1 /*
2 * Copyright 2017 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 */
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 #include <linux/fb.h>
26 #include "linux/delay.h"
27 #include <linux/types.h>
28
29 #include "smumgr.h"
30 #include "pp_debug.h"
31 #include "ci_smumgr.h"
32 #include "ppsmc.h"
33 #include "smu7_hwmgr.h"
34 #include "hardwaremanager.h"
35 #include "ppatomctrl.h"
36 #include "cgs_common.h"
37 #include "atombios.h"
38 #include "pppcielanes.h"
39
40 #include "smu/smu_7_0_1_d.h"
41 #include "smu/smu_7_0_1_sh_mask.h"
42
43 #include "dce/dce_8_0_d.h"
44 #include "dce/dce_8_0_sh_mask.h"
45
46 #include "bif/bif_4_1_d.h"
47 #include "bif/bif_4_1_sh_mask.h"
48
49 #include "gca/gfx_7_2_d.h"
50 #include "gca/gfx_7_2_sh_mask.h"
51
52 #include "gmc/gmc_7_1_d.h"
53 #include "gmc/gmc_7_1_sh_mask.h"
54
55 #include "processpptables.h"
56
57 #define MC_CG_ARB_FREQ_F0 0x0a
58 #define MC_CG_ARB_FREQ_F1 0x0b
59 #define MC_CG_ARB_FREQ_F2 0x0c
60 #define MC_CG_ARB_FREQ_F3 0x0d
61
62 #define SMC_RAM_END 0x40000
63
64 #define CISLAND_MINIMUM_ENGINE_CLOCK 800
65 #define CISLAND_MAX_DEEPSLEEP_DIVIDER_ID 5
66
67 static const struct ci_pt_defaults defaults_hawaii_xt = {
68 1, 0xF, 0xFD, 0x19, 5, 0x14, 0, 0xB0000,
69 { 0x2E, 0x00, 0x00, 0x88, 0x00, 0x00, 0x72, 0x60, 0x51, 0xA7, 0x79, 0x6B, 0x90, 0xBD, 0x79 },
70 { 0x217, 0x217, 0x217, 0x242, 0x242, 0x242, 0x269, 0x269, 0x269, 0x2A1, 0x2A1, 0x2A1, 0x2C9, 0x2C9, 0x2C9 }
71 };
72
73 static const struct ci_pt_defaults defaults_hawaii_pro = {
74 1, 0xF, 0xFD, 0x19, 5, 0x14, 0, 0x65062,
75 { 0x2E, 0x00, 0x00, 0x88, 0x00, 0x00, 0x72, 0x60, 0x51, 0xA7, 0x79, 0x6B, 0x90, 0xBD, 0x79 },
76 { 0x217, 0x217, 0x217, 0x242, 0x242, 0x242, 0x269, 0x269, 0x269, 0x2A1, 0x2A1, 0x2A1, 0x2C9, 0x2C9, 0x2C9 }
77 };
78
79 static const struct ci_pt_defaults defaults_bonaire_xt = {
80 1, 0xF, 0xFD, 0x19, 5, 45, 0, 0xB0000,
81 { 0x79, 0x253, 0x25D, 0xAE, 0x72, 0x80, 0x83, 0x86, 0x6F, 0xC8, 0xC9, 0xC9, 0x2F, 0x4D, 0x61 },
82 { 0x17C, 0x172, 0x180, 0x1BC, 0x1B3, 0x1BD, 0x206, 0x200, 0x203, 0x25D, 0x25A, 0x255, 0x2C3, 0x2C5, 0x2B4 }
83 };
84
85
86 static const struct ci_pt_defaults defaults_saturn_xt = {
87 1, 0xF, 0xFD, 0x19, 5, 55, 0, 0x70000,
88 { 0x8C, 0x247, 0x249, 0xA6, 0x80, 0x81, 0x8B, 0x89, 0x86, 0xC9, 0xCA, 0xC9, 0x4D, 0x4D, 0x4D },
89 { 0x187, 0x187, 0x187, 0x1C7, 0x1C7, 0x1C7, 0x210, 0x210, 0x210, 0x266, 0x266, 0x266, 0x2C9, 0x2C9, 0x2C9 }
90 };
91
92
ci_set_smc_sram_address(struct pp_hwmgr * hwmgr,uint32_t smc_addr,uint32_t limit)93 static int ci_set_smc_sram_address(struct pp_hwmgr *hwmgr,
94 uint32_t smc_addr, uint32_t limit)
95 {
96 if ((0 != (3 & smc_addr))
97 || ((smc_addr + 3) >= limit)) {
98 pr_err("smc_addr invalid \n");
99 return -EINVAL;
100 }
101
102 cgs_write_register(hwmgr->device, mmSMC_IND_INDEX_0, smc_addr);
103 PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 0);
104 return 0;
105 }
106
ci_copy_bytes_to_smc(struct pp_hwmgr * hwmgr,uint32_t smc_start_address,const uint8_t * src,uint32_t byte_count,uint32_t limit)107 static int ci_copy_bytes_to_smc(struct pp_hwmgr *hwmgr, uint32_t smc_start_address,
108 const uint8_t *src, uint32_t byte_count, uint32_t limit)
109 {
110 int result;
111 uint32_t data = 0;
112 uint32_t original_data;
113 uint32_t addr = 0;
114 uint32_t extra_shift;
115
116 if ((3 & smc_start_address)
117 || ((smc_start_address + byte_count) >= limit)) {
118 pr_err("smc_start_address invalid \n");
119 return -EINVAL;
120 }
121
122 addr = smc_start_address;
123
124 while (byte_count >= 4) {
125 /* Bytes are written into the SMC address space with the MSB first. */
126 data = src[0] * 0x1000000 + src[1] * 0x10000 + src[2] * 0x100 + src[3];
127
128 result = ci_set_smc_sram_address(hwmgr, addr, limit);
129
130 if (0 != result)
131 return result;
132
133 cgs_write_register(hwmgr->device, mmSMC_IND_DATA_0, data);
134
135 src += 4;
136 byte_count -= 4;
137 addr += 4;
138 }
139
140 if (0 != byte_count) {
141
142 data = 0;
143
144 result = ci_set_smc_sram_address(hwmgr, addr, limit);
145
146 if (0 != result)
147 return result;
148
149
150 original_data = cgs_read_register(hwmgr->device, mmSMC_IND_DATA_0);
151
152 extra_shift = 8 * (4 - byte_count);
153
154 while (byte_count > 0) {
155 /* Bytes are written into the SMC addres space with the MSB first. */
156 data = (0x100 * data) + *src++;
157 byte_count--;
158 }
159
160 data <<= extra_shift;
161
162 data |= (original_data & ~((~0UL) << extra_shift));
163
164 result = ci_set_smc_sram_address(hwmgr, addr, limit);
165
166 if (0 != result)
167 return result;
168
169 cgs_write_register(hwmgr->device, mmSMC_IND_DATA_0, data);
170 }
171
172 return 0;
173 }
174
175
ci_program_jump_on_start(struct pp_hwmgr * hwmgr)176 static int ci_program_jump_on_start(struct pp_hwmgr *hwmgr)
177 {
178 static const unsigned char data[4] = { 0xE0, 0x00, 0x80, 0x40 };
179
180 ci_copy_bytes_to_smc(hwmgr, 0x0, data, 4, sizeof(data)+1);
181
182 return 0;
183 }
184
ci_is_smc_ram_running(struct pp_hwmgr * hwmgr)185 bool ci_is_smc_ram_running(struct pp_hwmgr *hwmgr)
186 {
187 return ((0 == PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
188 CGS_IND_REG__SMC, SMC_SYSCON_CLOCK_CNTL_0, ck_disable))
189 && (0x20100 <= cgs_read_ind_register(hwmgr->device,
190 CGS_IND_REG__SMC, ixSMC_PC_C)));
191 }
192
ci_read_smc_sram_dword(struct pp_hwmgr * hwmgr,uint32_t smc_addr,uint32_t * value,uint32_t limit)193 static int ci_read_smc_sram_dword(struct pp_hwmgr *hwmgr, uint32_t smc_addr,
194 uint32_t *value, uint32_t limit)
195 {
196 int result;
197
198 result = ci_set_smc_sram_address(hwmgr, smc_addr, limit);
199
200 if (result)
201 return result;
202
203 *value = cgs_read_register(hwmgr->device, mmSMC_IND_DATA_0);
204 return 0;
205 }
206
ci_send_msg_to_smc(struct pp_hwmgr * hwmgr,uint16_t msg)207 static int ci_send_msg_to_smc(struct pp_hwmgr *hwmgr, uint16_t msg)
208 {
209 int ret;
210
211 cgs_write_register(hwmgr->device, mmSMC_RESP_0, 0);
212 cgs_write_register(hwmgr->device, mmSMC_MESSAGE_0, msg);
213
214 PHM_WAIT_FIELD_UNEQUAL(hwmgr, SMC_RESP_0, SMC_RESP, 0);
215
216 ret = PHM_READ_FIELD(hwmgr->device, SMC_RESP_0, SMC_RESP);
217
218 if (ret != 1)
219 pr_info("\n failed to send message %x ret is %d\n", msg, ret);
220
221 return 0;
222 }
223
ci_send_msg_to_smc_with_parameter(struct pp_hwmgr * hwmgr,uint16_t msg,uint32_t parameter)224 static int ci_send_msg_to_smc_with_parameter(struct pp_hwmgr *hwmgr,
225 uint16_t msg, uint32_t parameter)
226 {
227 cgs_write_register(hwmgr->device, mmSMC_MSG_ARG_0, parameter);
228 return ci_send_msg_to_smc(hwmgr, msg);
229 }
230
ci_initialize_power_tune_defaults(struct pp_hwmgr * hwmgr)231 static void ci_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr)
232 {
233 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
234 struct amdgpu_device *adev = hwmgr->adev;
235 uint32_t dev_id;
236
237 dev_id = adev->pdev->device;
238
239 switch (dev_id) {
240 case 0x67BA:
241 case 0x66B1:
242 smu_data->power_tune_defaults = &defaults_hawaii_pro;
243 break;
244 case 0x67B8:
245 case 0x66B0:
246 smu_data->power_tune_defaults = &defaults_hawaii_xt;
247 break;
248 case 0x6640:
249 case 0x6641:
250 case 0x6646:
251 case 0x6647:
252 smu_data->power_tune_defaults = &defaults_saturn_xt;
253 break;
254 case 0x6649:
255 case 0x6650:
256 case 0x6651:
257 case 0x6658:
258 case 0x665C:
259 case 0x665D:
260 case 0x67A0:
261 case 0x67A1:
262 case 0x67A2:
263 case 0x67A8:
264 case 0x67A9:
265 case 0x67AA:
266 case 0x67B9:
267 case 0x67BE:
268 default:
269 smu_data->power_tune_defaults = &defaults_bonaire_xt;
270 break;
271 }
272 }
273
ci_get_dependency_volt_by_clk(struct pp_hwmgr * hwmgr,struct phm_clock_voltage_dependency_table * allowed_clock_voltage_table,uint32_t clock,uint32_t * vol)274 static int ci_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr,
275 struct phm_clock_voltage_dependency_table *allowed_clock_voltage_table,
276 uint32_t clock, uint32_t *vol)
277 {
278 uint32_t i = 0;
279
280 if (allowed_clock_voltage_table->count == 0)
281 return -EINVAL;
282
283 for (i = 0; i < allowed_clock_voltage_table->count; i++) {
284 if (allowed_clock_voltage_table->entries[i].clk >= clock) {
285 *vol = allowed_clock_voltage_table->entries[i].v;
286 return 0;
287 }
288 }
289
290 *vol = allowed_clock_voltage_table->entries[i - 1].v;
291 return 0;
292 }
293
ci_calculate_sclk_params(struct pp_hwmgr * hwmgr,uint32_t clock,struct SMU7_Discrete_GraphicsLevel * sclk)294 static int ci_calculate_sclk_params(struct pp_hwmgr *hwmgr,
295 uint32_t clock, struct SMU7_Discrete_GraphicsLevel *sclk)
296 {
297 const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
298 struct pp_atomctrl_clock_dividers_vi dividers;
299 uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL;
300 uint32_t spll_func_cntl_3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
301 uint32_t spll_func_cntl_4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
302 uint32_t cg_spll_spread_spectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
303 uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
304 uint32_t ref_clock;
305 uint32_t ref_divider;
306 uint32_t fbdiv;
307 int result;
308
309 /* get the engine clock dividers for this clock value */
310 result = atomctrl_get_engine_pll_dividers_vi(hwmgr, clock, ÷rs);
311
312 PP_ASSERT_WITH_CODE(result == 0,
313 "Error retrieving Engine Clock dividers from VBIOS.",
314 return result);
315
316 /* To get FBDIV we need to multiply this by 16384 and divide it by Fref. */
317 ref_clock = atomctrl_get_reference_clock(hwmgr);
318 ref_divider = 1 + dividers.uc_pll_ref_div;
319
320 /* low 14 bits is fraction and high 12 bits is divider */
321 fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF;
322
323 /* SPLL_FUNC_CNTL setup */
324 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
325 SPLL_REF_DIV, dividers.uc_pll_ref_div);
326 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
327 SPLL_PDIV_A, dividers.uc_pll_post_div);
328
329 /* SPLL_FUNC_CNTL_3 setup*/
330 spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
331 SPLL_FB_DIV, fbdiv);
332
333 /* set to use fractional accumulation*/
334 spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
335 SPLL_DITHEN, 1);
336
337 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
338 PHM_PlatformCaps_EngineSpreadSpectrumSupport)) {
339 struct pp_atomctrl_internal_ss_info ss_info;
340 uint32_t vco_freq = clock * dividers.uc_pll_post_div;
341
342 if (!atomctrl_get_engine_clock_spread_spectrum(hwmgr,
343 vco_freq, &ss_info)) {
344 uint32_t clk_s = ref_clock * 5 /
345 (ref_divider * ss_info.speed_spectrum_rate);
346 uint32_t clk_v = 4 * ss_info.speed_spectrum_percentage *
347 fbdiv / (clk_s * 10000);
348
349 cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
350 CG_SPLL_SPREAD_SPECTRUM, CLKS, clk_s);
351 cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
352 CG_SPLL_SPREAD_SPECTRUM, SSEN, 1);
353 cg_spll_spread_spectrum_2 = PHM_SET_FIELD(cg_spll_spread_spectrum_2,
354 CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clk_v);
355 }
356 }
357
358 sclk->SclkFrequency = clock;
359 sclk->CgSpllFuncCntl3 = spll_func_cntl_3;
360 sclk->CgSpllFuncCntl4 = spll_func_cntl_4;
361 sclk->SpllSpreadSpectrum = cg_spll_spread_spectrum;
362 sclk->SpllSpreadSpectrum2 = cg_spll_spread_spectrum_2;
363 sclk->SclkDid = (uint8_t)dividers.pll_post_divider;
364
365 return 0;
366 }
367
ci_populate_phase_value_based_on_sclk(struct pp_hwmgr * hwmgr,const struct phm_phase_shedding_limits_table * pl,uint32_t sclk,uint32_t * p_shed)368 static void ci_populate_phase_value_based_on_sclk(struct pp_hwmgr *hwmgr,
369 const struct phm_phase_shedding_limits_table *pl,
370 uint32_t sclk, uint32_t *p_shed)
371 {
372 unsigned int i;
373
374 /* use the minimum phase shedding */
375 *p_shed = 1;
376
377 for (i = 0; i < pl->count; i++) {
378 if (sclk < pl->entries[i].Sclk) {
379 *p_shed = i;
380 break;
381 }
382 }
383 }
384
ci_get_sleep_divider_id_from_clock(uint32_t clock,uint32_t clock_insr)385 static uint8_t ci_get_sleep_divider_id_from_clock(uint32_t clock,
386 uint32_t clock_insr)
387 {
388 uint8_t i;
389 uint32_t temp;
390 uint32_t min = min_t(uint32_t, clock_insr, CISLAND_MINIMUM_ENGINE_CLOCK);
391
392 if (clock < min) {
393 pr_info("Engine clock can't satisfy stutter requirement!\n");
394 return 0;
395 }
396 for (i = CISLAND_MAX_DEEPSLEEP_DIVIDER_ID; ; i--) {
397 temp = clock >> i;
398
399 if (temp >= min || i == 0)
400 break;
401 }
402 return i;
403 }
404
ci_populate_single_graphic_level(struct pp_hwmgr * hwmgr,uint32_t clock,struct SMU7_Discrete_GraphicsLevel * level)405 static int ci_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
406 uint32_t clock, struct SMU7_Discrete_GraphicsLevel *level)
407 {
408 int result;
409 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
410
411
412 result = ci_calculate_sclk_params(hwmgr, clock, level);
413
414 /* populate graphics levels */
415 result = ci_get_dependency_volt_by_clk(hwmgr,
416 hwmgr->dyn_state.vddc_dependency_on_sclk, clock,
417 (uint32_t *)(&level->MinVddc));
418 if (result) {
419 pr_err("vdd_dep_on_sclk table is NULL\n");
420 return result;
421 }
422
423 level->SclkFrequency = clock;
424 level->MinVddcPhases = 1;
425
426 if (data->vddc_phase_shed_control)
427 ci_populate_phase_value_based_on_sclk(hwmgr,
428 hwmgr->dyn_state.vddc_phase_shed_limits_table,
429 clock,
430 &level->MinVddcPhases);
431
432 level->ActivityLevel = data->current_profile_setting.sclk_activity;
433 level->CcPwrDynRm = 0;
434 level->CcPwrDynRm1 = 0;
435 level->EnabledForActivity = 0;
436 /* this level can be used for throttling.*/
437 level->EnabledForThrottle = 1;
438 level->UpH = data->current_profile_setting.sclk_up_hyst;
439 level->DownH = data->current_profile_setting.sclk_down_hyst;
440 level->VoltageDownH = 0;
441 level->PowerThrottle = 0;
442
443
444 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
445 PHM_PlatformCaps_SclkDeepSleep))
446 level->DeepSleepDivId =
447 ci_get_sleep_divider_id_from_clock(clock,
448 CISLAND_MINIMUM_ENGINE_CLOCK);
449
450 /* Default to slow, highest DPM level will be set to PPSMC_DISPLAY_WATERMARK_LOW later.*/
451 level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
452
453 if (0 == result) {
454 level->MinVddc = PP_HOST_TO_SMC_UL(level->MinVddc * VOLTAGE_SCALE);
455 CONVERT_FROM_HOST_TO_SMC_UL(level->MinVddcPhases);
456 CONVERT_FROM_HOST_TO_SMC_UL(level->SclkFrequency);
457 CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel);
458 CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl3);
459 CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl4);
460 CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum);
461 CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum2);
462 CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm);
463 CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1);
464 }
465
466 return result;
467 }
468
ci_populate_all_graphic_levels(struct pp_hwmgr * hwmgr)469 static int ci_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
470 {
471 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
472 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
473 struct smu7_dpm_table *dpm_table = &data->dpm_table;
474 int result = 0;
475 uint32_t array = smu_data->dpm_table_start +
476 offsetof(SMU7_Discrete_DpmTable, GraphicsLevel);
477 uint32_t array_size = sizeof(struct SMU7_Discrete_GraphicsLevel) *
478 SMU7_MAX_LEVELS_GRAPHICS;
479 struct SMU7_Discrete_GraphicsLevel *levels =
480 smu_data->smc_state_table.GraphicsLevel;
481 uint32_t i;
482
483 for (i = 0; i < dpm_table->sclk_table.count; i++) {
484 result = ci_populate_single_graphic_level(hwmgr,
485 dpm_table->sclk_table.dpm_levels[i].value,
486 &levels[i]);
487 if (result)
488 return result;
489 if (i > 1)
490 smu_data->smc_state_table.GraphicsLevel[i].DeepSleepDivId = 0;
491 if (i == (dpm_table->sclk_table.count - 1))
492 smu_data->smc_state_table.GraphicsLevel[i].DisplayWatermark =
493 PPSMC_DISPLAY_WATERMARK_HIGH;
494 }
495
496 smu_data->smc_state_table.GraphicsLevel[0].EnabledForActivity = 1;
497
498 smu_data->smc_state_table.GraphicsDpmLevelCount = (u8)dpm_table->sclk_table.count;
499 data->dpm_level_enable_mask.sclk_dpm_enable_mask =
500 phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
501
502 result = ci_copy_bytes_to_smc(hwmgr, array,
503 (u8 *)levels, array_size,
504 SMC_RAM_END);
505
506 return result;
507
508 }
509
ci_populate_svi_load_line(struct pp_hwmgr * hwmgr)510 static int ci_populate_svi_load_line(struct pp_hwmgr *hwmgr)
511 {
512 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
513 const struct ci_pt_defaults *defaults = smu_data->power_tune_defaults;
514
515 smu_data->power_tune_table.SviLoadLineEn = defaults->svi_load_line_en;
516 smu_data->power_tune_table.SviLoadLineVddC = defaults->svi_load_line_vddc;
517 smu_data->power_tune_table.SviLoadLineTrimVddC = 3;
518 smu_data->power_tune_table.SviLoadLineOffsetVddC = 0;
519
520 return 0;
521 }
522
ci_populate_tdc_limit(struct pp_hwmgr * hwmgr)523 static int ci_populate_tdc_limit(struct pp_hwmgr *hwmgr)
524 {
525 uint16_t tdc_limit;
526 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
527 const struct ci_pt_defaults *defaults = smu_data->power_tune_defaults;
528
529 tdc_limit = (uint16_t)(hwmgr->dyn_state.cac_dtp_table->usTDC * 256);
530 smu_data->power_tune_table.TDC_VDDC_PkgLimit =
531 CONVERT_FROM_HOST_TO_SMC_US(tdc_limit);
532 smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc =
533 defaults->tdc_vddc_throttle_release_limit_perc;
534 smu_data->power_tune_table.TDC_MAWt = defaults->tdc_mawt;
535
536 return 0;
537 }
538
ci_populate_dw8(struct pp_hwmgr * hwmgr,uint32_t fuse_table_offset)539 static int ci_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
540 {
541 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
542 const struct ci_pt_defaults *defaults = smu_data->power_tune_defaults;
543 uint32_t temp;
544
545 if (ci_read_smc_sram_dword(hwmgr,
546 fuse_table_offset +
547 offsetof(SMU7_Discrete_PmFuses, TdcWaterfallCtl),
548 (uint32_t *)&temp, SMC_RAM_END))
549 PP_ASSERT_WITH_CODE(false,
550 "Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!",
551 return -EINVAL);
552 else
553 smu_data->power_tune_table.TdcWaterfallCtl = defaults->tdc_waterfall_ctl;
554
555 return 0;
556 }
557
ci_populate_fuzzy_fan(struct pp_hwmgr * hwmgr,uint32_t fuse_table_offset)558 static int ci_populate_fuzzy_fan(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
559 {
560 uint16_t tmp;
561 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
562
563 if ((hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity & (1 << 15))
564 || 0 == hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity)
565 tmp = hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity;
566 else
567 tmp = hwmgr->thermal_controller.advanceFanControlParameters.usDefaultFanOutputSensitivity;
568
569 smu_data->power_tune_table.FuzzyFan_PwmSetDelta = CONVERT_FROM_HOST_TO_SMC_US(tmp);
570
571 return 0;
572 }
573
ci_populate_bapm_vddc_vid_sidd(struct pp_hwmgr * hwmgr)574 static int ci_populate_bapm_vddc_vid_sidd(struct pp_hwmgr *hwmgr)
575 {
576 int i;
577 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
578 uint8_t *hi_vid = smu_data->power_tune_table.BapmVddCVidHiSidd;
579 uint8_t *lo_vid = smu_data->power_tune_table.BapmVddCVidLoSidd;
580 uint8_t *hi2_vid = smu_data->power_tune_table.BapmVddCVidHiSidd2;
581
582 PP_ASSERT_WITH_CODE(NULL != hwmgr->dyn_state.cac_leakage_table,
583 "The CAC Leakage table does not exist!", return -EINVAL);
584 PP_ASSERT_WITH_CODE(hwmgr->dyn_state.cac_leakage_table->count <= 8,
585 "There should never be more than 8 entries for BapmVddcVid!!!", return -EINVAL);
586 PP_ASSERT_WITH_CODE(hwmgr->dyn_state.cac_leakage_table->count == hwmgr->dyn_state.vddc_dependency_on_sclk->count,
587 "CACLeakageTable->count and VddcDependencyOnSCLk->count not equal", return -EINVAL);
588
589 for (i = 0; (uint32_t) i < hwmgr->dyn_state.cac_leakage_table->count; i++) {
590 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_EVV)) {
591 lo_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc1);
592 hi_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc2);
593 hi2_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc3);
594 } else {
595 lo_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc);
596 hi_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Leakage);
597 }
598 }
599
600 return 0;
601 }
602
ci_populate_vddc_vid(struct pp_hwmgr * hwmgr)603 static int ci_populate_vddc_vid(struct pp_hwmgr *hwmgr)
604 {
605 int i;
606 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
607 uint8_t *vid = smu_data->power_tune_table.VddCVid;
608 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
609
610 PP_ASSERT_WITH_CODE(data->vddc_voltage_table.count <= 8,
611 "There should never be more than 8 entries for VddcVid!!!",
612 return -EINVAL);
613
614 for (i = 0; i < (int)data->vddc_voltage_table.count; i++)
615 vid[i] = convert_to_vid(data->vddc_voltage_table.entries[i].value);
616
617 return 0;
618 }
619
ci_min_max_v_gnbl_pm_lid_from_bapm_vddc(struct pp_hwmgr * hwmgr)620 static int ci_min_max_v_gnbl_pm_lid_from_bapm_vddc(struct pp_hwmgr *hwmgr)
621 {
622 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
623 u8 *hi_vid = smu_data->power_tune_table.BapmVddCVidHiSidd;
624 u8 *lo_vid = smu_data->power_tune_table.BapmVddCVidLoSidd;
625 int i, min, max;
626
627 min = max = hi_vid[0];
628 for (i = 0; i < 8; i++) {
629 if (0 != hi_vid[i]) {
630 if (min > hi_vid[i])
631 min = hi_vid[i];
632 if (max < hi_vid[i])
633 max = hi_vid[i];
634 }
635
636 if (0 != lo_vid[i]) {
637 if (min > lo_vid[i])
638 min = lo_vid[i];
639 if (max < lo_vid[i])
640 max = lo_vid[i];
641 }
642 }
643
644 if ((min == 0) || (max == 0))
645 return -EINVAL;
646 smu_data->power_tune_table.GnbLPMLMaxVid = (u8)max;
647 smu_data->power_tune_table.GnbLPMLMinVid = (u8)min;
648
649 return 0;
650 }
651
ci_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr * hwmgr)652 static int ci_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr)
653 {
654 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
655 uint16_t HiSidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd;
656 uint16_t LoSidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd;
657 struct phm_cac_tdp_table *cac_table = hwmgr->dyn_state.cac_dtp_table;
658
659 HiSidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256);
660 LoSidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256);
661
662 smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd =
663 CONVERT_FROM_HOST_TO_SMC_US(HiSidd);
664 smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd =
665 CONVERT_FROM_HOST_TO_SMC_US(LoSidd);
666
667 return 0;
668 }
669
ci_populate_pm_fuses(struct pp_hwmgr * hwmgr)670 static int ci_populate_pm_fuses(struct pp_hwmgr *hwmgr)
671 {
672 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
673 uint32_t pm_fuse_table_offset;
674 int ret = 0;
675
676 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
677 PHM_PlatformCaps_PowerContainment)) {
678 if (ci_read_smc_sram_dword(hwmgr,
679 SMU7_FIRMWARE_HEADER_LOCATION +
680 offsetof(SMU7_Firmware_Header, PmFuseTable),
681 &pm_fuse_table_offset, SMC_RAM_END)) {
682 pr_err("Attempt to get pm_fuse_table_offset Failed!\n");
683 return -EINVAL;
684 }
685
686 /* DW0 - DW3 */
687 ret = ci_populate_bapm_vddc_vid_sidd(hwmgr);
688 /* DW4 - DW5 */
689 ret |= ci_populate_vddc_vid(hwmgr);
690 /* DW6 */
691 ret |= ci_populate_svi_load_line(hwmgr);
692 /* DW7 */
693 ret |= ci_populate_tdc_limit(hwmgr);
694 /* DW8 */
695 ret |= ci_populate_dw8(hwmgr, pm_fuse_table_offset);
696
697 ret |= ci_populate_fuzzy_fan(hwmgr, pm_fuse_table_offset);
698
699 ret |= ci_min_max_v_gnbl_pm_lid_from_bapm_vddc(hwmgr);
700
701 ret |= ci_populate_bapm_vddc_base_leakage_sidd(hwmgr);
702 if (ret)
703 return ret;
704
705 ret = ci_copy_bytes_to_smc(hwmgr, pm_fuse_table_offset,
706 (uint8_t *)&smu_data->power_tune_table,
707 sizeof(struct SMU7_Discrete_PmFuses), SMC_RAM_END);
708 }
709 return ret;
710 }
711
ci_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr * hwmgr)712 static int ci_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr)
713 {
714 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
715 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
716 const struct ci_pt_defaults *defaults = smu_data->power_tune_defaults;
717 SMU7_Discrete_DpmTable *dpm_table = &(smu_data->smc_state_table);
718 struct phm_cac_tdp_table *cac_dtp_table = hwmgr->dyn_state.cac_dtp_table;
719 struct phm_ppm_table *ppm = hwmgr->dyn_state.ppm_parameter_table;
720 const uint16_t *def1, *def2;
721 int i, j, k;
722
723 dpm_table->DefaultTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usTDP * 256));
724 dpm_table->TargetTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usConfigurableTDP * 256));
725
726 dpm_table->DTETjOffset = 0;
727 dpm_table->GpuTjMax = (uint8_t)(data->thermal_temp_setting.temperature_high / PP_TEMPERATURE_UNITS_PER_CENTIGRADES);
728 dpm_table->GpuTjHyst = 8;
729
730 dpm_table->DTEAmbientTempBase = defaults->dte_ambient_temp_base;
731
732 if (ppm) {
733 dpm_table->PPM_PkgPwrLimit = (uint16_t)ppm->dgpu_tdp * 256 / 1000;
734 dpm_table->PPM_TemperatureLimit = (uint16_t)ppm->tj_max * 256;
735 } else {
736 dpm_table->PPM_PkgPwrLimit = 0;
737 dpm_table->PPM_TemperatureLimit = 0;
738 }
739
740 CONVERT_FROM_HOST_TO_SMC_US(dpm_table->PPM_PkgPwrLimit);
741 CONVERT_FROM_HOST_TO_SMC_US(dpm_table->PPM_TemperatureLimit);
742
743 dpm_table->BAPM_TEMP_GRADIENT = PP_HOST_TO_SMC_UL(defaults->bapm_temp_gradient);
744 def1 = defaults->bapmti_r;
745 def2 = defaults->bapmti_rc;
746
747 for (i = 0; i < SMU7_DTE_ITERATIONS; i++) {
748 for (j = 0; j < SMU7_DTE_SOURCES; j++) {
749 for (k = 0; k < SMU7_DTE_SINKS; k++) {
750 dpm_table->BAPMTI_R[i][j][k] = PP_HOST_TO_SMC_US(*def1);
751 dpm_table->BAPMTI_RC[i][j][k] = PP_HOST_TO_SMC_US(*def2);
752 def1++;
753 def2++;
754 }
755 }
756 }
757
758 return 0;
759 }
760
ci_get_std_voltage_value_sidd(struct pp_hwmgr * hwmgr,pp_atomctrl_voltage_table_entry * tab,uint16_t * hi,uint16_t * lo)761 static int ci_get_std_voltage_value_sidd(struct pp_hwmgr *hwmgr,
762 pp_atomctrl_voltage_table_entry *tab, uint16_t *hi,
763 uint16_t *lo)
764 {
765 uint16_t v_index;
766 bool vol_found = false;
767 *hi = tab->value * VOLTAGE_SCALE;
768 *lo = tab->value * VOLTAGE_SCALE;
769
770 PP_ASSERT_WITH_CODE(NULL != hwmgr->dyn_state.vddc_dependency_on_sclk,
771 "The SCLK/VDDC Dependency Table does not exist.\n",
772 return -EINVAL);
773
774 if (NULL == hwmgr->dyn_state.cac_leakage_table) {
775 pr_warn("CAC Leakage Table does not exist, using vddc.\n");
776 return 0;
777 }
778
779 for (v_index = 0; (uint32_t)v_index < hwmgr->dyn_state.vddc_dependency_on_sclk->count; v_index++) {
780 if (tab->value == hwmgr->dyn_state.vddc_dependency_on_sclk->entries[v_index].v) {
781 vol_found = true;
782 if ((uint32_t)v_index < hwmgr->dyn_state.cac_leakage_table->count) {
783 *lo = hwmgr->dyn_state.cac_leakage_table->entries[v_index].Vddc * VOLTAGE_SCALE;
784 *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[v_index].Leakage * VOLTAGE_SCALE);
785 } else {
786 pr_warn("Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index, using maximum index from CAC table.\n");
787 *lo = hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Vddc * VOLTAGE_SCALE;
788 *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Leakage * VOLTAGE_SCALE);
789 }
790 break;
791 }
792 }
793
794 if (!vol_found) {
795 for (v_index = 0; (uint32_t)v_index < hwmgr->dyn_state.vddc_dependency_on_sclk->count; v_index++) {
796 if (tab->value <= hwmgr->dyn_state.vddc_dependency_on_sclk->entries[v_index].v) {
797 vol_found = true;
798 if ((uint32_t)v_index < hwmgr->dyn_state.cac_leakage_table->count) {
799 *lo = hwmgr->dyn_state.cac_leakage_table->entries[v_index].Vddc * VOLTAGE_SCALE;
800 *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[v_index].Leakage) * VOLTAGE_SCALE;
801 } else {
802 pr_warn("Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index in second look up, using maximum index from CAC table.");
803 *lo = hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Vddc * VOLTAGE_SCALE;
804 *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Leakage * VOLTAGE_SCALE);
805 }
806 break;
807 }
808 }
809
810 if (!vol_found)
811 pr_warn("Unable to get std_vddc from SCLK/VDDC Dependency Table, using vddc.\n");
812 }
813
814 return 0;
815 }
816
ci_populate_smc_voltage_table(struct pp_hwmgr * hwmgr,pp_atomctrl_voltage_table_entry * tab,SMU7_Discrete_VoltageLevel * smc_voltage_tab)817 static int ci_populate_smc_voltage_table(struct pp_hwmgr *hwmgr,
818 pp_atomctrl_voltage_table_entry *tab,
819 SMU7_Discrete_VoltageLevel *smc_voltage_tab)
820 {
821 int result;
822
823 result = ci_get_std_voltage_value_sidd(hwmgr, tab,
824 &smc_voltage_tab->StdVoltageHiSidd,
825 &smc_voltage_tab->StdVoltageLoSidd);
826 if (result) {
827 smc_voltage_tab->StdVoltageHiSidd = tab->value * VOLTAGE_SCALE;
828 smc_voltage_tab->StdVoltageLoSidd = tab->value * VOLTAGE_SCALE;
829 }
830
831 smc_voltage_tab->Voltage = PP_HOST_TO_SMC_US(tab->value * VOLTAGE_SCALE);
832 CONVERT_FROM_HOST_TO_SMC_US(smc_voltage_tab->StdVoltageHiSidd);
833 CONVERT_FROM_HOST_TO_SMC_US(smc_voltage_tab->StdVoltageLoSidd);
834
835 return 0;
836 }
837
ci_populate_smc_vddc_table(struct pp_hwmgr * hwmgr,SMU7_Discrete_DpmTable * table)838 static int ci_populate_smc_vddc_table(struct pp_hwmgr *hwmgr,
839 SMU7_Discrete_DpmTable *table)
840 {
841 unsigned int count;
842 int result;
843 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
844
845 table->VddcLevelCount = data->vddc_voltage_table.count;
846 for (count = 0; count < table->VddcLevelCount; count++) {
847 result = ci_populate_smc_voltage_table(hwmgr,
848 &(data->vddc_voltage_table.entries[count]),
849 &(table->VddcLevel[count]));
850 PP_ASSERT_WITH_CODE(0 == result, "do not populate SMC VDDC voltage table", return -EINVAL);
851
852 /* GPIO voltage control */
853 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->voltage_control) {
854 table->VddcLevel[count].Smio = (uint8_t) count;
855 table->Smio[count] |= data->vddc_voltage_table.entries[count].smio_low;
856 table->SmioMaskVddcVid |= data->vddc_voltage_table.entries[count].smio_low;
857 } else {
858 table->VddcLevel[count].Smio = 0;
859 }
860 }
861
862 CONVERT_FROM_HOST_TO_SMC_UL(table->VddcLevelCount);
863
864 return 0;
865 }
866
ci_populate_smc_vdd_ci_table(struct pp_hwmgr * hwmgr,SMU7_Discrete_DpmTable * table)867 static int ci_populate_smc_vdd_ci_table(struct pp_hwmgr *hwmgr,
868 SMU7_Discrete_DpmTable *table)
869 {
870 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
871 uint32_t count;
872 int result;
873
874 table->VddciLevelCount = data->vddci_voltage_table.count;
875
876 for (count = 0; count < table->VddciLevelCount; count++) {
877 result = ci_populate_smc_voltage_table(hwmgr,
878 &(data->vddci_voltage_table.entries[count]),
879 &(table->VddciLevel[count]));
880 PP_ASSERT_WITH_CODE(result == 0, "do not populate SMC VDDCI voltage table", return -EINVAL);
881 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
882 table->VddciLevel[count].Smio = (uint8_t) count;
883 table->Smio[count] |= data->vddci_voltage_table.entries[count].smio_low;
884 table->SmioMaskVddciVid |= data->vddci_voltage_table.entries[count].smio_low;
885 } else {
886 table->VddciLevel[count].Smio = 0;
887 }
888 }
889
890 CONVERT_FROM_HOST_TO_SMC_UL(table->VddciLevelCount);
891
892 return 0;
893 }
894
ci_populate_smc_mvdd_table(struct pp_hwmgr * hwmgr,SMU7_Discrete_DpmTable * table)895 static int ci_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr,
896 SMU7_Discrete_DpmTable *table)
897 {
898 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
899 uint32_t count;
900 int result;
901
902 table->MvddLevelCount = data->mvdd_voltage_table.count;
903
904 for (count = 0; count < table->MvddLevelCount; count++) {
905 result = ci_populate_smc_voltage_table(hwmgr,
906 &(data->mvdd_voltage_table.entries[count]),
907 &table->MvddLevel[count]);
908 PP_ASSERT_WITH_CODE(result == 0, "do not populate SMC mvdd voltage table", return -EINVAL);
909 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
910 table->MvddLevel[count].Smio = (uint8_t) count;
911 table->Smio[count] |= data->mvdd_voltage_table.entries[count].smio_low;
912 table->SmioMaskMvddVid |= data->mvdd_voltage_table.entries[count].smio_low;
913 } else {
914 table->MvddLevel[count].Smio = 0;
915 }
916 }
917
918 CONVERT_FROM_HOST_TO_SMC_UL(table->MvddLevelCount);
919
920 return 0;
921 }
922
923
ci_populate_smc_voltage_tables(struct pp_hwmgr * hwmgr,SMU7_Discrete_DpmTable * table)924 static int ci_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
925 SMU7_Discrete_DpmTable *table)
926 {
927 int result;
928
929 result = ci_populate_smc_vddc_table(hwmgr, table);
930 PP_ASSERT_WITH_CODE(0 == result,
931 "can not populate VDDC voltage table to SMC", return -EINVAL);
932
933 result = ci_populate_smc_vdd_ci_table(hwmgr, table);
934 PP_ASSERT_WITH_CODE(0 == result,
935 "can not populate VDDCI voltage table to SMC", return -EINVAL);
936
937 result = ci_populate_smc_mvdd_table(hwmgr, table);
938 PP_ASSERT_WITH_CODE(0 == result,
939 "can not populate MVDD voltage table to SMC", return -EINVAL);
940
941 return 0;
942 }
943
ci_populate_ulv_level(struct pp_hwmgr * hwmgr,struct SMU7_Discrete_Ulv * state)944 static int ci_populate_ulv_level(struct pp_hwmgr *hwmgr,
945 struct SMU7_Discrete_Ulv *state)
946 {
947 uint32_t voltage_response_time, ulv_voltage;
948 int result;
949 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
950
951 state->CcPwrDynRm = 0;
952 state->CcPwrDynRm1 = 0;
953
954 result = pp_tables_get_response_times(hwmgr, &voltage_response_time, &ulv_voltage);
955 PP_ASSERT_WITH_CODE((0 == result), "can not get ULV voltage value", return result;);
956
957 if (ulv_voltage == 0) {
958 data->ulv_supported = false;
959 return 0;
960 }
961
962 if (data->voltage_control != SMU7_VOLTAGE_CONTROL_BY_SVID2) {
963 /* use minimum voltage if ulv voltage in pptable is bigger than minimum voltage */
964 if (ulv_voltage > hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v)
965 state->VddcOffset = 0;
966 else
967 /* used in SMIO Mode. not implemented for now. this is backup only for CI. */
968 state->VddcOffset = (uint16_t)(hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v - ulv_voltage);
969 } else {
970 /* use minimum voltage if ulv voltage in pptable is bigger than minimum voltage */
971 if (ulv_voltage > hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v)
972 state->VddcOffsetVid = 0;
973 else /* used in SVI2 Mode */
974 state->VddcOffsetVid = (uint8_t)(
975 (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v - ulv_voltage)
976 * VOLTAGE_VID_OFFSET_SCALE2
977 / VOLTAGE_VID_OFFSET_SCALE1);
978 }
979 state->VddcPhase = 1;
980
981 CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
982 CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
983 CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);
984
985 return 0;
986 }
987
ci_populate_ulv_state(struct pp_hwmgr * hwmgr,SMU7_Discrete_Ulv * ulv_level)988 static int ci_populate_ulv_state(struct pp_hwmgr *hwmgr,
989 SMU7_Discrete_Ulv *ulv_level)
990 {
991 return ci_populate_ulv_level(hwmgr, ulv_level);
992 }
993
ci_populate_smc_link_level(struct pp_hwmgr * hwmgr,SMU7_Discrete_DpmTable * table)994 static int ci_populate_smc_link_level(struct pp_hwmgr *hwmgr, SMU7_Discrete_DpmTable *table)
995 {
996 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
997 struct smu7_dpm_table *dpm_table = &data->dpm_table;
998 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
999 uint32_t i;
1000
1001 /* Index dpm_table->pcie_speed_table.count is reserved for PCIE boot level.*/
1002 for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
1003 table->LinkLevel[i].PcieGenSpeed =
1004 (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
1005 table->LinkLevel[i].PcieLaneCount =
1006 (uint8_t)encode_pcie_lane_width(dpm_table->pcie_speed_table.dpm_levels[i].param1);
1007 table->LinkLevel[i].EnabledForActivity = 1;
1008 table->LinkLevel[i].DownT = PP_HOST_TO_SMC_UL(5);
1009 table->LinkLevel[i].UpT = PP_HOST_TO_SMC_UL(30);
1010 }
1011
1012 smu_data->smc_state_table.LinkLevelCount =
1013 (uint8_t)dpm_table->pcie_speed_table.count;
1014 data->dpm_level_enable_mask.pcie_dpm_enable_mask =
1015 phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
1016
1017 return 0;
1018 }
1019
ci_calculate_mclk_params(struct pp_hwmgr * hwmgr,uint32_t memory_clock,SMU7_Discrete_MemoryLevel * mclk,bool strobe_mode,bool dllStateOn)1020 static int ci_calculate_mclk_params(
1021 struct pp_hwmgr *hwmgr,
1022 uint32_t memory_clock,
1023 SMU7_Discrete_MemoryLevel *mclk,
1024 bool strobe_mode,
1025 bool dllStateOn
1026 )
1027 {
1028 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1029 uint32_t dll_cntl = data->clock_registers.vDLL_CNTL;
1030 uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL;
1031 uint32_t mpll_ad_func_cntl = data->clock_registers.vMPLL_AD_FUNC_CNTL;
1032 uint32_t mpll_dq_func_cntl = data->clock_registers.vMPLL_DQ_FUNC_CNTL;
1033 uint32_t mpll_func_cntl = data->clock_registers.vMPLL_FUNC_CNTL;
1034 uint32_t mpll_func_cntl_1 = data->clock_registers.vMPLL_FUNC_CNTL_1;
1035 uint32_t mpll_func_cntl_2 = data->clock_registers.vMPLL_FUNC_CNTL_2;
1036 uint32_t mpll_ss1 = data->clock_registers.vMPLL_SS1;
1037 uint32_t mpll_ss2 = data->clock_registers.vMPLL_SS2;
1038
1039 pp_atomctrl_memory_clock_param mpll_param;
1040 int result;
1041
1042 result = atomctrl_get_memory_pll_dividers_si(hwmgr,
1043 memory_clock, &mpll_param, strobe_mode);
1044 PP_ASSERT_WITH_CODE(0 == result,
1045 "Error retrieving Memory Clock Parameters from VBIOS.", return result);
1046
1047 mpll_func_cntl = PHM_SET_FIELD(mpll_func_cntl, MPLL_FUNC_CNTL, BWCTRL, mpll_param.bw_ctrl);
1048
1049 mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1,
1050 MPLL_FUNC_CNTL_1, CLKF, mpll_param.mpll_fb_divider.cl_kf);
1051 mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1,
1052 MPLL_FUNC_CNTL_1, CLKFRAC, mpll_param.mpll_fb_divider.clk_frac);
1053 mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1,
1054 MPLL_FUNC_CNTL_1, VCO_MODE, mpll_param.vco_mode);
1055
1056 mpll_ad_func_cntl = PHM_SET_FIELD(mpll_ad_func_cntl,
1057 MPLL_AD_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider);
1058
1059 if (data->is_memory_gddr5) {
1060 mpll_dq_func_cntl = PHM_SET_FIELD(mpll_dq_func_cntl,
1061 MPLL_DQ_FUNC_CNTL, YCLK_SEL, mpll_param.yclk_sel);
1062 mpll_dq_func_cntl = PHM_SET_FIELD(mpll_dq_func_cntl,
1063 MPLL_DQ_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider);
1064 }
1065
1066 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1067 PHM_PlatformCaps_MemorySpreadSpectrumSupport)) {
1068 pp_atomctrl_internal_ss_info ss_info;
1069 uint32_t freq_nom;
1070 uint32_t tmp;
1071 uint32_t reference_clock = atomctrl_get_mpll_reference_clock(hwmgr);
1072
1073 /* for GDDR5 for all modes and DDR3 */
1074 if (1 == mpll_param.qdr)
1075 freq_nom = memory_clock * 4 * (1 << mpll_param.mpll_post_divider);
1076 else
1077 freq_nom = memory_clock * 2 * (1 << mpll_param.mpll_post_divider);
1078
1079 /* tmp = (freq_nom / reference_clock * reference_divider) ^ 2 Note: S.I. reference_divider = 1*/
1080 tmp = (freq_nom / reference_clock);
1081 tmp = tmp * tmp;
1082
1083 if (0 == atomctrl_get_memory_clock_spread_spectrum(hwmgr, freq_nom, &ss_info)) {
1084 uint32_t clks = reference_clock * 5 / ss_info.speed_spectrum_rate;
1085 uint32_t clkv =
1086 (uint32_t)((((131 * ss_info.speed_spectrum_percentage *
1087 ss_info.speed_spectrum_rate) / 100) * tmp) / freq_nom);
1088
1089 mpll_ss1 = PHM_SET_FIELD(mpll_ss1, MPLL_SS1, CLKV, clkv);
1090 mpll_ss2 = PHM_SET_FIELD(mpll_ss2, MPLL_SS2, CLKS, clks);
1091 }
1092 }
1093
1094 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1095 MCLK_PWRMGT_CNTL, DLL_SPEED, mpll_param.dll_speed);
1096 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1097 MCLK_PWRMGT_CNTL, MRDCK0_PDNB, dllStateOn);
1098 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1099 MCLK_PWRMGT_CNTL, MRDCK1_PDNB, dllStateOn);
1100
1101
1102 mclk->MclkFrequency = memory_clock;
1103 mclk->MpllFuncCntl = mpll_func_cntl;
1104 mclk->MpllFuncCntl_1 = mpll_func_cntl_1;
1105 mclk->MpllFuncCntl_2 = mpll_func_cntl_2;
1106 mclk->MpllAdFuncCntl = mpll_ad_func_cntl;
1107 mclk->MpllDqFuncCntl = mpll_dq_func_cntl;
1108 mclk->MclkPwrmgtCntl = mclk_pwrmgt_cntl;
1109 mclk->DllCntl = dll_cntl;
1110 mclk->MpllSs1 = mpll_ss1;
1111 mclk->MpllSs2 = mpll_ss2;
1112
1113 return 0;
1114 }
1115
ci_get_mclk_frequency_ratio(uint32_t memory_clock,bool strobe_mode)1116 static uint8_t ci_get_mclk_frequency_ratio(uint32_t memory_clock,
1117 bool strobe_mode)
1118 {
1119 uint8_t mc_para_index;
1120
1121 if (strobe_mode) {
1122 if (memory_clock < 12500)
1123 mc_para_index = 0x00;
1124 else if (memory_clock > 47500)
1125 mc_para_index = 0x0f;
1126 else
1127 mc_para_index = (uint8_t)((memory_clock - 10000) / 2500);
1128 } else {
1129 if (memory_clock < 65000)
1130 mc_para_index = 0x00;
1131 else if (memory_clock > 135000)
1132 mc_para_index = 0x0f;
1133 else
1134 mc_para_index = (uint8_t)((memory_clock - 60000) / 5000);
1135 }
1136
1137 return mc_para_index;
1138 }
1139
ci_get_ddr3_mclk_frequency_ratio(uint32_t memory_clock)1140 static uint8_t ci_get_ddr3_mclk_frequency_ratio(uint32_t memory_clock)
1141 {
1142 uint8_t mc_para_index;
1143
1144 if (memory_clock < 10000)
1145 mc_para_index = 0;
1146 else if (memory_clock >= 80000)
1147 mc_para_index = 0x0f;
1148 else
1149 mc_para_index = (uint8_t)((memory_clock - 10000) / 5000 + 1);
1150
1151 return mc_para_index;
1152 }
1153
ci_populate_phase_value_based_on_mclk(struct pp_hwmgr * hwmgr,const struct phm_phase_shedding_limits_table * pl,uint32_t memory_clock,uint32_t * p_shed)1154 static int ci_populate_phase_value_based_on_mclk(struct pp_hwmgr *hwmgr, const struct phm_phase_shedding_limits_table *pl,
1155 uint32_t memory_clock, uint32_t *p_shed)
1156 {
1157 unsigned int i;
1158
1159 *p_shed = 1;
1160
1161 for (i = 0; i < pl->count; i++) {
1162 if (memory_clock < pl->entries[i].Mclk) {
1163 *p_shed = i;
1164 break;
1165 }
1166 }
1167
1168 return 0;
1169 }
1170
ci_populate_single_memory_level(struct pp_hwmgr * hwmgr,uint32_t memory_clock,SMU7_Discrete_MemoryLevel * memory_level)1171 static int ci_populate_single_memory_level(
1172 struct pp_hwmgr *hwmgr,
1173 uint32_t memory_clock,
1174 SMU7_Discrete_MemoryLevel *memory_level
1175 )
1176 {
1177 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1178 int result = 0;
1179 bool dll_state_on;
1180 uint32_t mclk_edc_wr_enable_threshold = 40000;
1181 uint32_t mclk_edc_enable_threshold = 40000;
1182 uint32_t mclk_strobe_mode_threshold = 40000;
1183
1184 if (hwmgr->dyn_state.vddc_dependency_on_mclk != NULL) {
1185 result = ci_get_dependency_volt_by_clk(hwmgr,
1186 hwmgr->dyn_state.vddc_dependency_on_mclk, memory_clock, &memory_level->MinVddc);
1187 PP_ASSERT_WITH_CODE((0 == result),
1188 "can not find MinVddc voltage value from memory VDDC voltage dependency table", return result);
1189 }
1190
1191 if (NULL != hwmgr->dyn_state.vddci_dependency_on_mclk) {
1192 result = ci_get_dependency_volt_by_clk(hwmgr,
1193 hwmgr->dyn_state.vddci_dependency_on_mclk,
1194 memory_clock,
1195 &memory_level->MinVddci);
1196 PP_ASSERT_WITH_CODE((0 == result),
1197 "can not find MinVddci voltage value from memory VDDCI voltage dependency table", return result);
1198 }
1199
1200 if (NULL != hwmgr->dyn_state.mvdd_dependency_on_mclk) {
1201 result = ci_get_dependency_volt_by_clk(hwmgr,
1202 hwmgr->dyn_state.mvdd_dependency_on_mclk,
1203 memory_clock,
1204 &memory_level->MinMvdd);
1205 PP_ASSERT_WITH_CODE((0 == result),
1206 "can not find MinVddci voltage value from memory MVDD voltage dependency table", return result);
1207 }
1208
1209 memory_level->MinVddcPhases = 1;
1210
1211 if (data->vddc_phase_shed_control) {
1212 ci_populate_phase_value_based_on_mclk(hwmgr, hwmgr->dyn_state.vddc_phase_shed_limits_table,
1213 memory_clock, &memory_level->MinVddcPhases);
1214 }
1215
1216 memory_level->EnabledForThrottle = 1;
1217 memory_level->EnabledForActivity = 1;
1218 memory_level->UpH = data->current_profile_setting.mclk_up_hyst;
1219 memory_level->DownH = data->current_profile_setting.mclk_down_hyst;
1220 memory_level->VoltageDownH = 0;
1221
1222 /* Indicates maximum activity level for this performance level.*/
1223 memory_level->ActivityLevel = data->current_profile_setting.mclk_activity;
1224 memory_level->StutterEnable = 0;
1225 memory_level->StrobeEnable = 0;
1226 memory_level->EdcReadEnable = 0;
1227 memory_level->EdcWriteEnable = 0;
1228 memory_level->RttEnable = 0;
1229
1230 /* default set to low watermark. Highest level will be set to high later.*/
1231 memory_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1232
1233 data->display_timing.num_existing_displays = hwmgr->display_config->num_display;
1234
1235 /* stutter mode not support on ci */
1236
1237 /* decide strobe mode*/
1238 memory_level->StrobeEnable = (mclk_strobe_mode_threshold != 0) &&
1239 (memory_clock <= mclk_strobe_mode_threshold);
1240
1241 /* decide EDC mode and memory clock ratio*/
1242 if (data->is_memory_gddr5) {
1243 memory_level->StrobeRatio = ci_get_mclk_frequency_ratio(memory_clock,
1244 memory_level->StrobeEnable);
1245
1246 if ((mclk_edc_enable_threshold != 0) &&
1247 (memory_clock > mclk_edc_enable_threshold)) {
1248 memory_level->EdcReadEnable = 1;
1249 }
1250
1251 if ((mclk_edc_wr_enable_threshold != 0) &&
1252 (memory_clock > mclk_edc_wr_enable_threshold)) {
1253 memory_level->EdcWriteEnable = 1;
1254 }
1255
1256 if (memory_level->StrobeEnable) {
1257 if (ci_get_mclk_frequency_ratio(memory_clock, 1) >=
1258 ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC7) >> 16) & 0xf))
1259 dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
1260 else
1261 dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC6) >> 1) & 0x1) ? 1 : 0;
1262 } else
1263 dll_state_on = data->dll_default_on;
1264 } else {
1265 memory_level->StrobeRatio =
1266 ci_get_ddr3_mclk_frequency_ratio(memory_clock);
1267 dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
1268 }
1269
1270 result = ci_calculate_mclk_params(hwmgr,
1271 memory_clock, memory_level, memory_level->StrobeEnable, dll_state_on);
1272
1273 if (0 == result) {
1274 memory_level->MinVddc = PP_HOST_TO_SMC_UL(memory_level->MinVddc * VOLTAGE_SCALE);
1275 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MinVddcPhases);
1276 memory_level->MinVddci = PP_HOST_TO_SMC_UL(memory_level->MinVddci * VOLTAGE_SCALE);
1277 memory_level->MinMvdd = PP_HOST_TO_SMC_UL(memory_level->MinMvdd * VOLTAGE_SCALE);
1278 /* MCLK frequency in units of 10KHz*/
1279 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkFrequency);
1280 /* Indicates maximum activity level for this performance level.*/
1281 CONVERT_FROM_HOST_TO_SMC_US(memory_level->ActivityLevel);
1282 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl);
1283 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_1);
1284 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_2);
1285 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllAdFuncCntl);
1286 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllDqFuncCntl);
1287 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkPwrmgtCntl);
1288 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->DllCntl);
1289 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs1);
1290 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs2);
1291 }
1292
1293 return result;
1294 }
1295
ci_populate_all_memory_levels(struct pp_hwmgr * hwmgr)1296 static int ci_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
1297 {
1298 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1299 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1300 struct smu7_dpm_table *dpm_table = &data->dpm_table;
1301 int result;
1302 struct amdgpu_device *adev = hwmgr->adev;
1303 uint32_t dev_id;
1304
1305 uint32_t level_array_address = smu_data->dpm_table_start + offsetof(SMU7_Discrete_DpmTable, MemoryLevel);
1306 uint32_t level_array_size = sizeof(SMU7_Discrete_MemoryLevel) * SMU7_MAX_LEVELS_MEMORY;
1307 SMU7_Discrete_MemoryLevel *levels = smu_data->smc_state_table.MemoryLevel;
1308 uint32_t i;
1309
1310 memset(levels, 0x00, level_array_size);
1311
1312 for (i = 0; i < dpm_table->mclk_table.count; i++) {
1313 PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
1314 "can not populate memory level as memory clock is zero", return -EINVAL);
1315 result = ci_populate_single_memory_level(hwmgr, dpm_table->mclk_table.dpm_levels[i].value,
1316 &(smu_data->smc_state_table.MemoryLevel[i]));
1317 if (0 != result)
1318 return result;
1319 }
1320
1321 smu_data->smc_state_table.MemoryLevel[0].EnabledForActivity = 1;
1322
1323 dev_id = adev->pdev->device;
1324
1325 if ((dpm_table->mclk_table.count >= 2)
1326 && ((dev_id == 0x67B0) || (dev_id == 0x67B1))) {
1327 smu_data->smc_state_table.MemoryLevel[1].MinVddci =
1328 smu_data->smc_state_table.MemoryLevel[0].MinVddci;
1329 smu_data->smc_state_table.MemoryLevel[1].MinMvdd =
1330 smu_data->smc_state_table.MemoryLevel[0].MinMvdd;
1331 }
1332 smu_data->smc_state_table.MemoryLevel[0].ActivityLevel = 0x1F;
1333 CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.MemoryLevel[0].ActivityLevel);
1334
1335 smu_data->smc_state_table.MemoryDpmLevelCount = (uint8_t)dpm_table->mclk_table.count;
1336 data->dpm_level_enable_mask.mclk_dpm_enable_mask = phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
1337 smu_data->smc_state_table.MemoryLevel[dpm_table->mclk_table.count-1].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH;
1338
1339 result = ci_copy_bytes_to_smc(hwmgr,
1340 level_array_address, (uint8_t *)levels, (uint32_t)level_array_size,
1341 SMC_RAM_END);
1342
1343 return result;
1344 }
1345
ci_populate_mvdd_value(struct pp_hwmgr * hwmgr,uint32_t mclk,SMU7_Discrete_VoltageLevel * voltage)1346 static int ci_populate_mvdd_value(struct pp_hwmgr *hwmgr, uint32_t mclk,
1347 SMU7_Discrete_VoltageLevel *voltage)
1348 {
1349 const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1350
1351 uint32_t i = 0;
1352
1353 if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
1354 /* find mvdd value which clock is more than request */
1355 for (i = 0; i < hwmgr->dyn_state.mvdd_dependency_on_mclk->count; i++) {
1356 if (mclk <= hwmgr->dyn_state.mvdd_dependency_on_mclk->entries[i].clk) {
1357 /* Always round to higher voltage. */
1358 voltage->Voltage = data->mvdd_voltage_table.entries[i].value;
1359 break;
1360 }
1361 }
1362
1363 PP_ASSERT_WITH_CODE(i < hwmgr->dyn_state.mvdd_dependency_on_mclk->count,
1364 "MVDD Voltage is outside the supported range.", return -EINVAL);
1365
1366 } else {
1367 return -EINVAL;
1368 }
1369
1370 return 0;
1371 }
1372
ci_populate_smc_acpi_level(struct pp_hwmgr * hwmgr,SMU7_Discrete_DpmTable * table)1373 static int ci_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
1374 SMU7_Discrete_DpmTable *table)
1375 {
1376 int result = 0;
1377 const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1378 struct pp_atomctrl_clock_dividers_vi dividers;
1379
1380 SMU7_Discrete_VoltageLevel voltage_level;
1381 uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL;
1382 uint32_t spll_func_cntl_2 = data->clock_registers.vCG_SPLL_FUNC_CNTL_2;
1383 uint32_t dll_cntl = data->clock_registers.vDLL_CNTL;
1384 uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL;
1385
1386
1387 /* The ACPI state should not do DPM on DC (or ever).*/
1388 table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
1389
1390 if (data->acpi_vddc)
1391 table->ACPILevel.MinVddc = PP_HOST_TO_SMC_UL(data->acpi_vddc * VOLTAGE_SCALE);
1392 else
1393 table->ACPILevel.MinVddc = PP_HOST_TO_SMC_UL(data->min_vddc_in_pptable * VOLTAGE_SCALE);
1394
1395 table->ACPILevel.MinVddcPhases = data->vddc_phase_shed_control ? 0 : 1;
1396 /* assign zero for now*/
1397 table->ACPILevel.SclkFrequency = atomctrl_get_reference_clock(hwmgr);
1398
1399 /* get the engine clock dividers for this clock value*/
1400 result = atomctrl_get_engine_pll_dividers_vi(hwmgr,
1401 table->ACPILevel.SclkFrequency, ÷rs);
1402
1403 PP_ASSERT_WITH_CODE(result == 0,
1404 "Error retrieving Engine Clock dividers from VBIOS.", return result);
1405
1406 /* divider ID for required SCLK*/
1407 table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider;
1408 table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1409 table->ACPILevel.DeepSleepDivId = 0;
1410
1411 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
1412 CG_SPLL_FUNC_CNTL, SPLL_PWRON, 0);
1413 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
1414 CG_SPLL_FUNC_CNTL, SPLL_RESET, 1);
1415 spll_func_cntl_2 = PHM_SET_FIELD(spll_func_cntl_2,
1416 CG_SPLL_FUNC_CNTL_2, SCLK_MUX_SEL, 4);
1417
1418 table->ACPILevel.CgSpllFuncCntl = spll_func_cntl;
1419 table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2;
1420 table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
1421 table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
1422 table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
1423 table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
1424 table->ACPILevel.CcPwrDynRm = 0;
1425 table->ACPILevel.CcPwrDynRm1 = 0;
1426
1427 /* For various features to be enabled/disabled while this level is active.*/
1428 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
1429 /* SCLK frequency in units of 10KHz*/
1430 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency);
1431 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl);
1432 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2);
1433 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3);
1434 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4);
1435 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum);
1436 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2);
1437 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
1438 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
1439
1440
1441 /* table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;*/
1442 table->MemoryACPILevel.MinVddc = table->ACPILevel.MinVddc;
1443 table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;
1444
1445 if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
1446 table->MemoryACPILevel.MinVddci = table->MemoryACPILevel.MinVddc;
1447 else {
1448 if (data->acpi_vddci != 0)
1449 table->MemoryACPILevel.MinVddci = PP_HOST_TO_SMC_UL(data->acpi_vddci * VOLTAGE_SCALE);
1450 else
1451 table->MemoryACPILevel.MinVddci = PP_HOST_TO_SMC_UL(data->min_vddci_in_pptable * VOLTAGE_SCALE);
1452 }
1453
1454 if (0 == ci_populate_mvdd_value(hwmgr, 0, &voltage_level))
1455 table->MemoryACPILevel.MinMvdd =
1456 PP_HOST_TO_SMC_UL(voltage_level.Voltage * VOLTAGE_SCALE);
1457 else
1458 table->MemoryACPILevel.MinMvdd = 0;
1459
1460 /* Force reset on DLL*/
1461 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1462 MCLK_PWRMGT_CNTL, MRDCK0_RESET, 0x1);
1463 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1464 MCLK_PWRMGT_CNTL, MRDCK1_RESET, 0x1);
1465
1466 /* Disable DLL in ACPIState*/
1467 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1468 MCLK_PWRMGT_CNTL, MRDCK0_PDNB, 0);
1469 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1470 MCLK_PWRMGT_CNTL, MRDCK1_PDNB, 0);
1471
1472 /* Enable DLL bypass signal*/
1473 dll_cntl = PHM_SET_FIELD(dll_cntl,
1474 DLL_CNTL, MRDCK0_BYPASS, 0);
1475 dll_cntl = PHM_SET_FIELD(dll_cntl,
1476 DLL_CNTL, MRDCK1_BYPASS, 0);
1477
1478 table->MemoryACPILevel.DllCntl =
1479 PP_HOST_TO_SMC_UL(dll_cntl);
1480 table->MemoryACPILevel.MclkPwrmgtCntl =
1481 PP_HOST_TO_SMC_UL(mclk_pwrmgt_cntl);
1482 table->MemoryACPILevel.MpllAdFuncCntl =
1483 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_AD_FUNC_CNTL);
1484 table->MemoryACPILevel.MpllDqFuncCntl =
1485 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_DQ_FUNC_CNTL);
1486 table->MemoryACPILevel.MpllFuncCntl =
1487 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL);
1488 table->MemoryACPILevel.MpllFuncCntl_1 =
1489 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_1);
1490 table->MemoryACPILevel.MpllFuncCntl_2 =
1491 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_2);
1492 table->MemoryACPILevel.MpllSs1 =
1493 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS1);
1494 table->MemoryACPILevel.MpllSs2 =
1495 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS2);
1496
1497 table->MemoryACPILevel.EnabledForThrottle = 0;
1498 table->MemoryACPILevel.EnabledForActivity = 0;
1499 table->MemoryACPILevel.UpH = 0;
1500 table->MemoryACPILevel.DownH = 100;
1501 table->MemoryACPILevel.VoltageDownH = 0;
1502 /* Indicates maximum activity level for this performance level.*/
1503 table->MemoryACPILevel.ActivityLevel = PP_HOST_TO_SMC_US(data->current_profile_setting.mclk_activity);
1504
1505 table->MemoryACPILevel.StutterEnable = 0;
1506 table->MemoryACPILevel.StrobeEnable = 0;
1507 table->MemoryACPILevel.EdcReadEnable = 0;
1508 table->MemoryACPILevel.EdcWriteEnable = 0;
1509 table->MemoryACPILevel.RttEnable = 0;
1510
1511 return result;
1512 }
1513
ci_populate_smc_uvd_level(struct pp_hwmgr * hwmgr,SMU7_Discrete_DpmTable * table)1514 static int ci_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
1515 SMU7_Discrete_DpmTable *table)
1516 {
1517 int result = 0;
1518 uint8_t count;
1519 struct pp_atomctrl_clock_dividers_vi dividers;
1520 struct phm_uvd_clock_voltage_dependency_table *uvd_table =
1521 hwmgr->dyn_state.uvd_clock_voltage_dependency_table;
1522
1523 table->UvdLevelCount = (uint8_t)(uvd_table->count);
1524
1525 for (count = 0; count < table->UvdLevelCount; count++) {
1526 table->UvdLevel[count].VclkFrequency =
1527 uvd_table->entries[count].vclk;
1528 table->UvdLevel[count].DclkFrequency =
1529 uvd_table->entries[count].dclk;
1530 table->UvdLevel[count].MinVddc =
1531 uvd_table->entries[count].v * VOLTAGE_SCALE;
1532 table->UvdLevel[count].MinVddcPhases = 1;
1533
1534 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1535 table->UvdLevel[count].VclkFrequency, ÷rs);
1536 PP_ASSERT_WITH_CODE((0 == result),
1537 "can not find divide id for Vclk clock", return result);
1538
1539 table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider;
1540
1541 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1542 table->UvdLevel[count].DclkFrequency, ÷rs);
1543 PP_ASSERT_WITH_CODE((0 == result),
1544 "can not find divide id for Dclk clock", return result);
1545
1546 table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider;
1547 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency);
1548 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency);
1549 CONVERT_FROM_HOST_TO_SMC_US(table->UvdLevel[count].MinVddc);
1550 }
1551
1552 return result;
1553 }
1554
ci_populate_smc_vce_level(struct pp_hwmgr * hwmgr,SMU7_Discrete_DpmTable * table)1555 static int ci_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
1556 SMU7_Discrete_DpmTable *table)
1557 {
1558 int result = -EINVAL;
1559 uint8_t count;
1560 struct pp_atomctrl_clock_dividers_vi dividers;
1561 struct phm_vce_clock_voltage_dependency_table *vce_table =
1562 hwmgr->dyn_state.vce_clock_voltage_dependency_table;
1563
1564 table->VceLevelCount = (uint8_t)(vce_table->count);
1565 table->VceBootLevel = 0;
1566
1567 for (count = 0; count < table->VceLevelCount; count++) {
1568 table->VceLevel[count].Frequency = vce_table->entries[count].evclk;
1569 table->VceLevel[count].MinVoltage =
1570 vce_table->entries[count].v * VOLTAGE_SCALE;
1571 table->VceLevel[count].MinPhases = 1;
1572
1573 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1574 table->VceLevel[count].Frequency, ÷rs);
1575 PP_ASSERT_WITH_CODE((0 == result),
1576 "can not find divide id for VCE engine clock",
1577 return result);
1578
1579 table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1580
1581 CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency);
1582 CONVERT_FROM_HOST_TO_SMC_US(table->VceLevel[count].MinVoltage);
1583 }
1584 return result;
1585 }
1586
ci_populate_smc_acp_level(struct pp_hwmgr * hwmgr,SMU7_Discrete_DpmTable * table)1587 static int ci_populate_smc_acp_level(struct pp_hwmgr *hwmgr,
1588 SMU7_Discrete_DpmTable *table)
1589 {
1590 int result = -EINVAL;
1591 uint8_t count;
1592 struct pp_atomctrl_clock_dividers_vi dividers;
1593 struct phm_acp_clock_voltage_dependency_table *acp_table =
1594 hwmgr->dyn_state.acp_clock_voltage_dependency_table;
1595
1596 table->AcpLevelCount = (uint8_t)(acp_table->count);
1597 table->AcpBootLevel = 0;
1598
1599 for (count = 0; count < table->AcpLevelCount; count++) {
1600 table->AcpLevel[count].Frequency = acp_table->entries[count].acpclk;
1601 table->AcpLevel[count].MinVoltage = acp_table->entries[count].v;
1602 table->AcpLevel[count].MinPhases = 1;
1603
1604 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1605 table->AcpLevel[count].Frequency, ÷rs);
1606 PP_ASSERT_WITH_CODE((0 == result),
1607 "can not find divide id for engine clock", return result);
1608
1609 table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1610
1611 CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency);
1612 CONVERT_FROM_HOST_TO_SMC_US(table->AcpLevel[count].MinVoltage);
1613 }
1614 return result;
1615 }
1616
ci_populate_memory_timing_parameters(struct pp_hwmgr * hwmgr,uint32_t engine_clock,uint32_t memory_clock,struct SMU7_Discrete_MCArbDramTimingTableEntry * arb_regs)1617 static int ci_populate_memory_timing_parameters(
1618 struct pp_hwmgr *hwmgr,
1619 uint32_t engine_clock,
1620 uint32_t memory_clock,
1621 struct SMU7_Discrete_MCArbDramTimingTableEntry *arb_regs
1622 )
1623 {
1624 uint32_t dramTiming;
1625 uint32_t dramTiming2;
1626 uint32_t burstTime;
1627 int result;
1628
1629 result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
1630 engine_clock, memory_clock);
1631
1632 PP_ASSERT_WITH_CODE(result == 0,
1633 "Error calling VBIOS to set DRAM_TIMING.", return result);
1634
1635 dramTiming = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
1636 dramTiming2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
1637 burstTime = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
1638
1639 arb_regs->McArbDramTiming = PP_HOST_TO_SMC_UL(dramTiming);
1640 arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dramTiming2);
1641 arb_regs->McArbBurstTime = (uint8_t)burstTime;
1642
1643 return 0;
1644 }
1645
ci_program_memory_timing_parameters(struct pp_hwmgr * hwmgr)1646 static int ci_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
1647 {
1648 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1649 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1650 int result = 0;
1651 SMU7_Discrete_MCArbDramTimingTable arb_regs;
1652 uint32_t i, j;
1653
1654 memset(&arb_regs, 0x00, sizeof(SMU7_Discrete_MCArbDramTimingTable));
1655
1656 for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
1657 for (j = 0; j < data->dpm_table.mclk_table.count; j++) {
1658 result = ci_populate_memory_timing_parameters
1659 (hwmgr, data->dpm_table.sclk_table.dpm_levels[i].value,
1660 data->dpm_table.mclk_table.dpm_levels[j].value,
1661 &arb_regs.entries[i][j]);
1662
1663 if (0 != result)
1664 break;
1665 }
1666 }
1667
1668 if (0 == result) {
1669 result = ci_copy_bytes_to_smc(
1670 hwmgr,
1671 smu_data->arb_table_start,
1672 (uint8_t *)&arb_regs,
1673 sizeof(SMU7_Discrete_MCArbDramTimingTable),
1674 SMC_RAM_END
1675 );
1676 }
1677
1678 return result;
1679 }
1680
ci_populate_smc_boot_level(struct pp_hwmgr * hwmgr,SMU7_Discrete_DpmTable * table)1681 static int ci_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
1682 SMU7_Discrete_DpmTable *table)
1683 {
1684 int result = 0;
1685 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1686 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1687
1688 table->GraphicsBootLevel = 0;
1689 table->MemoryBootLevel = 0;
1690
1691 /* find boot level from dpm table*/
1692 result = phm_find_boot_level(&(data->dpm_table.sclk_table),
1693 data->vbios_boot_state.sclk_bootup_value,
1694 (uint32_t *)&(smu_data->smc_state_table.GraphicsBootLevel));
1695
1696 if (0 != result) {
1697 smu_data->smc_state_table.GraphicsBootLevel = 0;
1698 pr_err("VBIOS did not find boot engine clock value in dependency table. Using Graphics DPM level 0!\n");
1699 result = 0;
1700 }
1701
1702 result = phm_find_boot_level(&(data->dpm_table.mclk_table),
1703 data->vbios_boot_state.mclk_bootup_value,
1704 (uint32_t *)&(smu_data->smc_state_table.MemoryBootLevel));
1705
1706 if (0 != result) {
1707 smu_data->smc_state_table.MemoryBootLevel = 0;
1708 pr_err("VBIOS did not find boot engine clock value in dependency table. Using Memory DPM level 0!\n");
1709 result = 0;
1710 }
1711
1712 table->BootVddc = data->vbios_boot_state.vddc_bootup_value;
1713 table->BootVddci = data->vbios_boot_state.vddci_bootup_value;
1714 table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value;
1715
1716 return result;
1717 }
1718
ci_populate_mc_reg_address(struct pp_hwmgr * hwmgr,SMU7_Discrete_MCRegisters * mc_reg_table)1719 static int ci_populate_mc_reg_address(struct pp_hwmgr *hwmgr,
1720 SMU7_Discrete_MCRegisters *mc_reg_table)
1721 {
1722 const struct ci_smumgr *smu_data = (struct ci_smumgr *)hwmgr->smu_backend;
1723
1724 uint32_t i, j;
1725
1726 for (i = 0, j = 0; j < smu_data->mc_reg_table.last; j++) {
1727 if (smu_data->mc_reg_table.validflag & 1<<j) {
1728 PP_ASSERT_WITH_CODE(i < SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE,
1729 "Index of mc_reg_table->address[] array out of boundary", return -EINVAL);
1730 mc_reg_table->address[i].s0 =
1731 PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s0);
1732 mc_reg_table->address[i].s1 =
1733 PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s1);
1734 i++;
1735 }
1736 }
1737
1738 mc_reg_table->last = (uint8_t)i;
1739
1740 return 0;
1741 }
1742
ci_convert_mc_registers(const struct ci_mc_reg_entry * entry,SMU7_Discrete_MCRegisterSet * data,uint32_t num_entries,uint32_t valid_flag)1743 static void ci_convert_mc_registers(
1744 const struct ci_mc_reg_entry *entry,
1745 SMU7_Discrete_MCRegisterSet *data,
1746 uint32_t num_entries, uint32_t valid_flag)
1747 {
1748 uint32_t i, j;
1749
1750 for (i = 0, j = 0; j < num_entries; j++) {
1751 if (valid_flag & 1<<j) {
1752 data->value[i] = PP_HOST_TO_SMC_UL(entry->mc_data[j]);
1753 i++;
1754 }
1755 }
1756 }
1757
ci_convert_mc_reg_table_entry_to_smc(struct pp_hwmgr * hwmgr,const uint32_t memory_clock,SMU7_Discrete_MCRegisterSet * mc_reg_table_data)1758 static int ci_convert_mc_reg_table_entry_to_smc(
1759 struct pp_hwmgr *hwmgr,
1760 const uint32_t memory_clock,
1761 SMU7_Discrete_MCRegisterSet *mc_reg_table_data
1762 )
1763 {
1764 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1765 uint32_t i = 0;
1766
1767 for (i = 0; i < smu_data->mc_reg_table.num_entries; i++) {
1768 if (memory_clock <=
1769 smu_data->mc_reg_table.mc_reg_table_entry[i].mclk_max) {
1770 break;
1771 }
1772 }
1773
1774 if ((i == smu_data->mc_reg_table.num_entries) && (i > 0))
1775 --i;
1776
1777 ci_convert_mc_registers(&smu_data->mc_reg_table.mc_reg_table_entry[i],
1778 mc_reg_table_data, smu_data->mc_reg_table.last,
1779 smu_data->mc_reg_table.validflag);
1780
1781 return 0;
1782 }
1783
ci_convert_mc_reg_table_to_smc(struct pp_hwmgr * hwmgr,SMU7_Discrete_MCRegisters * mc_regs)1784 static int ci_convert_mc_reg_table_to_smc(struct pp_hwmgr *hwmgr,
1785 SMU7_Discrete_MCRegisters *mc_regs)
1786 {
1787 int result = 0;
1788 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1789 int res;
1790 uint32_t i;
1791
1792 for (i = 0; i < data->dpm_table.mclk_table.count; i++) {
1793 res = ci_convert_mc_reg_table_entry_to_smc(
1794 hwmgr,
1795 data->dpm_table.mclk_table.dpm_levels[i].value,
1796 &mc_regs->data[i]
1797 );
1798
1799 if (0 != res)
1800 result = res;
1801 }
1802
1803 return result;
1804 }
1805
ci_update_and_upload_mc_reg_table(struct pp_hwmgr * hwmgr)1806 static int ci_update_and_upload_mc_reg_table(struct pp_hwmgr *hwmgr)
1807 {
1808 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1809 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1810 uint32_t address;
1811 int32_t result;
1812
1813 if (0 == (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK))
1814 return 0;
1815
1816
1817 memset(&smu_data->mc_regs, 0, sizeof(SMU7_Discrete_MCRegisters));
1818
1819 result = ci_convert_mc_reg_table_to_smc(hwmgr, &(smu_data->mc_regs));
1820
1821 if (result != 0)
1822 return result;
1823
1824 address = smu_data->mc_reg_table_start + (uint32_t)offsetof(SMU7_Discrete_MCRegisters, data[0]);
1825
1826 return ci_copy_bytes_to_smc(hwmgr, address,
1827 (uint8_t *)&smu_data->mc_regs.data[0],
1828 sizeof(SMU7_Discrete_MCRegisterSet) * data->dpm_table.mclk_table.count,
1829 SMC_RAM_END);
1830 }
1831
ci_populate_initial_mc_reg_table(struct pp_hwmgr * hwmgr)1832 static int ci_populate_initial_mc_reg_table(struct pp_hwmgr *hwmgr)
1833 {
1834 int result;
1835 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1836
1837 memset(&smu_data->mc_regs, 0x00, sizeof(SMU7_Discrete_MCRegisters));
1838 result = ci_populate_mc_reg_address(hwmgr, &(smu_data->mc_regs));
1839 PP_ASSERT_WITH_CODE(0 == result,
1840 "Failed to initialize MCRegTable for the MC register addresses!", return result;);
1841
1842 result = ci_convert_mc_reg_table_to_smc(hwmgr, &smu_data->mc_regs);
1843 PP_ASSERT_WITH_CODE(0 == result,
1844 "Failed to initialize MCRegTable for driver state!", return result;);
1845
1846 return ci_copy_bytes_to_smc(hwmgr, smu_data->mc_reg_table_start,
1847 (uint8_t *)&smu_data->mc_regs, sizeof(SMU7_Discrete_MCRegisters), SMC_RAM_END);
1848 }
1849
ci_populate_smc_initial_state(struct pp_hwmgr * hwmgr)1850 static int ci_populate_smc_initial_state(struct pp_hwmgr *hwmgr)
1851 {
1852 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1853 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1854 uint8_t count, level;
1855
1856 count = (uint8_t)(hwmgr->dyn_state.vddc_dependency_on_sclk->count);
1857
1858 for (level = 0; level < count; level++) {
1859 if (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[level].clk
1860 >= data->vbios_boot_state.sclk_bootup_value) {
1861 smu_data->smc_state_table.GraphicsBootLevel = level;
1862 break;
1863 }
1864 }
1865
1866 count = (uint8_t)(hwmgr->dyn_state.vddc_dependency_on_mclk->count);
1867
1868 for (level = 0; level < count; level++) {
1869 if (hwmgr->dyn_state.vddc_dependency_on_mclk->entries[level].clk
1870 >= data->vbios_boot_state.mclk_bootup_value) {
1871 smu_data->smc_state_table.MemoryBootLevel = level;
1872 break;
1873 }
1874 }
1875
1876 return 0;
1877 }
1878
ci_populate_smc_svi2_config(struct pp_hwmgr * hwmgr,SMU7_Discrete_DpmTable * table)1879 static int ci_populate_smc_svi2_config(struct pp_hwmgr *hwmgr,
1880 SMU7_Discrete_DpmTable *table)
1881 {
1882 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1883
1884 if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control)
1885 table->SVI2Enable = 1;
1886 else
1887 table->SVI2Enable = 0;
1888 return 0;
1889 }
1890
ci_start_smc(struct pp_hwmgr * hwmgr)1891 static int ci_start_smc(struct pp_hwmgr *hwmgr)
1892 {
1893 /* set smc instruct start point at 0x0 */
1894 ci_program_jump_on_start(hwmgr);
1895
1896 /* enable smc clock */
1897 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
1898
1899 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_RESET_CNTL, rst_reg, 0);
1900
1901 PHM_WAIT_INDIRECT_FIELD(hwmgr, SMC_IND, FIRMWARE_FLAGS,
1902 INTERRUPTS_ENABLED, 1);
1903
1904 return 0;
1905 }
1906
ci_populate_vr_config(struct pp_hwmgr * hwmgr,SMU7_Discrete_DpmTable * table)1907 static int ci_populate_vr_config(struct pp_hwmgr *hwmgr, SMU7_Discrete_DpmTable *table)
1908 {
1909 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1910 uint16_t config;
1911
1912 config = VR_SVI2_PLANE_1;
1913 table->VRConfig |= (config<<VRCONF_VDDGFX_SHIFT);
1914
1915 if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
1916 config = VR_SVI2_PLANE_2;
1917 table->VRConfig |= config;
1918 } else {
1919 pr_info("VDDCshould be on SVI2 controller!");
1920 }
1921
1922 if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
1923 config = VR_SVI2_PLANE_2;
1924 table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT);
1925 } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
1926 config = VR_SMIO_PATTERN_1;
1927 table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT);
1928 }
1929
1930 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
1931 config = VR_SMIO_PATTERN_2;
1932 table->VRConfig |= (config<<VRCONF_MVDD_SHIFT);
1933 }
1934
1935 return 0;
1936 }
1937
ci_init_smc_table(struct pp_hwmgr * hwmgr)1938 static int ci_init_smc_table(struct pp_hwmgr *hwmgr)
1939 {
1940 int result;
1941 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1942 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1943 SMU7_Discrete_DpmTable *table = &(smu_data->smc_state_table);
1944 struct pp_atomctrl_gpio_pin_assignment gpio_pin;
1945 u32 i;
1946
1947 ci_initialize_power_tune_defaults(hwmgr);
1948 memset(&(smu_data->smc_state_table), 0x00, sizeof(smu_data->smc_state_table));
1949
1950 if (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control)
1951 ci_populate_smc_voltage_tables(hwmgr, table);
1952
1953 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1954 PHM_PlatformCaps_AutomaticDCTransition))
1955 table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
1956
1957
1958 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1959 PHM_PlatformCaps_StepVddc))
1960 table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
1961
1962 if (data->is_memory_gddr5)
1963 table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
1964
1965 if (data->ulv_supported) {
1966 result = ci_populate_ulv_state(hwmgr, &(table->Ulv));
1967 PP_ASSERT_WITH_CODE(0 == result,
1968 "Failed to initialize ULV state!", return result);
1969
1970 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1971 ixCG_ULV_PARAMETER, 0x40035);
1972 }
1973
1974 result = ci_populate_all_graphic_levels(hwmgr);
1975 PP_ASSERT_WITH_CODE(0 == result,
1976 "Failed to initialize Graphics Level!", return result);
1977
1978 result = ci_populate_all_memory_levels(hwmgr);
1979 PP_ASSERT_WITH_CODE(0 == result,
1980 "Failed to initialize Memory Level!", return result);
1981
1982 result = ci_populate_smc_link_level(hwmgr, table);
1983 PP_ASSERT_WITH_CODE(0 == result,
1984 "Failed to initialize Link Level!", return result);
1985
1986 result = ci_populate_smc_acpi_level(hwmgr, table);
1987 PP_ASSERT_WITH_CODE(0 == result,
1988 "Failed to initialize ACPI Level!", return result);
1989
1990 result = ci_populate_smc_vce_level(hwmgr, table);
1991 PP_ASSERT_WITH_CODE(0 == result,
1992 "Failed to initialize VCE Level!", return result);
1993
1994 result = ci_populate_smc_acp_level(hwmgr, table);
1995 PP_ASSERT_WITH_CODE(0 == result,
1996 "Failed to initialize ACP Level!", return result);
1997
1998 /* Since only the initial state is completely set up at this point (the other states are just copies of the boot state) we only */
1999 /* need to populate the ARB settings for the initial state. */
2000 result = ci_program_memory_timing_parameters(hwmgr);
2001 PP_ASSERT_WITH_CODE(0 == result,
2002 "Failed to Write ARB settings for the initial state.", return result);
2003
2004 result = ci_populate_smc_uvd_level(hwmgr, table);
2005 PP_ASSERT_WITH_CODE(0 == result,
2006 "Failed to initialize UVD Level!", return result);
2007
2008 table->UvdBootLevel = 0;
2009 table->VceBootLevel = 0;
2010 table->AcpBootLevel = 0;
2011 table->SamuBootLevel = 0;
2012
2013 table->GraphicsBootLevel = 0;
2014 table->MemoryBootLevel = 0;
2015
2016 result = ci_populate_smc_boot_level(hwmgr, table);
2017 PP_ASSERT_WITH_CODE(0 == result,
2018 "Failed to initialize Boot Level!", return result);
2019
2020 result = ci_populate_smc_initial_state(hwmgr);
2021 PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize Boot State!", return result);
2022
2023 result = ci_populate_bapm_parameters_in_dpm_table(hwmgr);
2024 PP_ASSERT_WITH_CODE(0 == result, "Failed to populate BAPM Parameters!", return result);
2025
2026 table->UVDInterval = 1;
2027 table->VCEInterval = 1;
2028 table->ACPInterval = 1;
2029 table->SAMUInterval = 1;
2030 table->GraphicsVoltageChangeEnable = 1;
2031 table->GraphicsThermThrottleEnable = 1;
2032 table->GraphicsInterval = 1;
2033 table->VoltageInterval = 1;
2034 table->ThermalInterval = 1;
2035
2036 table->TemperatureLimitHigh =
2037 (data->thermal_temp_setting.temperature_high *
2038 SMU7_Q88_FORMAT_CONVERSION_UNIT) / PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
2039 table->TemperatureLimitLow =
2040 (data->thermal_temp_setting.temperature_low *
2041 SMU7_Q88_FORMAT_CONVERSION_UNIT) / PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
2042
2043 table->MemoryVoltageChangeEnable = 1;
2044 table->MemoryInterval = 1;
2045 table->VoltageResponseTime = 0;
2046 table->VddcVddciDelta = 4000;
2047 table->PhaseResponseTime = 0;
2048 table->MemoryThermThrottleEnable = 1;
2049
2050 PP_ASSERT_WITH_CODE((1 <= data->dpm_table.pcie_speed_table.count),
2051 "There must be 1 or more PCIE levels defined in PPTable.",
2052 return -EINVAL);
2053
2054 table->PCIeBootLinkLevel = (uint8_t)data->dpm_table.pcie_speed_table.count;
2055 table->PCIeGenInterval = 1;
2056
2057 result = ci_populate_vr_config(hwmgr, table);
2058 PP_ASSERT_WITH_CODE(0 == result,
2059 "Failed to populate VRConfig setting!", return result);
2060 data->vr_config = table->VRConfig;
2061
2062 ci_populate_smc_svi2_config(hwmgr, table);
2063
2064 for (i = 0; i < SMU7_MAX_ENTRIES_SMIO; i++)
2065 CONVERT_FROM_HOST_TO_SMC_UL(table->Smio[i]);
2066
2067 table->ThermGpio = 17;
2068 table->SclkStepSize = 0x4000;
2069 if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID, &gpio_pin)) {
2070 table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift;
2071 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2072 PHM_PlatformCaps_RegulatorHot);
2073 } else {
2074 table->VRHotGpio = SMU7_UNUSED_GPIO_PIN;
2075 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2076 PHM_PlatformCaps_RegulatorHot);
2077 }
2078
2079 table->AcDcGpio = SMU7_UNUSED_GPIO_PIN;
2080
2081 CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
2082 CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig);
2083 CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddcVid);
2084 CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddcPhase);
2085 CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddciVid);
2086 CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskMvddVid);
2087 CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
2088 CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
2089 CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
2090 table->VddcVddciDelta = PP_HOST_TO_SMC_US(table->VddcVddciDelta);
2091 CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
2092 CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
2093
2094 table->BootVddc = PP_HOST_TO_SMC_US(table->BootVddc * VOLTAGE_SCALE);
2095 table->BootVddci = PP_HOST_TO_SMC_US(table->BootVddci * VOLTAGE_SCALE);
2096 table->BootMVdd = PP_HOST_TO_SMC_US(table->BootMVdd * VOLTAGE_SCALE);
2097
2098 /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
2099 result = ci_copy_bytes_to_smc(hwmgr, smu_data->dpm_table_start +
2100 offsetof(SMU7_Discrete_DpmTable, SystemFlags),
2101 (uint8_t *)&(table->SystemFlags),
2102 sizeof(SMU7_Discrete_DpmTable)-3 * sizeof(SMU7_PIDController),
2103 SMC_RAM_END);
2104
2105 PP_ASSERT_WITH_CODE(0 == result,
2106 "Failed to upload dpm data to SMC memory!", return result;);
2107
2108 result = ci_populate_initial_mc_reg_table(hwmgr);
2109 PP_ASSERT_WITH_CODE((0 == result),
2110 "Failed to populate initialize MC Reg table!", return result);
2111
2112 result = ci_populate_pm_fuses(hwmgr);
2113 PP_ASSERT_WITH_CODE(0 == result,
2114 "Failed to populate PM fuses to SMC memory!", return result);
2115
2116 ci_start_smc(hwmgr);
2117
2118 return 0;
2119 }
2120
ci_thermal_setup_fan_table(struct pp_hwmgr * hwmgr)2121 static int ci_thermal_setup_fan_table(struct pp_hwmgr *hwmgr)
2122 {
2123 struct ci_smumgr *ci_data = (struct ci_smumgr *)(hwmgr->smu_backend);
2124 SMU7_Discrete_FanTable fan_table = { FDO_MODE_HARDWARE };
2125 uint32_t duty100;
2126 uint32_t t_diff1, t_diff2, pwm_diff1, pwm_diff2;
2127 uint16_t fdo_min, slope1, slope2;
2128 uint32_t reference_clock;
2129 int res;
2130 uint64_t tmp64;
2131
2132 if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl))
2133 return 0;
2134
2135 if (hwmgr->thermal_controller.fanInfo.bNoFan) {
2136 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2137 PHM_PlatformCaps_MicrocodeFanControl);
2138 return 0;
2139 }
2140
2141 if (0 == ci_data->fan_table_start) {
2142 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl);
2143 return 0;
2144 }
2145
2146 duty100 = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_FDO_CTRL1, FMAX_DUTY100);
2147
2148 if (0 == duty100) {
2149 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl);
2150 return 0;
2151 }
2152
2153 tmp64 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin * duty100;
2154 do_div(tmp64, 10000);
2155 fdo_min = (uint16_t)tmp64;
2156
2157 t_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usTMed - hwmgr->thermal_controller.advanceFanControlParameters.usTMin;
2158 t_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usTHigh - hwmgr->thermal_controller.advanceFanControlParameters.usTMed;
2159
2160 pwm_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed - hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin;
2161 pwm_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh - hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed;
2162
2163 slope1 = (uint16_t)((50 + ((16 * duty100 * pwm_diff1) / t_diff1)) / 100);
2164 slope2 = (uint16_t)((50 + ((16 * duty100 * pwm_diff2) / t_diff2)) / 100);
2165
2166 fan_table.TempMin = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMin) / 100);
2167 fan_table.TempMed = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMed) / 100);
2168 fan_table.TempMax = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMax) / 100);
2169
2170 fan_table.Slope1 = cpu_to_be16(slope1);
2171 fan_table.Slope2 = cpu_to_be16(slope2);
2172
2173 fan_table.FdoMin = cpu_to_be16(fdo_min);
2174
2175 fan_table.HystDown = cpu_to_be16(hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst);
2176
2177 fan_table.HystUp = cpu_to_be16(1);
2178
2179 fan_table.HystSlope = cpu_to_be16(1);
2180
2181 fan_table.TempRespLim = cpu_to_be16(5);
2182
2183 reference_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev);
2184
2185 fan_table.RefreshPeriod = cpu_to_be32((hwmgr->thermal_controller.advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600);
2186
2187 fan_table.FdoMax = cpu_to_be16((uint16_t)duty100);
2188
2189 fan_table.TempSrc = (uint8_t)PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_MULT_THERMAL_CTRL, TEMP_SEL);
2190
2191 res = ci_copy_bytes_to_smc(hwmgr, ci_data->fan_table_start, (uint8_t *)&fan_table, (uint32_t)sizeof(fan_table), SMC_RAM_END);
2192
2193 return 0;
2194 }
2195
ci_program_mem_timing_parameters(struct pp_hwmgr * hwmgr)2196 static int ci_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
2197 {
2198 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2199
2200 if (data->need_update_smu7_dpm_table &
2201 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK))
2202 return ci_program_memory_timing_parameters(hwmgr);
2203
2204 return 0;
2205 }
2206
ci_update_sclk_threshold(struct pp_hwmgr * hwmgr)2207 static int ci_update_sclk_threshold(struct pp_hwmgr *hwmgr)
2208 {
2209 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2210 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
2211
2212 int result = 0;
2213 uint32_t low_sclk_interrupt_threshold = 0;
2214
2215 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2216 PHM_PlatformCaps_SclkThrottleLowNotification)
2217 && (data->low_sclk_interrupt_threshold != 0)) {
2218 low_sclk_interrupt_threshold =
2219 data->low_sclk_interrupt_threshold;
2220
2221 CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
2222
2223 result = ci_copy_bytes_to_smc(
2224 hwmgr,
2225 smu_data->dpm_table_start +
2226 offsetof(SMU7_Discrete_DpmTable,
2227 LowSclkInterruptT),
2228 (uint8_t *)&low_sclk_interrupt_threshold,
2229 sizeof(uint32_t),
2230 SMC_RAM_END);
2231 }
2232
2233 result = ci_update_and_upload_mc_reg_table(hwmgr);
2234
2235 PP_ASSERT_WITH_CODE((0 == result), "Failed to upload MC reg table!", return result);
2236
2237 result = ci_program_mem_timing_parameters(hwmgr);
2238 PP_ASSERT_WITH_CODE((result == 0),
2239 "Failed to program memory timing parameters!",
2240 );
2241
2242 return result;
2243 }
2244
ci_get_offsetof(uint32_t type,uint32_t member)2245 static uint32_t ci_get_offsetof(uint32_t type, uint32_t member)
2246 {
2247 switch (type) {
2248 case SMU_SoftRegisters:
2249 switch (member) {
2250 case HandshakeDisables:
2251 return offsetof(SMU7_SoftRegisters, HandshakeDisables);
2252 case VoltageChangeTimeout:
2253 return offsetof(SMU7_SoftRegisters, VoltageChangeTimeout);
2254 case AverageGraphicsActivity:
2255 return offsetof(SMU7_SoftRegisters, AverageGraphicsA);
2256 case PreVBlankGap:
2257 return offsetof(SMU7_SoftRegisters, PreVBlankGap);
2258 case VBlankTimeout:
2259 return offsetof(SMU7_SoftRegisters, VBlankTimeout);
2260 case DRAM_LOG_ADDR_H:
2261 return offsetof(SMU7_SoftRegisters, DRAM_LOG_ADDR_H);
2262 case DRAM_LOG_ADDR_L:
2263 return offsetof(SMU7_SoftRegisters, DRAM_LOG_ADDR_L);
2264 case DRAM_LOG_PHY_ADDR_H:
2265 return offsetof(SMU7_SoftRegisters, DRAM_LOG_PHY_ADDR_H);
2266 case DRAM_LOG_PHY_ADDR_L:
2267 return offsetof(SMU7_SoftRegisters, DRAM_LOG_PHY_ADDR_L);
2268 case DRAM_LOG_BUFF_SIZE:
2269 return offsetof(SMU7_SoftRegisters, DRAM_LOG_BUFF_SIZE);
2270 }
2271 case SMU_Discrete_DpmTable:
2272 switch (member) {
2273 case LowSclkInterruptThreshold:
2274 return offsetof(SMU7_Discrete_DpmTable, LowSclkInterruptT);
2275 }
2276 }
2277 pr_debug("can't get the offset of type %x member %x\n", type, member);
2278 return 0;
2279 }
2280
ci_get_mac_definition(uint32_t value)2281 static uint32_t ci_get_mac_definition(uint32_t value)
2282 {
2283 switch (value) {
2284 case SMU_MAX_LEVELS_GRAPHICS:
2285 return SMU7_MAX_LEVELS_GRAPHICS;
2286 case SMU_MAX_LEVELS_MEMORY:
2287 return SMU7_MAX_LEVELS_MEMORY;
2288 case SMU_MAX_LEVELS_LINK:
2289 return SMU7_MAX_LEVELS_LINK;
2290 case SMU_MAX_ENTRIES_SMIO:
2291 return SMU7_MAX_ENTRIES_SMIO;
2292 case SMU_MAX_LEVELS_VDDC:
2293 return SMU7_MAX_LEVELS_VDDC;
2294 case SMU_MAX_LEVELS_VDDCI:
2295 return SMU7_MAX_LEVELS_VDDCI;
2296 case SMU_MAX_LEVELS_MVDD:
2297 return SMU7_MAX_LEVELS_MVDD;
2298 }
2299
2300 pr_debug("can't get the mac of %x\n", value);
2301 return 0;
2302 }
2303
ci_load_smc_ucode(struct pp_hwmgr * hwmgr)2304 static int ci_load_smc_ucode(struct pp_hwmgr *hwmgr)
2305 {
2306 uint32_t byte_count, start_addr;
2307 uint8_t *src;
2308 uint32_t data;
2309
2310 struct cgs_firmware_info info = {0};
2311
2312 cgs_get_firmware_info(hwmgr->device, CGS_UCODE_ID_SMU, &info);
2313
2314 hwmgr->is_kicker = info.is_kicker;
2315 hwmgr->smu_version = info.version;
2316 byte_count = info.image_size;
2317 src = (uint8_t *)info.kptr;
2318 start_addr = info.ucode_start_address;
2319
2320 if (byte_count > SMC_RAM_END) {
2321 pr_err("SMC address is beyond the SMC RAM area.\n");
2322 return -EINVAL;
2323 }
2324
2325 cgs_write_register(hwmgr->device, mmSMC_IND_INDEX_0, start_addr);
2326 PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 1);
2327
2328 for (; byte_count >= 4; byte_count -= 4) {
2329 data = (src[0] << 24) | (src[1] << 16) | (src[2] << 8) | src[3];
2330 cgs_write_register(hwmgr->device, mmSMC_IND_DATA_0, data);
2331 src += 4;
2332 }
2333 PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 0);
2334
2335 if (0 != byte_count) {
2336 pr_err("SMC size must be divisible by 4\n");
2337 return -EINVAL;
2338 }
2339
2340 return 0;
2341 }
2342
ci_upload_firmware(struct pp_hwmgr * hwmgr)2343 static int ci_upload_firmware(struct pp_hwmgr *hwmgr)
2344 {
2345 if (ci_is_smc_ram_running(hwmgr)) {
2346 pr_info("smc is running, no need to load smc firmware\n");
2347 return 0;
2348 }
2349 PHM_WAIT_INDIRECT_FIELD(hwmgr, SMC_IND, RCU_UC_EVENTS,
2350 boot_seq_done, 1);
2351 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_MISC_CNTL,
2352 pre_fetcher_en, 1);
2353
2354 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 1);
2355 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_RESET_CNTL, rst_reg, 1);
2356 return ci_load_smc_ucode(hwmgr);
2357 }
2358
ci_process_firmware_header(struct pp_hwmgr * hwmgr)2359 static int ci_process_firmware_header(struct pp_hwmgr *hwmgr)
2360 {
2361 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2362 struct ci_smumgr *ci_data = (struct ci_smumgr *)(hwmgr->smu_backend);
2363
2364 uint32_t tmp = 0;
2365 int result;
2366 bool error = false;
2367
2368 if (ci_upload_firmware(hwmgr))
2369 return -EINVAL;
2370
2371 result = ci_read_smc_sram_dword(hwmgr,
2372 SMU7_FIRMWARE_HEADER_LOCATION +
2373 offsetof(SMU7_Firmware_Header, DpmTable),
2374 &tmp, SMC_RAM_END);
2375
2376 if (0 == result)
2377 ci_data->dpm_table_start = tmp;
2378
2379 error |= (0 != result);
2380
2381 result = ci_read_smc_sram_dword(hwmgr,
2382 SMU7_FIRMWARE_HEADER_LOCATION +
2383 offsetof(SMU7_Firmware_Header, SoftRegisters),
2384 &tmp, SMC_RAM_END);
2385
2386 if (0 == result) {
2387 data->soft_regs_start = tmp;
2388 ci_data->soft_regs_start = tmp;
2389 }
2390
2391 error |= (0 != result);
2392
2393 result = ci_read_smc_sram_dword(hwmgr,
2394 SMU7_FIRMWARE_HEADER_LOCATION +
2395 offsetof(SMU7_Firmware_Header, mcRegisterTable),
2396 &tmp, SMC_RAM_END);
2397
2398 if (0 == result)
2399 ci_data->mc_reg_table_start = tmp;
2400
2401 result = ci_read_smc_sram_dword(hwmgr,
2402 SMU7_FIRMWARE_HEADER_LOCATION +
2403 offsetof(SMU7_Firmware_Header, FanTable),
2404 &tmp, SMC_RAM_END);
2405
2406 if (0 == result)
2407 ci_data->fan_table_start = tmp;
2408
2409 error |= (0 != result);
2410
2411 result = ci_read_smc_sram_dword(hwmgr,
2412 SMU7_FIRMWARE_HEADER_LOCATION +
2413 offsetof(SMU7_Firmware_Header, mcArbDramTimingTable),
2414 &tmp, SMC_RAM_END);
2415
2416 if (0 == result)
2417 ci_data->arb_table_start = tmp;
2418
2419 error |= (0 != result);
2420
2421 result = ci_read_smc_sram_dword(hwmgr,
2422 SMU7_FIRMWARE_HEADER_LOCATION +
2423 offsetof(SMU7_Firmware_Header, Version),
2424 &tmp, SMC_RAM_END);
2425
2426 if (0 == result)
2427 hwmgr->microcode_version_info.SMC = tmp;
2428
2429 error |= (0 != result);
2430
2431 return error ? 1 : 0;
2432 }
2433
ci_get_memory_modile_index(struct pp_hwmgr * hwmgr)2434 static uint8_t ci_get_memory_modile_index(struct pp_hwmgr *hwmgr)
2435 {
2436 return (uint8_t) (0xFF & (cgs_read_register(hwmgr->device, mmBIOS_SCRATCH_4) >> 16));
2437 }
2438
ci_check_s0_mc_reg_index(uint16_t in_reg,uint16_t * out_reg)2439 static bool ci_check_s0_mc_reg_index(uint16_t in_reg, uint16_t *out_reg)
2440 {
2441 bool result = true;
2442
2443 switch (in_reg) {
2444 case mmMC_SEQ_RAS_TIMING:
2445 *out_reg = mmMC_SEQ_RAS_TIMING_LP;
2446 break;
2447
2448 case mmMC_SEQ_DLL_STBY:
2449 *out_reg = mmMC_SEQ_DLL_STBY_LP;
2450 break;
2451
2452 case mmMC_SEQ_G5PDX_CMD0:
2453 *out_reg = mmMC_SEQ_G5PDX_CMD0_LP;
2454 break;
2455
2456 case mmMC_SEQ_G5PDX_CMD1:
2457 *out_reg = mmMC_SEQ_G5PDX_CMD1_LP;
2458 break;
2459
2460 case mmMC_SEQ_G5PDX_CTRL:
2461 *out_reg = mmMC_SEQ_G5PDX_CTRL_LP;
2462 break;
2463
2464 case mmMC_SEQ_CAS_TIMING:
2465 *out_reg = mmMC_SEQ_CAS_TIMING_LP;
2466 break;
2467
2468 case mmMC_SEQ_MISC_TIMING:
2469 *out_reg = mmMC_SEQ_MISC_TIMING_LP;
2470 break;
2471
2472 case mmMC_SEQ_MISC_TIMING2:
2473 *out_reg = mmMC_SEQ_MISC_TIMING2_LP;
2474 break;
2475
2476 case mmMC_SEQ_PMG_DVS_CMD:
2477 *out_reg = mmMC_SEQ_PMG_DVS_CMD_LP;
2478 break;
2479
2480 case mmMC_SEQ_PMG_DVS_CTL:
2481 *out_reg = mmMC_SEQ_PMG_DVS_CTL_LP;
2482 break;
2483
2484 case mmMC_SEQ_RD_CTL_D0:
2485 *out_reg = mmMC_SEQ_RD_CTL_D0_LP;
2486 break;
2487
2488 case mmMC_SEQ_RD_CTL_D1:
2489 *out_reg = mmMC_SEQ_RD_CTL_D1_LP;
2490 break;
2491
2492 case mmMC_SEQ_WR_CTL_D0:
2493 *out_reg = mmMC_SEQ_WR_CTL_D0_LP;
2494 break;
2495
2496 case mmMC_SEQ_WR_CTL_D1:
2497 *out_reg = mmMC_SEQ_WR_CTL_D1_LP;
2498 break;
2499
2500 case mmMC_PMG_CMD_EMRS:
2501 *out_reg = mmMC_SEQ_PMG_CMD_EMRS_LP;
2502 break;
2503
2504 case mmMC_PMG_CMD_MRS:
2505 *out_reg = mmMC_SEQ_PMG_CMD_MRS_LP;
2506 break;
2507
2508 case mmMC_PMG_CMD_MRS1:
2509 *out_reg = mmMC_SEQ_PMG_CMD_MRS1_LP;
2510 break;
2511
2512 case mmMC_SEQ_PMG_TIMING:
2513 *out_reg = mmMC_SEQ_PMG_TIMING_LP;
2514 break;
2515
2516 case mmMC_PMG_CMD_MRS2:
2517 *out_reg = mmMC_SEQ_PMG_CMD_MRS2_LP;
2518 break;
2519
2520 case mmMC_SEQ_WR_CTL_2:
2521 *out_reg = mmMC_SEQ_WR_CTL_2_LP;
2522 break;
2523
2524 default:
2525 result = false;
2526 break;
2527 }
2528
2529 return result;
2530 }
2531
ci_set_s0_mc_reg_index(struct ci_mc_reg_table * table)2532 static int ci_set_s0_mc_reg_index(struct ci_mc_reg_table *table)
2533 {
2534 uint32_t i;
2535 uint16_t address;
2536
2537 for (i = 0; i < table->last; i++) {
2538 table->mc_reg_address[i].s0 =
2539 ci_check_s0_mc_reg_index(table->mc_reg_address[i].s1, &address)
2540 ? address : table->mc_reg_address[i].s1;
2541 }
2542 return 0;
2543 }
2544
ci_copy_vbios_smc_reg_table(const pp_atomctrl_mc_reg_table * table,struct ci_mc_reg_table * ni_table)2545 static int ci_copy_vbios_smc_reg_table(const pp_atomctrl_mc_reg_table *table,
2546 struct ci_mc_reg_table *ni_table)
2547 {
2548 uint8_t i, j;
2549
2550 PP_ASSERT_WITH_CODE((table->last <= SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2551 "Invalid VramInfo table.", return -EINVAL);
2552 PP_ASSERT_WITH_CODE((table->num_entries <= MAX_AC_TIMING_ENTRIES),
2553 "Invalid VramInfo table.", return -EINVAL);
2554
2555 for (i = 0; i < table->last; i++)
2556 ni_table->mc_reg_address[i].s1 = table->mc_reg_address[i].s1;
2557
2558 ni_table->last = table->last;
2559
2560 for (i = 0; i < table->num_entries; i++) {
2561 ni_table->mc_reg_table_entry[i].mclk_max =
2562 table->mc_reg_table_entry[i].mclk_max;
2563 for (j = 0; j < table->last; j++) {
2564 ni_table->mc_reg_table_entry[i].mc_data[j] =
2565 table->mc_reg_table_entry[i].mc_data[j];
2566 }
2567 }
2568
2569 ni_table->num_entries = table->num_entries;
2570
2571 return 0;
2572 }
2573
ci_set_mc_special_registers(struct pp_hwmgr * hwmgr,struct ci_mc_reg_table * table)2574 static int ci_set_mc_special_registers(struct pp_hwmgr *hwmgr,
2575 struct ci_mc_reg_table *table)
2576 {
2577 uint8_t i, j, k;
2578 uint32_t temp_reg;
2579 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2580
2581 for (i = 0, j = table->last; i < table->last; i++) {
2582 PP_ASSERT_WITH_CODE((j < SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2583 "Invalid VramInfo table.", return -EINVAL);
2584
2585 switch (table->mc_reg_address[i].s1) {
2586
2587 case mmMC_SEQ_MISC1:
2588 temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS);
2589 table->mc_reg_address[j].s1 = mmMC_PMG_CMD_EMRS;
2590 table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_EMRS_LP;
2591 for (k = 0; k < table->num_entries; k++) {
2592 table->mc_reg_table_entry[k].mc_data[j] =
2593 ((temp_reg & 0xffff0000)) |
2594 ((table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16);
2595 }
2596 j++;
2597
2598 PP_ASSERT_WITH_CODE((j < SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2599 "Invalid VramInfo table.", return -EINVAL);
2600 temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS);
2601 table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS;
2602 table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS_LP;
2603 for (k = 0; k < table->num_entries; k++) {
2604 table->mc_reg_table_entry[k].mc_data[j] =
2605 (temp_reg & 0xffff0000) |
2606 (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
2607
2608 if (!data->is_memory_gddr5)
2609 table->mc_reg_table_entry[k].mc_data[j] |= 0x100;
2610 }
2611 j++;
2612
2613 if (!data->is_memory_gddr5) {
2614 PP_ASSERT_WITH_CODE((j < SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2615 "Invalid VramInfo table.", return -EINVAL);
2616 table->mc_reg_address[j].s1 = mmMC_PMG_AUTO_CMD;
2617 table->mc_reg_address[j].s0 = mmMC_PMG_AUTO_CMD;
2618 for (k = 0; k < table->num_entries; k++) {
2619 table->mc_reg_table_entry[k].mc_data[j] =
2620 (table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16;
2621 }
2622 j++;
2623 }
2624
2625 break;
2626
2627 case mmMC_SEQ_RESERVE_M:
2628 temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1);
2629 table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS1;
2630 table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS1_LP;
2631 for (k = 0; k < table->num_entries; k++) {
2632 table->mc_reg_table_entry[k].mc_data[j] =
2633 (temp_reg & 0xffff0000) |
2634 (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
2635 }
2636 j++;
2637 break;
2638
2639 default:
2640 break;
2641 }
2642
2643 }
2644
2645 table->last = j;
2646
2647 return 0;
2648 }
2649
ci_set_valid_flag(struct ci_mc_reg_table * table)2650 static int ci_set_valid_flag(struct ci_mc_reg_table *table)
2651 {
2652 uint8_t i, j;
2653
2654 for (i = 0; i < table->last; i++) {
2655 for (j = 1; j < table->num_entries; j++) {
2656 if (table->mc_reg_table_entry[j-1].mc_data[i] !=
2657 table->mc_reg_table_entry[j].mc_data[i]) {
2658 table->validflag |= (1 << i);
2659 break;
2660 }
2661 }
2662 }
2663
2664 return 0;
2665 }
2666
ci_initialize_mc_reg_table(struct pp_hwmgr * hwmgr)2667 static int ci_initialize_mc_reg_table(struct pp_hwmgr *hwmgr)
2668 {
2669 int result;
2670 struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
2671 pp_atomctrl_mc_reg_table *table;
2672 struct ci_mc_reg_table *ni_table = &smu_data->mc_reg_table;
2673 uint8_t module_index = ci_get_memory_modile_index(hwmgr);
2674
2675 table = kzalloc(sizeof(pp_atomctrl_mc_reg_table), GFP_KERNEL);
2676
2677 if (NULL == table)
2678 return -ENOMEM;
2679
2680 /* Program additional LP registers that are no longer programmed by VBIOS */
2681 cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING));
2682 cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING));
2683 cgs_write_register(hwmgr->device, mmMC_SEQ_DLL_STBY_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_DLL_STBY));
2684 cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0));
2685 cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1));
2686 cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL));
2687 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD));
2688 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL));
2689 cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING));
2690 cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2));
2691 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_EMRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS));
2692 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS));
2693 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS1_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1));
2694 cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0));
2695 cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1));
2696 cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0));
2697 cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1));
2698 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING));
2699 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS2_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS2));
2700 cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_2));
2701
2702 memset(table, 0x00, sizeof(pp_atomctrl_mc_reg_table));
2703
2704 result = atomctrl_initialize_mc_reg_table(hwmgr, module_index, table);
2705
2706 if (0 == result)
2707 result = ci_copy_vbios_smc_reg_table(table, ni_table);
2708
2709 if (0 == result) {
2710 ci_set_s0_mc_reg_index(ni_table);
2711 result = ci_set_mc_special_registers(hwmgr, ni_table);
2712 }
2713
2714 if (0 == result)
2715 ci_set_valid_flag(ni_table);
2716
2717 kfree(table);
2718
2719 return result;
2720 }
2721
ci_is_dpm_running(struct pp_hwmgr * hwmgr)2722 static bool ci_is_dpm_running(struct pp_hwmgr *hwmgr)
2723 {
2724 return ci_is_smc_ram_running(hwmgr);
2725 }
2726
ci_smu_init(struct pp_hwmgr * hwmgr)2727 static int ci_smu_init(struct pp_hwmgr *hwmgr)
2728 {
2729 struct ci_smumgr *ci_priv = NULL;
2730
2731 ci_priv = kzalloc(sizeof(struct ci_smumgr), GFP_KERNEL);
2732
2733 if (ci_priv == NULL)
2734 return -ENOMEM;
2735
2736 hwmgr->smu_backend = ci_priv;
2737
2738 return 0;
2739 }
2740
ci_smu_fini(struct pp_hwmgr * hwmgr)2741 static int ci_smu_fini(struct pp_hwmgr *hwmgr)
2742 {
2743 kfree(hwmgr->smu_backend);
2744 hwmgr->smu_backend = NULL;
2745 return 0;
2746 }
2747
ci_start_smu(struct pp_hwmgr * hwmgr)2748 static int ci_start_smu(struct pp_hwmgr *hwmgr)
2749 {
2750 return 0;
2751 }
2752
ci_update_dpm_settings(struct pp_hwmgr * hwmgr,void * profile_setting)2753 static int ci_update_dpm_settings(struct pp_hwmgr *hwmgr,
2754 void *profile_setting)
2755 {
2756 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2757 struct ci_smumgr *smu_data = (struct ci_smumgr *)
2758 (hwmgr->smu_backend);
2759 struct profile_mode_setting *setting;
2760 struct SMU7_Discrete_GraphicsLevel *levels =
2761 smu_data->smc_state_table.GraphicsLevel;
2762 uint32_t array = smu_data->dpm_table_start +
2763 offsetof(SMU7_Discrete_DpmTable, GraphicsLevel);
2764
2765 uint32_t mclk_array = smu_data->dpm_table_start +
2766 offsetof(SMU7_Discrete_DpmTable, MemoryLevel);
2767 struct SMU7_Discrete_MemoryLevel *mclk_levels =
2768 smu_data->smc_state_table.MemoryLevel;
2769 uint32_t i;
2770 uint32_t offset, up_hyst_offset, down_hyst_offset, clk_activity_offset, tmp;
2771
2772 if (profile_setting == NULL)
2773 return -EINVAL;
2774
2775 setting = (struct profile_mode_setting *)profile_setting;
2776
2777 if (setting->bupdate_sclk) {
2778 if (!data->sclk_dpm_key_disabled)
2779 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_FreezeLevel);
2780 for (i = 0; i < smu_data->smc_state_table.GraphicsDpmLevelCount; i++) {
2781 if (levels[i].ActivityLevel !=
2782 cpu_to_be16(setting->sclk_activity)) {
2783 levels[i].ActivityLevel = cpu_to_be16(setting->sclk_activity);
2784
2785 clk_activity_offset = array + (sizeof(SMU7_Discrete_GraphicsLevel) * i)
2786 + offsetof(SMU7_Discrete_GraphicsLevel, ActivityLevel);
2787 offset = clk_activity_offset & ~0x3;
2788 tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2789 tmp = phm_set_field_to_u32(clk_activity_offset, tmp, levels[i].ActivityLevel, sizeof(uint16_t));
2790 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2791
2792 }
2793 if (levels[i].UpH != setting->sclk_up_hyst ||
2794 levels[i].DownH != setting->sclk_down_hyst) {
2795 levels[i].UpH = setting->sclk_up_hyst;
2796 levels[i].DownH = setting->sclk_down_hyst;
2797 up_hyst_offset = array + (sizeof(SMU7_Discrete_GraphicsLevel) * i)
2798 + offsetof(SMU7_Discrete_GraphicsLevel, UpH);
2799 down_hyst_offset = array + (sizeof(SMU7_Discrete_GraphicsLevel) * i)
2800 + offsetof(SMU7_Discrete_GraphicsLevel, DownH);
2801 offset = up_hyst_offset & ~0x3;
2802 tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2803 tmp = phm_set_field_to_u32(up_hyst_offset, tmp, levels[i].UpH, sizeof(uint8_t));
2804 tmp = phm_set_field_to_u32(down_hyst_offset, tmp, levels[i].DownH, sizeof(uint8_t));
2805 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2806 }
2807 }
2808 if (!data->sclk_dpm_key_disabled)
2809 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_UnfreezeLevel);
2810 }
2811
2812 if (setting->bupdate_mclk) {
2813 if (!data->mclk_dpm_key_disabled)
2814 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_FreezeLevel);
2815 for (i = 0; i < smu_data->smc_state_table.MemoryDpmLevelCount; i++) {
2816 if (mclk_levels[i].ActivityLevel !=
2817 cpu_to_be16(setting->mclk_activity)) {
2818 mclk_levels[i].ActivityLevel = cpu_to_be16(setting->mclk_activity);
2819
2820 clk_activity_offset = mclk_array + (sizeof(SMU7_Discrete_MemoryLevel) * i)
2821 + offsetof(SMU7_Discrete_MemoryLevel, ActivityLevel);
2822 offset = clk_activity_offset & ~0x3;
2823 tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2824 tmp = phm_set_field_to_u32(clk_activity_offset, tmp, mclk_levels[i].ActivityLevel, sizeof(uint16_t));
2825 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2826
2827 }
2828 if (mclk_levels[i].UpH != setting->mclk_up_hyst ||
2829 mclk_levels[i].DownH != setting->mclk_down_hyst) {
2830 mclk_levels[i].UpH = setting->mclk_up_hyst;
2831 mclk_levels[i].DownH = setting->mclk_down_hyst;
2832 up_hyst_offset = mclk_array + (sizeof(SMU7_Discrete_MemoryLevel) * i)
2833 + offsetof(SMU7_Discrete_MemoryLevel, UpH);
2834 down_hyst_offset = mclk_array + (sizeof(SMU7_Discrete_MemoryLevel) * i)
2835 + offsetof(SMU7_Discrete_MemoryLevel, DownH);
2836 offset = up_hyst_offset & ~0x3;
2837 tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2838 tmp = phm_set_field_to_u32(up_hyst_offset, tmp, mclk_levels[i].UpH, sizeof(uint8_t));
2839 tmp = phm_set_field_to_u32(down_hyst_offset, tmp, mclk_levels[i].DownH, sizeof(uint8_t));
2840 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2841 }
2842 }
2843 if (!data->mclk_dpm_key_disabled)
2844 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_UnfreezeLevel);
2845 }
2846 return 0;
2847 }
2848
ci_update_uvd_smc_table(struct pp_hwmgr * hwmgr)2849 static int ci_update_uvd_smc_table(struct pp_hwmgr *hwmgr)
2850 {
2851 struct amdgpu_device *adev = hwmgr->adev;
2852 struct smu7_hwmgr *data = hwmgr->backend;
2853 struct ci_smumgr *smu_data = hwmgr->smu_backend;
2854 struct phm_uvd_clock_voltage_dependency_table *uvd_table =
2855 hwmgr->dyn_state.uvd_clock_voltage_dependency_table;
2856 uint32_t profile_mode_mask = AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD |
2857 AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK |
2858 AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK |
2859 AMD_DPM_FORCED_LEVEL_PROFILE_PEAK;
2860 uint32_t max_vddc = adev->pm.ac_power ? hwmgr->dyn_state.max_clock_voltage_on_ac.vddc :
2861 hwmgr->dyn_state.max_clock_voltage_on_dc.vddc;
2862 int32_t i;
2863
2864 if (PP_CAP(PHM_PlatformCaps_UVDDPM) || uvd_table->count <= 0)
2865 smu_data->smc_state_table.UvdBootLevel = 0;
2866 else
2867 smu_data->smc_state_table.UvdBootLevel = uvd_table->count - 1;
2868
2869 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, DPM_TABLE_475,
2870 UvdBootLevel, smu_data->smc_state_table.UvdBootLevel);
2871
2872 data->dpm_level_enable_mask.uvd_dpm_enable_mask = 0;
2873
2874 for (i = uvd_table->count - 1; i >= 0; i--) {
2875 if (uvd_table->entries[i].v <= max_vddc)
2876 data->dpm_level_enable_mask.uvd_dpm_enable_mask |= 1 << i;
2877 if (hwmgr->dpm_level & profile_mode_mask || !PP_CAP(PHM_PlatformCaps_UVDDPM))
2878 break;
2879 }
2880 ci_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_UVDDPM_SetEnabledMask,
2881 data->dpm_level_enable_mask.uvd_dpm_enable_mask);
2882
2883 return 0;
2884 }
2885
ci_update_vce_smc_table(struct pp_hwmgr * hwmgr)2886 static int ci_update_vce_smc_table(struct pp_hwmgr *hwmgr)
2887 {
2888 struct amdgpu_device *adev = hwmgr->adev;
2889 struct smu7_hwmgr *data = hwmgr->backend;
2890 struct phm_vce_clock_voltage_dependency_table *vce_table =
2891 hwmgr->dyn_state.vce_clock_voltage_dependency_table;
2892 uint32_t profile_mode_mask = AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD |
2893 AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK |
2894 AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK |
2895 AMD_DPM_FORCED_LEVEL_PROFILE_PEAK;
2896 uint32_t max_vddc = adev->pm.ac_power ? hwmgr->dyn_state.max_clock_voltage_on_ac.vddc :
2897 hwmgr->dyn_state.max_clock_voltage_on_dc.vddc;
2898 int32_t i;
2899
2900 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, DPM_TABLE_475,
2901 VceBootLevel, 0); /* temp hard code to level 0, vce can set min evclk*/
2902
2903 data->dpm_level_enable_mask.vce_dpm_enable_mask = 0;
2904
2905 for (i = vce_table->count - 1; i >= 0; i--) {
2906 if (vce_table->entries[i].v <= max_vddc)
2907 data->dpm_level_enable_mask.vce_dpm_enable_mask |= 1 << i;
2908 if (hwmgr->dpm_level & profile_mode_mask || !PP_CAP(PHM_PlatformCaps_VCEDPM))
2909 break;
2910 }
2911 ci_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_VCEDPM_SetEnabledMask,
2912 data->dpm_level_enable_mask.vce_dpm_enable_mask);
2913
2914 return 0;
2915 }
2916
ci_update_smc_table(struct pp_hwmgr * hwmgr,uint32_t type)2917 static int ci_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type)
2918 {
2919 switch (type) {
2920 case SMU_UVD_TABLE:
2921 ci_update_uvd_smc_table(hwmgr);
2922 break;
2923 case SMU_VCE_TABLE:
2924 ci_update_vce_smc_table(hwmgr);
2925 break;
2926 default:
2927 break;
2928 }
2929 return 0;
2930 }
2931
2932 const struct pp_smumgr_func ci_smu_funcs = {
2933 .smu_init = ci_smu_init,
2934 .smu_fini = ci_smu_fini,
2935 .start_smu = ci_start_smu,
2936 .check_fw_load_finish = NULL,
2937 .request_smu_load_fw = NULL,
2938 .request_smu_load_specific_fw = NULL,
2939 .send_msg_to_smc = ci_send_msg_to_smc,
2940 .send_msg_to_smc_with_parameter = ci_send_msg_to_smc_with_parameter,
2941 .download_pptable_settings = NULL,
2942 .upload_pptable_settings = NULL,
2943 .get_offsetof = ci_get_offsetof,
2944 .process_firmware_header = ci_process_firmware_header,
2945 .init_smc_table = ci_init_smc_table,
2946 .update_sclk_threshold = ci_update_sclk_threshold,
2947 .thermal_setup_fan_table = ci_thermal_setup_fan_table,
2948 .populate_all_graphic_levels = ci_populate_all_graphic_levels,
2949 .populate_all_memory_levels = ci_populate_all_memory_levels,
2950 .get_mac_definition = ci_get_mac_definition,
2951 .initialize_mc_reg_table = ci_initialize_mc_reg_table,
2952 .is_dpm_running = ci_is_dpm_running,
2953 .update_dpm_settings = ci_update_dpm_settings,
2954 .update_smc_table = ci_update_smc_table,
2955 };
2956