm_clear_current(forbidden_pages_map);
1487 		memory_bm_clear_current(free_pages_map);
1488 		hibernate_restore_unprotect_page(page_address(page));
1489 		__free_page(page);
1490 		goto loop;
1491 	}
1492 
1493 out:
1494 	nr_copy_pages = 0;
1495 	nr_meta_pages = 0;
1496 	restore_pblist = NULL;
1497 	buffer = NULL;
1498 	alloc_normal = 0;
1499 	alloc_highmem = 0;
1500 	hibernate_restore_protection_end();
1501 }
1502 
1503 /* Helper functions used for the shrinking of memory. */
1504 
1505 #define GFP_IMAGE	(GFP_KERNEL | __GFP_NOWARN)
1506 
1507 /**
1508  * preallocate_image_pages - Allocate a number of pages for hibernation image.
1509  * @nr_pages: Number of page frames to allocate.
1510  * @mask: GFP flags to use for the allocation.
1511  *
1512  * Return value: Number of page frames actually allocated
1513  */
preallocate_image_pages(unsigned long nr_pages,gfp_t mask)1514 static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1515 {
1516 	unsigned long nr_alloc = 0;
1517 
1518 	while (nr_pages > 0) {
1519 		struct page *page;
1520 
1521 		page = alloc_image_page(mask);
1522 		if (!page)
1523 			break;
1524 		memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1525 		if (PageHighMem(page))
1526 			alloc_highmem++;
1527 		else
1528 			alloc_normal++;
1529 		nr_pages--;
1530 		nr_alloc++;
1531 	}
1532 
1533 	return nr_alloc;
1534 }
1535 
preallocate_image_memory(unsigned long nr_pages,unsigned long avail_normal)1536 static unsigned long preallocate_image_memory(unsigned long nr_pages,
1537 					      unsigned long avail_normal)
1538 {
1539 	unsigned long alloc;
1540 
1541 	if (avail_normal <= alloc_normal)
1542 		return 0;
1543 
1544 	alloc = avail_normal - alloc_normal;
1545 	if (nr_pages < alloc)
1546 		alloc = nr_pages;
1547 
1548 	return preallocate_image_pages(alloc, GFP_IMAGE);
1549 }
1550 
1551 #ifdef CONFIG_HIGHMEM
preallocate_image_highmem(unsigned long nr_pages)1552 static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1553 {
1554 	return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1555 }
1556 
1557 /**
1558  *  __fraction - Compute (an approximation of) x * (multiplier / base).
1559  */
__fraction(u64 x,u64 multiplier,u64 base)1560 static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1561 {
1562 	x *= multiplier;
1563 	do_div(x, base);
1564 	return (unsigned long)x;
1565 }
1566 
preallocate_highmem_fraction(unsigned long nr_pages,unsigned long highmem,unsigned long total)1567 static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1568 						  unsigned long highmem,
1569 						  unsigned long total)
1570 {
1571 	unsigned long alloc = __fraction(nr_pages, highmem, total);
1572 
1573 	return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1574 }
1575 #else /* CONFIG_HIGHMEM */
preallocate_image_highmem(unsigned long nr_pages)1576 static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1577 {
1578 	return 0;
1579 }
1580 
preallocate_highmem_fraction(unsigned long nr_pages,unsigned long highmem,unsigned long total)1581 static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1582 							 unsigned long highmem,
1583 							 unsigned long total)
1584 {
1585 	return 0;
1586 }
1587 #endif /* CONFIG_HIGHMEM */
1588 
1589 /**
1590  * free_unnecessary_pages - Release preallocated pages not needed for the image.
1591  */
free_unnecessary_pages(void)1592 static unsigned long free_unnecessary_pages(void)
1593 {
1594 	unsigned long save, to_free_normal, to_free_highmem, free;
1595 
1596 	save = count_data_pages();
1597 	if (alloc_normal >= save) {
1598 		to_free_normal = alloc_normal - save;
1599 		save = 0;
1600 	} else {
1601 		to_free_normal = 0;
1602 		save -= alloc_normal;
1603 	}
1604 	save += count_highmem_pages();
1605 	if (alloc_highmem >= save) {
1606 		to_free_highmem = alloc_highmem - save;
1607 	} else {
1608 		to_free_highmem = 0;
1609 		save -= alloc_highmem;
1610 		if (to_free_normal > save)
1611 			to_free_normal -= save;
1612 		else
1613 			to_free_normal = 0;
1614 	}
1615 	free = to_free_normal + to_free_highmem;
1616 
1617 	memory_bm_position_reset(&copy_bm);
1618 
1619 	while (to_free_normal > 0 || to_free_highmem > 0) {
1620 		unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1621 		struct page *page = pfn_to_page(pfn);
1622 
1623 		if (PageHighMem(page)) {
1624 			if (!to_free_highmem)
1625 				continue;
1626 			to_free_highmem--;
1627 			alloc_highmem--;
1628 		} else {
1629 			if (!to_free_normal)
1630 				continue;
1631 			to_free_normal--;
1632 			alloc_normal--;
1633 		}
1634 		memory_bm_clear_bit(&copy_bm, pfn);
1635 		swsusp_unset_page_forbidden(page);
1636 		swsusp_unset_page_free(page);
1637 		__free_page(page);
1638 	}
1639 
1640 	return free;
1641 }
1642 
1643 /**
1644  * minimum_image_size - Estimate the minimum acceptable size of an image.
1645  * @saveable: Number of saveable pages in the system.
1646  *
1647  * We want to avoid attempting to free too much memory too hard, so estimate the
1648  * minimum acceptable size of a hibernation image to use as the lower limit for
1649  * preallocating memory.
1650  *
1651  * We assume that the minimum image size should be proportional to
1652  *
1653  * [number of saveable pages] - [number of pages that can be freed in theory]
1654  *
1655  * where the second term is the sum of (1) reclaimable slab pages, (2) active
1656  * and (3) inactive anonymous pages, (4) active and (5) inactive file pages.
1657  */
minimum_image_size(unsigned long saveable)1658 static unsigned long minimum_image_size(unsigned long saveable)
1659 {
1660 	unsigned long size;
1661 
1662 	size = global_node_page_state(NR_SLAB_RECLAIMABLE)
1663 		+ global_node_page_state(NR_ACTIVE_ANON)
1664 		+ global_node_page_state(NR_INACTIVE_ANON)
1665 		+ global_node_page_state(NR_ACTIVE_FILE)
1666 		+ global_node_page_state(NR_INACTIVE_FILE);
1667 
1668 	return saveable <= size ? 0 : saveable - size;
1669 }
1670 
1671 /**
1672  * hibernate_preallocate_memory - Preallocate memory for hibernation image.
1673  *
1674  * To create a hibernation image it is necessary to make a copy of every page
1675  * frame in use.  We also need a number of page frames to be free during
1676  * hibernation for allocations made while saving the image and for device
1677  * drivers, in case they need to allocate memory from their hibernation
1678  * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1679  * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
1680  * /sys/power/reserved_size, respectively).  To make this happen, we compute the
1681  * total number of available page frames and allocate at least
1682  *
1683  * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1684  *  + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1685  *
1686  * of them, which corresponds to the maximum size of a hibernation image.
1687  *
1688  * If image_size is set below the number following from the above formula,
1689  * the preallocation of memory is continued until the total number of saveable
1690  * pages in the system is below the requested image size or the minimum
1691  * acceptable image size returned by minimum_image_size(), whichever is greater.
1692  */
hibernate_preallocate_memory(void)1693 int hibernate_preallocate_memory(void)
1694 {
1695 	struct zone *zone;
1696 	unsigned long saveable, size, max_size, count, highmem, pages = 0;
1697 	unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1698 	ktime_t start, stop;
1699 	int error;
1700 
1701 	pr_info("Preallocating image memory... ");
1702 	start = ktime_get();
1703 
1704 	error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1705 	if (error)
1706 		goto err_out;
1707 
1708 	error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1709 	if (error)
1710 		goto err_out;
1711 
1712 	alloc_normal = 0;
1713 	alloc_highmem = 0;
1714 
1715 	/* Count the number of saveable data pages. */
1716 	save_highmem = count_highmem_pages();
1717 	saveable = count_data_pages();
1718 
1719 	/*
1720 	 * Compute the total number of page frames we can use (count) and the
1721 	 * number of pages needed for image metadata (size).
1722 	 */
1723 	count = saveable;
1724 	saveable += save_highmem;
1725 	highmem = save_highmem;
1726 	size = 0;
1727 	for_each_populated_zone(zone) {
1728 		size += snapshot_additional_pages(zone);
1729 		if (is_highmem(zone))
1730 			highmem += zone_page_state(zone, NR_FREE_PAGES);
1731 		else
1732 			count += zone_page_state(zone, NR_FREE_PAGES);
1733 	}
1734 	avail_normal = count;
1735 	count += highmem;
1736 	count -= totalreserve_pages;
1737 
1738 	/* Add number of pages required for page keys (s390 only). */
1739 	size += page_key_additional_pages(saveable);
1740 
1741 	/* Compute the maximum number of saveable pages to leave in memory. */
1742 	max_size = (count - (size + PAGES_FOR_IO)) / 2
1743 			- 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1744 	/* Compute the desired number of image pages specified by image_size. */
1745 	size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1746 	if (size > max_size)
1747 		size = max_size;
1748 	/*
1749 	 * If the desired number of image pages is at least as large as the
1750 	 * current number of saveable pages in memory, allocate page frames for
1751 	 * the image and we're done.
1752 	 */
1753 	if (size >= saveable) {
1754 		pages = preallocate_image_highmem(save_highmem);
1755 		pages += preallocate_image_memory(saveable - pages, avail_normal);
1756 		goto out;
1757 	}
1758 
1759 	/* Estimate the minimum size of the image. */
1760 	pages = minimum_image_size(saveable);
1761 	/*
1762 	 * To avoid excessive pressure on the normal zone, leave room in it to
1763 	 * accommodate an image of the minimum size (unless it's already too
1764 	 * small, in which case don't preallocate pages from it at all).
1765 	 */
1766 	if (avail_normal > pages)
1767 		avail_normal -= pages;
1768 	else
1769 		avail_normal = 0;
1770 	if (size < pages)
1771 		size = min_t(unsigned long, pages, max_size);
1772 
1773 	/*
1774 	 * Let the memory management subsystem know that we're going to need a
1775 	 * large number of page frames to allocate and make it free some memory.
1776 	 * NOTE: If this is not done, performance will be hurt badly in some
1777 	 * test cases.
1778 	 */
1779 	shrink_all_memory(saveable - size);
1780 
1781 	/*
1782 	 * The number of saveable pages in memory was too high, so apply some
1783 	 * pressure to decrease it.  First, make room for the largest possible
1784 	 * image and fail if that doesn't work.  Next, try to decrease the size
1785 	 * of the image as much as indicated by 'size' using allocations from
1786 	 * highmem and non-highmem zones separately.
1787 	 */
1788 	pages_highmem = preallocate_image_highmem(highmem / 2);
1789 	alloc = count - max_size;
1790 	if (alloc > pages_highmem)
1791 		alloc -= pages_highmem;
1792 	else
1793 		alloc = 0;
1794 	pages = preallocate_image_memory(alloc, avail_normal);
1795 	if (pages < alloc) {
1796 		/* We have exhausted non-highmem pages, try highmem. */
1797 		alloc -= pages;
1798 		pages += pages_highmem;
1799 		pages_highmem = preallocate_image_highmem(alloc);
1800 		if (pages_highmem < alloc)
1801 			goto err_out;
1802 		pages += pages_highmem;
1803 		/*
1804 		 * size is the desired number of saveable pages to leave in
1805 		 * memory, so try to preallocate (all memory - size) pages.
1806 		 */
1807 		alloc = (count - pages) - size;
1808 		pages += preallocate_image_highmem(alloc);
1809 	} else {
1810 		/*
1811 		 * There are approximately max_size saveable pages at this point
1812 		 * and we want to reduce this number down to size.
1813 		 */
1814 		alloc = max_size - size;
1815 		size = preallocate_highmem_fraction(alloc, highmem, count);
1816 		pages_highmem += size;
1817 		alloc -= size;
1818 		size = preallocate_image_memory(alloc, avail_normal);
1819 		pages_highmem += preallocate_image_highmem(alloc - size);
1820 		pages += pages_highmem + size;
1821 	}
1822 
1823 	/*
1824 	 * We only need as many page frames for the image as there are saveable
1825 	 * pages in memory, but we have allocated more.  Release the excessive
1826 	 * ones now.
1827 	 */
1828 	pages -= free_unnecessary_pages();
1829 
1830  out:
1831 	stop = ktime_get();
1832 	pr_cont("done (allocated %lu pages)\n", pages);
1833 	swsusp_show_speed(start, stop, pages, "Allocated");
1834 
1835 	return 0;
1836 
1837  err_out:
1838 	pr_cont("\n");
1839 	swsusp_free();
1840 	return -ENOMEM;
1841 }
1842 
1843 #ifdef CONFIG_HIGHMEM
1844 /**
1845  * count_pages_for_highmem - Count non-highmem pages needed for copying highmem.
1846  *
1847  * Compute the number of non-highmem pages that will be necessary for creating
1848  * copies of highmem pages.
1849  */
count_pages_for_highmem(unsigned int nr_highmem)1850 static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1851 {
1852 	unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1853 
1854 	if (free_highmem >= nr_highmem)
1855 		nr_highmem = 0;
1856 	else
1857 		nr_highmem -= free_highmem;
1858 
1859 	return nr_highmem;
1860 }
1861 #else
count_pages_for_highmem(unsigned int nr_highmem)1862 static unsigned int count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1863 #endif /* CONFIG_HIGHMEM */
1864 
1865 /**
1866  * enough_free_mem - Check if there is enough free memory for the image.
1867  */
enough_free_mem(unsigned int nr_pages,unsigned int nr_highmem)1868 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1869 {
1870 	struct zone *zone;
1871 	unsigned int free = alloc_normal;
1872 
1873 	for_each_populated_zone(zone)
1874 		if (!is_highmem(zone))
1875 			free += zone_page_state(zone, NR_FREE_PAGES);
1876 
1877 	nr_pages += count_pages_for_highmem(nr_highmem);
1878 	pr_debug("Normal pages needed: %u + %u, available pages: %u\n",
1879 		 nr_pages, PAGES_FOR_IO, free);
1880 
1881 	return free > nr_pages + PAGES_FOR_IO;
1882 }
1883 
1884 #ifdef CONFIG_HIGHMEM
1885 /**
1886  * get_highmem_buffer - Allocate a buffer for highmem pages.
1887  *
1888  * If there are some highmem pages in the hibernation image, we may need a
1889  * buffer to copy them and/or load their data.
1890  */
get_highmem_buffer(int safe_needed)1891 static inline int get_highmem_buffer(int safe_needed)
1892 {
1893 	buffer = get_image_page(GFP_ATOMIC, safe_needed);
1894 	return buffer ? 0 : -ENOMEM;
1895 }
1896 
1897 /**
1898  * alloc_highmem_image_pages - Allocate some highmem pages for the image.
1899  *
1900  * Try to allocate as many pages as needed, but if the number of free highmem
1901  * pages is less than that, allocate them all.
1902  */
alloc_highmem_pages(struct memory_bitmap * bm,unsigned int nr_highmem)1903 static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
1904 					       unsigned int nr_highmem)
1905 {
1906 	unsigned int to_alloc = count_free_highmem_pages();
1907 
1908 	if (to_alloc > nr_highmem)
1909 		to_alloc = nr_highmem;
1910 
1911 	nr_highmem -= to_alloc;
1912 	while (to_alloc-- > 0) {
1913 		struct page *page;
1914 
1915 		page = alloc_image_page(__GFP_HIGHMEM|__GFP_KSWAPD_RECLAIM);
1916 		memory_bm_set_bit(bm, page_to_pfn(page));
1917 	}
1918 	return nr_highmem;
1919 }
1920 #else
get_highmem_buffer(int safe_needed)1921 static inline int get_highmem_buffer(int safe_needed) { return 0; }
1922 
alloc_highmem_pages(struct memory_bitmap * bm,unsigned int n)1923 static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
1924 					       unsigned int n) { return 0; }
1925 #endif /* CONFIG_HIGHMEM */
1926 
1927 /**
1928  * swsusp_alloc - Allocate memory for hibernation image.
1929  *
1930  * We first try to allocate as many highmem pages as there are
1931  * saveable highmem pages in the system.  If that fails, we allocate
1932  * non-highmem pages for the copies of the remaining highmem ones.
1933  *
1934  * In this approach it is likely that the copies of highmem pages will
1935  * also be located in the high memory, because of the way in which
1936  * copy_data_pages() works.
1937  */
swsusp_alloc(struct memory_bitmap * copy_bm,unsigned int nr_pages,unsigned int nr_highmem)1938 static int swsusp_alloc(struct memory_bitmap *copy_bm,
1939 			unsigned int nr_pages, unsigned int nr_highmem)
1940 {
1941 	if (nr_highmem > 0) {
1942 		if (get_highmem_buffer(PG_ANY))
1943 			goto err_out;
1944 		if (nr_highmem > alloc_highmem) {
1945 			nr_highmem -= alloc_highmem;
1946 			nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1947 		}
1948 	}
1949 	if (nr_pages > alloc_normal) {
1950 		nr_pages -= alloc_normal;
1951 		while (nr_pages-- > 0) {
1952 			struct page *page;
1953 
1954 			page = alloc_image_page(GFP_ATOMIC);
1955 			if (!page)
1956 				goto err_out;
1957 			memory_bm_set_bit(copy_bm, page_to_pfn(page));
1958 		}
1959 	}
1960 
1961 	return 0;
1962 
1963  err_out:
1964 	swsusp_free();
1965 	return -ENOMEM;
1966 }
1967 
swsusp_save(void)1968 asmlinkage __visible int swsusp_save(void)
1969 {
1970 	unsigned int nr_pages, nr_highmem;
1971 
1972 	pr_info("Creating hibernation image:\n");
1973 
1974 	drain_local_pages(NULL);
1975 	nr_pages = count_data_pages();
1976 	nr_highmem = count_highmem_pages();
1977 	pr_info("Need to copy %u pages\n", nr_pages + nr_highmem);
1978 
1979 	if (!enough_free_mem(nr_pages, nr_highmem)) {
1980 		pr_err("Not enough free memory\n");
1981 		return -ENOMEM;
1982 	}
1983 
1984 	if (swsusp_alloc(&copy_bm, nr_pages, nr_highmem)) {
1985 		pr_err("Memory allocation failed\n");
1986 		return -ENOMEM;
1987 	}
1988 
1989 	/*
1990 	 * During allocating of suspend pagedir, new cold pages may appear.
1991 	 * Kill them.
1992 	 */
1993 	drain_local_pages(NULL);
1994 	copy_data_pages(&copy_bm, &orig_bm);
1995 
1996 	/*
1997 	 * End of critical section. From now on, we can write to memory,
1998 	 * but we should not touch disk. This specially means we must _not_
1999 	 * touch swap space! Except we must write out our image of course.
2000 	 */
2001 
2002 	nr_pages += nr_highmem;
2003 	nr_copy_pages = nr_pages;
2004 	nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
2005 
2006 	pr_info("Hibernation image created (%d pages copied)\n", nr_pages);
2007 
2008 	return 0;
2009 }
2010 
2011 #ifndef CONFIG_ARCH_HIBERNATION_HEADER
init_header_complete(struct swsusp_info * info)2012 static int init_header_complete(struct swsusp_info *info)
2013 {
2014 	memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
2015 	info->version_code = LINUX_VERSION_CODE;
2016 	return 0;
2017 }
2018 
check_image_kernel(struct swsusp_info * info)2019 static char *check_image_kernel(struct swsusp_info *info)
2020 {
2021 	if (info->version_code != LINUX_VERSION_CODE)
2022 		return "kernel version";
2023 	if (strcmp(info->uts.sysname,init_utsname()->sysname))
2024 		return "system type";
2025 	if (strcmp(info->uts.release,init_utsname()->release))
2026 		return "kernel release";
2027 	if (strcmp(info->uts.version,init_utsname()->version))
2028 		return "version";
2029 	if (strcmp(info->uts.machine,init_utsname()->machine))
2030 		return "machine";
2031 	return NULL;
2032 }
2033 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */
2034 
snapshot_get_image_size(void)2035 unsigned long snapshot_get_image_size(void)
2036 {
2037 	return nr_copy_pages + nr_meta_pages + 1;
2038 }
2039 
init_header(struct swsusp_info * info)2040 static int init_header(struct swsusp_info *info)
2041 {
2042 	memset(info, 0, sizeof(struct swsusp_info));
2043 	info->num_physpages = get_num_physpages();
2044 	info->image_pages = nr_copy_pages;
2045 	info->pages = snapshot_get_image_size();
2046 	info->size = info->pages;
2047 	info->size <<= PAGE_SHIFT;
2048 	return init_header_complete(info);
2049 }
2050 
2051 /**
2052  * pack_pfns - Prepare PFNs for saving.
2053  * @bm: Memory bitmap.
2054  * @buf: Memory buffer to store the PFNs in.
2055  *
2056  * PFNs corresponding to set bits in @bm are stored in the area of memory
2057  * pointed to by @buf (1 page at a time).
2058  */
pack_pfns(unsigned long * buf,struct memory_bitmap * bm)2059 static inline void pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
2060 {
2061 	int j;
2062 
2063 	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2064 		buf[j] = memory_bm_next_pfn(bm);
2065 		if (unlikely(buf[j] == BM_END_OF_MAP))
2066 			break;
2067 		/* Save page key for data page (s390 only). */
2068 		page_key_read(buf + j);
2069 	}
2070 }
2071 
2072 /**
2073  * snapshot_read_next - Get the address to read the next image page from.
2074  * @handle: Snapshot handle to be used for the reading.
2075  *
2076  * On the first call, @handle should point to a zeroed snapshot_handle
2077  * structure.  The structure gets populated then and a pointer to it should be
2078  * passed to this function every next time.
2079  *
2080  * On success, the function returns a positive number.  Then, the caller
2081  * is allowed to read up to the returned number of bytes from the memory
2082  * location computed by the data_of() macro.
2083  *
2084  * The function returns 0 to indicate the end of the data stream condition,
2085  * and negative numbers are returned on errors.  If that happens, the structure
2086  * pointed to by @handle is not updated and should not be used any more.
2087  */
snapshot_read_next(struct snapshot_handle * handle)2088 int snapshot_read_next(struct snapshot_handle *handle)
2089 {
2090 	if (handle->cur > nr_meta_pages + nr_copy_pages)
2091 		return 0;
2092 
2093 	if (!buffer) {
2094 		/* This makes the buffer be freed by swsusp_free() */
2095 		buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2096 		if (!buffer)
2097 			return -ENOMEM;
2098 	}
2099 	if (!handle->cur) {
2100 		int error;
2101 
2102 		error = init_header((struct swsusp_info *)buffer);
2103 		if (error)
2104 			return error;
2105 		handle->buffer = buffer;
2106 		memory_bm_position_reset(&orig_bm);
2107 		memory_bm_position_reset(&copy_bm);
2108 	} else if (handle->cur <= nr_meta_pages) {
2109 		clear_page(buffer);
2110 		pack_pfns(buffer, &orig_bm);
2111 	} else {
2112 		struct page *page;
2113 
2114 		page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
2115 		if (PageHighMem(page)) {
2116 			/*
2117 			 * Highmem pages are copied to the buffer,
2118 			 * because we can't return with a kmapped
2119 			 * highmem page (we may not be called again).
2120 			 */
2121 			void *kaddr;
2122 
2123 			kaddr = kmap_atomic(page);
2124 			copy_page(buffer, kaddr);
2125 			kunmap_atomic(kaddr);
2126 			handle->buffer = buffer;
2127 		} else {
2128 			handle->buffer = page_address(page);
2129 		}
2130 	}
2131 	handle->cur++;
2132 	return PAGE_SIZE;
2133 }
2134 
duplicate_memory_bitmap(struct memory_bitmap * dst,struct memory_bitmap * src)2135 static void duplicate_memory_bitmap(struct memory_bitmap *dst,
2136 				    struct memory_bitmap *src)
2137 {
2138 	unsigned long pfn;
2139 
2140 	memory_bm_position_reset(src);
2141 	pfn = memory_bm_next_pfn(src);
2142 	while (pfn != BM_END_OF_MAP) {
2143 		memory_bm_set_bit(dst, pfn);
2144 		pfn = memory_bm_next_pfn(src);
2145 	}
2146 }
2147 
2148 /**
2149  * mark_unsafe_pages - Mark pages that were used before hibernation.
2150  *
2151  * Mark the pages that cannot be used for storing the image during restoration,
2152  * because they conflict with the pages that had been used before hibernation.
2153  */
mark_unsafe_pages(struct memory_bitmap * bm)2154 static void mark_unsafe_pages(struct memory_bitmap *bm)
2155 {
2156 	unsigned long pfn;
2157 
2158 	/* Clear the "free"/"unsafe" bit for all PFNs */
2159 	memory_bm_position_reset(free_pages_map);
2160 	pfn = memory_bm_next_pfn(free_pages_map);
2161 	while (pfn != BM_END_OF_MAP) {
2162 		memory_bm_clear_current(free_pages_map);
2163 		pfn = memory_bm_next_pfn(free_pages_map);
2164 	}
2165 
2166 	/* Mark pages that correspond to the "original" PFNs as "unsafe" */
2167 	duplicate_memory_bitmap(free_pages_map, bm);
2168 
2169 	allocated_unsafe_pages = 0;
2170 }
2171 
check_header(struct swsusp_info * info)2172 static int check_header(struct swsusp_info *info)
2173 {
2174 	char *reason;
2175 
2176 	reason = check_image_kernel(info);
2177 	if (!reason && info->num_physpages != get_num_physpages())
2178 		reason = "memory size";
2179 	if (reason) {
2180 		pr_err("Image mismatch: %s\n", reason);
2181 		return -EPERM;
2182 	}
2183 	return 0;
2184 }
2185 
2186 /**
2187  * load header - Check the image header and copy the data from it.
2188  */
load_header(struct swsusp_info * info)2189 static int load_header(struct swsusp_info *info)
2190 {
2191 	int error;
2192 
2193 	restore_pblist = NULL;
2194 	error = check_header(info);
2195 	if (!error) {
2196 		nr_copy_pages = info->image_pages;
2197 		nr_meta_pages = info->pages - info->image_pages - 1;
2198 	}
2199 	return error;
2200 }
2201 
2202 /**
2203  * unpack_orig_pfns - Set bits corresponding to given PFNs in a memory bitmap.
2204  * @bm: Memory bitmap.
2205  * @buf: Area of memory containing the PFNs.
2206  *
2207  * For each element of the array pointed to by @buf (1 page at a time), set the
2208  * corresponding bit in @bm.
2209  */
unpack_orig_pfns(unsigned long * buf,struct memory_bitmap * bm)2210 static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
2211 {
2212 	int j;
2213 
2214 	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2215 		if (unlikely(buf[j] == BM_END_OF_MAP))
2216 			break;
2217 
2218 		/* Extract and buffer page key for data page (s390 only). */
2219 		page_key_memorize(buf + j);
2220 
2221 		if (pfn_valid(buf[j]) && memory_bm_pfn_present(bm, buf[j]))
2222 			memory_bm_set_bit(bm, buf[j]);
2223 		else
2224 			return -EFAULT;
2225 	}
2226 
2227 	return 0;
2228 }
2229 
2230 #ifdef CONFIG_HIGHMEM
2231 /*
2232  * struct highmem_pbe is used for creating the list of highmem pages that
2233  * should be restored atomically during the resume from disk, because the page
2234  * frames they have occupied before the suspend are in use.
2235  */
2236 struct highmem_pbe {
2237 	struct page *copy_page;	/* data is here now */
2238 	struct page *orig_page;	/* data was here before the suspend */
2239 	struct highmem_pbe *next;
2240 };
2241 
2242 /*
2243  * List of highmem PBEs needed for restoring the highmem pages that were
2244  * allocated before the suspend and included in the suspend image, but have
2245  * also been allocated by the "resume" kernel, so their contents cannot be
2246  * written directly to their "original" page frames.
2247  */
2248 static struct highmem_pbe *highmem_pblist;
2249 
2250 /**
2251  * count_highmem_image_pages - Compute the number of highmem pages in the image.
2252  * @bm: Memory bitmap.
2253  *
2254  * The bits in @bm that correspond to image pages are assumed to be set.
2255  */
count_highmem_image_pages(struct memory_bitmap * bm)2256 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
2257 {
2258 	unsigned long pfn;
2259 	unsigned int cnt = 0;
2260 
2261 	memory_bm_position_reset(bm);
2262 	pfn = memory_bm_next_pfn(bm);
2263 	while (pfn != BM_END_OF_MAP) {
2264 		if (PageHighMem(pfn_to_page(pfn)))
2265 			cnt++;
2266 
2267 		pfn = memory_bm_next_pfn(bm);
2268 	}
2269 	return cnt;
2270 }
2271 
2272 static unsigned int safe_highmem_pages;
2273 
2274 static struct memory_bitmap *safe_highmem_bm;
2275 
2276 /**
2277  * prepare_highmem_image - Allocate memory for loading highmem data from image.
2278  * @bm: Pointer to an uninitialized memory bitmap structure.
2279  * @nr_highmem_p: Pointer to the number of highmem image pages.
2280  *
2281  * Try to allocate as many highmem pages as there are highmem image pages
2282  * (@nr_highmem_p points to the variable containing the number of highmem image
2283  * pages).  The pages that are "safe" (ie. will not be overwritten when the
2284  * hibernation image is restored entirely) have the corresponding bits set in
2285  * @bm (it must be unitialized).
2286  *
2287  * NOTE: This function should not be called if there are no highmem image pages.
2288  */
prepare_highmem_image(struct memory_bitmap * bm,unsigned int * nr_highmem_p)2289 static int prepare_highmem_image(struct memory_bitmap *bm,
2290 				 unsigned int *nr_highmem_p)
2291 {
2292 	unsigned int to_alloc;
2293 
2294 	if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
2295 		return -ENOMEM;
2296 
2297 	if (get_highmem_buffer(PG_SAFE))
2298 		return -ENOMEM;
2299 
2300 	to_alloc = count_free_highmem_pages();
2301 	if (to_alloc > *nr_highmem_p)
2302 		to_alloc = *nr_highmem_p;
2303 	else
2304 		*nr_highmem_p = to_alloc;
2305 
2306 	safe_highmem_pages = 0;
2307 	while (to_alloc-- > 0) {
2308 		struct page *page;
2309 
2310 		page = alloc_page(__GFP_HIGHMEM);
2311 		if (!swsusp_page_is_free(page)) {
2312 			/* The page is "safe", set its bit the bitmap */
2313 			memory_bm_set_bit(bm, page_to_pfn(page));
2314 			safe_highmem_pages++;
2315 		}
2316 		/* Mark the page as allocated */
2317 		swsusp_set_page_forbidden(page);
2318 		swsusp_set_page_free(page);
2319 	}
2320 	memory_bm_position_reset(bm);
2321 	safe_highmem_bm = bm;
2322 	return 0;
2323 }
2324 
2325 static struct page *last_highmem_page;
2326 
2327 /**
2328  * get_highmem_page_buffer - Prepare a buffer to store a highmem image page.
2329  *
2330  * For a given highmem image page get a buffer that suspend_write_next() should
2331  * return to its caller to write to.
2332  *
2333  * If the page is to be saved to its "original" page frame or a copy of
2334  * the page is to be made in the highmem, @buffer is returned.  Otherwise,
2335  * the copy of the page is to be made in normal memory, so the address of
2336  * the copy is returned.
2337  *
2338  * If @buffer is returned, the caller of suspend_write_next() will write
2339  * the page's contents to @buffer, so they will have to be copied to the
2340  * right location on the next call to suspend_write_next() and it is done
2341  * with the help of copy_last_highmem_page().  For this purpose, if
2342  * @buffer is returned, @last_highmem_page is set to the page to which
2343  * the data will have to be copied from @buffer.
2344  */
get_highmem_page_buffer(struct page * page,struct chain_allocator * ca)2345 static void *get_highmem_page_buffer(struct page *page,
2346 				     struct chain_allocator *ca)
2347 {
2348 	struct highmem_pbe *pbe;
2349 	void *kaddr;
2350 
2351 	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
2352 		/*
2353 		 * We have allocated the "original" page frame and we can
2354 		 * use it directly to store the loaded page.
2355 		 */
2356 		last_highmem_page = page;
2357 		return buffer;
2358 	}
2359 	/*
2360 	 * The "original" page frame has not been allocated and we have to
2361 	 * use a "safe" page frame to store the loaded page.
2362 	 */
2363 	pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
2364 	if (!pbe) {
2365 		swsusp_free();
2366 		return ERR_PTR(-ENOMEM);
2367 	}
2368 	pbe->orig_page = page;
2369 	if (safe_highmem_pages > 0) {
2370 		struct page *tmp;
2371 
2372 		/* Copy of the page will be stored in high memory */
2373 		kaddr = buffer;
2374 		tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
2375 		safe_highmem_pages--;
2376 		last_highmem_page = tmp;
2377 		pbe->copy_page = tmp;
2378 	} else {
2379 		/* Copy of the page will be stored in normal memory */
2380 		kaddr = safe_pages_list;
2381 		safe_pages_list = safe_pages_list->next;
2382 		pbe->copy_page = virt_to_page(kaddr);
2383 	}
2384 	pbe->next = highmem_pblist;
2385 	highmem_pblist = pbe;
2386 	return kaddr;
2387 }
2388 
2389 /**
2390  * copy_last_highmem_page - Copy most the most recent highmem image page.
2391  *
2392  * Copy the contents of a highmem image from @buffer, where the caller of
2393  * snapshot_write_next() has stored them, to the right location represented by
2394  * @last_highmem_page .
2395  */
copy_last_highmem_page(void)2396 static void copy_last_highmem_page(void)
2397 {
2398 	if (last_highmem_page) {
2399 		void *dst;
2400 
2401 		dst = kmap_atomic(last_highmem_page);
2402 		copy_page(dst, buffer);
2403 		kunmap_atomic(dst);
2404 		last_highmem_page = NULL;
2405 	}
2406 }
2407 
last_highmem_page_copied(void)2408 static inline int last_highmem_page_copied(void)
2409 {
2410 	return !last_highmem_page;
2411 }
2412 
free_highmem_data(void)2413 static inline void free_highmem_data(void)
2414 {
2415 	if (safe_highmem_bm)
2416 		memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2417 
2418 	if (buffer)
2419 		free_image_page(buffer, PG_UNSAFE_CLEAR);
2420 }
2421 #else
count_highmem_image_pages(struct memory_bitmap * bm)2422 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2423 
prepare_highmem_image(struct memory_bitmap * bm,unsigned int * nr_highmem_p)2424 static inline int prepare_highmem_image(struct memory_bitmap *bm,
2425 					unsigned int *nr_highmem_p) { return 0; }
2426 
get_highmem_page_buffer(struct page * page,struct chain_allocator * ca)2427 static inline void *get_highmem_page_buffer(struct page *page,
2428 					    struct chain_allocator *ca)
2429 {
2430 	return ERR_PTR(-EINVAL);
2431 }
2432 
copy_last_highmem_page(void)2433 static inline void copy_last_highmem_page(void) {}
last_highmem_page_copied(void)2434 static inline int last_highmem_page_copied(void) { return 1; }
free_highmem_data(void)2435 static inline void free_highmem_data(void) {}
2436 #endif /* CONFIG_HIGHMEM */
2437 
2438 #define PBES_PER_LINKED_PAGE	(LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2439 
2440 /**
2441  * prepare_image - Make room for loading hibernation image.
2442  * @new_bm: Unitialized memory bitmap structure.
2443  * @bm: Memory bitmap with unsafe pages marked.
2444  *
2445  * Use @bm to mark the pages that will be overwritten in the process of
2446  * restoring the system memory state from the suspend image ("unsafe" pages)
2447  * and allocate memory for the image.
2448  *
2449  * The idea is to allocate a new memory bitmap first and then allocate
2450  * as many pages as needed for image data, but without specifying what those
2451  * pages will be used for just yet.  Instead, we mark them all as allocated and
2452  * create a lists of "safe" pages to be used later.  On systems with high
2453  * memory a list of "safe" highmem pages is created too.
2454  */
prepare_image(struct memory_bitmap * new_bm,struct memory_bitmap * bm)2455 static int prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2456 {
2457 	unsigned int nr_pages, nr_highmem;
2458 	struct linked_page *lp;
2459 	int error;
2460 
2461 	/* If there is no highmem, the buffer will not be necessary */
2462 	free_image_page(buffer, PG_UNSAFE_CLEAR);
2463 	buffer = NULL;
2464 
2465 	nr_highmem = count_highmem_image_pages(bm);
2466 	mark_unsafe_pages(bm);
2467 
2468 	error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2469 	if (error)
2470 		goto Free;
2471 
2472 	duplicate_memory_bitmap(new_bm, bm);
2473 	memory_bm_free(bm, PG_UNSAFE_KEEP);
2474 	if (nr_highmem > 0) {
2475 		error = prepare_highmem_image(bm, &nr_highmem);
2476 		if (error)
2477 			goto Free;
2478 	}
2479 	/*
2480 	 * Reserve some safe pages for potential later use.
2481 	 *
2482 	 * NOTE: This way we make sure there will be enough safe pages for the
2483 	 * chain_alloc() in get_buffer().  It is a bit wasteful, but
2484 	 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2485 	 *
2486 	 * nr_copy_pages cannot be less than allocated_unsafe_pages too.
2487 	 */
2488 	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2489 	nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2490 	while (nr_pages > 0) {
2491 		lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2492 		if (!lp) {
2493 			error = -ENOMEM;
2494 			goto Free;
2495 		}
2496 		lp->next = safe_pages_list;
2497 		safe_pages_list = lp;
2498 		nr_pages--;
2499 	}
2500 	/* Preallocate memory for the image */
2501 	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2502 	while (nr_pages > 0) {
2503 		lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2504 		if (!lp) {
2505 			error = -ENOMEM;
2506 			goto Free;
2507 		}
2508 		if (!swsusp_page_is_free(virt_to_page(lp))) {
2509 			/* The page is "safe", add it to the list */
2510 			lp->next = safe_pages_list;
2511 			safe_pages_list = lp;
2512 		}
2513 		/* Mark the page as allocated */
2514 		swsusp_set_page_forbidden(virt_to_page(lp));
2515 		swsusp_set_page_free(virt_to_page(lp));
2516 		nr_pages--;
2517 	}
2518 	return 0;
2519 
2520  Free:
2521 	swsusp_free();
2522 	return error;
2523 }
2524 
2525 /**
2526  * get_buffer - Get the address to store the next image data page.
2527  *
2528  * Get the address that snapshot_write_next() should return to its caller to
2529  * write to.
2530  */
get_buffer(struct memory_bitmap * bm,struct chain_allocator * ca)2531 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2532 {
2533 	struct pbe *pbe;
2534 	struct page *page;
2535 	unsigned long pfn = memory_bm_next_pfn(bm);
2536 
2537 	if (pfn == BM_END_OF_MAP)
2538 		return ERR_PTR(-EFAULT);
2539 
2540 	page = pfn_to_page(pfn);
2541 	if (PageHighMem(page))
2542 		return get_highmem_page_buffer(page, ca);
2543 
2544 	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2545 		/*
2546 		 * We have allocated the "original" page frame and we can
2547 		 * use it directly to store the loaded page.
2548 		 */
2549 		return page_address(page);
2550 
2551 	/*
2552 	 * The "original" page frame has not been allocated and we have to
2553 	 * use a "safe" page frame to store the loaded page.
2554 	 */
2555 	pbe = chain_alloc(ca, sizeof(struct pbe));
2556 	if (!pbe) {
2557 		swsusp_free();
2558 		return ERR_PTR(-ENOMEM);
2559 	}
2560 	pbe->orig_address = page_address(page);
2561 	pbe->address = safe_pages_list;
2562 	safe_pages_list = safe_pages_list->next;
2563 	pbe->next = restore_pblist;
2564 	restore_pblist = pbe;
2565 	return pbe->address;
2566 }
2567 
2568 /**
2569  * snapshot_write_next - Get the address to store the next image page.
2570  * @handle: Snapshot handle structure to guide the writing.
2571  *
2572  * On the first call, @handle should point to a zeroed snapshot_handle
2573  * structure.  The structure gets populated then and a pointer to it should be
2574  * passed to this function every next time.
2575  *
2576  * On success, the function returns a positive number.  Then, the caller
2577  * is allowed to write up to the returned number of bytes to the memory
2578  * location computed by the data_of() macro.
2579  *
2580  * The function returns 0 to indicate the "end of file" condition.  Negative
2581  * numbers are returned on errors, in which cases the structure pointed to by
2582  * @handle is not updated and should not be used any more.
2583  */
snapshot_write_next(struct snapshot_handle * handle)2584 int snapshot_write_next(struct snapshot_handle *handle)
2585 {
2586 	static struct chain_allocator ca;
2587 	int error = 0;
2588 
2589 	/* Check if we have already loaded the entire image */
2590 	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2591 		return 0;
2592 
2593 	handle->sync_read = 1;
2594 
2595 	if (!handle->cur) {
2596 		if (!buffer)
2597 			/* This makes the buffer be freed by swsusp_free() */
2598 			buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2599 
2600 		if (!buffer)
2601 			return -ENOMEM;
2602 
2603 		handle->buffer = buffer;
2604 	} else if (handle->cur == 1) {
2605 		error = load_header(buffer);
2606 		if (error)
2607 			return error;
2608 
2609 		safe_pages_list = NULL;
2610 
2611 		error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2612 		if (error)
2613 			return error;
2614 
2615 		/* Allocate buffer for page keys. */
2616 		error = page_key_alloc(nr_copy_pages);
2617 		if (error)
2618 			return error;
2619 
2620 		hibernate_restore_protection_begin();
2621 	} else if (handle->cur <= nr_meta_pages + 1) {
2622 		error = unpack_orig_pfns(buffer, &copy_bm);
2623 		if (error)
2624 			return error;
2625 
2626 		if (handle->cur == nr_meta_pages + 1) {
2627 			error = prepare_image(&orig_bm, &copy_bm);
2628 			if (error)
2629 				return error;
2630 
2631 			chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2632 			memory_bm_position_reset(&orig_bm);
2633 			restore_pblist = NULL;
2634 			handle->buffer = get_buffer(&orig_bm, &ca);
2635 			handle->sync_read = 0;
2636 			if (IS_ERR(handle->buffer))
2637 				return PTR_ERR(handle->buffer);
2638 		}
2639 	} else {
2640 		copy_last_highmem_page();
2641 		/* Restore page key for data page (s390 only). */
2642 		page_key_write(handle->buffer);
2643 		hibernate_restore_protect_page(handle->buffer);
2644 		handle->buffer = get_buffer(&orig_bm, &ca);
2645 		if (IS_ERR(handle->buffer))
2646 			return PTR_ERR(handle->buffer);
2647 		if (handle->buffer != buffer)
2648 			handle->sync_read = 0;
2649 	}
2650 	handle->cur++;
2651 	return PAGE_SIZE;
2652 }
2653 
2654 /**
2655  * snapshot_write_finalize - Complete the loading of a hibernation image.
2656  *
2657  * Must be called after the last call to snapshot_write_next() in case the last
2658  * page in the image happens to be a highmem page and its contents should be
2659  * stored in highmem.  Additionally, it recycles bitmap memory that's not
2660  * necessary any more.
2661  */
snapshot_write_finalize(struct snapshot_handle * handle)2662 void snapshot_write_finalize(struct snapshot_handle *handle)
2663 {
2664 	copy_last_highmem_page();
2665 	/* Restore page key for data page (s390 only). */
2666 	page_key_write(handle->buffer);
2667 	page_key_free();
2668 	hibernate_restore_protect_page(handle->buffer);
2669 	/* Do that only if we have loaded the image entirely */
2670 	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2671 		memory_bm_recycle(&orig_bm);
2672 		free_highmem_data();
2673 	}
2674 }
2675 
snapshot_image_loaded(struct snapshot_handle * handle)2676 int snapshot_image_loaded(struct snapshot_handle *handle)
2677 {
2678 	return !(!nr_copy_pages || !last_highmem_page_copied() ||
2679 			handle->cur <= nr_meta_pages + nr_copy_pages);
2680 }
2681 
2682 #ifdef CONFIG_HIGHMEM
2683 /* Assumes that @buf is ready and points to a "safe" page */
swap_two_pages_data(struct page * p1,struct page * p2,void * buf)2684 static inline void swap_two_pages_data(struct page *p1, struct page *p2,
2685 				       void *buf)
2686 {
2687 	void *kaddr1, *kaddr2;
2688 
2689 	kaddr1 = kmap_atomic(p1);
2690 	kaddr2 = kmap_atomic(p2);
2691 	copy_page(buf, kaddr1);
2692 	copy_page(kaddr1, kaddr2);
2693 	copy_page(kaddr2, buf);
2694 	kunmap_atomic(kaddr2);
2695 	kunmap_atomic(kaddr1);
2696 }
2697 
2698 /**
2699  * restore_highmem - Put highmem image pages into their original locations.
2700  *
2701  * For each highmem page that was in use before hibernation and is included in
2702  * the image, and also has been allocated by the "restore" kernel, swap its
2703  * current contents with the previous (ie. "before hibernation") ones.
2704  *
2705  * If the restore eventually fails, we can call this function once again and
2706  * restore the highmem state as seen by the restore kernel.
2707  */
restore_highmem(void)2708 int restore_highmem(void)
2709 {
2710 	struct highmem_pbe *pbe = highmem_pblist;
2711 	void *buf;
2712 
2713 	if (!pbe)
2714 		return 0;
2715 
2716 	buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2717 	if (!buf)
2718 		return -ENOMEM;
2719 
2720 	while (pbe) {
2721 		swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2722 		pbe = pbe->next;
2723 	}
2724 	free_image_page(buf, PG_UNSAFE_CLEAR);
2725 	return 0;
2726 }
2727 #endif /* CONFIG_HIGHMEM */
2728