1 // SPDX-License-Identifier: GPL-2.0
2
3 /*
4 * Copyright 2016-2022 HabanaLabs, Ltd.
5 * All Rights Reserved.
6 */
7
8 #define pr_fmt(fmt) "habanalabs: " fmt
9
10 #include <uapi/drm/habanalabs_accel.h>
11 #include "habanalabs.h"
12
13 #include <linux/pci.h>
14 #include <linux/hwmon.h>
15 #include <linux/vmalloc.h>
16
17 #include <trace/events/habanalabs.h>
18
19 #define HL_RESET_DELAY_USEC 10000 /* 10ms */
20
21 #define HL_DEVICE_RELEASE_WATCHDOG_TIMEOUT_SEC 5
22
23 enum dma_alloc_type {
24 DMA_ALLOC_COHERENT,
25 DMA_ALLOC_POOL,
26 };
27
28 #define MEM_SCRUB_DEFAULT_VAL 0x1122334455667788
29
30 /*
31 * hl_set_dram_bar- sets the bar to allow later access to address
32 *
33 * @hdev: pointer to habanalabs device structure.
34 * @addr: the address the caller wants to access.
35 * @region: the PCI region.
36 * @new_bar_region_base: the new BAR region base address.
37 *
38 * @return: the old BAR base address on success, U64_MAX for failure.
39 * The caller should set it back to the old address after use.
40 *
41 * In case the bar space does not cover the whole address space,
42 * the bar base address should be set to allow access to a given address.
43 * This function can be called also if the bar doesn't need to be set,
44 * in that case it just won't change the base.
45 */
hl_set_dram_bar(struct hl_device * hdev,u64 addr,struct pci_mem_region * region,u64 * new_bar_region_base)46 static u64 hl_set_dram_bar(struct hl_device *hdev, u64 addr, struct pci_mem_region *region,
47 u64 *new_bar_region_base)
48 {
49 struct asic_fixed_properties *prop = &hdev->asic_prop;
50 u64 bar_base_addr, old_base;
51
52 if (is_power_of_2(prop->dram_pci_bar_size))
53 bar_base_addr = addr & ~(prop->dram_pci_bar_size - 0x1ull);
54 else
55 bar_base_addr = DIV_ROUND_DOWN_ULL(addr, prop->dram_pci_bar_size) *
56 prop->dram_pci_bar_size;
57
58 old_base = hdev->asic_funcs->set_dram_bar_base(hdev, bar_base_addr);
59
60 /* in case of success we need to update the new BAR base */
61 if ((old_base != U64_MAX) && new_bar_region_base)
62 *new_bar_region_base = bar_base_addr;
63
64 return old_base;
65 }
66
hl_access_sram_dram_region(struct hl_device * hdev,u64 addr,u64 * val,enum debugfs_access_type acc_type,enum pci_region region_type,bool set_dram_bar)67 int hl_access_sram_dram_region(struct hl_device *hdev, u64 addr, u64 *val,
68 enum debugfs_access_type acc_type, enum pci_region region_type, bool set_dram_bar)
69 {
70 struct pci_mem_region *region = &hdev->pci_mem_region[region_type];
71 u64 old_base = 0, rc, bar_region_base = region->region_base;
72 void __iomem *acc_addr;
73
74 if (set_dram_bar) {
75 old_base = hl_set_dram_bar(hdev, addr, region, &bar_region_base);
76 if (old_base == U64_MAX)
77 return -EIO;
78 }
79
80 acc_addr = hdev->pcie_bar[region->bar_id] + region->offset_in_bar +
81 (addr - bar_region_base);
82
83 switch (acc_type) {
84 case DEBUGFS_READ8:
85 *val = readb(acc_addr);
86 break;
87 case DEBUGFS_WRITE8:
88 writeb(*val, acc_addr);
89 break;
90 case DEBUGFS_READ32:
91 *val = readl(acc_addr);
92 break;
93 case DEBUGFS_WRITE32:
94 writel(*val, acc_addr);
95 break;
96 case DEBUGFS_READ64:
97 *val = readq(acc_addr);
98 break;
99 case DEBUGFS_WRITE64:
100 writeq(*val, acc_addr);
101 break;
102 }
103
104 if (set_dram_bar) {
105 rc = hl_set_dram_bar(hdev, old_base, region, NULL);
106 if (rc == U64_MAX)
107 return -EIO;
108 }
109
110 return 0;
111 }
112
hl_dma_alloc_common(struct hl_device * hdev,size_t size,dma_addr_t * dma_handle,gfp_t flag,enum dma_alloc_type alloc_type,const char * caller)113 static void *hl_dma_alloc_common(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle,
114 gfp_t flag, enum dma_alloc_type alloc_type,
115 const char *caller)
116 {
117 void *ptr = NULL;
118
119 switch (alloc_type) {
120 case DMA_ALLOC_COHERENT:
121 ptr = hdev->asic_funcs->asic_dma_alloc_coherent(hdev, size, dma_handle, flag);
122 break;
123 case DMA_ALLOC_POOL:
124 ptr = hdev->asic_funcs->asic_dma_pool_zalloc(hdev, size, flag, dma_handle);
125 break;
126 }
127
128 if (trace_habanalabs_dma_alloc_enabled() && !ZERO_OR_NULL_PTR(ptr))
129 trace_habanalabs_dma_alloc(hdev->dev, (u64) (uintptr_t) ptr, *dma_handle, size,
130 caller);
131
132 return ptr;
133 }
134
hl_asic_dma_free_common(struct hl_device * hdev,size_t size,void * cpu_addr,dma_addr_t dma_handle,enum dma_alloc_type alloc_type,const char * caller)135 static void hl_asic_dma_free_common(struct hl_device *hdev, size_t size, void *cpu_addr,
136 dma_addr_t dma_handle, enum dma_alloc_type alloc_type,
137 const char *caller)
138 {
139 /* this is needed to avoid warning on using freed pointer */
140 u64 store_cpu_addr = (u64) (uintptr_t) cpu_addr;
141
142 switch (alloc_type) {
143 case DMA_ALLOC_COHERENT:
144 hdev->asic_funcs->asic_dma_free_coherent(hdev, size, cpu_addr, dma_handle);
145 break;
146 case DMA_ALLOC_POOL:
147 hdev->asic_funcs->asic_dma_pool_free(hdev, cpu_addr, dma_handle);
148 break;
149 }
150
151 trace_habanalabs_dma_free(hdev->dev, store_cpu_addr, dma_handle, size, caller);
152 }
153
hl_asic_dma_alloc_coherent_caller(struct hl_device * hdev,size_t size,dma_addr_t * dma_handle,gfp_t flag,const char * caller)154 void *hl_asic_dma_alloc_coherent_caller(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle,
155 gfp_t flag, const char *caller)
156 {
157 return hl_dma_alloc_common(hdev, size, dma_handle, flag, DMA_ALLOC_COHERENT, caller);
158 }
159
hl_asic_dma_free_coherent_caller(struct hl_device * hdev,size_t size,void * cpu_addr,dma_addr_t dma_handle,const char * caller)160 void hl_asic_dma_free_coherent_caller(struct hl_device *hdev, size_t size, void *cpu_addr,
161 dma_addr_t dma_handle, const char *caller)
162 {
163 hl_asic_dma_free_common(hdev, size, cpu_addr, dma_handle, DMA_ALLOC_COHERENT, caller);
164 }
165
hl_asic_dma_pool_zalloc_caller(struct hl_device * hdev,size_t size,gfp_t mem_flags,dma_addr_t * dma_handle,const char * caller)166 void *hl_asic_dma_pool_zalloc_caller(struct hl_device *hdev, size_t size, gfp_t mem_flags,
167 dma_addr_t *dma_handle, const char *caller)
168 {
169 return hl_dma_alloc_common(hdev, size, dma_handle, mem_flags, DMA_ALLOC_POOL, caller);
170 }
171
hl_asic_dma_pool_free_caller(struct hl_device * hdev,void * vaddr,dma_addr_t dma_addr,const char * caller)172 void hl_asic_dma_pool_free_caller(struct hl_device *hdev, void *vaddr, dma_addr_t dma_addr,
173 const char *caller)
174 {
175 hl_asic_dma_free_common(hdev, 0, vaddr, dma_addr, DMA_ALLOC_POOL, caller);
176 }
177
hl_cpu_accessible_dma_pool_alloc(struct hl_device * hdev,size_t size,dma_addr_t * dma_handle)178 void *hl_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle)
179 {
180 return hdev->asic_funcs->cpu_accessible_dma_pool_alloc(hdev, size, dma_handle);
181 }
182
hl_cpu_accessible_dma_pool_free(struct hl_device * hdev,size_t size,void * vaddr)183 void hl_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size, void *vaddr)
184 {
185 hdev->asic_funcs->cpu_accessible_dma_pool_free(hdev, size, vaddr);
186 }
187
hl_dma_map_sgtable(struct hl_device * hdev,struct sg_table * sgt,enum dma_data_direction dir)188 int hl_dma_map_sgtable(struct hl_device *hdev, struct sg_table *sgt, enum dma_data_direction dir)
189 {
190 struct asic_fixed_properties *prop = &hdev->asic_prop;
191 struct scatterlist *sg;
192 int rc, i;
193
194 rc = dma_map_sgtable(&hdev->pdev->dev, sgt, dir, 0);
195 if (rc)
196 return rc;
197
198 /* Shift to the device's base physical address of host memory if necessary */
199 if (prop->device_dma_offset_for_host_access)
200 for_each_sgtable_dma_sg(sgt, sg, i)
201 sg->dma_address += prop->device_dma_offset_for_host_access;
202
203 return 0;
204 }
205
hl_dma_unmap_sgtable(struct hl_device * hdev,struct sg_table * sgt,enum dma_data_direction dir)206 void hl_dma_unmap_sgtable(struct hl_device *hdev, struct sg_table *sgt, enum dma_data_direction dir)
207 {
208 struct asic_fixed_properties *prop = &hdev->asic_prop;
209 struct scatterlist *sg;
210 int i;
211
212 /* Cancel the device's base physical address of host memory if necessary */
213 if (prop->device_dma_offset_for_host_access)
214 for_each_sgtable_dma_sg(sgt, sg, i)
215 sg->dma_address -= prop->device_dma_offset_for_host_access;
216
217 dma_unmap_sgtable(&hdev->pdev->dev, sgt, dir, 0);
218 }
219
220 /*
221 * hl_access_cfg_region - access the config region
222 *
223 * @hdev: pointer to habanalabs device structure
224 * @addr: the address to access
225 * @val: the value to write from or read to
226 * @acc_type: the type of access (read/write 64/32)
227 */
hl_access_cfg_region(struct hl_device * hdev,u64 addr,u64 * val,enum debugfs_access_type acc_type)228 int hl_access_cfg_region(struct hl_device *hdev, u64 addr, u64 *val,
229 enum debugfs_access_type acc_type)
230 {
231 struct pci_mem_region *cfg_region = &hdev->pci_mem_region[PCI_REGION_CFG];
232 u32 val_h, val_l;
233
234 if (!IS_ALIGNED(addr, sizeof(u32))) {
235 dev_err(hdev->dev, "address %#llx not a multiple of %zu\n", addr, sizeof(u32));
236 return -EINVAL;
237 }
238
239 switch (acc_type) {
240 case DEBUGFS_READ32:
241 *val = RREG32(addr - cfg_region->region_base);
242 break;
243 case DEBUGFS_WRITE32:
244 WREG32(addr - cfg_region->region_base, *val);
245 break;
246 case DEBUGFS_READ64:
247 val_l = RREG32(addr - cfg_region->region_base);
248 val_h = RREG32(addr + sizeof(u32) - cfg_region->region_base);
249
250 *val = (((u64) val_h) << 32) | val_l;
251 break;
252 case DEBUGFS_WRITE64:
253 WREG32(addr - cfg_region->region_base, lower_32_bits(*val));
254 WREG32(addr + sizeof(u32) - cfg_region->region_base, upper_32_bits(*val));
255 break;
256 default:
257 dev_err(hdev->dev, "access type %d is not supported\n", acc_type);
258 return -EOPNOTSUPP;
259 }
260
261 return 0;
262 }
263
264 /*
265 * hl_access_dev_mem - access device memory
266 *
267 * @hdev: pointer to habanalabs device structure
268 * @region_type: the type of the region the address belongs to
269 * @addr: the address to access
270 * @val: the value to write from or read to
271 * @acc_type: the type of access (r/w, 32/64)
272 */
hl_access_dev_mem(struct hl_device * hdev,enum pci_region region_type,u64 addr,u64 * val,enum debugfs_access_type acc_type)273 int hl_access_dev_mem(struct hl_device *hdev, enum pci_region region_type,
274 u64 addr, u64 *val, enum debugfs_access_type acc_type)
275 {
276 switch (region_type) {
277 case PCI_REGION_CFG:
278 return hl_access_cfg_region(hdev, addr, val, acc_type);
279 case PCI_REGION_SRAM:
280 case PCI_REGION_DRAM:
281 return hl_access_sram_dram_region(hdev, addr, val, acc_type,
282 region_type, (region_type == PCI_REGION_DRAM));
283 default:
284 return -EFAULT;
285 }
286
287 return 0;
288 }
289
hl_engine_data_sprintf(struct engines_data * e,const char * fmt,...)290 void hl_engine_data_sprintf(struct engines_data *e, const char *fmt, ...)
291 {
292 va_list args;
293 int str_size;
294
295 va_start(args, fmt);
296 /* Calculate formatted string length. Assuming each string is null terminated, hence
297 * increment result by 1
298 */
299 str_size = vsnprintf(NULL, 0, fmt, args) + 1;
300 va_end(args);
301
302 if ((e->actual_size + str_size) < e->allocated_buf_size) {
303 va_start(args, fmt);
304 vsnprintf(e->buf + e->actual_size, str_size, fmt, args);
305 va_end(args);
306 }
307
308 /* Need to update the size even when not updating destination buffer to get the exact size
309 * of all input strings
310 */
311 e->actual_size += str_size;
312 }
313
hl_device_status(struct hl_device * hdev)314 enum hl_device_status hl_device_status(struct hl_device *hdev)
315 {
316 enum hl_device_status status;
317
318 if (hdev->reset_info.in_reset) {
319 if (hdev->reset_info.in_compute_reset)
320 status = HL_DEVICE_STATUS_IN_RESET_AFTER_DEVICE_RELEASE;
321 else
322 status = HL_DEVICE_STATUS_IN_RESET;
323 } else if (hdev->reset_info.needs_reset) {
324 status = HL_DEVICE_STATUS_NEEDS_RESET;
325 } else if (hdev->disabled) {
326 status = HL_DEVICE_STATUS_MALFUNCTION;
327 } else if (!hdev->init_done) {
328 status = HL_DEVICE_STATUS_IN_DEVICE_CREATION;
329 } else {
330 status = HL_DEVICE_STATUS_OPERATIONAL;
331 }
332
333 return status;
334 }
335
hl_device_operational(struct hl_device * hdev,enum hl_device_status * status)336 bool hl_device_operational(struct hl_device *hdev,
337 enum hl_device_status *status)
338 {
339 enum hl_device_status current_status;
340
341 current_status = hl_device_status(hdev);
342 if (status)
343 *status = current_status;
344
345 switch (current_status) {
346 case HL_DEVICE_STATUS_IN_RESET:
347 case HL_DEVICE_STATUS_IN_RESET_AFTER_DEVICE_RELEASE:
348 case HL_DEVICE_STATUS_MALFUNCTION:
349 case HL_DEVICE_STATUS_NEEDS_RESET:
350 return false;
351 case HL_DEVICE_STATUS_OPERATIONAL:
352 case HL_DEVICE_STATUS_IN_DEVICE_CREATION:
353 default:
354 return true;
355 }
356 }
357
hl_ctrl_device_operational(struct hl_device * hdev,enum hl_device_status * status)358 bool hl_ctrl_device_operational(struct hl_device *hdev,
359 enum hl_device_status *status)
360 {
361 enum hl_device_status current_status;
362
363 current_status = hl_device_status(hdev);
364 if (status)
365 *status = current_status;
366
367 switch (current_status) {
368 case HL_DEVICE_STATUS_MALFUNCTION:
369 return false;
370 case HL_DEVICE_STATUS_IN_RESET:
371 case HL_DEVICE_STATUS_IN_RESET_AFTER_DEVICE_RELEASE:
372 case HL_DEVICE_STATUS_NEEDS_RESET:
373 case HL_DEVICE_STATUS_OPERATIONAL:
374 case HL_DEVICE_STATUS_IN_DEVICE_CREATION:
375 default:
376 return true;
377 }
378 }
379
print_idle_status_mask(struct hl_device * hdev,const char * message,u64 idle_mask[HL_BUSY_ENGINES_MASK_EXT_SIZE])380 static void print_idle_status_mask(struct hl_device *hdev, const char *message,
381 u64 idle_mask[HL_BUSY_ENGINES_MASK_EXT_SIZE])
382 {
383 if (idle_mask[3])
384 dev_err(hdev->dev, "%s (mask %#llx_%016llx_%016llx_%016llx)\n",
385 message, idle_mask[3], idle_mask[2], idle_mask[1], idle_mask[0]);
386 else if (idle_mask[2])
387 dev_err(hdev->dev, "%s (mask %#llx_%016llx_%016llx)\n",
388 message, idle_mask[2], idle_mask[1], idle_mask[0]);
389 else if (idle_mask[1])
390 dev_err(hdev->dev, "%s (mask %#llx_%016llx)\n",
391 message, idle_mask[1], idle_mask[0]);
392 else
393 dev_err(hdev->dev, "%s (mask %#llx)\n", message, idle_mask[0]);
394 }
395
hpriv_release(struct kref * ref)396 static void hpriv_release(struct kref *ref)
397 {
398 u64 idle_mask[HL_BUSY_ENGINES_MASK_EXT_SIZE] = {0};
399 bool reset_device, device_is_idle = true;
400 struct hl_fpriv *hpriv;
401 struct hl_device *hdev;
402
403 hpriv = container_of(ref, struct hl_fpriv, refcount);
404
405 hdev = hpriv->hdev;
406
407 hdev->asic_funcs->send_device_activity(hdev, false);
408
409 put_pid(hpriv->taskpid);
410
411 hl_debugfs_remove_file(hpriv);
412
413 mutex_destroy(&hpriv->ctx_lock);
414 mutex_destroy(&hpriv->restore_phase_mutex);
415
416 /* There should be no memory buffers at this point and handles IDR can be destroyed */
417 hl_mem_mgr_idr_destroy(&hpriv->mem_mgr);
418
419 /* Device should be reset if reset-upon-device-release is enabled, or if there is a pending
420 * reset that waits for device release.
421 */
422 reset_device = hdev->reset_upon_device_release || hdev->reset_info.watchdog_active;
423
424 /* Check the device idle status and reset if not idle.
425 * Skip it if already in reset, or if device is going to be reset in any case.
426 */
427 if (!hdev->reset_info.in_reset && !reset_device && hdev->pdev && !hdev->pldm)
428 device_is_idle = hdev->asic_funcs->is_device_idle(hdev, idle_mask,
429 HL_BUSY_ENGINES_MASK_EXT_SIZE, NULL);
430 if (!device_is_idle) {
431 print_idle_status_mask(hdev, "device is not idle after user context is closed",
432 idle_mask);
433 reset_device = true;
434 }
435
436 /* We need to remove the user from the list to make sure the reset process won't
437 * try to kill the user process. Because, if we got here, it means there are no
438 * more driver/device resources that the user process is occupying so there is
439 * no need to kill it
440 *
441 * However, we can't set the compute_ctx to NULL at this stage. This is to prevent
442 * a race between the release and opening the device again. We don't want to let
443 * a user open the device while there a reset is about to happen.
444 */
445 mutex_lock(&hdev->fpriv_list_lock);
446 list_del(&hpriv->dev_node);
447 mutex_unlock(&hdev->fpriv_list_lock);
448
449 if (reset_device) {
450 hl_device_reset(hdev, HL_DRV_RESET_DEV_RELEASE);
451 } else {
452 /* Scrubbing is handled within hl_device_reset(), so here need to do it directly */
453 int rc = hdev->asic_funcs->scrub_device_mem(hdev);
454
455 if (rc)
456 dev_err(hdev->dev, "failed to scrub memory from hpriv release (%d)\n", rc);
457 }
458
459 /* Now we can mark the compute_ctx as not active. Even if a reset is running in a different
460 * thread, we don't care because the in_reset is marked so if a user will try to open
461 * the device it will fail on that, even if compute_ctx is false.
462 */
463 mutex_lock(&hdev->fpriv_list_lock);
464 hdev->is_compute_ctx_active = false;
465 mutex_unlock(&hdev->fpriv_list_lock);
466
467 hdev->compute_ctx_in_release = 0;
468
469 /* release the eventfd */
470 if (hpriv->notifier_event.eventfd)
471 eventfd_ctx_put(hpriv->notifier_event.eventfd);
472
473 mutex_destroy(&hpriv->notifier_event.lock);
474
475 kfree(hpriv);
476 }
477
hl_hpriv_get(struct hl_fpriv * hpriv)478 void hl_hpriv_get(struct hl_fpriv *hpriv)
479 {
480 kref_get(&hpriv->refcount);
481 }
482
hl_hpriv_put(struct hl_fpriv * hpriv)483 int hl_hpriv_put(struct hl_fpriv *hpriv)
484 {
485 return kref_put(&hpriv->refcount, hpriv_release);
486 }
487
print_device_in_use_info(struct hl_device * hdev,const char * message)488 static void print_device_in_use_info(struct hl_device *hdev, const char *message)
489 {
490 u32 active_cs_num, dmabuf_export_cnt;
491 bool unknown_reason = true;
492 char buf[128];
493 size_t size;
494 int offset;
495
496 size = sizeof(buf);
497 offset = 0;
498
499 active_cs_num = hl_get_active_cs_num(hdev);
500 if (active_cs_num) {
501 unknown_reason = false;
502 offset += scnprintf(buf + offset, size - offset, " [%u active CS]", active_cs_num);
503 }
504
505 dmabuf_export_cnt = atomic_read(&hdev->dmabuf_export_cnt);
506 if (dmabuf_export_cnt) {
507 unknown_reason = false;
508 offset += scnprintf(buf + offset, size - offset, " [%u exported dma-buf]",
509 dmabuf_export_cnt);
510 }
511
512 if (unknown_reason)
513 scnprintf(buf + offset, size - offset, " [unknown reason]");
514
515 dev_notice(hdev->dev, "%s%s\n", message, buf);
516 }
517
518 /*
519 * hl_device_release - release function for habanalabs device
520 *
521 * @inode: pointer to inode structure
522 * @filp: pointer to file structure
523 *
524 * Called when process closes an habanalabs device
525 */
hl_device_release(struct inode * inode,struct file * filp)526 static int hl_device_release(struct inode *inode, struct file *filp)
527 {
528 struct hl_fpriv *hpriv = filp->private_data;
529 struct hl_device *hdev = hpriv->hdev;
530
531 filp->private_data = NULL;
532
533 if (!hdev) {
534 pr_crit("Closing FD after device was removed. Memory leak will occur and it is advised to reboot.\n");
535 put_pid(hpriv->taskpid);
536 return 0;
537 }
538
539 hl_ctx_mgr_fini(hdev, &hpriv->ctx_mgr);
540
541 /* Memory buffers might be still in use at this point and thus the handles IDR destruction
542 * is postponed to hpriv_release().
543 */
544 hl_mem_mgr_fini(&hpriv->mem_mgr);
545
546 hdev->compute_ctx_in_release = 1;
547
548 if (!hl_hpriv_put(hpriv)) {
549 print_device_in_use_info(hdev, "User process closed FD but device still in use");
550 hl_device_reset(hdev, HL_DRV_RESET_HARD);
551 }
552
553 hdev->last_open_session_duration_jif = jiffies - hdev->last_successful_open_jif;
554
555 return 0;
556 }
557
hl_device_release_ctrl(struct inode * inode,struct file * filp)558 static int hl_device_release_ctrl(struct inode *inode, struct file *filp)
559 {
560 struct hl_fpriv *hpriv = filp->private_data;
561 struct hl_device *hdev = hpriv->hdev;
562
563 filp->private_data = NULL;
564
565 if (!hdev) {
566 pr_err("Closing FD after device was removed\n");
567 goto out;
568 }
569
570 mutex_lock(&hdev->fpriv_ctrl_list_lock);
571 list_del(&hpriv->dev_node);
572 mutex_unlock(&hdev->fpriv_ctrl_list_lock);
573 out:
574 /* release the eventfd */
575 if (hpriv->notifier_event.eventfd)
576 eventfd_ctx_put(hpriv->notifier_event.eventfd);
577
578 mutex_destroy(&hpriv->notifier_event.lock);
579 put_pid(hpriv->taskpid);
580
581 kfree(hpriv);
582
583 return 0;
584 }
585
586 /*
587 * hl_mmap - mmap function for habanalabs device
588 *
589 * @*filp: pointer to file structure
590 * @*vma: pointer to vm_area_struct of the process
591 *
592 * Called when process does an mmap on habanalabs device. Call the relevant mmap
593 * function at the end of the common code.
594 */
hl_mmap(struct file * filp,struct vm_area_struct * vma)595 static int hl_mmap(struct file *filp, struct vm_area_struct *vma)
596 {
597 struct hl_fpriv *hpriv = filp->private_data;
598 struct hl_device *hdev = hpriv->hdev;
599 unsigned long vm_pgoff;
600
601 if (!hdev) {
602 pr_err_ratelimited("Trying to mmap after device was removed! Please close FD\n");
603 return -ENODEV;
604 }
605
606 vm_pgoff = vma->vm_pgoff;
607
608 switch (vm_pgoff & HL_MMAP_TYPE_MASK) {
609 case HL_MMAP_TYPE_BLOCK:
610 vma->vm_pgoff = HL_MMAP_OFFSET_VALUE_GET(vm_pgoff);
611 return hl_hw_block_mmap(hpriv, vma);
612
613 case HL_MMAP_TYPE_CB:
614 case HL_MMAP_TYPE_TS_BUFF:
615 return hl_mem_mgr_mmap(&hpriv->mem_mgr, vma, NULL);
616 }
617 return -EINVAL;
618 }
619
620 static const struct file_operations hl_ops = {
621 .owner = THIS_MODULE,
622 .open = hl_device_open,
623 .release = hl_device_release,
624 .mmap = hl_mmap,
625 .unlocked_ioctl = hl_ioctl,
626 .compat_ioctl = hl_ioctl
627 };
628
629 static const struct file_operations hl_ctrl_ops = {
630 .owner = THIS_MODULE,
631 .open = hl_device_open_ctrl,
632 .release = hl_device_release_ctrl,
633 .unlocked_ioctl = hl_ioctl_control,
634 .compat_ioctl = hl_ioctl_control
635 };
636
device_release_func(struct device * dev)637 static void device_release_func(struct device *dev)
638 {
639 kfree(dev);
640 }
641
642 /*
643 * device_init_cdev - Initialize cdev and device for habanalabs device
644 *
645 * @hdev: pointer to habanalabs device structure
646 * @class: pointer to the class object of the device
647 * @minor: minor number of the specific device
648 * @fpos: file operations to install for this device
649 * @name: name of the device as it will appear in the filesystem
650 * @cdev: pointer to the char device object that will be initialized
651 * @dev: pointer to the device object that will be initialized
652 *
653 * Initialize a cdev and a Linux device for habanalabs's device.
654 */
device_init_cdev(struct hl_device * hdev,struct class * class,int minor,const struct file_operations * fops,char * name,struct cdev * cdev,struct device ** dev)655 static int device_init_cdev(struct hl_device *hdev, struct class *class,
656 int minor, const struct file_operations *fops,
657 char *name, struct cdev *cdev,
658 struct device **dev)
659 {
660 cdev_init(cdev, fops);
661 cdev->owner = THIS_MODULE;
662
663 *dev = kzalloc(sizeof(**dev), GFP_KERNEL);
664 if (!*dev)
665 return -ENOMEM;
666
667 device_initialize(*dev);
668 (*dev)->devt = MKDEV(hdev->major, minor);
669 (*dev)->class = class;
670 (*dev)->release = device_release_func;
671 dev_set_drvdata(*dev, hdev);
672 dev_set_name(*dev, "%s", name);
673
674 return 0;
675 }
676
cdev_sysfs_debugfs_add(struct hl_device * hdev)677 static int cdev_sysfs_debugfs_add(struct hl_device *hdev)
678 {
679 int rc;
680
681 rc = cdev_device_add(&hdev->cdev, hdev->dev);
682 if (rc) {
683 dev_err(hdev->dev,
684 "failed to add a char device to the system\n");
685 return rc;
686 }
687
688 rc = cdev_device_add(&hdev->cdev_ctrl, hdev->dev_ctrl);
689 if (rc) {
690 dev_err(hdev->dev,
691 "failed to add a control char device to the system\n");
692 goto delete_cdev_device;
693 }
694
695 /* hl_sysfs_init() must be done after adding the device to the system */
696 rc = hl_sysfs_init(hdev);
697 if (rc) {
698 dev_err(hdev->dev, "failed to initialize sysfs\n");
699 goto delete_ctrl_cdev_device;
700 }
701
702 hl_debugfs_add_device(hdev);
703
704 hdev->cdev_sysfs_debugfs_created = true;
705
706 return 0;
707
708 delete_ctrl_cdev_device:
709 cdev_device_del(&hdev->cdev_ctrl, hdev->dev_ctrl);
710 delete_cdev_device:
711 cdev_device_del(&hdev->cdev, hdev->dev);
712 return rc;
713 }
714
cdev_sysfs_debugfs_remove(struct hl_device * hdev)715 static void cdev_sysfs_debugfs_remove(struct hl_device *hdev)
716 {
717 if (!hdev->cdev_sysfs_debugfs_created)
718 goto put_devices;
719
720 hl_debugfs_remove_device(hdev);
721 hl_sysfs_fini(hdev);
722 cdev_device_del(&hdev->cdev_ctrl, hdev->dev_ctrl);
723 cdev_device_del(&hdev->cdev, hdev->dev);
724
725 put_devices:
726 put_device(hdev->dev);
727 put_device(hdev->dev_ctrl);
728 }
729
device_hard_reset_pending(struct work_struct * work)730 static void device_hard_reset_pending(struct work_struct *work)
731 {
732 struct hl_device_reset_work *device_reset_work =
733 container_of(work, struct hl_device_reset_work, reset_work.work);
734 struct hl_device *hdev = device_reset_work->hdev;
735 u32 flags;
736 int rc;
737
738 flags = device_reset_work->flags | HL_DRV_RESET_FROM_RESET_THR;
739
740 rc = hl_device_reset(hdev, flags);
741
742 if ((rc == -EBUSY) && !hdev->device_fini_pending) {
743 struct hl_ctx *ctx = hl_get_compute_ctx(hdev);
744
745 if (ctx) {
746 /* The read refcount value should subtracted by one, because the read is
747 * protected with hl_get_compute_ctx().
748 */
749 dev_info(hdev->dev,
750 "Could not reset device (compute_ctx refcount %u). will try again in %u seconds",
751 kref_read(&ctx->refcount) - 1, HL_PENDING_RESET_PER_SEC);
752 hl_ctx_put(ctx);
753 } else {
754 dev_info(hdev->dev, "Could not reset device. will try again in %u seconds",
755 HL_PENDING_RESET_PER_SEC);
756 }
757
758 queue_delayed_work(hdev->reset_wq, &device_reset_work->reset_work,
759 msecs_to_jiffies(HL_PENDING_RESET_PER_SEC * 1000));
760 }
761 }
762
device_release_watchdog_func(struct work_struct * work)763 static void device_release_watchdog_func(struct work_struct *work)
764 {
765 struct hl_device_reset_work *watchdog_work =
766 container_of(work, struct hl_device_reset_work, reset_work.work);
767 struct hl_device *hdev = watchdog_work->hdev;
768 u32 flags;
769
770 dev_dbg(hdev->dev, "Device wasn't released in time. Initiate hard-reset.\n");
771
772 flags = watchdog_work->flags | HL_DRV_RESET_HARD | HL_DRV_RESET_FROM_WD_THR;
773
774 hl_device_reset(hdev, flags);
775 }
776
777 /*
778 * device_early_init - do some early initialization for the habanalabs device
779 *
780 * @hdev: pointer to habanalabs device structure
781 *
782 * Install the relevant function pointers and call the early_init function,
783 * if such a function exists
784 */
device_early_init(struct hl_device * hdev)785 static int device_early_init(struct hl_device *hdev)
786 {
787 int i, rc;
788 char workq_name[32];
789
790 switch (hdev->asic_type) {
791 case ASIC_GOYA:
792 goya_set_asic_funcs(hdev);
793 strscpy(hdev->asic_name, "GOYA", sizeof(hdev->asic_name));
794 break;
795 case ASIC_GAUDI:
796 gaudi_set_asic_funcs(hdev);
797 strscpy(hdev->asic_name, "GAUDI", sizeof(hdev->asic_name));
798 break;
799 case ASIC_GAUDI_SEC:
800 gaudi_set_asic_funcs(hdev);
801 strscpy(hdev->asic_name, "GAUDI SEC", sizeof(hdev->asic_name));
802 break;
803 case ASIC_GAUDI2:
804 gaudi2_set_asic_funcs(hdev);
805 strscpy(hdev->asic_name, "GAUDI2", sizeof(hdev->asic_name));
806 break;
807 case ASIC_GAUDI2B:
808 gaudi2_set_asic_funcs(hdev);
809 strscpy(hdev->asic_name, "GAUDI2B", sizeof(hdev->asic_name));
810 break;
811 break;
812 default:
813 dev_err(hdev->dev, "Unrecognized ASIC type %d\n",
814 hdev->asic_type);
815 return -EINVAL;
816 }
817
818 rc = hdev->asic_funcs->early_init(hdev);
819 if (rc)
820 return rc;
821
822 rc = hl_asid_init(hdev);
823 if (rc)
824 goto early_fini;
825
826 if (hdev->asic_prop.completion_queues_count) {
827 hdev->cq_wq = kcalloc(hdev->asic_prop.completion_queues_count,
828 sizeof(struct workqueue_struct *),
829 GFP_KERNEL);
830 if (!hdev->cq_wq) {
831 rc = -ENOMEM;
832 goto asid_fini;
833 }
834 }
835
836 for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++) {
837 snprintf(workq_name, 32, "hl%u-free-jobs-%u", hdev->cdev_idx, (u32) i);
838 hdev->cq_wq[i] = create_singlethread_workqueue(workq_name);
839 if (hdev->cq_wq[i] == NULL) {
840 dev_err(hdev->dev, "Failed to allocate CQ workqueue\n");
841 rc = -ENOMEM;
842 goto free_cq_wq;
843 }
844 }
845
846 snprintf(workq_name, 32, "hl%u-events", hdev->cdev_idx);
847 hdev->eq_wq = create_singlethread_workqueue(workq_name);
848 if (hdev->eq_wq == NULL) {
849 dev_err(hdev->dev, "Failed to allocate EQ workqueue\n");
850 rc = -ENOMEM;
851 goto free_cq_wq;
852 }
853
854 snprintf(workq_name, 32, "hl%u-cs-completions", hdev->cdev_idx);
855 hdev->cs_cmplt_wq = alloc_workqueue(workq_name, WQ_UNBOUND, 0);
856 if (!hdev->cs_cmplt_wq) {
857 dev_err(hdev->dev,
858 "Failed to allocate CS completions workqueue\n");
859 rc = -ENOMEM;
860 goto free_eq_wq;
861 }
862
863 snprintf(workq_name, 32, "hl%u-ts-free-obj", hdev->cdev_idx);
864 hdev->ts_free_obj_wq = alloc_workqueue(workq_name, WQ_UNBOUND, 0);
865 if (!hdev->ts_free_obj_wq) {
866 dev_err(hdev->dev,
867 "Failed to allocate Timestamp registration free workqueue\n");
868 rc = -ENOMEM;
869 goto free_cs_cmplt_wq;
870 }
871
872 snprintf(workq_name, 32, "hl%u-prefetch", hdev->cdev_idx);
873 hdev->prefetch_wq = alloc_workqueue(workq_name, WQ_UNBOUND, 0);
874 if (!hdev->prefetch_wq) {
875 dev_err(hdev->dev, "Failed to allocate MMU prefetch workqueue\n");
876 rc = -ENOMEM;
877 goto free_ts_free_wq;
878 }
879
880 hdev->hl_chip_info = kzalloc(sizeof(struct hwmon_chip_info), GFP_KERNEL);
881 if (!hdev->hl_chip_info) {
882 rc = -ENOMEM;
883 goto free_prefetch_wq;
884 }
885
886 rc = hl_mmu_if_set_funcs(hdev);
887 if (rc)
888 goto free_chip_info;
889
890 hl_mem_mgr_init(hdev->dev, &hdev->kernel_mem_mgr);
891
892 snprintf(workq_name, 32, "hl%u_device_reset", hdev->cdev_idx);
893 hdev->reset_wq = create_singlethread_workqueue(workq_name);
894 if (!hdev->reset_wq) {
895 rc = -ENOMEM;
896 dev_err(hdev->dev, "Failed to create device reset WQ\n");
897 goto free_cb_mgr;
898 }
899
900 INIT_DELAYED_WORK(&hdev->device_reset_work.reset_work, device_hard_reset_pending);
901 hdev->device_reset_work.hdev = hdev;
902 hdev->device_fini_pending = 0;
903
904 INIT_DELAYED_WORK(&hdev->device_release_watchdog_work.reset_work,
905 device_release_watchdog_func);
906 hdev->device_release_watchdog_work.hdev = hdev;
907
908 mutex_init(&hdev->send_cpu_message_lock);
909 mutex_init(&hdev->debug_lock);
910 INIT_LIST_HEAD(&hdev->cs_mirror_list);
911 spin_lock_init(&hdev->cs_mirror_lock);
912 spin_lock_init(&hdev->reset_info.lock);
913 INIT_LIST_HEAD(&hdev->fpriv_list);
914 INIT_LIST_HEAD(&hdev->fpriv_ctrl_list);
915 mutex_init(&hdev->fpriv_list_lock);
916 mutex_init(&hdev->fpriv_ctrl_list_lock);
917 mutex_init(&hdev->clk_throttling.lock);
918
919 return 0;
920
921 free_cb_mgr:
922 hl_mem_mgr_fini(&hdev->kernel_mem_mgr);
923 hl_mem_mgr_idr_destroy(&hdev->kernel_mem_mgr);
924 free_chip_info:
925 kfree(hdev->hl_chip_info);
926 free_prefetch_wq:
927 destroy_workqueue(hdev->prefetch_wq);
928 free_ts_free_wq:
929 destroy_workqueue(hdev->ts_free_obj_wq);
930 free_cs_cmplt_wq:
931 destroy_workqueue(hdev->cs_cmplt_wq);
932 free_eq_wq:
933 destroy_workqueue(hdev->eq_wq);
934 free_cq_wq:
935 for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++)
936 if (hdev->cq_wq[i])
937 destroy_workqueue(hdev->cq_wq[i]);
938 kfree(hdev->cq_wq);
939 asid_fini:
940 hl_asid_fini(hdev);
941 early_fini:
942 if (hdev->asic_funcs->early_fini)
943 hdev->asic_funcs->early_fini(hdev);
944
945 return rc;
946 }
947
948 /*
949 * device_early_fini - finalize all that was done in device_early_init
950 *
951 * @hdev: pointer to habanalabs device structure
952 *
953 */
device_early_fini(struct hl_device * hdev)954 static void device_early_fini(struct hl_device *hdev)
955 {
956 int i;
957
958 mutex_destroy(&hdev->debug_lock);
959 mutex_destroy(&hdev->send_cpu_message_lock);
960
961 mutex_destroy(&hdev->fpriv_list_lock);
962 mutex_destroy(&hdev->fpriv_ctrl_list_lock);
963
964 mutex_destroy(&hdev->clk_throttling.lock);
965
966 hl_mem_mgr_fini(&hdev->kernel_mem_mgr);
967 hl_mem_mgr_idr_destroy(&hdev->kernel_mem_mgr);
968
969 kfree(hdev->hl_chip_info);
970
971 destroy_workqueue(hdev->prefetch_wq);
972 destroy_workqueue(hdev->ts_free_obj_wq);
973 destroy_workqueue(hdev->cs_cmplt_wq);
974 destroy_workqueue(hdev->eq_wq);
975 destroy_workqueue(hdev->reset_wq);
976
977 for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++)
978 destroy_workqueue(hdev->cq_wq[i]);
979 kfree(hdev->cq_wq);
980
981 hl_asid_fini(hdev);
982
983 if (hdev->asic_funcs->early_fini)
984 hdev->asic_funcs->early_fini(hdev);
985 }
986
is_pci_link_healthy(struct hl_device * hdev)987 static bool is_pci_link_healthy(struct hl_device *hdev)
988 {
989 u16 vendor_id;
990
991 if (!hdev->pdev)
992 return false;
993
994 pci_read_config_word(hdev->pdev, PCI_VENDOR_ID, &vendor_id);
995
996 return (vendor_id == PCI_VENDOR_ID_HABANALABS);
997 }
998
hl_device_heartbeat(struct work_struct * work)999 static void hl_device_heartbeat(struct work_struct *work)
1000 {
1001 struct hl_device *hdev = container_of(work, struct hl_device,
1002 work_heartbeat.work);
1003 struct hl_info_fw_err_info info = {0};
1004 u64 event_mask = HL_NOTIFIER_EVENT_DEVICE_RESET | HL_NOTIFIER_EVENT_DEVICE_UNAVAILABLE;
1005
1006 if (!hl_device_operational(hdev, NULL))
1007 goto reschedule;
1008
1009 if (!hdev->asic_funcs->send_heartbeat(hdev))
1010 goto reschedule;
1011
1012 if (hl_device_operational(hdev, NULL))
1013 dev_err(hdev->dev, "Device heartbeat failed! PCI link is %s\n",
1014 is_pci_link_healthy(hdev) ? "healthy" : "broken");
1015
1016 info.err_type = HL_INFO_FW_HEARTBEAT_ERR;
1017 info.event_mask = &event_mask;
1018 hl_handle_fw_err(hdev, &info);
1019 hl_device_cond_reset(hdev, HL_DRV_RESET_HARD | HL_DRV_RESET_HEARTBEAT, event_mask);
1020
1021 return;
1022
1023 reschedule:
1024 /*
1025 * prev_reset_trigger tracks consecutive fatal h/w errors until first
1026 * heartbeat immediately post reset.
1027 * If control reached here, then at least one heartbeat work has been
1028 * scheduled since last reset/init cycle.
1029 * So if the device is not already in reset cycle, reset the flag
1030 * prev_reset_trigger as no reset occurred with HL_DRV_RESET_FW_FATAL_ERR
1031 * status for at least one heartbeat. From this point driver restarts
1032 * tracking future consecutive fatal errors.
1033 */
1034 if (!hdev->reset_info.in_reset)
1035 hdev->reset_info.prev_reset_trigger = HL_RESET_TRIGGER_DEFAULT;
1036
1037 schedule_delayed_work(&hdev->work_heartbeat,
1038 usecs_to_jiffies(HL_HEARTBEAT_PER_USEC));
1039 }
1040
1041 /*
1042 * device_late_init - do late stuff initialization for the habanalabs device
1043 *
1044 * @hdev: pointer to habanalabs device structure
1045 *
1046 * Do stuff that either needs the device H/W queues to be active or needs
1047 * to happen after all the rest of the initialization is finished
1048 */
device_late_init(struct hl_device * hdev)1049 static int device_late_init(struct hl_device *hdev)
1050 {
1051 int rc;
1052
1053 if (hdev->asic_funcs->late_init) {
1054 rc = hdev->asic_funcs->late_init(hdev);
1055 if (rc) {
1056 dev_err(hdev->dev,
1057 "failed late initialization for the H/W\n");
1058 return rc;
1059 }
1060 }
1061
1062 hdev->high_pll = hdev->asic_prop.high_pll;
1063
1064 if (hdev->heartbeat) {
1065 INIT_DELAYED_WORK(&hdev->work_heartbeat, hl_device_heartbeat);
1066 schedule_delayed_work(&hdev->work_heartbeat,
1067 usecs_to_jiffies(HL_HEARTBEAT_PER_USEC));
1068 }
1069
1070 hdev->late_init_done = true;
1071
1072 return 0;
1073 }
1074
1075 /*
1076 * device_late_fini - finalize all that was done in device_late_init
1077 *
1078 * @hdev: pointer to habanalabs device structure
1079 *
1080 */
device_late_fini(struct hl_device * hdev)1081 static void device_late_fini(struct hl_device *hdev)
1082 {
1083 if (!hdev->late_init_done)
1084 return;
1085
1086 if (hdev->heartbeat)
1087 cancel_delayed_work_sync(&hdev->work_heartbeat);
1088
1089 if (hdev->asic_funcs->late_fini)
1090 hdev->asic_funcs->late_fini(hdev);
1091
1092 hdev->late_init_done = false;
1093 }
1094
hl_device_utilization(struct hl_device * hdev,u32 * utilization)1095 int hl_device_utilization(struct hl_device *hdev, u32 *utilization)
1096 {
1097 u64 max_power, curr_power, dc_power, dividend, divisor;
1098 int rc;
1099
1100 max_power = hdev->max_power;
1101 dc_power = hdev->asic_prop.dc_power_default;
1102 divisor = max_power - dc_power;
1103 if (!divisor) {
1104 dev_warn(hdev->dev, "device utilization is not supported\n");
1105 return -EOPNOTSUPP;
1106 }
1107 rc = hl_fw_cpucp_power_get(hdev, &curr_power);
1108
1109 if (rc)
1110 return rc;
1111
1112 curr_power = clamp(curr_power, dc_power, max_power);
1113
1114 dividend = (curr_power - dc_power) * 100;
1115 *utilization = (u32) div_u64(dividend, divisor);
1116
1117 return 0;
1118 }
1119
hl_device_set_debug_mode(struct hl_device * hdev,struct hl_ctx * ctx,bool enable)1120 int hl_device_set_debug_mode(struct hl_device *hdev, struct hl_ctx *ctx, bool enable)
1121 {
1122 int rc = 0;
1123
1124 mutex_lock(&hdev->debug_lock);
1125
1126 if (!enable) {
1127 if (!hdev->in_debug) {
1128 dev_err(hdev->dev,
1129 "Failed to disable debug mode because device was not in debug mode\n");
1130 rc = -EFAULT;
1131 goto out;
1132 }
1133
1134 if (!hdev->reset_info.hard_reset_pending)
1135 hdev->asic_funcs->halt_coresight(hdev, ctx);
1136
1137 hdev->in_debug = 0;
1138
1139 goto out;
1140 }
1141
1142 if (hdev->in_debug) {
1143 dev_err(hdev->dev,
1144 "Failed to enable debug mode because device is already in debug mode\n");
1145 rc = -EFAULT;
1146 goto out;
1147 }
1148
1149 hdev->in_debug = 1;
1150
1151 out:
1152 mutex_unlock(&hdev->debug_lock);
1153
1154 return rc;
1155 }
1156
take_release_locks(struct hl_device * hdev)1157 static void take_release_locks(struct hl_device *hdev)
1158 {
1159 /* Flush anyone that is inside the critical section of enqueue
1160 * jobs to the H/W
1161 */
1162 hdev->asic_funcs->hw_queues_lock(hdev);
1163 hdev->asic_funcs->hw_queues_unlock(hdev);
1164
1165 /* Flush processes that are sending message to CPU */
1166 mutex_lock(&hdev->send_cpu_message_lock);
1167 mutex_unlock(&hdev->send_cpu_message_lock);
1168
1169 /* Flush anyone that is inside device open */
1170 mutex_lock(&hdev->fpriv_list_lock);
1171 mutex_unlock(&hdev->fpriv_list_lock);
1172 mutex_lock(&hdev->fpriv_ctrl_list_lock);
1173 mutex_unlock(&hdev->fpriv_ctrl_list_lock);
1174 }
1175
hl_abort_waiting_for_completions(struct hl_device * hdev)1176 static void hl_abort_waiting_for_completions(struct hl_device *hdev)
1177 {
1178 hl_abort_waiting_for_cs_completions(hdev);
1179
1180 /* Release all pending user interrupts, each pending user interrupt
1181 * holds a reference to a user context.
1182 */
1183 hl_release_pending_user_interrupts(hdev);
1184 }
1185
cleanup_resources(struct hl_device * hdev,bool hard_reset,bool fw_reset,bool skip_wq_flush)1186 static void cleanup_resources(struct hl_device *hdev, bool hard_reset, bool fw_reset,
1187 bool skip_wq_flush)
1188 {
1189 if (hard_reset)
1190 device_late_fini(hdev);
1191
1192 /*
1193 * Halt the engines and disable interrupts so we won't get any more
1194 * completions from H/W and we won't have any accesses from the
1195 * H/W to the host machine
1196 */
1197 hdev->asic_funcs->halt_engines(hdev, hard_reset, fw_reset);
1198
1199 /* Go over all the queues, release all CS and their jobs */
1200 hl_cs_rollback_all(hdev, skip_wq_flush);
1201
1202 /* flush the MMU prefetch workqueue */
1203 flush_workqueue(hdev->prefetch_wq);
1204
1205 hl_abort_waiting_for_completions(hdev);
1206 }
1207
1208 /*
1209 * hl_device_suspend - initiate device suspend
1210 *
1211 * @hdev: pointer to habanalabs device structure
1212 *
1213 * Puts the hw in the suspend state (all asics).
1214 * Returns 0 for success or an error on failure.
1215 * Called at driver suspend.
1216 */
hl_device_suspend(struct hl_device * hdev)1217 int hl_device_suspend(struct hl_device *hdev)
1218 {
1219 int rc;
1220
1221 pci_save_state(hdev->pdev);
1222
1223 /* Block future CS/VM/JOB completion operations */
1224 spin_lock(&hdev->reset_info.lock);
1225 if (hdev->reset_info.in_reset) {
1226 spin_unlock(&hdev->reset_info.lock);
1227 dev_err(hdev->dev, "Can't suspend while in reset\n");
1228 return -EIO;
1229 }
1230 hdev->reset_info.in_reset = 1;
1231 spin_unlock(&hdev->reset_info.lock);
1232
1233 /* This blocks all other stuff that is not blocked by in_reset */
1234 hdev->disabled = true;
1235
1236 take_release_locks(hdev);
1237
1238 rc = hdev->asic_funcs->suspend(hdev);
1239 if (rc)
1240 dev_err(hdev->dev,
1241 "Failed to disable PCI access of device CPU\n");
1242
1243 /* Shut down the device */
1244 pci_disable_device(hdev->pdev);
1245 pci_set_power_state(hdev->pdev, PCI_D3hot);
1246
1247 return 0;
1248 }
1249
1250 /*
1251 * hl_device_resume - initiate device resume
1252 *
1253 * @hdev: pointer to habanalabs device structure
1254 *
1255 * Bring the hw back to operating state (all asics).
1256 * Returns 0 for success or an error on failure.
1257 * Called at driver resume.
1258 */
hl_device_resume(struct hl_device * hdev)1259 int hl_device_resume(struct hl_device *hdev)
1260 {
1261 int rc;
1262
1263 pci_set_power_state(hdev->pdev, PCI_D0);
1264 pci_restore_state(hdev->pdev);
1265 rc = pci_enable_device_mem(hdev->pdev);
1266 if (rc) {
1267 dev_err(hdev->dev,
1268 "Failed to enable PCI device in resume\n");
1269 return rc;
1270 }
1271
1272 pci_set_master(hdev->pdev);
1273
1274 rc = hdev->asic_funcs->resume(hdev);
1275 if (rc) {
1276 dev_err(hdev->dev, "Failed to resume device after suspend\n");
1277 goto disable_device;
1278 }
1279
1280
1281 /* 'in_reset' was set to true during suspend, now we must clear it in order
1282 * for hard reset to be performed
1283 */
1284 spin_lock(&hdev->reset_info.lock);
1285 hdev->reset_info.in_reset = 0;
1286 spin_unlock(&hdev->reset_info.lock);
1287
1288 rc = hl_device_reset(hdev, HL_DRV_RESET_HARD);
1289 if (rc) {
1290 dev_err(hdev->dev, "Failed to reset device during resume\n");
1291 goto disable_device;
1292 }
1293
1294 return 0;
1295
1296 disable_device:
1297 pci_disable_device(hdev->pdev);
1298
1299 return rc;
1300 }
1301
device_kill_open_processes(struct hl_device * hdev,u32 timeout,bool control_dev)1302 static int device_kill_open_processes(struct hl_device *hdev, u32 timeout, bool control_dev)
1303 {
1304 struct task_struct *task = NULL;
1305 struct list_head *fd_list;
1306 struct hl_fpriv *hpriv;
1307 struct mutex *fd_lock;
1308 u32 pending_cnt;
1309
1310 fd_lock = control_dev ? &hdev->fpriv_ctrl_list_lock : &hdev->fpriv_list_lock;
1311 fd_list = control_dev ? &hdev->fpriv_ctrl_list : &hdev->fpriv_list;
1312
1313 /* Giving time for user to close FD, and for processes that are inside
1314 * hl_device_open to finish
1315 */
1316 if (!list_empty(fd_list))
1317 ssleep(1);
1318
1319 if (timeout) {
1320 pending_cnt = timeout;
1321 } else {
1322 if (hdev->process_kill_trial_cnt) {
1323 /* Processes have been already killed */
1324 pending_cnt = 1;
1325 goto wait_for_processes;
1326 } else {
1327 /* Wait a small period after process kill */
1328 pending_cnt = HL_PENDING_RESET_PER_SEC;
1329 }
1330 }
1331
1332 mutex_lock(fd_lock);
1333
1334 /* This section must be protected because we are dereferencing
1335 * pointers that are freed if the process exits
1336 */
1337 list_for_each_entry(hpriv, fd_list, dev_node) {
1338 task = get_pid_task(hpriv->taskpid, PIDTYPE_PID);
1339 if (task) {
1340 dev_info(hdev->dev, "Killing user process pid=%d\n",
1341 task_pid_nr(task));
1342 send_sig(SIGKILL, task, 1);
1343 usleep_range(1000, 10000);
1344
1345 put_task_struct(task);
1346 } else {
1347 /*
1348 * If we got here, it means that process was killed from outside the driver
1349 * right after it started looping on fd_list and before get_pid_task, thus
1350 * we don't need to kill it.
1351 */
1352 dev_dbg(hdev->dev,
1353 "Can't get task struct for user process, assuming process was killed from outside the driver\n");
1354 }
1355 }
1356
1357 mutex_unlock(fd_lock);
1358
1359 /*
1360 * We killed the open users, but that doesn't mean they are closed.
1361 * It could be that they are running a long cleanup phase in the driver
1362 * e.g. MMU unmappings, or running other long teardown flow even before
1363 * our cleanup.
1364 * Therefore we need to wait again to make sure they are closed before
1365 * continuing with the reset.
1366 */
1367
1368 wait_for_processes:
1369 while ((!list_empty(fd_list)) && (pending_cnt)) {
1370 dev_dbg(hdev->dev,
1371 "Waiting for all unmap operations to finish before hard reset\n");
1372
1373 pending_cnt--;
1374
1375 ssleep(1);
1376 }
1377
1378 /* All processes exited successfully */
1379 if (list_empty(fd_list))
1380 return 0;
1381
1382 /* Give up waiting for processes to exit */
1383 if (hdev->process_kill_trial_cnt == HL_PENDING_RESET_MAX_TRIALS)
1384 return -ETIME;
1385
1386 hdev->process_kill_trial_cnt++;
1387
1388 return -EBUSY;
1389 }
1390
device_disable_open_processes(struct hl_device * hdev,bool control_dev)1391 static void device_disable_open_processes(struct hl_device *hdev, bool control_dev)
1392 {
1393 struct list_head *fd_list;
1394 struct hl_fpriv *hpriv;
1395 struct mutex *fd_lock;
1396
1397 fd_lock = control_dev ? &hdev->fpriv_ctrl_list_lock : &hdev->fpriv_list_lock;
1398 fd_list = control_dev ? &hdev->fpriv_ctrl_list : &hdev->fpriv_list;
1399
1400 mutex_lock(fd_lock);
1401 list_for_each_entry(hpriv, fd_list, dev_node)
1402 hpriv->hdev = NULL;
1403 mutex_unlock(fd_lock);
1404 }
1405
send_disable_pci_access(struct hl_device * hdev,u32 flags)1406 static void send_disable_pci_access(struct hl_device *hdev, u32 flags)
1407 {
1408 /* If reset is due to heartbeat, device CPU is no responsive in
1409 * which case no point sending PCI disable message to it.
1410 */
1411 if ((flags & HL_DRV_RESET_HARD) &&
1412 !(flags & (HL_DRV_RESET_HEARTBEAT | HL_DRV_RESET_BYPASS_REQ_TO_FW))) {
1413 /* Disable PCI access from device F/W so he won't send
1414 * us additional interrupts. We disable MSI/MSI-X at
1415 * the halt_engines function and we can't have the F/W
1416 * sending us interrupts after that. We need to disable
1417 * the access here because if the device is marked
1418 * disable, the message won't be send. Also, in case
1419 * of heartbeat, the device CPU is marked as disable
1420 * so this message won't be sent
1421 */
1422 if (hl_fw_send_pci_access_msg(hdev, CPUCP_PACKET_DISABLE_PCI_ACCESS, 0x0)) {
1423 dev_warn(hdev->dev, "Failed to disable FW's PCI access\n");
1424 return;
1425 }
1426
1427 /* verify that last EQs are handled before disabled is set */
1428 if (hdev->cpu_queues_enable)
1429 synchronize_irq(pci_irq_vector(hdev->pdev,
1430 hdev->asic_prop.eq_interrupt_id));
1431 }
1432 }
1433
handle_reset_trigger(struct hl_device * hdev,u32 flags)1434 static void handle_reset_trigger(struct hl_device *hdev, u32 flags)
1435 {
1436 u32 cur_reset_trigger = HL_RESET_TRIGGER_DEFAULT;
1437
1438 /* No consecutive mechanism when user context exists */
1439 if (hdev->is_compute_ctx_active)
1440 return;
1441
1442 /*
1443 * 'reset cause' is being updated here, because getting here
1444 * means that it's the 1st time and the last time we're here
1445 * ('in_reset' makes sure of it). This makes sure that
1446 * 'reset_cause' will continue holding its 1st recorded reason!
1447 */
1448 if (flags & HL_DRV_RESET_HEARTBEAT) {
1449 hdev->reset_info.curr_reset_cause = HL_RESET_CAUSE_HEARTBEAT;
1450 cur_reset_trigger = HL_DRV_RESET_HEARTBEAT;
1451 } else if (flags & HL_DRV_RESET_TDR) {
1452 hdev->reset_info.curr_reset_cause = HL_RESET_CAUSE_TDR;
1453 cur_reset_trigger = HL_DRV_RESET_TDR;
1454 } else if (flags & HL_DRV_RESET_FW_FATAL_ERR) {
1455 hdev->reset_info.curr_reset_cause = HL_RESET_CAUSE_UNKNOWN;
1456 cur_reset_trigger = HL_DRV_RESET_FW_FATAL_ERR;
1457 } else {
1458 hdev->reset_info.curr_reset_cause = HL_RESET_CAUSE_UNKNOWN;
1459 }
1460
1461 /*
1462 * If reset cause is same twice, then reset_trigger_repeated
1463 * is set and if this reset is due to a fatal FW error
1464 * device is set to an unstable state.
1465 */
1466 if (hdev->reset_info.prev_reset_trigger != cur_reset_trigger) {
1467 hdev->reset_info.prev_reset_trigger = cur_reset_trigger;
1468 hdev->reset_info.reset_trigger_repeated = 0;
1469 } else {
1470 hdev->reset_info.reset_trigger_repeated = 1;
1471 }
1472 }
1473
1474 /*
1475 * hl_device_reset - reset the device
1476 *
1477 * @hdev: pointer to habanalabs device structure
1478 * @flags: reset flags.
1479 *
1480 * Block future CS and wait for pending CS to be enqueued
1481 * Call ASIC H/W fini
1482 * Flush all completions
1483 * Re-initialize all internal data structures
1484 * Call ASIC H/W init, late_init
1485 * Test queues
1486 * Enable device
1487 *
1488 * Returns 0 for success or an error on failure.
1489 */
hl_device_reset(struct hl_device * hdev,u32 flags)1490 int hl_device_reset(struct hl_device *hdev, u32 flags)
1491 {
1492 bool hard_reset, from_hard_reset_thread, fw_reset, reset_upon_device_release,
1493 schedule_hard_reset = false, delay_reset, from_dev_release, from_watchdog_thread;
1494 u64 idle_mask[HL_BUSY_ENGINES_MASK_EXT_SIZE] = {0};
1495 struct hl_ctx *ctx;
1496 int i, rc, hw_fini_rc;
1497
1498 if (!hdev->init_done) {
1499 dev_err(hdev->dev, "Can't reset before initialization is done\n");
1500 return 0;
1501 }
1502
1503 hard_reset = !!(flags & HL_DRV_RESET_HARD);
1504 from_hard_reset_thread = !!(flags & HL_DRV_RESET_FROM_RESET_THR);
1505 fw_reset = !!(flags & HL_DRV_RESET_BYPASS_REQ_TO_FW);
1506 from_dev_release = !!(flags & HL_DRV_RESET_DEV_RELEASE);
1507 delay_reset = !!(flags & HL_DRV_RESET_DELAY);
1508 from_watchdog_thread = !!(flags & HL_DRV_RESET_FROM_WD_THR);
1509 reset_upon_device_release = hdev->reset_upon_device_release && from_dev_release;
1510
1511 if (!hard_reset && (hl_device_status(hdev) == HL_DEVICE_STATUS_MALFUNCTION)) {
1512 dev_dbg(hdev->dev, "soft-reset isn't supported on a malfunctioning device\n");
1513 return 0;
1514 }
1515
1516 if (!hard_reset && !hdev->asic_prop.supports_compute_reset) {
1517 dev_dbg(hdev->dev, "asic doesn't support compute reset - do hard-reset instead\n");
1518 hard_reset = true;
1519 }
1520
1521 if (reset_upon_device_release) {
1522 if (hard_reset) {
1523 dev_crit(hdev->dev,
1524 "Aborting reset because hard-reset is mutually exclusive with reset-on-device-release\n");
1525 return -EINVAL;
1526 }
1527
1528 goto do_reset;
1529 }
1530
1531 if (!hard_reset && !hdev->asic_prop.allow_inference_soft_reset) {
1532 dev_dbg(hdev->dev,
1533 "asic doesn't allow inference soft reset - do hard-reset instead\n");
1534 hard_reset = true;
1535 }
1536
1537 do_reset:
1538 /* Re-entry of reset thread */
1539 if (from_hard_reset_thread && hdev->process_kill_trial_cnt)
1540 goto kill_processes;
1541
1542 /*
1543 * Prevent concurrency in this function - only one reset should be
1544 * done at any given time. We need to perform this only if we didn't
1545 * get here from a dedicated hard reset thread.
1546 */
1547 if (!from_hard_reset_thread) {
1548 /* Block future CS/VM/JOB completion operations */
1549 spin_lock(&hdev->reset_info.lock);
1550 if (hdev->reset_info.in_reset) {
1551 /* We allow scheduling of a hard reset only during a compute reset */
1552 if (hard_reset && hdev->reset_info.in_compute_reset)
1553 hdev->reset_info.hard_reset_schedule_flags = flags;
1554 spin_unlock(&hdev->reset_info.lock);
1555 return 0;
1556 }
1557
1558 /* This still allows the completion of some KDMA ops
1559 * Update this before in_reset because in_compute_reset implies we are in reset
1560 */
1561 hdev->reset_info.in_compute_reset = !hard_reset;
1562
1563 hdev->reset_info.in_reset = 1;
1564
1565 spin_unlock(&hdev->reset_info.lock);
1566
1567 /* Cancel the device release watchdog work if required.
1568 * In case of reset-upon-device-release while the release watchdog work is
1569 * scheduled due to a hard-reset, do hard-reset instead of compute-reset.
1570 */
1571 if ((hard_reset || from_dev_release) && hdev->reset_info.watchdog_active) {
1572 struct hl_device_reset_work *watchdog_work =
1573 &hdev->device_release_watchdog_work;
1574
1575 hdev->reset_info.watchdog_active = 0;
1576 if (!from_watchdog_thread)
1577 cancel_delayed_work_sync(&watchdog_work->reset_work);
1578
1579 if (from_dev_release && (watchdog_work->flags & HL_DRV_RESET_HARD)) {
1580 hdev->reset_info.in_compute_reset = 0;
1581 flags |= HL_DRV_RESET_HARD;
1582 flags &= ~HL_DRV_RESET_DEV_RELEASE;
1583 hard_reset = true;
1584 }
1585 }
1586
1587 if (delay_reset)
1588 usleep_range(HL_RESET_DELAY_USEC, HL_RESET_DELAY_USEC << 1);
1589
1590 escalate_reset_flow:
1591 handle_reset_trigger(hdev, flags);
1592 send_disable_pci_access(hdev, flags);
1593
1594 /* This also blocks future CS/VM/JOB completion operations */
1595 hdev->disabled = true;
1596
1597 take_release_locks(hdev);
1598
1599 if (hard_reset)
1600 dev_info(hdev->dev, "Going to reset device\n");
1601 else if (reset_upon_device_release)
1602 dev_dbg(hdev->dev, "Going to reset device after release by user\n");
1603 else
1604 dev_dbg(hdev->dev, "Going to reset engines of inference device\n");
1605 }
1606
1607 if ((hard_reset) && (!from_hard_reset_thread)) {
1608 hdev->reset_info.hard_reset_pending = true;
1609
1610 hdev->process_kill_trial_cnt = 0;
1611
1612 hdev->device_reset_work.flags = flags;
1613
1614 /*
1615 * Because the reset function can't run from heartbeat work,
1616 * we need to call the reset function from a dedicated work.
1617 */
1618 queue_delayed_work(hdev->reset_wq, &hdev->device_reset_work.reset_work, 0);
1619
1620 return 0;
1621 }
1622
1623 cleanup_resources(hdev, hard_reset, fw_reset, from_dev_release);
1624
1625 kill_processes:
1626 if (hard_reset) {
1627 /* Kill processes here after CS rollback. This is because the
1628 * process can't really exit until all its CSs are done, which
1629 * is what we do in cs rollback
1630 */
1631 rc = device_kill_open_processes(hdev, 0, false);
1632
1633 if (rc == -EBUSY) {
1634 if (hdev->device_fini_pending) {
1635 dev_crit(hdev->dev,
1636 "%s Failed to kill all open processes, stopping hard reset\n",
1637 dev_name(&(hdev)->pdev->dev));
1638 goto out_err;
1639 }
1640
1641 /* signal reset thread to reschedule */
1642 return rc;
1643 }
1644
1645 if (rc) {
1646 dev_crit(hdev->dev,
1647 "%s Failed to kill all open processes, stopping hard reset\n",
1648 dev_name(&(hdev)->pdev->dev));
1649 goto out_err;
1650 }
1651
1652 /* Flush the Event queue workers to make sure no other thread is
1653 * reading or writing to registers during the reset
1654 */
1655 flush_workqueue(hdev->eq_wq);
1656 }
1657
1658 /* Reset the H/W. It will be in idle state after this returns */
1659 hw_fini_rc = hdev->asic_funcs->hw_fini(hdev, hard_reset, fw_reset);
1660
1661 if (hard_reset) {
1662 hdev->fw_loader.fw_comp_loaded = FW_TYPE_NONE;
1663
1664 /* Release kernel context */
1665 if (hdev->kernel_ctx && hl_ctx_put(hdev->kernel_ctx) == 1)
1666 hdev->kernel_ctx = NULL;
1667
1668 hl_vm_fini(hdev);
1669 hl_mmu_fini(hdev);
1670 hl_eq_reset(hdev, &hdev->event_queue);
1671 }
1672
1673 /* Re-initialize PI,CI to 0 in all queues (hw queue, cq) */
1674 hl_hw_queue_reset(hdev, hard_reset);
1675 for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++)
1676 hl_cq_reset(hdev, &hdev->completion_queue[i]);
1677
1678 /* Make sure the context switch phase will run again */
1679 ctx = hl_get_compute_ctx(hdev);
1680 if (ctx) {
1681 atomic_set(&ctx->thread_ctx_switch_token, 1);
1682 ctx->thread_ctx_switch_wait_token = 0;
1683 hl_ctx_put(ctx);
1684 }
1685
1686 if (hw_fini_rc) {
1687 rc = hw_fini_rc;
1688 goto out_err;
1689 }
1690 /* Finished tear-down, starting to re-initialize */
1691
1692 if (hard_reset) {
1693 hdev->device_cpu_disabled = false;
1694 hdev->reset_info.hard_reset_pending = false;
1695
1696 if (hdev->reset_info.reset_trigger_repeated &&
1697 (hdev->reset_info.prev_reset_trigger ==
1698 HL_DRV_RESET_FW_FATAL_ERR)) {
1699 /* if there 2 back to back resets from FW,
1700 * ensure driver puts the driver in a unusable state
1701 */
1702 dev_crit(hdev->dev,
1703 "%s Consecutive FW fatal errors received, stopping hard reset\n",
1704 dev_name(&(hdev)->pdev->dev));
1705 rc = -EIO;
1706 goto out_err;
1707 }
1708
1709 if (hdev->kernel_ctx) {
1710 dev_crit(hdev->dev,
1711 "%s kernel ctx was alive during hard reset, something is terribly wrong\n",
1712 dev_name(&(hdev)->pdev->dev));
1713 rc = -EBUSY;
1714 goto out_err;
1715 }
1716
1717 rc = hl_mmu_init(hdev);
1718 if (rc) {
1719 dev_err(hdev->dev,
1720 "Failed to initialize MMU S/W after hard reset\n");
1721 goto out_err;
1722 }
1723
1724 /* Allocate the kernel context */
1725 hdev->kernel_ctx = kzalloc(sizeof(*hdev->kernel_ctx),
1726 GFP_KERNEL);
1727 if (!hdev->kernel_ctx) {
1728 rc = -ENOMEM;
1729 hl_mmu_fini(hdev);
1730 goto out_err;
1731 }
1732
1733 hdev->is_compute_ctx_active = false;
1734
1735 rc = hl_ctx_init(hdev, hdev->kernel_ctx, true);
1736 if (rc) {
1737 dev_err(hdev->dev,
1738 "failed to init kernel ctx in hard reset\n");
1739 kfree(hdev->kernel_ctx);
1740 hdev->kernel_ctx = NULL;
1741 hl_mmu_fini(hdev);
1742 goto out_err;
1743 }
1744 }
1745
1746 /* Device is now enabled as part of the initialization requires
1747 * communication with the device firmware to get information that
1748 * is required for the initialization itself
1749 */
1750 hdev->disabled = false;
1751
1752 /* F/W security enabled indication might be updated after hard-reset */
1753 if (hard_reset) {
1754 rc = hl_fw_read_preboot_status(hdev);
1755 if (rc)
1756 goto out_err;
1757 }
1758
1759 rc = hdev->asic_funcs->hw_init(hdev);
1760 if (rc) {
1761 dev_err(hdev->dev, "failed to initialize the H/W after reset\n");
1762 goto out_err;
1763 }
1764
1765 /* If device is not idle fail the reset process */
1766 if (!hdev->asic_funcs->is_device_idle(hdev, idle_mask,
1767 HL_BUSY_ENGINES_MASK_EXT_SIZE, NULL)) {
1768 print_idle_status_mask(hdev, "device is not idle after reset", idle_mask);
1769 rc = -EIO;
1770 goto out_err;
1771 }
1772
1773 /* Check that the communication with the device is working */
1774 rc = hdev->asic_funcs->test_queues(hdev);
1775 if (rc) {
1776 dev_err(hdev->dev, "Failed to detect if device is alive after reset\n");
1777 goto out_err;
1778 }
1779
1780 if (hard_reset) {
1781 rc = device_late_init(hdev);
1782 if (rc) {
1783 dev_err(hdev->dev, "Failed late init after hard reset\n");
1784 goto out_err;
1785 }
1786
1787 rc = hl_vm_init(hdev);
1788 if (rc) {
1789 dev_err(hdev->dev, "Failed to init memory module after hard reset\n");
1790 goto out_err;
1791 }
1792
1793 if (!hdev->asic_prop.fw_security_enabled)
1794 hl_fw_set_max_power(hdev);
1795 } else {
1796 rc = hdev->asic_funcs->compute_reset_late_init(hdev);
1797 if (rc) {
1798 if (reset_upon_device_release)
1799 dev_err(hdev->dev,
1800 "Failed late init in reset after device release\n");
1801 else
1802 dev_err(hdev->dev, "Failed late init after compute reset\n");
1803 goto out_err;
1804 }
1805 }
1806
1807 rc = hdev->asic_funcs->scrub_device_mem(hdev);
1808 if (rc) {
1809 dev_err(hdev->dev, "scrub mem failed from device reset (%d)\n", rc);
1810 goto out_err;
1811 }
1812
1813 spin_lock(&hdev->reset_info.lock);
1814 hdev->reset_info.in_compute_reset = 0;
1815
1816 /* Schedule hard reset only if requested and if not already in hard reset.
1817 * We keep 'in_reset' enabled, so no other reset can go in during the hard
1818 * reset schedule
1819 */
1820 if (!hard_reset && hdev->reset_info.hard_reset_schedule_flags)
1821 schedule_hard_reset = true;
1822 else
1823 hdev->reset_info.in_reset = 0;
1824
1825 spin_unlock(&hdev->reset_info.lock);
1826
1827 hdev->reset_info.needs_reset = false;
1828
1829 if (hard_reset)
1830 dev_info(hdev->dev,
1831 "Successfully finished resetting the %s device\n",
1832 dev_name(&(hdev)->pdev->dev));
1833 else
1834 dev_dbg(hdev->dev,
1835 "Successfully finished resetting the %s device\n",
1836 dev_name(&(hdev)->pdev->dev));
1837
1838 if (hard_reset) {
1839 hdev->reset_info.hard_reset_cnt++;
1840
1841 /* After reset is done, we are ready to receive events from
1842 * the F/W. We can't do it before because we will ignore events
1843 * and if those events are fatal, we won't know about it and
1844 * the device will be operational although it shouldn't be
1845 */
1846 hdev->asic_funcs->enable_events_from_fw(hdev);
1847 } else {
1848 if (!reset_upon_device_release)
1849 hdev->reset_info.compute_reset_cnt++;
1850
1851 if (schedule_hard_reset) {
1852 dev_info(hdev->dev, "Performing hard reset scheduled during compute reset\n");
1853 flags = hdev->reset_info.hard_reset_schedule_flags;
1854 hdev->reset_info.hard_reset_schedule_flags = 0;
1855 hard_reset = true;
1856 goto escalate_reset_flow;
1857 }
1858 }
1859
1860 return 0;
1861
1862 out_err:
1863 hdev->disabled = true;
1864
1865 spin_lock(&hdev->reset_info.lock);
1866 hdev->reset_info.in_compute_reset = 0;
1867
1868 if (hard_reset) {
1869 dev_err(hdev->dev,
1870 "%s Failed to reset! Device is NOT usable\n",
1871 dev_name(&(hdev)->pdev->dev));
1872 hdev->reset_info.hard_reset_cnt++;
1873 } else {
1874 if (reset_upon_device_release) {
1875 dev_err(hdev->dev, "Failed to reset device after user release\n");
1876 flags &= ~HL_DRV_RESET_DEV_RELEASE;
1877 } else {
1878 dev_err(hdev->dev, "Failed to do compute reset\n");
1879 hdev->reset_info.compute_reset_cnt++;
1880 }
1881
1882 spin_unlock(&hdev->reset_info.lock);
1883 flags |= HL_DRV_RESET_HARD;
1884 hard_reset = true;
1885 goto escalate_reset_flow;
1886 }
1887
1888 hdev->reset_info.in_reset = 0;
1889
1890 spin_unlock(&hdev->reset_info.lock);
1891
1892 return rc;
1893 }
1894
1895 /*
1896 * hl_device_cond_reset() - conditionally reset the device.
1897 * @hdev: pointer to habanalabs device structure.
1898 * @reset_flags: reset flags.
1899 * @event_mask: events to notify user about.
1900 *
1901 * Conditionally reset the device, or alternatively schedule a watchdog work to reset the device
1902 * unless another reset precedes it.
1903 */
hl_device_cond_reset(struct hl_device * hdev,u32 flags,u64 event_mask)1904 int hl_device_cond_reset(struct hl_device *hdev, u32 flags, u64 event_mask)
1905 {
1906 struct hl_ctx *ctx = NULL;
1907
1908 /* F/W reset cannot be postponed */
1909 if (flags & HL_DRV_RESET_BYPASS_REQ_TO_FW)
1910 goto device_reset;
1911
1912 /* Device release watchdog is relevant only if user exists and gets a reset notification */
1913 if (!(event_mask & HL_NOTIFIER_EVENT_DEVICE_RESET)) {
1914 dev_err(hdev->dev, "Resetting device without a reset indication to user\n");
1915 goto device_reset;
1916 }
1917
1918 ctx = hl_get_compute_ctx(hdev);
1919 if (!ctx || !ctx->hpriv->notifier_event.eventfd)
1920 goto device_reset;
1921
1922 /* Schedule the device release watchdog work unless reset is already in progress or if the
1923 * work is already scheduled.
1924 */
1925 spin_lock(&hdev->reset_info.lock);
1926 if (hdev->reset_info.in_reset) {
1927 spin_unlock(&hdev->reset_info.lock);
1928 goto device_reset;
1929 }
1930
1931 if (hdev->reset_info.watchdog_active)
1932 goto out;
1933
1934 hdev->device_release_watchdog_work.flags = flags;
1935 dev_dbg(hdev->dev, "Device is going to be hard-reset in %u sec unless being released\n",
1936 hdev->device_release_watchdog_timeout_sec);
1937 schedule_delayed_work(&hdev->device_release_watchdog_work.reset_work,
1938 msecs_to_jiffies(hdev->device_release_watchdog_timeout_sec * 1000));
1939 hdev->reset_info.watchdog_active = 1;
1940 out:
1941 spin_unlock(&hdev->reset_info.lock);
1942
1943 hl_notifier_event_send_all(hdev, event_mask);
1944
1945 hl_ctx_put(ctx);
1946
1947 hl_abort_waiting_for_completions(hdev);
1948
1949 return 0;
1950
1951 device_reset:
1952 if (event_mask)
1953 hl_notifier_event_send_all(hdev, event_mask);
1954 if (ctx)
1955 hl_ctx_put(ctx);
1956
1957 return hl_device_reset(hdev, flags);
1958 }
1959
hl_notifier_event_send(struct hl_notifier_event * notifier_event,u64 event_mask)1960 static void hl_notifier_event_send(struct hl_notifier_event *notifier_event, u64 event_mask)
1961 {
1962 mutex_lock(¬ifier_event->lock);
1963 notifier_event->events_mask |= event_mask;
1964
1965 if (notifier_event->eventfd)
1966 eventfd_signal(notifier_event->eventfd, 1);
1967
1968 mutex_unlock(¬ifier_event->lock);
1969 }
1970
1971 /*
1972 * hl_notifier_event_send_all - notify all user processes via eventfd
1973 *
1974 * @hdev: pointer to habanalabs device structure
1975 * @event_mask: the occurred event/s
1976 * Returns 0 for success or an error on failure.
1977 */
hl_notifier_event_send_all(struct hl_device * hdev,u64 event_mask)1978 void hl_notifier_event_send_all(struct hl_device *hdev, u64 event_mask)
1979 {
1980 struct hl_fpriv *hpriv;
1981
1982 if (!event_mask) {
1983 dev_warn(hdev->dev, "Skip sending zero event");
1984 return;
1985 }
1986
1987 mutex_lock(&hdev->fpriv_list_lock);
1988
1989 list_for_each_entry(hpriv, &hdev->fpriv_list, dev_node)
1990 hl_notifier_event_send(&hpriv->notifier_event, event_mask);
1991
1992 mutex_unlock(&hdev->fpriv_list_lock);
1993
1994 /* control device */
1995 mutex_lock(&hdev->fpriv_ctrl_list_lock);
1996
1997 list_for_each_entry(hpriv, &hdev->fpriv_ctrl_list, dev_node)
1998 hl_notifier_event_send(&hpriv->notifier_event, event_mask);
1999
2000 mutex_unlock(&hdev->fpriv_ctrl_list_lock);
2001 }
2002
create_cdev(struct hl_device * hdev)2003 static int create_cdev(struct hl_device *hdev)
2004 {
2005 char *name;
2006 int rc;
2007
2008 hdev->cdev_idx = hdev->id / 2;
2009
2010 name = kasprintf(GFP_KERNEL, "hl%d", hdev->cdev_idx);
2011 if (!name) {
2012 rc = -ENOMEM;
2013 goto out_err;
2014 }
2015
2016 /* Initialize cdev and device structures */
2017 rc = device_init_cdev(hdev, hdev->hclass, hdev->id, &hl_ops, name,
2018 &hdev->cdev, &hdev->dev);
2019
2020 kfree(name);
2021
2022 if (rc)
2023 goto out_err;
2024
2025 name = kasprintf(GFP_KERNEL, "hl_controlD%d", hdev->cdev_idx);
2026 if (!name) {
2027 rc = -ENOMEM;
2028 goto free_dev;
2029 }
2030
2031 /* Initialize cdev and device structures for control device */
2032 rc = device_init_cdev(hdev, hdev->hclass, hdev->id_control, &hl_ctrl_ops,
2033 name, &hdev->cdev_ctrl, &hdev->dev_ctrl);
2034
2035 kfree(name);
2036
2037 if (rc)
2038 goto free_dev;
2039
2040 return 0;
2041
2042 free_dev:
2043 put_device(hdev->dev);
2044 out_err:
2045 return rc;
2046 }
2047
2048 /*
2049 * hl_device_init - main initialization function for habanalabs device
2050 *
2051 * @hdev: pointer to habanalabs device structure
2052 *
2053 * Allocate an id for the device, do early initialization and then call the
2054 * ASIC specific initialization functions. Finally, create the cdev and the
2055 * Linux device to expose it to the user
2056 */
hl_device_init(struct hl_device * hdev)2057 int hl_device_init(struct hl_device *hdev)
2058 {
2059 int i, rc, cq_cnt, user_interrupt_cnt, cq_ready_cnt;
2060 bool expose_interfaces_on_err = false;
2061
2062 rc = create_cdev(hdev);
2063 if (rc)
2064 goto out_disabled;
2065
2066 /* Initialize ASIC function pointers and perform early init */
2067 rc = device_early_init(hdev);
2068 if (rc)
2069 goto free_dev;
2070
2071 user_interrupt_cnt = hdev->asic_prop.user_dec_intr_count +
2072 hdev->asic_prop.user_interrupt_count;
2073
2074 if (user_interrupt_cnt) {
2075 hdev->user_interrupt = kcalloc(user_interrupt_cnt, sizeof(*hdev->user_interrupt),
2076 GFP_KERNEL);
2077 if (!hdev->user_interrupt) {
2078 rc = -ENOMEM;
2079 goto early_fini;
2080 }
2081 }
2082
2083 /*
2084 * Start calling ASIC initialization. First S/W then H/W and finally
2085 * late init
2086 */
2087 rc = hdev->asic_funcs->sw_init(hdev);
2088 if (rc)
2089 goto free_usr_intr_mem;
2090
2091
2092 /* initialize completion structure for multi CS wait */
2093 hl_multi_cs_completion_init(hdev);
2094
2095 /*
2096 * Initialize the H/W queues. Must be done before hw_init, because
2097 * there the addresses of the kernel queue are being written to the
2098 * registers of the device
2099 */
2100 rc = hl_hw_queues_create(hdev);
2101 if (rc) {
2102 dev_err(hdev->dev, "failed to initialize kernel queues\n");
2103 goto sw_fini;
2104 }
2105
2106 cq_cnt = hdev->asic_prop.completion_queues_count;
2107
2108 /*
2109 * Initialize the completion queues. Must be done before hw_init,
2110 * because there the addresses of the completion queues are being
2111 * passed as arguments to request_irq
2112 */
2113 if (cq_cnt) {
2114 hdev->completion_queue = kcalloc(cq_cnt,
2115 sizeof(*hdev->completion_queue),
2116 GFP_KERNEL);
2117
2118 if (!hdev->completion_queue) {
2119 dev_err(hdev->dev,
2120 "failed to allocate completion queues\n");
2121 rc = -ENOMEM;
2122 goto hw_queues_destroy;
2123 }
2124 }
2125
2126 for (i = 0, cq_ready_cnt = 0 ; i < cq_cnt ; i++, cq_ready_cnt++) {
2127 rc = hl_cq_init(hdev, &hdev->completion_queue[i],
2128 hdev->asic_funcs->get_queue_id_for_cq(hdev, i));
2129 if (rc) {
2130 dev_err(hdev->dev,
2131 "failed to initialize completion queue\n");
2132 goto cq_fini;
2133 }
2134 hdev->completion_queue[i].cq_idx = i;
2135 }
2136
2137 hdev->shadow_cs_queue = kcalloc(hdev->asic_prop.max_pending_cs,
2138 sizeof(struct hl_cs *), GFP_KERNEL);
2139 if (!hdev->shadow_cs_queue) {
2140 rc = -ENOMEM;
2141 goto cq_fini;
2142 }
2143
2144 /*
2145 * Initialize the event queue. Must be done before hw_init,
2146 * because there the address of the event queue is being
2147 * passed as argument to request_irq
2148 */
2149 rc = hl_eq_init(hdev, &hdev->event_queue);
2150 if (rc) {
2151 dev_err(hdev->dev, "failed to initialize event queue\n");
2152 goto free_shadow_cs_queue;
2153 }
2154
2155 /* MMU S/W must be initialized before kernel context is created */
2156 rc = hl_mmu_init(hdev);
2157 if (rc) {
2158 dev_err(hdev->dev, "Failed to initialize MMU S/W structures\n");
2159 goto eq_fini;
2160 }
2161
2162 /* Allocate the kernel context */
2163 hdev->kernel_ctx = kzalloc(sizeof(*hdev->kernel_ctx), GFP_KERNEL);
2164 if (!hdev->kernel_ctx) {
2165 rc = -ENOMEM;
2166 goto mmu_fini;
2167 }
2168
2169 hdev->is_compute_ctx_active = false;
2170
2171 hdev->asic_funcs->state_dump_init(hdev);
2172
2173 hdev->device_release_watchdog_timeout_sec = HL_DEVICE_RELEASE_WATCHDOG_TIMEOUT_SEC;
2174
2175 hdev->memory_scrub_val = MEM_SCRUB_DEFAULT_VAL;
2176
2177 rc = hl_debugfs_device_init(hdev);
2178 if (rc) {
2179 dev_err(hdev->dev, "failed to initialize debugfs entry structure\n");
2180 kfree(hdev->kernel_ctx);
2181 goto mmu_fini;
2182 }
2183
2184 /* The debugfs entry structure is accessed in hl_ctx_init(), so it must be called after
2185 * hl_debugfs_device_init().
2186 */
2187 rc = hl_ctx_init(hdev, hdev->kernel_ctx, true);
2188 if (rc) {
2189 dev_err(hdev->dev, "failed to initialize kernel context\n");
2190 kfree(hdev->kernel_ctx);
2191 goto debugfs_device_fini;
2192 }
2193
2194 rc = hl_cb_pool_init(hdev);
2195 if (rc) {
2196 dev_err(hdev->dev, "failed to initialize CB pool\n");
2197 goto release_ctx;
2198 }
2199
2200 rc = hl_dec_init(hdev);
2201 if (rc) {
2202 dev_err(hdev->dev, "Failed to initialize the decoder module\n");
2203 goto cb_pool_fini;
2204 }
2205
2206 /*
2207 * From this point, override rc (=0) in case of an error to allow debugging
2208 * (by adding char devices and creating sysfs/debugfs files as part of the error flow).
2209 */
2210 expose_interfaces_on_err = true;
2211
2212 /* Device is now enabled as part of the initialization requires
2213 * communication with the device firmware to get information that
2214 * is required for the initialization itself
2215 */
2216 hdev->disabled = false;
2217
2218 rc = hdev->asic_funcs->hw_init(hdev);
2219 if (rc) {
2220 dev_err(hdev->dev, "failed to initialize the H/W\n");
2221 rc = 0;
2222 goto out_disabled;
2223 }
2224
2225 /* Check that the communication with the device is working */
2226 rc = hdev->asic_funcs->test_queues(hdev);
2227 if (rc) {
2228 dev_err(hdev->dev, "Failed to detect if device is alive\n");
2229 rc = 0;
2230 goto out_disabled;
2231 }
2232
2233 rc = device_late_init(hdev);
2234 if (rc) {
2235 dev_err(hdev->dev, "Failed late initialization\n");
2236 rc = 0;
2237 goto out_disabled;
2238 }
2239
2240 dev_info(hdev->dev, "Found %s device with %lluGB DRAM\n",
2241 hdev->asic_name,
2242 hdev->asic_prop.dram_size / SZ_1G);
2243
2244 rc = hl_vm_init(hdev);
2245 if (rc) {
2246 dev_err(hdev->dev, "Failed to initialize memory module\n");
2247 rc = 0;
2248 goto out_disabled;
2249 }
2250
2251 /*
2252 * Expose devices and sysfs/debugfs files to user.
2253 * From here there is no need to expose them in case of an error.
2254 */
2255 expose_interfaces_on_err = false;
2256 rc = cdev_sysfs_debugfs_add(hdev);
2257 if (rc) {
2258 dev_err(hdev->dev, "Failed to add char devices and sysfs/debugfs files\n");
2259 rc = 0;
2260 goto out_disabled;
2261 }
2262
2263 /* Need to call this again because the max power might change,
2264 * depending on card type for certain ASICs
2265 */
2266 if (hdev->asic_prop.set_max_power_on_device_init &&
2267 !hdev->asic_prop.fw_security_enabled)
2268 hl_fw_set_max_power(hdev);
2269
2270 /*
2271 * hl_hwmon_init() must be called after device_late_init(), because only
2272 * there we get the information from the device about which
2273 * hwmon-related sensors the device supports.
2274 * Furthermore, it must be done after adding the device to the system.
2275 */
2276 rc = hl_hwmon_init(hdev);
2277 if (rc) {
2278 dev_err(hdev->dev, "Failed to initialize hwmon\n");
2279 rc = 0;
2280 goto out_disabled;
2281 }
2282
2283 dev_notice(hdev->dev,
2284 "Successfully added device %s to habanalabs driver\n",
2285 dev_name(&(hdev)->pdev->dev));
2286
2287 hdev->init_done = true;
2288
2289 /* After initialization is done, we are ready to receive events from
2290 * the F/W. We can't do it before because we will ignore events and if
2291 * those events are fatal, we won't know about it and the device will
2292 * be operational although it shouldn't be
2293 */
2294 hdev->asic_funcs->enable_events_from_fw(hdev);
2295
2296 return 0;
2297
2298 cb_pool_fini:
2299 hl_cb_pool_fini(hdev);
2300 release_ctx:
2301 if (hl_ctx_put(hdev->kernel_ctx) != 1)
2302 dev_err(hdev->dev,
2303 "kernel ctx is still alive on initialization failure\n");
2304 debugfs_device_fini:
2305 hl_debugfs_device_fini(hdev);
2306 mmu_fini:
2307 hl_mmu_fini(hdev);
2308 eq_fini:
2309 hl_eq_fini(hdev, &hdev->event_queue);
2310 free_shadow_cs_queue:
2311 kfree(hdev->shadow_cs_queue);
2312 cq_fini:
2313 for (i = 0 ; i < cq_ready_cnt ; i++)
2314 hl_cq_fini(hdev, &hdev->completion_queue[i]);
2315 kfree(hdev->completion_queue);
2316 hw_queues_destroy:
2317 hl_hw_queues_destroy(hdev);
2318 sw_fini:
2319 hdev->asic_funcs->sw_fini(hdev);
2320 free_usr_intr_mem:
2321 kfree(hdev->user_interrupt);
2322 early_fini:
2323 device_early_fini(hdev);
2324 free_dev:
2325 put_device(hdev->dev_ctrl);
2326 put_device(hdev->dev);
2327 out_disabled:
2328 hdev->disabled = true;
2329 if (expose_interfaces_on_err)
2330 cdev_sysfs_debugfs_add(hdev);
2331 dev_err(&hdev->pdev->dev,
2332 "Failed to initialize hl%d. Device %s is NOT usable !\n",
2333 hdev->cdev_idx, dev_name(&hdev->pdev->dev));
2334
2335 return rc;
2336 }
2337
2338 /*
2339 * hl_device_fini - main tear-down function for habanalabs device
2340 *
2341 * @hdev: pointer to habanalabs device structure
2342 *
2343 * Destroy the device, call ASIC fini functions and release the id
2344 */
hl_device_fini(struct hl_device * hdev)2345 void hl_device_fini(struct hl_device *hdev)
2346 {
2347 bool device_in_reset;
2348 ktime_t timeout;
2349 u64 reset_sec;
2350 int i, rc;
2351
2352 dev_info(hdev->dev, "Removing device\n");
2353
2354 hdev->device_fini_pending = 1;
2355 flush_delayed_work(&hdev->device_reset_work.reset_work);
2356
2357 if (hdev->pldm)
2358 reset_sec = HL_PLDM_HARD_RESET_MAX_TIMEOUT;
2359 else
2360 reset_sec = HL_HARD_RESET_MAX_TIMEOUT;
2361
2362 /*
2363 * This function is competing with the reset function, so try to
2364 * take the reset atomic and if we are already in middle of reset,
2365 * wait until reset function is finished. Reset function is designed
2366 * to always finish. However, in Gaudi, because of all the network
2367 * ports, the hard reset could take between 10-30 seconds
2368 */
2369
2370 timeout = ktime_add_us(ktime_get(), reset_sec * 1000 * 1000);
2371
2372 spin_lock(&hdev->reset_info.lock);
2373 device_in_reset = !!hdev->reset_info.in_reset;
2374 if (!device_in_reset)
2375 hdev->reset_info.in_reset = 1;
2376 spin_unlock(&hdev->reset_info.lock);
2377
2378 while (device_in_reset) {
2379 usleep_range(50, 200);
2380
2381 spin_lock(&hdev->reset_info.lock);
2382 device_in_reset = !!hdev->reset_info.in_reset;
2383 if (!device_in_reset)
2384 hdev->reset_info.in_reset = 1;
2385 spin_unlock(&hdev->reset_info.lock);
2386
2387 if (ktime_compare(ktime_get(), timeout) > 0) {
2388 dev_crit(hdev->dev,
2389 "%s Failed to remove device because reset function did not finish\n",
2390 dev_name(&(hdev)->pdev->dev));
2391 return;
2392 }
2393 }
2394
2395 cancel_delayed_work_sync(&hdev->device_release_watchdog_work.reset_work);
2396
2397 /* Disable PCI access from device F/W so it won't send us additional
2398 * interrupts. We disable MSI/MSI-X at the halt_engines function and we
2399 * can't have the F/W sending us interrupts after that. We need to
2400 * disable the access here because if the device is marked disable, the
2401 * message won't be send. Also, in case of heartbeat, the device CPU is
2402 * marked as disable so this message won't be sent
2403 */
2404 hl_fw_send_pci_access_msg(hdev, CPUCP_PACKET_DISABLE_PCI_ACCESS, 0x0);
2405
2406 /* Mark device as disabled */
2407 hdev->disabled = true;
2408
2409 take_release_locks(hdev);
2410
2411 hdev->reset_info.hard_reset_pending = true;
2412
2413 hl_hwmon_fini(hdev);
2414
2415 cleanup_resources(hdev, true, false, false);
2416
2417 /* Kill processes here after CS rollback. This is because the process
2418 * can't really exit until all its CSs are done, which is what we
2419 * do in cs rollback
2420 */
2421 dev_info(hdev->dev,
2422 "Waiting for all processes to exit (timeout of %u seconds)",
2423 HL_WAIT_PROCESS_KILL_ON_DEVICE_FINI);
2424
2425 hdev->process_kill_trial_cnt = 0;
2426 rc = device_kill_open_processes(hdev, HL_WAIT_PROCESS_KILL_ON_DEVICE_FINI, false);
2427 if (rc) {
2428 dev_crit(hdev->dev, "Failed to kill all open processes\n");
2429 device_disable_open_processes(hdev, false);
2430 }
2431
2432 hdev->process_kill_trial_cnt = 0;
2433 rc = device_kill_open_processes(hdev, 0, true);
2434 if (rc) {
2435 dev_crit(hdev->dev, "Failed to kill all control device open processes\n");
2436 device_disable_open_processes(hdev, true);
2437 }
2438
2439 hl_cb_pool_fini(hdev);
2440
2441 /* Reset the H/W. It will be in idle state after this returns */
2442 rc = hdev->asic_funcs->hw_fini(hdev, true, false);
2443 if (rc)
2444 dev_err(hdev->dev, "hw_fini failed in device fini while removing device %d\n", rc);
2445
2446 hdev->fw_loader.fw_comp_loaded = FW_TYPE_NONE;
2447
2448 /* Release kernel context */
2449 if ((hdev->kernel_ctx) && (hl_ctx_put(hdev->kernel_ctx) != 1))
2450 dev_err(hdev->dev, "kernel ctx is still alive\n");
2451
2452 hl_dec_fini(hdev);
2453
2454 hl_vm_fini(hdev);
2455
2456 hl_mmu_fini(hdev);
2457
2458 vfree(hdev->captured_err_info.page_fault_info.user_mappings);
2459
2460 hl_eq_fini(hdev, &hdev->event_queue);
2461
2462 kfree(hdev->shadow_cs_queue);
2463
2464 for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++)
2465 hl_cq_fini(hdev, &hdev->completion_queue[i]);
2466 kfree(hdev->completion_queue);
2467 kfree(hdev->user_interrupt);
2468
2469 hl_hw_queues_destroy(hdev);
2470
2471 /* Call ASIC S/W finalize function */
2472 hdev->asic_funcs->sw_fini(hdev);
2473
2474 device_early_fini(hdev);
2475
2476 /* Hide devices and sysfs/debugfs files from user */
2477 cdev_sysfs_debugfs_remove(hdev);
2478
2479 hl_debugfs_device_fini(hdev);
2480
2481 pr_info("removed device successfully\n");
2482 }
2483
2484 /*
2485 * MMIO register access helper functions.
2486 */
2487
2488 /*
2489 * hl_rreg - Read an MMIO register
2490 *
2491 * @hdev: pointer to habanalabs device structure
2492 * @reg: MMIO register offset (in bytes)
2493 *
2494 * Returns the value of the MMIO register we are asked to read
2495 *
2496 */
hl_rreg(struct hl_device * hdev,u32 reg)2497 inline u32 hl_rreg(struct hl_device *hdev, u32 reg)
2498 {
2499 u32 val = readl(hdev->rmmio + reg);
2500
2501 if (unlikely(trace_habanalabs_rreg32_enabled()))
2502 trace_habanalabs_rreg32(hdev->dev, reg, val);
2503
2504 return val;
2505 }
2506
2507 /*
2508 * hl_wreg - Write to an MMIO register
2509 *
2510 * @hdev: pointer to habanalabs device structure
2511 * @reg: MMIO register offset (in bytes)
2512 * @val: 32-bit value
2513 *
2514 * Writes the 32-bit value into the MMIO register
2515 *
2516 */
hl_wreg(struct hl_device * hdev,u32 reg,u32 val)2517 inline void hl_wreg(struct hl_device *hdev, u32 reg, u32 val)
2518 {
2519 if (unlikely(trace_habanalabs_wreg32_enabled()))
2520 trace_habanalabs_wreg32(hdev->dev, reg, val);
2521
2522 writel(val, hdev->rmmio + reg);
2523 }
2524
hl_capture_razwi(struct hl_device * hdev,u64 addr,u16 * engine_id,u16 num_of_engines,u8 flags)2525 void hl_capture_razwi(struct hl_device *hdev, u64 addr, u16 *engine_id, u16 num_of_engines,
2526 u8 flags)
2527 {
2528 struct razwi_info *razwi_info = &hdev->captured_err_info.razwi_info;
2529
2530 if (num_of_engines > HL_RAZWI_MAX_NUM_OF_ENGINES_PER_RTR) {
2531 dev_err(hdev->dev,
2532 "Number of possible razwi initiators (%u) exceeded limit (%u)\n",
2533 num_of_engines, HL_RAZWI_MAX_NUM_OF_ENGINES_PER_RTR);
2534 return;
2535 }
2536
2537 /* In case it's the first razwi since the device was opened, capture its parameters */
2538 if (atomic_cmpxchg(&hdev->captured_err_info.razwi_info.razwi_detected, 0, 1))
2539 return;
2540
2541 razwi_info->razwi.timestamp = ktime_to_ns(ktime_get());
2542 razwi_info->razwi.addr = addr;
2543 razwi_info->razwi.num_of_possible_engines = num_of_engines;
2544 memcpy(&razwi_info->razwi.engine_id[0], &engine_id[0],
2545 num_of_engines * sizeof(u16));
2546 razwi_info->razwi.flags = flags;
2547
2548 razwi_info->razwi_info_available = true;
2549 }
2550
hl_handle_razwi(struct hl_device * hdev,u64 addr,u16 * engine_id,u16 num_of_engines,u8 flags,u64 * event_mask)2551 void hl_handle_razwi(struct hl_device *hdev, u64 addr, u16 *engine_id, u16 num_of_engines,
2552 u8 flags, u64 *event_mask)
2553 {
2554 hl_capture_razwi(hdev, addr, engine_id, num_of_engines, flags);
2555
2556 if (event_mask)
2557 *event_mask |= HL_NOTIFIER_EVENT_RAZWI;
2558 }
2559
hl_capture_user_mappings(struct hl_device * hdev,bool is_pmmu)2560 static void hl_capture_user_mappings(struct hl_device *hdev, bool is_pmmu)
2561 {
2562 struct page_fault_info *pgf_info = &hdev->captured_err_info.page_fault_info;
2563 struct hl_vm_phys_pg_pack *phys_pg_pack = NULL;
2564 struct hl_vm_hash_node *hnode;
2565 struct hl_userptr *userptr;
2566 enum vm_type *vm_type;
2567 struct hl_ctx *ctx;
2568 u32 map_idx = 0;
2569 int i;
2570
2571 /* Reset previous session count*/
2572 pgf_info->num_of_user_mappings = 0;
2573
2574 ctx = hl_get_compute_ctx(hdev);
2575 if (!ctx) {
2576 dev_err(hdev->dev, "Can't get user context for user mappings\n");
2577 return;
2578 }
2579
2580 mutex_lock(&ctx->mem_hash_lock);
2581 hash_for_each(ctx->mem_hash, i, hnode, node) {
2582 vm_type = hnode->ptr;
2583 if (((*vm_type == VM_TYPE_USERPTR) && is_pmmu) ||
2584 ((*vm_type == VM_TYPE_PHYS_PACK) && !is_pmmu))
2585 pgf_info->num_of_user_mappings++;
2586
2587 }
2588
2589 if (!pgf_info->num_of_user_mappings)
2590 goto finish;
2591
2592 /* In case we already allocated in previous session, need to release it before
2593 * allocating new buffer.
2594 */
2595 vfree(pgf_info->user_mappings);
2596 pgf_info->user_mappings =
2597 vzalloc(pgf_info->num_of_user_mappings * sizeof(struct hl_user_mapping));
2598 if (!pgf_info->user_mappings) {
2599 pgf_info->num_of_user_mappings = 0;
2600 goto finish;
2601 }
2602
2603 hash_for_each(ctx->mem_hash, i, hnode, node) {
2604 vm_type = hnode->ptr;
2605 if ((*vm_type == VM_TYPE_USERPTR) && (is_pmmu)) {
2606 userptr = hnode->ptr;
2607 pgf_info->user_mappings[map_idx].dev_va = hnode->vaddr;
2608 pgf_info->user_mappings[map_idx].size = userptr->size;
2609 map_idx++;
2610 } else if ((*vm_type == VM_TYPE_PHYS_PACK) && (!is_pmmu)) {
2611 phys_pg_pack = hnode->ptr;
2612 pgf_info->user_mappings[map_idx].dev_va = hnode->vaddr;
2613 pgf_info->user_mappings[map_idx].size = phys_pg_pack->total_size;
2614 map_idx++;
2615 }
2616 }
2617 finish:
2618 mutex_unlock(&ctx->mem_hash_lock);
2619 hl_ctx_put(ctx);
2620 }
2621
hl_capture_page_fault(struct hl_device * hdev,u64 addr,u16 eng_id,bool is_pmmu)2622 void hl_capture_page_fault(struct hl_device *hdev, u64 addr, u16 eng_id, bool is_pmmu)
2623 {
2624 struct page_fault_info *pgf_info = &hdev->captured_err_info.page_fault_info;
2625
2626 /* Capture only the first page fault */
2627 if (atomic_cmpxchg(&pgf_info->page_fault_detected, 0, 1))
2628 return;
2629
2630 pgf_info->page_fault.timestamp = ktime_to_ns(ktime_get());
2631 pgf_info->page_fault.addr = addr;
2632 pgf_info->page_fault.engine_id = eng_id;
2633 hl_capture_user_mappings(hdev, is_pmmu);
2634
2635 pgf_info->page_fault_info_available = true;
2636 }
2637
hl_handle_page_fault(struct hl_device * hdev,u64 addr,u16 eng_id,bool is_pmmu,u64 * event_mask)2638 void hl_handle_page_fault(struct hl_device *hdev, u64 addr, u16 eng_id, bool is_pmmu,
2639 u64 *event_mask)
2640 {
2641 hl_capture_page_fault(hdev, addr, eng_id, is_pmmu);
2642
2643 if (event_mask)
2644 *event_mask |= HL_NOTIFIER_EVENT_PAGE_FAULT;
2645 }
2646
hl_capture_hw_err(struct hl_device * hdev,u16 event_id)2647 static void hl_capture_hw_err(struct hl_device *hdev, u16 event_id)
2648 {
2649 struct hw_err_info *info = &hdev->captured_err_info.hw_err;
2650
2651 /* Capture only the first HW err */
2652 if (atomic_cmpxchg(&info->event_detected, 0, 1))
2653 return;
2654
2655 info->event.timestamp = ktime_to_ns(ktime_get());
2656 info->event.event_id = event_id;
2657
2658 info->event_info_available = true;
2659 }
2660
hl_handle_critical_hw_err(struct hl_device * hdev,u16 event_id,u64 * event_mask)2661 void hl_handle_critical_hw_err(struct hl_device *hdev, u16 event_id, u64 *event_mask)
2662 {
2663 hl_capture_hw_err(hdev, event_id);
2664
2665 if (event_mask)
2666 *event_mask |= HL_NOTIFIER_EVENT_CRITICL_HW_ERR;
2667 }
2668
hl_capture_fw_err(struct hl_device * hdev,struct hl_info_fw_err_info * fw_info)2669 static void hl_capture_fw_err(struct hl_device *hdev, struct hl_info_fw_err_info *fw_info)
2670 {
2671 struct fw_err_info *info = &hdev->captured_err_info.fw_err;
2672
2673 /* Capture only the first FW error */
2674 if (atomic_cmpxchg(&info->event_detected, 0, 1))
2675 return;
2676
2677 info->event.timestamp = ktime_to_ns(ktime_get());
2678 info->event.err_type = fw_info->err_type;
2679 if (fw_info->err_type == HL_INFO_FW_REPORTED_ERR)
2680 info->event.event_id = fw_info->event_id;
2681
2682 info->event_info_available = true;
2683 }
2684
hl_handle_fw_err(struct hl_device * hdev,struct hl_info_fw_err_info * info)2685 void hl_handle_fw_err(struct hl_device *hdev, struct hl_info_fw_err_info *info)
2686 {
2687 hl_capture_fw_err(hdev, info);
2688
2689 if (info->event_mask)
2690 *info->event_mask |= HL_NOTIFIER_EVENT_CRITICL_FW_ERR;
2691 }
2692
hl_enable_err_info_capture(struct hl_error_info * captured_err_info)2693 void hl_enable_err_info_capture(struct hl_error_info *captured_err_info)
2694 {
2695 vfree(captured_err_info->page_fault_info.user_mappings);
2696 memset(captured_err_info, 0, sizeof(struct hl_error_info));
2697 atomic_set(&captured_err_info->cs_timeout.write_enable, 1);
2698 captured_err_info->undef_opcode.write_enable = true;
2699 }
2700