1 /*
2  * Copyright 2017 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 #include <linux/fb.h>
26 #include "linux/delay.h"
27 #include <linux/types.h>
28 #include <linux/pci.h>
29 
30 #include "smumgr.h"
31 #include "pp_debug.h"
32 #include "ci_smumgr.h"
33 #include "ppsmc.h"
34 #include "smu7_hwmgr.h"
35 #include "hardwaremanager.h"
36 #include "ppatomctrl.h"
37 #include "cgs_common.h"
38 #include "atombios.h"
39 #include "pppcielanes.h"
40 
41 #include "smu/smu_7_0_1_d.h"
42 #include "smu/smu_7_0_1_sh_mask.h"
43 
44 #include "dce/dce_8_0_d.h"
45 #include "dce/dce_8_0_sh_mask.h"
46 
47 #include "bif/bif_4_1_d.h"
48 #include "bif/bif_4_1_sh_mask.h"
49 
50 #include "gca/gfx_7_2_d.h"
51 #include "gca/gfx_7_2_sh_mask.h"
52 
53 #include "gmc/gmc_7_1_d.h"
54 #include "gmc/gmc_7_1_sh_mask.h"
55 
56 #include "processpptables.h"
57 
58 #define MC_CG_ARB_FREQ_F0           0x0a
59 #define MC_CG_ARB_FREQ_F1           0x0b
60 #define MC_CG_ARB_FREQ_F2           0x0c
61 #define MC_CG_ARB_FREQ_F3           0x0d
62 
63 #define SMC_RAM_END 0x40000
64 
65 #define CISLAND_MINIMUM_ENGINE_CLOCK 800
66 #define CISLAND_MAX_DEEPSLEEP_DIVIDER_ID 5
67 
68 static const struct ci_pt_defaults defaults_hawaii_xt = {
69 	1, 0xF, 0xFD, 0x19, 5, 0x14, 0, 0xB0000,
70 	{ 0x2E,  0x00,  0x00,  0x88,  0x00,  0x00,  0x72,  0x60,  0x51,  0xA7,  0x79,  0x6B,  0x90,  0xBD,  0x79  },
71 	{ 0x217, 0x217, 0x217, 0x242, 0x242, 0x242, 0x269, 0x269, 0x269, 0x2A1, 0x2A1, 0x2A1, 0x2C9, 0x2C9, 0x2C9 }
72 };
73 
74 static const struct ci_pt_defaults defaults_hawaii_pro = {
75 	1, 0xF, 0xFD, 0x19, 5, 0x14, 0, 0x65062,
76 	{ 0x2E,  0x00,  0x00,  0x88,  0x00,  0x00,  0x72,  0x60,  0x51,  0xA7,  0x79,  0x6B,  0x90,  0xBD,  0x79  },
77 	{ 0x217, 0x217, 0x217, 0x242, 0x242, 0x242, 0x269, 0x269, 0x269, 0x2A1, 0x2A1, 0x2A1, 0x2C9, 0x2C9, 0x2C9 }
78 };
79 
80 static const struct ci_pt_defaults defaults_bonaire_xt = {
81 	1, 0xF, 0xFD, 0x19, 5, 45, 0, 0xB0000,
82 	{ 0x79,  0x253, 0x25D, 0xAE,  0x72,  0x80,  0x83,  0x86,  0x6F,  0xC8,  0xC9,  0xC9,  0x2F,  0x4D,  0x61  },
83 	{ 0x17C, 0x172, 0x180, 0x1BC, 0x1B3, 0x1BD, 0x206, 0x200, 0x203, 0x25D, 0x25A, 0x255, 0x2C3, 0x2C5, 0x2B4 }
84 };
85 
86 
87 static const struct ci_pt_defaults defaults_saturn_xt = {
88 	1, 0xF, 0xFD, 0x19, 5, 55, 0, 0x70000,
89 	{ 0x8C,  0x247, 0x249, 0xA6,  0x80,  0x81,  0x8B,  0x89,  0x86,  0xC9,  0xCA,  0xC9,  0x4D,  0x4D,  0x4D  },
90 	{ 0x187, 0x187, 0x187, 0x1C7, 0x1C7, 0x1C7, 0x210, 0x210, 0x210, 0x266, 0x266, 0x266, 0x2C9, 0x2C9, 0x2C9 }
91 };
92 
93 
ci_set_smc_sram_address(struct pp_hwmgr * hwmgr,uint32_t smc_addr,uint32_t limit)94 static int ci_set_smc_sram_address(struct pp_hwmgr *hwmgr,
95 					uint32_t smc_addr, uint32_t limit)
96 {
97 	if ((0 != (3 & smc_addr))
98 		|| ((smc_addr + 3) >= limit)) {
99 		pr_err("smc_addr invalid \n");
100 		return -EINVAL;
101 	}
102 
103 	cgs_write_register(hwmgr->device, mmSMC_IND_INDEX_0, smc_addr);
104 	PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 0);
105 	return 0;
106 }
107 
ci_copy_bytes_to_smc(struct pp_hwmgr * hwmgr,uint32_t smc_start_address,const uint8_t * src,uint32_t byte_count,uint32_t limit)108 static int ci_copy_bytes_to_smc(struct pp_hwmgr *hwmgr, uint32_t smc_start_address,
109 				const uint8_t *src, uint32_t byte_count, uint32_t limit)
110 {
111 	int result;
112 	uint32_t data = 0;
113 	uint32_t original_data;
114 	uint32_t addr = 0;
115 	uint32_t extra_shift;
116 
117 	if ((3 & smc_start_address)
118 		|| ((smc_start_address + byte_count) >= limit)) {
119 		pr_err("smc_start_address invalid \n");
120 		return -EINVAL;
121 	}
122 
123 	addr = smc_start_address;
124 
125 	while (byte_count >= 4) {
126 	/* Bytes are written into the SMC address space with the MSB first. */
127 		data = src[0] * 0x1000000 + src[1] * 0x10000 + src[2] * 0x100 + src[3];
128 
129 		result = ci_set_smc_sram_address(hwmgr, addr, limit);
130 
131 		if (0 != result)
132 			return result;
133 
134 		cgs_write_register(hwmgr->device, mmSMC_IND_DATA_0, data);
135 
136 		src += 4;
137 		byte_count -= 4;
138 		addr += 4;
139 	}
140 
141 	if (0 != byte_count) {
142 
143 		data = 0;
144 
145 		result = ci_set_smc_sram_address(hwmgr, addr, limit);
146 
147 		if (0 != result)
148 			return result;
149 
150 
151 		original_data = cgs_read_register(hwmgr->device, mmSMC_IND_DATA_0);
152 
153 		extra_shift = 8 * (4 - byte_count);
154 
155 		while (byte_count > 0) {
156 			/* Bytes are written into the SMC addres space with the MSB first. */
157 			data = (0x100 * data) + *src++;
158 			byte_count--;
159 		}
160 
161 		data <<= extra_shift;
162 
163 		data |= (original_data & ~((~0UL) << extra_shift));
164 
165 		result = ci_set_smc_sram_address(hwmgr, addr, limit);
166 
167 		if (0 != result)
168 			return result;
169 
170 		cgs_write_register(hwmgr->device, mmSMC_IND_DATA_0, data);
171 	}
172 
173 	return 0;
174 }
175 
176 
ci_program_jump_on_start(struct pp_hwmgr * hwmgr)177 static int ci_program_jump_on_start(struct pp_hwmgr *hwmgr)
178 {
179 	static const unsigned char data[4] = { 0xE0, 0x00, 0x80, 0x40 };
180 
181 	ci_copy_bytes_to_smc(hwmgr, 0x0, data, 4, sizeof(data)+1);
182 
183 	return 0;
184 }
185 
ci_is_smc_ram_running(struct pp_hwmgr * hwmgr)186 bool ci_is_smc_ram_running(struct pp_hwmgr *hwmgr)
187 {
188 	return ((0 == PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
189 			CGS_IND_REG__SMC, SMC_SYSCON_CLOCK_CNTL_0, ck_disable))
190 	&& (0x20100 <= cgs_read_ind_register(hwmgr->device,
191 			CGS_IND_REG__SMC, ixSMC_PC_C)));
192 }
193 
ci_read_smc_sram_dword(struct pp_hwmgr * hwmgr,uint32_t smc_addr,uint32_t * value,uint32_t limit)194 static int ci_read_smc_sram_dword(struct pp_hwmgr *hwmgr, uint32_t smc_addr,
195 				uint32_t *value, uint32_t limit)
196 {
197 	int result;
198 
199 	result = ci_set_smc_sram_address(hwmgr, smc_addr, limit);
200 
201 	if (result)
202 		return result;
203 
204 	*value = cgs_read_register(hwmgr->device, mmSMC_IND_DATA_0);
205 	return 0;
206 }
207 
ci_send_msg_to_smc(struct pp_hwmgr * hwmgr,uint16_t msg)208 static int ci_send_msg_to_smc(struct pp_hwmgr *hwmgr, uint16_t msg)
209 {
210 	int ret;
211 
212 	cgs_write_register(hwmgr->device, mmSMC_RESP_0, 0);
213 	cgs_write_register(hwmgr->device, mmSMC_MESSAGE_0, msg);
214 
215 	PHM_WAIT_FIELD_UNEQUAL(hwmgr, SMC_RESP_0, SMC_RESP, 0);
216 
217 	ret = PHM_READ_FIELD(hwmgr->device, SMC_RESP_0, SMC_RESP);
218 
219 	if (ret != 1)
220 		pr_info("\n failed to send message %x ret is %d\n",  msg, ret);
221 
222 	return 0;
223 }
224 
ci_send_msg_to_smc_with_parameter(struct pp_hwmgr * hwmgr,uint16_t msg,uint32_t parameter)225 static int ci_send_msg_to_smc_with_parameter(struct pp_hwmgr *hwmgr,
226 					uint16_t msg, uint32_t parameter)
227 {
228 	cgs_write_register(hwmgr->device, mmSMC_MSG_ARG_0, parameter);
229 	return ci_send_msg_to_smc(hwmgr, msg);
230 }
231 
ci_initialize_power_tune_defaults(struct pp_hwmgr * hwmgr)232 static void ci_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr)
233 {
234 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
235 	struct amdgpu_device *adev = hwmgr->adev;
236 	uint32_t dev_id;
237 
238 	dev_id = adev->pdev->device;
239 
240 	switch (dev_id) {
241 	case 0x67BA:
242 	case 0x66B1:
243 		smu_data->power_tune_defaults = &defaults_hawaii_pro;
244 		break;
245 	case 0x67B8:
246 	case 0x66B0:
247 		smu_data->power_tune_defaults = &defaults_hawaii_xt;
248 		break;
249 	case 0x6640:
250 	case 0x6641:
251 	case 0x6646:
252 	case 0x6647:
253 		smu_data->power_tune_defaults = &defaults_saturn_xt;
254 		break;
255 	case 0x6649:
256 	case 0x6650:
257 	case 0x6651:
258 	case 0x6658:
259 	case 0x665C:
260 	case 0x665D:
261 	case 0x67A0:
262 	case 0x67A1:
263 	case 0x67A2:
264 	case 0x67A8:
265 	case 0x67A9:
266 	case 0x67AA:
267 	case 0x67B9:
268 	case 0x67BE:
269 	default:
270 		smu_data->power_tune_defaults = &defaults_bonaire_xt;
271 		break;
272 	}
273 }
274 
ci_get_dependency_volt_by_clk(struct pp_hwmgr * hwmgr,struct phm_clock_voltage_dependency_table * allowed_clock_voltage_table,uint32_t clock,uint32_t * vol)275 static int ci_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr,
276 	struct phm_clock_voltage_dependency_table *allowed_clock_voltage_table,
277 	uint32_t clock, uint32_t *vol)
278 {
279 	uint32_t i = 0;
280 
281 	if (allowed_clock_voltage_table->count == 0)
282 		return -EINVAL;
283 
284 	for (i = 0; i < allowed_clock_voltage_table->count; i++) {
285 		if (allowed_clock_voltage_table->entries[i].clk >= clock) {
286 			*vol = allowed_clock_voltage_table->entries[i].v;
287 			return 0;
288 		}
289 	}
290 
291 	*vol = allowed_clock_voltage_table->entries[i - 1].v;
292 	return 0;
293 }
294 
ci_calculate_sclk_params(struct pp_hwmgr * hwmgr,uint32_t clock,struct SMU7_Discrete_GraphicsLevel * sclk)295 static int ci_calculate_sclk_params(struct pp_hwmgr *hwmgr,
296 		uint32_t clock, struct SMU7_Discrete_GraphicsLevel *sclk)
297 {
298 	const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
299 	struct pp_atomctrl_clock_dividers_vi dividers;
300 	uint32_t spll_func_cntl            = data->clock_registers.vCG_SPLL_FUNC_CNTL;
301 	uint32_t spll_func_cntl_3          = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
302 	uint32_t spll_func_cntl_4          = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
303 	uint32_t cg_spll_spread_spectrum   = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
304 	uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
305 	uint32_t ref_clock;
306 	uint32_t ref_divider;
307 	uint32_t fbdiv;
308 	int result;
309 
310 	/* get the engine clock dividers for this clock value */
311 	result = atomctrl_get_engine_pll_dividers_vi(hwmgr, clock,  &dividers);
312 
313 	PP_ASSERT_WITH_CODE(result == 0,
314 			"Error retrieving Engine Clock dividers from VBIOS.",
315 			return result);
316 
317 	/* To get FBDIV we need to multiply this by 16384 and divide it by Fref. */
318 	ref_clock = atomctrl_get_reference_clock(hwmgr);
319 	ref_divider = 1 + dividers.uc_pll_ref_div;
320 
321 	/* low 14 bits is fraction and high 12 bits is divider */
322 	fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF;
323 
324 	/* SPLL_FUNC_CNTL setup */
325 	spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
326 			SPLL_REF_DIV, dividers.uc_pll_ref_div);
327 	spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
328 			SPLL_PDIV_A,  dividers.uc_pll_post_div);
329 
330 	/* SPLL_FUNC_CNTL_3 setup*/
331 	spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
332 			SPLL_FB_DIV, fbdiv);
333 
334 	/* set to use fractional accumulation*/
335 	spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
336 			SPLL_DITHEN, 1);
337 
338 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
339 				PHM_PlatformCaps_EngineSpreadSpectrumSupport)) {
340 		struct pp_atomctrl_internal_ss_info ss_info;
341 		uint32_t vco_freq = clock * dividers.uc_pll_post_div;
342 
343 		if (!atomctrl_get_engine_clock_spread_spectrum(hwmgr,
344 				vco_freq, &ss_info)) {
345 			uint32_t clk_s = ref_clock * 5 /
346 					(ref_divider * ss_info.speed_spectrum_rate);
347 			uint32_t clk_v = 4 * ss_info.speed_spectrum_percentage *
348 					fbdiv / (clk_s * 10000);
349 
350 			cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
351 					CG_SPLL_SPREAD_SPECTRUM, CLKS, clk_s);
352 			cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
353 					CG_SPLL_SPREAD_SPECTRUM, SSEN, 1);
354 			cg_spll_spread_spectrum_2 = PHM_SET_FIELD(cg_spll_spread_spectrum_2,
355 					CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clk_v);
356 		}
357 	}
358 
359 	sclk->SclkFrequency        = clock;
360 	sclk->CgSpllFuncCntl3      = spll_func_cntl_3;
361 	sclk->CgSpllFuncCntl4      = spll_func_cntl_4;
362 	sclk->SpllSpreadSpectrum   = cg_spll_spread_spectrum;
363 	sclk->SpllSpreadSpectrum2  = cg_spll_spread_spectrum_2;
364 	sclk->SclkDid              = (uint8_t)dividers.pll_post_divider;
365 
366 	return 0;
367 }
368 
ci_populate_phase_value_based_on_sclk(struct pp_hwmgr * hwmgr,const struct phm_phase_shedding_limits_table * pl,uint32_t sclk,uint32_t * p_shed)369 static void ci_populate_phase_value_based_on_sclk(struct pp_hwmgr *hwmgr,
370 				const struct phm_phase_shedding_limits_table *pl,
371 					uint32_t sclk, uint32_t *p_shed)
372 {
373 	unsigned int i;
374 
375 	/* use the minimum phase shedding */
376 	*p_shed = 1;
377 
378 	for (i = 0; i < pl->count; i++) {
379 		if (sclk < pl->entries[i].Sclk) {
380 			*p_shed = i;
381 			break;
382 		}
383 	}
384 }
385 
ci_get_sleep_divider_id_from_clock(uint32_t clock,uint32_t clock_insr)386 static uint8_t ci_get_sleep_divider_id_from_clock(uint32_t clock,
387 			uint32_t clock_insr)
388 {
389 	uint8_t i;
390 	uint32_t temp;
391 	uint32_t min = min_t(uint32_t, clock_insr, CISLAND_MINIMUM_ENGINE_CLOCK);
392 
393 	if (clock < min) {
394 		pr_info("Engine clock can't satisfy stutter requirement!\n");
395 		return 0;
396 	}
397 	for (i = CISLAND_MAX_DEEPSLEEP_DIVIDER_ID;  ; i--) {
398 		temp = clock >> i;
399 
400 		if (temp >= min || i == 0)
401 			break;
402 	}
403 	return i;
404 }
405 
ci_populate_single_graphic_level(struct pp_hwmgr * hwmgr,uint32_t clock,struct SMU7_Discrete_GraphicsLevel * level)406 static int ci_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
407 		uint32_t clock, struct SMU7_Discrete_GraphicsLevel *level)
408 {
409 	int result;
410 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
411 
412 
413 	result = ci_calculate_sclk_params(hwmgr, clock, level);
414 
415 	/* populate graphics levels */
416 	result = ci_get_dependency_volt_by_clk(hwmgr,
417 			hwmgr->dyn_state.vddc_dependency_on_sclk, clock,
418 			(uint32_t *)(&level->MinVddc));
419 	if (result) {
420 		pr_err("vdd_dep_on_sclk table is NULL\n");
421 		return result;
422 	}
423 
424 	level->SclkFrequency = clock;
425 	level->MinVddcPhases = 1;
426 
427 	if (data->vddc_phase_shed_control)
428 		ci_populate_phase_value_based_on_sclk(hwmgr,
429 				hwmgr->dyn_state.vddc_phase_shed_limits_table,
430 				clock,
431 				&level->MinVddcPhases);
432 
433 	level->ActivityLevel = data->current_profile_setting.sclk_activity;
434 	level->CcPwrDynRm = 0;
435 	level->CcPwrDynRm1 = 0;
436 	level->EnabledForActivity = 0;
437 	/* this level can be used for throttling.*/
438 	level->EnabledForThrottle = 1;
439 	level->UpH = data->current_profile_setting.sclk_up_hyst;
440 	level->DownH = data->current_profile_setting.sclk_down_hyst;
441 	level->VoltageDownH = 0;
442 	level->PowerThrottle = 0;
443 
444 
445 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
446 			PHM_PlatformCaps_SclkDeepSleep))
447 		level->DeepSleepDivId =
448 				ci_get_sleep_divider_id_from_clock(clock,
449 						CISLAND_MINIMUM_ENGINE_CLOCK);
450 
451 	/* Default to slow, highest DPM level will be set to PPSMC_DISPLAY_WATERMARK_LOW later.*/
452 	level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
453 
454 	if (0 == result) {
455 		level->MinVddc = PP_HOST_TO_SMC_UL(level->MinVddc * VOLTAGE_SCALE);
456 		CONVERT_FROM_HOST_TO_SMC_UL(level->MinVddcPhases);
457 		CONVERT_FROM_HOST_TO_SMC_UL(level->SclkFrequency);
458 		CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel);
459 		CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl3);
460 		CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl4);
461 		CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum);
462 		CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum2);
463 		CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm);
464 		CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1);
465 	}
466 
467 	return result;
468 }
469 
ci_populate_all_graphic_levels(struct pp_hwmgr * hwmgr)470 static int ci_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
471 {
472 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
473 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
474 	struct smu7_dpm_table *dpm_table = &data->dpm_table;
475 	int result = 0;
476 	uint32_t array = smu_data->dpm_table_start +
477 			offsetof(SMU7_Discrete_DpmTable, GraphicsLevel);
478 	uint32_t array_size = sizeof(struct SMU7_Discrete_GraphicsLevel) *
479 			SMU7_MAX_LEVELS_GRAPHICS;
480 	struct SMU7_Discrete_GraphicsLevel *levels =
481 			smu_data->smc_state_table.GraphicsLevel;
482 	uint32_t i;
483 
484 	for (i = 0; i < dpm_table->sclk_table.count; i++) {
485 		result = ci_populate_single_graphic_level(hwmgr,
486 				dpm_table->sclk_table.dpm_levels[i].value,
487 				&levels[i]);
488 		if (result)
489 			return result;
490 		if (i > 1)
491 			smu_data->smc_state_table.GraphicsLevel[i].DeepSleepDivId = 0;
492 		if (i == (dpm_table->sclk_table.count - 1))
493 			smu_data->smc_state_table.GraphicsLevel[i].DisplayWatermark =
494 				PPSMC_DISPLAY_WATERMARK_HIGH;
495 	}
496 
497 	smu_data->smc_state_table.GraphicsLevel[0].EnabledForActivity = 1;
498 
499 	smu_data->smc_state_table.GraphicsDpmLevelCount = (u8)dpm_table->sclk_table.count;
500 	data->dpm_level_enable_mask.sclk_dpm_enable_mask =
501 		phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
502 
503 	result = ci_copy_bytes_to_smc(hwmgr, array,
504 				   (u8 *)levels, array_size,
505 				   SMC_RAM_END);
506 
507 	return result;
508 
509 }
510 
ci_populate_svi_load_line(struct pp_hwmgr * hwmgr)511 static int ci_populate_svi_load_line(struct pp_hwmgr *hwmgr)
512 {
513 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
514 	const struct ci_pt_defaults *defaults = smu_data->power_tune_defaults;
515 
516 	smu_data->power_tune_table.SviLoadLineEn = defaults->svi_load_line_en;
517 	smu_data->power_tune_table.SviLoadLineVddC = defaults->svi_load_line_vddc;
518 	smu_data->power_tune_table.SviLoadLineTrimVddC = 3;
519 	smu_data->power_tune_table.SviLoadLineOffsetVddC = 0;
520 
521 	return 0;
522 }
523 
ci_populate_tdc_limit(struct pp_hwmgr * hwmgr)524 static int ci_populate_tdc_limit(struct pp_hwmgr *hwmgr)
525 {
526 	uint16_t tdc_limit;
527 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
528 	const struct ci_pt_defaults *defaults = smu_data->power_tune_defaults;
529 
530 	tdc_limit = (uint16_t)(hwmgr->dyn_state.cac_dtp_table->usTDC * 256);
531 	smu_data->power_tune_table.TDC_VDDC_PkgLimit =
532 			CONVERT_FROM_HOST_TO_SMC_US(tdc_limit);
533 	smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc =
534 			defaults->tdc_vddc_throttle_release_limit_perc;
535 	smu_data->power_tune_table.TDC_MAWt = defaults->tdc_mawt;
536 
537 	return 0;
538 }
539 
ci_populate_dw8(struct pp_hwmgr * hwmgr,uint32_t fuse_table_offset)540 static int ci_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
541 {
542 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
543 	const struct ci_pt_defaults *defaults = smu_data->power_tune_defaults;
544 	uint32_t temp;
545 
546 	if (ci_read_smc_sram_dword(hwmgr,
547 			fuse_table_offset +
548 			offsetof(SMU7_Discrete_PmFuses, TdcWaterfallCtl),
549 			(uint32_t *)&temp, SMC_RAM_END))
550 		PP_ASSERT_WITH_CODE(false,
551 				"Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!",
552 				return -EINVAL);
553 	else
554 		smu_data->power_tune_table.TdcWaterfallCtl = defaults->tdc_waterfall_ctl;
555 
556 	return 0;
557 }
558 
ci_populate_fuzzy_fan(struct pp_hwmgr * hwmgr,uint32_t fuse_table_offset)559 static int ci_populate_fuzzy_fan(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
560 {
561 	uint16_t tmp;
562 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
563 
564 	if ((hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity & (1 << 15))
565 		|| 0 == hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity)
566 		tmp = hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity;
567 	else
568 		tmp = hwmgr->thermal_controller.advanceFanControlParameters.usDefaultFanOutputSensitivity;
569 
570 	smu_data->power_tune_table.FuzzyFan_PwmSetDelta = CONVERT_FROM_HOST_TO_SMC_US(tmp);
571 
572 	return 0;
573 }
574 
ci_populate_bapm_vddc_vid_sidd(struct pp_hwmgr * hwmgr)575 static int ci_populate_bapm_vddc_vid_sidd(struct pp_hwmgr *hwmgr)
576 {
577 	int i;
578 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
579 	uint8_t *hi_vid = smu_data->power_tune_table.BapmVddCVidHiSidd;
580 	uint8_t *lo_vid = smu_data->power_tune_table.BapmVddCVidLoSidd;
581 	uint8_t *hi2_vid = smu_data->power_tune_table.BapmVddCVidHiSidd2;
582 
583 	PP_ASSERT_WITH_CODE(NULL != hwmgr->dyn_state.cac_leakage_table,
584 			    "The CAC Leakage table does not exist!", return -EINVAL);
585 	PP_ASSERT_WITH_CODE(hwmgr->dyn_state.cac_leakage_table->count <= 8,
586 			    "There should never be more than 8 entries for BapmVddcVid!!!", return -EINVAL);
587 	PP_ASSERT_WITH_CODE(hwmgr->dyn_state.cac_leakage_table->count == hwmgr->dyn_state.vddc_dependency_on_sclk->count,
588 			    "CACLeakageTable->count and VddcDependencyOnSCLk->count not equal", return -EINVAL);
589 
590 	for (i = 0; (uint32_t) i < hwmgr->dyn_state.cac_leakage_table->count; i++) {
591 		if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_EVV)) {
592 			lo_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc1);
593 			hi_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc2);
594 			hi2_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc3);
595 		} else {
596 			lo_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc);
597 			hi_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Leakage);
598 		}
599 	}
600 
601 	return 0;
602 }
603 
ci_populate_vddc_vid(struct pp_hwmgr * hwmgr)604 static int ci_populate_vddc_vid(struct pp_hwmgr *hwmgr)
605 {
606 	int i;
607 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
608 	uint8_t *vid = smu_data->power_tune_table.VddCVid;
609 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
610 
611 	PP_ASSERT_WITH_CODE(data->vddc_voltage_table.count <= 8,
612 		"There should never be more than 8 entries for VddcVid!!!",
613 		return -EINVAL);
614 
615 	for (i = 0; i < (int)data->vddc_voltage_table.count; i++)
616 		vid[i] = convert_to_vid(data->vddc_voltage_table.entries[i].value);
617 
618 	return 0;
619 }
620 
ci_min_max_v_gnbl_pm_lid_from_bapm_vddc(struct pp_hwmgr * hwmgr)621 static int ci_min_max_v_gnbl_pm_lid_from_bapm_vddc(struct pp_hwmgr *hwmgr)
622 {
623 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
624 	u8 *hi_vid = smu_data->power_tune_table.BapmVddCVidHiSidd;
625 	u8 *lo_vid = smu_data->power_tune_table.BapmVddCVidLoSidd;
626 	int i, min, max;
627 
628 	min = max = hi_vid[0];
629 	for (i = 0; i < 8; i++) {
630 		if (0 != hi_vid[i]) {
631 			if (min > hi_vid[i])
632 				min = hi_vid[i];
633 			if (max < hi_vid[i])
634 				max = hi_vid[i];
635 		}
636 
637 		if (0 != lo_vid[i]) {
638 			if (min > lo_vid[i])
639 				min = lo_vid[i];
640 			if (max < lo_vid[i])
641 				max = lo_vid[i];
642 		}
643 	}
644 
645 	if ((min == 0) || (max == 0))
646 		return -EINVAL;
647 	smu_data->power_tune_table.GnbLPMLMaxVid = (u8)max;
648 	smu_data->power_tune_table.GnbLPMLMinVid = (u8)min;
649 
650 	return 0;
651 }
652 
ci_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr * hwmgr)653 static int ci_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr)
654 {
655 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
656 	uint16_t HiSidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd;
657 	uint16_t LoSidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd;
658 	struct phm_cac_tdp_table *cac_table = hwmgr->dyn_state.cac_dtp_table;
659 
660 	HiSidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256);
661 	LoSidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256);
662 
663 	smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd =
664 			CONVERT_FROM_HOST_TO_SMC_US(HiSidd);
665 	smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd =
666 			CONVERT_FROM_HOST_TO_SMC_US(LoSidd);
667 
668 	return 0;
669 }
670 
ci_populate_pm_fuses(struct pp_hwmgr * hwmgr)671 static int ci_populate_pm_fuses(struct pp_hwmgr *hwmgr)
672 {
673 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
674 	uint32_t pm_fuse_table_offset;
675 	int ret = 0;
676 
677 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
678 			PHM_PlatformCaps_PowerContainment)) {
679 		if (ci_read_smc_sram_dword(hwmgr,
680 				SMU7_FIRMWARE_HEADER_LOCATION +
681 				offsetof(SMU7_Firmware_Header, PmFuseTable),
682 				&pm_fuse_table_offset, SMC_RAM_END)) {
683 			pr_err("Attempt to get pm_fuse_table_offset Failed!\n");
684 			return -EINVAL;
685 		}
686 
687 		/* DW0 - DW3 */
688 		ret = ci_populate_bapm_vddc_vid_sidd(hwmgr);
689 		/* DW4 - DW5 */
690 		ret |= ci_populate_vddc_vid(hwmgr);
691 		/* DW6 */
692 		ret |= ci_populate_svi_load_line(hwmgr);
693 		/* DW7 */
694 		ret |= ci_populate_tdc_limit(hwmgr);
695 		/* DW8 */
696 		ret |= ci_populate_dw8(hwmgr, pm_fuse_table_offset);
697 
698 		ret |= ci_populate_fuzzy_fan(hwmgr, pm_fuse_table_offset);
699 
700 		ret |= ci_min_max_v_gnbl_pm_lid_from_bapm_vddc(hwmgr);
701 
702 		ret |= ci_populate_bapm_vddc_base_leakage_sidd(hwmgr);
703 		if (ret)
704 			return ret;
705 
706 		ret = ci_copy_bytes_to_smc(hwmgr, pm_fuse_table_offset,
707 				(uint8_t *)&smu_data->power_tune_table,
708 				sizeof(struct SMU7_Discrete_PmFuses), SMC_RAM_END);
709 	}
710 	return ret;
711 }
712 
ci_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr * hwmgr)713 static int ci_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr)
714 {
715 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
716 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
717 	const struct ci_pt_defaults *defaults = smu_data->power_tune_defaults;
718 	SMU7_Discrete_DpmTable  *dpm_table = &(smu_data->smc_state_table);
719 	struct phm_cac_tdp_table *cac_dtp_table = hwmgr->dyn_state.cac_dtp_table;
720 	struct phm_ppm_table *ppm = hwmgr->dyn_state.ppm_parameter_table;
721 	const uint16_t *def1, *def2;
722 	int i, j, k;
723 
724 	dpm_table->DefaultTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usTDP * 256));
725 	dpm_table->TargetTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usConfigurableTDP * 256));
726 
727 	dpm_table->DTETjOffset = 0;
728 	dpm_table->GpuTjMax = (uint8_t)(data->thermal_temp_setting.temperature_high / PP_TEMPERATURE_UNITS_PER_CENTIGRADES);
729 	dpm_table->GpuTjHyst = 8;
730 
731 	dpm_table->DTEAmbientTempBase = defaults->dte_ambient_temp_base;
732 
733 	if (ppm) {
734 		dpm_table->PPM_PkgPwrLimit = (uint16_t)ppm->dgpu_tdp * 256 / 1000;
735 		dpm_table->PPM_TemperatureLimit = (uint16_t)ppm->tj_max * 256;
736 	} else {
737 		dpm_table->PPM_PkgPwrLimit = 0;
738 		dpm_table->PPM_TemperatureLimit = 0;
739 	}
740 
741 	CONVERT_FROM_HOST_TO_SMC_US(dpm_table->PPM_PkgPwrLimit);
742 	CONVERT_FROM_HOST_TO_SMC_US(dpm_table->PPM_TemperatureLimit);
743 
744 	dpm_table->BAPM_TEMP_GRADIENT = PP_HOST_TO_SMC_UL(defaults->bapm_temp_gradient);
745 	def1 = defaults->bapmti_r;
746 	def2 = defaults->bapmti_rc;
747 
748 	for (i = 0; i < SMU7_DTE_ITERATIONS; i++) {
749 		for (j = 0; j < SMU7_DTE_SOURCES; j++) {
750 			for (k = 0; k < SMU7_DTE_SINKS; k++) {
751 				dpm_table->BAPMTI_R[i][j][k] = PP_HOST_TO_SMC_US(*def1);
752 				dpm_table->BAPMTI_RC[i][j][k] = PP_HOST_TO_SMC_US(*def2);
753 				def1++;
754 				def2++;
755 			}
756 		}
757 	}
758 
759 	return 0;
760 }
761 
ci_get_std_voltage_value_sidd(struct pp_hwmgr * hwmgr,pp_atomctrl_voltage_table_entry * tab,uint16_t * hi,uint16_t * lo)762 static int ci_get_std_voltage_value_sidd(struct pp_hwmgr *hwmgr,
763 		pp_atomctrl_voltage_table_entry *tab, uint16_t *hi,
764 		uint16_t *lo)
765 {
766 	uint16_t v_index;
767 	bool vol_found = false;
768 	*hi = tab->value * VOLTAGE_SCALE;
769 	*lo = tab->value * VOLTAGE_SCALE;
770 
771 	PP_ASSERT_WITH_CODE(NULL != hwmgr->dyn_state.vddc_dependency_on_sclk,
772 			"The SCLK/VDDC Dependency Table does not exist.\n",
773 			return -EINVAL);
774 
775 	if (NULL == hwmgr->dyn_state.cac_leakage_table) {
776 		pr_warn("CAC Leakage Table does not exist, using vddc.\n");
777 		return 0;
778 	}
779 
780 	for (v_index = 0; (uint32_t)v_index < hwmgr->dyn_state.vddc_dependency_on_sclk->count; v_index++) {
781 		if (tab->value == hwmgr->dyn_state.vddc_dependency_on_sclk->entries[v_index].v) {
782 			vol_found = true;
783 			if ((uint32_t)v_index < hwmgr->dyn_state.cac_leakage_table->count) {
784 				*lo = hwmgr->dyn_state.cac_leakage_table->entries[v_index].Vddc * VOLTAGE_SCALE;
785 				*hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[v_index].Leakage * VOLTAGE_SCALE);
786 			} else {
787 				pr_warn("Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index, using maximum index from CAC table.\n");
788 				*lo = hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Vddc * VOLTAGE_SCALE;
789 				*hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Leakage * VOLTAGE_SCALE);
790 			}
791 			break;
792 		}
793 	}
794 
795 	if (!vol_found) {
796 		for (v_index = 0; (uint32_t)v_index < hwmgr->dyn_state.vddc_dependency_on_sclk->count; v_index++) {
797 			if (tab->value <= hwmgr->dyn_state.vddc_dependency_on_sclk->entries[v_index].v) {
798 				vol_found = true;
799 				if ((uint32_t)v_index < hwmgr->dyn_state.cac_leakage_table->count) {
800 					*lo = hwmgr->dyn_state.cac_leakage_table->entries[v_index].Vddc * VOLTAGE_SCALE;
801 					*hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[v_index].Leakage) * VOLTAGE_SCALE;
802 				} else {
803 					pr_warn("Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index in second look up, using maximum index from CAC table.");
804 					*lo = hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Vddc * VOLTAGE_SCALE;
805 					*hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Leakage * VOLTAGE_SCALE);
806 				}
807 				break;
808 			}
809 		}
810 
811 		if (!vol_found)
812 			pr_warn("Unable to get std_vddc from SCLK/VDDC Dependency Table, using vddc.\n");
813 	}
814 
815 	return 0;
816 }
817 
ci_populate_smc_voltage_table(struct pp_hwmgr * hwmgr,pp_atomctrl_voltage_table_entry * tab,SMU7_Discrete_VoltageLevel * smc_voltage_tab)818 static int ci_populate_smc_voltage_table(struct pp_hwmgr *hwmgr,
819 		pp_atomctrl_voltage_table_entry *tab,
820 		SMU7_Discrete_VoltageLevel *smc_voltage_tab)
821 {
822 	int result;
823 
824 	result = ci_get_std_voltage_value_sidd(hwmgr, tab,
825 			&smc_voltage_tab->StdVoltageHiSidd,
826 			&smc_voltage_tab->StdVoltageLoSidd);
827 	if (result) {
828 		smc_voltage_tab->StdVoltageHiSidd = tab->value * VOLTAGE_SCALE;
829 		smc_voltage_tab->StdVoltageLoSidd = tab->value * VOLTAGE_SCALE;
830 	}
831 
832 	smc_voltage_tab->Voltage = PP_HOST_TO_SMC_US(tab->value * VOLTAGE_SCALE);
833 	CONVERT_FROM_HOST_TO_SMC_US(smc_voltage_tab->StdVoltageHiSidd);
834 	CONVERT_FROM_HOST_TO_SMC_US(smc_voltage_tab->StdVoltageLoSidd);
835 
836 	return 0;
837 }
838 
ci_populate_smc_vddc_table(struct pp_hwmgr * hwmgr,SMU7_Discrete_DpmTable * table)839 static int ci_populate_smc_vddc_table(struct pp_hwmgr *hwmgr,
840 			SMU7_Discrete_DpmTable *table)
841 {
842 	unsigned int count;
843 	int result;
844 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
845 
846 	table->VddcLevelCount = data->vddc_voltage_table.count;
847 	for (count = 0; count < table->VddcLevelCount; count++) {
848 		result = ci_populate_smc_voltage_table(hwmgr,
849 				&(data->vddc_voltage_table.entries[count]),
850 				&(table->VddcLevel[count]));
851 		PP_ASSERT_WITH_CODE(0 == result, "do not populate SMC VDDC voltage table", return -EINVAL);
852 
853 		/* GPIO voltage control */
854 		if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->voltage_control) {
855 			table->VddcLevel[count].Smio = (uint8_t) count;
856 			table->Smio[count] |= data->vddc_voltage_table.entries[count].smio_low;
857 			table->SmioMaskVddcVid |= data->vddc_voltage_table.entries[count].smio_low;
858 		} else {
859 			table->VddcLevel[count].Smio = 0;
860 		}
861 	}
862 
863 	CONVERT_FROM_HOST_TO_SMC_UL(table->VddcLevelCount);
864 
865 	return 0;
866 }
867 
ci_populate_smc_vdd_ci_table(struct pp_hwmgr * hwmgr,SMU7_Discrete_DpmTable * table)868 static int ci_populate_smc_vdd_ci_table(struct pp_hwmgr *hwmgr,
869 			SMU7_Discrete_DpmTable *table)
870 {
871 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
872 	uint32_t count;
873 	int result;
874 
875 	table->VddciLevelCount = data->vddci_voltage_table.count;
876 
877 	for (count = 0; count < table->VddciLevelCount; count++) {
878 		result = ci_populate_smc_voltage_table(hwmgr,
879 				&(data->vddci_voltage_table.entries[count]),
880 				&(table->VddciLevel[count]));
881 		PP_ASSERT_WITH_CODE(result == 0, "do not populate SMC VDDCI voltage table", return -EINVAL);
882 		if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
883 			table->VddciLevel[count].Smio = (uint8_t) count;
884 			table->Smio[count] |= data->vddci_voltage_table.entries[count].smio_low;
885 			table->SmioMaskVddciVid |= data->vddci_voltage_table.entries[count].smio_low;
886 		} else {
887 			table->VddciLevel[count].Smio = 0;
888 		}
889 	}
890 
891 	CONVERT_FROM_HOST_TO_SMC_UL(table->VddciLevelCount);
892 
893 	return 0;
894 }
895 
ci_populate_smc_mvdd_table(struct pp_hwmgr * hwmgr,SMU7_Discrete_DpmTable * table)896 static int ci_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr,
897 			SMU7_Discrete_DpmTable *table)
898 {
899 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
900 	uint32_t count;
901 	int result;
902 
903 	table->MvddLevelCount = data->mvdd_voltage_table.count;
904 
905 	for (count = 0; count < table->MvddLevelCount; count++) {
906 		result = ci_populate_smc_voltage_table(hwmgr,
907 				&(data->mvdd_voltage_table.entries[count]),
908 				&table->MvddLevel[count]);
909 		PP_ASSERT_WITH_CODE(result == 0, "do not populate SMC mvdd voltage table", return -EINVAL);
910 		if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
911 			table->MvddLevel[count].Smio = (uint8_t) count;
912 			table->Smio[count] |= data->mvdd_voltage_table.entries[count].smio_low;
913 			table->SmioMaskMvddVid |= data->mvdd_voltage_table.entries[count].smio_low;
914 		} else {
915 			table->MvddLevel[count].Smio = 0;
916 		}
917 	}
918 
919 	CONVERT_FROM_HOST_TO_SMC_UL(table->MvddLevelCount);
920 
921 	return 0;
922 }
923 
924 
ci_populate_smc_voltage_tables(struct pp_hwmgr * hwmgr,SMU7_Discrete_DpmTable * table)925 static int ci_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
926 	SMU7_Discrete_DpmTable *table)
927 {
928 	int result;
929 
930 	result = ci_populate_smc_vddc_table(hwmgr, table);
931 	PP_ASSERT_WITH_CODE(0 == result,
932 			"can not populate VDDC voltage table to SMC", return -EINVAL);
933 
934 	result = ci_populate_smc_vdd_ci_table(hwmgr, table);
935 	PP_ASSERT_WITH_CODE(0 == result,
936 			"can not populate VDDCI voltage table to SMC", return -EINVAL);
937 
938 	result = ci_populate_smc_mvdd_table(hwmgr, table);
939 	PP_ASSERT_WITH_CODE(0 == result,
940 			"can not populate MVDD voltage table to SMC", return -EINVAL);
941 
942 	return 0;
943 }
944 
ci_populate_ulv_level(struct pp_hwmgr * hwmgr,struct SMU7_Discrete_Ulv * state)945 static int ci_populate_ulv_level(struct pp_hwmgr *hwmgr,
946 		struct SMU7_Discrete_Ulv *state)
947 {
948 	uint32_t voltage_response_time, ulv_voltage;
949 	int result;
950 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
951 
952 	state->CcPwrDynRm = 0;
953 	state->CcPwrDynRm1 = 0;
954 
955 	result = pp_tables_get_response_times(hwmgr, &voltage_response_time, &ulv_voltage);
956 	PP_ASSERT_WITH_CODE((0 == result), "can not get ULV voltage value", return result;);
957 
958 	if (ulv_voltage == 0) {
959 		data->ulv_supported = false;
960 		return 0;
961 	}
962 
963 	if (data->voltage_control != SMU7_VOLTAGE_CONTROL_BY_SVID2) {
964 		/* use minimum voltage if ulv voltage in pptable is bigger than minimum voltage */
965 		if (ulv_voltage > hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v)
966 			state->VddcOffset = 0;
967 		else
968 			/* used in SMIO Mode. not implemented for now. this is backup only for CI. */
969 			state->VddcOffset = (uint16_t)(hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v - ulv_voltage);
970 	} else {
971 		/* use minimum voltage if ulv voltage in pptable is bigger than minimum voltage */
972 		if (ulv_voltage > hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v)
973 			state->VddcOffsetVid = 0;
974 		else  /* used in SVI2 Mode */
975 			state->VddcOffsetVid = (uint8_t)(
976 					(hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v - ulv_voltage)
977 						* VOLTAGE_VID_OFFSET_SCALE2
978 						/ VOLTAGE_VID_OFFSET_SCALE1);
979 	}
980 	state->VddcPhase = 1;
981 
982 	CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
983 	CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
984 	CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);
985 
986 	return 0;
987 }
988 
ci_populate_ulv_state(struct pp_hwmgr * hwmgr,SMU7_Discrete_Ulv * ulv_level)989 static int ci_populate_ulv_state(struct pp_hwmgr *hwmgr,
990 		 SMU7_Discrete_Ulv *ulv_level)
991 {
992 	return ci_populate_ulv_level(hwmgr, ulv_level);
993 }
994 
ci_populate_smc_link_level(struct pp_hwmgr * hwmgr,SMU7_Discrete_DpmTable * table)995 static int ci_populate_smc_link_level(struct pp_hwmgr *hwmgr, SMU7_Discrete_DpmTable *table)
996 {
997 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
998 	struct smu7_dpm_table *dpm_table = &data->dpm_table;
999 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1000 	uint32_t i;
1001 
1002 /* Index dpm_table->pcie_speed_table.count is reserved for PCIE boot level.*/
1003 	for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
1004 		table->LinkLevel[i].PcieGenSpeed  =
1005 			(uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
1006 		table->LinkLevel[i].PcieLaneCount =
1007 			(uint8_t)encode_pcie_lane_width(dpm_table->pcie_speed_table.dpm_levels[i].param1);
1008 		table->LinkLevel[i].EnabledForActivity = 1;
1009 		table->LinkLevel[i].DownT = PP_HOST_TO_SMC_UL(5);
1010 		table->LinkLevel[i].UpT = PP_HOST_TO_SMC_UL(30);
1011 	}
1012 
1013 	smu_data->smc_state_table.LinkLevelCount =
1014 		(uint8_t)dpm_table->pcie_speed_table.count;
1015 	data->dpm_level_enable_mask.pcie_dpm_enable_mask =
1016 		phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
1017 
1018 	return 0;
1019 }
1020 
ci_calculate_mclk_params(struct pp_hwmgr * hwmgr,uint32_t memory_clock,SMU7_Discrete_MemoryLevel * mclk,bool strobe_mode,bool dllStateOn)1021 static int ci_calculate_mclk_params(
1022 		struct pp_hwmgr *hwmgr,
1023 		uint32_t memory_clock,
1024 		SMU7_Discrete_MemoryLevel *mclk,
1025 		bool strobe_mode,
1026 		bool dllStateOn
1027 		)
1028 {
1029 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1030 	uint32_t  dll_cntl = data->clock_registers.vDLL_CNTL;
1031 	uint32_t  mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL;
1032 	uint32_t  mpll_ad_func_cntl = data->clock_registers.vMPLL_AD_FUNC_CNTL;
1033 	uint32_t  mpll_dq_func_cntl = data->clock_registers.vMPLL_DQ_FUNC_CNTL;
1034 	uint32_t  mpll_func_cntl = data->clock_registers.vMPLL_FUNC_CNTL;
1035 	uint32_t  mpll_func_cntl_1 = data->clock_registers.vMPLL_FUNC_CNTL_1;
1036 	uint32_t  mpll_func_cntl_2 = data->clock_registers.vMPLL_FUNC_CNTL_2;
1037 	uint32_t  mpll_ss1 = data->clock_registers.vMPLL_SS1;
1038 	uint32_t  mpll_ss2 = data->clock_registers.vMPLL_SS2;
1039 
1040 	pp_atomctrl_memory_clock_param mpll_param;
1041 	int result;
1042 
1043 	result = atomctrl_get_memory_pll_dividers_si(hwmgr,
1044 				memory_clock, &mpll_param, strobe_mode);
1045 	PP_ASSERT_WITH_CODE(0 == result,
1046 		"Error retrieving Memory Clock Parameters from VBIOS.", return result);
1047 
1048 	mpll_func_cntl = PHM_SET_FIELD(mpll_func_cntl, MPLL_FUNC_CNTL, BWCTRL, mpll_param.bw_ctrl);
1049 
1050 	mpll_func_cntl_1  = PHM_SET_FIELD(mpll_func_cntl_1,
1051 							MPLL_FUNC_CNTL_1, CLKF, mpll_param.mpll_fb_divider.cl_kf);
1052 	mpll_func_cntl_1  = PHM_SET_FIELD(mpll_func_cntl_1,
1053 							MPLL_FUNC_CNTL_1, CLKFRAC, mpll_param.mpll_fb_divider.clk_frac);
1054 	mpll_func_cntl_1  = PHM_SET_FIELD(mpll_func_cntl_1,
1055 							MPLL_FUNC_CNTL_1, VCO_MODE, mpll_param.vco_mode);
1056 
1057 	mpll_ad_func_cntl = PHM_SET_FIELD(mpll_ad_func_cntl,
1058 							MPLL_AD_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider);
1059 
1060 	if (data->is_memory_gddr5) {
1061 		mpll_dq_func_cntl  = PHM_SET_FIELD(mpll_dq_func_cntl,
1062 								MPLL_DQ_FUNC_CNTL, YCLK_SEL, mpll_param.yclk_sel);
1063 		mpll_dq_func_cntl  = PHM_SET_FIELD(mpll_dq_func_cntl,
1064 								MPLL_DQ_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider);
1065 	}
1066 
1067 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1068 			PHM_PlatformCaps_MemorySpreadSpectrumSupport)) {
1069 		pp_atomctrl_internal_ss_info ss_info;
1070 		uint32_t freq_nom;
1071 		uint32_t tmp;
1072 		uint32_t reference_clock = atomctrl_get_mpll_reference_clock(hwmgr);
1073 
1074 		/* for GDDR5 for all modes and DDR3 */
1075 		if (1 == mpll_param.qdr)
1076 			freq_nom = memory_clock * 4 * (1 << mpll_param.mpll_post_divider);
1077 		else
1078 			freq_nom = memory_clock * 2 * (1 << mpll_param.mpll_post_divider);
1079 
1080 		/* tmp = (freq_nom / reference_clock * reference_divider) ^ 2  Note: S.I. reference_divider = 1*/
1081 		tmp = (freq_nom / reference_clock);
1082 		tmp = tmp * tmp;
1083 
1084 		if (0 == atomctrl_get_memory_clock_spread_spectrum(hwmgr, freq_nom, &ss_info)) {
1085 			uint32_t clks = reference_clock * 5 / ss_info.speed_spectrum_rate;
1086 			uint32_t clkv =
1087 				(uint32_t)((((131 * ss_info.speed_spectrum_percentage *
1088 							ss_info.speed_spectrum_rate) / 100) * tmp) / freq_nom);
1089 
1090 			mpll_ss1 = PHM_SET_FIELD(mpll_ss1, MPLL_SS1, CLKV, clkv);
1091 			mpll_ss2 = PHM_SET_FIELD(mpll_ss2, MPLL_SS2, CLKS, clks);
1092 		}
1093 	}
1094 
1095 	mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1096 		MCLK_PWRMGT_CNTL, DLL_SPEED, mpll_param.dll_speed);
1097 	mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1098 		MCLK_PWRMGT_CNTL, MRDCK0_PDNB, dllStateOn);
1099 	mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1100 		MCLK_PWRMGT_CNTL, MRDCK1_PDNB, dllStateOn);
1101 
1102 
1103 	mclk->MclkFrequency   = memory_clock;
1104 	mclk->MpllFuncCntl    = mpll_func_cntl;
1105 	mclk->MpllFuncCntl_1  = mpll_func_cntl_1;
1106 	mclk->MpllFuncCntl_2  = mpll_func_cntl_2;
1107 	mclk->MpllAdFuncCntl  = mpll_ad_func_cntl;
1108 	mclk->MpllDqFuncCntl  = mpll_dq_func_cntl;
1109 	mclk->MclkPwrmgtCntl  = mclk_pwrmgt_cntl;
1110 	mclk->DllCntl         = dll_cntl;
1111 	mclk->MpllSs1         = mpll_ss1;
1112 	mclk->MpllSs2         = mpll_ss2;
1113 
1114 	return 0;
1115 }
1116 
ci_get_mclk_frequency_ratio(uint32_t memory_clock,bool strobe_mode)1117 static uint8_t ci_get_mclk_frequency_ratio(uint32_t memory_clock,
1118 		bool strobe_mode)
1119 {
1120 	uint8_t mc_para_index;
1121 
1122 	if (strobe_mode) {
1123 		if (memory_clock < 12500)
1124 			mc_para_index = 0x00;
1125 		else if (memory_clock > 47500)
1126 			mc_para_index = 0x0f;
1127 		else
1128 			mc_para_index = (uint8_t)((memory_clock - 10000) / 2500);
1129 	} else {
1130 		if (memory_clock < 65000)
1131 			mc_para_index = 0x00;
1132 		else if (memory_clock > 135000)
1133 			mc_para_index = 0x0f;
1134 		else
1135 			mc_para_index = (uint8_t)((memory_clock - 60000) / 5000);
1136 	}
1137 
1138 	return mc_para_index;
1139 }
1140 
ci_get_ddr3_mclk_frequency_ratio(uint32_t memory_clock)1141 static uint8_t ci_get_ddr3_mclk_frequency_ratio(uint32_t memory_clock)
1142 {
1143 	uint8_t mc_para_index;
1144 
1145 	if (memory_clock < 10000)
1146 		mc_para_index = 0;
1147 	else if (memory_clock >= 80000)
1148 		mc_para_index = 0x0f;
1149 	else
1150 		mc_para_index = (uint8_t)((memory_clock - 10000) / 5000 + 1);
1151 
1152 	return mc_para_index;
1153 }
1154 
ci_populate_phase_value_based_on_mclk(struct pp_hwmgr * hwmgr,const struct phm_phase_shedding_limits_table * pl,uint32_t memory_clock,uint32_t * p_shed)1155 static int ci_populate_phase_value_based_on_mclk(struct pp_hwmgr *hwmgr, const struct phm_phase_shedding_limits_table *pl,
1156 					uint32_t memory_clock, uint32_t *p_shed)
1157 {
1158 	unsigned int i;
1159 
1160 	*p_shed = 1;
1161 
1162 	for (i = 0; i < pl->count; i++) {
1163 		if (memory_clock < pl->entries[i].Mclk) {
1164 			*p_shed = i;
1165 			break;
1166 		}
1167 	}
1168 
1169 	return 0;
1170 }
1171 
ci_populate_single_memory_level(struct pp_hwmgr * hwmgr,uint32_t memory_clock,SMU7_Discrete_MemoryLevel * memory_level)1172 static int ci_populate_single_memory_level(
1173 		struct pp_hwmgr *hwmgr,
1174 		uint32_t memory_clock,
1175 		SMU7_Discrete_MemoryLevel *memory_level
1176 		)
1177 {
1178 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1179 	int result = 0;
1180 	bool dll_state_on;
1181 	uint32_t mclk_edc_wr_enable_threshold = 40000;
1182 	uint32_t mclk_edc_enable_threshold = 40000;
1183 	uint32_t mclk_strobe_mode_threshold = 40000;
1184 
1185 	if (hwmgr->dyn_state.vddc_dependency_on_mclk != NULL) {
1186 		result = ci_get_dependency_volt_by_clk(hwmgr,
1187 			hwmgr->dyn_state.vddc_dependency_on_mclk, memory_clock, &memory_level->MinVddc);
1188 		PP_ASSERT_WITH_CODE((0 == result),
1189 			"can not find MinVddc voltage value from memory VDDC voltage dependency table", return result);
1190 	}
1191 
1192 	if (NULL != hwmgr->dyn_state.vddci_dependency_on_mclk) {
1193 		result = ci_get_dependency_volt_by_clk(hwmgr,
1194 				hwmgr->dyn_state.vddci_dependency_on_mclk,
1195 				memory_clock,
1196 				&memory_level->MinVddci);
1197 		PP_ASSERT_WITH_CODE((0 == result),
1198 			"can not find MinVddci voltage value from memory VDDCI voltage dependency table", return result);
1199 	}
1200 
1201 	if (NULL != hwmgr->dyn_state.mvdd_dependency_on_mclk) {
1202 		result = ci_get_dependency_volt_by_clk(hwmgr,
1203 				hwmgr->dyn_state.mvdd_dependency_on_mclk,
1204 				memory_clock,
1205 				&memory_level->MinMvdd);
1206 		PP_ASSERT_WITH_CODE((0 == result),
1207 			"can not find MinVddci voltage value from memory MVDD voltage dependency table", return result);
1208 	}
1209 
1210 	memory_level->MinVddcPhases = 1;
1211 
1212 	if (data->vddc_phase_shed_control) {
1213 		ci_populate_phase_value_based_on_mclk(hwmgr, hwmgr->dyn_state.vddc_phase_shed_limits_table,
1214 				memory_clock, &memory_level->MinVddcPhases);
1215 	}
1216 
1217 	memory_level->EnabledForThrottle = 1;
1218 	memory_level->EnabledForActivity = 1;
1219 	memory_level->UpH = data->current_profile_setting.mclk_up_hyst;
1220 	memory_level->DownH = data->current_profile_setting.mclk_down_hyst;
1221 	memory_level->VoltageDownH = 0;
1222 
1223 	/* Indicates maximum activity level for this performance level.*/
1224 	memory_level->ActivityLevel = data->current_profile_setting.mclk_activity;
1225 	memory_level->StutterEnable = 0;
1226 	memory_level->StrobeEnable = 0;
1227 	memory_level->EdcReadEnable = 0;
1228 	memory_level->EdcWriteEnable = 0;
1229 	memory_level->RttEnable = 0;
1230 
1231 	/* default set to low watermark. Highest level will be set to high later.*/
1232 	memory_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1233 
1234 	data->display_timing.num_existing_displays = hwmgr->display_config->num_display;
1235 	data->display_timing.vrefresh = hwmgr->display_config->vrefresh;
1236 
1237 	/* stutter mode not support on ci */
1238 
1239 	/* decide strobe mode*/
1240 	memory_level->StrobeEnable = (mclk_strobe_mode_threshold != 0) &&
1241 		(memory_clock <= mclk_strobe_mode_threshold);
1242 
1243 	/* decide EDC mode and memory clock ratio*/
1244 	if (data->is_memory_gddr5) {
1245 		memory_level->StrobeRatio = ci_get_mclk_frequency_ratio(memory_clock,
1246 					memory_level->StrobeEnable);
1247 
1248 		if ((mclk_edc_enable_threshold != 0) &&
1249 				(memory_clock > mclk_edc_enable_threshold)) {
1250 			memory_level->EdcReadEnable = 1;
1251 		}
1252 
1253 		if ((mclk_edc_wr_enable_threshold != 0) &&
1254 				(memory_clock > mclk_edc_wr_enable_threshold)) {
1255 			memory_level->EdcWriteEnable = 1;
1256 		}
1257 
1258 		if (memory_level->StrobeEnable) {
1259 			if (ci_get_mclk_frequency_ratio(memory_clock, 1) >=
1260 					((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC7) >> 16) & 0xf))
1261 				dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
1262 			else
1263 				dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC6) >> 1) & 0x1) ? 1 : 0;
1264 		} else
1265 			dll_state_on = data->dll_default_on;
1266 	} else {
1267 		memory_level->StrobeRatio =
1268 			ci_get_ddr3_mclk_frequency_ratio(memory_clock);
1269 		dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
1270 	}
1271 
1272 	result = ci_calculate_mclk_params(hwmgr,
1273 		memory_clock, memory_level, memory_level->StrobeEnable, dll_state_on);
1274 
1275 	if (0 == result) {
1276 		memory_level->MinVddc = PP_HOST_TO_SMC_UL(memory_level->MinVddc * VOLTAGE_SCALE);
1277 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MinVddcPhases);
1278 		memory_level->MinVddci = PP_HOST_TO_SMC_UL(memory_level->MinVddci * VOLTAGE_SCALE);
1279 		memory_level->MinMvdd = PP_HOST_TO_SMC_UL(memory_level->MinMvdd * VOLTAGE_SCALE);
1280 		/* MCLK frequency in units of 10KHz*/
1281 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkFrequency);
1282 		/* Indicates maximum activity level for this performance level.*/
1283 		CONVERT_FROM_HOST_TO_SMC_US(memory_level->ActivityLevel);
1284 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl);
1285 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_1);
1286 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_2);
1287 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllAdFuncCntl);
1288 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllDqFuncCntl);
1289 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkPwrmgtCntl);
1290 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->DllCntl);
1291 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs1);
1292 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs2);
1293 	}
1294 
1295 	return result;
1296 }
1297 
ci_populate_all_memory_levels(struct pp_hwmgr * hwmgr)1298 static int ci_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
1299 {
1300 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1301 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1302 	struct smu7_dpm_table *dpm_table = &data->dpm_table;
1303 	int result;
1304 	struct amdgpu_device *adev = hwmgr->adev;
1305 	uint32_t dev_id;
1306 
1307 	uint32_t level_array_address = smu_data->dpm_table_start + offsetof(SMU7_Discrete_DpmTable, MemoryLevel);
1308 	uint32_t level_array_size = sizeof(SMU7_Discrete_MemoryLevel) * SMU7_MAX_LEVELS_MEMORY;
1309 	SMU7_Discrete_MemoryLevel *levels = smu_data->smc_state_table.MemoryLevel;
1310 	uint32_t i;
1311 
1312 	memset(levels, 0x00, level_array_size);
1313 
1314 	for (i = 0; i < dpm_table->mclk_table.count; i++) {
1315 		PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
1316 			"can not populate memory level as memory clock is zero", return -EINVAL);
1317 		result = ci_populate_single_memory_level(hwmgr, dpm_table->mclk_table.dpm_levels[i].value,
1318 			&(smu_data->smc_state_table.MemoryLevel[i]));
1319 		if (0 != result)
1320 			return result;
1321 	}
1322 
1323 	smu_data->smc_state_table.MemoryLevel[0].EnabledForActivity = 1;
1324 
1325 	dev_id = adev->pdev->device;
1326 
1327 	if ((dpm_table->mclk_table.count >= 2)
1328 		&& ((dev_id == 0x67B0) ||  (dev_id == 0x67B1))) {
1329 		smu_data->smc_state_table.MemoryLevel[1].MinVddci =
1330 				smu_data->smc_state_table.MemoryLevel[0].MinVddci;
1331 		smu_data->smc_state_table.MemoryLevel[1].MinMvdd =
1332 				smu_data->smc_state_table.MemoryLevel[0].MinMvdd;
1333 	}
1334 	smu_data->smc_state_table.MemoryLevel[0].ActivityLevel = 0x1F;
1335 	CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.MemoryLevel[0].ActivityLevel);
1336 
1337 	smu_data->smc_state_table.MemoryDpmLevelCount = (uint8_t)dpm_table->mclk_table.count;
1338 	data->dpm_level_enable_mask.mclk_dpm_enable_mask = phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
1339 	smu_data->smc_state_table.MemoryLevel[dpm_table->mclk_table.count-1].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH;
1340 
1341 	result = ci_copy_bytes_to_smc(hwmgr,
1342 		level_array_address, (uint8_t *)levels, (uint32_t)level_array_size,
1343 		SMC_RAM_END);
1344 
1345 	return result;
1346 }
1347 
ci_populate_mvdd_value(struct pp_hwmgr * hwmgr,uint32_t mclk,SMU7_Discrete_VoltageLevel * voltage)1348 static int ci_populate_mvdd_value(struct pp_hwmgr *hwmgr, uint32_t mclk,
1349 					SMU7_Discrete_VoltageLevel *voltage)
1350 {
1351 	const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1352 
1353 	uint32_t i = 0;
1354 
1355 	if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
1356 		/* find mvdd value which clock is more than request */
1357 		for (i = 0; i < hwmgr->dyn_state.mvdd_dependency_on_mclk->count; i++) {
1358 			if (mclk <= hwmgr->dyn_state.mvdd_dependency_on_mclk->entries[i].clk) {
1359 				/* Always round to higher voltage. */
1360 				voltage->Voltage = data->mvdd_voltage_table.entries[i].value;
1361 				break;
1362 			}
1363 		}
1364 
1365 		PP_ASSERT_WITH_CODE(i < hwmgr->dyn_state.mvdd_dependency_on_mclk->count,
1366 			"MVDD Voltage is outside the supported range.", return -EINVAL);
1367 
1368 	} else {
1369 		return -EINVAL;
1370 	}
1371 
1372 	return 0;
1373 }
1374 
ci_populate_smc_acpi_level(struct pp_hwmgr * hwmgr,SMU7_Discrete_DpmTable * table)1375 static int ci_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
1376 	SMU7_Discrete_DpmTable *table)
1377 {
1378 	int result = 0;
1379 	const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1380 	struct pp_atomctrl_clock_dividers_vi dividers;
1381 
1382 	SMU7_Discrete_VoltageLevel voltage_level;
1383 	uint32_t spll_func_cntl    = data->clock_registers.vCG_SPLL_FUNC_CNTL;
1384 	uint32_t spll_func_cntl_2  = data->clock_registers.vCG_SPLL_FUNC_CNTL_2;
1385 	uint32_t dll_cntl          = data->clock_registers.vDLL_CNTL;
1386 	uint32_t mclk_pwrmgt_cntl  = data->clock_registers.vMCLK_PWRMGT_CNTL;
1387 
1388 
1389 	/* The ACPI state should not do DPM on DC (or ever).*/
1390 	table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
1391 
1392 	if (data->acpi_vddc)
1393 		table->ACPILevel.MinVddc = PP_HOST_TO_SMC_UL(data->acpi_vddc * VOLTAGE_SCALE);
1394 	else
1395 		table->ACPILevel.MinVddc = PP_HOST_TO_SMC_UL(data->min_vddc_in_pptable * VOLTAGE_SCALE);
1396 
1397 	table->ACPILevel.MinVddcPhases = data->vddc_phase_shed_control ? 0 : 1;
1398 	/* assign zero for now*/
1399 	table->ACPILevel.SclkFrequency = atomctrl_get_reference_clock(hwmgr);
1400 
1401 	/* get the engine clock dividers for this clock value*/
1402 	result = atomctrl_get_engine_pll_dividers_vi(hwmgr,
1403 		table->ACPILevel.SclkFrequency,  &dividers);
1404 
1405 	PP_ASSERT_WITH_CODE(result == 0,
1406 		"Error retrieving Engine Clock dividers from VBIOS.", return result);
1407 
1408 	/* divider ID for required SCLK*/
1409 	table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider;
1410 	table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1411 	table->ACPILevel.DeepSleepDivId = 0;
1412 
1413 	spll_func_cntl      = PHM_SET_FIELD(spll_func_cntl,
1414 							CG_SPLL_FUNC_CNTL,   SPLL_PWRON,     0);
1415 	spll_func_cntl      = PHM_SET_FIELD(spll_func_cntl,
1416 							CG_SPLL_FUNC_CNTL,   SPLL_RESET,     1);
1417 	spll_func_cntl_2    = PHM_SET_FIELD(spll_func_cntl_2,
1418 							CG_SPLL_FUNC_CNTL_2, SCLK_MUX_SEL,   4);
1419 
1420 	table->ACPILevel.CgSpllFuncCntl = spll_func_cntl;
1421 	table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2;
1422 	table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
1423 	table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
1424 	table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
1425 	table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
1426 	table->ACPILevel.CcPwrDynRm = 0;
1427 	table->ACPILevel.CcPwrDynRm1 = 0;
1428 
1429 	/* For various features to be enabled/disabled while this level is active.*/
1430 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
1431 	/* SCLK frequency in units of 10KHz*/
1432 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency);
1433 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl);
1434 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2);
1435 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3);
1436 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4);
1437 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum);
1438 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2);
1439 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
1440 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
1441 
1442 
1443 	/* table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;*/
1444 	table->MemoryACPILevel.MinVddc = table->ACPILevel.MinVddc;
1445 	table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;
1446 
1447 	if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
1448 		table->MemoryACPILevel.MinVddci = table->MemoryACPILevel.MinVddc;
1449 	else {
1450 		if (data->acpi_vddci != 0)
1451 			table->MemoryACPILevel.MinVddci = PP_HOST_TO_SMC_UL(data->acpi_vddci * VOLTAGE_SCALE);
1452 		else
1453 			table->MemoryACPILevel.MinVddci = PP_HOST_TO_SMC_UL(data->min_vddci_in_pptable * VOLTAGE_SCALE);
1454 	}
1455 
1456 	if (0 == ci_populate_mvdd_value(hwmgr, 0, &voltage_level))
1457 		table->MemoryACPILevel.MinMvdd =
1458 			PP_HOST_TO_SMC_UL(voltage_level.Voltage * VOLTAGE_SCALE);
1459 	else
1460 		table->MemoryACPILevel.MinMvdd = 0;
1461 
1462 	/* Force reset on DLL*/
1463 	mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1464 		MCLK_PWRMGT_CNTL, MRDCK0_RESET, 0x1);
1465 	mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1466 		MCLK_PWRMGT_CNTL, MRDCK1_RESET, 0x1);
1467 
1468 	/* Disable DLL in ACPIState*/
1469 	mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1470 		MCLK_PWRMGT_CNTL, MRDCK0_PDNB, 0);
1471 	mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1472 		MCLK_PWRMGT_CNTL, MRDCK1_PDNB, 0);
1473 
1474 	/* Enable DLL bypass signal*/
1475 	dll_cntl            = PHM_SET_FIELD(dll_cntl,
1476 		DLL_CNTL, MRDCK0_BYPASS, 0);
1477 	dll_cntl            = PHM_SET_FIELD(dll_cntl,
1478 		DLL_CNTL, MRDCK1_BYPASS, 0);
1479 
1480 	table->MemoryACPILevel.DllCntl            =
1481 		PP_HOST_TO_SMC_UL(dll_cntl);
1482 	table->MemoryACPILevel.MclkPwrmgtCntl     =
1483 		PP_HOST_TO_SMC_UL(mclk_pwrmgt_cntl);
1484 	table->MemoryACPILevel.MpllAdFuncCntl     =
1485 		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_AD_FUNC_CNTL);
1486 	table->MemoryACPILevel.MpllDqFuncCntl     =
1487 		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_DQ_FUNC_CNTL);
1488 	table->MemoryACPILevel.MpllFuncCntl       =
1489 		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL);
1490 	table->MemoryACPILevel.MpllFuncCntl_1     =
1491 		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_1);
1492 	table->MemoryACPILevel.MpllFuncCntl_2     =
1493 		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_2);
1494 	table->MemoryACPILevel.MpllSs1            =
1495 		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS1);
1496 	table->MemoryACPILevel.MpllSs2            =
1497 		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS2);
1498 
1499 	table->MemoryACPILevel.EnabledForThrottle = 0;
1500 	table->MemoryACPILevel.EnabledForActivity = 0;
1501 	table->MemoryACPILevel.UpH = 0;
1502 	table->MemoryACPILevel.DownH = 100;
1503 	table->MemoryACPILevel.VoltageDownH = 0;
1504 	/* Indicates maximum activity level for this performance level.*/
1505 	table->MemoryACPILevel.ActivityLevel = PP_HOST_TO_SMC_US(data->current_profile_setting.mclk_activity);
1506 
1507 	table->MemoryACPILevel.StutterEnable = 0;
1508 	table->MemoryACPILevel.StrobeEnable = 0;
1509 	table->MemoryACPILevel.EdcReadEnable = 0;
1510 	table->MemoryACPILevel.EdcWriteEnable = 0;
1511 	table->MemoryACPILevel.RttEnable = 0;
1512 
1513 	return result;
1514 }
1515 
ci_populate_smc_uvd_level(struct pp_hwmgr * hwmgr,SMU7_Discrete_DpmTable * table)1516 static int ci_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
1517 					SMU7_Discrete_DpmTable *table)
1518 {
1519 	int result = 0;
1520 	uint8_t count;
1521 	struct pp_atomctrl_clock_dividers_vi dividers;
1522 	struct phm_uvd_clock_voltage_dependency_table *uvd_table =
1523 		hwmgr->dyn_state.uvd_clock_voltage_dependency_table;
1524 
1525 	table->UvdLevelCount = (uint8_t)(uvd_table->count);
1526 
1527 	for (count = 0; count < table->UvdLevelCount; count++) {
1528 		table->UvdLevel[count].VclkFrequency =
1529 					uvd_table->entries[count].vclk;
1530 		table->UvdLevel[count].DclkFrequency =
1531 					uvd_table->entries[count].dclk;
1532 		table->UvdLevel[count].MinVddc =
1533 					uvd_table->entries[count].v * VOLTAGE_SCALE;
1534 		table->UvdLevel[count].MinVddcPhases = 1;
1535 
1536 		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1537 				table->UvdLevel[count].VclkFrequency, &dividers);
1538 		PP_ASSERT_WITH_CODE((0 == result),
1539 				"can not find divide id for Vclk clock", return result);
1540 
1541 		table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider;
1542 
1543 		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1544 				table->UvdLevel[count].DclkFrequency, &dividers);
1545 		PP_ASSERT_WITH_CODE((0 == result),
1546 				"can not find divide id for Dclk clock", return result);
1547 
1548 		table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider;
1549 		CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency);
1550 		CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency);
1551 		CONVERT_FROM_HOST_TO_SMC_US(table->UvdLevel[count].MinVddc);
1552 	}
1553 
1554 	return result;
1555 }
1556 
ci_populate_smc_vce_level(struct pp_hwmgr * hwmgr,SMU7_Discrete_DpmTable * table)1557 static int ci_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
1558 		SMU7_Discrete_DpmTable *table)
1559 {
1560 	int result = -EINVAL;
1561 	uint8_t count;
1562 	struct pp_atomctrl_clock_dividers_vi dividers;
1563 	struct phm_vce_clock_voltage_dependency_table *vce_table =
1564 				hwmgr->dyn_state.vce_clock_voltage_dependency_table;
1565 
1566 	table->VceLevelCount = (uint8_t)(vce_table->count);
1567 	table->VceBootLevel = 0;
1568 
1569 	for (count = 0; count < table->VceLevelCount; count++) {
1570 		table->VceLevel[count].Frequency = vce_table->entries[count].evclk;
1571 		table->VceLevel[count].MinVoltage =
1572 				vce_table->entries[count].v * VOLTAGE_SCALE;
1573 		table->VceLevel[count].MinPhases = 1;
1574 
1575 		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1576 				table->VceLevel[count].Frequency, &dividers);
1577 		PP_ASSERT_WITH_CODE((0 == result),
1578 				"can not find divide id for VCE engine clock",
1579 				return result);
1580 
1581 		table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1582 
1583 		CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency);
1584 		CONVERT_FROM_HOST_TO_SMC_US(table->VceLevel[count].MinVoltage);
1585 	}
1586 	return result;
1587 }
1588 
ci_populate_smc_acp_level(struct pp_hwmgr * hwmgr,SMU7_Discrete_DpmTable * table)1589 static int ci_populate_smc_acp_level(struct pp_hwmgr *hwmgr,
1590 					SMU7_Discrete_DpmTable *table)
1591 {
1592 	int result = -EINVAL;
1593 	uint8_t count;
1594 	struct pp_atomctrl_clock_dividers_vi dividers;
1595 	struct phm_acp_clock_voltage_dependency_table *acp_table =
1596 				hwmgr->dyn_state.acp_clock_voltage_dependency_table;
1597 
1598 	table->AcpLevelCount = (uint8_t)(acp_table->count);
1599 	table->AcpBootLevel = 0;
1600 
1601 	for (count = 0; count < table->AcpLevelCount; count++) {
1602 		table->AcpLevel[count].Frequency = acp_table->entries[count].acpclk;
1603 		table->AcpLevel[count].MinVoltage = acp_table->entries[count].v;
1604 		table->AcpLevel[count].MinPhases = 1;
1605 
1606 		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1607 				table->AcpLevel[count].Frequency, &dividers);
1608 		PP_ASSERT_WITH_CODE((0 == result),
1609 				"can not find divide id for engine clock", return result);
1610 
1611 		table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1612 
1613 		CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency);
1614 		CONVERT_FROM_HOST_TO_SMC_US(table->AcpLevel[count].MinVoltage);
1615 	}
1616 	return result;
1617 }
1618 
ci_populate_memory_timing_parameters(struct pp_hwmgr * hwmgr,uint32_t engine_clock,uint32_t memory_clock,struct SMU7_Discrete_MCArbDramTimingTableEntry * arb_regs)1619 static int ci_populate_memory_timing_parameters(
1620 		struct pp_hwmgr *hwmgr,
1621 		uint32_t engine_clock,
1622 		uint32_t memory_clock,
1623 		struct SMU7_Discrete_MCArbDramTimingTableEntry *arb_regs
1624 		)
1625 {
1626 	uint32_t dramTiming;
1627 	uint32_t dramTiming2;
1628 	uint32_t burstTime;
1629 	int result;
1630 
1631 	result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
1632 				engine_clock, memory_clock);
1633 
1634 	PP_ASSERT_WITH_CODE(result == 0,
1635 		"Error calling VBIOS to set DRAM_TIMING.", return result);
1636 
1637 	dramTiming  = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
1638 	dramTiming2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
1639 	burstTime = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
1640 
1641 	arb_regs->McArbDramTiming  = PP_HOST_TO_SMC_UL(dramTiming);
1642 	arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dramTiming2);
1643 	arb_regs->McArbBurstTime = (uint8_t)burstTime;
1644 
1645 	return 0;
1646 }
1647 
ci_program_memory_timing_parameters(struct pp_hwmgr * hwmgr)1648 static int ci_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
1649 {
1650 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1651 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1652 	int result = 0;
1653 	SMU7_Discrete_MCArbDramTimingTable  arb_regs;
1654 	uint32_t i, j;
1655 
1656 	memset(&arb_regs, 0x00, sizeof(SMU7_Discrete_MCArbDramTimingTable));
1657 
1658 	for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
1659 		for (j = 0; j < data->dpm_table.mclk_table.count; j++) {
1660 			result = ci_populate_memory_timing_parameters
1661 				(hwmgr, data->dpm_table.sclk_table.dpm_levels[i].value,
1662 				 data->dpm_table.mclk_table.dpm_levels[j].value,
1663 				 &arb_regs.entries[i][j]);
1664 
1665 			if (0 != result)
1666 				break;
1667 		}
1668 	}
1669 
1670 	if (0 == result) {
1671 		result = ci_copy_bytes_to_smc(
1672 				hwmgr,
1673 				smu_data->arb_table_start,
1674 				(uint8_t *)&arb_regs,
1675 				sizeof(SMU7_Discrete_MCArbDramTimingTable),
1676 				SMC_RAM_END
1677 				);
1678 	}
1679 
1680 	return result;
1681 }
1682 
ci_populate_smc_boot_level(struct pp_hwmgr * hwmgr,SMU7_Discrete_DpmTable * table)1683 static int ci_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
1684 			SMU7_Discrete_DpmTable *table)
1685 {
1686 	int result = 0;
1687 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1688 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1689 
1690 	table->GraphicsBootLevel = 0;
1691 	table->MemoryBootLevel = 0;
1692 
1693 	/* find boot level from dpm table*/
1694 	result = phm_find_boot_level(&(data->dpm_table.sclk_table),
1695 			data->vbios_boot_state.sclk_bootup_value,
1696 			(uint32_t *)&(smu_data->smc_state_table.GraphicsBootLevel));
1697 
1698 	if (0 != result) {
1699 		smu_data->smc_state_table.GraphicsBootLevel = 0;
1700 		pr_err("VBIOS did not find boot engine clock value in dependency table. Using Graphics DPM level 0!\n");
1701 		result = 0;
1702 	}
1703 
1704 	result = phm_find_boot_level(&(data->dpm_table.mclk_table),
1705 		data->vbios_boot_state.mclk_bootup_value,
1706 		(uint32_t *)&(smu_data->smc_state_table.MemoryBootLevel));
1707 
1708 	if (0 != result) {
1709 		smu_data->smc_state_table.MemoryBootLevel = 0;
1710 		pr_err("VBIOS did not find boot engine clock value in dependency table. Using Memory DPM level 0!\n");
1711 		result = 0;
1712 	}
1713 
1714 	table->BootVddc = data->vbios_boot_state.vddc_bootup_value;
1715 	table->BootVddci = data->vbios_boot_state.vddci_bootup_value;
1716 	table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value;
1717 
1718 	return result;
1719 }
1720 
ci_populate_mc_reg_address(struct pp_hwmgr * hwmgr,SMU7_Discrete_MCRegisters * mc_reg_table)1721 static int ci_populate_mc_reg_address(struct pp_hwmgr *hwmgr,
1722 				 SMU7_Discrete_MCRegisters *mc_reg_table)
1723 {
1724 	const struct ci_smumgr *smu_data = (struct ci_smumgr *)hwmgr->smu_backend;
1725 
1726 	uint32_t i, j;
1727 
1728 	for (i = 0, j = 0; j < smu_data->mc_reg_table.last; j++) {
1729 		if (smu_data->mc_reg_table.validflag & 1<<j) {
1730 			PP_ASSERT_WITH_CODE(i < SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE,
1731 				"Index of mc_reg_table->address[] array out of boundary", return -EINVAL);
1732 			mc_reg_table->address[i].s0 =
1733 				PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s0);
1734 			mc_reg_table->address[i].s1 =
1735 				PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s1);
1736 			i++;
1737 		}
1738 	}
1739 
1740 	mc_reg_table->last = (uint8_t)i;
1741 
1742 	return 0;
1743 }
1744 
ci_convert_mc_registers(const struct ci_mc_reg_entry * entry,SMU7_Discrete_MCRegisterSet * data,uint32_t num_entries,uint32_t valid_flag)1745 static void ci_convert_mc_registers(
1746 	const struct ci_mc_reg_entry *entry,
1747 	SMU7_Discrete_MCRegisterSet *data,
1748 	uint32_t num_entries, uint32_t valid_flag)
1749 {
1750 	uint32_t i, j;
1751 
1752 	for (i = 0, j = 0; j < num_entries; j++) {
1753 		if (valid_flag & 1<<j) {
1754 			data->value[i] = PP_HOST_TO_SMC_UL(entry->mc_data[j]);
1755 			i++;
1756 		}
1757 	}
1758 }
1759 
ci_convert_mc_reg_table_entry_to_smc(struct pp_hwmgr * hwmgr,const uint32_t memory_clock,SMU7_Discrete_MCRegisterSet * mc_reg_table_data)1760 static int ci_convert_mc_reg_table_entry_to_smc(
1761 		struct pp_hwmgr *hwmgr,
1762 		const uint32_t memory_clock,
1763 		SMU7_Discrete_MCRegisterSet *mc_reg_table_data
1764 		)
1765 {
1766 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1767 	uint32_t i = 0;
1768 
1769 	for (i = 0; i < smu_data->mc_reg_table.num_entries; i++) {
1770 		if (memory_clock <=
1771 			smu_data->mc_reg_table.mc_reg_table_entry[i].mclk_max) {
1772 			break;
1773 		}
1774 	}
1775 
1776 	if ((i == smu_data->mc_reg_table.num_entries) && (i > 0))
1777 		--i;
1778 
1779 	ci_convert_mc_registers(&smu_data->mc_reg_table.mc_reg_table_entry[i],
1780 				mc_reg_table_data, smu_data->mc_reg_table.last,
1781 				smu_data->mc_reg_table.validflag);
1782 
1783 	return 0;
1784 }
1785 
ci_convert_mc_reg_table_to_smc(struct pp_hwmgr * hwmgr,SMU7_Discrete_MCRegisters * mc_regs)1786 static int ci_convert_mc_reg_table_to_smc(struct pp_hwmgr *hwmgr,
1787 		SMU7_Discrete_MCRegisters *mc_regs)
1788 {
1789 	int result = 0;
1790 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1791 	int res;
1792 	uint32_t i;
1793 
1794 	for (i = 0; i < data->dpm_table.mclk_table.count; i++) {
1795 		res = ci_convert_mc_reg_table_entry_to_smc(
1796 				hwmgr,
1797 				data->dpm_table.mclk_table.dpm_levels[i].value,
1798 				&mc_regs->data[i]
1799 				);
1800 
1801 		if (0 != res)
1802 			result = res;
1803 	}
1804 
1805 	return result;
1806 }
1807 
ci_update_and_upload_mc_reg_table(struct pp_hwmgr * hwmgr)1808 static int ci_update_and_upload_mc_reg_table(struct pp_hwmgr *hwmgr)
1809 {
1810 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1811 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1812 	uint32_t address;
1813 	int32_t result;
1814 
1815 	if (0 == (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK))
1816 		return 0;
1817 
1818 
1819 	memset(&smu_data->mc_regs, 0, sizeof(SMU7_Discrete_MCRegisters));
1820 
1821 	result = ci_convert_mc_reg_table_to_smc(hwmgr, &(smu_data->mc_regs));
1822 
1823 	if (result != 0)
1824 		return result;
1825 
1826 	address = smu_data->mc_reg_table_start + (uint32_t)offsetof(SMU7_Discrete_MCRegisters, data[0]);
1827 
1828 	return  ci_copy_bytes_to_smc(hwmgr, address,
1829 				 (uint8_t *)&smu_data->mc_regs.data[0],
1830 				sizeof(SMU7_Discrete_MCRegisterSet) * data->dpm_table.mclk_table.count,
1831 				SMC_RAM_END);
1832 }
1833 
ci_populate_initial_mc_reg_table(struct pp_hwmgr * hwmgr)1834 static int ci_populate_initial_mc_reg_table(struct pp_hwmgr *hwmgr)
1835 {
1836 	int result;
1837 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1838 
1839 	memset(&smu_data->mc_regs, 0x00, sizeof(SMU7_Discrete_MCRegisters));
1840 	result = ci_populate_mc_reg_address(hwmgr, &(smu_data->mc_regs));
1841 	PP_ASSERT_WITH_CODE(0 == result,
1842 		"Failed to initialize MCRegTable for the MC register addresses!", return result;);
1843 
1844 	result = ci_convert_mc_reg_table_to_smc(hwmgr, &smu_data->mc_regs);
1845 	PP_ASSERT_WITH_CODE(0 == result,
1846 		"Failed to initialize MCRegTable for driver state!", return result;);
1847 
1848 	return ci_copy_bytes_to_smc(hwmgr, smu_data->mc_reg_table_start,
1849 			(uint8_t *)&smu_data->mc_regs, sizeof(SMU7_Discrete_MCRegisters), SMC_RAM_END);
1850 }
1851 
ci_populate_smc_initial_state(struct pp_hwmgr * hwmgr)1852 static int ci_populate_smc_initial_state(struct pp_hwmgr *hwmgr)
1853 {
1854 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1855 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1856 	uint8_t count, level;
1857 
1858 	count = (uint8_t)(hwmgr->dyn_state.vddc_dependency_on_sclk->count);
1859 
1860 	for (level = 0; level < count; level++) {
1861 		if (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[level].clk
1862 			 >= data->vbios_boot_state.sclk_bootup_value) {
1863 			smu_data->smc_state_table.GraphicsBootLevel = level;
1864 			break;
1865 		}
1866 	}
1867 
1868 	count = (uint8_t)(hwmgr->dyn_state.vddc_dependency_on_mclk->count);
1869 
1870 	for (level = 0; level < count; level++) {
1871 		if (hwmgr->dyn_state.vddc_dependency_on_mclk->entries[level].clk
1872 			>= data->vbios_boot_state.mclk_bootup_value) {
1873 			smu_data->smc_state_table.MemoryBootLevel = level;
1874 			break;
1875 		}
1876 	}
1877 
1878 	return 0;
1879 }
1880 
ci_populate_smc_svi2_config(struct pp_hwmgr * hwmgr,SMU7_Discrete_DpmTable * table)1881 static int ci_populate_smc_svi2_config(struct pp_hwmgr *hwmgr,
1882 					    SMU7_Discrete_DpmTable *table)
1883 {
1884 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1885 
1886 	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control)
1887 		table->SVI2Enable = 1;
1888 	else
1889 		table->SVI2Enable = 0;
1890 	return 0;
1891 }
1892 
ci_start_smc(struct pp_hwmgr * hwmgr)1893 static int ci_start_smc(struct pp_hwmgr *hwmgr)
1894 {
1895 	/* set smc instruct start point at 0x0 */
1896 	ci_program_jump_on_start(hwmgr);
1897 
1898 	/* enable smc clock */
1899 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
1900 
1901 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_RESET_CNTL, rst_reg, 0);
1902 
1903 	PHM_WAIT_INDIRECT_FIELD(hwmgr, SMC_IND, FIRMWARE_FLAGS,
1904 				 INTERRUPTS_ENABLED, 1);
1905 
1906 	return 0;
1907 }
1908 
ci_populate_vr_config(struct pp_hwmgr * hwmgr,SMU7_Discrete_DpmTable * table)1909 static int ci_populate_vr_config(struct pp_hwmgr *hwmgr, SMU7_Discrete_DpmTable *table)
1910 {
1911 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1912 	uint16_t config;
1913 
1914 	config = VR_SVI2_PLANE_1;
1915 	table->VRConfig |= (config<<VRCONF_VDDGFX_SHIFT);
1916 
1917 	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
1918 		config = VR_SVI2_PLANE_2;
1919 		table->VRConfig |= config;
1920 	} else {
1921 		pr_info("VDDCshould be on SVI2 controller!");
1922 	}
1923 
1924 	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
1925 		config = VR_SVI2_PLANE_2;
1926 		table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT);
1927 	} else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
1928 		config = VR_SMIO_PATTERN_1;
1929 		table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT);
1930 	}
1931 
1932 	if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
1933 		config = VR_SMIO_PATTERN_2;
1934 		table->VRConfig |= (config<<VRCONF_MVDD_SHIFT);
1935 	}
1936 
1937 	return 0;
1938 }
1939 
ci_init_smc_table(struct pp_hwmgr * hwmgr)1940 static int ci_init_smc_table(struct pp_hwmgr *hwmgr)
1941 {
1942 	int result;
1943 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1944 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1945 	SMU7_Discrete_DpmTable  *table = &(smu_data->smc_state_table);
1946 	struct pp_atomctrl_gpio_pin_assignment gpio_pin;
1947 	u32 i;
1948 
1949 	ci_initialize_power_tune_defaults(hwmgr);
1950 	memset(&(smu_data->smc_state_table), 0x00, sizeof(smu_data->smc_state_table));
1951 
1952 	if (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control)
1953 		ci_populate_smc_voltage_tables(hwmgr, table);
1954 
1955 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1956 			PHM_PlatformCaps_AutomaticDCTransition))
1957 		table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
1958 
1959 
1960 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1961 			PHM_PlatformCaps_StepVddc))
1962 		table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
1963 
1964 	if (data->is_memory_gddr5)
1965 		table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
1966 
1967 	if (data->ulv_supported) {
1968 		result = ci_populate_ulv_state(hwmgr, &(table->Ulv));
1969 		PP_ASSERT_WITH_CODE(0 == result,
1970 			"Failed to initialize ULV state!", return result);
1971 
1972 		cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1973 			ixCG_ULV_PARAMETER, 0x40035);
1974 	}
1975 
1976 	result = ci_populate_all_graphic_levels(hwmgr);
1977 	PP_ASSERT_WITH_CODE(0 == result,
1978 		"Failed to initialize Graphics Level!", return result);
1979 
1980 	result = ci_populate_all_memory_levels(hwmgr);
1981 	PP_ASSERT_WITH_CODE(0 == result,
1982 		"Failed to initialize Memory Level!", return result);
1983 
1984 	result = ci_populate_smc_link_level(hwmgr, table);
1985 	PP_ASSERT_WITH_CODE(0 == result,
1986 		"Failed to initialize Link Level!", return result);
1987 
1988 	result = ci_populate_smc_acpi_level(hwmgr, table);
1989 	PP_ASSERT_WITH_CODE(0 == result,
1990 		"Failed to initialize ACPI Level!", return result);
1991 
1992 	result = ci_populate_smc_vce_level(hwmgr, table);
1993 	PP_ASSERT_WITH_CODE(0 == result,
1994 		"Failed to initialize VCE Level!", return result);
1995 
1996 	result = ci_populate_smc_acp_level(hwmgr, table);
1997 	PP_ASSERT_WITH_CODE(0 == result,
1998 		"Failed to initialize ACP Level!", return result);
1999 
2000 	/* Since only the initial state is completely set up at this point (the other states are just copies of the boot state) we only */
2001 	/* need to populate the  ARB settings for the initial state. */
2002 	result = ci_program_memory_timing_parameters(hwmgr);
2003 	PP_ASSERT_WITH_CODE(0 == result,
2004 		"Failed to Write ARB settings for the initial state.", return result);
2005 
2006 	result = ci_populate_smc_uvd_level(hwmgr, table);
2007 	PP_ASSERT_WITH_CODE(0 == result,
2008 		"Failed to initialize UVD Level!", return result);
2009 
2010 	table->UvdBootLevel  = 0;
2011 	table->VceBootLevel  = 0;
2012 	table->AcpBootLevel  = 0;
2013 	table->SamuBootLevel  = 0;
2014 
2015 	table->GraphicsBootLevel = 0;
2016 	table->MemoryBootLevel = 0;
2017 
2018 	result = ci_populate_smc_boot_level(hwmgr, table);
2019 	PP_ASSERT_WITH_CODE(0 == result,
2020 		"Failed to initialize Boot Level!", return result);
2021 
2022 	result = ci_populate_smc_initial_state(hwmgr);
2023 	PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize Boot State!", return result);
2024 
2025 	result = ci_populate_bapm_parameters_in_dpm_table(hwmgr);
2026 	PP_ASSERT_WITH_CODE(0 == result, "Failed to populate BAPM Parameters!", return result);
2027 
2028 	table->UVDInterval = 1;
2029 	table->VCEInterval = 1;
2030 	table->ACPInterval = 1;
2031 	table->SAMUInterval = 1;
2032 	table->GraphicsVoltageChangeEnable  = 1;
2033 	table->GraphicsThermThrottleEnable  = 1;
2034 	table->GraphicsInterval = 1;
2035 	table->VoltageInterval  = 1;
2036 	table->ThermalInterval  = 1;
2037 
2038 	table->TemperatureLimitHigh =
2039 		(data->thermal_temp_setting.temperature_high *
2040 		 SMU7_Q88_FORMAT_CONVERSION_UNIT) / PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
2041 	table->TemperatureLimitLow =
2042 		(data->thermal_temp_setting.temperature_low *
2043 		SMU7_Q88_FORMAT_CONVERSION_UNIT) / PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
2044 
2045 	table->MemoryVoltageChangeEnable  = 1;
2046 	table->MemoryInterval  = 1;
2047 	table->VoltageResponseTime  = 0;
2048 	table->VddcVddciDelta = 4000;
2049 	table->PhaseResponseTime  = 0;
2050 	table->MemoryThermThrottleEnable  = 1;
2051 
2052 	PP_ASSERT_WITH_CODE((1 <= data->dpm_table.pcie_speed_table.count),
2053 			"There must be 1 or more PCIE levels defined in PPTable.",
2054 			return -EINVAL);
2055 
2056 	table->PCIeBootLinkLevel = (uint8_t)data->dpm_table.pcie_speed_table.count;
2057 	table->PCIeGenInterval = 1;
2058 
2059 	result = ci_populate_vr_config(hwmgr, table);
2060 	PP_ASSERT_WITH_CODE(0 == result,
2061 			"Failed to populate VRConfig setting!", return result);
2062 	data->vr_config = table->VRConfig;
2063 
2064 	ci_populate_smc_svi2_config(hwmgr, table);
2065 
2066 	for (i = 0; i < SMU7_MAX_ENTRIES_SMIO; i++)
2067 		CONVERT_FROM_HOST_TO_SMC_UL(table->Smio[i]);
2068 
2069 	table->ThermGpio  = 17;
2070 	table->SclkStepSize = 0x4000;
2071 	if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID, &gpio_pin)) {
2072 		table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift;
2073 		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2074 				PHM_PlatformCaps_RegulatorHot);
2075 	} else {
2076 		table->VRHotGpio = SMU7_UNUSED_GPIO_PIN;
2077 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2078 				PHM_PlatformCaps_RegulatorHot);
2079 	}
2080 
2081 	table->AcDcGpio = SMU7_UNUSED_GPIO_PIN;
2082 
2083 	CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
2084 	CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig);
2085 	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddcVid);
2086 	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddcPhase);
2087 	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddciVid);
2088 	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskMvddVid);
2089 	CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
2090 	CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
2091 	CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
2092 	table->VddcVddciDelta = PP_HOST_TO_SMC_US(table->VddcVddciDelta);
2093 	CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
2094 	CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
2095 
2096 	table->BootVddc = PP_HOST_TO_SMC_US(table->BootVddc * VOLTAGE_SCALE);
2097 	table->BootVddci = PP_HOST_TO_SMC_US(table->BootVddci * VOLTAGE_SCALE);
2098 	table->BootMVdd = PP_HOST_TO_SMC_US(table->BootMVdd * VOLTAGE_SCALE);
2099 
2100 	/* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
2101 	result = ci_copy_bytes_to_smc(hwmgr, smu_data->dpm_table_start +
2102 					offsetof(SMU7_Discrete_DpmTable, SystemFlags),
2103 					(uint8_t *)&(table->SystemFlags),
2104 					sizeof(SMU7_Discrete_DpmTable)-3 * sizeof(SMU7_PIDController),
2105 					SMC_RAM_END);
2106 
2107 	PP_ASSERT_WITH_CODE(0 == result,
2108 		"Failed to upload dpm data to SMC memory!", return result;);
2109 
2110 	result = ci_populate_initial_mc_reg_table(hwmgr);
2111 	PP_ASSERT_WITH_CODE((0 == result),
2112 		"Failed to populate initialize MC Reg table!", return result);
2113 
2114 	result = ci_populate_pm_fuses(hwmgr);
2115 	PP_ASSERT_WITH_CODE(0 == result,
2116 			"Failed to  populate PM fuses to SMC memory!", return result);
2117 
2118 	ci_start_smc(hwmgr);
2119 
2120 	return 0;
2121 }
2122 
ci_thermal_setup_fan_table(struct pp_hwmgr * hwmgr)2123 static int ci_thermal_setup_fan_table(struct pp_hwmgr *hwmgr)
2124 {
2125 	struct ci_smumgr *ci_data = (struct ci_smumgr *)(hwmgr->smu_backend);
2126 	SMU7_Discrete_FanTable fan_table = { FDO_MODE_HARDWARE };
2127 	uint32_t duty100;
2128 	uint32_t t_diff1, t_diff2, pwm_diff1, pwm_diff2;
2129 	uint16_t fdo_min, slope1, slope2;
2130 	uint32_t reference_clock;
2131 	int res;
2132 	uint64_t tmp64;
2133 
2134 	if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl))
2135 		return 0;
2136 
2137 	if (hwmgr->thermal_controller.fanInfo.bNoFan) {
2138 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2139 			PHM_PlatformCaps_MicrocodeFanControl);
2140 		return 0;
2141 	}
2142 
2143 	if (0 == ci_data->fan_table_start) {
2144 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl);
2145 		return 0;
2146 	}
2147 
2148 	duty100 = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_FDO_CTRL1, FMAX_DUTY100);
2149 
2150 	if (0 == duty100) {
2151 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl);
2152 		return 0;
2153 	}
2154 
2155 	tmp64 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin * duty100;
2156 	do_div(tmp64, 10000);
2157 	fdo_min = (uint16_t)tmp64;
2158 
2159 	t_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usTMed - hwmgr->thermal_controller.advanceFanControlParameters.usTMin;
2160 	t_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usTHigh - hwmgr->thermal_controller.advanceFanControlParameters.usTMed;
2161 
2162 	pwm_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed - hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin;
2163 	pwm_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh - hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed;
2164 
2165 	slope1 = (uint16_t)((50 + ((16 * duty100 * pwm_diff1) / t_diff1)) / 100);
2166 	slope2 = (uint16_t)((50 + ((16 * duty100 * pwm_diff2) / t_diff2)) / 100);
2167 
2168 	fan_table.TempMin = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMin) / 100);
2169 	fan_table.TempMed = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMed) / 100);
2170 	fan_table.TempMax = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMax) / 100);
2171 
2172 	fan_table.Slope1 = cpu_to_be16(slope1);
2173 	fan_table.Slope2 = cpu_to_be16(slope2);
2174 
2175 	fan_table.FdoMin = cpu_to_be16(fdo_min);
2176 
2177 	fan_table.HystDown = cpu_to_be16(hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst);
2178 
2179 	fan_table.HystUp = cpu_to_be16(1);
2180 
2181 	fan_table.HystSlope = cpu_to_be16(1);
2182 
2183 	fan_table.TempRespLim = cpu_to_be16(5);
2184 
2185 	reference_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev);
2186 
2187 	fan_table.RefreshPeriod = cpu_to_be32((hwmgr->thermal_controller.advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600);
2188 
2189 	fan_table.FdoMax = cpu_to_be16((uint16_t)duty100);
2190 
2191 	fan_table.TempSrc = (uint8_t)PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_MULT_THERMAL_CTRL, TEMP_SEL);
2192 
2193 	res = ci_copy_bytes_to_smc(hwmgr, ci_data->fan_table_start, (uint8_t *)&fan_table, (uint32_t)sizeof(fan_table), SMC_RAM_END);
2194 
2195 	return 0;
2196 }
2197 
ci_program_mem_timing_parameters(struct pp_hwmgr * hwmgr)2198 static int ci_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
2199 {
2200 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2201 
2202 	if (data->need_update_smu7_dpm_table &
2203 			(DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK))
2204 		return ci_program_memory_timing_parameters(hwmgr);
2205 
2206 	return 0;
2207 }
2208 
ci_update_sclk_threshold(struct pp_hwmgr * hwmgr)2209 static int ci_update_sclk_threshold(struct pp_hwmgr *hwmgr)
2210 {
2211 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2212 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
2213 
2214 	int result = 0;
2215 	uint32_t low_sclk_interrupt_threshold = 0;
2216 
2217 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2218 			PHM_PlatformCaps_SclkThrottleLowNotification)
2219 		&& (data->low_sclk_interrupt_threshold != 0)) {
2220 		low_sclk_interrupt_threshold =
2221 				data->low_sclk_interrupt_threshold;
2222 
2223 		CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
2224 
2225 		result = ci_copy_bytes_to_smc(
2226 				hwmgr,
2227 				smu_data->dpm_table_start +
2228 				offsetof(SMU7_Discrete_DpmTable,
2229 					LowSclkInterruptT),
2230 				(uint8_t *)&low_sclk_interrupt_threshold,
2231 				sizeof(uint32_t),
2232 				SMC_RAM_END);
2233 	}
2234 
2235 	result = ci_update_and_upload_mc_reg_table(hwmgr);
2236 
2237 	PP_ASSERT_WITH_CODE((0 == result), "Failed to upload MC reg table!", return result);
2238 
2239 	result = ci_program_mem_timing_parameters(hwmgr);
2240 	PP_ASSERT_WITH_CODE((result == 0),
2241 			"Failed to program memory timing parameters!",
2242 			);
2243 
2244 	return result;
2245 }
2246 
ci_get_offsetof(uint32_t type,uint32_t member)2247 static uint32_t ci_get_offsetof(uint32_t type, uint32_t member)
2248 {
2249 	switch (type) {
2250 	case SMU_SoftRegisters:
2251 		switch (member) {
2252 		case HandshakeDisables:
2253 			return offsetof(SMU7_SoftRegisters, HandshakeDisables);
2254 		case VoltageChangeTimeout:
2255 			return offsetof(SMU7_SoftRegisters, VoltageChangeTimeout);
2256 		case AverageGraphicsActivity:
2257 			return offsetof(SMU7_SoftRegisters, AverageGraphicsA);
2258 		case AverageMemoryActivity:
2259 			return offsetof(SMU7_SoftRegisters, AverageMemoryA);
2260 		case PreVBlankGap:
2261 			return offsetof(SMU7_SoftRegisters, PreVBlankGap);
2262 		case VBlankTimeout:
2263 			return offsetof(SMU7_SoftRegisters, VBlankTimeout);
2264 		case DRAM_LOG_ADDR_H:
2265 			return offsetof(SMU7_SoftRegisters, DRAM_LOG_ADDR_H);
2266 		case DRAM_LOG_ADDR_L:
2267 			return offsetof(SMU7_SoftRegisters, DRAM_LOG_ADDR_L);
2268 		case DRAM_LOG_PHY_ADDR_H:
2269 			return offsetof(SMU7_SoftRegisters, DRAM_LOG_PHY_ADDR_H);
2270 		case DRAM_LOG_PHY_ADDR_L:
2271 			return offsetof(SMU7_SoftRegisters, DRAM_LOG_PHY_ADDR_L);
2272 		case DRAM_LOG_BUFF_SIZE:
2273 			return offsetof(SMU7_SoftRegisters, DRAM_LOG_BUFF_SIZE);
2274 		}
2275 		break;
2276 	case SMU_Discrete_DpmTable:
2277 		switch (member) {
2278 		case LowSclkInterruptThreshold:
2279 			return offsetof(SMU7_Discrete_DpmTable, LowSclkInterruptT);
2280 		}
2281 		break;
2282 	}
2283 	pr_debug("can't get the offset of type %x member %x\n", type, member);
2284 	return 0;
2285 }
2286 
ci_get_mac_definition(uint32_t value)2287 static uint32_t ci_get_mac_definition(uint32_t value)
2288 {
2289 	switch (value) {
2290 	case SMU_MAX_LEVELS_GRAPHICS:
2291 		return SMU7_MAX_LEVELS_GRAPHICS;
2292 	case SMU_MAX_LEVELS_MEMORY:
2293 		return SMU7_MAX_LEVELS_MEMORY;
2294 	case SMU_MAX_LEVELS_LINK:
2295 		return SMU7_MAX_LEVELS_LINK;
2296 	case SMU_MAX_ENTRIES_SMIO:
2297 		return SMU7_MAX_ENTRIES_SMIO;
2298 	case SMU_MAX_LEVELS_VDDC:
2299 		return SMU7_MAX_LEVELS_VDDC;
2300 	case SMU_MAX_LEVELS_VDDCI:
2301 		return SMU7_MAX_LEVELS_VDDCI;
2302 	case SMU_MAX_LEVELS_MVDD:
2303 		return SMU7_MAX_LEVELS_MVDD;
2304 	}
2305 
2306 	pr_debug("can't get the mac of %x\n", value);
2307 	return 0;
2308 }
2309 
ci_load_smc_ucode(struct pp_hwmgr * hwmgr)2310 static int ci_load_smc_ucode(struct pp_hwmgr *hwmgr)
2311 {
2312 	uint32_t byte_count, start_addr;
2313 	uint8_t *src;
2314 	uint32_t data;
2315 
2316 	struct cgs_firmware_info info = {0};
2317 
2318 	cgs_get_firmware_info(hwmgr->device, CGS_UCODE_ID_SMU, &info);
2319 
2320 	hwmgr->is_kicker = info.is_kicker;
2321 	hwmgr->smu_version = info.version;
2322 	byte_count = info.image_size;
2323 	src = (uint8_t *)info.kptr;
2324 	start_addr = info.ucode_start_address;
2325 
2326 	if  (byte_count > SMC_RAM_END) {
2327 		pr_err("SMC address is beyond the SMC RAM area.\n");
2328 		return -EINVAL;
2329 	}
2330 
2331 	cgs_write_register(hwmgr->device, mmSMC_IND_INDEX_0, start_addr);
2332 	PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 1);
2333 
2334 	for (; byte_count >= 4; byte_count -= 4) {
2335 		data = (src[0] << 24) | (src[1] << 16) | (src[2] << 8) | src[3];
2336 		cgs_write_register(hwmgr->device, mmSMC_IND_DATA_0, data);
2337 		src += 4;
2338 	}
2339 	PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 0);
2340 
2341 	if (0 != byte_count) {
2342 		pr_err("SMC size must be divisible by 4\n");
2343 		return -EINVAL;
2344 	}
2345 
2346 	return 0;
2347 }
2348 
ci_upload_firmware(struct pp_hwmgr * hwmgr)2349 static int ci_upload_firmware(struct pp_hwmgr *hwmgr)
2350 {
2351 	if (ci_is_smc_ram_running(hwmgr)) {
2352 		pr_info("smc is running, no need to load smc firmware\n");
2353 		return 0;
2354 	}
2355 	PHM_WAIT_INDIRECT_FIELD(hwmgr, SMC_IND, RCU_UC_EVENTS,
2356 			boot_seq_done, 1);
2357 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_MISC_CNTL,
2358 			pre_fetcher_en, 1);
2359 
2360 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 1);
2361 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_RESET_CNTL, rst_reg, 1);
2362 	return ci_load_smc_ucode(hwmgr);
2363 }
2364 
ci_process_firmware_header(struct pp_hwmgr * hwmgr)2365 static int ci_process_firmware_header(struct pp_hwmgr *hwmgr)
2366 {
2367 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2368 	struct ci_smumgr *ci_data = (struct ci_smumgr *)(hwmgr->smu_backend);
2369 
2370 	uint32_t tmp = 0;
2371 	int result;
2372 	bool error = false;
2373 
2374 	if (ci_upload_firmware(hwmgr))
2375 		return -EINVAL;
2376 
2377 	result = ci_read_smc_sram_dword(hwmgr,
2378 				SMU7_FIRMWARE_HEADER_LOCATION +
2379 				offsetof(SMU7_Firmware_Header, DpmTable),
2380 				&tmp, SMC_RAM_END);
2381 
2382 	if (0 == result)
2383 		ci_data->dpm_table_start = tmp;
2384 
2385 	error |= (0 != result);
2386 
2387 	result = ci_read_smc_sram_dword(hwmgr,
2388 				SMU7_FIRMWARE_HEADER_LOCATION +
2389 				offsetof(SMU7_Firmware_Header, SoftRegisters),
2390 				&tmp, SMC_RAM_END);
2391 
2392 	if (0 == result) {
2393 		data->soft_regs_start = tmp;
2394 		ci_data->soft_regs_start = tmp;
2395 	}
2396 
2397 	error |= (0 != result);
2398 
2399 	result = ci_read_smc_sram_dword(hwmgr,
2400 				SMU7_FIRMWARE_HEADER_LOCATION +
2401 				offsetof(SMU7_Firmware_Header, mcRegisterTable),
2402 				&tmp, SMC_RAM_END);
2403 
2404 	if (0 == result)
2405 		ci_data->mc_reg_table_start = tmp;
2406 
2407 	result = ci_read_smc_sram_dword(hwmgr,
2408 				SMU7_FIRMWARE_HEADER_LOCATION +
2409 				offsetof(SMU7_Firmware_Header, FanTable),
2410 				&tmp, SMC_RAM_END);
2411 
2412 	if (0 == result)
2413 		ci_data->fan_table_start = tmp;
2414 
2415 	error |= (0 != result);
2416 
2417 	result = ci_read_smc_sram_dword(hwmgr,
2418 				SMU7_FIRMWARE_HEADER_LOCATION +
2419 				offsetof(SMU7_Firmware_Header, mcArbDramTimingTable),
2420 				&tmp, SMC_RAM_END);
2421 
2422 	if (0 == result)
2423 		ci_data->arb_table_start = tmp;
2424 
2425 	error |= (0 != result);
2426 
2427 	result = ci_read_smc_sram_dword(hwmgr,
2428 				SMU7_FIRMWARE_HEADER_LOCATION +
2429 				offsetof(SMU7_Firmware_Header, Version),
2430 				&tmp, SMC_RAM_END);
2431 
2432 	if (0 == result)
2433 		hwmgr->microcode_version_info.SMC = tmp;
2434 
2435 	error |= (0 != result);
2436 
2437 	return error ? 1 : 0;
2438 }
2439 
ci_get_memory_modile_index(struct pp_hwmgr * hwmgr)2440 static uint8_t ci_get_memory_modile_index(struct pp_hwmgr *hwmgr)
2441 {
2442 	return (uint8_t) (0xFF & (cgs_read_register(hwmgr->device, mmBIOS_SCRATCH_4) >> 16));
2443 }
2444 
ci_check_s0_mc_reg_index(uint16_t in_reg,uint16_t * out_reg)2445 static bool ci_check_s0_mc_reg_index(uint16_t in_reg, uint16_t *out_reg)
2446 {
2447 	bool result = true;
2448 
2449 	switch (in_reg) {
2450 	case  mmMC_SEQ_RAS_TIMING:
2451 		*out_reg = mmMC_SEQ_RAS_TIMING_LP;
2452 		break;
2453 
2454 	case  mmMC_SEQ_DLL_STBY:
2455 		*out_reg = mmMC_SEQ_DLL_STBY_LP;
2456 		break;
2457 
2458 	case  mmMC_SEQ_G5PDX_CMD0:
2459 		*out_reg = mmMC_SEQ_G5PDX_CMD0_LP;
2460 		break;
2461 
2462 	case  mmMC_SEQ_G5PDX_CMD1:
2463 		*out_reg = mmMC_SEQ_G5PDX_CMD1_LP;
2464 		break;
2465 
2466 	case  mmMC_SEQ_G5PDX_CTRL:
2467 		*out_reg = mmMC_SEQ_G5PDX_CTRL_LP;
2468 		break;
2469 
2470 	case mmMC_SEQ_CAS_TIMING:
2471 		*out_reg = mmMC_SEQ_CAS_TIMING_LP;
2472 		break;
2473 
2474 	case mmMC_SEQ_MISC_TIMING:
2475 		*out_reg = mmMC_SEQ_MISC_TIMING_LP;
2476 		break;
2477 
2478 	case mmMC_SEQ_MISC_TIMING2:
2479 		*out_reg = mmMC_SEQ_MISC_TIMING2_LP;
2480 		break;
2481 
2482 	case mmMC_SEQ_PMG_DVS_CMD:
2483 		*out_reg = mmMC_SEQ_PMG_DVS_CMD_LP;
2484 		break;
2485 
2486 	case mmMC_SEQ_PMG_DVS_CTL:
2487 		*out_reg = mmMC_SEQ_PMG_DVS_CTL_LP;
2488 		break;
2489 
2490 	case mmMC_SEQ_RD_CTL_D0:
2491 		*out_reg = mmMC_SEQ_RD_CTL_D0_LP;
2492 		break;
2493 
2494 	case mmMC_SEQ_RD_CTL_D1:
2495 		*out_reg = mmMC_SEQ_RD_CTL_D1_LP;
2496 		break;
2497 
2498 	case mmMC_SEQ_WR_CTL_D0:
2499 		*out_reg = mmMC_SEQ_WR_CTL_D0_LP;
2500 		break;
2501 
2502 	case mmMC_SEQ_WR_CTL_D1:
2503 		*out_reg = mmMC_SEQ_WR_CTL_D1_LP;
2504 		break;
2505 
2506 	case mmMC_PMG_CMD_EMRS:
2507 		*out_reg = mmMC_SEQ_PMG_CMD_EMRS_LP;
2508 		break;
2509 
2510 	case mmMC_PMG_CMD_MRS:
2511 		*out_reg = mmMC_SEQ_PMG_CMD_MRS_LP;
2512 		break;
2513 
2514 	case mmMC_PMG_CMD_MRS1:
2515 		*out_reg = mmMC_SEQ_PMG_CMD_MRS1_LP;
2516 		break;
2517 
2518 	case mmMC_SEQ_PMG_TIMING:
2519 		*out_reg = mmMC_SEQ_PMG_TIMING_LP;
2520 		break;
2521 
2522 	case mmMC_PMG_CMD_MRS2:
2523 		*out_reg = mmMC_SEQ_PMG_CMD_MRS2_LP;
2524 		break;
2525 
2526 	case mmMC_SEQ_WR_CTL_2:
2527 		*out_reg = mmMC_SEQ_WR_CTL_2_LP;
2528 		break;
2529 
2530 	default:
2531 		result = false;
2532 		break;
2533 	}
2534 
2535 	return result;
2536 }
2537 
ci_set_s0_mc_reg_index(struct ci_mc_reg_table * table)2538 static int ci_set_s0_mc_reg_index(struct ci_mc_reg_table *table)
2539 {
2540 	uint32_t i;
2541 	uint16_t address;
2542 
2543 	for (i = 0; i < table->last; i++) {
2544 		table->mc_reg_address[i].s0 =
2545 			ci_check_s0_mc_reg_index(table->mc_reg_address[i].s1, &address)
2546 			? address : table->mc_reg_address[i].s1;
2547 	}
2548 	return 0;
2549 }
2550 
ci_copy_vbios_smc_reg_table(const pp_atomctrl_mc_reg_table * table,struct ci_mc_reg_table * ni_table)2551 static int ci_copy_vbios_smc_reg_table(const pp_atomctrl_mc_reg_table *table,
2552 					struct ci_mc_reg_table *ni_table)
2553 {
2554 	uint8_t i, j;
2555 
2556 	PP_ASSERT_WITH_CODE((table->last <= SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2557 		"Invalid VramInfo table.", return -EINVAL);
2558 	PP_ASSERT_WITH_CODE((table->num_entries <= MAX_AC_TIMING_ENTRIES),
2559 		"Invalid VramInfo table.", return -EINVAL);
2560 
2561 	for (i = 0; i < table->last; i++)
2562 		ni_table->mc_reg_address[i].s1 = table->mc_reg_address[i].s1;
2563 
2564 	ni_table->last = table->last;
2565 
2566 	for (i = 0; i < table->num_entries; i++) {
2567 		ni_table->mc_reg_table_entry[i].mclk_max =
2568 			table->mc_reg_table_entry[i].mclk_max;
2569 		for (j = 0; j < table->last; j++) {
2570 			ni_table->mc_reg_table_entry[i].mc_data[j] =
2571 				table->mc_reg_table_entry[i].mc_data[j];
2572 		}
2573 	}
2574 
2575 	ni_table->num_entries = table->num_entries;
2576 
2577 	return 0;
2578 }
2579 
ci_set_mc_special_registers(struct pp_hwmgr * hwmgr,struct ci_mc_reg_table * table)2580 static int ci_set_mc_special_registers(struct pp_hwmgr *hwmgr,
2581 					struct ci_mc_reg_table *table)
2582 {
2583 	uint8_t i, j, k;
2584 	uint32_t temp_reg;
2585 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2586 
2587 	for (i = 0, j = table->last; i < table->last; i++) {
2588 		PP_ASSERT_WITH_CODE((j < SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2589 			"Invalid VramInfo table.", return -EINVAL);
2590 
2591 		switch (table->mc_reg_address[i].s1) {
2592 
2593 		case mmMC_SEQ_MISC1:
2594 			temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS);
2595 			table->mc_reg_address[j].s1 = mmMC_PMG_CMD_EMRS;
2596 			table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_EMRS_LP;
2597 			for (k = 0; k < table->num_entries; k++) {
2598 				table->mc_reg_table_entry[k].mc_data[j] =
2599 					((temp_reg & 0xffff0000)) |
2600 					((table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16);
2601 			}
2602 			j++;
2603 
2604 			PP_ASSERT_WITH_CODE((j < SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2605 				"Invalid VramInfo table.", return -EINVAL);
2606 			temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS);
2607 			table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS;
2608 			table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS_LP;
2609 			for (k = 0; k < table->num_entries; k++) {
2610 				table->mc_reg_table_entry[k].mc_data[j] =
2611 					(temp_reg & 0xffff0000) |
2612 					(table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
2613 
2614 				if (!data->is_memory_gddr5)
2615 					table->mc_reg_table_entry[k].mc_data[j] |= 0x100;
2616 			}
2617 			j++;
2618 
2619 			if (!data->is_memory_gddr5) {
2620 				PP_ASSERT_WITH_CODE((j < SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2621 					"Invalid VramInfo table.", return -EINVAL);
2622 				table->mc_reg_address[j].s1 = mmMC_PMG_AUTO_CMD;
2623 				table->mc_reg_address[j].s0 = mmMC_PMG_AUTO_CMD;
2624 				for (k = 0; k < table->num_entries; k++) {
2625 					table->mc_reg_table_entry[k].mc_data[j] =
2626 						(table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16;
2627 				}
2628 				j++;
2629 			}
2630 
2631 			break;
2632 
2633 		case mmMC_SEQ_RESERVE_M:
2634 			temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1);
2635 			table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS1;
2636 			table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS1_LP;
2637 			for (k = 0; k < table->num_entries; k++) {
2638 				table->mc_reg_table_entry[k].mc_data[j] =
2639 					(temp_reg & 0xffff0000) |
2640 					(table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
2641 			}
2642 			j++;
2643 			break;
2644 
2645 		default:
2646 			break;
2647 		}
2648 
2649 	}
2650 
2651 	table->last = j;
2652 
2653 	return 0;
2654 }
2655 
ci_set_valid_flag(struct ci_mc_reg_table * table)2656 static int ci_set_valid_flag(struct ci_mc_reg_table *table)
2657 {
2658 	uint8_t i, j;
2659 
2660 	for (i = 0; i < table->last; i++) {
2661 		for (j = 1; j < table->num_entries; j++) {
2662 			if (table->mc_reg_table_entry[j-1].mc_data[i] !=
2663 				table->mc_reg_table_entry[j].mc_data[i]) {
2664 				table->validflag |= (1 << i);
2665 				break;
2666 			}
2667 		}
2668 	}
2669 
2670 	return 0;
2671 }
2672 
ci_initialize_mc_reg_table(struct pp_hwmgr * hwmgr)2673 static int ci_initialize_mc_reg_table(struct pp_hwmgr *hwmgr)
2674 {
2675 	int result;
2676 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
2677 	pp_atomctrl_mc_reg_table *table;
2678 	struct ci_mc_reg_table *ni_table = &smu_data->mc_reg_table;
2679 	uint8_t module_index = ci_get_memory_modile_index(hwmgr);
2680 
2681 	table = kzalloc(sizeof(pp_atomctrl_mc_reg_table), GFP_KERNEL);
2682 
2683 	if (NULL == table)
2684 		return -ENOMEM;
2685 
2686 	/* Program additional LP registers that are no longer programmed by VBIOS */
2687 	cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING));
2688 	cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING));
2689 	cgs_write_register(hwmgr->device, mmMC_SEQ_DLL_STBY_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_DLL_STBY));
2690 	cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0));
2691 	cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1));
2692 	cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL));
2693 	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD));
2694 	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL));
2695 	cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING));
2696 	cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2));
2697 	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_EMRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS));
2698 	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS));
2699 	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS1_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1));
2700 	cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0));
2701 	cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1));
2702 	cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0));
2703 	cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1));
2704 	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING));
2705 	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS2_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS2));
2706 	cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_2));
2707 
2708 	result = atomctrl_initialize_mc_reg_table(hwmgr, module_index, table);
2709 
2710 	if (0 == result)
2711 		result = ci_copy_vbios_smc_reg_table(table, ni_table);
2712 
2713 	if (0 == result) {
2714 		ci_set_s0_mc_reg_index(ni_table);
2715 		result = ci_set_mc_special_registers(hwmgr, ni_table);
2716 	}
2717 
2718 	if (0 == result)
2719 		ci_set_valid_flag(ni_table);
2720 
2721 	kfree(table);
2722 
2723 	return result;
2724 }
2725 
ci_is_dpm_running(struct pp_hwmgr * hwmgr)2726 static bool ci_is_dpm_running(struct pp_hwmgr *hwmgr)
2727 {
2728 	return ci_is_smc_ram_running(hwmgr);
2729 }
2730 
ci_smu_init(struct pp_hwmgr * hwmgr)2731 static int ci_smu_init(struct pp_hwmgr *hwmgr)
2732 {
2733 	struct ci_smumgr *ci_priv = NULL;
2734 
2735 	ci_priv = kzalloc(sizeof(struct ci_smumgr), GFP_KERNEL);
2736 
2737 	if (ci_priv == NULL)
2738 		return -ENOMEM;
2739 
2740 	hwmgr->smu_backend = ci_priv;
2741 
2742 	return 0;
2743 }
2744 
ci_smu_fini(struct pp_hwmgr * hwmgr)2745 static int ci_smu_fini(struct pp_hwmgr *hwmgr)
2746 {
2747 	kfree(hwmgr->smu_backend);
2748 	hwmgr->smu_backend = NULL;
2749 	return 0;
2750 }
2751 
ci_start_smu(struct pp_hwmgr * hwmgr)2752 static int ci_start_smu(struct pp_hwmgr *hwmgr)
2753 {
2754 	return 0;
2755 }
2756 
ci_update_dpm_settings(struct pp_hwmgr * hwmgr,void * profile_setting)2757 static int ci_update_dpm_settings(struct pp_hwmgr *hwmgr,
2758 				void *profile_setting)
2759 {
2760 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2761 	struct ci_smumgr *smu_data = (struct ci_smumgr *)
2762 			(hwmgr->smu_backend);
2763 	struct profile_mode_setting *setting;
2764 	struct SMU7_Discrete_GraphicsLevel *levels =
2765 			smu_data->smc_state_table.GraphicsLevel;
2766 	uint32_t array = smu_data->dpm_table_start +
2767 			offsetof(SMU7_Discrete_DpmTable, GraphicsLevel);
2768 
2769 	uint32_t mclk_array = smu_data->dpm_table_start +
2770 			offsetof(SMU7_Discrete_DpmTable, MemoryLevel);
2771 	struct SMU7_Discrete_MemoryLevel *mclk_levels =
2772 			smu_data->smc_state_table.MemoryLevel;
2773 	uint32_t i;
2774 	uint32_t offset, up_hyst_offset, down_hyst_offset, clk_activity_offset, tmp;
2775 
2776 	if (profile_setting == NULL)
2777 		return -EINVAL;
2778 
2779 	setting = (struct profile_mode_setting *)profile_setting;
2780 
2781 	if (setting->bupdate_sclk) {
2782 		if (!data->sclk_dpm_key_disabled)
2783 			smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_FreezeLevel);
2784 		for (i = 0; i < smu_data->smc_state_table.GraphicsDpmLevelCount; i++) {
2785 			if (levels[i].ActivityLevel !=
2786 				cpu_to_be16(setting->sclk_activity)) {
2787 				levels[i].ActivityLevel = cpu_to_be16(setting->sclk_activity);
2788 
2789 				clk_activity_offset = array + (sizeof(SMU7_Discrete_GraphicsLevel) * i)
2790 						+ offsetof(SMU7_Discrete_GraphicsLevel, ActivityLevel);
2791 				offset = clk_activity_offset & ~0x3;
2792 				tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2793 				tmp = phm_set_field_to_u32(clk_activity_offset, tmp, levels[i].ActivityLevel, sizeof(uint16_t));
2794 				cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2795 
2796 			}
2797 			if (levels[i].UpH != setting->sclk_up_hyst ||
2798 				levels[i].DownH != setting->sclk_down_hyst) {
2799 				levels[i].UpH = setting->sclk_up_hyst;
2800 				levels[i].DownH = setting->sclk_down_hyst;
2801 				up_hyst_offset = array + (sizeof(SMU7_Discrete_GraphicsLevel) * i)
2802 						+ offsetof(SMU7_Discrete_GraphicsLevel, UpH);
2803 				down_hyst_offset = array + (sizeof(SMU7_Discrete_GraphicsLevel) * i)
2804 						+ offsetof(SMU7_Discrete_GraphicsLevel, DownH);
2805 				offset = up_hyst_offset & ~0x3;
2806 				tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2807 				tmp = phm_set_field_to_u32(up_hyst_offset, tmp, levels[i].UpH, sizeof(uint8_t));
2808 				tmp = phm_set_field_to_u32(down_hyst_offset, tmp, levels[i].DownH, sizeof(uint8_t));
2809 				cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2810 			}
2811 		}
2812 		if (!data->sclk_dpm_key_disabled)
2813 			smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_UnfreezeLevel);
2814 	}
2815 
2816 	if (setting->bupdate_mclk) {
2817 		if (!data->mclk_dpm_key_disabled)
2818 			smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_FreezeLevel);
2819 		for (i = 0; i < smu_data->smc_state_table.MemoryDpmLevelCount; i++) {
2820 			if (mclk_levels[i].ActivityLevel !=
2821 				cpu_to_be16(setting->mclk_activity)) {
2822 				mclk_levels[i].ActivityLevel = cpu_to_be16(setting->mclk_activity);
2823 
2824 				clk_activity_offset = mclk_array + (sizeof(SMU7_Discrete_MemoryLevel) * i)
2825 						+ offsetof(SMU7_Discrete_MemoryLevel, ActivityLevel);
2826 				offset = clk_activity_offset & ~0x3;
2827 				tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2828 				tmp = phm_set_field_to_u32(clk_activity_offset, tmp, mclk_levels[i].ActivityLevel, sizeof(uint16_t));
2829 				cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2830 
2831 			}
2832 			if (mclk_levels[i].UpH != setting->mclk_up_hyst ||
2833 				mclk_levels[i].DownH != setting->mclk_down_hyst) {
2834 				mclk_levels[i].UpH = setting->mclk_up_hyst;
2835 				mclk_levels[i].DownH = setting->mclk_down_hyst;
2836 				up_hyst_offset = mclk_array + (sizeof(SMU7_Discrete_MemoryLevel) * i)
2837 						+ offsetof(SMU7_Discrete_MemoryLevel, UpH);
2838 				down_hyst_offset = mclk_array + (sizeof(SMU7_Discrete_MemoryLevel) * i)
2839 						+ offsetof(SMU7_Discrete_MemoryLevel, DownH);
2840 				offset = up_hyst_offset & ~0x3;
2841 				tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2842 				tmp = phm_set_field_to_u32(up_hyst_offset, tmp, mclk_levels[i].UpH, sizeof(uint8_t));
2843 				tmp = phm_set_field_to_u32(down_hyst_offset, tmp, mclk_levels[i].DownH, sizeof(uint8_t));
2844 				cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2845 			}
2846 		}
2847 		if (!data->mclk_dpm_key_disabled)
2848 			smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_UnfreezeLevel);
2849 	}
2850 	return 0;
2851 }
2852 
ci_update_uvd_smc_table(struct pp_hwmgr * hwmgr)2853 static int ci_update_uvd_smc_table(struct pp_hwmgr *hwmgr)
2854 {
2855 	struct amdgpu_device *adev = hwmgr->adev;
2856 	struct smu7_hwmgr *data = hwmgr->backend;
2857 	struct ci_smumgr *smu_data = hwmgr->smu_backend;
2858 	struct phm_uvd_clock_voltage_dependency_table *uvd_table =
2859 			hwmgr->dyn_state.uvd_clock_voltage_dependency_table;
2860 	uint32_t profile_mode_mask = AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD |
2861 					AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK |
2862 					AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK |
2863 					AMD_DPM_FORCED_LEVEL_PROFILE_PEAK;
2864 	uint32_t max_vddc = adev->pm.ac_power ? hwmgr->dyn_state.max_clock_voltage_on_ac.vddc :
2865 						hwmgr->dyn_state.max_clock_voltage_on_dc.vddc;
2866 	int32_t i;
2867 
2868 	if (PP_CAP(PHM_PlatformCaps_UVDDPM) || uvd_table->count <= 0)
2869 		smu_data->smc_state_table.UvdBootLevel = 0;
2870 	else
2871 		smu_data->smc_state_table.UvdBootLevel = uvd_table->count - 1;
2872 
2873 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, DPM_TABLE_475,
2874 				UvdBootLevel, smu_data->smc_state_table.UvdBootLevel);
2875 
2876 	data->dpm_level_enable_mask.uvd_dpm_enable_mask = 0;
2877 
2878 	for (i = uvd_table->count - 1; i >= 0; i--) {
2879 		if (uvd_table->entries[i].v <= max_vddc)
2880 			data->dpm_level_enable_mask.uvd_dpm_enable_mask |= 1 << i;
2881 		if (hwmgr->dpm_level & profile_mode_mask || !PP_CAP(PHM_PlatformCaps_UVDDPM))
2882 			break;
2883 	}
2884 	ci_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_UVDDPM_SetEnabledMask,
2885 				data->dpm_level_enable_mask.uvd_dpm_enable_mask);
2886 
2887 	return 0;
2888 }
2889 
ci_update_vce_smc_table(struct pp_hwmgr * hwmgr)2890 static int ci_update_vce_smc_table(struct pp_hwmgr *hwmgr)
2891 {
2892 	struct amdgpu_device *adev = hwmgr->adev;
2893 	struct smu7_hwmgr *data = hwmgr->backend;
2894 	struct phm_vce_clock_voltage_dependency_table *vce_table =
2895 			hwmgr->dyn_state.vce_clock_voltage_dependency_table;
2896 	uint32_t profile_mode_mask = AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD |
2897 					AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK |
2898 					AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK |
2899 					AMD_DPM_FORCED_LEVEL_PROFILE_PEAK;
2900 	uint32_t max_vddc = adev->pm.ac_power ? hwmgr->dyn_state.max_clock_voltage_on_ac.vddc :
2901 						hwmgr->dyn_state.max_clock_voltage_on_dc.vddc;
2902 	int32_t i;
2903 
2904 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, DPM_TABLE_475,
2905 				VceBootLevel, 0); /* temp hard code to level 0, vce can set min evclk*/
2906 
2907 	data->dpm_level_enable_mask.vce_dpm_enable_mask = 0;
2908 
2909 	for (i = vce_table->count - 1; i >= 0; i--) {
2910 		if (vce_table->entries[i].v <= max_vddc)
2911 			data->dpm_level_enable_mask.vce_dpm_enable_mask |= 1 << i;
2912 		if (hwmgr->dpm_level & profile_mode_mask || !PP_CAP(PHM_PlatformCaps_VCEDPM))
2913 			break;
2914 	}
2915 	ci_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_VCEDPM_SetEnabledMask,
2916 				data->dpm_level_enable_mask.vce_dpm_enable_mask);
2917 
2918 	return 0;
2919 }
2920 
ci_update_smc_table(struct pp_hwmgr * hwmgr,uint32_t type)2921 static int ci_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type)
2922 {
2923 	switch (type) {
2924 	case SMU_UVD_TABLE:
2925 		ci_update_uvd_smc_table(hwmgr);
2926 		break;
2927 	case SMU_VCE_TABLE:
2928 		ci_update_vce_smc_table(hwmgr);
2929 		break;
2930 	default:
2931 		break;
2932 	}
2933 	return 0;
2934 }
2935 
2936 const struct pp_smumgr_func ci_smu_funcs = {
2937 	.name = "ci_smu",
2938 	.smu_init = ci_smu_init,
2939 	.smu_fini = ci_smu_fini,
2940 	.start_smu = ci_start_smu,
2941 	.check_fw_load_finish = NULL,
2942 	.request_smu_load_fw = NULL,
2943 	.request_smu_load_specific_fw = NULL,
2944 	.send_msg_to_smc = ci_send_msg_to_smc,
2945 	.send_msg_to_smc_with_parameter = ci_send_msg_to_smc_with_parameter,
2946 	.download_pptable_settings = NULL,
2947 	.upload_pptable_settings = NULL,
2948 	.get_offsetof = ci_get_offsetof,
2949 	.process_firmware_header = ci_process_firmware_header,
2950 	.init_smc_table = ci_init_smc_table,
2951 	.update_sclk_threshold = ci_update_sclk_threshold,
2952 	.thermal_setup_fan_table = ci_thermal_setup_fan_table,
2953 	.populate_all_graphic_levels = ci_populate_all_graphic_levels,
2954 	.populate_all_memory_levels = ci_populate_all_memory_levels,
2955 	.get_mac_definition = ci_get_mac_definition,
2956 	.initialize_mc_reg_table = ci_initialize_mc_reg_table,
2957 	.is_dpm_running = ci_is_dpm_running,
2958 	.update_dpm_settings = ci_update_dpm_settings,
2959 	.update_smc_table = ci_update_smc_table,
2960 };
2961