1 /*
2 * Copyright 2017 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 */
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 #include <linux/fb.h>
26 #include "linux/delay.h"
27 #include <linux/types.h>
28 #include <linux/pci.h>
29
30 #include "smumgr.h"
31 #include "pp_debug.h"
32 #include "ci_smumgr.h"
33 #include "ppsmc.h"
34 #include "smu7_hwmgr.h"
35 #include "hardwaremanager.h"
36 #include "ppatomctrl.h"
37 #include "cgs_common.h"
38 #include "atombios.h"
39 #include "pppcielanes.h"
40 #include "smu7_smumgr.h"
41
42 #include "smu/smu_7_0_1_d.h"
43 #include "smu/smu_7_0_1_sh_mask.h"
44
45 #include "dce/dce_8_0_d.h"
46 #include "dce/dce_8_0_sh_mask.h"
47
48 #include "bif/bif_4_1_d.h"
49 #include "bif/bif_4_1_sh_mask.h"
50
51 #include "gca/gfx_7_2_d.h"
52 #include "gca/gfx_7_2_sh_mask.h"
53
54 #include "gmc/gmc_7_1_d.h"
55 #include "gmc/gmc_7_1_sh_mask.h"
56
57 #include "processpptables.h"
58
59 #define MC_CG_ARB_FREQ_F0 0x0a
60 #define MC_CG_ARB_FREQ_F1 0x0b
61 #define MC_CG_ARB_FREQ_F2 0x0c
62 #define MC_CG_ARB_FREQ_F3 0x0d
63
64 #define SMC_RAM_END 0x40000
65
66 #define CISLAND_MINIMUM_ENGINE_CLOCK 800
67 #define CISLAND_MAX_DEEPSLEEP_DIVIDER_ID 5
68
69 static const struct ci_pt_defaults defaults_hawaii_xt = {
70 1, 0xF, 0xFD, 0x19, 5, 0x14, 0, 0xB0000,
71 { 0x2E, 0x00, 0x00, 0x88, 0x00, 0x00, 0x72, 0x60, 0x51, 0xA7, 0x79, 0x6B, 0x90, 0xBD, 0x79 },
72 { 0x217, 0x217, 0x217, 0x242, 0x242, 0x242, 0x269, 0x269, 0x269, 0x2A1, 0x2A1, 0x2A1, 0x2C9, 0x2C9, 0x2C9 }
73 };
74
75 static const struct ci_pt_defaults defaults_hawaii_pro = {
76 1, 0xF, 0xFD, 0x19, 5, 0x14, 0, 0x65062,
77 { 0x2E, 0x00, 0x00, 0x88, 0x00, 0x00, 0x72, 0x60, 0x51, 0xA7, 0x79, 0x6B, 0x90, 0xBD, 0x79 },
78 { 0x217, 0x217, 0x217, 0x242, 0x242, 0x242, 0x269, 0x269, 0x269, 0x2A1, 0x2A1, 0x2A1, 0x2C9, 0x2C9, 0x2C9 }
79 };
80
81 static const struct ci_pt_defaults defaults_bonaire_xt = {
82 1, 0xF, 0xFD, 0x19, 5, 45, 0, 0xB0000,
83 { 0x79, 0x253, 0x25D, 0xAE, 0x72, 0x80, 0x83, 0x86, 0x6F, 0xC8, 0xC9, 0xC9, 0x2F, 0x4D, 0x61 },
84 { 0x17C, 0x172, 0x180, 0x1BC, 0x1B3, 0x1BD, 0x206, 0x200, 0x203, 0x25D, 0x25A, 0x255, 0x2C3, 0x2C5, 0x2B4 }
85 };
86
87
88 static const struct ci_pt_defaults defaults_saturn_xt = {
89 1, 0xF, 0xFD, 0x19, 5, 55, 0, 0x70000,
90 { 0x8C, 0x247, 0x249, 0xA6, 0x80, 0x81, 0x8B, 0x89, 0x86, 0xC9, 0xCA, 0xC9, 0x4D, 0x4D, 0x4D },
91 { 0x187, 0x187, 0x187, 0x1C7, 0x1C7, 0x1C7, 0x210, 0x210, 0x210, 0x266, 0x266, 0x266, 0x2C9, 0x2C9, 0x2C9 }
92 };
93
94
ci_set_smc_sram_address(struct pp_hwmgr * hwmgr,uint32_t smc_addr,uint32_t limit)95 static int ci_set_smc_sram_address(struct pp_hwmgr *hwmgr,
96 uint32_t smc_addr, uint32_t limit)
97 {
98 if ((0 != (3 & smc_addr))
99 || ((smc_addr + 3) >= limit)) {
100 pr_err("smc_addr invalid \n");
101 return -EINVAL;
102 }
103
104 cgs_write_register(hwmgr->device, mmSMC_IND_INDEX_0, smc_addr);
105 PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 0);
106 return 0;
107 }
108
ci_copy_bytes_to_smc(struct pp_hwmgr * hwmgr,uint32_t smc_start_address,const uint8_t * src,uint32_t byte_count,uint32_t limit)109 static int ci_copy_bytes_to_smc(struct pp_hwmgr *hwmgr, uint32_t smc_start_address,
110 const uint8_t *src, uint32_t byte_count, uint32_t limit)
111 {
112 int result;
113 uint32_t data = 0;
114 uint32_t original_data;
115 uint32_t addr = 0;
116 uint32_t extra_shift;
117
118 if ((3 & smc_start_address)
119 || ((smc_start_address + byte_count) >= limit)) {
120 pr_err("smc_start_address invalid \n");
121 return -EINVAL;
122 }
123
124 addr = smc_start_address;
125
126 while (byte_count >= 4) {
127 /* Bytes are written into the SMC address space with the MSB first. */
128 data = src[0] * 0x1000000 + src[1] * 0x10000 + src[2] * 0x100 + src[3];
129
130 result = ci_set_smc_sram_address(hwmgr, addr, limit);
131
132 if (0 != result)
133 return result;
134
135 cgs_write_register(hwmgr->device, mmSMC_IND_DATA_0, data);
136
137 src += 4;
138 byte_count -= 4;
139 addr += 4;
140 }
141
142 if (0 != byte_count) {
143
144 data = 0;
145
146 result = ci_set_smc_sram_address(hwmgr, addr, limit);
147
148 if (0 != result)
149 return result;
150
151
152 original_data = cgs_read_register(hwmgr->device, mmSMC_IND_DATA_0);
153
154 extra_shift = 8 * (4 - byte_count);
155
156 while (byte_count > 0) {
157 /* Bytes are written into the SMC addres space with the MSB first. */
158 data = (0x100 * data) + *src++;
159 byte_count--;
160 }
161
162 data <<= extra_shift;
163
164 data |= (original_data & ~((~0UL) << extra_shift));
165
166 result = ci_set_smc_sram_address(hwmgr, addr, limit);
167
168 if (0 != result)
169 return result;
170
171 cgs_write_register(hwmgr->device, mmSMC_IND_DATA_0, data);
172 }
173
174 return 0;
175 }
176
177
ci_program_jump_on_start(struct pp_hwmgr * hwmgr)178 static int ci_program_jump_on_start(struct pp_hwmgr *hwmgr)
179 {
180 static const unsigned char data[4] = { 0xE0, 0x00, 0x80, 0x40 };
181
182 ci_copy_bytes_to_smc(hwmgr, 0x0, data, 4, sizeof(data)+1);
183
184 return 0;
185 }
186
ci_is_smc_ram_running(struct pp_hwmgr * hwmgr)187 static bool ci_is_smc_ram_running(struct pp_hwmgr *hwmgr)
188 {
189 return ((0 == PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
190 CGS_IND_REG__SMC, SMC_SYSCON_CLOCK_CNTL_0, ck_disable))
191 && (0x20100 <= cgs_read_ind_register(hwmgr->device,
192 CGS_IND_REG__SMC, ixSMC_PC_C)));
193 }
194
ci_read_smc_sram_dword(struct pp_hwmgr * hwmgr,uint32_t smc_addr,uint32_t * value,uint32_t limit)195 static int ci_read_smc_sram_dword(struct pp_hwmgr *hwmgr, uint32_t smc_addr,
196 uint32_t *value, uint32_t limit)
197 {
198 int result;
199
200 result = ci_set_smc_sram_address(hwmgr, smc_addr, limit);
201
202 if (result)
203 return result;
204
205 *value = cgs_read_register(hwmgr->device, mmSMC_IND_DATA_0);
206 return 0;
207 }
208
ci_send_msg_to_smc(struct pp_hwmgr * hwmgr,uint16_t msg)209 static int ci_send_msg_to_smc(struct pp_hwmgr *hwmgr, uint16_t msg)
210 {
211 struct amdgpu_device *adev = hwmgr->adev;
212 int ret;
213
214 cgs_write_register(hwmgr->device, mmSMC_RESP_0, 0);
215 cgs_write_register(hwmgr->device, mmSMC_MESSAGE_0, msg);
216
217 PHM_WAIT_FIELD_UNEQUAL(hwmgr, SMC_RESP_0, SMC_RESP, 0);
218
219 ret = PHM_READ_FIELD(hwmgr->device, SMC_RESP_0, SMC_RESP);
220
221 if (ret != 1)
222 dev_info(adev->dev,
223 "failed to send message %x ret is %d\n", msg,ret);
224
225 return 0;
226 }
227
ci_send_msg_to_smc_with_parameter(struct pp_hwmgr * hwmgr,uint16_t msg,uint32_t parameter)228 static int ci_send_msg_to_smc_with_parameter(struct pp_hwmgr *hwmgr,
229 uint16_t msg, uint32_t parameter)
230 {
231 cgs_write_register(hwmgr->device, mmSMC_MSG_ARG_0, parameter);
232 return ci_send_msg_to_smc(hwmgr, msg);
233 }
234
ci_initialize_power_tune_defaults(struct pp_hwmgr * hwmgr)235 static void ci_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr)
236 {
237 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
238 struct amdgpu_device *adev = hwmgr->adev;
239 uint32_t dev_id;
240
241 dev_id = adev->pdev->device;
242
243 switch (dev_id) {
244 case 0x67BA:
245 case 0x67B1:
246 smu_data->power_tune_defaults = &defaults_hawaii_pro;
247 break;
248 case 0x67B8:
249 case 0x66B0:
250 smu_data->power_tune_defaults = &defaults_hawaii_xt;
251 break;
252 case 0x6640:
253 case 0x6641:
254 case 0x6646:
255 case 0x6647:
256 smu_data->power_tune_defaults = &defaults_saturn_xt;
257 break;
258 case 0x6649:
259 case 0x6650:
260 case 0x6651:
261 case 0x6658:
262 case 0x665C:
263 case 0x665D:
264 case 0x67A0:
265 case 0x67A1:
266 case 0x67A2:
267 case 0x67A8:
268 case 0x67A9:
269 case 0x67AA:
270 case 0x67B9:
271 case 0x67BE:
272 default:
273 smu_data->power_tune_defaults = &defaults_bonaire_xt;
274 break;
275 }
276 }
277
ci_get_dependency_volt_by_clk(struct pp_hwmgr * hwmgr,struct phm_clock_voltage_dependency_table * allowed_clock_voltage_table,uint32_t clock,uint32_t * vol)278 static int ci_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr,
279 struct phm_clock_voltage_dependency_table *allowed_clock_voltage_table,
280 uint32_t clock, uint32_t *vol)
281 {
282 uint32_t i = 0;
283
284 if (allowed_clock_voltage_table->count == 0)
285 return -EINVAL;
286
287 for (i = 0; i < allowed_clock_voltage_table->count; i++) {
288 if (allowed_clock_voltage_table->entries[i].clk >= clock) {
289 *vol = allowed_clock_voltage_table->entries[i].v;
290 return 0;
291 }
292 }
293
294 *vol = allowed_clock_voltage_table->entries[i - 1].v;
295 return 0;
296 }
297
ci_calculate_sclk_params(struct pp_hwmgr * hwmgr,uint32_t clock,struct SMU7_Discrete_GraphicsLevel * sclk)298 static int ci_calculate_sclk_params(struct pp_hwmgr *hwmgr,
299 uint32_t clock, struct SMU7_Discrete_GraphicsLevel *sclk)
300 {
301 const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
302 struct pp_atomctrl_clock_dividers_vi dividers;
303 uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL;
304 uint32_t spll_func_cntl_3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
305 uint32_t spll_func_cntl_4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
306 uint32_t cg_spll_spread_spectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
307 uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
308 uint32_t ref_clock;
309 uint32_t ref_divider;
310 uint32_t fbdiv;
311 int result;
312
313 /* get the engine clock dividers for this clock value */
314 result = atomctrl_get_engine_pll_dividers_vi(hwmgr, clock, ÷rs);
315
316 PP_ASSERT_WITH_CODE(result == 0,
317 "Error retrieving Engine Clock dividers from VBIOS.",
318 return result);
319
320 /* To get FBDIV we need to multiply this by 16384 and divide it by Fref. */
321 ref_clock = atomctrl_get_reference_clock(hwmgr);
322 ref_divider = 1 + dividers.uc_pll_ref_div;
323
324 /* low 14 bits is fraction and high 12 bits is divider */
325 fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF;
326
327 /* SPLL_FUNC_CNTL setup */
328 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
329 SPLL_REF_DIV, dividers.uc_pll_ref_div);
330 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
331 SPLL_PDIV_A, dividers.uc_pll_post_div);
332
333 /* SPLL_FUNC_CNTL_3 setup*/
334 spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
335 SPLL_FB_DIV, fbdiv);
336
337 /* set to use fractional accumulation*/
338 spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
339 SPLL_DITHEN, 1);
340
341 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
342 PHM_PlatformCaps_EngineSpreadSpectrumSupport)) {
343 struct pp_atomctrl_internal_ss_info ss_info;
344 uint32_t vco_freq = clock * dividers.uc_pll_post_div;
345
346 if (!atomctrl_get_engine_clock_spread_spectrum(hwmgr,
347 vco_freq, &ss_info)) {
348 uint32_t clk_s = ref_clock * 5 /
349 (ref_divider * ss_info.speed_spectrum_rate);
350 uint32_t clk_v = 4 * ss_info.speed_spectrum_percentage *
351 fbdiv / (clk_s * 10000);
352
353 cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
354 CG_SPLL_SPREAD_SPECTRUM, CLKS, clk_s);
355 cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
356 CG_SPLL_SPREAD_SPECTRUM, SSEN, 1);
357 cg_spll_spread_spectrum_2 = PHM_SET_FIELD(cg_spll_spread_spectrum_2,
358 CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clk_v);
359 }
360 }
361
362 sclk->SclkFrequency = clock;
363 sclk->CgSpllFuncCntl3 = spll_func_cntl_3;
364 sclk->CgSpllFuncCntl4 = spll_func_cntl_4;
365 sclk->SpllSpreadSpectrum = cg_spll_spread_spectrum;
366 sclk->SpllSpreadSpectrum2 = cg_spll_spread_spectrum_2;
367 sclk->SclkDid = (uint8_t)dividers.pll_post_divider;
368
369 return 0;
370 }
371
ci_populate_phase_value_based_on_sclk(struct pp_hwmgr * hwmgr,const struct phm_phase_shedding_limits_table * pl,uint32_t sclk,uint32_t * p_shed)372 static void ci_populate_phase_value_based_on_sclk(struct pp_hwmgr *hwmgr,
373 const struct phm_phase_shedding_limits_table *pl,
374 uint32_t sclk, uint32_t *p_shed)
375 {
376 unsigned int i;
377
378 /* use the minimum phase shedding */
379 *p_shed = 1;
380
381 for (i = 0; i < pl->count; i++) {
382 if (sclk < pl->entries[i].Sclk) {
383 *p_shed = i;
384 break;
385 }
386 }
387 }
388
ci_get_sleep_divider_id_from_clock(uint32_t clock,uint32_t clock_insr)389 static uint8_t ci_get_sleep_divider_id_from_clock(uint32_t clock,
390 uint32_t clock_insr)
391 {
392 uint8_t i;
393 uint32_t temp;
394 uint32_t min = min_t(uint32_t, clock_insr, CISLAND_MINIMUM_ENGINE_CLOCK);
395
396 if (clock < min) {
397 pr_info("Engine clock can't satisfy stutter requirement!\n");
398 return 0;
399 }
400 for (i = CISLAND_MAX_DEEPSLEEP_DIVIDER_ID; ; i--) {
401 temp = clock >> i;
402
403 if (temp >= min || i == 0)
404 break;
405 }
406 return i;
407 }
408
ci_populate_single_graphic_level(struct pp_hwmgr * hwmgr,uint32_t clock,struct SMU7_Discrete_GraphicsLevel * level)409 static int ci_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
410 uint32_t clock, struct SMU7_Discrete_GraphicsLevel *level)
411 {
412 int result;
413 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
414
415
416 result = ci_calculate_sclk_params(hwmgr, clock, level);
417
418 /* populate graphics levels */
419 result = ci_get_dependency_volt_by_clk(hwmgr,
420 hwmgr->dyn_state.vddc_dependency_on_sclk, clock,
421 (uint32_t *)(&level->MinVddc));
422 if (result) {
423 pr_err("vdd_dep_on_sclk table is NULL\n");
424 return result;
425 }
426
427 level->SclkFrequency = clock;
428 level->MinVddcPhases = 1;
429
430 if (data->vddc_phase_shed_control)
431 ci_populate_phase_value_based_on_sclk(hwmgr,
432 hwmgr->dyn_state.vddc_phase_shed_limits_table,
433 clock,
434 &level->MinVddcPhases);
435
436 level->ActivityLevel = data->current_profile_setting.sclk_activity;
437 level->CcPwrDynRm = 0;
438 level->CcPwrDynRm1 = 0;
439 level->EnabledForActivity = 0;
440 /* this level can be used for throttling.*/
441 level->EnabledForThrottle = 1;
442 level->UpH = data->current_profile_setting.sclk_up_hyst;
443 level->DownH = data->current_profile_setting.sclk_down_hyst;
444 level->VoltageDownH = 0;
445 level->PowerThrottle = 0;
446
447
448 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
449 PHM_PlatformCaps_SclkDeepSleep))
450 level->DeepSleepDivId =
451 ci_get_sleep_divider_id_from_clock(clock,
452 CISLAND_MINIMUM_ENGINE_CLOCK);
453
454 /* Default to slow, highest DPM level will be set to PPSMC_DISPLAY_WATERMARK_LOW later.*/
455 level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
456
457 if (0 == result) {
458 level->MinVddc = PP_HOST_TO_SMC_UL(level->MinVddc * VOLTAGE_SCALE);
459 CONVERT_FROM_HOST_TO_SMC_UL(level->MinVddcPhases);
460 CONVERT_FROM_HOST_TO_SMC_UL(level->SclkFrequency);
461 CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel);
462 CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl3);
463 CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl4);
464 CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum);
465 CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum2);
466 CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm);
467 CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1);
468 }
469
470 return result;
471 }
472
ci_populate_all_graphic_levels(struct pp_hwmgr * hwmgr)473 static int ci_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
474 {
475 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
476 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
477 struct smu7_dpm_table *dpm_table = &data->dpm_table;
478 int result = 0;
479 uint32_t array = smu_data->dpm_table_start +
480 offsetof(SMU7_Discrete_DpmTable, GraphicsLevel);
481 uint32_t array_size = sizeof(struct SMU7_Discrete_GraphicsLevel) *
482 SMU7_MAX_LEVELS_GRAPHICS;
483 struct SMU7_Discrete_GraphicsLevel *levels =
484 smu_data->smc_state_table.GraphicsLevel;
485 uint32_t i;
486
487 for (i = 0; i < dpm_table->sclk_table.count; i++) {
488 result = ci_populate_single_graphic_level(hwmgr,
489 dpm_table->sclk_table.dpm_levels[i].value,
490 &levels[i]);
491 if (result)
492 return result;
493 if (i > 1)
494 smu_data->smc_state_table.GraphicsLevel[i].DeepSleepDivId = 0;
495 if (i == (dpm_table->sclk_table.count - 1))
496 smu_data->smc_state_table.GraphicsLevel[i].DisplayWatermark =
497 PPSMC_DISPLAY_WATERMARK_HIGH;
498 }
499
500 smu_data->smc_state_table.GraphicsLevel[0].EnabledForActivity = 1;
501
502 smu_data->smc_state_table.GraphicsDpmLevelCount = (u8)dpm_table->sclk_table.count;
503 data->dpm_level_enable_mask.sclk_dpm_enable_mask =
504 phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
505
506 result = ci_copy_bytes_to_smc(hwmgr, array,
507 (u8 *)levels, array_size,
508 SMC_RAM_END);
509
510 return result;
511
512 }
513
ci_populate_svi_load_line(struct pp_hwmgr * hwmgr)514 static int ci_populate_svi_load_line(struct pp_hwmgr *hwmgr)
515 {
516 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
517 const struct ci_pt_defaults *defaults = smu_data->power_tune_defaults;
518
519 smu_data->power_tune_table.SviLoadLineEn = defaults->svi_load_line_en;
520 smu_data->power_tune_table.SviLoadLineVddC = defaults->svi_load_line_vddc;
521 smu_data->power_tune_table.SviLoadLineTrimVddC = 3;
522 smu_data->power_tune_table.SviLoadLineOffsetVddC = 0;
523
524 return 0;
525 }
526
ci_populate_tdc_limit(struct pp_hwmgr * hwmgr)527 static int ci_populate_tdc_limit(struct pp_hwmgr *hwmgr)
528 {
529 uint16_t tdc_limit;
530 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
531 const struct ci_pt_defaults *defaults = smu_data->power_tune_defaults;
532
533 tdc_limit = (uint16_t)(hwmgr->dyn_state.cac_dtp_table->usTDC * 256);
534 smu_data->power_tune_table.TDC_VDDC_PkgLimit =
535 CONVERT_FROM_HOST_TO_SMC_US(tdc_limit);
536 smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc =
537 defaults->tdc_vddc_throttle_release_limit_perc;
538 smu_data->power_tune_table.TDC_MAWt = defaults->tdc_mawt;
539
540 return 0;
541 }
542
ci_populate_dw8(struct pp_hwmgr * hwmgr,uint32_t fuse_table_offset)543 static int ci_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
544 {
545 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
546 const struct ci_pt_defaults *defaults = smu_data->power_tune_defaults;
547 uint32_t temp;
548
549 if (ci_read_smc_sram_dword(hwmgr,
550 fuse_table_offset +
551 offsetof(SMU7_Discrete_PmFuses, TdcWaterfallCtl),
552 (uint32_t *)&temp, SMC_RAM_END))
553 PP_ASSERT_WITH_CODE(false,
554 "Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!",
555 return -EINVAL);
556 else
557 smu_data->power_tune_table.TdcWaterfallCtl = defaults->tdc_waterfall_ctl;
558
559 return 0;
560 }
561
ci_populate_fuzzy_fan(struct pp_hwmgr * hwmgr,uint32_t fuse_table_offset)562 static int ci_populate_fuzzy_fan(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
563 {
564 uint16_t tmp;
565 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
566
567 if ((hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity & (1 << 15))
568 || 0 == hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity)
569 tmp = hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity;
570 else
571 tmp = hwmgr->thermal_controller.advanceFanControlParameters.usDefaultFanOutputSensitivity;
572
573 smu_data->power_tune_table.FuzzyFan_PwmSetDelta = CONVERT_FROM_HOST_TO_SMC_US(tmp);
574
575 return 0;
576 }
577
ci_populate_bapm_vddc_vid_sidd(struct pp_hwmgr * hwmgr)578 static int ci_populate_bapm_vddc_vid_sidd(struct pp_hwmgr *hwmgr)
579 {
580 int i;
581 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
582 uint8_t *hi_vid = smu_data->power_tune_table.BapmVddCVidHiSidd;
583 uint8_t *lo_vid = smu_data->power_tune_table.BapmVddCVidLoSidd;
584 uint8_t *hi2_vid = smu_data->power_tune_table.BapmVddCVidHiSidd2;
585
586 PP_ASSERT_WITH_CODE(NULL != hwmgr->dyn_state.cac_leakage_table,
587 "The CAC Leakage table does not exist!", return -EINVAL);
588 PP_ASSERT_WITH_CODE(hwmgr->dyn_state.cac_leakage_table->count <= 8,
589 "There should never be more than 8 entries for BapmVddcVid!!!", return -EINVAL);
590 PP_ASSERT_WITH_CODE(hwmgr->dyn_state.cac_leakage_table->count == hwmgr->dyn_state.vddc_dependency_on_sclk->count,
591 "CACLeakageTable->count and VddcDependencyOnSCLk->count not equal", return -EINVAL);
592
593 for (i = 0; (uint32_t) i < hwmgr->dyn_state.cac_leakage_table->count; i++) {
594 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_EVV)) {
595 lo_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc1);
596 hi_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc2);
597 hi2_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc3);
598 } else {
599 lo_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc);
600 hi_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Leakage);
601 }
602 }
603
604 return 0;
605 }
606
ci_populate_vddc_vid(struct pp_hwmgr * hwmgr)607 static int ci_populate_vddc_vid(struct pp_hwmgr *hwmgr)
608 {
609 int i;
610 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
611 uint8_t *vid = smu_data->power_tune_table.VddCVid;
612 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
613
614 PP_ASSERT_WITH_CODE(data->vddc_voltage_table.count <= 8,
615 "There should never be more than 8 entries for VddcVid!!!",
616 return -EINVAL);
617
618 for (i = 0; i < (int)data->vddc_voltage_table.count; i++)
619 vid[i] = convert_to_vid(data->vddc_voltage_table.entries[i].value);
620
621 return 0;
622 }
623
ci_min_max_v_gnbl_pm_lid_from_bapm_vddc(struct pp_hwmgr * hwmgr)624 static int ci_min_max_v_gnbl_pm_lid_from_bapm_vddc(struct pp_hwmgr *hwmgr)
625 {
626 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
627 u8 *hi_vid = smu_data->power_tune_table.BapmVddCVidHiSidd;
628 u8 *lo_vid = smu_data->power_tune_table.BapmVddCVidLoSidd;
629 int i, min, max;
630
631 min = max = hi_vid[0];
632 for (i = 0; i < 8; i++) {
633 if (0 != hi_vid[i]) {
634 if (min > hi_vid[i])
635 min = hi_vid[i];
636 if (max < hi_vid[i])
637 max = hi_vid[i];
638 }
639
640 if (0 != lo_vid[i]) {
641 if (min > lo_vid[i])
642 min = lo_vid[i];
643 if (max < lo_vid[i])
644 max = lo_vid[i];
645 }
646 }
647
648 if ((min == 0) || (max == 0))
649 return -EINVAL;
650 smu_data->power_tune_table.GnbLPMLMaxVid = (u8)max;
651 smu_data->power_tune_table.GnbLPMLMinVid = (u8)min;
652
653 return 0;
654 }
655
ci_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr * hwmgr)656 static int ci_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr)
657 {
658 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
659 uint16_t HiSidd;
660 uint16_t LoSidd;
661 struct phm_cac_tdp_table *cac_table = hwmgr->dyn_state.cac_dtp_table;
662
663 HiSidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256);
664 LoSidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256);
665
666 smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd =
667 CONVERT_FROM_HOST_TO_SMC_US(HiSidd);
668 smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd =
669 CONVERT_FROM_HOST_TO_SMC_US(LoSidd);
670
671 return 0;
672 }
673
ci_populate_pm_fuses(struct pp_hwmgr * hwmgr)674 static int ci_populate_pm_fuses(struct pp_hwmgr *hwmgr)
675 {
676 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
677 uint32_t pm_fuse_table_offset;
678 int ret = 0;
679
680 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
681 PHM_PlatformCaps_PowerContainment)) {
682 if (ci_read_smc_sram_dword(hwmgr,
683 SMU7_FIRMWARE_HEADER_LOCATION +
684 offsetof(SMU7_Firmware_Header, PmFuseTable),
685 &pm_fuse_table_offset, SMC_RAM_END)) {
686 pr_err("Attempt to get pm_fuse_table_offset Failed!\n");
687 return -EINVAL;
688 }
689
690 /* DW0 - DW3 */
691 ret = ci_populate_bapm_vddc_vid_sidd(hwmgr);
692 /* DW4 - DW5 */
693 ret |= ci_populate_vddc_vid(hwmgr);
694 /* DW6 */
695 ret |= ci_populate_svi_load_line(hwmgr);
696 /* DW7 */
697 ret |= ci_populate_tdc_limit(hwmgr);
698 /* DW8 */
699 ret |= ci_populate_dw8(hwmgr, pm_fuse_table_offset);
700
701 ret |= ci_populate_fuzzy_fan(hwmgr, pm_fuse_table_offset);
702
703 ret |= ci_min_max_v_gnbl_pm_lid_from_bapm_vddc(hwmgr);
704
705 ret |= ci_populate_bapm_vddc_base_leakage_sidd(hwmgr);
706 if (ret)
707 return ret;
708
709 ret = ci_copy_bytes_to_smc(hwmgr, pm_fuse_table_offset,
710 (uint8_t *)&smu_data->power_tune_table,
711 sizeof(struct SMU7_Discrete_PmFuses), SMC_RAM_END);
712 }
713 return ret;
714 }
715
ci_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr * hwmgr)716 static int ci_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr)
717 {
718 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
719 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
720 const struct ci_pt_defaults *defaults = smu_data->power_tune_defaults;
721 SMU7_Discrete_DpmTable *dpm_table = &(smu_data->smc_state_table);
722 struct phm_cac_tdp_table *cac_dtp_table = hwmgr->dyn_state.cac_dtp_table;
723 struct phm_ppm_table *ppm = hwmgr->dyn_state.ppm_parameter_table;
724 const uint16_t *def1, *def2;
725 int i, j, k;
726
727 dpm_table->DefaultTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usTDP * 256));
728 dpm_table->TargetTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usConfigurableTDP * 256));
729
730 dpm_table->DTETjOffset = 0;
731 dpm_table->GpuTjMax = (uint8_t)(data->thermal_temp_setting.temperature_high / PP_TEMPERATURE_UNITS_PER_CENTIGRADES);
732 dpm_table->GpuTjHyst = 8;
733
734 dpm_table->DTEAmbientTempBase = defaults->dte_ambient_temp_base;
735
736 if (ppm) {
737 dpm_table->PPM_PkgPwrLimit = (uint16_t)ppm->dgpu_tdp * 256 / 1000;
738 dpm_table->PPM_TemperatureLimit = (uint16_t)ppm->tj_max * 256;
739 } else {
740 dpm_table->PPM_PkgPwrLimit = 0;
741 dpm_table->PPM_TemperatureLimit = 0;
742 }
743
744 CONVERT_FROM_HOST_TO_SMC_US(dpm_table->PPM_PkgPwrLimit);
745 CONVERT_FROM_HOST_TO_SMC_US(dpm_table->PPM_TemperatureLimit);
746
747 dpm_table->BAPM_TEMP_GRADIENT = PP_HOST_TO_SMC_UL(defaults->bapm_temp_gradient);
748 def1 = defaults->bapmti_r;
749 def2 = defaults->bapmti_rc;
750
751 for (i = 0; i < SMU7_DTE_ITERATIONS; i++) {
752 for (j = 0; j < SMU7_DTE_SOURCES; j++) {
753 for (k = 0; k < SMU7_DTE_SINKS; k++) {
754 dpm_table->BAPMTI_R[i][j][k] = PP_HOST_TO_SMC_US(*def1);
755 dpm_table->BAPMTI_RC[i][j][k] = PP_HOST_TO_SMC_US(*def2);
756 def1++;
757 def2++;
758 }
759 }
760 }
761
762 return 0;
763 }
764
ci_get_std_voltage_value_sidd(struct pp_hwmgr * hwmgr,pp_atomctrl_voltage_table_entry * tab,uint16_t * hi,uint16_t * lo)765 static int ci_get_std_voltage_value_sidd(struct pp_hwmgr *hwmgr,
766 pp_atomctrl_voltage_table_entry *tab, uint16_t *hi,
767 uint16_t *lo)
768 {
769 uint16_t v_index;
770 bool vol_found = false;
771 *hi = tab->value * VOLTAGE_SCALE;
772 *lo = tab->value * VOLTAGE_SCALE;
773
774 PP_ASSERT_WITH_CODE(NULL != hwmgr->dyn_state.vddc_dependency_on_sclk,
775 "The SCLK/VDDC Dependency Table does not exist.\n",
776 return -EINVAL);
777
778 if (NULL == hwmgr->dyn_state.cac_leakage_table) {
779 pr_warn("CAC Leakage Table does not exist, using vddc.\n");
780 return 0;
781 }
782
783 for (v_index = 0; (uint32_t)v_index < hwmgr->dyn_state.vddc_dependency_on_sclk->count; v_index++) {
784 if (tab->value == hwmgr->dyn_state.vddc_dependency_on_sclk->entries[v_index].v) {
785 vol_found = true;
786 if ((uint32_t)v_index < hwmgr->dyn_state.cac_leakage_table->count) {
787 *lo = hwmgr->dyn_state.cac_leakage_table->entries[v_index].Vddc * VOLTAGE_SCALE;
788 *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[v_index].Leakage * VOLTAGE_SCALE);
789 } else {
790 pr_warn("Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index, using maximum index from CAC table.\n");
791 *lo = hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Vddc * VOLTAGE_SCALE;
792 *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Leakage * VOLTAGE_SCALE);
793 }
794 break;
795 }
796 }
797
798 if (!vol_found) {
799 for (v_index = 0; (uint32_t)v_index < hwmgr->dyn_state.vddc_dependency_on_sclk->count; v_index++) {
800 if (tab->value <= hwmgr->dyn_state.vddc_dependency_on_sclk->entries[v_index].v) {
801 vol_found = true;
802 if ((uint32_t)v_index < hwmgr->dyn_state.cac_leakage_table->count) {
803 *lo = hwmgr->dyn_state.cac_leakage_table->entries[v_index].Vddc * VOLTAGE_SCALE;
804 *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[v_index].Leakage) * VOLTAGE_SCALE;
805 } else {
806 pr_warn("Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index in second look up, using maximum index from CAC table.");
807 *lo = hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Vddc * VOLTAGE_SCALE;
808 *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Leakage * VOLTAGE_SCALE);
809 }
810 break;
811 }
812 }
813
814 if (!vol_found)
815 pr_warn("Unable to get std_vddc from SCLK/VDDC Dependency Table, using vddc.\n");
816 }
817
818 return 0;
819 }
820
ci_populate_smc_voltage_table(struct pp_hwmgr * hwmgr,pp_atomctrl_voltage_table_entry * tab,SMU7_Discrete_VoltageLevel * smc_voltage_tab)821 static int ci_populate_smc_voltage_table(struct pp_hwmgr *hwmgr,
822 pp_atomctrl_voltage_table_entry *tab,
823 SMU7_Discrete_VoltageLevel *smc_voltage_tab)
824 {
825 int result;
826
827 result = ci_get_std_voltage_value_sidd(hwmgr, tab,
828 &smc_voltage_tab->StdVoltageHiSidd,
829 &smc_voltage_tab->StdVoltageLoSidd);
830 if (result) {
831 smc_voltage_tab->StdVoltageHiSidd = tab->value * VOLTAGE_SCALE;
832 smc_voltage_tab->StdVoltageLoSidd = tab->value * VOLTAGE_SCALE;
833 }
834
835 smc_voltage_tab->Voltage = PP_HOST_TO_SMC_US(tab->value * VOLTAGE_SCALE);
836 CONVERT_FROM_HOST_TO_SMC_US(smc_voltage_tab->StdVoltageHiSidd);
837 CONVERT_FROM_HOST_TO_SMC_US(smc_voltage_tab->StdVoltageLoSidd);
838
839 return 0;
840 }
841
ci_populate_smc_vddc_table(struct pp_hwmgr * hwmgr,SMU7_Discrete_DpmTable * table)842 static int ci_populate_smc_vddc_table(struct pp_hwmgr *hwmgr,
843 SMU7_Discrete_DpmTable *table)
844 {
845 unsigned int count;
846 int result;
847 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
848
849 table->VddcLevelCount = data->vddc_voltage_table.count;
850 for (count = 0; count < table->VddcLevelCount; count++) {
851 result = ci_populate_smc_voltage_table(hwmgr,
852 &(data->vddc_voltage_table.entries[count]),
853 &(table->VddcLevel[count]));
854 PP_ASSERT_WITH_CODE(0 == result, "do not populate SMC VDDC voltage table", return -EINVAL);
855
856 /* GPIO voltage control */
857 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->voltage_control) {
858 table->VddcLevel[count].Smio = (uint8_t) count;
859 table->Smio[count] |= data->vddc_voltage_table.entries[count].smio_low;
860 table->SmioMaskVddcVid |= data->vddc_voltage_table.entries[count].smio_low;
861 } else {
862 table->VddcLevel[count].Smio = 0;
863 }
864 }
865
866 CONVERT_FROM_HOST_TO_SMC_UL(table->VddcLevelCount);
867
868 return 0;
869 }
870
ci_populate_smc_vdd_ci_table(struct pp_hwmgr * hwmgr,SMU7_Discrete_DpmTable * table)871 static int ci_populate_smc_vdd_ci_table(struct pp_hwmgr *hwmgr,
872 SMU7_Discrete_DpmTable *table)
873 {
874 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
875 uint32_t count;
876 int result;
877
878 table->VddciLevelCount = data->vddci_voltage_table.count;
879
880 for (count = 0; count < table->VddciLevelCount; count++) {
881 result = ci_populate_smc_voltage_table(hwmgr,
882 &(data->vddci_voltage_table.entries[count]),
883 &(table->VddciLevel[count]));
884 PP_ASSERT_WITH_CODE(result == 0, "do not populate SMC VDDCI voltage table", return -EINVAL);
885 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
886 table->VddciLevel[count].Smio = (uint8_t) count;
887 table->Smio[count] |= data->vddci_voltage_table.entries[count].smio_low;
888 table->SmioMaskVddciVid |= data->vddci_voltage_table.entries[count].smio_low;
889 } else {
890 table->VddciLevel[count].Smio = 0;
891 }
892 }
893
894 CONVERT_FROM_HOST_TO_SMC_UL(table->VddciLevelCount);
895
896 return 0;
897 }
898
ci_populate_smc_mvdd_table(struct pp_hwmgr * hwmgr,SMU7_Discrete_DpmTable * table)899 static int ci_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr,
900 SMU7_Discrete_DpmTable *table)
901 {
902 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
903 uint32_t count;
904 int result;
905
906 table->MvddLevelCount = data->mvdd_voltage_table.count;
907
908 for (count = 0; count < table->MvddLevelCount; count++) {
909 result = ci_populate_smc_voltage_table(hwmgr,
910 &(data->mvdd_voltage_table.entries[count]),
911 &table->MvddLevel[count]);
912 PP_ASSERT_WITH_CODE(result == 0, "do not populate SMC mvdd voltage table", return -EINVAL);
913 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
914 table->MvddLevel[count].Smio = (uint8_t) count;
915 table->Smio[count] |= data->mvdd_voltage_table.entries[count].smio_low;
916 table->SmioMaskMvddVid |= data->mvdd_voltage_table.entries[count].smio_low;
917 } else {
918 table->MvddLevel[count].Smio = 0;
919 }
920 }
921
922 CONVERT_FROM_HOST_TO_SMC_UL(table->MvddLevelCount);
923
924 return 0;
925 }
926
927
ci_populate_smc_voltage_tables(struct pp_hwmgr * hwmgr,SMU7_Discrete_DpmTable * table)928 static int ci_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
929 SMU7_Discrete_DpmTable *table)
930 {
931 int result;
932
933 result = ci_populate_smc_vddc_table(hwmgr, table);
934 PP_ASSERT_WITH_CODE(0 == result,
935 "can not populate VDDC voltage table to SMC", return -EINVAL);
936
937 result = ci_populate_smc_vdd_ci_table(hwmgr, table);
938 PP_ASSERT_WITH_CODE(0 == result,
939 "can not populate VDDCI voltage table to SMC", return -EINVAL);
940
941 result = ci_populate_smc_mvdd_table(hwmgr, table);
942 PP_ASSERT_WITH_CODE(0 == result,
943 "can not populate MVDD voltage table to SMC", return -EINVAL);
944
945 return 0;
946 }
947
ci_populate_ulv_level(struct pp_hwmgr * hwmgr,struct SMU7_Discrete_Ulv * state)948 static int ci_populate_ulv_level(struct pp_hwmgr *hwmgr,
949 struct SMU7_Discrete_Ulv *state)
950 {
951 uint32_t voltage_response_time, ulv_voltage;
952 int result;
953 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
954
955 state->CcPwrDynRm = 0;
956 state->CcPwrDynRm1 = 0;
957
958 result = pp_tables_get_response_times(hwmgr, &voltage_response_time, &ulv_voltage);
959 PP_ASSERT_WITH_CODE((0 == result), "can not get ULV voltage value", return result;);
960
961 if (ulv_voltage == 0) {
962 data->ulv_supported = false;
963 return 0;
964 }
965
966 if (data->voltage_control != SMU7_VOLTAGE_CONTROL_BY_SVID2) {
967 /* use minimum voltage if ulv voltage in pptable is bigger than minimum voltage */
968 if (ulv_voltage > hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v)
969 state->VddcOffset = 0;
970 else
971 /* used in SMIO Mode. not implemented for now. this is backup only for CI. */
972 state->VddcOffset = (uint16_t)(hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v - ulv_voltage);
973 } else {
974 /* use minimum voltage if ulv voltage in pptable is bigger than minimum voltage */
975 if (ulv_voltage > hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v)
976 state->VddcOffsetVid = 0;
977 else /* used in SVI2 Mode */
978 state->VddcOffsetVid = (uint8_t)(
979 (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v - ulv_voltage)
980 * VOLTAGE_VID_OFFSET_SCALE2
981 / VOLTAGE_VID_OFFSET_SCALE1);
982 }
983 state->VddcPhase = 1;
984
985 CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
986 CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
987 CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);
988
989 return 0;
990 }
991
ci_populate_ulv_state(struct pp_hwmgr * hwmgr,SMU7_Discrete_Ulv * ulv_level)992 static int ci_populate_ulv_state(struct pp_hwmgr *hwmgr,
993 SMU7_Discrete_Ulv *ulv_level)
994 {
995 return ci_populate_ulv_level(hwmgr, ulv_level);
996 }
997
ci_populate_smc_link_level(struct pp_hwmgr * hwmgr,SMU7_Discrete_DpmTable * table)998 static int ci_populate_smc_link_level(struct pp_hwmgr *hwmgr, SMU7_Discrete_DpmTable *table)
999 {
1000 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1001 struct smu7_dpm_table *dpm_table = &data->dpm_table;
1002 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1003 uint32_t i;
1004
1005 /* Index dpm_table->pcie_speed_table.count is reserved for PCIE boot level.*/
1006 for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
1007 table->LinkLevel[i].PcieGenSpeed =
1008 (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
1009 table->LinkLevel[i].PcieLaneCount =
1010 (uint8_t)encode_pcie_lane_width(dpm_table->pcie_speed_table.dpm_levels[i].param1);
1011 table->LinkLevel[i].EnabledForActivity = 1;
1012 table->LinkLevel[i].DownT = PP_HOST_TO_SMC_UL(5);
1013 table->LinkLevel[i].UpT = PP_HOST_TO_SMC_UL(30);
1014 }
1015
1016 smu_data->smc_state_table.LinkLevelCount =
1017 (uint8_t)dpm_table->pcie_speed_table.count;
1018 data->dpm_level_enable_mask.pcie_dpm_enable_mask =
1019 phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
1020
1021 return 0;
1022 }
1023
ci_calculate_mclk_params(struct pp_hwmgr * hwmgr,uint32_t memory_clock,SMU7_Discrete_MemoryLevel * mclk,bool strobe_mode,bool dllStateOn)1024 static int ci_calculate_mclk_params(
1025 struct pp_hwmgr *hwmgr,
1026 uint32_t memory_clock,
1027 SMU7_Discrete_MemoryLevel *mclk,
1028 bool strobe_mode,
1029 bool dllStateOn
1030 )
1031 {
1032 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1033 uint32_t dll_cntl = data->clock_registers.vDLL_CNTL;
1034 uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL;
1035 uint32_t mpll_ad_func_cntl = data->clock_registers.vMPLL_AD_FUNC_CNTL;
1036 uint32_t mpll_dq_func_cntl = data->clock_registers.vMPLL_DQ_FUNC_CNTL;
1037 uint32_t mpll_func_cntl = data->clock_registers.vMPLL_FUNC_CNTL;
1038 uint32_t mpll_func_cntl_1 = data->clock_registers.vMPLL_FUNC_CNTL_1;
1039 uint32_t mpll_func_cntl_2 = data->clock_registers.vMPLL_FUNC_CNTL_2;
1040 uint32_t mpll_ss1 = data->clock_registers.vMPLL_SS1;
1041 uint32_t mpll_ss2 = data->clock_registers.vMPLL_SS2;
1042
1043 pp_atomctrl_memory_clock_param mpll_param;
1044 int result;
1045
1046 result = atomctrl_get_memory_pll_dividers_si(hwmgr,
1047 memory_clock, &mpll_param, strobe_mode);
1048 PP_ASSERT_WITH_CODE(0 == result,
1049 "Error retrieving Memory Clock Parameters from VBIOS.", return result);
1050
1051 mpll_func_cntl = PHM_SET_FIELD(mpll_func_cntl, MPLL_FUNC_CNTL, BWCTRL, mpll_param.bw_ctrl);
1052
1053 mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1,
1054 MPLL_FUNC_CNTL_1, CLKF, mpll_param.mpll_fb_divider.cl_kf);
1055 mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1,
1056 MPLL_FUNC_CNTL_1, CLKFRAC, mpll_param.mpll_fb_divider.clk_frac);
1057 mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1,
1058 MPLL_FUNC_CNTL_1, VCO_MODE, mpll_param.vco_mode);
1059
1060 mpll_ad_func_cntl = PHM_SET_FIELD(mpll_ad_func_cntl,
1061 MPLL_AD_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider);
1062
1063 if (data->is_memory_gddr5) {
1064 mpll_dq_func_cntl = PHM_SET_FIELD(mpll_dq_func_cntl,
1065 MPLL_DQ_FUNC_CNTL, YCLK_SEL, mpll_param.yclk_sel);
1066 mpll_dq_func_cntl = PHM_SET_FIELD(mpll_dq_func_cntl,
1067 MPLL_DQ_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider);
1068 }
1069
1070 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1071 PHM_PlatformCaps_MemorySpreadSpectrumSupport)) {
1072 pp_atomctrl_internal_ss_info ss_info;
1073 uint32_t freq_nom;
1074 uint32_t tmp;
1075 uint32_t reference_clock = atomctrl_get_mpll_reference_clock(hwmgr);
1076
1077 /* for GDDR5 for all modes and DDR3 */
1078 if (1 == mpll_param.qdr)
1079 freq_nom = memory_clock * 4 * (1 << mpll_param.mpll_post_divider);
1080 else
1081 freq_nom = memory_clock * 2 * (1 << mpll_param.mpll_post_divider);
1082
1083 /* tmp = (freq_nom / reference_clock * reference_divider) ^ 2 Note: S.I. reference_divider = 1*/
1084 tmp = (freq_nom / reference_clock);
1085 tmp = tmp * tmp;
1086
1087 if (0 == atomctrl_get_memory_clock_spread_spectrum(hwmgr, freq_nom, &ss_info)) {
1088 uint32_t clks = reference_clock * 5 / ss_info.speed_spectrum_rate;
1089 uint32_t clkv =
1090 (uint32_t)((((131 * ss_info.speed_spectrum_percentage *
1091 ss_info.speed_spectrum_rate) / 100) * tmp) / freq_nom);
1092
1093 mpll_ss1 = PHM_SET_FIELD(mpll_ss1, MPLL_SS1, CLKV, clkv);
1094 mpll_ss2 = PHM_SET_FIELD(mpll_ss2, MPLL_SS2, CLKS, clks);
1095 }
1096 }
1097
1098 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1099 MCLK_PWRMGT_CNTL, DLL_SPEED, mpll_param.dll_speed);
1100 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1101 MCLK_PWRMGT_CNTL, MRDCK0_PDNB, dllStateOn);
1102 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1103 MCLK_PWRMGT_CNTL, MRDCK1_PDNB, dllStateOn);
1104
1105
1106 mclk->MclkFrequency = memory_clock;
1107 mclk->MpllFuncCntl = mpll_func_cntl;
1108 mclk->MpllFuncCntl_1 = mpll_func_cntl_1;
1109 mclk->MpllFuncCntl_2 = mpll_func_cntl_2;
1110 mclk->MpllAdFuncCntl = mpll_ad_func_cntl;
1111 mclk->MpllDqFuncCntl = mpll_dq_func_cntl;
1112 mclk->MclkPwrmgtCntl = mclk_pwrmgt_cntl;
1113 mclk->DllCntl = dll_cntl;
1114 mclk->MpllSs1 = mpll_ss1;
1115 mclk->MpllSs2 = mpll_ss2;
1116
1117 return 0;
1118 }
1119
ci_get_mclk_frequency_ratio(uint32_t memory_clock,bool strobe_mode)1120 static uint8_t ci_get_mclk_frequency_ratio(uint32_t memory_clock,
1121 bool strobe_mode)
1122 {
1123 uint8_t mc_para_index;
1124
1125 if (strobe_mode) {
1126 if (memory_clock < 12500)
1127 mc_para_index = 0x00;
1128 else if (memory_clock > 47500)
1129 mc_para_index = 0x0f;
1130 else
1131 mc_para_index = (uint8_t)((memory_clock - 10000) / 2500);
1132 } else {
1133 if (memory_clock < 65000)
1134 mc_para_index = 0x00;
1135 else if (memory_clock > 135000)
1136 mc_para_index = 0x0f;
1137 else
1138 mc_para_index = (uint8_t)((memory_clock - 60000) / 5000);
1139 }
1140
1141 return mc_para_index;
1142 }
1143
ci_get_ddr3_mclk_frequency_ratio(uint32_t memory_clock)1144 static uint8_t ci_get_ddr3_mclk_frequency_ratio(uint32_t memory_clock)
1145 {
1146 uint8_t mc_para_index;
1147
1148 if (memory_clock < 10000)
1149 mc_para_index = 0;
1150 else if (memory_clock >= 80000)
1151 mc_para_index = 0x0f;
1152 else
1153 mc_para_index = (uint8_t)((memory_clock - 10000) / 5000 + 1);
1154
1155 return mc_para_index;
1156 }
1157
ci_populate_phase_value_based_on_mclk(struct pp_hwmgr * hwmgr,const struct phm_phase_shedding_limits_table * pl,uint32_t memory_clock,uint32_t * p_shed)1158 static int ci_populate_phase_value_based_on_mclk(struct pp_hwmgr *hwmgr, const struct phm_phase_shedding_limits_table *pl,
1159 uint32_t memory_clock, uint32_t *p_shed)
1160 {
1161 unsigned int i;
1162
1163 *p_shed = 1;
1164
1165 for (i = 0; i < pl->count; i++) {
1166 if (memory_clock < pl->entries[i].Mclk) {
1167 *p_shed = i;
1168 break;
1169 }
1170 }
1171
1172 return 0;
1173 }
1174
ci_populate_single_memory_level(struct pp_hwmgr * hwmgr,uint32_t memory_clock,SMU7_Discrete_MemoryLevel * memory_level)1175 static int ci_populate_single_memory_level(
1176 struct pp_hwmgr *hwmgr,
1177 uint32_t memory_clock,
1178 SMU7_Discrete_MemoryLevel *memory_level
1179 )
1180 {
1181 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1182 int result = 0;
1183 bool dll_state_on;
1184 uint32_t mclk_edc_wr_enable_threshold = 40000;
1185 uint32_t mclk_edc_enable_threshold = 40000;
1186 uint32_t mclk_strobe_mode_threshold = 40000;
1187
1188 if (hwmgr->dyn_state.vddc_dependency_on_mclk != NULL) {
1189 result = ci_get_dependency_volt_by_clk(hwmgr,
1190 hwmgr->dyn_state.vddc_dependency_on_mclk, memory_clock, &memory_level->MinVddc);
1191 PP_ASSERT_WITH_CODE((0 == result),
1192 "can not find MinVddc voltage value from memory VDDC voltage dependency table", return result);
1193 }
1194
1195 if (NULL != hwmgr->dyn_state.vddci_dependency_on_mclk) {
1196 result = ci_get_dependency_volt_by_clk(hwmgr,
1197 hwmgr->dyn_state.vddci_dependency_on_mclk,
1198 memory_clock,
1199 &memory_level->MinVddci);
1200 PP_ASSERT_WITH_CODE((0 == result),
1201 "can not find MinVddci voltage value from memory VDDCI voltage dependency table", return result);
1202 }
1203
1204 if (NULL != hwmgr->dyn_state.mvdd_dependency_on_mclk) {
1205 result = ci_get_dependency_volt_by_clk(hwmgr,
1206 hwmgr->dyn_state.mvdd_dependency_on_mclk,
1207 memory_clock,
1208 &memory_level->MinMvdd);
1209 PP_ASSERT_WITH_CODE((0 == result),
1210 "can not find MinVddci voltage value from memory MVDD voltage dependency table", return result);
1211 }
1212
1213 memory_level->MinVddcPhases = 1;
1214
1215 if (data->vddc_phase_shed_control) {
1216 ci_populate_phase_value_based_on_mclk(hwmgr, hwmgr->dyn_state.vddc_phase_shed_limits_table,
1217 memory_clock, &memory_level->MinVddcPhases);
1218 }
1219
1220 memory_level->EnabledForThrottle = 1;
1221 memory_level->EnabledForActivity = 1;
1222 memory_level->UpH = data->current_profile_setting.mclk_up_hyst;
1223 memory_level->DownH = data->current_profile_setting.mclk_down_hyst;
1224 memory_level->VoltageDownH = 0;
1225
1226 /* Indicates maximum activity level for this performance level.*/
1227 memory_level->ActivityLevel = data->current_profile_setting.mclk_activity;
1228 memory_level->StutterEnable = 0;
1229 memory_level->StrobeEnable = 0;
1230 memory_level->EdcReadEnable = 0;
1231 memory_level->EdcWriteEnable = 0;
1232 memory_level->RttEnable = 0;
1233
1234 /* default set to low watermark. Highest level will be set to high later.*/
1235 memory_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1236
1237 data->display_timing.num_existing_displays = hwmgr->display_config->num_display;
1238 data->display_timing.vrefresh = hwmgr->display_config->vrefresh;
1239
1240 /* stutter mode not support on ci */
1241
1242 /* decide strobe mode*/
1243 memory_level->StrobeEnable = (mclk_strobe_mode_threshold != 0) &&
1244 (memory_clock <= mclk_strobe_mode_threshold);
1245
1246 /* decide EDC mode and memory clock ratio*/
1247 if (data->is_memory_gddr5) {
1248 memory_level->StrobeRatio = ci_get_mclk_frequency_ratio(memory_clock,
1249 memory_level->StrobeEnable);
1250
1251 if ((mclk_edc_enable_threshold != 0) &&
1252 (memory_clock > mclk_edc_enable_threshold)) {
1253 memory_level->EdcReadEnable = 1;
1254 }
1255
1256 if ((mclk_edc_wr_enable_threshold != 0) &&
1257 (memory_clock > mclk_edc_wr_enable_threshold)) {
1258 memory_level->EdcWriteEnable = 1;
1259 }
1260
1261 if (memory_level->StrobeEnable) {
1262 if (ci_get_mclk_frequency_ratio(memory_clock, 1) >=
1263 ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC7) >> 16) & 0xf))
1264 dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
1265 else
1266 dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC6) >> 1) & 0x1) ? 1 : 0;
1267 } else
1268 dll_state_on = data->dll_default_on;
1269 } else {
1270 memory_level->StrobeRatio =
1271 ci_get_ddr3_mclk_frequency_ratio(memory_clock);
1272 dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
1273 }
1274
1275 result = ci_calculate_mclk_params(hwmgr,
1276 memory_clock, memory_level, memory_level->StrobeEnable, dll_state_on);
1277
1278 if (0 == result) {
1279 memory_level->MinVddc = PP_HOST_TO_SMC_UL(memory_level->MinVddc * VOLTAGE_SCALE);
1280 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MinVddcPhases);
1281 memory_level->MinVddci = PP_HOST_TO_SMC_UL(memory_level->MinVddci * VOLTAGE_SCALE);
1282 memory_level->MinMvdd = PP_HOST_TO_SMC_UL(memory_level->MinMvdd * VOLTAGE_SCALE);
1283 /* MCLK frequency in units of 10KHz*/
1284 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkFrequency);
1285 /* Indicates maximum activity level for this performance level.*/
1286 CONVERT_FROM_HOST_TO_SMC_US(memory_level->ActivityLevel);
1287 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl);
1288 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_1);
1289 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_2);
1290 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllAdFuncCntl);
1291 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllDqFuncCntl);
1292 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkPwrmgtCntl);
1293 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->DllCntl);
1294 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs1);
1295 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs2);
1296 }
1297
1298 return result;
1299 }
1300
ci_populate_all_memory_levels(struct pp_hwmgr * hwmgr)1301 static int ci_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
1302 {
1303 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1304 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1305 struct smu7_dpm_table *dpm_table = &data->dpm_table;
1306 int result;
1307 struct amdgpu_device *adev = hwmgr->adev;
1308 uint32_t dev_id;
1309
1310 uint32_t level_array_address = smu_data->dpm_table_start + offsetof(SMU7_Discrete_DpmTable, MemoryLevel);
1311 uint32_t level_array_size = sizeof(SMU7_Discrete_MemoryLevel) * SMU7_MAX_LEVELS_MEMORY;
1312 SMU7_Discrete_MemoryLevel *levels = smu_data->smc_state_table.MemoryLevel;
1313 uint32_t i;
1314
1315 memset(levels, 0x00, level_array_size);
1316
1317 for (i = 0; i < dpm_table->mclk_table.count; i++) {
1318 PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
1319 "can not populate memory level as memory clock is zero", return -EINVAL);
1320 result = ci_populate_single_memory_level(hwmgr, dpm_table->mclk_table.dpm_levels[i].value,
1321 &(smu_data->smc_state_table.MemoryLevel[i]));
1322 if (0 != result)
1323 return result;
1324 }
1325
1326 smu_data->smc_state_table.MemoryLevel[0].EnabledForActivity = 1;
1327
1328 dev_id = adev->pdev->device;
1329
1330 if ((dpm_table->mclk_table.count >= 2)
1331 && ((dev_id == 0x67B0) || (dev_id == 0x67B1))) {
1332 smu_data->smc_state_table.MemoryLevel[1].MinVddci =
1333 smu_data->smc_state_table.MemoryLevel[0].MinVddci;
1334 smu_data->smc_state_table.MemoryLevel[1].MinMvdd =
1335 smu_data->smc_state_table.MemoryLevel[0].MinMvdd;
1336 }
1337 smu_data->smc_state_table.MemoryLevel[0].ActivityLevel = 0x1F;
1338 CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.MemoryLevel[0].ActivityLevel);
1339
1340 smu_data->smc_state_table.MemoryDpmLevelCount = (uint8_t)dpm_table->mclk_table.count;
1341 data->dpm_level_enable_mask.mclk_dpm_enable_mask = phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
1342 smu_data->smc_state_table.MemoryLevel[dpm_table->mclk_table.count-1].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH;
1343
1344 result = ci_copy_bytes_to_smc(hwmgr,
1345 level_array_address, (uint8_t *)levels, (uint32_t)level_array_size,
1346 SMC_RAM_END);
1347
1348 return result;
1349 }
1350
ci_populate_mvdd_value(struct pp_hwmgr * hwmgr,uint32_t mclk,SMU7_Discrete_VoltageLevel * voltage)1351 static int ci_populate_mvdd_value(struct pp_hwmgr *hwmgr, uint32_t mclk,
1352 SMU7_Discrete_VoltageLevel *voltage)
1353 {
1354 const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1355
1356 uint32_t i = 0;
1357
1358 if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
1359 /* find mvdd value which clock is more than request */
1360 for (i = 0; i < hwmgr->dyn_state.mvdd_dependency_on_mclk->count; i++) {
1361 if (mclk <= hwmgr->dyn_state.mvdd_dependency_on_mclk->entries[i].clk) {
1362 /* Always round to higher voltage. */
1363 voltage->Voltage = data->mvdd_voltage_table.entries[i].value;
1364 break;
1365 }
1366 }
1367
1368 PP_ASSERT_WITH_CODE(i < hwmgr->dyn_state.mvdd_dependency_on_mclk->count,
1369 "MVDD Voltage is outside the supported range.", return -EINVAL);
1370
1371 } else {
1372 return -EINVAL;
1373 }
1374
1375 return 0;
1376 }
1377
ci_populate_smc_acpi_level(struct pp_hwmgr * hwmgr,SMU7_Discrete_DpmTable * table)1378 static int ci_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
1379 SMU7_Discrete_DpmTable *table)
1380 {
1381 int result = 0;
1382 const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1383 struct pp_atomctrl_clock_dividers_vi dividers;
1384
1385 SMU7_Discrete_VoltageLevel voltage_level;
1386 uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL;
1387 uint32_t spll_func_cntl_2 = data->clock_registers.vCG_SPLL_FUNC_CNTL_2;
1388 uint32_t dll_cntl = data->clock_registers.vDLL_CNTL;
1389 uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL;
1390
1391
1392 /* The ACPI state should not do DPM on DC (or ever).*/
1393 table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
1394
1395 if (data->acpi_vddc)
1396 table->ACPILevel.MinVddc = PP_HOST_TO_SMC_UL(data->acpi_vddc * VOLTAGE_SCALE);
1397 else
1398 table->ACPILevel.MinVddc = PP_HOST_TO_SMC_UL(data->min_vddc_in_pptable * VOLTAGE_SCALE);
1399
1400 table->ACPILevel.MinVddcPhases = data->vddc_phase_shed_control ? 0 : 1;
1401 /* assign zero for now*/
1402 table->ACPILevel.SclkFrequency = atomctrl_get_reference_clock(hwmgr);
1403
1404 /* get the engine clock dividers for this clock value*/
1405 result = atomctrl_get_engine_pll_dividers_vi(hwmgr,
1406 table->ACPILevel.SclkFrequency, ÷rs);
1407
1408 PP_ASSERT_WITH_CODE(result == 0,
1409 "Error retrieving Engine Clock dividers from VBIOS.", return result);
1410
1411 /* divider ID for required SCLK*/
1412 table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider;
1413 table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1414 table->ACPILevel.DeepSleepDivId = 0;
1415
1416 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
1417 CG_SPLL_FUNC_CNTL, SPLL_PWRON, 0);
1418 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
1419 CG_SPLL_FUNC_CNTL, SPLL_RESET, 1);
1420 spll_func_cntl_2 = PHM_SET_FIELD(spll_func_cntl_2,
1421 CG_SPLL_FUNC_CNTL_2, SCLK_MUX_SEL, 4);
1422
1423 table->ACPILevel.CgSpllFuncCntl = spll_func_cntl;
1424 table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2;
1425 table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
1426 table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
1427 table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
1428 table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
1429 table->ACPILevel.CcPwrDynRm = 0;
1430 table->ACPILevel.CcPwrDynRm1 = 0;
1431
1432 /* For various features to be enabled/disabled while this level is active.*/
1433 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
1434 /* SCLK frequency in units of 10KHz*/
1435 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency);
1436 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl);
1437 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2);
1438 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3);
1439 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4);
1440 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum);
1441 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2);
1442 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
1443 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
1444
1445
1446 /* table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;*/
1447 table->MemoryACPILevel.MinVddc = table->ACPILevel.MinVddc;
1448 table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;
1449
1450 if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
1451 table->MemoryACPILevel.MinVddci = table->MemoryACPILevel.MinVddc;
1452 else {
1453 if (data->acpi_vddci != 0)
1454 table->MemoryACPILevel.MinVddci = PP_HOST_TO_SMC_UL(data->acpi_vddci * VOLTAGE_SCALE);
1455 else
1456 table->MemoryACPILevel.MinVddci = PP_HOST_TO_SMC_UL(data->min_vddci_in_pptable * VOLTAGE_SCALE);
1457 }
1458
1459 if (0 == ci_populate_mvdd_value(hwmgr, 0, &voltage_level))
1460 table->MemoryACPILevel.MinMvdd =
1461 PP_HOST_TO_SMC_UL(voltage_level.Voltage * VOLTAGE_SCALE);
1462 else
1463 table->MemoryACPILevel.MinMvdd = 0;
1464
1465 /* Force reset on DLL*/
1466 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1467 MCLK_PWRMGT_CNTL, MRDCK0_RESET, 0x1);
1468 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1469 MCLK_PWRMGT_CNTL, MRDCK1_RESET, 0x1);
1470
1471 /* Disable DLL in ACPIState*/
1472 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1473 MCLK_PWRMGT_CNTL, MRDCK0_PDNB, 0);
1474 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1475 MCLK_PWRMGT_CNTL, MRDCK1_PDNB, 0);
1476
1477 /* Enable DLL bypass signal*/
1478 dll_cntl = PHM_SET_FIELD(dll_cntl,
1479 DLL_CNTL, MRDCK0_BYPASS, 0);
1480 dll_cntl = PHM_SET_FIELD(dll_cntl,
1481 DLL_CNTL, MRDCK1_BYPASS, 0);
1482
1483 table->MemoryACPILevel.DllCntl =
1484 PP_HOST_TO_SMC_UL(dll_cntl);
1485 table->MemoryACPILevel.MclkPwrmgtCntl =
1486 PP_HOST_TO_SMC_UL(mclk_pwrmgt_cntl);
1487 table->MemoryACPILevel.MpllAdFuncCntl =
1488 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_AD_FUNC_CNTL);
1489 table->MemoryACPILevel.MpllDqFuncCntl =
1490 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_DQ_FUNC_CNTL);
1491 table->MemoryACPILevel.MpllFuncCntl =
1492 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL);
1493 table->MemoryACPILevel.MpllFuncCntl_1 =
1494 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_1);
1495 table->MemoryACPILevel.MpllFuncCntl_2 =
1496 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_2);
1497 table->MemoryACPILevel.MpllSs1 =
1498 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS1);
1499 table->MemoryACPILevel.MpllSs2 =
1500 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS2);
1501
1502 table->MemoryACPILevel.EnabledForThrottle = 0;
1503 table->MemoryACPILevel.EnabledForActivity = 0;
1504 table->MemoryACPILevel.UpH = 0;
1505 table->MemoryACPILevel.DownH = 100;
1506 table->MemoryACPILevel.VoltageDownH = 0;
1507 /* Indicates maximum activity level for this performance level.*/
1508 table->MemoryACPILevel.ActivityLevel = PP_HOST_TO_SMC_US(data->current_profile_setting.mclk_activity);
1509
1510 table->MemoryACPILevel.StutterEnable = 0;
1511 table->MemoryACPILevel.StrobeEnable = 0;
1512 table->MemoryACPILevel.EdcReadEnable = 0;
1513 table->MemoryACPILevel.EdcWriteEnable = 0;
1514 table->MemoryACPILevel.RttEnable = 0;
1515
1516 return result;
1517 }
1518
ci_populate_smc_uvd_level(struct pp_hwmgr * hwmgr,SMU7_Discrete_DpmTable * table)1519 static int ci_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
1520 SMU7_Discrete_DpmTable *table)
1521 {
1522 int result = 0;
1523 uint8_t count;
1524 struct pp_atomctrl_clock_dividers_vi dividers;
1525 struct phm_uvd_clock_voltage_dependency_table *uvd_table =
1526 hwmgr->dyn_state.uvd_clock_voltage_dependency_table;
1527
1528 table->UvdLevelCount = (uint8_t)(uvd_table->count);
1529
1530 for (count = 0; count < table->UvdLevelCount; count++) {
1531 table->UvdLevel[count].VclkFrequency =
1532 uvd_table->entries[count].vclk;
1533 table->UvdLevel[count].DclkFrequency =
1534 uvd_table->entries[count].dclk;
1535 table->UvdLevel[count].MinVddc =
1536 uvd_table->entries[count].v * VOLTAGE_SCALE;
1537 table->UvdLevel[count].MinVddcPhases = 1;
1538
1539 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1540 table->UvdLevel[count].VclkFrequency, ÷rs);
1541 PP_ASSERT_WITH_CODE((0 == result),
1542 "can not find divide id for Vclk clock", return result);
1543
1544 table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider;
1545
1546 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1547 table->UvdLevel[count].DclkFrequency, ÷rs);
1548 PP_ASSERT_WITH_CODE((0 == result),
1549 "can not find divide id for Dclk clock", return result);
1550
1551 table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider;
1552 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency);
1553 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency);
1554 CONVERT_FROM_HOST_TO_SMC_US(table->UvdLevel[count].MinVddc);
1555 }
1556
1557 return result;
1558 }
1559
ci_populate_smc_vce_level(struct pp_hwmgr * hwmgr,SMU7_Discrete_DpmTable * table)1560 static int ci_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
1561 SMU7_Discrete_DpmTable *table)
1562 {
1563 int result = -EINVAL;
1564 uint8_t count;
1565 struct pp_atomctrl_clock_dividers_vi dividers;
1566 struct phm_vce_clock_voltage_dependency_table *vce_table =
1567 hwmgr->dyn_state.vce_clock_voltage_dependency_table;
1568
1569 table->VceLevelCount = (uint8_t)(vce_table->count);
1570 table->VceBootLevel = 0;
1571
1572 for (count = 0; count < table->VceLevelCount; count++) {
1573 table->VceLevel[count].Frequency = vce_table->entries[count].evclk;
1574 table->VceLevel[count].MinVoltage =
1575 vce_table->entries[count].v * VOLTAGE_SCALE;
1576 table->VceLevel[count].MinPhases = 1;
1577
1578 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1579 table->VceLevel[count].Frequency, ÷rs);
1580 PP_ASSERT_WITH_CODE((0 == result),
1581 "can not find divide id for VCE engine clock",
1582 return result);
1583
1584 table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1585
1586 CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency);
1587 CONVERT_FROM_HOST_TO_SMC_US(table->VceLevel[count].MinVoltage);
1588 }
1589 return result;
1590 }
1591
ci_populate_smc_acp_level(struct pp_hwmgr * hwmgr,SMU7_Discrete_DpmTable * table)1592 static int ci_populate_smc_acp_level(struct pp_hwmgr *hwmgr,
1593 SMU7_Discrete_DpmTable *table)
1594 {
1595 int result = -EINVAL;
1596 uint8_t count;
1597 struct pp_atomctrl_clock_dividers_vi dividers;
1598 struct phm_acp_clock_voltage_dependency_table *acp_table =
1599 hwmgr->dyn_state.acp_clock_voltage_dependency_table;
1600
1601 table->AcpLevelCount = (uint8_t)(acp_table->count);
1602 table->AcpBootLevel = 0;
1603
1604 for (count = 0; count < table->AcpLevelCount; count++) {
1605 table->AcpLevel[count].Frequency = acp_table->entries[count].acpclk;
1606 table->AcpLevel[count].MinVoltage = acp_table->entries[count].v;
1607 table->AcpLevel[count].MinPhases = 1;
1608
1609 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1610 table->AcpLevel[count].Frequency, ÷rs);
1611 PP_ASSERT_WITH_CODE((0 == result),
1612 "can not find divide id for engine clock", return result);
1613
1614 table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1615
1616 CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency);
1617 CONVERT_FROM_HOST_TO_SMC_US(table->AcpLevel[count].MinVoltage);
1618 }
1619 return result;
1620 }
1621
ci_populate_memory_timing_parameters(struct pp_hwmgr * hwmgr,uint32_t engine_clock,uint32_t memory_clock,struct SMU7_Discrete_MCArbDramTimingTableEntry * arb_regs)1622 static int ci_populate_memory_timing_parameters(
1623 struct pp_hwmgr *hwmgr,
1624 uint32_t engine_clock,
1625 uint32_t memory_clock,
1626 struct SMU7_Discrete_MCArbDramTimingTableEntry *arb_regs
1627 )
1628 {
1629 uint32_t dramTiming;
1630 uint32_t dramTiming2;
1631 uint32_t burstTime;
1632 int result;
1633
1634 result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
1635 engine_clock, memory_clock);
1636
1637 PP_ASSERT_WITH_CODE(result == 0,
1638 "Error calling VBIOS to set DRAM_TIMING.", return result);
1639
1640 dramTiming = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
1641 dramTiming2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
1642 burstTime = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
1643
1644 arb_regs->McArbDramTiming = PP_HOST_TO_SMC_UL(dramTiming);
1645 arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dramTiming2);
1646 arb_regs->McArbBurstTime = (uint8_t)burstTime;
1647
1648 return 0;
1649 }
1650
ci_program_memory_timing_parameters(struct pp_hwmgr * hwmgr)1651 static int ci_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
1652 {
1653 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1654 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1655 int result = 0;
1656 SMU7_Discrete_MCArbDramTimingTable arb_regs;
1657 uint32_t i, j;
1658
1659 memset(&arb_regs, 0x00, sizeof(SMU7_Discrete_MCArbDramTimingTable));
1660
1661 for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
1662 for (j = 0; j < data->dpm_table.mclk_table.count; j++) {
1663 result = ci_populate_memory_timing_parameters
1664 (hwmgr, data->dpm_table.sclk_table.dpm_levels[i].value,
1665 data->dpm_table.mclk_table.dpm_levels[j].value,
1666 &arb_regs.entries[i][j]);
1667
1668 if (0 != result)
1669 break;
1670 }
1671 }
1672
1673 if (0 == result) {
1674 result = ci_copy_bytes_to_smc(
1675 hwmgr,
1676 smu_data->arb_table_start,
1677 (uint8_t *)&arb_regs,
1678 sizeof(SMU7_Discrete_MCArbDramTimingTable),
1679 SMC_RAM_END
1680 );
1681 }
1682
1683 return result;
1684 }
1685
ci_populate_smc_boot_level(struct pp_hwmgr * hwmgr,SMU7_Discrete_DpmTable * table)1686 static int ci_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
1687 SMU7_Discrete_DpmTable *table)
1688 {
1689 int result = 0;
1690 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1691 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1692
1693 table->GraphicsBootLevel = 0;
1694 table->MemoryBootLevel = 0;
1695
1696 /* find boot level from dpm table*/
1697 result = phm_find_boot_level(&(data->dpm_table.sclk_table),
1698 data->vbios_boot_state.sclk_bootup_value,
1699 (uint32_t *)&(smu_data->smc_state_table.GraphicsBootLevel));
1700
1701 if (0 != result) {
1702 smu_data->smc_state_table.GraphicsBootLevel = 0;
1703 pr_err("VBIOS did not find boot engine clock value in dependency table. Using Graphics DPM level 0!\n");
1704 result = 0;
1705 }
1706
1707 result = phm_find_boot_level(&(data->dpm_table.mclk_table),
1708 data->vbios_boot_state.mclk_bootup_value,
1709 (uint32_t *)&(smu_data->smc_state_table.MemoryBootLevel));
1710
1711 if (0 != result) {
1712 smu_data->smc_state_table.MemoryBootLevel = 0;
1713 pr_err("VBIOS did not find boot engine clock value in dependency table. Using Memory DPM level 0!\n");
1714 result = 0;
1715 }
1716
1717 table->BootVddc = data->vbios_boot_state.vddc_bootup_value;
1718 table->BootVddci = data->vbios_boot_state.vddci_bootup_value;
1719 table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value;
1720
1721 return result;
1722 }
1723
ci_populate_mc_reg_address(struct pp_hwmgr * hwmgr,SMU7_Discrete_MCRegisters * mc_reg_table)1724 static int ci_populate_mc_reg_address(struct pp_hwmgr *hwmgr,
1725 SMU7_Discrete_MCRegisters *mc_reg_table)
1726 {
1727 const struct ci_smumgr *smu_data = (struct ci_smumgr *)hwmgr->smu_backend;
1728
1729 uint32_t i, j;
1730
1731 for (i = 0, j = 0; j < smu_data->mc_reg_table.last; j++) {
1732 if (smu_data->mc_reg_table.validflag & 1<<j) {
1733 PP_ASSERT_WITH_CODE(i < SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE,
1734 "Index of mc_reg_table->address[] array out of boundary", return -EINVAL);
1735 mc_reg_table->address[i].s0 =
1736 PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s0);
1737 mc_reg_table->address[i].s1 =
1738 PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s1);
1739 i++;
1740 }
1741 }
1742
1743 mc_reg_table->last = (uint8_t)i;
1744
1745 return 0;
1746 }
1747
ci_convert_mc_registers(const struct ci_mc_reg_entry * entry,SMU7_Discrete_MCRegisterSet * data,uint32_t num_entries,uint32_t valid_flag)1748 static void ci_convert_mc_registers(
1749 const struct ci_mc_reg_entry *entry,
1750 SMU7_Discrete_MCRegisterSet *data,
1751 uint32_t num_entries, uint32_t valid_flag)
1752 {
1753 uint32_t i, j;
1754
1755 for (i = 0, j = 0; j < num_entries; j++) {
1756 if (valid_flag & 1<<j) {
1757 data->value[i] = PP_HOST_TO_SMC_UL(entry->mc_data[j]);
1758 i++;
1759 }
1760 }
1761 }
1762
ci_convert_mc_reg_table_entry_to_smc(struct pp_hwmgr * hwmgr,const uint32_t memory_clock,SMU7_Discrete_MCRegisterSet * mc_reg_table_data)1763 static int ci_convert_mc_reg_table_entry_to_smc(
1764 struct pp_hwmgr *hwmgr,
1765 const uint32_t memory_clock,
1766 SMU7_Discrete_MCRegisterSet *mc_reg_table_data
1767 )
1768 {
1769 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1770 uint32_t i = 0;
1771
1772 for (i = 0; i < smu_data->mc_reg_table.num_entries; i++) {
1773 if (memory_clock <=
1774 smu_data->mc_reg_table.mc_reg_table_entry[i].mclk_max) {
1775 break;
1776 }
1777 }
1778
1779 if ((i == smu_data->mc_reg_table.num_entries) && (i > 0))
1780 --i;
1781
1782 ci_convert_mc_registers(&smu_data->mc_reg_table.mc_reg_table_entry[i],
1783 mc_reg_table_data, smu_data->mc_reg_table.last,
1784 smu_data->mc_reg_table.validflag);
1785
1786 return 0;
1787 }
1788
ci_convert_mc_reg_table_to_smc(struct pp_hwmgr * hwmgr,SMU7_Discrete_MCRegisters * mc_regs)1789 static int ci_convert_mc_reg_table_to_smc(struct pp_hwmgr *hwmgr,
1790 SMU7_Discrete_MCRegisters *mc_regs)
1791 {
1792 int result = 0;
1793 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1794 int res;
1795 uint32_t i;
1796
1797 for (i = 0; i < data->dpm_table.mclk_table.count; i++) {
1798 res = ci_convert_mc_reg_table_entry_to_smc(
1799 hwmgr,
1800 data->dpm_table.mclk_table.dpm_levels[i].value,
1801 &mc_regs->data[i]
1802 );
1803
1804 if (0 != res)
1805 result = res;
1806 }
1807
1808 return result;
1809 }
1810
ci_update_and_upload_mc_reg_table(struct pp_hwmgr * hwmgr)1811 static int ci_update_and_upload_mc_reg_table(struct pp_hwmgr *hwmgr)
1812 {
1813 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1814 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1815 uint32_t address;
1816 int32_t result;
1817
1818 if (0 == (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK))
1819 return 0;
1820
1821
1822 memset(&smu_data->mc_regs, 0, sizeof(SMU7_Discrete_MCRegisters));
1823
1824 result = ci_convert_mc_reg_table_to_smc(hwmgr, &(smu_data->mc_regs));
1825
1826 if (result != 0)
1827 return result;
1828
1829 address = smu_data->mc_reg_table_start + (uint32_t)offsetof(SMU7_Discrete_MCRegisters, data[0]);
1830
1831 return ci_copy_bytes_to_smc(hwmgr, address,
1832 (uint8_t *)&smu_data->mc_regs.data[0],
1833 sizeof(SMU7_Discrete_MCRegisterSet) * data->dpm_table.mclk_table.count,
1834 SMC_RAM_END);
1835 }
1836
ci_populate_initial_mc_reg_table(struct pp_hwmgr * hwmgr)1837 static int ci_populate_initial_mc_reg_table(struct pp_hwmgr *hwmgr)
1838 {
1839 int result;
1840 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1841
1842 memset(&smu_data->mc_regs, 0x00, sizeof(SMU7_Discrete_MCRegisters));
1843 result = ci_populate_mc_reg_address(hwmgr, &(smu_data->mc_regs));
1844 PP_ASSERT_WITH_CODE(0 == result,
1845 "Failed to initialize MCRegTable for the MC register addresses!", return result;);
1846
1847 result = ci_convert_mc_reg_table_to_smc(hwmgr, &smu_data->mc_regs);
1848 PP_ASSERT_WITH_CODE(0 == result,
1849 "Failed to initialize MCRegTable for driver state!", return result;);
1850
1851 return ci_copy_bytes_to_smc(hwmgr, smu_data->mc_reg_table_start,
1852 (uint8_t *)&smu_data->mc_regs, sizeof(SMU7_Discrete_MCRegisters), SMC_RAM_END);
1853 }
1854
ci_populate_smc_initial_state(struct pp_hwmgr * hwmgr)1855 static int ci_populate_smc_initial_state(struct pp_hwmgr *hwmgr)
1856 {
1857 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1858 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1859 uint8_t count, level;
1860
1861 count = (uint8_t)(hwmgr->dyn_state.vddc_dependency_on_sclk->count);
1862
1863 for (level = 0; level < count; level++) {
1864 if (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[level].clk
1865 >= data->vbios_boot_state.sclk_bootup_value) {
1866 smu_data->smc_state_table.GraphicsBootLevel = level;
1867 break;
1868 }
1869 }
1870
1871 count = (uint8_t)(hwmgr->dyn_state.vddc_dependency_on_mclk->count);
1872
1873 for (level = 0; level < count; level++) {
1874 if (hwmgr->dyn_state.vddc_dependency_on_mclk->entries[level].clk
1875 >= data->vbios_boot_state.mclk_bootup_value) {
1876 smu_data->smc_state_table.MemoryBootLevel = level;
1877 break;
1878 }
1879 }
1880
1881 return 0;
1882 }
1883
ci_populate_smc_svi2_config(struct pp_hwmgr * hwmgr,SMU7_Discrete_DpmTable * table)1884 static int ci_populate_smc_svi2_config(struct pp_hwmgr *hwmgr,
1885 SMU7_Discrete_DpmTable *table)
1886 {
1887 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1888
1889 if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control)
1890 table->SVI2Enable = 1;
1891 else
1892 table->SVI2Enable = 0;
1893 return 0;
1894 }
1895
ci_start_smc(struct pp_hwmgr * hwmgr)1896 static int ci_start_smc(struct pp_hwmgr *hwmgr)
1897 {
1898 /* set smc instruct start point at 0x0 */
1899 ci_program_jump_on_start(hwmgr);
1900
1901 /* enable smc clock */
1902 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
1903
1904 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_RESET_CNTL, rst_reg, 0);
1905
1906 PHM_WAIT_INDIRECT_FIELD(hwmgr, SMC_IND, FIRMWARE_FLAGS,
1907 INTERRUPTS_ENABLED, 1);
1908
1909 return 0;
1910 }
1911
ci_populate_vr_config(struct pp_hwmgr * hwmgr,SMU7_Discrete_DpmTable * table)1912 static int ci_populate_vr_config(struct pp_hwmgr *hwmgr, SMU7_Discrete_DpmTable *table)
1913 {
1914 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1915 uint16_t config;
1916
1917 config = VR_SVI2_PLANE_1;
1918 table->VRConfig |= (config<<VRCONF_VDDGFX_SHIFT);
1919
1920 if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
1921 config = VR_SVI2_PLANE_2;
1922 table->VRConfig |= config;
1923 } else {
1924 pr_info("VDDCshould be on SVI2 controller!");
1925 }
1926
1927 if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
1928 config = VR_SVI2_PLANE_2;
1929 table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT);
1930 } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
1931 config = VR_SMIO_PATTERN_1;
1932 table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT);
1933 }
1934
1935 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
1936 config = VR_SMIO_PATTERN_2;
1937 table->VRConfig |= (config<<VRCONF_MVDD_SHIFT);
1938 }
1939
1940 return 0;
1941 }
1942
ci_init_smc_table(struct pp_hwmgr * hwmgr)1943 static int ci_init_smc_table(struct pp_hwmgr *hwmgr)
1944 {
1945 int result;
1946 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1947 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1948 SMU7_Discrete_DpmTable *table = &(smu_data->smc_state_table);
1949 struct pp_atomctrl_gpio_pin_assignment gpio_pin;
1950 u32 i;
1951
1952 ci_initialize_power_tune_defaults(hwmgr);
1953 memset(&(smu_data->smc_state_table), 0x00, sizeof(smu_data->smc_state_table));
1954
1955 if (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control)
1956 ci_populate_smc_voltage_tables(hwmgr, table);
1957
1958 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1959 PHM_PlatformCaps_AutomaticDCTransition))
1960 table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
1961
1962
1963 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1964 PHM_PlatformCaps_StepVddc))
1965 table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
1966
1967 if (data->is_memory_gddr5)
1968 table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
1969
1970 if (data->ulv_supported) {
1971 result = ci_populate_ulv_state(hwmgr, &(table->Ulv));
1972 PP_ASSERT_WITH_CODE(0 == result,
1973 "Failed to initialize ULV state!", return result);
1974
1975 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1976 ixCG_ULV_PARAMETER, 0x40035);
1977 }
1978
1979 result = ci_populate_all_graphic_levels(hwmgr);
1980 PP_ASSERT_WITH_CODE(0 == result,
1981 "Failed to initialize Graphics Level!", return result);
1982
1983 result = ci_populate_all_memory_levels(hwmgr);
1984 PP_ASSERT_WITH_CODE(0 == result,
1985 "Failed to initialize Memory Level!", return result);
1986
1987 result = ci_populate_smc_link_level(hwmgr, table);
1988 PP_ASSERT_WITH_CODE(0 == result,
1989 "Failed to initialize Link Level!", return result);
1990
1991 result = ci_populate_smc_acpi_level(hwmgr, table);
1992 PP_ASSERT_WITH_CODE(0 == result,
1993 "Failed to initialize ACPI Level!", return result);
1994
1995 result = ci_populate_smc_vce_level(hwmgr, table);
1996 PP_ASSERT_WITH_CODE(0 == result,
1997 "Failed to initialize VCE Level!", return result);
1998
1999 result = ci_populate_smc_acp_level(hwmgr, table);
2000 PP_ASSERT_WITH_CODE(0 == result,
2001 "Failed to initialize ACP Level!", return result);
2002
2003 /* Since only the initial state is completely set up at this point (the other states are just copies of the boot state) we only */
2004 /* need to populate the ARB settings for the initial state. */
2005 result = ci_program_memory_timing_parameters(hwmgr);
2006 PP_ASSERT_WITH_CODE(0 == result,
2007 "Failed to Write ARB settings for the initial state.", return result);
2008
2009 result = ci_populate_smc_uvd_level(hwmgr, table);
2010 PP_ASSERT_WITH_CODE(0 == result,
2011 "Failed to initialize UVD Level!", return result);
2012
2013 table->UvdBootLevel = 0;
2014 table->VceBootLevel = 0;
2015 table->AcpBootLevel = 0;
2016 table->SamuBootLevel = 0;
2017
2018 table->GraphicsBootLevel = 0;
2019 table->MemoryBootLevel = 0;
2020
2021 result = ci_populate_smc_boot_level(hwmgr, table);
2022 PP_ASSERT_WITH_CODE(0 == result,
2023 "Failed to initialize Boot Level!", return result);
2024
2025 result = ci_populate_smc_initial_state(hwmgr);
2026 PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize Boot State!", return result);
2027
2028 result = ci_populate_bapm_parameters_in_dpm_table(hwmgr);
2029 PP_ASSERT_WITH_CODE(0 == result, "Failed to populate BAPM Parameters!", return result);
2030
2031 table->UVDInterval = 1;
2032 table->VCEInterval = 1;
2033 table->ACPInterval = 1;
2034 table->SAMUInterval = 1;
2035 table->GraphicsVoltageChangeEnable = 1;
2036 table->GraphicsThermThrottleEnable = 1;
2037 table->GraphicsInterval = 1;
2038 table->VoltageInterval = 1;
2039 table->ThermalInterval = 1;
2040
2041 table->TemperatureLimitHigh =
2042 (data->thermal_temp_setting.temperature_high *
2043 SMU7_Q88_FORMAT_CONVERSION_UNIT) / PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
2044 table->TemperatureLimitLow =
2045 (data->thermal_temp_setting.temperature_low *
2046 SMU7_Q88_FORMAT_CONVERSION_UNIT) / PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
2047
2048 table->MemoryVoltageChangeEnable = 1;
2049 table->MemoryInterval = 1;
2050 table->VoltageResponseTime = 0;
2051 table->VddcVddciDelta = 4000;
2052 table->PhaseResponseTime = 0;
2053 table->MemoryThermThrottleEnable = 1;
2054
2055 PP_ASSERT_WITH_CODE((1 <= data->dpm_table.pcie_speed_table.count),
2056 "There must be 1 or more PCIE levels defined in PPTable.",
2057 return -EINVAL);
2058
2059 table->PCIeBootLinkLevel = (uint8_t)data->dpm_table.pcie_speed_table.count;
2060 table->PCIeGenInterval = 1;
2061
2062 result = ci_populate_vr_config(hwmgr, table);
2063 PP_ASSERT_WITH_CODE(0 == result,
2064 "Failed to populate VRConfig setting!", return result);
2065 data->vr_config = table->VRConfig;
2066
2067 ci_populate_smc_svi2_config(hwmgr, table);
2068
2069 for (i = 0; i < SMU7_MAX_ENTRIES_SMIO; i++)
2070 CONVERT_FROM_HOST_TO_SMC_UL(table->Smio[i]);
2071
2072 table->ThermGpio = 17;
2073 table->SclkStepSize = 0x4000;
2074 if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID, &gpio_pin)) {
2075 table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift;
2076 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2077 PHM_PlatformCaps_RegulatorHot);
2078 } else {
2079 table->VRHotGpio = SMU7_UNUSED_GPIO_PIN;
2080 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2081 PHM_PlatformCaps_RegulatorHot);
2082 }
2083
2084 table->AcDcGpio = SMU7_UNUSED_GPIO_PIN;
2085
2086 CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
2087 CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig);
2088 CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddcVid);
2089 CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddcPhase);
2090 CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddciVid);
2091 CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskMvddVid);
2092 CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
2093 CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
2094 CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
2095 table->VddcVddciDelta = PP_HOST_TO_SMC_US(table->VddcVddciDelta);
2096 CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
2097 CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
2098
2099 table->BootVddc = PP_HOST_TO_SMC_US(table->BootVddc * VOLTAGE_SCALE);
2100 table->BootVddci = PP_HOST_TO_SMC_US(table->BootVddci * VOLTAGE_SCALE);
2101 table->BootMVdd = PP_HOST_TO_SMC_US(table->BootMVdd * VOLTAGE_SCALE);
2102
2103 /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
2104 result = ci_copy_bytes_to_smc(hwmgr, smu_data->dpm_table_start +
2105 offsetof(SMU7_Discrete_DpmTable, SystemFlags),
2106 (uint8_t *)&(table->SystemFlags),
2107 sizeof(SMU7_Discrete_DpmTable)-3 * sizeof(SMU7_PIDController),
2108 SMC_RAM_END);
2109
2110 PP_ASSERT_WITH_CODE(0 == result,
2111 "Failed to upload dpm data to SMC memory!", return result;);
2112
2113 result = ci_populate_initial_mc_reg_table(hwmgr);
2114 PP_ASSERT_WITH_CODE((0 == result),
2115 "Failed to populate initialize MC Reg table!", return result);
2116
2117 result = ci_populate_pm_fuses(hwmgr);
2118 PP_ASSERT_WITH_CODE(0 == result,
2119 "Failed to populate PM fuses to SMC memory!", return result);
2120
2121 ci_start_smc(hwmgr);
2122
2123 return 0;
2124 }
2125
ci_thermal_setup_fan_table(struct pp_hwmgr * hwmgr)2126 static int ci_thermal_setup_fan_table(struct pp_hwmgr *hwmgr)
2127 {
2128 struct ci_smumgr *ci_data = (struct ci_smumgr *)(hwmgr->smu_backend);
2129 SMU7_Discrete_FanTable fan_table = { FDO_MODE_HARDWARE };
2130 uint32_t duty100;
2131 uint32_t t_diff1, t_diff2, pwm_diff1, pwm_diff2;
2132 uint16_t fdo_min, slope1, slope2;
2133 uint32_t reference_clock;
2134 int res;
2135 uint64_t tmp64;
2136
2137 if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl))
2138 return 0;
2139
2140 if (hwmgr->thermal_controller.fanInfo.bNoFan) {
2141 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2142 PHM_PlatformCaps_MicrocodeFanControl);
2143 return 0;
2144 }
2145
2146 if (0 == ci_data->fan_table_start) {
2147 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl);
2148 return 0;
2149 }
2150
2151 duty100 = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_FDO_CTRL1, FMAX_DUTY100);
2152
2153 if (0 == duty100) {
2154 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl);
2155 return 0;
2156 }
2157
2158 tmp64 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin * duty100;
2159 do_div(tmp64, 10000);
2160 fdo_min = (uint16_t)tmp64;
2161
2162 t_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usTMed - hwmgr->thermal_controller.advanceFanControlParameters.usTMin;
2163 t_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usTHigh - hwmgr->thermal_controller.advanceFanControlParameters.usTMed;
2164
2165 pwm_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed - hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin;
2166 pwm_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh - hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed;
2167
2168 slope1 = (uint16_t)((50 + ((16 * duty100 * pwm_diff1) / t_diff1)) / 100);
2169 slope2 = (uint16_t)((50 + ((16 * duty100 * pwm_diff2) / t_diff2)) / 100);
2170
2171 fan_table.TempMin = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMin) / 100);
2172 fan_table.TempMed = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMed) / 100);
2173 fan_table.TempMax = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMax) / 100);
2174
2175 fan_table.Slope1 = cpu_to_be16(slope1);
2176 fan_table.Slope2 = cpu_to_be16(slope2);
2177
2178 fan_table.FdoMin = cpu_to_be16(fdo_min);
2179
2180 fan_table.HystDown = cpu_to_be16(hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst);
2181
2182 fan_table.HystUp = cpu_to_be16(1);
2183
2184 fan_table.HystSlope = cpu_to_be16(1);
2185
2186 fan_table.TempRespLim = cpu_to_be16(5);
2187
2188 reference_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev);
2189
2190 fan_table.RefreshPeriod = cpu_to_be32((hwmgr->thermal_controller.advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600);
2191
2192 fan_table.FdoMax = cpu_to_be16((uint16_t)duty100);
2193
2194 fan_table.TempSrc = (uint8_t)PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_MULT_THERMAL_CTRL, TEMP_SEL);
2195
2196 res = ci_copy_bytes_to_smc(hwmgr, ci_data->fan_table_start, (uint8_t *)&fan_table, (uint32_t)sizeof(fan_table), SMC_RAM_END);
2197
2198 return res;
2199 }
2200
ci_program_mem_timing_parameters(struct pp_hwmgr * hwmgr)2201 static int ci_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
2202 {
2203 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2204
2205 if (data->need_update_smu7_dpm_table &
2206 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK))
2207 return ci_program_memory_timing_parameters(hwmgr);
2208
2209 return 0;
2210 }
2211
ci_update_sclk_threshold(struct pp_hwmgr * hwmgr)2212 static int ci_update_sclk_threshold(struct pp_hwmgr *hwmgr)
2213 {
2214 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2215 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
2216
2217 int result = 0;
2218 uint32_t low_sclk_interrupt_threshold = 0;
2219
2220 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2221 PHM_PlatformCaps_SclkThrottleLowNotification)
2222 && (data->low_sclk_interrupt_threshold != 0)) {
2223 low_sclk_interrupt_threshold =
2224 data->low_sclk_interrupt_threshold;
2225
2226 CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
2227
2228 result = ci_copy_bytes_to_smc(
2229 hwmgr,
2230 smu_data->dpm_table_start +
2231 offsetof(SMU7_Discrete_DpmTable,
2232 LowSclkInterruptT),
2233 (uint8_t *)&low_sclk_interrupt_threshold,
2234 sizeof(uint32_t),
2235 SMC_RAM_END);
2236 }
2237
2238 result = ci_update_and_upload_mc_reg_table(hwmgr);
2239
2240 PP_ASSERT_WITH_CODE((0 == result), "Failed to upload MC reg table!", return result);
2241
2242 result = ci_program_mem_timing_parameters(hwmgr);
2243 PP_ASSERT_WITH_CODE((result == 0),
2244 "Failed to program memory timing parameters!",
2245 );
2246
2247 return result;
2248 }
2249
ci_get_offsetof(uint32_t type,uint32_t member)2250 static uint32_t ci_get_offsetof(uint32_t type, uint32_t member)
2251 {
2252 switch (type) {
2253 case SMU_SoftRegisters:
2254 switch (member) {
2255 case HandshakeDisables:
2256 return offsetof(SMU7_SoftRegisters, HandshakeDisables);
2257 case VoltageChangeTimeout:
2258 return offsetof(SMU7_SoftRegisters, VoltageChangeTimeout);
2259 case AverageGraphicsActivity:
2260 return offsetof(SMU7_SoftRegisters, AverageGraphicsA);
2261 case AverageMemoryActivity:
2262 return offsetof(SMU7_SoftRegisters, AverageMemoryA);
2263 case PreVBlankGap:
2264 return offsetof(SMU7_SoftRegisters, PreVBlankGap);
2265 case VBlankTimeout:
2266 return offsetof(SMU7_SoftRegisters, VBlankTimeout);
2267 case DRAM_LOG_ADDR_H:
2268 return offsetof(SMU7_SoftRegisters, DRAM_LOG_ADDR_H);
2269 case DRAM_LOG_ADDR_L:
2270 return offsetof(SMU7_SoftRegisters, DRAM_LOG_ADDR_L);
2271 case DRAM_LOG_PHY_ADDR_H:
2272 return offsetof(SMU7_SoftRegisters, DRAM_LOG_PHY_ADDR_H);
2273 case DRAM_LOG_PHY_ADDR_L:
2274 return offsetof(SMU7_SoftRegisters, DRAM_LOG_PHY_ADDR_L);
2275 case DRAM_LOG_BUFF_SIZE:
2276 return offsetof(SMU7_SoftRegisters, DRAM_LOG_BUFF_SIZE);
2277 }
2278 break;
2279 case SMU_Discrete_DpmTable:
2280 switch (member) {
2281 case LowSclkInterruptThreshold:
2282 return offsetof(SMU7_Discrete_DpmTable, LowSclkInterruptT);
2283 }
2284 break;
2285 }
2286 pr_debug("can't get the offset of type %x member %x\n", type, member);
2287 return 0;
2288 }
2289
ci_get_mac_definition(uint32_t value)2290 static uint32_t ci_get_mac_definition(uint32_t value)
2291 {
2292 switch (value) {
2293 case SMU_MAX_LEVELS_GRAPHICS:
2294 return SMU7_MAX_LEVELS_GRAPHICS;
2295 case SMU_MAX_LEVELS_MEMORY:
2296 return SMU7_MAX_LEVELS_MEMORY;
2297 case SMU_MAX_LEVELS_LINK:
2298 return SMU7_MAX_LEVELS_LINK;
2299 case SMU_MAX_ENTRIES_SMIO:
2300 return SMU7_MAX_ENTRIES_SMIO;
2301 case SMU_MAX_LEVELS_VDDC:
2302 return SMU7_MAX_LEVELS_VDDC;
2303 case SMU_MAX_LEVELS_VDDCI:
2304 return SMU7_MAX_LEVELS_VDDCI;
2305 case SMU_MAX_LEVELS_MVDD:
2306 return SMU7_MAX_LEVELS_MVDD;
2307 }
2308
2309 pr_debug("can't get the mac of %x\n", value);
2310 return 0;
2311 }
2312
ci_load_smc_ucode(struct pp_hwmgr * hwmgr)2313 static int ci_load_smc_ucode(struct pp_hwmgr *hwmgr)
2314 {
2315 uint32_t byte_count, start_addr;
2316 uint8_t *src;
2317 uint32_t data;
2318
2319 struct cgs_firmware_info info = {0};
2320
2321 cgs_get_firmware_info(hwmgr->device, CGS_UCODE_ID_SMU, &info);
2322
2323 hwmgr->is_kicker = info.is_kicker;
2324 hwmgr->smu_version = info.version;
2325 byte_count = info.image_size;
2326 src = (uint8_t *)info.kptr;
2327 start_addr = info.ucode_start_address;
2328
2329 if (byte_count > SMC_RAM_END) {
2330 pr_err("SMC address is beyond the SMC RAM area.\n");
2331 return -EINVAL;
2332 }
2333
2334 cgs_write_register(hwmgr->device, mmSMC_IND_INDEX_0, start_addr);
2335 PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 1);
2336
2337 for (; byte_count >= 4; byte_count -= 4) {
2338 data = (src[0] << 24) | (src[1] << 16) | (src[2] << 8) | src[3];
2339 cgs_write_register(hwmgr->device, mmSMC_IND_DATA_0, data);
2340 src += 4;
2341 }
2342 PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 0);
2343
2344 if (0 != byte_count) {
2345 pr_err("SMC size must be divisible by 4\n");
2346 return -EINVAL;
2347 }
2348
2349 return 0;
2350 }
2351
ci_upload_firmware(struct pp_hwmgr * hwmgr)2352 static int ci_upload_firmware(struct pp_hwmgr *hwmgr)
2353 {
2354 if (ci_is_smc_ram_running(hwmgr)) {
2355 pr_info("smc is running, no need to load smc firmware\n");
2356 return 0;
2357 }
2358 PHM_WAIT_INDIRECT_FIELD(hwmgr, SMC_IND, RCU_UC_EVENTS,
2359 boot_seq_done, 1);
2360 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_MISC_CNTL,
2361 pre_fetcher_en, 1);
2362
2363 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 1);
2364 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_RESET_CNTL, rst_reg, 1);
2365 return ci_load_smc_ucode(hwmgr);
2366 }
2367
ci_process_firmware_header(struct pp_hwmgr * hwmgr)2368 static int ci_process_firmware_header(struct pp_hwmgr *hwmgr)
2369 {
2370 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2371 struct ci_smumgr *ci_data = (struct ci_smumgr *)(hwmgr->smu_backend);
2372
2373 uint32_t tmp = 0;
2374 int result;
2375 bool error = false;
2376
2377 if (ci_upload_firmware(hwmgr))
2378 return -EINVAL;
2379
2380 result = ci_read_smc_sram_dword(hwmgr,
2381 SMU7_FIRMWARE_HEADER_LOCATION +
2382 offsetof(SMU7_Firmware_Header, DpmTable),
2383 &tmp, SMC_RAM_END);
2384
2385 if (0 == result)
2386 ci_data->dpm_table_start = tmp;
2387
2388 error |= (0 != result);
2389
2390 result = ci_read_smc_sram_dword(hwmgr,
2391 SMU7_FIRMWARE_HEADER_LOCATION +
2392 offsetof(SMU7_Firmware_Header, SoftRegisters),
2393 &tmp, SMC_RAM_END);
2394
2395 if (0 == result) {
2396 data->soft_regs_start = tmp;
2397 ci_data->soft_regs_start = tmp;
2398 }
2399
2400 error |= (0 != result);
2401
2402 result = ci_read_smc_sram_dword(hwmgr,
2403 SMU7_FIRMWARE_HEADER_LOCATION +
2404 offsetof(SMU7_Firmware_Header, mcRegisterTable),
2405 &tmp, SMC_RAM_END);
2406
2407 if (0 == result)
2408 ci_data->mc_reg_table_start = tmp;
2409
2410 result = ci_read_smc_sram_dword(hwmgr,
2411 SMU7_FIRMWARE_HEADER_LOCATION +
2412 offsetof(SMU7_Firmware_Header, FanTable),
2413 &tmp, SMC_RAM_END);
2414
2415 if (0 == result)
2416 ci_data->fan_table_start = tmp;
2417
2418 error |= (0 != result);
2419
2420 result = ci_read_smc_sram_dword(hwmgr,
2421 SMU7_FIRMWARE_HEADER_LOCATION +
2422 offsetof(SMU7_Firmware_Header, mcArbDramTimingTable),
2423 &tmp, SMC_RAM_END);
2424
2425 if (0 == result)
2426 ci_data->arb_table_start = tmp;
2427
2428 error |= (0 != result);
2429
2430 result = ci_read_smc_sram_dword(hwmgr,
2431 SMU7_FIRMWARE_HEADER_LOCATION +
2432 offsetof(SMU7_Firmware_Header, Version),
2433 &tmp, SMC_RAM_END);
2434
2435 if (0 == result)
2436 hwmgr->microcode_version_info.SMC = tmp;
2437
2438 error |= (0 != result);
2439
2440 return error ? 1 : 0;
2441 }
2442
ci_get_memory_modile_index(struct pp_hwmgr * hwmgr)2443 static uint8_t ci_get_memory_modile_index(struct pp_hwmgr *hwmgr)
2444 {
2445 return (uint8_t) (0xFF & (cgs_read_register(hwmgr->device, mmBIOS_SCRATCH_4) >> 16));
2446 }
2447
ci_check_s0_mc_reg_index(uint16_t in_reg,uint16_t * out_reg)2448 static bool ci_check_s0_mc_reg_index(uint16_t in_reg, uint16_t *out_reg)
2449 {
2450 bool result = true;
2451
2452 switch (in_reg) {
2453 case mmMC_SEQ_RAS_TIMING:
2454 *out_reg = mmMC_SEQ_RAS_TIMING_LP;
2455 break;
2456
2457 case mmMC_SEQ_DLL_STBY:
2458 *out_reg = mmMC_SEQ_DLL_STBY_LP;
2459 break;
2460
2461 case mmMC_SEQ_G5PDX_CMD0:
2462 *out_reg = mmMC_SEQ_G5PDX_CMD0_LP;
2463 break;
2464
2465 case mmMC_SEQ_G5PDX_CMD1:
2466 *out_reg = mmMC_SEQ_G5PDX_CMD1_LP;
2467 break;
2468
2469 case mmMC_SEQ_G5PDX_CTRL:
2470 *out_reg = mmMC_SEQ_G5PDX_CTRL_LP;
2471 break;
2472
2473 case mmMC_SEQ_CAS_TIMING:
2474 *out_reg = mmMC_SEQ_CAS_TIMING_LP;
2475 break;
2476
2477 case mmMC_SEQ_MISC_TIMING:
2478 *out_reg = mmMC_SEQ_MISC_TIMING_LP;
2479 break;
2480
2481 case mmMC_SEQ_MISC_TIMING2:
2482 *out_reg = mmMC_SEQ_MISC_TIMING2_LP;
2483 break;
2484
2485 case mmMC_SEQ_PMG_DVS_CMD:
2486 *out_reg = mmMC_SEQ_PMG_DVS_CMD_LP;
2487 break;
2488
2489 case mmMC_SEQ_PMG_DVS_CTL:
2490 *out_reg = mmMC_SEQ_PMG_DVS_CTL_LP;
2491 break;
2492
2493 case mmMC_SEQ_RD_CTL_D0:
2494 *out_reg = mmMC_SEQ_RD_CTL_D0_LP;
2495 break;
2496
2497 case mmMC_SEQ_RD_CTL_D1:
2498 *out_reg = mmMC_SEQ_RD_CTL_D1_LP;
2499 break;
2500
2501 case mmMC_SEQ_WR_CTL_D0:
2502 *out_reg = mmMC_SEQ_WR_CTL_D0_LP;
2503 break;
2504
2505 case mmMC_SEQ_WR_CTL_D1:
2506 *out_reg = mmMC_SEQ_WR_CTL_D1_LP;
2507 break;
2508
2509 case mmMC_PMG_CMD_EMRS:
2510 *out_reg = mmMC_SEQ_PMG_CMD_EMRS_LP;
2511 break;
2512
2513 case mmMC_PMG_CMD_MRS:
2514 *out_reg = mmMC_SEQ_PMG_CMD_MRS_LP;
2515 break;
2516
2517 case mmMC_PMG_CMD_MRS1:
2518 *out_reg = mmMC_SEQ_PMG_CMD_MRS1_LP;
2519 break;
2520
2521 case mmMC_SEQ_PMG_TIMING:
2522 *out_reg = mmMC_SEQ_PMG_TIMING_LP;
2523 break;
2524
2525 case mmMC_PMG_CMD_MRS2:
2526 *out_reg = mmMC_SEQ_PMG_CMD_MRS2_LP;
2527 break;
2528
2529 case mmMC_SEQ_WR_CTL_2:
2530 *out_reg = mmMC_SEQ_WR_CTL_2_LP;
2531 break;
2532
2533 default:
2534 result = false;
2535 break;
2536 }
2537
2538 return result;
2539 }
2540
ci_set_s0_mc_reg_index(struct ci_mc_reg_table * table)2541 static int ci_set_s0_mc_reg_index(struct ci_mc_reg_table *table)
2542 {
2543 uint32_t i;
2544 uint16_t address;
2545
2546 for (i = 0; i < table->last; i++) {
2547 table->mc_reg_address[i].s0 =
2548 ci_check_s0_mc_reg_index(table->mc_reg_address[i].s1, &address)
2549 ? address : table->mc_reg_address[i].s1;
2550 }
2551 return 0;
2552 }
2553
ci_copy_vbios_smc_reg_table(const pp_atomctrl_mc_reg_table * table,struct ci_mc_reg_table * ni_table)2554 static int ci_copy_vbios_smc_reg_table(const pp_atomctrl_mc_reg_table *table,
2555 struct ci_mc_reg_table *ni_table)
2556 {
2557 uint8_t i, j;
2558
2559 PP_ASSERT_WITH_CODE((table->last <= SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2560 "Invalid VramInfo table.", return -EINVAL);
2561 PP_ASSERT_WITH_CODE((table->num_entries <= MAX_AC_TIMING_ENTRIES),
2562 "Invalid VramInfo table.", return -EINVAL);
2563
2564 for (i = 0; i < table->last; i++)
2565 ni_table->mc_reg_address[i].s1 = table->mc_reg_address[i].s1;
2566
2567 ni_table->last = table->last;
2568
2569 for (i = 0; i < table->num_entries; i++) {
2570 ni_table->mc_reg_table_entry[i].mclk_max =
2571 table->mc_reg_table_entry[i].mclk_max;
2572 for (j = 0; j < table->last; j++) {
2573 ni_table->mc_reg_table_entry[i].mc_data[j] =
2574 table->mc_reg_table_entry[i].mc_data[j];
2575 }
2576 }
2577
2578 ni_table->num_entries = table->num_entries;
2579
2580 return 0;
2581 }
2582
ci_set_mc_special_registers(struct pp_hwmgr * hwmgr,struct ci_mc_reg_table * table)2583 static int ci_set_mc_special_registers(struct pp_hwmgr *hwmgr,
2584 struct ci_mc_reg_table *table)
2585 {
2586 uint8_t i, j, k;
2587 uint32_t temp_reg;
2588 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2589
2590 for (i = 0, j = table->last; i < table->last; i++) {
2591 PP_ASSERT_WITH_CODE((j < SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2592 "Invalid VramInfo table.", return -EINVAL);
2593
2594 switch (table->mc_reg_address[i].s1) {
2595
2596 case mmMC_SEQ_MISC1:
2597 temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS);
2598 table->mc_reg_address[j].s1 = mmMC_PMG_CMD_EMRS;
2599 table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_EMRS_LP;
2600 for (k = 0; k < table->num_entries; k++) {
2601 table->mc_reg_table_entry[k].mc_data[j] =
2602 ((temp_reg & 0xffff0000)) |
2603 ((table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16);
2604 }
2605 j++;
2606
2607 PP_ASSERT_WITH_CODE((j < SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2608 "Invalid VramInfo table.", return -EINVAL);
2609 temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS);
2610 table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS;
2611 table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS_LP;
2612 for (k = 0; k < table->num_entries; k++) {
2613 table->mc_reg_table_entry[k].mc_data[j] =
2614 (temp_reg & 0xffff0000) |
2615 (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
2616
2617 if (!data->is_memory_gddr5)
2618 table->mc_reg_table_entry[k].mc_data[j] |= 0x100;
2619 }
2620 j++;
2621
2622 if (!data->is_memory_gddr5) {
2623 PP_ASSERT_WITH_CODE((j < SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2624 "Invalid VramInfo table.", return -EINVAL);
2625 table->mc_reg_address[j].s1 = mmMC_PMG_AUTO_CMD;
2626 table->mc_reg_address[j].s0 = mmMC_PMG_AUTO_CMD;
2627 for (k = 0; k < table->num_entries; k++) {
2628 table->mc_reg_table_entry[k].mc_data[j] =
2629 (table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16;
2630 }
2631 j++;
2632 }
2633
2634 break;
2635
2636 case mmMC_SEQ_RESERVE_M:
2637 temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1);
2638 table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS1;
2639 table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS1_LP;
2640 for (k = 0; k < table->num_entries; k++) {
2641 table->mc_reg_table_entry[k].mc_data[j] =
2642 (temp_reg & 0xffff0000) |
2643 (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
2644 }
2645 j++;
2646 break;
2647
2648 default:
2649 break;
2650 }
2651
2652 }
2653
2654 table->last = j;
2655
2656 return 0;
2657 }
2658
ci_set_valid_flag(struct ci_mc_reg_table * table)2659 static int ci_set_valid_flag(struct ci_mc_reg_table *table)
2660 {
2661 uint8_t i, j;
2662
2663 for (i = 0; i < table->last; i++) {
2664 for (j = 1; j < table->num_entries; j++) {
2665 if (table->mc_reg_table_entry[j-1].mc_data[i] !=
2666 table->mc_reg_table_entry[j].mc_data[i]) {
2667 table->validflag |= (1 << i);
2668 break;
2669 }
2670 }
2671 }
2672
2673 return 0;
2674 }
2675
ci_initialize_mc_reg_table(struct pp_hwmgr * hwmgr)2676 static int ci_initialize_mc_reg_table(struct pp_hwmgr *hwmgr)
2677 {
2678 int result;
2679 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
2680 pp_atomctrl_mc_reg_table *table;
2681 struct ci_mc_reg_table *ni_table = &smu_data->mc_reg_table;
2682 uint8_t module_index = ci_get_memory_modile_index(hwmgr);
2683
2684 table = kzalloc(sizeof(pp_atomctrl_mc_reg_table), GFP_KERNEL);
2685
2686 if (NULL == table)
2687 return -ENOMEM;
2688
2689 /* Program additional LP registers that are no longer programmed by VBIOS */
2690 cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING));
2691 cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING));
2692 cgs_write_register(hwmgr->device, mmMC_SEQ_DLL_STBY_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_DLL_STBY));
2693 cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0));
2694 cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1));
2695 cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL));
2696 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD));
2697 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL));
2698 cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING));
2699 cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2));
2700 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_EMRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS));
2701 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS));
2702 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS1_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1));
2703 cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0));
2704 cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1));
2705 cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0));
2706 cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1));
2707 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING));
2708 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS2_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS2));
2709 cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_2));
2710
2711 result = atomctrl_initialize_mc_reg_table(hwmgr, module_index, table);
2712
2713 if (0 == result)
2714 result = ci_copy_vbios_smc_reg_table(table, ni_table);
2715
2716 if (0 == result) {
2717 ci_set_s0_mc_reg_index(ni_table);
2718 result = ci_set_mc_special_registers(hwmgr, ni_table);
2719 }
2720
2721 if (0 == result)
2722 ci_set_valid_flag(ni_table);
2723
2724 kfree(table);
2725
2726 return result;
2727 }
2728
ci_is_dpm_running(struct pp_hwmgr * hwmgr)2729 static bool ci_is_dpm_running(struct pp_hwmgr *hwmgr)
2730 {
2731 return ci_is_smc_ram_running(hwmgr);
2732 }
2733
ci_smu_init(struct pp_hwmgr * hwmgr)2734 static int ci_smu_init(struct pp_hwmgr *hwmgr)
2735 {
2736 struct ci_smumgr *ci_priv = NULL;
2737
2738 ci_priv = kzalloc(sizeof(struct ci_smumgr), GFP_KERNEL);
2739
2740 if (ci_priv == NULL)
2741 return -ENOMEM;
2742
2743 hwmgr->smu_backend = ci_priv;
2744
2745 return 0;
2746 }
2747
ci_smu_fini(struct pp_hwmgr * hwmgr)2748 static int ci_smu_fini(struct pp_hwmgr *hwmgr)
2749 {
2750 kfree(hwmgr->smu_backend);
2751 hwmgr->smu_backend = NULL;
2752 return 0;
2753 }
2754
ci_start_smu(struct pp_hwmgr * hwmgr)2755 static int ci_start_smu(struct pp_hwmgr *hwmgr)
2756 {
2757 return 0;
2758 }
2759
ci_update_dpm_settings(struct pp_hwmgr * hwmgr,void * profile_setting)2760 static int ci_update_dpm_settings(struct pp_hwmgr *hwmgr,
2761 void *profile_setting)
2762 {
2763 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2764 struct ci_smumgr *smu_data = (struct ci_smumgr *)
2765 (hwmgr->smu_backend);
2766 struct profile_mode_setting *setting;
2767 struct SMU7_Discrete_GraphicsLevel *levels =
2768 smu_data->smc_state_table.GraphicsLevel;
2769 uint32_t array = smu_data->dpm_table_start +
2770 offsetof(SMU7_Discrete_DpmTable, GraphicsLevel);
2771
2772 uint32_t mclk_array = smu_data->dpm_table_start +
2773 offsetof(SMU7_Discrete_DpmTable, MemoryLevel);
2774 struct SMU7_Discrete_MemoryLevel *mclk_levels =
2775 smu_data->smc_state_table.MemoryLevel;
2776 uint32_t i;
2777 uint32_t offset, up_hyst_offset, down_hyst_offset, clk_activity_offset, tmp;
2778
2779 if (profile_setting == NULL)
2780 return -EINVAL;
2781
2782 setting = (struct profile_mode_setting *)profile_setting;
2783
2784 if (setting->bupdate_sclk) {
2785 if (!data->sclk_dpm_key_disabled)
2786 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_FreezeLevel, NULL);
2787 for (i = 0; i < smu_data->smc_state_table.GraphicsDpmLevelCount; i++) {
2788 if (levels[i].ActivityLevel !=
2789 cpu_to_be16(setting->sclk_activity)) {
2790 levels[i].ActivityLevel = cpu_to_be16(setting->sclk_activity);
2791
2792 clk_activity_offset = array + (sizeof(SMU7_Discrete_GraphicsLevel) * i)
2793 + offsetof(SMU7_Discrete_GraphicsLevel, ActivityLevel);
2794 offset = clk_activity_offset & ~0x3;
2795 tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2796 tmp = phm_set_field_to_u32(clk_activity_offset, tmp, levels[i].ActivityLevel, sizeof(uint16_t));
2797 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2798
2799 }
2800 if (levels[i].UpH != setting->sclk_up_hyst ||
2801 levels[i].DownH != setting->sclk_down_hyst) {
2802 levels[i].UpH = setting->sclk_up_hyst;
2803 levels[i].DownH = setting->sclk_down_hyst;
2804 up_hyst_offset = array + (sizeof(SMU7_Discrete_GraphicsLevel) * i)
2805 + offsetof(SMU7_Discrete_GraphicsLevel, UpH);
2806 down_hyst_offset = array + (sizeof(SMU7_Discrete_GraphicsLevel) * i)
2807 + offsetof(SMU7_Discrete_GraphicsLevel, DownH);
2808 offset = up_hyst_offset & ~0x3;
2809 tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2810 tmp = phm_set_field_to_u32(up_hyst_offset, tmp, levels[i].UpH, sizeof(uint8_t));
2811 tmp = phm_set_field_to_u32(down_hyst_offset, tmp, levels[i].DownH, sizeof(uint8_t));
2812 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2813 }
2814 }
2815 if (!data->sclk_dpm_key_disabled)
2816 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_UnfreezeLevel, NULL);
2817 }
2818
2819 if (setting->bupdate_mclk) {
2820 if (!data->mclk_dpm_key_disabled)
2821 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_FreezeLevel, NULL);
2822 for (i = 0; i < smu_data->smc_state_table.MemoryDpmLevelCount; i++) {
2823 if (mclk_levels[i].ActivityLevel !=
2824 cpu_to_be16(setting->mclk_activity)) {
2825 mclk_levels[i].ActivityLevel = cpu_to_be16(setting->mclk_activity);
2826
2827 clk_activity_offset = mclk_array + (sizeof(SMU7_Discrete_MemoryLevel) * i)
2828 + offsetof(SMU7_Discrete_MemoryLevel, ActivityLevel);
2829 offset = clk_activity_offset & ~0x3;
2830 tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2831 tmp = phm_set_field_to_u32(clk_activity_offset, tmp, mclk_levels[i].ActivityLevel, sizeof(uint16_t));
2832 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2833
2834 }
2835 if (mclk_levels[i].UpH != setting->mclk_up_hyst ||
2836 mclk_levels[i].DownH != setting->mclk_down_hyst) {
2837 mclk_levels[i].UpH = setting->mclk_up_hyst;
2838 mclk_levels[i].DownH = setting->mclk_down_hyst;
2839 up_hyst_offset = mclk_array + (sizeof(SMU7_Discrete_MemoryLevel) * i)
2840 + offsetof(SMU7_Discrete_MemoryLevel, UpH);
2841 down_hyst_offset = mclk_array + (sizeof(SMU7_Discrete_MemoryLevel) * i)
2842 + offsetof(SMU7_Discrete_MemoryLevel, DownH);
2843 offset = up_hyst_offset & ~0x3;
2844 tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2845 tmp = phm_set_field_to_u32(up_hyst_offset, tmp, mclk_levels[i].UpH, sizeof(uint8_t));
2846 tmp = phm_set_field_to_u32(down_hyst_offset, tmp, mclk_levels[i].DownH, sizeof(uint8_t));
2847 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2848 }
2849 }
2850 if (!data->mclk_dpm_key_disabled)
2851 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_UnfreezeLevel, NULL);
2852 }
2853 return 0;
2854 }
2855
ci_update_uvd_smc_table(struct pp_hwmgr * hwmgr)2856 static int ci_update_uvd_smc_table(struct pp_hwmgr *hwmgr)
2857 {
2858 struct amdgpu_device *adev = hwmgr->adev;
2859 struct smu7_hwmgr *data = hwmgr->backend;
2860 struct ci_smumgr *smu_data = hwmgr->smu_backend;
2861 struct phm_uvd_clock_voltage_dependency_table *uvd_table =
2862 hwmgr->dyn_state.uvd_clock_voltage_dependency_table;
2863 uint32_t profile_mode_mask = AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD |
2864 AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK |
2865 AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK |
2866 AMD_DPM_FORCED_LEVEL_PROFILE_PEAK;
2867 uint32_t max_vddc = adev->pm.ac_power ? hwmgr->dyn_state.max_clock_voltage_on_ac.vddc :
2868 hwmgr->dyn_state.max_clock_voltage_on_dc.vddc;
2869 int32_t i;
2870
2871 if (PP_CAP(PHM_PlatformCaps_UVDDPM) || uvd_table->count <= 0)
2872 smu_data->smc_state_table.UvdBootLevel = 0;
2873 else
2874 smu_data->smc_state_table.UvdBootLevel = uvd_table->count - 1;
2875
2876 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, DPM_TABLE_475,
2877 UvdBootLevel, smu_data->smc_state_table.UvdBootLevel);
2878
2879 data->dpm_level_enable_mask.uvd_dpm_enable_mask = 0;
2880
2881 for (i = uvd_table->count - 1; i >= 0; i--) {
2882 if (uvd_table->entries[i].v <= max_vddc)
2883 data->dpm_level_enable_mask.uvd_dpm_enable_mask |= 1 << i;
2884 if (hwmgr->dpm_level & profile_mode_mask || !PP_CAP(PHM_PlatformCaps_UVDDPM))
2885 break;
2886 }
2887 smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_UVDDPM_SetEnabledMask,
2888 data->dpm_level_enable_mask.uvd_dpm_enable_mask,
2889 NULL);
2890
2891 return 0;
2892 }
2893
ci_update_vce_smc_table(struct pp_hwmgr * hwmgr)2894 static int ci_update_vce_smc_table(struct pp_hwmgr *hwmgr)
2895 {
2896 struct amdgpu_device *adev = hwmgr->adev;
2897 struct smu7_hwmgr *data = hwmgr->backend;
2898 struct phm_vce_clock_voltage_dependency_table *vce_table =
2899 hwmgr->dyn_state.vce_clock_voltage_dependency_table;
2900 uint32_t profile_mode_mask = AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD |
2901 AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK |
2902 AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK |
2903 AMD_DPM_FORCED_LEVEL_PROFILE_PEAK;
2904 uint32_t max_vddc = adev->pm.ac_power ? hwmgr->dyn_state.max_clock_voltage_on_ac.vddc :
2905 hwmgr->dyn_state.max_clock_voltage_on_dc.vddc;
2906 int32_t i;
2907
2908 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, DPM_TABLE_475,
2909 VceBootLevel, 0); /* temp hard code to level 0, vce can set min evclk*/
2910
2911 data->dpm_level_enable_mask.vce_dpm_enable_mask = 0;
2912
2913 for (i = vce_table->count - 1; i >= 0; i--) {
2914 if (vce_table->entries[i].v <= max_vddc)
2915 data->dpm_level_enable_mask.vce_dpm_enable_mask |= 1 << i;
2916 if (hwmgr->dpm_level & profile_mode_mask || !PP_CAP(PHM_PlatformCaps_VCEDPM))
2917 break;
2918 }
2919 smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_VCEDPM_SetEnabledMask,
2920 data->dpm_level_enable_mask.vce_dpm_enable_mask,
2921 NULL);
2922
2923 return 0;
2924 }
2925
ci_update_smc_table(struct pp_hwmgr * hwmgr,uint32_t type)2926 static int ci_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type)
2927 {
2928 switch (type) {
2929 case SMU_UVD_TABLE:
2930 ci_update_uvd_smc_table(hwmgr);
2931 break;
2932 case SMU_VCE_TABLE:
2933 ci_update_vce_smc_table(hwmgr);
2934 break;
2935 default:
2936 break;
2937 }
2938 return 0;
2939 }
2940
ci_reset_smc(struct pp_hwmgr * hwmgr)2941 static void ci_reset_smc(struct pp_hwmgr *hwmgr)
2942 {
2943 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
2944 SMC_SYSCON_RESET_CNTL,
2945 rst_reg, 1);
2946 }
2947
2948
ci_stop_smc_clock(struct pp_hwmgr * hwmgr)2949 static void ci_stop_smc_clock(struct pp_hwmgr *hwmgr)
2950 {
2951 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
2952 SMC_SYSCON_CLOCK_CNTL_0,
2953 ck_disable, 1);
2954 }
2955
ci_stop_smc(struct pp_hwmgr * hwmgr)2956 static int ci_stop_smc(struct pp_hwmgr *hwmgr)
2957 {
2958 ci_reset_smc(hwmgr);
2959 ci_stop_smc_clock(hwmgr);
2960
2961 return 0;
2962 }
2963
2964 const struct pp_smumgr_func ci_smu_funcs = {
2965 .name = "ci_smu",
2966 .smu_init = ci_smu_init,
2967 .smu_fini = ci_smu_fini,
2968 .start_smu = ci_start_smu,
2969 .check_fw_load_finish = NULL,
2970 .request_smu_load_fw = NULL,
2971 .request_smu_load_specific_fw = NULL,
2972 .send_msg_to_smc = ci_send_msg_to_smc,
2973 .send_msg_to_smc_with_parameter = ci_send_msg_to_smc_with_parameter,
2974 .get_argument = smu7_get_argument,
2975 .download_pptable_settings = NULL,
2976 .upload_pptable_settings = NULL,
2977 .get_offsetof = ci_get_offsetof,
2978 .process_firmware_header = ci_process_firmware_header,
2979 .init_smc_table = ci_init_smc_table,
2980 .update_sclk_threshold = ci_update_sclk_threshold,
2981 .thermal_setup_fan_table = ci_thermal_setup_fan_table,
2982 .populate_all_graphic_levels = ci_populate_all_graphic_levels,
2983 .populate_all_memory_levels = ci_populate_all_memory_levels,
2984 .get_mac_definition = ci_get_mac_definition,
2985 .initialize_mc_reg_table = ci_initialize_mc_reg_table,
2986 .is_dpm_running = ci_is_dpm_running,
2987 .update_dpm_settings = ci_update_dpm_settings,
2988 .update_smc_table = ci_update_smc_table,
2989 .stop_smc = ci_stop_smc,
2990 };
2991