1 // SPDX-License-Identifier: GPL-2.0
2 
3 /*
4  * Copyright 2016-2022 HabanaLabs, Ltd.
5  * All Rights Reserved.
6  */
7 
8 #define pr_fmt(fmt)			"habanalabs: " fmt
9 
10 #include <uapi/drm/habanalabs_accel.h>
11 #include "habanalabs.h"
12 
13 #include <linux/pci.h>
14 #include <linux/hwmon.h>
15 #include <linux/vmalloc.h>
16 
17 #include <trace/events/habanalabs.h>
18 
19 #define HL_RESET_DELAY_USEC			10000	/* 10ms */
20 
21 #define HL_DEVICE_RELEASE_WATCHDOG_TIMEOUT_SEC	5
22 
23 enum dma_alloc_type {
24 	DMA_ALLOC_COHERENT,
25 	DMA_ALLOC_POOL,
26 };
27 
28 #define MEM_SCRUB_DEFAULT_VAL 0x1122334455667788
29 
30 /*
31  * hl_set_dram_bar- sets the bar to allow later access to address
32  *
33  * @hdev: pointer to habanalabs device structure.
34  * @addr: the address the caller wants to access.
35  * @region: the PCI region.
36  * @new_bar_region_base: the new BAR region base address.
37  *
38  * @return: the old BAR base address on success, U64_MAX for failure.
39  *	    The caller should set it back to the old address after use.
40  *
41  * In case the bar space does not cover the whole address space,
42  * the bar base address should be set to allow access to a given address.
43  * This function can be called also if the bar doesn't need to be set,
44  * in that case it just won't change the base.
45  */
hl_set_dram_bar(struct hl_device * hdev,u64 addr,struct pci_mem_region * region,u64 * new_bar_region_base)46 static u64 hl_set_dram_bar(struct hl_device *hdev, u64 addr, struct pci_mem_region *region,
47 				u64 *new_bar_region_base)
48 {
49 	struct asic_fixed_properties *prop = &hdev->asic_prop;
50 	u64 bar_base_addr, old_base;
51 
52 	if (is_power_of_2(prop->dram_pci_bar_size))
53 		bar_base_addr = addr & ~(prop->dram_pci_bar_size - 0x1ull);
54 	else
55 		bar_base_addr = DIV_ROUND_DOWN_ULL(addr, prop->dram_pci_bar_size) *
56 				prop->dram_pci_bar_size;
57 
58 	old_base = hdev->asic_funcs->set_dram_bar_base(hdev, bar_base_addr);
59 
60 	/* in case of success we need to update the new BAR base */
61 	if ((old_base != U64_MAX) && new_bar_region_base)
62 		*new_bar_region_base = bar_base_addr;
63 
64 	return old_base;
65 }
66 
hl_access_sram_dram_region(struct hl_device * hdev,u64 addr,u64 * val,enum debugfs_access_type acc_type,enum pci_region region_type,bool set_dram_bar)67 int hl_access_sram_dram_region(struct hl_device *hdev, u64 addr, u64 *val,
68 	enum debugfs_access_type acc_type, enum pci_region region_type, bool set_dram_bar)
69 {
70 	struct pci_mem_region *region = &hdev->pci_mem_region[region_type];
71 	u64 old_base = 0, rc, bar_region_base = region->region_base;
72 	void __iomem *acc_addr;
73 
74 	if (set_dram_bar) {
75 		old_base = hl_set_dram_bar(hdev, addr, region, &bar_region_base);
76 		if (old_base == U64_MAX)
77 			return -EIO;
78 	}
79 
80 	acc_addr = hdev->pcie_bar[region->bar_id] + region->offset_in_bar +
81 			(addr - bar_region_base);
82 
83 	switch (acc_type) {
84 	case DEBUGFS_READ8:
85 		*val = readb(acc_addr);
86 		break;
87 	case DEBUGFS_WRITE8:
88 		writeb(*val, acc_addr);
89 		break;
90 	case DEBUGFS_READ32:
91 		*val = readl(acc_addr);
92 		break;
93 	case DEBUGFS_WRITE32:
94 		writel(*val, acc_addr);
95 		break;
96 	case DEBUGFS_READ64:
97 		*val = readq(acc_addr);
98 		break;
99 	case DEBUGFS_WRITE64:
100 		writeq(*val, acc_addr);
101 		break;
102 	}
103 
104 	if (set_dram_bar) {
105 		rc = hl_set_dram_bar(hdev, old_base, region, NULL);
106 		if (rc == U64_MAX)
107 			return -EIO;
108 	}
109 
110 	return 0;
111 }
112 
hl_dma_alloc_common(struct hl_device * hdev,size_t size,dma_addr_t * dma_handle,gfp_t flag,enum dma_alloc_type alloc_type,const char * caller)113 static void *hl_dma_alloc_common(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle,
114 					gfp_t flag, enum dma_alloc_type alloc_type,
115 					const char *caller)
116 {
117 	void *ptr = NULL;
118 
119 	switch (alloc_type) {
120 	case DMA_ALLOC_COHERENT:
121 		ptr = hdev->asic_funcs->asic_dma_alloc_coherent(hdev, size, dma_handle, flag);
122 		break;
123 	case DMA_ALLOC_POOL:
124 		ptr = hdev->asic_funcs->asic_dma_pool_zalloc(hdev, size, flag, dma_handle);
125 		break;
126 	}
127 
128 	if (trace_habanalabs_dma_alloc_enabled() && !ZERO_OR_NULL_PTR(ptr))
129 		trace_habanalabs_dma_alloc(hdev->dev, (u64) (uintptr_t) ptr, *dma_handle, size,
130 						caller);
131 
132 	return ptr;
133 }
134 
hl_asic_dma_free_common(struct hl_device * hdev,size_t size,void * cpu_addr,dma_addr_t dma_handle,enum dma_alloc_type alloc_type,const char * caller)135 static void hl_asic_dma_free_common(struct hl_device *hdev, size_t size, void *cpu_addr,
136 					dma_addr_t dma_handle, enum dma_alloc_type alloc_type,
137 					const char *caller)
138 {
139 	/* this is needed to avoid warning on using freed pointer */
140 	u64 store_cpu_addr = (u64) (uintptr_t) cpu_addr;
141 
142 	switch (alloc_type) {
143 	case DMA_ALLOC_COHERENT:
144 		hdev->asic_funcs->asic_dma_free_coherent(hdev, size, cpu_addr, dma_handle);
145 		break;
146 	case DMA_ALLOC_POOL:
147 		hdev->asic_funcs->asic_dma_pool_free(hdev, cpu_addr, dma_handle);
148 		break;
149 	}
150 
151 	trace_habanalabs_dma_free(hdev->dev, store_cpu_addr, dma_handle, size, caller);
152 }
153 
hl_asic_dma_alloc_coherent_caller(struct hl_device * hdev,size_t size,dma_addr_t * dma_handle,gfp_t flag,const char * caller)154 void *hl_asic_dma_alloc_coherent_caller(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle,
155 					gfp_t flag, const char *caller)
156 {
157 	return hl_dma_alloc_common(hdev, size, dma_handle, flag, DMA_ALLOC_COHERENT, caller);
158 }
159 
hl_asic_dma_free_coherent_caller(struct hl_device * hdev,size_t size,void * cpu_addr,dma_addr_t dma_handle,const char * caller)160 void hl_asic_dma_free_coherent_caller(struct hl_device *hdev, size_t size, void *cpu_addr,
161 					dma_addr_t dma_handle, const char *caller)
162 {
163 	hl_asic_dma_free_common(hdev, size, cpu_addr, dma_handle, DMA_ALLOC_COHERENT, caller);
164 }
165 
hl_asic_dma_pool_zalloc_caller(struct hl_device * hdev,size_t size,gfp_t mem_flags,dma_addr_t * dma_handle,const char * caller)166 void *hl_asic_dma_pool_zalloc_caller(struct hl_device *hdev, size_t size, gfp_t mem_flags,
167 					dma_addr_t *dma_handle, const char *caller)
168 {
169 	return hl_dma_alloc_common(hdev, size, dma_handle, mem_flags, DMA_ALLOC_POOL, caller);
170 }
171 
hl_asic_dma_pool_free_caller(struct hl_device * hdev,void * vaddr,dma_addr_t dma_addr,const char * caller)172 void hl_asic_dma_pool_free_caller(struct hl_device *hdev, void *vaddr, dma_addr_t dma_addr,
173 					const char *caller)
174 {
175 	hl_asic_dma_free_common(hdev, 0, vaddr, dma_addr, DMA_ALLOC_POOL, caller);
176 }
177 
hl_cpu_accessible_dma_pool_alloc(struct hl_device * hdev,size_t size,dma_addr_t * dma_handle)178 void *hl_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle)
179 {
180 	return hdev->asic_funcs->cpu_accessible_dma_pool_alloc(hdev, size, dma_handle);
181 }
182 
hl_cpu_accessible_dma_pool_free(struct hl_device * hdev,size_t size,void * vaddr)183 void hl_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size, void *vaddr)
184 {
185 	hdev->asic_funcs->cpu_accessible_dma_pool_free(hdev, size, vaddr);
186 }
187 
hl_dma_map_sgtable(struct hl_device * hdev,struct sg_table * sgt,enum dma_data_direction dir)188 int hl_dma_map_sgtable(struct hl_device *hdev, struct sg_table *sgt, enum dma_data_direction dir)
189 {
190 	struct asic_fixed_properties *prop = &hdev->asic_prop;
191 	struct scatterlist *sg;
192 	int rc, i;
193 
194 	rc = dma_map_sgtable(&hdev->pdev->dev, sgt, dir, 0);
195 	if (rc)
196 		return rc;
197 
198 	/* Shift to the device's base physical address of host memory if necessary */
199 	if (prop->device_dma_offset_for_host_access)
200 		for_each_sgtable_dma_sg(sgt, sg, i)
201 			sg->dma_address += prop->device_dma_offset_for_host_access;
202 
203 	return 0;
204 }
205 
hl_dma_unmap_sgtable(struct hl_device * hdev,struct sg_table * sgt,enum dma_data_direction dir)206 void hl_dma_unmap_sgtable(struct hl_device *hdev, struct sg_table *sgt, enum dma_data_direction dir)
207 {
208 	struct asic_fixed_properties *prop = &hdev->asic_prop;
209 	struct scatterlist *sg;
210 	int i;
211 
212 	/* Cancel the device's base physical address of host memory if necessary */
213 	if (prop->device_dma_offset_for_host_access)
214 		for_each_sgtable_dma_sg(sgt, sg, i)
215 			sg->dma_address -= prop->device_dma_offset_for_host_access;
216 
217 	dma_unmap_sgtable(&hdev->pdev->dev, sgt, dir, 0);
218 }
219 
220 /*
221  * hl_access_cfg_region - access the config region
222  *
223  * @hdev: pointer to habanalabs device structure
224  * @addr: the address to access
225  * @val: the value to write from or read to
226  * @acc_type: the type of access (read/write 64/32)
227  */
hl_access_cfg_region(struct hl_device * hdev,u64 addr,u64 * val,enum debugfs_access_type acc_type)228 int hl_access_cfg_region(struct hl_device *hdev, u64 addr, u64 *val,
229 	enum debugfs_access_type acc_type)
230 {
231 	struct pci_mem_region *cfg_region = &hdev->pci_mem_region[PCI_REGION_CFG];
232 	u32 val_h, val_l;
233 
234 	if (!IS_ALIGNED(addr, sizeof(u32))) {
235 		dev_err(hdev->dev, "address %#llx not a multiple of %zu\n", addr, sizeof(u32));
236 		return -EINVAL;
237 	}
238 
239 	switch (acc_type) {
240 	case DEBUGFS_READ32:
241 		*val = RREG32(addr - cfg_region->region_base);
242 		break;
243 	case DEBUGFS_WRITE32:
244 		WREG32(addr - cfg_region->region_base, *val);
245 		break;
246 	case DEBUGFS_READ64:
247 		val_l = RREG32(addr - cfg_region->region_base);
248 		val_h = RREG32(addr + sizeof(u32) - cfg_region->region_base);
249 
250 		*val = (((u64) val_h) << 32) | val_l;
251 		break;
252 	case DEBUGFS_WRITE64:
253 		WREG32(addr - cfg_region->region_base, lower_32_bits(*val));
254 		WREG32(addr + sizeof(u32) - cfg_region->region_base, upper_32_bits(*val));
255 		break;
256 	default:
257 		dev_err(hdev->dev, "access type %d is not supported\n", acc_type);
258 		return -EOPNOTSUPP;
259 	}
260 
261 	return 0;
262 }
263 
264 /*
265  * hl_access_dev_mem - access device memory
266  *
267  * @hdev: pointer to habanalabs device structure
268  * @region_type: the type of the region the address belongs to
269  * @addr: the address to access
270  * @val: the value to write from or read to
271  * @acc_type: the type of access (r/w, 32/64)
272  */
hl_access_dev_mem(struct hl_device * hdev,enum pci_region region_type,u64 addr,u64 * val,enum debugfs_access_type acc_type)273 int hl_access_dev_mem(struct hl_device *hdev, enum pci_region region_type,
274 			u64 addr, u64 *val, enum debugfs_access_type acc_type)
275 {
276 	switch (region_type) {
277 	case PCI_REGION_CFG:
278 		return hl_access_cfg_region(hdev, addr, val, acc_type);
279 	case PCI_REGION_SRAM:
280 	case PCI_REGION_DRAM:
281 		return hl_access_sram_dram_region(hdev, addr, val, acc_type,
282 				region_type, (region_type == PCI_REGION_DRAM));
283 	default:
284 		return -EFAULT;
285 	}
286 
287 	return 0;
288 }
289 
hl_engine_data_sprintf(struct engines_data * e,const char * fmt,...)290 void hl_engine_data_sprintf(struct engines_data *e, const char *fmt, ...)
291 {
292 	va_list args;
293 	int str_size;
294 
295 	va_start(args, fmt);
296 	/* Calculate formatted string length. Assuming each string is null terminated, hence
297 	 * increment result by 1
298 	 */
299 	str_size = vsnprintf(NULL, 0, fmt, args) + 1;
300 	va_end(args);
301 
302 	if ((e->actual_size + str_size) < e->allocated_buf_size) {
303 		va_start(args, fmt);
304 		vsnprintf(e->buf + e->actual_size, str_size, fmt, args);
305 		va_end(args);
306 	}
307 
308 	/* Need to update the size even when not updating destination buffer to get the exact size
309 	 * of all input strings
310 	 */
311 	e->actual_size += str_size;
312 }
313 
hl_device_status(struct hl_device * hdev)314 enum hl_device_status hl_device_status(struct hl_device *hdev)
315 {
316 	enum hl_device_status status;
317 
318 	if (hdev->reset_info.in_reset) {
319 		if (hdev->reset_info.in_compute_reset)
320 			status = HL_DEVICE_STATUS_IN_RESET_AFTER_DEVICE_RELEASE;
321 		else
322 			status = HL_DEVICE_STATUS_IN_RESET;
323 	} else if (hdev->reset_info.needs_reset) {
324 		status = HL_DEVICE_STATUS_NEEDS_RESET;
325 	} else if (hdev->disabled) {
326 		status = HL_DEVICE_STATUS_MALFUNCTION;
327 	} else if (!hdev->init_done) {
328 		status = HL_DEVICE_STATUS_IN_DEVICE_CREATION;
329 	} else {
330 		status = HL_DEVICE_STATUS_OPERATIONAL;
331 	}
332 
333 	return status;
334 }
335 
hl_device_operational(struct hl_device * hdev,enum hl_device_status * status)336 bool hl_device_operational(struct hl_device *hdev,
337 		enum hl_device_status *status)
338 {
339 	enum hl_device_status current_status;
340 
341 	current_status = hl_device_status(hdev);
342 	if (status)
343 		*status = current_status;
344 
345 	switch (current_status) {
346 	case HL_DEVICE_STATUS_IN_RESET:
347 	case HL_DEVICE_STATUS_IN_RESET_AFTER_DEVICE_RELEASE:
348 	case HL_DEVICE_STATUS_MALFUNCTION:
349 	case HL_DEVICE_STATUS_NEEDS_RESET:
350 		return false;
351 	case HL_DEVICE_STATUS_OPERATIONAL:
352 	case HL_DEVICE_STATUS_IN_DEVICE_CREATION:
353 	default:
354 		return true;
355 	}
356 }
357 
hl_ctrl_device_operational(struct hl_device * hdev,enum hl_device_status * status)358 bool hl_ctrl_device_operational(struct hl_device *hdev,
359 		enum hl_device_status *status)
360 {
361 	enum hl_device_status current_status;
362 
363 	current_status = hl_device_status(hdev);
364 	if (status)
365 		*status = current_status;
366 
367 	switch (current_status) {
368 	case HL_DEVICE_STATUS_MALFUNCTION:
369 		return false;
370 	case HL_DEVICE_STATUS_IN_RESET:
371 	case HL_DEVICE_STATUS_IN_RESET_AFTER_DEVICE_RELEASE:
372 	case HL_DEVICE_STATUS_NEEDS_RESET:
373 	case HL_DEVICE_STATUS_OPERATIONAL:
374 	case HL_DEVICE_STATUS_IN_DEVICE_CREATION:
375 	default:
376 		return true;
377 	}
378 }
379 
print_idle_status_mask(struct hl_device * hdev,const char * message,u64 idle_mask[HL_BUSY_ENGINES_MASK_EXT_SIZE])380 static void print_idle_status_mask(struct hl_device *hdev, const char *message,
381 					u64 idle_mask[HL_BUSY_ENGINES_MASK_EXT_SIZE])
382 {
383 	if (idle_mask[3])
384 		dev_err(hdev->dev, "%s (mask %#llx_%016llx_%016llx_%016llx)\n",
385 			message, idle_mask[3], idle_mask[2], idle_mask[1], idle_mask[0]);
386 	else if (idle_mask[2])
387 		dev_err(hdev->dev, "%s (mask %#llx_%016llx_%016llx)\n",
388 			message, idle_mask[2], idle_mask[1], idle_mask[0]);
389 	else if (idle_mask[1])
390 		dev_err(hdev->dev, "%s (mask %#llx_%016llx)\n",
391 			message, idle_mask[1], idle_mask[0]);
392 	else
393 		dev_err(hdev->dev, "%s (mask %#llx)\n", message, idle_mask[0]);
394 }
395 
hpriv_release(struct kref * ref)396 static void hpriv_release(struct kref *ref)
397 {
398 	u64 idle_mask[HL_BUSY_ENGINES_MASK_EXT_SIZE] = {0};
399 	bool reset_device, device_is_idle = true;
400 	struct hl_fpriv *hpriv;
401 	struct hl_device *hdev;
402 
403 	hpriv = container_of(ref, struct hl_fpriv, refcount);
404 
405 	hdev = hpriv->hdev;
406 
407 	hdev->asic_funcs->send_device_activity(hdev, false);
408 
409 	put_pid(hpriv->taskpid);
410 
411 	hl_debugfs_remove_file(hpriv);
412 
413 	mutex_destroy(&hpriv->ctx_lock);
414 	mutex_destroy(&hpriv->restore_phase_mutex);
415 
416 	/* There should be no memory buffers at this point and handles IDR can be destroyed */
417 	hl_mem_mgr_idr_destroy(&hpriv->mem_mgr);
418 
419 	/* Device should be reset if reset-upon-device-release is enabled, or if there is a pending
420 	 * reset that waits for device release.
421 	 */
422 	reset_device = hdev->reset_upon_device_release || hdev->reset_info.watchdog_active;
423 
424 	/* Check the device idle status and reset if not idle.
425 	 * Skip it if already in reset, or if device is going to be reset in any case.
426 	 */
427 	if (!hdev->reset_info.in_reset && !reset_device && hdev->pdev && !hdev->pldm)
428 		device_is_idle = hdev->asic_funcs->is_device_idle(hdev, idle_mask,
429 							HL_BUSY_ENGINES_MASK_EXT_SIZE, NULL);
430 	if (!device_is_idle) {
431 		print_idle_status_mask(hdev, "device is not idle after user context is closed",
432 					idle_mask);
433 		reset_device = true;
434 	}
435 
436 	/* We need to remove the user from the list to make sure the reset process won't
437 	 * try to kill the user process. Because, if we got here, it means there are no
438 	 * more driver/device resources that the user process is occupying so there is
439 	 * no need to kill it
440 	 *
441 	 * However, we can't set the compute_ctx to NULL at this stage. This is to prevent
442 	 * a race between the release and opening the device again. We don't want to let
443 	 * a user open the device while there a reset is about to happen.
444 	 */
445 	mutex_lock(&hdev->fpriv_list_lock);
446 	list_del(&hpriv->dev_node);
447 	mutex_unlock(&hdev->fpriv_list_lock);
448 
449 	if (reset_device) {
450 		hl_device_reset(hdev, HL_DRV_RESET_DEV_RELEASE);
451 	} else {
452 		/* Scrubbing is handled within hl_device_reset(), so here need to do it directly */
453 		int rc = hdev->asic_funcs->scrub_device_mem(hdev);
454 
455 		if (rc)
456 			dev_err(hdev->dev, "failed to scrub memory from hpriv release (%d)\n", rc);
457 	}
458 
459 	/* Now we can mark the compute_ctx as not active. Even if a reset is running in a different
460 	 * thread, we don't care because the in_reset is marked so if a user will try to open
461 	 * the device it will fail on that, even if compute_ctx is false.
462 	 */
463 	mutex_lock(&hdev->fpriv_list_lock);
464 	hdev->is_compute_ctx_active = false;
465 	mutex_unlock(&hdev->fpriv_list_lock);
466 
467 	hdev->compute_ctx_in_release = 0;
468 
469 	/* release the eventfd */
470 	if (hpriv->notifier_event.eventfd)
471 		eventfd_ctx_put(hpriv->notifier_event.eventfd);
472 
473 	mutex_destroy(&hpriv->notifier_event.lock);
474 
475 	kfree(hpriv);
476 }
477 
hl_hpriv_get(struct hl_fpriv * hpriv)478 void hl_hpriv_get(struct hl_fpriv *hpriv)
479 {
480 	kref_get(&hpriv->refcount);
481 }
482 
hl_hpriv_put(struct hl_fpriv * hpriv)483 int hl_hpriv_put(struct hl_fpriv *hpriv)
484 {
485 	return kref_put(&hpriv->refcount, hpriv_release);
486 }
487 
print_device_in_use_info(struct hl_device * hdev,const char * message)488 static void print_device_in_use_info(struct hl_device *hdev, const char *message)
489 {
490 	u32 active_cs_num, dmabuf_export_cnt;
491 	bool unknown_reason = true;
492 	char buf[128];
493 	size_t size;
494 	int offset;
495 
496 	size = sizeof(buf);
497 	offset = 0;
498 
499 	active_cs_num = hl_get_active_cs_num(hdev);
500 	if (active_cs_num) {
501 		unknown_reason = false;
502 		offset += scnprintf(buf + offset, size - offset, " [%u active CS]", active_cs_num);
503 	}
504 
505 	dmabuf_export_cnt = atomic_read(&hdev->dmabuf_export_cnt);
506 	if (dmabuf_export_cnt) {
507 		unknown_reason = false;
508 		offset += scnprintf(buf + offset, size - offset, " [%u exported dma-buf]",
509 					dmabuf_export_cnt);
510 	}
511 
512 	if (unknown_reason)
513 		scnprintf(buf + offset, size - offset, " [unknown reason]");
514 
515 	dev_notice(hdev->dev, "%s%s\n", message, buf);
516 }
517 
518 /*
519  * hl_device_release - release function for habanalabs device
520  *
521  * @inode: pointer to inode structure
522  * @filp: pointer to file structure
523  *
524  * Called when process closes an habanalabs device
525  */
hl_device_release(struct inode * inode,struct file * filp)526 static int hl_device_release(struct inode *inode, struct file *filp)
527 {
528 	struct hl_fpriv *hpriv = filp->private_data;
529 	struct hl_device *hdev = hpriv->hdev;
530 
531 	filp->private_data = NULL;
532 
533 	if (!hdev) {
534 		pr_crit("Closing FD after device was removed. Memory leak will occur and it is advised to reboot.\n");
535 		put_pid(hpriv->taskpid);
536 		return 0;
537 	}
538 
539 	hl_ctx_mgr_fini(hdev, &hpriv->ctx_mgr);
540 
541 	/* Memory buffers might be still in use at this point and thus the handles IDR destruction
542 	 * is postponed to hpriv_release().
543 	 */
544 	hl_mem_mgr_fini(&hpriv->mem_mgr);
545 
546 	hdev->compute_ctx_in_release = 1;
547 
548 	if (!hl_hpriv_put(hpriv)) {
549 		print_device_in_use_info(hdev, "User process closed FD but device still in use");
550 		hl_device_reset(hdev, HL_DRV_RESET_HARD);
551 	}
552 
553 	hdev->last_open_session_duration_jif = jiffies - hdev->last_successful_open_jif;
554 
555 	return 0;
556 }
557 
hl_device_release_ctrl(struct inode * inode,struct file * filp)558 static int hl_device_release_ctrl(struct inode *inode, struct file *filp)
559 {
560 	struct hl_fpriv *hpriv = filp->private_data;
561 	struct hl_device *hdev = hpriv->hdev;
562 
563 	filp->private_data = NULL;
564 
565 	if (!hdev) {
566 		pr_err("Closing FD after device was removed\n");
567 		goto out;
568 	}
569 
570 	mutex_lock(&hdev->fpriv_ctrl_list_lock);
571 	list_del(&hpriv->dev_node);
572 	mutex_unlock(&hdev->fpriv_ctrl_list_lock);
573 out:
574 	/* release the eventfd */
575 	if (hpriv->notifier_event.eventfd)
576 		eventfd_ctx_put(hpriv->notifier_event.eventfd);
577 
578 	mutex_destroy(&hpriv->notifier_event.lock);
579 	put_pid(hpriv->taskpid);
580 
581 	kfree(hpriv);
582 
583 	return 0;
584 }
585 
586 /*
587  * hl_mmap - mmap function for habanalabs device
588  *
589  * @*filp: pointer to file structure
590  * @*vma: pointer to vm_area_struct of the process
591  *
592  * Called when process does an mmap on habanalabs device. Call the relevant mmap
593  * function at the end of the common code.
594  */
hl_mmap(struct file * filp,struct vm_area_struct * vma)595 static int hl_mmap(struct file *filp, struct vm_area_struct *vma)
596 {
597 	struct hl_fpriv *hpriv = filp->private_data;
598 	struct hl_device *hdev = hpriv->hdev;
599 	unsigned long vm_pgoff;
600 
601 	if (!hdev) {
602 		pr_err_ratelimited("Trying to mmap after device was removed! Please close FD\n");
603 		return -ENODEV;
604 	}
605 
606 	vm_pgoff = vma->vm_pgoff;
607 
608 	switch (vm_pgoff & HL_MMAP_TYPE_MASK) {
609 	case HL_MMAP_TYPE_BLOCK:
610 		vma->vm_pgoff = HL_MMAP_OFFSET_VALUE_GET(vm_pgoff);
611 		return hl_hw_block_mmap(hpriv, vma);
612 
613 	case HL_MMAP_TYPE_CB:
614 	case HL_MMAP_TYPE_TS_BUFF:
615 		return hl_mem_mgr_mmap(&hpriv->mem_mgr, vma, NULL);
616 	}
617 	return -EINVAL;
618 }
619 
620 static const struct file_operations hl_ops = {
621 	.owner = THIS_MODULE,
622 	.open = hl_device_open,
623 	.release = hl_device_release,
624 	.mmap = hl_mmap,
625 	.unlocked_ioctl = hl_ioctl,
626 	.compat_ioctl = hl_ioctl
627 };
628 
629 static const struct file_operations hl_ctrl_ops = {
630 	.owner = THIS_MODULE,
631 	.open = hl_device_open_ctrl,
632 	.release = hl_device_release_ctrl,
633 	.unlocked_ioctl = hl_ioctl_control,
634 	.compat_ioctl = hl_ioctl_control
635 };
636 
device_release_func(struct device * dev)637 static void device_release_func(struct device *dev)
638 {
639 	kfree(dev);
640 }
641 
642 /*
643  * device_init_cdev - Initialize cdev and device for habanalabs device
644  *
645  * @hdev: pointer to habanalabs device structure
646  * @class: pointer to the class object of the device
647  * @minor: minor number of the specific device
648  * @fpos: file operations to install for this device
649  * @name: name of the device as it will appear in the filesystem
650  * @cdev: pointer to the char device object that will be initialized
651  * @dev: pointer to the device object that will be initialized
652  *
653  * Initialize a cdev and a Linux device for habanalabs's device.
654  */
device_init_cdev(struct hl_device * hdev,struct class * class,int minor,const struct file_operations * fops,char * name,struct cdev * cdev,struct device ** dev)655 static int device_init_cdev(struct hl_device *hdev, struct class *class,
656 				int minor, const struct file_operations *fops,
657 				char *name, struct cdev *cdev,
658 				struct device **dev)
659 {
660 	cdev_init(cdev, fops);
661 	cdev->owner = THIS_MODULE;
662 
663 	*dev = kzalloc(sizeof(**dev), GFP_KERNEL);
664 	if (!*dev)
665 		return -ENOMEM;
666 
667 	device_initialize(*dev);
668 	(*dev)->devt = MKDEV(hdev->major, minor);
669 	(*dev)->class = class;
670 	(*dev)->release = device_release_func;
671 	dev_set_drvdata(*dev, hdev);
672 	dev_set_name(*dev, "%s", name);
673 
674 	return 0;
675 }
676 
cdev_sysfs_debugfs_add(struct hl_device * hdev)677 static int cdev_sysfs_debugfs_add(struct hl_device *hdev)
678 {
679 	int rc;
680 
681 	rc = cdev_device_add(&hdev->cdev, hdev->dev);
682 	if (rc) {
683 		dev_err(hdev->dev,
684 			"failed to add a char device to the system\n");
685 		return rc;
686 	}
687 
688 	rc = cdev_device_add(&hdev->cdev_ctrl, hdev->dev_ctrl);
689 	if (rc) {
690 		dev_err(hdev->dev,
691 			"failed to add a control char device to the system\n");
692 		goto delete_cdev_device;
693 	}
694 
695 	/* hl_sysfs_init() must be done after adding the device to the system */
696 	rc = hl_sysfs_init(hdev);
697 	if (rc) {
698 		dev_err(hdev->dev, "failed to initialize sysfs\n");
699 		goto delete_ctrl_cdev_device;
700 	}
701 
702 	hl_debugfs_add_device(hdev);
703 
704 	hdev->cdev_sysfs_debugfs_created = true;
705 
706 	return 0;
707 
708 delete_ctrl_cdev_device:
709 	cdev_device_del(&hdev->cdev_ctrl, hdev->dev_ctrl);
710 delete_cdev_device:
711 	cdev_device_del(&hdev->cdev, hdev->dev);
712 	return rc;
713 }
714 
cdev_sysfs_debugfs_remove(struct hl_device * hdev)715 static void cdev_sysfs_debugfs_remove(struct hl_device *hdev)
716 {
717 	if (!hdev->cdev_sysfs_debugfs_created)
718 		goto put_devices;
719 
720 	hl_debugfs_remove_device(hdev);
721 	hl_sysfs_fini(hdev);
722 	cdev_device_del(&hdev->cdev_ctrl, hdev->dev_ctrl);
723 	cdev_device_del(&hdev->cdev, hdev->dev);
724 
725 put_devices:
726 	put_device(hdev->dev);
727 	put_device(hdev->dev_ctrl);
728 }
729 
device_hard_reset_pending(struct work_struct * work)730 static void device_hard_reset_pending(struct work_struct *work)
731 {
732 	struct hl_device_reset_work *device_reset_work =
733 		container_of(work, struct hl_device_reset_work, reset_work.work);
734 	struct hl_device *hdev = device_reset_work->hdev;
735 	u32 flags;
736 	int rc;
737 
738 	flags = device_reset_work->flags | HL_DRV_RESET_FROM_RESET_THR;
739 
740 	rc = hl_device_reset(hdev, flags);
741 
742 	if ((rc == -EBUSY) && !hdev->device_fini_pending) {
743 		struct hl_ctx *ctx = hl_get_compute_ctx(hdev);
744 
745 		if (ctx) {
746 			/* The read refcount value should subtracted by one, because the read is
747 			 * protected with hl_get_compute_ctx().
748 			 */
749 			dev_info(hdev->dev,
750 				"Could not reset device (compute_ctx refcount %u). will try again in %u seconds",
751 				kref_read(&ctx->refcount) - 1, HL_PENDING_RESET_PER_SEC);
752 			hl_ctx_put(ctx);
753 		} else {
754 			dev_info(hdev->dev, "Could not reset device. will try again in %u seconds",
755 				HL_PENDING_RESET_PER_SEC);
756 		}
757 
758 		queue_delayed_work(hdev->reset_wq, &device_reset_work->reset_work,
759 					msecs_to_jiffies(HL_PENDING_RESET_PER_SEC * 1000));
760 	}
761 }
762 
device_release_watchdog_func(struct work_struct * work)763 static void device_release_watchdog_func(struct work_struct *work)
764 {
765 	struct hl_device_reset_work *watchdog_work =
766 			container_of(work, struct hl_device_reset_work, reset_work.work);
767 	struct hl_device *hdev = watchdog_work->hdev;
768 	u32 flags;
769 
770 	dev_dbg(hdev->dev, "Device wasn't released in time. Initiate hard-reset.\n");
771 
772 	flags = watchdog_work->flags | HL_DRV_RESET_HARD | HL_DRV_RESET_FROM_WD_THR;
773 
774 	hl_device_reset(hdev, flags);
775 }
776 
777 /*
778  * device_early_init - do some early initialization for the habanalabs device
779  *
780  * @hdev: pointer to habanalabs device structure
781  *
782  * Install the relevant function pointers and call the early_init function,
783  * if such a function exists
784  */
device_early_init(struct hl_device * hdev)785 static int device_early_init(struct hl_device *hdev)
786 {
787 	int i, rc;
788 	char workq_name[32];
789 
790 	switch (hdev->asic_type) {
791 	case ASIC_GOYA:
792 		goya_set_asic_funcs(hdev);
793 		strscpy(hdev->asic_name, "GOYA", sizeof(hdev->asic_name));
794 		break;
795 	case ASIC_GAUDI:
796 		gaudi_set_asic_funcs(hdev);
797 		strscpy(hdev->asic_name, "GAUDI", sizeof(hdev->asic_name));
798 		break;
799 	case ASIC_GAUDI_SEC:
800 		gaudi_set_asic_funcs(hdev);
801 		strscpy(hdev->asic_name, "GAUDI SEC", sizeof(hdev->asic_name));
802 		break;
803 	case ASIC_GAUDI2:
804 		gaudi2_set_asic_funcs(hdev);
805 		strscpy(hdev->asic_name, "GAUDI2", sizeof(hdev->asic_name));
806 		break;
807 	case ASIC_GAUDI2B:
808 		gaudi2_set_asic_funcs(hdev);
809 		strscpy(hdev->asic_name, "GAUDI2B", sizeof(hdev->asic_name));
810 		break;
811 		break;
812 	default:
813 		dev_err(hdev->dev, "Unrecognized ASIC type %d\n",
814 			hdev->asic_type);
815 		return -EINVAL;
816 	}
817 
818 	rc = hdev->asic_funcs->early_init(hdev);
819 	if (rc)
820 		return rc;
821 
822 	rc = hl_asid_init(hdev);
823 	if (rc)
824 		goto early_fini;
825 
826 	if (hdev->asic_prop.completion_queues_count) {
827 		hdev->cq_wq = kcalloc(hdev->asic_prop.completion_queues_count,
828 				sizeof(struct workqueue_struct *),
829 				GFP_KERNEL);
830 		if (!hdev->cq_wq) {
831 			rc = -ENOMEM;
832 			goto asid_fini;
833 		}
834 	}
835 
836 	for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++) {
837 		snprintf(workq_name, 32, "hl%u-free-jobs-%u", hdev->cdev_idx, (u32) i);
838 		hdev->cq_wq[i] = create_singlethread_workqueue(workq_name);
839 		if (hdev->cq_wq[i] == NULL) {
840 			dev_err(hdev->dev, "Failed to allocate CQ workqueue\n");
841 			rc = -ENOMEM;
842 			goto free_cq_wq;
843 		}
844 	}
845 
846 	snprintf(workq_name, 32, "hl%u-events", hdev->cdev_idx);
847 	hdev->eq_wq = create_singlethread_workqueue(workq_name);
848 	if (hdev->eq_wq == NULL) {
849 		dev_err(hdev->dev, "Failed to allocate EQ workqueue\n");
850 		rc = -ENOMEM;
851 		goto free_cq_wq;
852 	}
853 
854 	snprintf(workq_name, 32, "hl%u-cs-completions", hdev->cdev_idx);
855 	hdev->cs_cmplt_wq = alloc_workqueue(workq_name, WQ_UNBOUND, 0);
856 	if (!hdev->cs_cmplt_wq) {
857 		dev_err(hdev->dev,
858 			"Failed to allocate CS completions workqueue\n");
859 		rc = -ENOMEM;
860 		goto free_eq_wq;
861 	}
862 
863 	snprintf(workq_name, 32, "hl%u-ts-free-obj", hdev->cdev_idx);
864 	hdev->ts_free_obj_wq = alloc_workqueue(workq_name, WQ_UNBOUND, 0);
865 	if (!hdev->ts_free_obj_wq) {
866 		dev_err(hdev->dev,
867 			"Failed to allocate Timestamp registration free workqueue\n");
868 		rc = -ENOMEM;
869 		goto free_cs_cmplt_wq;
870 	}
871 
872 	snprintf(workq_name, 32, "hl%u-prefetch", hdev->cdev_idx);
873 	hdev->prefetch_wq = alloc_workqueue(workq_name, WQ_UNBOUND, 0);
874 	if (!hdev->prefetch_wq) {
875 		dev_err(hdev->dev, "Failed to allocate MMU prefetch workqueue\n");
876 		rc = -ENOMEM;
877 		goto free_ts_free_wq;
878 	}
879 
880 	hdev->hl_chip_info = kzalloc(sizeof(struct hwmon_chip_info), GFP_KERNEL);
881 	if (!hdev->hl_chip_info) {
882 		rc = -ENOMEM;
883 		goto free_prefetch_wq;
884 	}
885 
886 	rc = hl_mmu_if_set_funcs(hdev);
887 	if (rc)
888 		goto free_chip_info;
889 
890 	hl_mem_mgr_init(hdev->dev, &hdev->kernel_mem_mgr);
891 
892 	snprintf(workq_name, 32, "hl%u_device_reset", hdev->cdev_idx);
893 	hdev->reset_wq = create_singlethread_workqueue(workq_name);
894 	if (!hdev->reset_wq) {
895 		rc = -ENOMEM;
896 		dev_err(hdev->dev, "Failed to create device reset WQ\n");
897 		goto free_cb_mgr;
898 	}
899 
900 	INIT_DELAYED_WORK(&hdev->device_reset_work.reset_work, device_hard_reset_pending);
901 	hdev->device_reset_work.hdev = hdev;
902 	hdev->device_fini_pending = 0;
903 
904 	INIT_DELAYED_WORK(&hdev->device_release_watchdog_work.reset_work,
905 				device_release_watchdog_func);
906 	hdev->device_release_watchdog_work.hdev = hdev;
907 
908 	mutex_init(&hdev->send_cpu_message_lock);
909 	mutex_init(&hdev->debug_lock);
910 	INIT_LIST_HEAD(&hdev->cs_mirror_list);
911 	spin_lock_init(&hdev->cs_mirror_lock);
912 	spin_lock_init(&hdev->reset_info.lock);
913 	INIT_LIST_HEAD(&hdev->fpriv_list);
914 	INIT_LIST_HEAD(&hdev->fpriv_ctrl_list);
915 	mutex_init(&hdev->fpriv_list_lock);
916 	mutex_init(&hdev->fpriv_ctrl_list_lock);
917 	mutex_init(&hdev->clk_throttling.lock);
918 
919 	return 0;
920 
921 free_cb_mgr:
922 	hl_mem_mgr_fini(&hdev->kernel_mem_mgr);
923 	hl_mem_mgr_idr_destroy(&hdev->kernel_mem_mgr);
924 free_chip_info:
925 	kfree(hdev->hl_chip_info);
926 free_prefetch_wq:
927 	destroy_workqueue(hdev->prefetch_wq);
928 free_ts_free_wq:
929 	destroy_workqueue(hdev->ts_free_obj_wq);
930 free_cs_cmplt_wq:
931 	destroy_workqueue(hdev->cs_cmplt_wq);
932 free_eq_wq:
933 	destroy_workqueue(hdev->eq_wq);
934 free_cq_wq:
935 	for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++)
936 		if (hdev->cq_wq[i])
937 			destroy_workqueue(hdev->cq_wq[i]);
938 	kfree(hdev->cq_wq);
939 asid_fini:
940 	hl_asid_fini(hdev);
941 early_fini:
942 	if (hdev->asic_funcs->early_fini)
943 		hdev->asic_funcs->early_fini(hdev);
944 
945 	return rc;
946 }
947 
948 /*
949  * device_early_fini - finalize all that was done in device_early_init
950  *
951  * @hdev: pointer to habanalabs device structure
952  *
953  */
device_early_fini(struct hl_device * hdev)954 static void device_early_fini(struct hl_device *hdev)
955 {
956 	int i;
957 
958 	mutex_destroy(&hdev->debug_lock);
959 	mutex_destroy(&hdev->send_cpu_message_lock);
960 
961 	mutex_destroy(&hdev->fpriv_list_lock);
962 	mutex_destroy(&hdev->fpriv_ctrl_list_lock);
963 
964 	mutex_destroy(&hdev->clk_throttling.lock);
965 
966 	hl_mem_mgr_fini(&hdev->kernel_mem_mgr);
967 	hl_mem_mgr_idr_destroy(&hdev->kernel_mem_mgr);
968 
969 	kfree(hdev->hl_chip_info);
970 
971 	destroy_workqueue(hdev->prefetch_wq);
972 	destroy_workqueue(hdev->ts_free_obj_wq);
973 	destroy_workqueue(hdev->cs_cmplt_wq);
974 	destroy_workqueue(hdev->eq_wq);
975 	destroy_workqueue(hdev->reset_wq);
976 
977 	for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++)
978 		destroy_workqueue(hdev->cq_wq[i]);
979 	kfree(hdev->cq_wq);
980 
981 	hl_asid_fini(hdev);
982 
983 	if (hdev->asic_funcs->early_fini)
984 		hdev->asic_funcs->early_fini(hdev);
985 }
986 
is_pci_link_healthy(struct hl_device * hdev)987 static bool is_pci_link_healthy(struct hl_device *hdev)
988 {
989 	u16 vendor_id;
990 
991 	if (!hdev->pdev)
992 		return false;
993 
994 	pci_read_config_word(hdev->pdev, PCI_VENDOR_ID, &vendor_id);
995 
996 	return (vendor_id == PCI_VENDOR_ID_HABANALABS);
997 }
998 
hl_device_heartbeat(struct work_struct * work)999 static void hl_device_heartbeat(struct work_struct *work)
1000 {
1001 	struct hl_device *hdev = container_of(work, struct hl_device,
1002 						work_heartbeat.work);
1003 	struct hl_info_fw_err_info info = {0};
1004 	u64 event_mask = HL_NOTIFIER_EVENT_DEVICE_RESET | HL_NOTIFIER_EVENT_DEVICE_UNAVAILABLE;
1005 
1006 	if (!hl_device_operational(hdev, NULL))
1007 		goto reschedule;
1008 
1009 	if (!hdev->asic_funcs->send_heartbeat(hdev))
1010 		goto reschedule;
1011 
1012 	if (hl_device_operational(hdev, NULL))
1013 		dev_err(hdev->dev, "Device heartbeat failed! PCI link is %s\n",
1014 			is_pci_link_healthy(hdev) ? "healthy" : "broken");
1015 
1016 	info.err_type = HL_INFO_FW_HEARTBEAT_ERR;
1017 	info.event_mask = &event_mask;
1018 	hl_handle_fw_err(hdev, &info);
1019 	hl_device_cond_reset(hdev, HL_DRV_RESET_HARD | HL_DRV_RESET_HEARTBEAT, event_mask);
1020 
1021 	return;
1022 
1023 reschedule:
1024 	/*
1025 	 * prev_reset_trigger tracks consecutive fatal h/w errors until first
1026 	 * heartbeat immediately post reset.
1027 	 * If control reached here, then at least one heartbeat work has been
1028 	 * scheduled since last reset/init cycle.
1029 	 * So if the device is not already in reset cycle, reset the flag
1030 	 * prev_reset_trigger as no reset occurred with HL_DRV_RESET_FW_FATAL_ERR
1031 	 * status for at least one heartbeat. From this point driver restarts
1032 	 * tracking future consecutive fatal errors.
1033 	 */
1034 	if (!hdev->reset_info.in_reset)
1035 		hdev->reset_info.prev_reset_trigger = HL_RESET_TRIGGER_DEFAULT;
1036 
1037 	schedule_delayed_work(&hdev->work_heartbeat,
1038 			usecs_to_jiffies(HL_HEARTBEAT_PER_USEC));
1039 }
1040 
1041 /*
1042  * device_late_init - do late stuff initialization for the habanalabs device
1043  *
1044  * @hdev: pointer to habanalabs device structure
1045  *
1046  * Do stuff that either needs the device H/W queues to be active or needs
1047  * to happen after all the rest of the initialization is finished
1048  */
device_late_init(struct hl_device * hdev)1049 static int device_late_init(struct hl_device *hdev)
1050 {
1051 	int rc;
1052 
1053 	if (hdev->asic_funcs->late_init) {
1054 		rc = hdev->asic_funcs->late_init(hdev);
1055 		if (rc) {
1056 			dev_err(hdev->dev,
1057 				"failed late initialization for the H/W\n");
1058 			return rc;
1059 		}
1060 	}
1061 
1062 	hdev->high_pll = hdev->asic_prop.high_pll;
1063 
1064 	if (hdev->heartbeat) {
1065 		INIT_DELAYED_WORK(&hdev->work_heartbeat, hl_device_heartbeat);
1066 		schedule_delayed_work(&hdev->work_heartbeat,
1067 				usecs_to_jiffies(HL_HEARTBEAT_PER_USEC));
1068 	}
1069 
1070 	hdev->late_init_done = true;
1071 
1072 	return 0;
1073 }
1074 
1075 /*
1076  * device_late_fini - finalize all that was done in device_late_init
1077  *
1078  * @hdev: pointer to habanalabs device structure
1079  *
1080  */
device_late_fini(struct hl_device * hdev)1081 static void device_late_fini(struct hl_device *hdev)
1082 {
1083 	if (!hdev->late_init_done)
1084 		return;
1085 
1086 	if (hdev->heartbeat)
1087 		cancel_delayed_work_sync(&hdev->work_heartbeat);
1088 
1089 	if (hdev->asic_funcs->late_fini)
1090 		hdev->asic_funcs->late_fini(hdev);
1091 
1092 	hdev->late_init_done = false;
1093 }
1094 
hl_device_utilization(struct hl_device * hdev,u32 * utilization)1095 int hl_device_utilization(struct hl_device *hdev, u32 *utilization)
1096 {
1097 	u64 max_power, curr_power, dc_power, dividend, divisor;
1098 	int rc;
1099 
1100 	max_power = hdev->max_power;
1101 	dc_power = hdev->asic_prop.dc_power_default;
1102 	divisor = max_power - dc_power;
1103 	if (!divisor) {
1104 		dev_warn(hdev->dev, "device utilization is not supported\n");
1105 		return -EOPNOTSUPP;
1106 	}
1107 	rc = hl_fw_cpucp_power_get(hdev, &curr_power);
1108 
1109 	if (rc)
1110 		return rc;
1111 
1112 	curr_power = clamp(curr_power, dc_power, max_power);
1113 
1114 	dividend = (curr_power - dc_power) * 100;
1115 	*utilization = (u32) div_u64(dividend, divisor);
1116 
1117 	return 0;
1118 }
1119 
hl_device_set_debug_mode(struct hl_device * hdev,struct hl_ctx * ctx,bool enable)1120 int hl_device_set_debug_mode(struct hl_device *hdev, struct hl_ctx *ctx, bool enable)
1121 {
1122 	int rc = 0;
1123 
1124 	mutex_lock(&hdev->debug_lock);
1125 
1126 	if (!enable) {
1127 		if (!hdev->in_debug) {
1128 			dev_err(hdev->dev,
1129 				"Failed to disable debug mode because device was not in debug mode\n");
1130 			rc = -EFAULT;
1131 			goto out;
1132 		}
1133 
1134 		if (!hdev->reset_info.hard_reset_pending)
1135 			hdev->asic_funcs->halt_coresight(hdev, ctx);
1136 
1137 		hdev->in_debug = 0;
1138 
1139 		goto out;
1140 	}
1141 
1142 	if (hdev->in_debug) {
1143 		dev_err(hdev->dev,
1144 			"Failed to enable debug mode because device is already in debug mode\n");
1145 		rc = -EFAULT;
1146 		goto out;
1147 	}
1148 
1149 	hdev->in_debug = 1;
1150 
1151 out:
1152 	mutex_unlock(&hdev->debug_lock);
1153 
1154 	return rc;
1155 }
1156 
take_release_locks(struct hl_device * hdev)1157 static void take_release_locks(struct hl_device *hdev)
1158 {
1159 	/* Flush anyone that is inside the critical section of enqueue
1160 	 * jobs to the H/W
1161 	 */
1162 	hdev->asic_funcs->hw_queues_lock(hdev);
1163 	hdev->asic_funcs->hw_queues_unlock(hdev);
1164 
1165 	/* Flush processes that are sending message to CPU */
1166 	mutex_lock(&hdev->send_cpu_message_lock);
1167 	mutex_unlock(&hdev->send_cpu_message_lock);
1168 
1169 	/* Flush anyone that is inside device open */
1170 	mutex_lock(&hdev->fpriv_list_lock);
1171 	mutex_unlock(&hdev->fpriv_list_lock);
1172 	mutex_lock(&hdev->fpriv_ctrl_list_lock);
1173 	mutex_unlock(&hdev->fpriv_ctrl_list_lock);
1174 }
1175 
hl_abort_waiting_for_completions(struct hl_device * hdev)1176 static void hl_abort_waiting_for_completions(struct hl_device *hdev)
1177 {
1178 	hl_abort_waiting_for_cs_completions(hdev);
1179 
1180 	/* Release all pending user interrupts, each pending user interrupt
1181 	 * holds a reference to a user context.
1182 	 */
1183 	hl_release_pending_user_interrupts(hdev);
1184 }
1185 
cleanup_resources(struct hl_device * hdev,bool hard_reset,bool fw_reset,bool skip_wq_flush)1186 static void cleanup_resources(struct hl_device *hdev, bool hard_reset, bool fw_reset,
1187 				bool skip_wq_flush)
1188 {
1189 	if (hard_reset)
1190 		device_late_fini(hdev);
1191 
1192 	/*
1193 	 * Halt the engines and disable interrupts so we won't get any more
1194 	 * completions from H/W and we won't have any accesses from the
1195 	 * H/W to the host machine
1196 	 */
1197 	hdev->asic_funcs->halt_engines(hdev, hard_reset, fw_reset);
1198 
1199 	/* Go over all the queues, release all CS and their jobs */
1200 	hl_cs_rollback_all(hdev, skip_wq_flush);
1201 
1202 	/* flush the MMU prefetch workqueue */
1203 	flush_workqueue(hdev->prefetch_wq);
1204 
1205 	hl_abort_waiting_for_completions(hdev);
1206 }
1207 
1208 /*
1209  * hl_device_suspend - initiate device suspend
1210  *
1211  * @hdev: pointer to habanalabs device structure
1212  *
1213  * Puts the hw in the suspend state (all asics).
1214  * Returns 0 for success or an error on failure.
1215  * Called at driver suspend.
1216  */
hl_device_suspend(struct hl_device * hdev)1217 int hl_device_suspend(struct hl_device *hdev)
1218 {
1219 	int rc;
1220 
1221 	pci_save_state(hdev->pdev);
1222 
1223 	/* Block future CS/VM/JOB completion operations */
1224 	spin_lock(&hdev->reset_info.lock);
1225 	if (hdev->reset_info.in_reset) {
1226 		spin_unlock(&hdev->reset_info.lock);
1227 		dev_err(hdev->dev, "Can't suspend while in reset\n");
1228 		return -EIO;
1229 	}
1230 	hdev->reset_info.in_reset = 1;
1231 	spin_unlock(&hdev->reset_info.lock);
1232 
1233 	/* This blocks all other stuff that is not blocked by in_reset */
1234 	hdev->disabled = true;
1235 
1236 	take_release_locks(hdev);
1237 
1238 	rc = hdev->asic_funcs->suspend(hdev);
1239 	if (rc)
1240 		dev_err(hdev->dev,
1241 			"Failed to disable PCI access of device CPU\n");
1242 
1243 	/* Shut down the device */
1244 	pci_disable_device(hdev->pdev);
1245 	pci_set_power_state(hdev->pdev, PCI_D3hot);
1246 
1247 	return 0;
1248 }
1249 
1250 /*
1251  * hl_device_resume - initiate device resume
1252  *
1253  * @hdev: pointer to habanalabs device structure
1254  *
1255  * Bring the hw back to operating state (all asics).
1256  * Returns 0 for success or an error on failure.
1257  * Called at driver resume.
1258  */
hl_device_resume(struct hl_device * hdev)1259 int hl_device_resume(struct hl_device *hdev)
1260 {
1261 	int rc;
1262 
1263 	pci_set_power_state(hdev->pdev, PCI_D0);
1264 	pci_restore_state(hdev->pdev);
1265 	rc = pci_enable_device_mem(hdev->pdev);
1266 	if (rc) {
1267 		dev_err(hdev->dev,
1268 			"Failed to enable PCI device in resume\n");
1269 		return rc;
1270 	}
1271 
1272 	pci_set_master(hdev->pdev);
1273 
1274 	rc = hdev->asic_funcs->resume(hdev);
1275 	if (rc) {
1276 		dev_err(hdev->dev, "Failed to resume device after suspend\n");
1277 		goto disable_device;
1278 	}
1279 
1280 
1281 	/* 'in_reset' was set to true during suspend, now we must clear it in order
1282 	 * for hard reset to be performed
1283 	 */
1284 	spin_lock(&hdev->reset_info.lock);
1285 	hdev->reset_info.in_reset = 0;
1286 	spin_unlock(&hdev->reset_info.lock);
1287 
1288 	rc = hl_device_reset(hdev, HL_DRV_RESET_HARD);
1289 	if (rc) {
1290 		dev_err(hdev->dev, "Failed to reset device during resume\n");
1291 		goto disable_device;
1292 	}
1293 
1294 	return 0;
1295 
1296 disable_device:
1297 	pci_disable_device(hdev->pdev);
1298 
1299 	return rc;
1300 }
1301 
device_kill_open_processes(struct hl_device * hdev,u32 timeout,bool control_dev)1302 static int device_kill_open_processes(struct hl_device *hdev, u32 timeout, bool control_dev)
1303 {
1304 	struct task_struct *task = NULL;
1305 	struct list_head *fd_list;
1306 	struct hl_fpriv	*hpriv;
1307 	struct mutex *fd_lock;
1308 	u32 pending_cnt;
1309 
1310 	fd_lock = control_dev ? &hdev->fpriv_ctrl_list_lock : &hdev->fpriv_list_lock;
1311 	fd_list = control_dev ? &hdev->fpriv_ctrl_list : &hdev->fpriv_list;
1312 
1313 	/* Giving time for user to close FD, and for processes that are inside
1314 	 * hl_device_open to finish
1315 	 */
1316 	if (!list_empty(fd_list))
1317 		ssleep(1);
1318 
1319 	if (timeout) {
1320 		pending_cnt = timeout;
1321 	} else {
1322 		if (hdev->process_kill_trial_cnt) {
1323 			/* Processes have been already killed */
1324 			pending_cnt = 1;
1325 			goto wait_for_processes;
1326 		} else {
1327 			/* Wait a small period after process kill */
1328 			pending_cnt = HL_PENDING_RESET_PER_SEC;
1329 		}
1330 	}
1331 
1332 	mutex_lock(fd_lock);
1333 
1334 	/* This section must be protected because we are dereferencing
1335 	 * pointers that are freed if the process exits
1336 	 */
1337 	list_for_each_entry(hpriv, fd_list, dev_node) {
1338 		task = get_pid_task(hpriv->taskpid, PIDTYPE_PID);
1339 		if (task) {
1340 			dev_info(hdev->dev, "Killing user process pid=%d\n",
1341 				task_pid_nr(task));
1342 			send_sig(SIGKILL, task, 1);
1343 			usleep_range(1000, 10000);
1344 
1345 			put_task_struct(task);
1346 		} else {
1347 			/*
1348 			 * If we got here, it means that process was killed from outside the driver
1349 			 * right after it started looping on fd_list and before get_pid_task, thus
1350 			 * we don't need to kill it.
1351 			 */
1352 			dev_dbg(hdev->dev,
1353 				"Can't get task struct for user process, assuming process was killed from outside the driver\n");
1354 		}
1355 	}
1356 
1357 	mutex_unlock(fd_lock);
1358 
1359 	/*
1360 	 * We killed the open users, but that doesn't mean they are closed.
1361 	 * It could be that they are running a long cleanup phase in the driver
1362 	 * e.g. MMU unmappings, or running other long teardown flow even before
1363 	 * our cleanup.
1364 	 * Therefore we need to wait again to make sure they are closed before
1365 	 * continuing with the reset.
1366 	 */
1367 
1368 wait_for_processes:
1369 	while ((!list_empty(fd_list)) && (pending_cnt)) {
1370 		dev_dbg(hdev->dev,
1371 			"Waiting for all unmap operations to finish before hard reset\n");
1372 
1373 		pending_cnt--;
1374 
1375 		ssleep(1);
1376 	}
1377 
1378 	/* All processes exited successfully */
1379 	if (list_empty(fd_list))
1380 		return 0;
1381 
1382 	/* Give up waiting for processes to exit */
1383 	if (hdev->process_kill_trial_cnt == HL_PENDING_RESET_MAX_TRIALS)
1384 		return -ETIME;
1385 
1386 	hdev->process_kill_trial_cnt++;
1387 
1388 	return -EBUSY;
1389 }
1390 
device_disable_open_processes(struct hl_device * hdev,bool control_dev)1391 static void device_disable_open_processes(struct hl_device *hdev, bool control_dev)
1392 {
1393 	struct list_head *fd_list;
1394 	struct hl_fpriv *hpriv;
1395 	struct mutex *fd_lock;
1396 
1397 	fd_lock = control_dev ? &hdev->fpriv_ctrl_list_lock : &hdev->fpriv_list_lock;
1398 	fd_list = control_dev ? &hdev->fpriv_ctrl_list : &hdev->fpriv_list;
1399 
1400 	mutex_lock(fd_lock);
1401 	list_for_each_entry(hpriv, fd_list, dev_node)
1402 		hpriv->hdev = NULL;
1403 	mutex_unlock(fd_lock);
1404 }
1405 
send_disable_pci_access(struct hl_device * hdev,u32 flags)1406 static void send_disable_pci_access(struct hl_device *hdev, u32 flags)
1407 {
1408 	/* If reset is due to heartbeat, device CPU is no responsive in
1409 	 * which case no point sending PCI disable message to it.
1410 	 */
1411 	if ((flags & HL_DRV_RESET_HARD) &&
1412 			!(flags & (HL_DRV_RESET_HEARTBEAT | HL_DRV_RESET_BYPASS_REQ_TO_FW))) {
1413 		/* Disable PCI access from device F/W so he won't send
1414 		 * us additional interrupts. We disable MSI/MSI-X at
1415 		 * the halt_engines function and we can't have the F/W
1416 		 * sending us interrupts after that. We need to disable
1417 		 * the access here because if the device is marked
1418 		 * disable, the message won't be send. Also, in case
1419 		 * of heartbeat, the device CPU is marked as disable
1420 		 * so this message won't be sent
1421 		 */
1422 		if (hl_fw_send_pci_access_msg(hdev, CPUCP_PACKET_DISABLE_PCI_ACCESS, 0x0)) {
1423 			dev_warn(hdev->dev, "Failed to disable FW's PCI access\n");
1424 			return;
1425 		}
1426 
1427 		/* verify that last EQs are handled before disabled is set */
1428 		if (hdev->cpu_queues_enable)
1429 			synchronize_irq(pci_irq_vector(hdev->pdev,
1430 					hdev->asic_prop.eq_interrupt_id));
1431 	}
1432 }
1433 
handle_reset_trigger(struct hl_device * hdev,u32 flags)1434 static void handle_reset_trigger(struct hl_device *hdev, u32 flags)
1435 {
1436 	u32 cur_reset_trigger = HL_RESET_TRIGGER_DEFAULT;
1437 
1438 	/* No consecutive mechanism when user context exists */
1439 	if (hdev->is_compute_ctx_active)
1440 		return;
1441 
1442 	/*
1443 	 * 'reset cause' is being updated here, because getting here
1444 	 * means that it's the 1st time and the last time we're here
1445 	 * ('in_reset' makes sure of it). This makes sure that
1446 	 * 'reset_cause' will continue holding its 1st recorded reason!
1447 	 */
1448 	if (flags & HL_DRV_RESET_HEARTBEAT) {
1449 		hdev->reset_info.curr_reset_cause = HL_RESET_CAUSE_HEARTBEAT;
1450 		cur_reset_trigger = HL_DRV_RESET_HEARTBEAT;
1451 	} else if (flags & HL_DRV_RESET_TDR) {
1452 		hdev->reset_info.curr_reset_cause = HL_RESET_CAUSE_TDR;
1453 		cur_reset_trigger = HL_DRV_RESET_TDR;
1454 	} else if (flags & HL_DRV_RESET_FW_FATAL_ERR) {
1455 		hdev->reset_info.curr_reset_cause = HL_RESET_CAUSE_UNKNOWN;
1456 		cur_reset_trigger = HL_DRV_RESET_FW_FATAL_ERR;
1457 	} else {
1458 		hdev->reset_info.curr_reset_cause = HL_RESET_CAUSE_UNKNOWN;
1459 	}
1460 
1461 	/*
1462 	 * If reset cause is same twice, then reset_trigger_repeated
1463 	 * is set and if this reset is due to a fatal FW error
1464 	 * device is set to an unstable state.
1465 	 */
1466 	if (hdev->reset_info.prev_reset_trigger != cur_reset_trigger) {
1467 		hdev->reset_info.prev_reset_trigger = cur_reset_trigger;
1468 		hdev->reset_info.reset_trigger_repeated = 0;
1469 	} else {
1470 		hdev->reset_info.reset_trigger_repeated = 1;
1471 	}
1472 }
1473 
1474 /*
1475  * hl_device_reset - reset the device
1476  *
1477  * @hdev: pointer to habanalabs device structure
1478  * @flags: reset flags.
1479  *
1480  * Block future CS and wait for pending CS to be enqueued
1481  * Call ASIC H/W fini
1482  * Flush all completions
1483  * Re-initialize all internal data structures
1484  * Call ASIC H/W init, late_init
1485  * Test queues
1486  * Enable device
1487  *
1488  * Returns 0 for success or an error on failure.
1489  */
hl_device_reset(struct hl_device * hdev,u32 flags)1490 int hl_device_reset(struct hl_device *hdev, u32 flags)
1491 {
1492 	bool hard_reset, from_hard_reset_thread, fw_reset, reset_upon_device_release,
1493 		schedule_hard_reset = false, delay_reset, from_dev_release, from_watchdog_thread;
1494 	u64 idle_mask[HL_BUSY_ENGINES_MASK_EXT_SIZE] = {0};
1495 	struct hl_ctx *ctx;
1496 	int i, rc, hw_fini_rc;
1497 
1498 	if (!hdev->init_done) {
1499 		dev_err(hdev->dev, "Can't reset before initialization is done\n");
1500 		return 0;
1501 	}
1502 
1503 	hard_reset = !!(flags & HL_DRV_RESET_HARD);
1504 	from_hard_reset_thread = !!(flags & HL_DRV_RESET_FROM_RESET_THR);
1505 	fw_reset = !!(flags & HL_DRV_RESET_BYPASS_REQ_TO_FW);
1506 	from_dev_release = !!(flags & HL_DRV_RESET_DEV_RELEASE);
1507 	delay_reset = !!(flags & HL_DRV_RESET_DELAY);
1508 	from_watchdog_thread = !!(flags & HL_DRV_RESET_FROM_WD_THR);
1509 	reset_upon_device_release = hdev->reset_upon_device_release && from_dev_release;
1510 
1511 	if (!hard_reset && (hl_device_status(hdev) == HL_DEVICE_STATUS_MALFUNCTION)) {
1512 		dev_dbg(hdev->dev, "soft-reset isn't supported on a malfunctioning device\n");
1513 		return 0;
1514 	}
1515 
1516 	if (!hard_reset && !hdev->asic_prop.supports_compute_reset) {
1517 		dev_dbg(hdev->dev, "asic doesn't support compute reset - do hard-reset instead\n");
1518 		hard_reset = true;
1519 	}
1520 
1521 	if (reset_upon_device_release) {
1522 		if (hard_reset) {
1523 			dev_crit(hdev->dev,
1524 				"Aborting reset because hard-reset is mutually exclusive with reset-on-device-release\n");
1525 			return -EINVAL;
1526 		}
1527 
1528 		goto do_reset;
1529 	}
1530 
1531 	if (!hard_reset && !hdev->asic_prop.allow_inference_soft_reset) {
1532 		dev_dbg(hdev->dev,
1533 			"asic doesn't allow inference soft reset - do hard-reset instead\n");
1534 		hard_reset = true;
1535 	}
1536 
1537 do_reset:
1538 	/* Re-entry of reset thread */
1539 	if (from_hard_reset_thread && hdev->process_kill_trial_cnt)
1540 		goto kill_processes;
1541 
1542 	/*
1543 	 * Prevent concurrency in this function - only one reset should be
1544 	 * done at any given time. We need to perform this only if we didn't
1545 	 * get here from a dedicated hard reset thread.
1546 	 */
1547 	if (!from_hard_reset_thread) {
1548 		/* Block future CS/VM/JOB completion operations */
1549 		spin_lock(&hdev->reset_info.lock);
1550 		if (hdev->reset_info.in_reset) {
1551 			/* We allow scheduling of a hard reset only during a compute reset */
1552 			if (hard_reset && hdev->reset_info.in_compute_reset)
1553 				hdev->reset_info.hard_reset_schedule_flags = flags;
1554 			spin_unlock(&hdev->reset_info.lock);
1555 			return 0;
1556 		}
1557 
1558 		/* This still allows the completion of some KDMA ops
1559 		 * Update this before in_reset because in_compute_reset implies we are in reset
1560 		 */
1561 		hdev->reset_info.in_compute_reset = !hard_reset;
1562 
1563 		hdev->reset_info.in_reset = 1;
1564 
1565 		spin_unlock(&hdev->reset_info.lock);
1566 
1567 		/* Cancel the device release watchdog work if required.
1568 		 * In case of reset-upon-device-release while the release watchdog work is
1569 		 * scheduled due to a hard-reset, do hard-reset instead of compute-reset.
1570 		 */
1571 		if ((hard_reset || from_dev_release) && hdev->reset_info.watchdog_active) {
1572 			struct hl_device_reset_work *watchdog_work =
1573 					&hdev->device_release_watchdog_work;
1574 
1575 			hdev->reset_info.watchdog_active = 0;
1576 			if (!from_watchdog_thread)
1577 				cancel_delayed_work_sync(&watchdog_work->reset_work);
1578 
1579 			if (from_dev_release && (watchdog_work->flags & HL_DRV_RESET_HARD)) {
1580 				hdev->reset_info.in_compute_reset = 0;
1581 				flags |= HL_DRV_RESET_HARD;
1582 				flags &= ~HL_DRV_RESET_DEV_RELEASE;
1583 				hard_reset = true;
1584 			}
1585 		}
1586 
1587 		if (delay_reset)
1588 			usleep_range(HL_RESET_DELAY_USEC, HL_RESET_DELAY_USEC << 1);
1589 
1590 escalate_reset_flow:
1591 		handle_reset_trigger(hdev, flags);
1592 		send_disable_pci_access(hdev, flags);
1593 
1594 		/* This also blocks future CS/VM/JOB completion operations */
1595 		hdev->disabled = true;
1596 
1597 		take_release_locks(hdev);
1598 
1599 		if (hard_reset)
1600 			dev_info(hdev->dev, "Going to reset device\n");
1601 		else if (reset_upon_device_release)
1602 			dev_dbg(hdev->dev, "Going to reset device after release by user\n");
1603 		else
1604 			dev_dbg(hdev->dev, "Going to reset engines of inference device\n");
1605 	}
1606 
1607 	if ((hard_reset) && (!from_hard_reset_thread)) {
1608 		hdev->reset_info.hard_reset_pending = true;
1609 
1610 		hdev->process_kill_trial_cnt = 0;
1611 
1612 		hdev->device_reset_work.flags = flags;
1613 
1614 		/*
1615 		 * Because the reset function can't run from heartbeat work,
1616 		 * we need to call the reset function from a dedicated work.
1617 		 */
1618 		queue_delayed_work(hdev->reset_wq, &hdev->device_reset_work.reset_work, 0);
1619 
1620 		return 0;
1621 	}
1622 
1623 	cleanup_resources(hdev, hard_reset, fw_reset, from_dev_release);
1624 
1625 kill_processes:
1626 	if (hard_reset) {
1627 		/* Kill processes here after CS rollback. This is because the
1628 		 * process can't really exit until all its CSs are done, which
1629 		 * is what we do in cs rollback
1630 		 */
1631 		rc = device_kill_open_processes(hdev, 0, false);
1632 
1633 		if (rc == -EBUSY) {
1634 			if (hdev->device_fini_pending) {
1635 				dev_crit(hdev->dev,
1636 					"%s Failed to kill all open processes, stopping hard reset\n",
1637 					dev_name(&(hdev)->pdev->dev));
1638 				goto out_err;
1639 			}
1640 
1641 			/* signal reset thread to reschedule */
1642 			return rc;
1643 		}
1644 
1645 		if (rc) {
1646 			dev_crit(hdev->dev,
1647 				"%s Failed to kill all open processes, stopping hard reset\n",
1648 				dev_name(&(hdev)->pdev->dev));
1649 			goto out_err;
1650 		}
1651 
1652 		/* Flush the Event queue workers to make sure no other thread is
1653 		 * reading or writing to registers during the reset
1654 		 */
1655 		flush_workqueue(hdev->eq_wq);
1656 	}
1657 
1658 	/* Reset the H/W. It will be in idle state after this returns */
1659 	hw_fini_rc = hdev->asic_funcs->hw_fini(hdev, hard_reset, fw_reset);
1660 
1661 	if (hard_reset) {
1662 		hdev->fw_loader.fw_comp_loaded = FW_TYPE_NONE;
1663 
1664 		/* Release kernel context */
1665 		if (hdev->kernel_ctx && hl_ctx_put(hdev->kernel_ctx) == 1)
1666 			hdev->kernel_ctx = NULL;
1667 
1668 		hl_vm_fini(hdev);
1669 		hl_mmu_fini(hdev);
1670 		hl_eq_reset(hdev, &hdev->event_queue);
1671 	}
1672 
1673 	/* Re-initialize PI,CI to 0 in all queues (hw queue, cq) */
1674 	hl_hw_queue_reset(hdev, hard_reset);
1675 	for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++)
1676 		hl_cq_reset(hdev, &hdev->completion_queue[i]);
1677 
1678 	/* Make sure the context switch phase will run again */
1679 	ctx = hl_get_compute_ctx(hdev);
1680 	if (ctx) {
1681 		atomic_set(&ctx->thread_ctx_switch_token, 1);
1682 		ctx->thread_ctx_switch_wait_token = 0;
1683 		hl_ctx_put(ctx);
1684 	}
1685 
1686 	if (hw_fini_rc) {
1687 		rc = hw_fini_rc;
1688 		goto out_err;
1689 	}
1690 	/* Finished tear-down, starting to re-initialize */
1691 
1692 	if (hard_reset) {
1693 		hdev->device_cpu_disabled = false;
1694 		hdev->reset_info.hard_reset_pending = false;
1695 
1696 		if (hdev->reset_info.reset_trigger_repeated &&
1697 				(hdev->reset_info.prev_reset_trigger ==
1698 						HL_DRV_RESET_FW_FATAL_ERR)) {
1699 			/* if there 2 back to back resets from FW,
1700 			 * ensure driver puts the driver in a unusable state
1701 			 */
1702 			dev_crit(hdev->dev,
1703 				"%s Consecutive FW fatal errors received, stopping hard reset\n",
1704 				dev_name(&(hdev)->pdev->dev));
1705 			rc = -EIO;
1706 			goto out_err;
1707 		}
1708 
1709 		if (hdev->kernel_ctx) {
1710 			dev_crit(hdev->dev,
1711 				"%s kernel ctx was alive during hard reset, something is terribly wrong\n",
1712 				dev_name(&(hdev)->pdev->dev));
1713 			rc = -EBUSY;
1714 			goto out_err;
1715 		}
1716 
1717 		rc = hl_mmu_init(hdev);
1718 		if (rc) {
1719 			dev_err(hdev->dev,
1720 				"Failed to initialize MMU S/W after hard reset\n");
1721 			goto out_err;
1722 		}
1723 
1724 		/* Allocate the kernel context */
1725 		hdev->kernel_ctx = kzalloc(sizeof(*hdev->kernel_ctx),
1726 						GFP_KERNEL);
1727 		if (!hdev->kernel_ctx) {
1728 			rc = -ENOMEM;
1729 			hl_mmu_fini(hdev);
1730 			goto out_err;
1731 		}
1732 
1733 		hdev->is_compute_ctx_active = false;
1734 
1735 		rc = hl_ctx_init(hdev, hdev->kernel_ctx, true);
1736 		if (rc) {
1737 			dev_err(hdev->dev,
1738 				"failed to init kernel ctx in hard reset\n");
1739 			kfree(hdev->kernel_ctx);
1740 			hdev->kernel_ctx = NULL;
1741 			hl_mmu_fini(hdev);
1742 			goto out_err;
1743 		}
1744 	}
1745 
1746 	/* Device is now enabled as part of the initialization requires
1747 	 * communication with the device firmware to get information that
1748 	 * is required for the initialization itself
1749 	 */
1750 	hdev->disabled = false;
1751 
1752 	/* F/W security enabled indication might be updated after hard-reset */
1753 	if (hard_reset) {
1754 		rc = hl_fw_read_preboot_status(hdev);
1755 		if (rc)
1756 			goto out_err;
1757 	}
1758 
1759 	rc = hdev->asic_funcs->hw_init(hdev);
1760 	if (rc) {
1761 		dev_err(hdev->dev, "failed to initialize the H/W after reset\n");
1762 		goto out_err;
1763 	}
1764 
1765 	/* If device is not idle fail the reset process */
1766 	if (!hdev->asic_funcs->is_device_idle(hdev, idle_mask,
1767 						HL_BUSY_ENGINES_MASK_EXT_SIZE, NULL)) {
1768 		print_idle_status_mask(hdev, "device is not idle after reset", idle_mask);
1769 		rc = -EIO;
1770 		goto out_err;
1771 	}
1772 
1773 	/* Check that the communication with the device is working */
1774 	rc = hdev->asic_funcs->test_queues(hdev);
1775 	if (rc) {
1776 		dev_err(hdev->dev, "Failed to detect if device is alive after reset\n");
1777 		goto out_err;
1778 	}
1779 
1780 	if (hard_reset) {
1781 		rc = device_late_init(hdev);
1782 		if (rc) {
1783 			dev_err(hdev->dev, "Failed late init after hard reset\n");
1784 			goto out_err;
1785 		}
1786 
1787 		rc = hl_vm_init(hdev);
1788 		if (rc) {
1789 			dev_err(hdev->dev, "Failed to init memory module after hard reset\n");
1790 			goto out_err;
1791 		}
1792 
1793 		if (!hdev->asic_prop.fw_security_enabled)
1794 			hl_fw_set_max_power(hdev);
1795 	} else {
1796 		rc = hdev->asic_funcs->compute_reset_late_init(hdev);
1797 		if (rc) {
1798 			if (reset_upon_device_release)
1799 				dev_err(hdev->dev,
1800 					"Failed late init in reset after device release\n");
1801 			else
1802 				dev_err(hdev->dev, "Failed late init after compute reset\n");
1803 			goto out_err;
1804 		}
1805 	}
1806 
1807 	rc = hdev->asic_funcs->scrub_device_mem(hdev);
1808 	if (rc) {
1809 		dev_err(hdev->dev, "scrub mem failed from device reset (%d)\n", rc);
1810 		goto out_err;
1811 	}
1812 
1813 	spin_lock(&hdev->reset_info.lock);
1814 	hdev->reset_info.in_compute_reset = 0;
1815 
1816 	/* Schedule hard reset only if requested and if not already in hard reset.
1817 	 * We keep 'in_reset' enabled, so no other reset can go in during the hard
1818 	 * reset schedule
1819 	 */
1820 	if (!hard_reset && hdev->reset_info.hard_reset_schedule_flags)
1821 		schedule_hard_reset = true;
1822 	else
1823 		hdev->reset_info.in_reset = 0;
1824 
1825 	spin_unlock(&hdev->reset_info.lock);
1826 
1827 	hdev->reset_info.needs_reset = false;
1828 
1829 	if (hard_reset)
1830 		dev_info(hdev->dev,
1831 			 "Successfully finished resetting the %s device\n",
1832 			 dev_name(&(hdev)->pdev->dev));
1833 	else
1834 		dev_dbg(hdev->dev,
1835 			"Successfully finished resetting the %s device\n",
1836 			dev_name(&(hdev)->pdev->dev));
1837 
1838 	if (hard_reset) {
1839 		hdev->reset_info.hard_reset_cnt++;
1840 
1841 		/* After reset is done, we are ready to receive events from
1842 		 * the F/W. We can't do it before because we will ignore events
1843 		 * and if those events are fatal, we won't know about it and
1844 		 * the device will be operational although it shouldn't be
1845 		 */
1846 		hdev->asic_funcs->enable_events_from_fw(hdev);
1847 	} else {
1848 		if (!reset_upon_device_release)
1849 			hdev->reset_info.compute_reset_cnt++;
1850 
1851 		if (schedule_hard_reset) {
1852 			dev_info(hdev->dev, "Performing hard reset scheduled during compute reset\n");
1853 			flags = hdev->reset_info.hard_reset_schedule_flags;
1854 			hdev->reset_info.hard_reset_schedule_flags = 0;
1855 			hard_reset = true;
1856 			goto escalate_reset_flow;
1857 		}
1858 	}
1859 
1860 	return 0;
1861 
1862 out_err:
1863 	hdev->disabled = true;
1864 
1865 	spin_lock(&hdev->reset_info.lock);
1866 	hdev->reset_info.in_compute_reset = 0;
1867 
1868 	if (hard_reset) {
1869 		dev_err(hdev->dev,
1870 			"%s Failed to reset! Device is NOT usable\n",
1871 			dev_name(&(hdev)->pdev->dev));
1872 		hdev->reset_info.hard_reset_cnt++;
1873 	} else {
1874 		if (reset_upon_device_release) {
1875 			dev_err(hdev->dev, "Failed to reset device after user release\n");
1876 			flags &= ~HL_DRV_RESET_DEV_RELEASE;
1877 		} else {
1878 			dev_err(hdev->dev, "Failed to do compute reset\n");
1879 			hdev->reset_info.compute_reset_cnt++;
1880 		}
1881 
1882 		spin_unlock(&hdev->reset_info.lock);
1883 		flags |= HL_DRV_RESET_HARD;
1884 		hard_reset = true;
1885 		goto escalate_reset_flow;
1886 	}
1887 
1888 	hdev->reset_info.in_reset = 0;
1889 
1890 	spin_unlock(&hdev->reset_info.lock);
1891 
1892 	return rc;
1893 }
1894 
1895 /*
1896  * hl_device_cond_reset() - conditionally reset the device.
1897  * @hdev: pointer to habanalabs device structure.
1898  * @reset_flags: reset flags.
1899  * @event_mask: events to notify user about.
1900  *
1901  * Conditionally reset the device, or alternatively schedule a watchdog work to reset the device
1902  * unless another reset precedes it.
1903  */
hl_device_cond_reset(struct hl_device * hdev,u32 flags,u64 event_mask)1904 int hl_device_cond_reset(struct hl_device *hdev, u32 flags, u64 event_mask)
1905 {
1906 	struct hl_ctx *ctx = NULL;
1907 
1908 	/* F/W reset cannot be postponed */
1909 	if (flags & HL_DRV_RESET_BYPASS_REQ_TO_FW)
1910 		goto device_reset;
1911 
1912 	/* Device release watchdog is relevant only if user exists and gets a reset notification */
1913 	if (!(event_mask & HL_NOTIFIER_EVENT_DEVICE_RESET)) {
1914 		dev_err(hdev->dev, "Resetting device without a reset indication to user\n");
1915 		goto device_reset;
1916 	}
1917 
1918 	ctx = hl_get_compute_ctx(hdev);
1919 	if (!ctx || !ctx->hpriv->notifier_event.eventfd)
1920 		goto device_reset;
1921 
1922 	/* Schedule the device release watchdog work unless reset is already in progress or if the
1923 	 * work is already scheduled.
1924 	 */
1925 	spin_lock(&hdev->reset_info.lock);
1926 	if (hdev->reset_info.in_reset) {
1927 		spin_unlock(&hdev->reset_info.lock);
1928 		goto device_reset;
1929 	}
1930 
1931 	if (hdev->reset_info.watchdog_active)
1932 		goto out;
1933 
1934 	hdev->device_release_watchdog_work.flags = flags;
1935 	dev_dbg(hdev->dev, "Device is going to be hard-reset in %u sec unless being released\n",
1936 		hdev->device_release_watchdog_timeout_sec);
1937 	schedule_delayed_work(&hdev->device_release_watchdog_work.reset_work,
1938 				msecs_to_jiffies(hdev->device_release_watchdog_timeout_sec * 1000));
1939 	hdev->reset_info.watchdog_active = 1;
1940 out:
1941 	spin_unlock(&hdev->reset_info.lock);
1942 
1943 	hl_notifier_event_send_all(hdev, event_mask);
1944 
1945 	hl_ctx_put(ctx);
1946 
1947 	hl_abort_waiting_for_completions(hdev);
1948 
1949 	return 0;
1950 
1951 device_reset:
1952 	if (event_mask)
1953 		hl_notifier_event_send_all(hdev, event_mask);
1954 	if (ctx)
1955 		hl_ctx_put(ctx);
1956 
1957 	return hl_device_reset(hdev, flags);
1958 }
1959 
hl_notifier_event_send(struct hl_notifier_event * notifier_event,u64 event_mask)1960 static void hl_notifier_event_send(struct hl_notifier_event *notifier_event, u64 event_mask)
1961 {
1962 	mutex_lock(&notifier_event->lock);
1963 	notifier_event->events_mask |= event_mask;
1964 
1965 	if (notifier_event->eventfd)
1966 		eventfd_signal(notifier_event->eventfd, 1);
1967 
1968 	mutex_unlock(&notifier_event->lock);
1969 }
1970 
1971 /*
1972  * hl_notifier_event_send_all - notify all user processes via eventfd
1973  *
1974  * @hdev: pointer to habanalabs device structure
1975  * @event_mask: the occurred event/s
1976  * Returns 0 for success or an error on failure.
1977  */
hl_notifier_event_send_all(struct hl_device * hdev,u64 event_mask)1978 void hl_notifier_event_send_all(struct hl_device *hdev, u64 event_mask)
1979 {
1980 	struct hl_fpriv	*hpriv;
1981 
1982 	if (!event_mask) {
1983 		dev_warn(hdev->dev, "Skip sending zero event");
1984 		return;
1985 	}
1986 
1987 	mutex_lock(&hdev->fpriv_list_lock);
1988 
1989 	list_for_each_entry(hpriv, &hdev->fpriv_list, dev_node)
1990 		hl_notifier_event_send(&hpriv->notifier_event, event_mask);
1991 
1992 	mutex_unlock(&hdev->fpriv_list_lock);
1993 
1994 	/* control device */
1995 	mutex_lock(&hdev->fpriv_ctrl_list_lock);
1996 
1997 	list_for_each_entry(hpriv, &hdev->fpriv_ctrl_list, dev_node)
1998 		hl_notifier_event_send(&hpriv->notifier_event, event_mask);
1999 
2000 	mutex_unlock(&hdev->fpriv_ctrl_list_lock);
2001 }
2002 
create_cdev(struct hl_device * hdev)2003 static int create_cdev(struct hl_device *hdev)
2004 {
2005 	char *name;
2006 	int rc;
2007 
2008 	hdev->cdev_idx = hdev->id / 2;
2009 
2010 	name = kasprintf(GFP_KERNEL, "hl%d", hdev->cdev_idx);
2011 	if (!name) {
2012 		rc = -ENOMEM;
2013 		goto out_err;
2014 	}
2015 
2016 	/* Initialize cdev and device structures */
2017 	rc = device_init_cdev(hdev, hdev->hclass, hdev->id, &hl_ops, name,
2018 				&hdev->cdev, &hdev->dev);
2019 
2020 	kfree(name);
2021 
2022 	if (rc)
2023 		goto out_err;
2024 
2025 	name = kasprintf(GFP_KERNEL, "hl_controlD%d", hdev->cdev_idx);
2026 	if (!name) {
2027 		rc = -ENOMEM;
2028 		goto free_dev;
2029 	}
2030 
2031 	/* Initialize cdev and device structures for control device */
2032 	rc = device_init_cdev(hdev, hdev->hclass, hdev->id_control, &hl_ctrl_ops,
2033 				name, &hdev->cdev_ctrl, &hdev->dev_ctrl);
2034 
2035 	kfree(name);
2036 
2037 	if (rc)
2038 		goto free_dev;
2039 
2040 	return 0;
2041 
2042 free_dev:
2043 	put_device(hdev->dev);
2044 out_err:
2045 	return rc;
2046 }
2047 
2048 /*
2049  * hl_device_init - main initialization function for habanalabs device
2050  *
2051  * @hdev: pointer to habanalabs device structure
2052  *
2053  * Allocate an id for the device, do early initialization and then call the
2054  * ASIC specific initialization functions. Finally, create the cdev and the
2055  * Linux device to expose it to the user
2056  */
hl_device_init(struct hl_device * hdev)2057 int hl_device_init(struct hl_device *hdev)
2058 {
2059 	int i, rc, cq_cnt, user_interrupt_cnt, cq_ready_cnt;
2060 	bool expose_interfaces_on_err = false;
2061 
2062 	rc = create_cdev(hdev);
2063 	if (rc)
2064 		goto out_disabled;
2065 
2066 	/* Initialize ASIC function pointers and perform early init */
2067 	rc = device_early_init(hdev);
2068 	if (rc)
2069 		goto free_dev;
2070 
2071 	user_interrupt_cnt = hdev->asic_prop.user_dec_intr_count +
2072 				hdev->asic_prop.user_interrupt_count;
2073 
2074 	if (user_interrupt_cnt) {
2075 		hdev->user_interrupt = kcalloc(user_interrupt_cnt, sizeof(*hdev->user_interrupt),
2076 						GFP_KERNEL);
2077 		if (!hdev->user_interrupt) {
2078 			rc = -ENOMEM;
2079 			goto early_fini;
2080 		}
2081 	}
2082 
2083 	/*
2084 	 * Start calling ASIC initialization. First S/W then H/W and finally
2085 	 * late init
2086 	 */
2087 	rc = hdev->asic_funcs->sw_init(hdev);
2088 	if (rc)
2089 		goto free_usr_intr_mem;
2090 
2091 
2092 	/* initialize completion structure for multi CS wait */
2093 	hl_multi_cs_completion_init(hdev);
2094 
2095 	/*
2096 	 * Initialize the H/W queues. Must be done before hw_init, because
2097 	 * there the addresses of the kernel queue are being written to the
2098 	 * registers of the device
2099 	 */
2100 	rc = hl_hw_queues_create(hdev);
2101 	if (rc) {
2102 		dev_err(hdev->dev, "failed to initialize kernel queues\n");
2103 		goto sw_fini;
2104 	}
2105 
2106 	cq_cnt = hdev->asic_prop.completion_queues_count;
2107 
2108 	/*
2109 	 * Initialize the completion queues. Must be done before hw_init,
2110 	 * because there the addresses of the completion queues are being
2111 	 * passed as arguments to request_irq
2112 	 */
2113 	if (cq_cnt) {
2114 		hdev->completion_queue = kcalloc(cq_cnt,
2115 				sizeof(*hdev->completion_queue),
2116 				GFP_KERNEL);
2117 
2118 		if (!hdev->completion_queue) {
2119 			dev_err(hdev->dev,
2120 				"failed to allocate completion queues\n");
2121 			rc = -ENOMEM;
2122 			goto hw_queues_destroy;
2123 		}
2124 	}
2125 
2126 	for (i = 0, cq_ready_cnt = 0 ; i < cq_cnt ; i++, cq_ready_cnt++) {
2127 		rc = hl_cq_init(hdev, &hdev->completion_queue[i],
2128 				hdev->asic_funcs->get_queue_id_for_cq(hdev, i));
2129 		if (rc) {
2130 			dev_err(hdev->dev,
2131 				"failed to initialize completion queue\n");
2132 			goto cq_fini;
2133 		}
2134 		hdev->completion_queue[i].cq_idx = i;
2135 	}
2136 
2137 	hdev->shadow_cs_queue = kcalloc(hdev->asic_prop.max_pending_cs,
2138 					sizeof(struct hl_cs *), GFP_KERNEL);
2139 	if (!hdev->shadow_cs_queue) {
2140 		rc = -ENOMEM;
2141 		goto cq_fini;
2142 	}
2143 
2144 	/*
2145 	 * Initialize the event queue. Must be done before hw_init,
2146 	 * because there the address of the event queue is being
2147 	 * passed as argument to request_irq
2148 	 */
2149 	rc = hl_eq_init(hdev, &hdev->event_queue);
2150 	if (rc) {
2151 		dev_err(hdev->dev, "failed to initialize event queue\n");
2152 		goto free_shadow_cs_queue;
2153 	}
2154 
2155 	/* MMU S/W must be initialized before kernel context is created */
2156 	rc = hl_mmu_init(hdev);
2157 	if (rc) {
2158 		dev_err(hdev->dev, "Failed to initialize MMU S/W structures\n");
2159 		goto eq_fini;
2160 	}
2161 
2162 	/* Allocate the kernel context */
2163 	hdev->kernel_ctx = kzalloc(sizeof(*hdev->kernel_ctx), GFP_KERNEL);
2164 	if (!hdev->kernel_ctx) {
2165 		rc = -ENOMEM;
2166 		goto mmu_fini;
2167 	}
2168 
2169 	hdev->is_compute_ctx_active = false;
2170 
2171 	hdev->asic_funcs->state_dump_init(hdev);
2172 
2173 	hdev->device_release_watchdog_timeout_sec = HL_DEVICE_RELEASE_WATCHDOG_TIMEOUT_SEC;
2174 
2175 	hdev->memory_scrub_val = MEM_SCRUB_DEFAULT_VAL;
2176 
2177 	rc = hl_debugfs_device_init(hdev);
2178 	if (rc) {
2179 		dev_err(hdev->dev, "failed to initialize debugfs entry structure\n");
2180 		kfree(hdev->kernel_ctx);
2181 		goto mmu_fini;
2182 	}
2183 
2184 	/* The debugfs entry structure is accessed in hl_ctx_init(), so it must be called after
2185 	 * hl_debugfs_device_init().
2186 	 */
2187 	rc = hl_ctx_init(hdev, hdev->kernel_ctx, true);
2188 	if (rc) {
2189 		dev_err(hdev->dev, "failed to initialize kernel context\n");
2190 		kfree(hdev->kernel_ctx);
2191 		goto debugfs_device_fini;
2192 	}
2193 
2194 	rc = hl_cb_pool_init(hdev);
2195 	if (rc) {
2196 		dev_err(hdev->dev, "failed to initialize CB pool\n");
2197 		goto release_ctx;
2198 	}
2199 
2200 	rc = hl_dec_init(hdev);
2201 	if (rc) {
2202 		dev_err(hdev->dev, "Failed to initialize the decoder module\n");
2203 		goto cb_pool_fini;
2204 	}
2205 
2206 	/*
2207 	 * From this point, override rc (=0) in case of an error to allow debugging
2208 	 * (by adding char devices and creating sysfs/debugfs files as part of the error flow).
2209 	 */
2210 	expose_interfaces_on_err = true;
2211 
2212 	/* Device is now enabled as part of the initialization requires
2213 	 * communication with the device firmware to get information that
2214 	 * is required for the initialization itself
2215 	 */
2216 	hdev->disabled = false;
2217 
2218 	rc = hdev->asic_funcs->hw_init(hdev);
2219 	if (rc) {
2220 		dev_err(hdev->dev, "failed to initialize the H/W\n");
2221 		rc = 0;
2222 		goto out_disabled;
2223 	}
2224 
2225 	/* Check that the communication with the device is working */
2226 	rc = hdev->asic_funcs->test_queues(hdev);
2227 	if (rc) {
2228 		dev_err(hdev->dev, "Failed to detect if device is alive\n");
2229 		rc = 0;
2230 		goto out_disabled;
2231 	}
2232 
2233 	rc = device_late_init(hdev);
2234 	if (rc) {
2235 		dev_err(hdev->dev, "Failed late initialization\n");
2236 		rc = 0;
2237 		goto out_disabled;
2238 	}
2239 
2240 	dev_info(hdev->dev, "Found %s device with %lluGB DRAM\n",
2241 		hdev->asic_name,
2242 		hdev->asic_prop.dram_size / SZ_1G);
2243 
2244 	rc = hl_vm_init(hdev);
2245 	if (rc) {
2246 		dev_err(hdev->dev, "Failed to initialize memory module\n");
2247 		rc = 0;
2248 		goto out_disabled;
2249 	}
2250 
2251 	/*
2252 	 * Expose devices and sysfs/debugfs files to user.
2253 	 * From here there is no need to expose them in case of an error.
2254 	 */
2255 	expose_interfaces_on_err = false;
2256 	rc = cdev_sysfs_debugfs_add(hdev);
2257 	if (rc) {
2258 		dev_err(hdev->dev, "Failed to add char devices and sysfs/debugfs files\n");
2259 		rc = 0;
2260 		goto out_disabled;
2261 	}
2262 
2263 	/* Need to call this again because the max power might change,
2264 	 * depending on card type for certain ASICs
2265 	 */
2266 	if (hdev->asic_prop.set_max_power_on_device_init &&
2267 			!hdev->asic_prop.fw_security_enabled)
2268 		hl_fw_set_max_power(hdev);
2269 
2270 	/*
2271 	 * hl_hwmon_init() must be called after device_late_init(), because only
2272 	 * there we get the information from the device about which
2273 	 * hwmon-related sensors the device supports.
2274 	 * Furthermore, it must be done after adding the device to the system.
2275 	 */
2276 	rc = hl_hwmon_init(hdev);
2277 	if (rc) {
2278 		dev_err(hdev->dev, "Failed to initialize hwmon\n");
2279 		rc = 0;
2280 		goto out_disabled;
2281 	}
2282 
2283 	dev_notice(hdev->dev,
2284 		"Successfully added device %s to habanalabs driver\n",
2285 		dev_name(&(hdev)->pdev->dev));
2286 
2287 	hdev->init_done = true;
2288 
2289 	/* After initialization is done, we are ready to receive events from
2290 	 * the F/W. We can't do it before because we will ignore events and if
2291 	 * those events are fatal, we won't know about it and the device will
2292 	 * be operational although it shouldn't be
2293 	 */
2294 	hdev->asic_funcs->enable_events_from_fw(hdev);
2295 
2296 	return 0;
2297 
2298 cb_pool_fini:
2299 	hl_cb_pool_fini(hdev);
2300 release_ctx:
2301 	if (hl_ctx_put(hdev->kernel_ctx) != 1)
2302 		dev_err(hdev->dev,
2303 			"kernel ctx is still alive on initialization failure\n");
2304 debugfs_device_fini:
2305 	hl_debugfs_device_fini(hdev);
2306 mmu_fini:
2307 	hl_mmu_fini(hdev);
2308 eq_fini:
2309 	hl_eq_fini(hdev, &hdev->event_queue);
2310 free_shadow_cs_queue:
2311 	kfree(hdev->shadow_cs_queue);
2312 cq_fini:
2313 	for (i = 0 ; i < cq_ready_cnt ; i++)
2314 		hl_cq_fini(hdev, &hdev->completion_queue[i]);
2315 	kfree(hdev->completion_queue);
2316 hw_queues_destroy:
2317 	hl_hw_queues_destroy(hdev);
2318 sw_fini:
2319 	hdev->asic_funcs->sw_fini(hdev);
2320 free_usr_intr_mem:
2321 	kfree(hdev->user_interrupt);
2322 early_fini:
2323 	device_early_fini(hdev);
2324 free_dev:
2325 	put_device(hdev->dev_ctrl);
2326 	put_device(hdev->dev);
2327 out_disabled:
2328 	hdev->disabled = true;
2329 	if (expose_interfaces_on_err)
2330 		cdev_sysfs_debugfs_add(hdev);
2331 	dev_err(&hdev->pdev->dev,
2332 		"Failed to initialize hl%d. Device %s is NOT usable !\n",
2333 		hdev->cdev_idx, dev_name(&hdev->pdev->dev));
2334 
2335 	return rc;
2336 }
2337 
2338 /*
2339  * hl_device_fini - main tear-down function for habanalabs device
2340  *
2341  * @hdev: pointer to habanalabs device structure
2342  *
2343  * Destroy the device, call ASIC fini functions and release the id
2344  */
hl_device_fini(struct hl_device * hdev)2345 void hl_device_fini(struct hl_device *hdev)
2346 {
2347 	bool device_in_reset;
2348 	ktime_t timeout;
2349 	u64 reset_sec;
2350 	int i, rc;
2351 
2352 	dev_info(hdev->dev, "Removing device\n");
2353 
2354 	hdev->device_fini_pending = 1;
2355 	flush_delayed_work(&hdev->device_reset_work.reset_work);
2356 
2357 	if (hdev->pldm)
2358 		reset_sec = HL_PLDM_HARD_RESET_MAX_TIMEOUT;
2359 	else
2360 		reset_sec = HL_HARD_RESET_MAX_TIMEOUT;
2361 
2362 	/*
2363 	 * This function is competing with the reset function, so try to
2364 	 * take the reset atomic and if we are already in middle of reset,
2365 	 * wait until reset function is finished. Reset function is designed
2366 	 * to always finish. However, in Gaudi, because of all the network
2367 	 * ports, the hard reset could take between 10-30 seconds
2368 	 */
2369 
2370 	timeout = ktime_add_us(ktime_get(), reset_sec * 1000 * 1000);
2371 
2372 	spin_lock(&hdev->reset_info.lock);
2373 	device_in_reset = !!hdev->reset_info.in_reset;
2374 	if (!device_in_reset)
2375 		hdev->reset_info.in_reset = 1;
2376 	spin_unlock(&hdev->reset_info.lock);
2377 
2378 	while (device_in_reset) {
2379 		usleep_range(50, 200);
2380 
2381 		spin_lock(&hdev->reset_info.lock);
2382 		device_in_reset = !!hdev->reset_info.in_reset;
2383 		if (!device_in_reset)
2384 			hdev->reset_info.in_reset = 1;
2385 		spin_unlock(&hdev->reset_info.lock);
2386 
2387 		if (ktime_compare(ktime_get(), timeout) > 0) {
2388 			dev_crit(hdev->dev,
2389 				"%s Failed to remove device because reset function did not finish\n",
2390 				dev_name(&(hdev)->pdev->dev));
2391 			return;
2392 		}
2393 	}
2394 
2395 	cancel_delayed_work_sync(&hdev->device_release_watchdog_work.reset_work);
2396 
2397 	/* Disable PCI access from device F/W so it won't send us additional
2398 	 * interrupts. We disable MSI/MSI-X at the halt_engines function and we
2399 	 * can't have the F/W sending us interrupts after that. We need to
2400 	 * disable the access here because if the device is marked disable, the
2401 	 * message won't be send. Also, in case of heartbeat, the device CPU is
2402 	 * marked as disable so this message won't be sent
2403 	 */
2404 	hl_fw_send_pci_access_msg(hdev,	CPUCP_PACKET_DISABLE_PCI_ACCESS, 0x0);
2405 
2406 	/* Mark device as disabled */
2407 	hdev->disabled = true;
2408 
2409 	take_release_locks(hdev);
2410 
2411 	hdev->reset_info.hard_reset_pending = true;
2412 
2413 	hl_hwmon_fini(hdev);
2414 
2415 	cleanup_resources(hdev, true, false, false);
2416 
2417 	/* Kill processes here after CS rollback. This is because the process
2418 	 * can't really exit until all its CSs are done, which is what we
2419 	 * do in cs rollback
2420 	 */
2421 	dev_info(hdev->dev,
2422 		"Waiting for all processes to exit (timeout of %u seconds)",
2423 		HL_WAIT_PROCESS_KILL_ON_DEVICE_FINI);
2424 
2425 	hdev->process_kill_trial_cnt = 0;
2426 	rc = device_kill_open_processes(hdev, HL_WAIT_PROCESS_KILL_ON_DEVICE_FINI, false);
2427 	if (rc) {
2428 		dev_crit(hdev->dev, "Failed to kill all open processes\n");
2429 		device_disable_open_processes(hdev, false);
2430 	}
2431 
2432 	hdev->process_kill_trial_cnt = 0;
2433 	rc = device_kill_open_processes(hdev, 0, true);
2434 	if (rc) {
2435 		dev_crit(hdev->dev, "Failed to kill all control device open processes\n");
2436 		device_disable_open_processes(hdev, true);
2437 	}
2438 
2439 	hl_cb_pool_fini(hdev);
2440 
2441 	/* Reset the H/W. It will be in idle state after this returns */
2442 	rc = hdev->asic_funcs->hw_fini(hdev, true, false);
2443 	if (rc)
2444 		dev_err(hdev->dev, "hw_fini failed in device fini while removing device %d\n", rc);
2445 
2446 	hdev->fw_loader.fw_comp_loaded = FW_TYPE_NONE;
2447 
2448 	/* Release kernel context */
2449 	if ((hdev->kernel_ctx) && (hl_ctx_put(hdev->kernel_ctx) != 1))
2450 		dev_err(hdev->dev, "kernel ctx is still alive\n");
2451 
2452 	hl_dec_fini(hdev);
2453 
2454 	hl_vm_fini(hdev);
2455 
2456 	hl_mmu_fini(hdev);
2457 
2458 	vfree(hdev->captured_err_info.page_fault_info.user_mappings);
2459 
2460 	hl_eq_fini(hdev, &hdev->event_queue);
2461 
2462 	kfree(hdev->shadow_cs_queue);
2463 
2464 	for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++)
2465 		hl_cq_fini(hdev, &hdev->completion_queue[i]);
2466 	kfree(hdev->completion_queue);
2467 	kfree(hdev->user_interrupt);
2468 
2469 	hl_hw_queues_destroy(hdev);
2470 
2471 	/* Call ASIC S/W finalize function */
2472 	hdev->asic_funcs->sw_fini(hdev);
2473 
2474 	device_early_fini(hdev);
2475 
2476 	/* Hide devices and sysfs/debugfs files from user */
2477 	cdev_sysfs_debugfs_remove(hdev);
2478 
2479 	hl_debugfs_device_fini(hdev);
2480 
2481 	pr_info("removed device successfully\n");
2482 }
2483 
2484 /*
2485  * MMIO register access helper functions.
2486  */
2487 
2488 /*
2489  * hl_rreg - Read an MMIO register
2490  *
2491  * @hdev: pointer to habanalabs device structure
2492  * @reg: MMIO register offset (in bytes)
2493  *
2494  * Returns the value of the MMIO register we are asked to read
2495  *
2496  */
hl_rreg(struct hl_device * hdev,u32 reg)2497 inline u32 hl_rreg(struct hl_device *hdev, u32 reg)
2498 {
2499 	u32 val = readl(hdev->rmmio + reg);
2500 
2501 	if (unlikely(trace_habanalabs_rreg32_enabled()))
2502 		trace_habanalabs_rreg32(hdev->dev, reg, val);
2503 
2504 	return val;
2505 }
2506 
2507 /*
2508  * hl_wreg - Write to an MMIO register
2509  *
2510  * @hdev: pointer to habanalabs device structure
2511  * @reg: MMIO register offset (in bytes)
2512  * @val: 32-bit value
2513  *
2514  * Writes the 32-bit value into the MMIO register
2515  *
2516  */
hl_wreg(struct hl_device * hdev,u32 reg,u32 val)2517 inline void hl_wreg(struct hl_device *hdev, u32 reg, u32 val)
2518 {
2519 	if (unlikely(trace_habanalabs_wreg32_enabled()))
2520 		trace_habanalabs_wreg32(hdev->dev, reg, val);
2521 
2522 	writel(val, hdev->rmmio + reg);
2523 }
2524 
hl_capture_razwi(struct hl_device * hdev,u64 addr,u16 * engine_id,u16 num_of_engines,u8 flags)2525 void hl_capture_razwi(struct hl_device *hdev, u64 addr, u16 *engine_id, u16 num_of_engines,
2526 			u8 flags)
2527 {
2528 	struct razwi_info *razwi_info = &hdev->captured_err_info.razwi_info;
2529 
2530 	if (num_of_engines > HL_RAZWI_MAX_NUM_OF_ENGINES_PER_RTR) {
2531 		dev_err(hdev->dev,
2532 				"Number of possible razwi initiators (%u) exceeded limit (%u)\n",
2533 				num_of_engines, HL_RAZWI_MAX_NUM_OF_ENGINES_PER_RTR);
2534 		return;
2535 	}
2536 
2537 	/* In case it's the first razwi since the device was opened, capture its parameters */
2538 	if (atomic_cmpxchg(&hdev->captured_err_info.razwi_info.razwi_detected, 0, 1))
2539 		return;
2540 
2541 	razwi_info->razwi.timestamp = ktime_to_ns(ktime_get());
2542 	razwi_info->razwi.addr = addr;
2543 	razwi_info->razwi.num_of_possible_engines = num_of_engines;
2544 	memcpy(&razwi_info->razwi.engine_id[0], &engine_id[0],
2545 			num_of_engines * sizeof(u16));
2546 	razwi_info->razwi.flags = flags;
2547 
2548 	razwi_info->razwi_info_available = true;
2549 }
2550 
hl_handle_razwi(struct hl_device * hdev,u64 addr,u16 * engine_id,u16 num_of_engines,u8 flags,u64 * event_mask)2551 void hl_handle_razwi(struct hl_device *hdev, u64 addr, u16 *engine_id, u16 num_of_engines,
2552 			u8 flags, u64 *event_mask)
2553 {
2554 	hl_capture_razwi(hdev, addr, engine_id, num_of_engines, flags);
2555 
2556 	if (event_mask)
2557 		*event_mask |= HL_NOTIFIER_EVENT_RAZWI;
2558 }
2559 
hl_capture_user_mappings(struct hl_device * hdev,bool is_pmmu)2560 static void hl_capture_user_mappings(struct hl_device *hdev, bool is_pmmu)
2561 {
2562 	struct page_fault_info *pgf_info = &hdev->captured_err_info.page_fault_info;
2563 	struct hl_vm_phys_pg_pack *phys_pg_pack = NULL;
2564 	struct hl_vm_hash_node *hnode;
2565 	struct hl_userptr *userptr;
2566 	enum vm_type *vm_type;
2567 	struct hl_ctx *ctx;
2568 	u32 map_idx = 0;
2569 	int i;
2570 
2571 	/* Reset previous session count*/
2572 	pgf_info->num_of_user_mappings = 0;
2573 
2574 	ctx = hl_get_compute_ctx(hdev);
2575 	if (!ctx) {
2576 		dev_err(hdev->dev, "Can't get user context for user mappings\n");
2577 		return;
2578 	}
2579 
2580 	mutex_lock(&ctx->mem_hash_lock);
2581 	hash_for_each(ctx->mem_hash, i, hnode, node) {
2582 		vm_type = hnode->ptr;
2583 		if (((*vm_type == VM_TYPE_USERPTR) && is_pmmu) ||
2584 				((*vm_type == VM_TYPE_PHYS_PACK) && !is_pmmu))
2585 			pgf_info->num_of_user_mappings++;
2586 
2587 	}
2588 
2589 	if (!pgf_info->num_of_user_mappings)
2590 		goto finish;
2591 
2592 	/* In case we already allocated in previous session, need to release it before
2593 	 * allocating new buffer.
2594 	 */
2595 	vfree(pgf_info->user_mappings);
2596 	pgf_info->user_mappings =
2597 			vzalloc(pgf_info->num_of_user_mappings * sizeof(struct hl_user_mapping));
2598 	if (!pgf_info->user_mappings) {
2599 		pgf_info->num_of_user_mappings = 0;
2600 		goto finish;
2601 	}
2602 
2603 	hash_for_each(ctx->mem_hash, i, hnode, node) {
2604 		vm_type = hnode->ptr;
2605 		if ((*vm_type == VM_TYPE_USERPTR) && (is_pmmu)) {
2606 			userptr = hnode->ptr;
2607 			pgf_info->user_mappings[map_idx].dev_va = hnode->vaddr;
2608 			pgf_info->user_mappings[map_idx].size = userptr->size;
2609 			map_idx++;
2610 		} else if ((*vm_type == VM_TYPE_PHYS_PACK) && (!is_pmmu)) {
2611 			phys_pg_pack = hnode->ptr;
2612 			pgf_info->user_mappings[map_idx].dev_va = hnode->vaddr;
2613 			pgf_info->user_mappings[map_idx].size = phys_pg_pack->total_size;
2614 			map_idx++;
2615 		}
2616 	}
2617 finish:
2618 	mutex_unlock(&ctx->mem_hash_lock);
2619 	hl_ctx_put(ctx);
2620 }
2621 
hl_capture_page_fault(struct hl_device * hdev,u64 addr,u16 eng_id,bool is_pmmu)2622 void hl_capture_page_fault(struct hl_device *hdev, u64 addr, u16 eng_id, bool is_pmmu)
2623 {
2624 	struct page_fault_info *pgf_info = &hdev->captured_err_info.page_fault_info;
2625 
2626 	/* Capture only the first page fault */
2627 	if (atomic_cmpxchg(&pgf_info->page_fault_detected, 0, 1))
2628 		return;
2629 
2630 	pgf_info->page_fault.timestamp = ktime_to_ns(ktime_get());
2631 	pgf_info->page_fault.addr = addr;
2632 	pgf_info->page_fault.engine_id = eng_id;
2633 	hl_capture_user_mappings(hdev, is_pmmu);
2634 
2635 	pgf_info->page_fault_info_available = true;
2636 }
2637 
hl_handle_page_fault(struct hl_device * hdev,u64 addr,u16 eng_id,bool is_pmmu,u64 * event_mask)2638 void hl_handle_page_fault(struct hl_device *hdev, u64 addr, u16 eng_id, bool is_pmmu,
2639 				u64 *event_mask)
2640 {
2641 	hl_capture_page_fault(hdev, addr, eng_id, is_pmmu);
2642 
2643 	if (event_mask)
2644 		*event_mask |=  HL_NOTIFIER_EVENT_PAGE_FAULT;
2645 }
2646 
hl_capture_hw_err(struct hl_device * hdev,u16 event_id)2647 static void hl_capture_hw_err(struct hl_device *hdev, u16 event_id)
2648 {
2649 	struct hw_err_info *info = &hdev->captured_err_info.hw_err;
2650 
2651 	/* Capture only the first HW err */
2652 	if (atomic_cmpxchg(&info->event_detected, 0, 1))
2653 		return;
2654 
2655 	info->event.timestamp = ktime_to_ns(ktime_get());
2656 	info->event.event_id = event_id;
2657 
2658 	info->event_info_available = true;
2659 }
2660 
hl_handle_critical_hw_err(struct hl_device * hdev,u16 event_id,u64 * event_mask)2661 void hl_handle_critical_hw_err(struct hl_device *hdev, u16 event_id, u64 *event_mask)
2662 {
2663 	hl_capture_hw_err(hdev, event_id);
2664 
2665 	if (event_mask)
2666 		*event_mask |= HL_NOTIFIER_EVENT_CRITICL_HW_ERR;
2667 }
2668 
hl_capture_fw_err(struct hl_device * hdev,struct hl_info_fw_err_info * fw_info)2669 static void hl_capture_fw_err(struct hl_device *hdev, struct hl_info_fw_err_info *fw_info)
2670 {
2671 	struct fw_err_info *info = &hdev->captured_err_info.fw_err;
2672 
2673 	/* Capture only the first FW error */
2674 	if (atomic_cmpxchg(&info->event_detected, 0, 1))
2675 		return;
2676 
2677 	info->event.timestamp = ktime_to_ns(ktime_get());
2678 	info->event.err_type = fw_info->err_type;
2679 	if (fw_info->err_type == HL_INFO_FW_REPORTED_ERR)
2680 		info->event.event_id = fw_info->event_id;
2681 
2682 	info->event_info_available = true;
2683 }
2684 
hl_handle_fw_err(struct hl_device * hdev,struct hl_info_fw_err_info * info)2685 void hl_handle_fw_err(struct hl_device *hdev, struct hl_info_fw_err_info *info)
2686 {
2687 	hl_capture_fw_err(hdev, info);
2688 
2689 	if (info->event_mask)
2690 		*info->event_mask |= HL_NOTIFIER_EVENT_CRITICL_FW_ERR;
2691 }
2692 
hl_enable_err_info_capture(struct hl_error_info * captured_err_info)2693 void hl_enable_err_info_capture(struct hl_error_info *captured_err_info)
2694 {
2695 	vfree(captured_err_info->page_fault_info.user_mappings);
2696 	memset(captured_err_info, 0, sizeof(struct hl_error_info));
2697 	atomic_set(&captured_err_info->cs_timeout.write_enable, 1);
2698 	captured_err_info->undef_opcode.write_enable = true;
2699 }
2700