1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
3 #define _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
4
5 #include <asm-generic/pgtable-nop4d.h>
6
7 #ifndef __ASSEMBLY__
8 #include <linux/mmdebug.h>
9 #include <linux/bug.h>
10 #include <linux/sizes.h>
11 #endif
12
13 /*
14 * Common bits between hash and Radix page table
15 */
16 #define _PAGE_BIT_SWAP_TYPE 0
17
18 #define _PAGE_EXEC 0x00001 /* execute permission */
19 #define _PAGE_WRITE 0x00002 /* write access allowed */
20 #define _PAGE_READ 0x00004 /* read access allowed */
21 #define _PAGE_RW (_PAGE_READ | _PAGE_WRITE)
22 #define _PAGE_RWX (_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC)
23 #define _PAGE_PRIVILEGED 0x00008 /* kernel access only */
24 #define _PAGE_SAO 0x00010 /* Strong access order */
25 #define _PAGE_NON_IDEMPOTENT 0x00020 /* non idempotent memory */
26 #define _PAGE_TOLERANT 0x00030 /* tolerant memory, cache inhibited */
27 #define _PAGE_DIRTY 0x00080 /* C: page changed */
28 #define _PAGE_ACCESSED 0x00100 /* R: page referenced */
29 /*
30 * Software bits
31 */
32 #define _RPAGE_SW0 0x2000000000000000UL
33 #define _RPAGE_SW1 0x00800
34 #define _RPAGE_SW2 0x00400
35 #define _RPAGE_SW3 0x00200
36 #define _RPAGE_RSV1 0x00040UL
37
38 #define _RPAGE_PKEY_BIT4 0x1000000000000000UL
39 #define _RPAGE_PKEY_BIT3 0x0800000000000000UL
40 #define _RPAGE_PKEY_BIT2 0x0400000000000000UL
41 #define _RPAGE_PKEY_BIT1 0x0200000000000000UL
42 #define _RPAGE_PKEY_BIT0 0x0100000000000000UL
43
44 #define _PAGE_PTE 0x4000000000000000UL /* distinguishes PTEs from pointers */
45 #define _PAGE_PRESENT 0x8000000000000000UL /* pte contains a translation */
46 /*
47 * We need to mark a pmd pte invalid while splitting. We can do that by clearing
48 * the _PAGE_PRESENT bit. But then that will be taken as a swap pte. In order to
49 * differentiate between two use a SW field when invalidating.
50 *
51 * We do that temporary invalidate for regular pte entry in ptep_set_access_flags
52 *
53 * This is used only when _PAGE_PRESENT is cleared.
54 */
55 #define _PAGE_INVALID _RPAGE_SW0
56
57 /*
58 * Top and bottom bits of RPN which can be used by hash
59 * translation mode, because we expect them to be zero
60 * otherwise.
61 */
62 #define _RPAGE_RPN0 0x01000
63 #define _RPAGE_RPN1 0x02000
64 #define _RPAGE_RPN43 0x0080000000000000UL
65 #define _RPAGE_RPN42 0x0040000000000000UL
66 #define _RPAGE_RPN41 0x0020000000000000UL
67
68 /* Max physical address bit as per radix table */
69 #define _RPAGE_PA_MAX 56
70
71 /*
72 * Max physical address bit we will use for now.
73 *
74 * This is mostly a hardware limitation and for now Power9 has
75 * a 51 bit limit.
76 *
77 * This is different from the number of physical bit required to address
78 * the last byte of memory. That is defined by MAX_PHYSMEM_BITS.
79 * MAX_PHYSMEM_BITS is a linux limitation imposed by the maximum
80 * number of sections we can support (SECTIONS_SHIFT).
81 *
82 * This is different from Radix page table limitation above and
83 * should always be less than that. The limit is done such that
84 * we can overload the bits between _RPAGE_PA_MAX and _PAGE_PA_MAX
85 * for hash linux page table specific bits.
86 *
87 * In order to be compatible with future hardware generations we keep
88 * some offsets and limit this for now to 53
89 */
90 #define _PAGE_PA_MAX 53
91
92 #define _PAGE_SOFT_DIRTY _RPAGE_SW3 /* software: software dirty tracking */
93 #define _PAGE_SPECIAL _RPAGE_SW2 /* software: special page */
94 #define _PAGE_DEVMAP _RPAGE_SW1 /* software: ZONE_DEVICE page */
95
96 /*
97 * Drivers request for cache inhibited pte mapping using _PAGE_NO_CACHE
98 * Instead of fixing all of them, add an alternate define which
99 * maps CI pte mapping.
100 */
101 #define _PAGE_NO_CACHE _PAGE_TOLERANT
102 /*
103 * We support _RPAGE_PA_MAX bit real address in pte. On the linux side
104 * we are limited by _PAGE_PA_MAX. Clear everything above _PAGE_PA_MAX
105 * and every thing below PAGE_SHIFT;
106 */
107 #define PTE_RPN_MASK (((1UL << _PAGE_PA_MAX) - 1) & (PAGE_MASK))
108 /*
109 * set of bits not changed in pmd_modify. Even though we have hash specific bits
110 * in here, on radix we expect them to be zero.
111 */
112 #define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
113 _PAGE_ACCESSED | H_PAGE_THP_HUGE | _PAGE_PTE | \
114 _PAGE_SOFT_DIRTY | _PAGE_DEVMAP)
115 /*
116 * user access blocked by key
117 */
118 #define _PAGE_KERNEL_RW (_PAGE_PRIVILEGED | _PAGE_RW | _PAGE_DIRTY)
119 #define _PAGE_KERNEL_RO (_PAGE_PRIVILEGED | _PAGE_READ)
120 #define _PAGE_KERNEL_ROX (_PAGE_PRIVILEGED | _PAGE_READ | _PAGE_EXEC)
121 #define _PAGE_KERNEL_RWX (_PAGE_PRIVILEGED | _PAGE_DIRTY | \
122 _PAGE_RW | _PAGE_EXEC)
123 /*
124 * _PAGE_CHG_MASK masks of bits that are to be preserved across
125 * pgprot changes
126 */
127 #define _PAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
128 _PAGE_ACCESSED | _PAGE_SPECIAL | _PAGE_PTE | \
129 _PAGE_SOFT_DIRTY | _PAGE_DEVMAP)
130
131 /*
132 * We define 2 sets of base prot bits, one for basic pages (ie,
133 * cacheable kernel and user pages) and one for non cacheable
134 * pages. We always set _PAGE_COHERENT when SMP is enabled or
135 * the processor might need it for DMA coherency.
136 */
137 #define _PAGE_BASE_NC (_PAGE_PRESENT | _PAGE_ACCESSED)
138 #define _PAGE_BASE (_PAGE_BASE_NC)
139
140 /* Permission masks used to generate the __P and __S table,
141 *
142 * Note:__pgprot is defined in arch/powerpc/include/asm/page.h
143 *
144 * Write permissions imply read permissions for now (we could make write-only
145 * pages on BookE but we don't bother for now). Execute permission control is
146 * possible on platforms that define _PAGE_EXEC
147 */
148 #define PAGE_NONE __pgprot(_PAGE_BASE | _PAGE_PRIVILEGED)
149 #define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_RW)
150 #define PAGE_SHARED_X __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_EXEC)
151 #define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_READ)
152 #define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
153 #define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_READ)
154 #define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
155
156 /* Permission masks used for kernel mappings */
157 #define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_KERNEL_RW)
158 #define PAGE_KERNEL_NC __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
159 _PAGE_TOLERANT)
160 #define PAGE_KERNEL_NCG __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
161 _PAGE_NON_IDEMPOTENT)
162 #define PAGE_KERNEL_X __pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX)
163 #define PAGE_KERNEL_RO __pgprot(_PAGE_BASE | _PAGE_KERNEL_RO)
164 #define PAGE_KERNEL_ROX __pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX)
165
166 /*
167 * Protection used for kernel text. We want the debuggers to be able to
168 * set breakpoints anywhere, so don't write protect the kernel text
169 * on platforms where such control is possible.
170 */
171 #if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH) || \
172 defined(CONFIG_KPROBES) || defined(CONFIG_DYNAMIC_FTRACE)
173 #define PAGE_KERNEL_TEXT PAGE_KERNEL_X
174 #else
175 #define PAGE_KERNEL_TEXT PAGE_KERNEL_ROX
176 #endif
177
178 /* Make modules code happy. We don't set RO yet */
179 #define PAGE_KERNEL_EXEC PAGE_KERNEL_X
180 #define PAGE_AGP (PAGE_KERNEL_NC)
181
182 #ifndef __ASSEMBLY__
183 /*
184 * page table defines
185 */
186 extern unsigned long __pte_index_size;
187 extern unsigned long __pmd_index_size;
188 extern unsigned long __pud_index_size;
189 extern unsigned long __pgd_index_size;
190 extern unsigned long __pud_cache_index;
191 #define PTE_INDEX_SIZE __pte_index_size
192 #define PMD_INDEX_SIZE __pmd_index_size
193 #define PUD_INDEX_SIZE __pud_index_size
194 #define PGD_INDEX_SIZE __pgd_index_size
195 /* pmd table use page table fragments */
196 #define PMD_CACHE_INDEX 0
197 #define PUD_CACHE_INDEX __pud_cache_index
198 /*
199 * Because of use of pte fragments and THP, size of page table
200 * are not always derived out of index size above.
201 */
202 extern unsigned long __pte_table_size;
203 extern unsigned long __pmd_table_size;
204 extern unsigned long __pud_table_size;
205 extern unsigned long __pgd_table_size;
206 #define PTE_TABLE_SIZE __pte_table_size
207 #define PMD_TABLE_SIZE __pmd_table_size
208 #define PUD_TABLE_SIZE __pud_table_size
209 #define PGD_TABLE_SIZE __pgd_table_size
210
211 extern unsigned long __pmd_val_bits;
212 extern unsigned long __pud_val_bits;
213 extern unsigned long __pgd_val_bits;
214 #define PMD_VAL_BITS __pmd_val_bits
215 #define PUD_VAL_BITS __pud_val_bits
216 #define PGD_VAL_BITS __pgd_val_bits
217
218 extern unsigned long __pte_frag_nr;
219 #define PTE_FRAG_NR __pte_frag_nr
220 extern unsigned long __pte_frag_size_shift;
221 #define PTE_FRAG_SIZE_SHIFT __pte_frag_size_shift
222 #define PTE_FRAG_SIZE (1UL << PTE_FRAG_SIZE_SHIFT)
223
224 extern unsigned long __pmd_frag_nr;
225 #define PMD_FRAG_NR __pmd_frag_nr
226 extern unsigned long __pmd_frag_size_shift;
227 #define PMD_FRAG_SIZE_SHIFT __pmd_frag_size_shift
228 #define PMD_FRAG_SIZE (1UL << PMD_FRAG_SIZE_SHIFT)
229
230 #define PTRS_PER_PTE (1 << PTE_INDEX_SIZE)
231 #define PTRS_PER_PMD (1 << PMD_INDEX_SIZE)
232 #define PTRS_PER_PUD (1 << PUD_INDEX_SIZE)
233 #define PTRS_PER_PGD (1 << PGD_INDEX_SIZE)
234
235 #define MAX_PTRS_PER_PGD (1 << (H_PGD_INDEX_SIZE > RADIX_PGD_INDEX_SIZE ? \
236 H_PGD_INDEX_SIZE : RADIX_PGD_INDEX_SIZE))
237
238 /* PMD_SHIFT determines what a second-level page table entry can map */
239 #define PMD_SHIFT (PAGE_SHIFT + PTE_INDEX_SIZE)
240 #define PMD_SIZE (1UL << PMD_SHIFT)
241 #define PMD_MASK (~(PMD_SIZE-1))
242
243 /* PUD_SHIFT determines what a third-level page table entry can map */
244 #define PUD_SHIFT (PMD_SHIFT + PMD_INDEX_SIZE)
245 #define PUD_SIZE (1UL << PUD_SHIFT)
246 #define PUD_MASK (~(PUD_SIZE-1))
247
248 /* PGDIR_SHIFT determines what a fourth-level page table entry can map */
249 #define PGDIR_SHIFT (PUD_SHIFT + PUD_INDEX_SIZE)
250 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
251 #define PGDIR_MASK (~(PGDIR_SIZE-1))
252
253 /* Bits to mask out from a PMD to get to the PTE page */
254 #define PMD_MASKED_BITS 0xc0000000000000ffUL
255 /* Bits to mask out from a PUD to get to the PMD page */
256 #define PUD_MASKED_BITS 0xc0000000000000ffUL
257 /* Bits to mask out from a PGD to get to the PUD page */
258 #define P4D_MASKED_BITS 0xc0000000000000ffUL
259
260 /*
261 * Used as an indicator for rcu callback functions
262 */
263 enum pgtable_index {
264 PTE_INDEX = 0,
265 PMD_INDEX,
266 PUD_INDEX,
267 PGD_INDEX,
268 /*
269 * Below are used with 4k page size and hugetlb
270 */
271 HTLB_16M_INDEX,
272 HTLB_16G_INDEX,
273 };
274
275 extern unsigned long __vmalloc_start;
276 extern unsigned long __vmalloc_end;
277 #define VMALLOC_START __vmalloc_start
278 #define VMALLOC_END __vmalloc_end
279
ioremap_max_order(void)280 static inline unsigned int ioremap_max_order(void)
281 {
282 if (radix_enabled())
283 return PUD_SHIFT;
284 return 7 + PAGE_SHIFT; /* default from linux/vmalloc.h */
285 }
286 #define IOREMAP_MAX_ORDER ioremap_max_order()
287
288 extern unsigned long __kernel_virt_start;
289 extern unsigned long __kernel_io_start;
290 extern unsigned long __kernel_io_end;
291 #define KERN_VIRT_START __kernel_virt_start
292 #define KERN_IO_START __kernel_io_start
293 #define KERN_IO_END __kernel_io_end
294
295 extern struct page *vmemmap;
296 extern unsigned long pci_io_base;
297 #endif /* __ASSEMBLY__ */
298
299 #include <asm/book3s/64/hash.h>
300 #include <asm/book3s/64/radix.h>
301
302 #if H_MAX_PHYSMEM_BITS > R_MAX_PHYSMEM_BITS
303 #define MAX_PHYSMEM_BITS H_MAX_PHYSMEM_BITS
304 #else
305 #define MAX_PHYSMEM_BITS R_MAX_PHYSMEM_BITS
306 #endif
307
308
309 #ifdef CONFIG_PPC_64K_PAGES
310 #include <asm/book3s/64/pgtable-64k.h>
311 #else
312 #include <asm/book3s/64/pgtable-4k.h>
313 #endif
314
315 #include <asm/barrier.h>
316 /*
317 * IO space itself carved into the PIO region (ISA and PHB IO space) and
318 * the ioremap space
319 *
320 * ISA_IO_BASE = KERN_IO_START, 64K reserved area
321 * PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
322 * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
323 */
324 #define FULL_IO_SIZE 0x80000000ul
325 #define ISA_IO_BASE (KERN_IO_START)
326 #define ISA_IO_END (KERN_IO_START + 0x10000ul)
327 #define PHB_IO_BASE (ISA_IO_END)
328 #define PHB_IO_END (KERN_IO_START + FULL_IO_SIZE)
329 #define IOREMAP_BASE (PHB_IO_END)
330 #define IOREMAP_START (ioremap_bot)
331 #define IOREMAP_END (KERN_IO_END - FIXADDR_SIZE)
332 #define FIXADDR_SIZE SZ_32M
333
334 /* Advertise special mapping type for AGP */
335 #define HAVE_PAGE_AGP
336
337 #ifndef __ASSEMBLY__
338
339 /*
340 * This is the default implementation of various PTE accessors, it's
341 * used in all cases except Book3S with 64K pages where we have a
342 * concept of sub-pages
343 */
344 #ifndef __real_pte
345
346 #define __real_pte(e, p, o) ((real_pte_t){(e)})
347 #define __rpte_to_pte(r) ((r).pte)
348 #define __rpte_to_hidx(r,index) (pte_val(__rpte_to_pte(r)) >> H_PAGE_F_GIX_SHIFT)
349
350 #define pte_iterate_hashed_subpages(rpte, psize, va, index, shift) \
351 do { \
352 index = 0; \
353 shift = mmu_psize_defs[psize].shift; \
354
355 #define pte_iterate_hashed_end() } while(0)
356
357 /*
358 * We expect this to be called only for user addresses or kernel virtual
359 * addresses other than the linear mapping.
360 */
361 #define pte_pagesize_index(mm, addr, pte) MMU_PAGE_4K
362
363 #endif /* __real_pte */
364
pte_update(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned long clr,unsigned long set,int huge)365 static inline unsigned long pte_update(struct mm_struct *mm, unsigned long addr,
366 pte_t *ptep, unsigned long clr,
367 unsigned long set, int huge)
368 {
369 if (radix_enabled())
370 return radix__pte_update(mm, addr, ptep, clr, set, huge);
371 return hash__pte_update(mm, addr, ptep, clr, set, huge);
372 }
373 /*
374 * For hash even if we have _PAGE_ACCESSED = 0, we do a pte_update.
375 * We currently remove entries from the hashtable regardless of whether
376 * the entry was young or dirty.
377 *
378 * We should be more intelligent about this but for the moment we override
379 * these functions and force a tlb flush unconditionally
380 * For radix: H_PAGE_HASHPTE should be zero. Hence we can use the same
381 * function for both hash and radix.
382 */
__ptep_test_and_clear_young(struct mm_struct * mm,unsigned long addr,pte_t * ptep)383 static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
384 unsigned long addr, pte_t *ptep)
385 {
386 unsigned long old;
387
388 if ((pte_raw(*ptep) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
389 return 0;
390 old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
391 return (old & _PAGE_ACCESSED) != 0;
392 }
393
394 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
395 #define ptep_test_and_clear_young(__vma, __addr, __ptep) \
396 ({ \
397 __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
398 })
399
400 /*
401 * On Book3S CPUs, clearing the accessed bit without a TLB flush
402 * doesn't cause data corruption. [ It could cause incorrect
403 * page aging and the (mistaken) reclaim of hot pages, but the
404 * chance of that should be relatively low. ]
405 *
406 * So as a performance optimization don't flush the TLB when
407 * clearing the accessed bit, it will eventually be flushed by
408 * a context switch or a VM operation anyway. [ In the rare
409 * event of it not getting flushed for a long time the delay
410 * shouldn't really matter because there's no real memory
411 * pressure for swapout to react to. ]
412 */
413 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
414 #define ptep_clear_flush_young ptep_test_and_clear_young
415
416 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
417 #define pmdp_clear_flush_young pmdp_test_and_clear_young
418
__pte_write(pte_t pte)419 static inline int __pte_write(pte_t pte)
420 {
421 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_WRITE));
422 }
423
424 #ifdef CONFIG_NUMA_BALANCING
425 #define pte_savedwrite pte_savedwrite
pte_savedwrite(pte_t pte)426 static inline bool pte_savedwrite(pte_t pte)
427 {
428 /*
429 * Saved write ptes are prot none ptes that doesn't have
430 * privileged bit sit. We mark prot none as one which has
431 * present and pviliged bit set and RWX cleared. To mark
432 * protnone which used to have _PAGE_WRITE set we clear
433 * the privileged bit.
434 */
435 return !(pte_raw(pte) & cpu_to_be64(_PAGE_RWX | _PAGE_PRIVILEGED));
436 }
437 #else
438 #define pte_savedwrite pte_savedwrite
pte_savedwrite(pte_t pte)439 static inline bool pte_savedwrite(pte_t pte)
440 {
441 return false;
442 }
443 #endif
444
pte_write(pte_t pte)445 static inline int pte_write(pte_t pte)
446 {
447 return __pte_write(pte) || pte_savedwrite(pte);
448 }
449
pte_read(pte_t pte)450 static inline int pte_read(pte_t pte)
451 {
452 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_READ));
453 }
454
455 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)456 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
457 pte_t *ptep)
458 {
459 if (__pte_write(*ptep))
460 pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 0);
461 else if (unlikely(pte_savedwrite(*ptep)))
462 pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 0);
463 }
464
465 #define __HAVE_ARCH_HUGE_PTEP_SET_WRPROTECT
huge_ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)466 static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
467 unsigned long addr, pte_t *ptep)
468 {
469 /*
470 * We should not find protnone for hugetlb, but this complete the
471 * interface.
472 */
473 if (__pte_write(*ptep))
474 pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 1);
475 else if (unlikely(pte_savedwrite(*ptep)))
476 pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 1);
477 }
478
479 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)480 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
481 unsigned long addr, pte_t *ptep)
482 {
483 unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0);
484 return __pte(old);
485 }
486
487 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
ptep_get_and_clear_full(struct mm_struct * mm,unsigned long addr,pte_t * ptep,int full)488 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
489 unsigned long addr,
490 pte_t *ptep, int full)
491 {
492 if (full && radix_enabled()) {
493 /*
494 * We know that this is a full mm pte clear and
495 * hence can be sure there is no parallel set_pte.
496 */
497 return radix__ptep_get_and_clear_full(mm, addr, ptep, full);
498 }
499 return ptep_get_and_clear(mm, addr, ptep);
500 }
501
502
pte_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)503 static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
504 pte_t * ptep)
505 {
506 pte_update(mm, addr, ptep, ~0UL, 0, 0);
507 }
508
pte_dirty(pte_t pte)509 static inline int pte_dirty(pte_t pte)
510 {
511 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_DIRTY));
512 }
513
pte_young(pte_t pte)514 static inline int pte_young(pte_t pte)
515 {
516 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_ACCESSED));
517 }
518
pte_special(pte_t pte)519 static inline int pte_special(pte_t pte)
520 {
521 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SPECIAL));
522 }
523
pte_exec(pte_t pte)524 static inline bool pte_exec(pte_t pte)
525 {
526 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_EXEC));
527 }
528
529
530 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
pte_soft_dirty(pte_t pte)531 static inline bool pte_soft_dirty(pte_t pte)
532 {
533 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SOFT_DIRTY));
534 }
535
pte_mksoft_dirty(pte_t pte)536 static inline pte_t pte_mksoft_dirty(pte_t pte)
537 {
538 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SOFT_DIRTY));
539 }
540
pte_clear_soft_dirty(pte_t pte)541 static inline pte_t pte_clear_soft_dirty(pte_t pte)
542 {
543 return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SOFT_DIRTY));
544 }
545 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
546
547 #ifdef CONFIG_NUMA_BALANCING
pte_protnone(pte_t pte)548 static inline int pte_protnone(pte_t pte)
549 {
550 return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE | _PAGE_RWX)) ==
551 cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE);
552 }
553
554 #define pte_mk_savedwrite pte_mk_savedwrite
pte_mk_savedwrite(pte_t pte)555 static inline pte_t pte_mk_savedwrite(pte_t pte)
556 {
557 /*
558 * Used by Autonuma subsystem to preserve the write bit
559 * while marking the pte PROT_NONE. Only allow this
560 * on PROT_NONE pte
561 */
562 VM_BUG_ON((pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_RWX | _PAGE_PRIVILEGED)) !=
563 cpu_to_be64(_PAGE_PRESENT | _PAGE_PRIVILEGED));
564 return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_PRIVILEGED));
565 }
566
567 #define pte_clear_savedwrite pte_clear_savedwrite
pte_clear_savedwrite(pte_t pte)568 static inline pte_t pte_clear_savedwrite(pte_t pte)
569 {
570 /*
571 * Used by KSM subsystem to make a protnone pte readonly.
572 */
573 VM_BUG_ON(!pte_protnone(pte));
574 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PRIVILEGED));
575 }
576 #else
577 #define pte_clear_savedwrite pte_clear_savedwrite
pte_clear_savedwrite(pte_t pte)578 static inline pte_t pte_clear_savedwrite(pte_t pte)
579 {
580 VM_WARN_ON(1);
581 return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_WRITE));
582 }
583 #endif /* CONFIG_NUMA_BALANCING */
584
pte_hw_valid(pte_t pte)585 static inline bool pte_hw_valid(pte_t pte)
586 {
587 return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE)) ==
588 cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE);
589 }
590
pte_present(pte_t pte)591 static inline int pte_present(pte_t pte)
592 {
593 /*
594 * A pte is considerent present if _PAGE_PRESENT is set.
595 * We also need to consider the pte present which is marked
596 * invalid during ptep_set_access_flags. Hence we look for _PAGE_INVALID
597 * if we find _PAGE_PRESENT cleared.
598 */
599
600 if (pte_hw_valid(pte))
601 return true;
602 return (pte_raw(pte) & cpu_to_be64(_PAGE_INVALID | _PAGE_PTE)) ==
603 cpu_to_be64(_PAGE_INVALID | _PAGE_PTE);
604 }
605
606 #ifdef CONFIG_PPC_MEM_KEYS
607 extern bool arch_pte_access_permitted(u64 pte, bool write, bool execute);
608 #else
arch_pte_access_permitted(u64 pte,bool write,bool execute)609 static inline bool arch_pte_access_permitted(u64 pte, bool write, bool execute)
610 {
611 return true;
612 }
613 #endif /* CONFIG_PPC_MEM_KEYS */
614
pte_user(pte_t pte)615 static inline bool pte_user(pte_t pte)
616 {
617 return !(pte_raw(pte) & cpu_to_be64(_PAGE_PRIVILEGED));
618 }
619
620 #define pte_access_permitted pte_access_permitted
pte_access_permitted(pte_t pte,bool write)621 static inline bool pte_access_permitted(pte_t pte, bool write)
622 {
623 /*
624 * _PAGE_READ is needed for any access and will be
625 * cleared for PROT_NONE
626 */
627 if (!pte_present(pte) || !pte_user(pte) || !pte_read(pte))
628 return false;
629
630 if (write && !pte_write(pte))
631 return false;
632
633 return arch_pte_access_permitted(pte_val(pte), write, 0);
634 }
635
636 /*
637 * Conversion functions: convert a page and protection to a page entry,
638 * and a page entry and page directory to the page they refer to.
639 *
640 * Even if PTEs can be unsigned long long, a PFN is always an unsigned
641 * long for now.
642 */
pfn_pte(unsigned long pfn,pgprot_t pgprot)643 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
644 {
645 VM_BUG_ON(pfn >> (64 - PAGE_SHIFT));
646 VM_BUG_ON((pfn << PAGE_SHIFT) & ~PTE_RPN_MASK);
647
648 return __pte(((pte_basic_t)pfn << PAGE_SHIFT) | pgprot_val(pgprot) | _PAGE_PTE);
649 }
650
pte_pfn(pte_t pte)651 static inline unsigned long pte_pfn(pte_t pte)
652 {
653 return (pte_val(pte) & PTE_RPN_MASK) >> PAGE_SHIFT;
654 }
655
656 /* Generic modifiers for PTE bits */
pte_wrprotect(pte_t pte)657 static inline pte_t pte_wrprotect(pte_t pte)
658 {
659 if (unlikely(pte_savedwrite(pte)))
660 return pte_clear_savedwrite(pte);
661 return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_WRITE));
662 }
663
pte_exprotect(pte_t pte)664 static inline pte_t pte_exprotect(pte_t pte)
665 {
666 return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_EXEC));
667 }
668
pte_mkclean(pte_t pte)669 static inline pte_t pte_mkclean(pte_t pte)
670 {
671 return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_DIRTY));
672 }
673
pte_mkold(pte_t pte)674 static inline pte_t pte_mkold(pte_t pte)
675 {
676 return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_ACCESSED));
677 }
678
pte_mkexec(pte_t pte)679 static inline pte_t pte_mkexec(pte_t pte)
680 {
681 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_EXEC));
682 }
683
pte_mkwrite(pte_t pte)684 static inline pte_t pte_mkwrite(pte_t pte)
685 {
686 /*
687 * write implies read, hence set both
688 */
689 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_RW));
690 }
691
pte_mkdirty(pte_t pte)692 static inline pte_t pte_mkdirty(pte_t pte)
693 {
694 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_DIRTY | _PAGE_SOFT_DIRTY));
695 }
696
pte_mkyoung(pte_t pte)697 static inline pte_t pte_mkyoung(pte_t pte)
698 {
699 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_ACCESSED));
700 }
701
pte_mkspecial(pte_t pte)702 static inline pte_t pte_mkspecial(pte_t pte)
703 {
704 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SPECIAL));
705 }
706
pte_mkhuge(pte_t pte)707 static inline pte_t pte_mkhuge(pte_t pte)
708 {
709 return pte;
710 }
711
pte_mkdevmap(pte_t pte)712 static inline pte_t pte_mkdevmap(pte_t pte)
713 {
714 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SPECIAL | _PAGE_DEVMAP));
715 }
716
pte_mkprivileged(pte_t pte)717 static inline pte_t pte_mkprivileged(pte_t pte)
718 {
719 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PRIVILEGED));
720 }
721
pte_mkuser(pte_t pte)722 static inline pte_t pte_mkuser(pte_t pte)
723 {
724 return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_PRIVILEGED));
725 }
726
727 /*
728 * This is potentially called with a pmd as the argument, in which case it's not
729 * safe to check _PAGE_DEVMAP unless we also confirm that _PAGE_PTE is set.
730 * That's because the bit we use for _PAGE_DEVMAP is not reserved for software
731 * use in page directory entries (ie. non-ptes).
732 */
pte_devmap(pte_t pte)733 static inline int pte_devmap(pte_t pte)
734 {
735 u64 mask = cpu_to_be64(_PAGE_DEVMAP | _PAGE_PTE);
736
737 return (pte_raw(pte) & mask) == mask;
738 }
739
pte_modify(pte_t pte,pgprot_t newprot)740 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
741 {
742 /* FIXME!! check whether this need to be a conditional */
743 return __pte_raw((pte_raw(pte) & cpu_to_be64(_PAGE_CHG_MASK)) |
744 cpu_to_be64(pgprot_val(newprot)));
745 }
746
747 /* Encode and de-code a swap entry */
748 #define MAX_SWAPFILES_CHECK() do { \
749 BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS); \
750 /* \
751 * Don't have overlapping bits with _PAGE_HPTEFLAGS \
752 * We filter HPTEFLAGS on set_pte. \
753 */ \
754 BUILD_BUG_ON(_PAGE_HPTEFLAGS & (0x1f << _PAGE_BIT_SWAP_TYPE)); \
755 BUILD_BUG_ON(_PAGE_HPTEFLAGS & _PAGE_SWP_SOFT_DIRTY); \
756 } while (0)
757
758 #define SWP_TYPE_BITS 5
759 #define __swp_type(x) (((x).val >> _PAGE_BIT_SWAP_TYPE) \
760 & ((1UL << SWP_TYPE_BITS) - 1))
761 #define __swp_offset(x) (((x).val & PTE_RPN_MASK) >> PAGE_SHIFT)
762 #define __swp_entry(type, offset) ((swp_entry_t) { \
763 ((type) << _PAGE_BIT_SWAP_TYPE) \
764 | (((offset) << PAGE_SHIFT) & PTE_RPN_MASK)})
765 /*
766 * swp_entry_t must be independent of pte bits. We build a swp_entry_t from
767 * swap type and offset we get from swap and convert that to pte to find a
768 * matching pte in linux page table.
769 * Clear bits not found in swap entries here.
770 */
771 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val((pte)) & ~_PAGE_PTE })
772 #define __swp_entry_to_pte(x) __pte((x).val | _PAGE_PTE)
773 #define __pmd_to_swp_entry(pmd) (__pte_to_swp_entry(pmd_pte(pmd)))
774 #define __swp_entry_to_pmd(x) (pte_pmd(__swp_entry_to_pte(x)))
775
776 #ifdef CONFIG_MEM_SOFT_DIRTY
777 #define _PAGE_SWP_SOFT_DIRTY (1UL << (SWP_TYPE_BITS + _PAGE_BIT_SWAP_TYPE))
778 #else
779 #define _PAGE_SWP_SOFT_DIRTY 0UL
780 #endif /* CONFIG_MEM_SOFT_DIRTY */
781
782 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
pte_swp_mksoft_dirty(pte_t pte)783 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
784 {
785 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
786 }
787
pte_swp_soft_dirty(pte_t pte)788 static inline bool pte_swp_soft_dirty(pte_t pte)
789 {
790 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
791 }
792
pte_swp_clear_soft_dirty(pte_t pte)793 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
794 {
795 return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SWP_SOFT_DIRTY));
796 }
797 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
798
check_pte_access(unsigned long access,unsigned long ptev)799 static inline bool check_pte_access(unsigned long access, unsigned long ptev)
800 {
801 /*
802 * This check for _PAGE_RWX and _PAGE_PRESENT bits
803 */
804 if (access & ~ptev)
805 return false;
806 /*
807 * This check for access to privilege space
808 */
809 if ((access & _PAGE_PRIVILEGED) != (ptev & _PAGE_PRIVILEGED))
810 return false;
811
812 return true;
813 }
814 /*
815 * Generic functions with hash/radix callbacks
816 */
817
__ptep_set_access_flags(struct vm_area_struct * vma,pte_t * ptep,pte_t entry,unsigned long address,int psize)818 static inline void __ptep_set_access_flags(struct vm_area_struct *vma,
819 pte_t *ptep, pte_t entry,
820 unsigned long address,
821 int psize)
822 {
823 if (radix_enabled())
824 return radix__ptep_set_access_flags(vma, ptep, entry,
825 address, psize);
826 return hash__ptep_set_access_flags(ptep, entry);
827 }
828
829 #define __HAVE_ARCH_PTE_SAME
pte_same(pte_t pte_a,pte_t pte_b)830 static inline int pte_same(pte_t pte_a, pte_t pte_b)
831 {
832 if (radix_enabled())
833 return radix__pte_same(pte_a, pte_b);
834 return hash__pte_same(pte_a, pte_b);
835 }
836
pte_none(pte_t pte)837 static inline int pte_none(pte_t pte)
838 {
839 if (radix_enabled())
840 return radix__pte_none(pte);
841 return hash__pte_none(pte);
842 }
843
__set_pte_at(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte,int percpu)844 static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
845 pte_t *ptep, pte_t pte, int percpu)
846 {
847
848 VM_WARN_ON(!(pte_raw(pte) & cpu_to_be64(_PAGE_PTE)));
849 /*
850 * Keep the _PAGE_PTE added till we are sure we handle _PAGE_PTE
851 * in all the callers.
852 */
853 pte = __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PTE));
854
855 if (radix_enabled())
856 return radix__set_pte_at(mm, addr, ptep, pte, percpu);
857 return hash__set_pte_at(mm, addr, ptep, pte, percpu);
858 }
859
860 #define _PAGE_CACHE_CTL (_PAGE_SAO | _PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT)
861
862 #define pgprot_noncached pgprot_noncached
pgprot_noncached(pgprot_t prot)863 static inline pgprot_t pgprot_noncached(pgprot_t prot)
864 {
865 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
866 _PAGE_NON_IDEMPOTENT);
867 }
868
869 #define pgprot_noncached_wc pgprot_noncached_wc
pgprot_noncached_wc(pgprot_t prot)870 static inline pgprot_t pgprot_noncached_wc(pgprot_t prot)
871 {
872 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
873 _PAGE_TOLERANT);
874 }
875
876 #define pgprot_cached pgprot_cached
pgprot_cached(pgprot_t prot)877 static inline pgprot_t pgprot_cached(pgprot_t prot)
878 {
879 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL));
880 }
881
882 #define pgprot_writecombine pgprot_writecombine
pgprot_writecombine(pgprot_t prot)883 static inline pgprot_t pgprot_writecombine(pgprot_t prot)
884 {
885 return pgprot_noncached_wc(prot);
886 }
887 /*
888 * check a pte mapping have cache inhibited property
889 */
pte_ci(pte_t pte)890 static inline bool pte_ci(pte_t pte)
891 {
892 __be64 pte_v = pte_raw(pte);
893
894 if (((pte_v & cpu_to_be64(_PAGE_CACHE_CTL)) == cpu_to_be64(_PAGE_TOLERANT)) ||
895 ((pte_v & cpu_to_be64(_PAGE_CACHE_CTL)) == cpu_to_be64(_PAGE_NON_IDEMPOTENT)))
896 return true;
897 return false;
898 }
899
pmd_clear(pmd_t * pmdp)900 static inline void pmd_clear(pmd_t *pmdp)
901 {
902 if (IS_ENABLED(CONFIG_DEBUG_VM) && !radix_enabled()) {
903 /*
904 * Don't use this if we can possibly have a hash page table
905 * entry mapping this.
906 */
907 WARN_ON((pmd_val(*pmdp) & (H_PAGE_HASHPTE | _PAGE_PTE)) == (H_PAGE_HASHPTE | _PAGE_PTE));
908 }
909 *pmdp = __pmd(0);
910 }
911
pmd_none(pmd_t pmd)912 static inline int pmd_none(pmd_t pmd)
913 {
914 return !pmd_raw(pmd);
915 }
916
pmd_present(pmd_t pmd)917 static inline int pmd_present(pmd_t pmd)
918 {
919 /*
920 * A pmd is considerent present if _PAGE_PRESENT is set.
921 * We also need to consider the pmd present which is marked
922 * invalid during a split. Hence we look for _PAGE_INVALID
923 * if we find _PAGE_PRESENT cleared.
924 */
925 if (pmd_raw(pmd) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID))
926 return true;
927
928 return false;
929 }
930
pmd_is_serializing(pmd_t pmd)931 static inline int pmd_is_serializing(pmd_t pmd)
932 {
933 /*
934 * If the pmd is undergoing a split, the _PAGE_PRESENT bit is clear
935 * and _PAGE_INVALID is set (see pmd_present, pmdp_invalidate).
936 *
937 * This condition may also occur when flushing a pmd while flushing
938 * it (see ptep_modify_prot_start), so callers must ensure this
939 * case is fine as well.
940 */
941 if ((pmd_raw(pmd) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID)) ==
942 cpu_to_be64(_PAGE_INVALID))
943 return true;
944
945 return false;
946 }
947
pmd_bad(pmd_t pmd)948 static inline int pmd_bad(pmd_t pmd)
949 {
950 if (radix_enabled())
951 return radix__pmd_bad(pmd);
952 return hash__pmd_bad(pmd);
953 }
954
pud_clear(pud_t * pudp)955 static inline void pud_clear(pud_t *pudp)
956 {
957 if (IS_ENABLED(CONFIG_DEBUG_VM) && !radix_enabled()) {
958 /*
959 * Don't use this if we can possibly have a hash page table
960 * entry mapping this.
961 */
962 WARN_ON((pud_val(*pudp) & (H_PAGE_HASHPTE | _PAGE_PTE)) == (H_PAGE_HASHPTE | _PAGE_PTE));
963 }
964 *pudp = __pud(0);
965 }
966
pud_none(pud_t pud)967 static inline int pud_none(pud_t pud)
968 {
969 return !pud_raw(pud);
970 }
971
pud_present(pud_t pud)972 static inline int pud_present(pud_t pud)
973 {
974 return !!(pud_raw(pud) & cpu_to_be64(_PAGE_PRESENT));
975 }
976
977 extern struct page *pud_page(pud_t pud);
978 extern struct page *pmd_page(pmd_t pmd);
pud_pte(pud_t pud)979 static inline pte_t pud_pte(pud_t pud)
980 {
981 return __pte_raw(pud_raw(pud));
982 }
983
pte_pud(pte_t pte)984 static inline pud_t pte_pud(pte_t pte)
985 {
986 return __pud_raw(pte_raw(pte));
987 }
988 #define pud_write(pud) pte_write(pud_pte(pud))
989
pud_bad(pud_t pud)990 static inline int pud_bad(pud_t pud)
991 {
992 if (radix_enabled())
993 return radix__pud_bad(pud);
994 return hash__pud_bad(pud);
995 }
996
997 #define pud_access_permitted pud_access_permitted
pud_access_permitted(pud_t pud,bool write)998 static inline bool pud_access_permitted(pud_t pud, bool write)
999 {
1000 return pte_access_permitted(pud_pte(pud), write);
1001 }
1002
1003 #define __p4d_raw(x) ((p4d_t) { __pgd_raw(x) })
p4d_raw(p4d_t x)1004 static inline __be64 p4d_raw(p4d_t x)
1005 {
1006 return pgd_raw(x.pgd);
1007 }
1008
1009 #define p4d_write(p4d) pte_write(p4d_pte(p4d))
1010
p4d_clear(p4d_t * p4dp)1011 static inline void p4d_clear(p4d_t *p4dp)
1012 {
1013 *p4dp = __p4d(0);
1014 }
1015
p4d_none(p4d_t p4d)1016 static inline int p4d_none(p4d_t p4d)
1017 {
1018 return !p4d_raw(p4d);
1019 }
1020
p4d_present(p4d_t p4d)1021 static inline int p4d_present(p4d_t p4d)
1022 {
1023 return !!(p4d_raw(p4d) & cpu_to_be64(_PAGE_PRESENT));
1024 }
1025
p4d_pte(p4d_t p4d)1026 static inline pte_t p4d_pte(p4d_t p4d)
1027 {
1028 return __pte_raw(p4d_raw(p4d));
1029 }
1030
pte_p4d(pte_t pte)1031 static inline p4d_t pte_p4d(pte_t pte)
1032 {
1033 return __p4d_raw(pte_raw(pte));
1034 }
1035
p4d_bad(p4d_t p4d)1036 static inline int p4d_bad(p4d_t p4d)
1037 {
1038 if (radix_enabled())
1039 return radix__p4d_bad(p4d);
1040 return hash__p4d_bad(p4d);
1041 }
1042
1043 #define p4d_access_permitted p4d_access_permitted
p4d_access_permitted(p4d_t p4d,bool write)1044 static inline bool p4d_access_permitted(p4d_t p4d, bool write)
1045 {
1046 return pte_access_permitted(p4d_pte(p4d), write);
1047 }
1048
1049 extern struct page *p4d_page(p4d_t p4d);
1050
1051 /* Pointers in the page table tree are physical addresses */
1052 #define __pgtable_ptr_val(ptr) __pa(ptr)
1053
p4d_pgtable(p4d_t p4d)1054 static inline pud_t *p4d_pgtable(p4d_t p4d)
1055 {
1056 return (pud_t *)__va(p4d_val(p4d) & ~P4D_MASKED_BITS);
1057 }
1058
pud_pgtable(pud_t pud)1059 static inline pmd_t *pud_pgtable(pud_t pud)
1060 {
1061 return (pmd_t *)__va(pud_val(pud) & ~PUD_MASKED_BITS);
1062 }
1063
1064 #define pte_ERROR(e) \
1065 pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
1066 #define pmd_ERROR(e) \
1067 pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
1068 #define pud_ERROR(e) \
1069 pr_err("%s:%d: bad pud %08lx.\n", __FILE__, __LINE__, pud_val(e))
1070 #define pgd_ERROR(e) \
1071 pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
1072
map_kernel_page(unsigned long ea,unsigned long pa,pgprot_t prot)1073 static inline int map_kernel_page(unsigned long ea, unsigned long pa, pgprot_t prot)
1074 {
1075 if (radix_enabled()) {
1076 #if defined(CONFIG_PPC_RADIX_MMU) && defined(DEBUG_VM)
1077 unsigned long page_size = 1 << mmu_psize_defs[mmu_io_psize].shift;
1078 WARN((page_size != PAGE_SIZE), "I/O page size != PAGE_SIZE");
1079 #endif
1080 return radix__map_kernel_page(ea, pa, prot, PAGE_SIZE);
1081 }
1082 return hash__map_kernel_page(ea, pa, prot);
1083 }
1084
vmemmap_create_mapping(unsigned long start,unsigned long page_size,unsigned long phys)1085 static inline int __meminit vmemmap_create_mapping(unsigned long start,
1086 unsigned long page_size,
1087 unsigned long phys)
1088 {
1089 if (radix_enabled())
1090 return radix__vmemmap_create_mapping(start, page_size, phys);
1091 return hash__vmemmap_create_mapping(start, page_size, phys);
1092 }
1093
1094 #ifdef CONFIG_MEMORY_HOTPLUG
vmemmap_remove_mapping(unsigned long start,unsigned long page_size)1095 static inline void vmemmap_remove_mapping(unsigned long start,
1096 unsigned long page_size)
1097 {
1098 if (radix_enabled())
1099 return radix__vmemmap_remove_mapping(start, page_size);
1100 return hash__vmemmap_remove_mapping(start, page_size);
1101 }
1102 #endif
1103
pmd_pte(pmd_t pmd)1104 static inline pte_t pmd_pte(pmd_t pmd)
1105 {
1106 return __pte_raw(pmd_raw(pmd));
1107 }
1108
pte_pmd(pte_t pte)1109 static inline pmd_t pte_pmd(pte_t pte)
1110 {
1111 return __pmd_raw(pte_raw(pte));
1112 }
1113
pmdp_ptep(pmd_t * pmd)1114 static inline pte_t *pmdp_ptep(pmd_t *pmd)
1115 {
1116 return (pte_t *)pmd;
1117 }
1118 #define pmd_pfn(pmd) pte_pfn(pmd_pte(pmd))
1119 #define pmd_dirty(pmd) pte_dirty(pmd_pte(pmd))
1120 #define pmd_young(pmd) pte_young(pmd_pte(pmd))
1121 #define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd)))
1122 #define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd)))
1123 #define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd)))
1124 #define pmd_mkclean(pmd) pte_pmd(pte_mkclean(pmd_pte(pmd)))
1125 #define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd)))
1126 #define pmd_mkwrite(pmd) pte_pmd(pte_mkwrite(pmd_pte(pmd)))
1127 #define pmd_mk_savedwrite(pmd) pte_pmd(pte_mk_savedwrite(pmd_pte(pmd)))
1128 #define pmd_clear_savedwrite(pmd) pte_pmd(pte_clear_savedwrite(pmd_pte(pmd)))
1129
1130 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1131 #define pmd_soft_dirty(pmd) pte_soft_dirty(pmd_pte(pmd))
1132 #define pmd_mksoft_dirty(pmd) pte_pmd(pte_mksoft_dirty(pmd_pte(pmd)))
1133 #define pmd_clear_soft_dirty(pmd) pte_pmd(pte_clear_soft_dirty(pmd_pte(pmd)))
1134
1135 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1136 #define pmd_swp_mksoft_dirty(pmd) pte_pmd(pte_swp_mksoft_dirty(pmd_pte(pmd)))
1137 #define pmd_swp_soft_dirty(pmd) pte_swp_soft_dirty(pmd_pte(pmd))
1138 #define pmd_swp_clear_soft_dirty(pmd) pte_pmd(pte_swp_clear_soft_dirty(pmd_pte(pmd)))
1139 #endif
1140 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
1141
1142 #ifdef CONFIG_NUMA_BALANCING
pmd_protnone(pmd_t pmd)1143 static inline int pmd_protnone(pmd_t pmd)
1144 {
1145 return pte_protnone(pmd_pte(pmd));
1146 }
1147 #endif /* CONFIG_NUMA_BALANCING */
1148
1149 #define pmd_write(pmd) pte_write(pmd_pte(pmd))
1150 #define __pmd_write(pmd) __pte_write(pmd_pte(pmd))
1151 #define pmd_savedwrite(pmd) pte_savedwrite(pmd_pte(pmd))
1152
1153 #define pmd_access_permitted pmd_access_permitted
pmd_access_permitted(pmd_t pmd,bool write)1154 static inline bool pmd_access_permitted(pmd_t pmd, bool write)
1155 {
1156 /*
1157 * pmdp_invalidate sets this combination (which is not caught by
1158 * !pte_present() check in pte_access_permitted), to prevent
1159 * lock-free lookups, as part of the serialize_against_pte_lookup()
1160 * synchronisation.
1161 *
1162 * This also catches the case where the PTE's hardware PRESENT bit is
1163 * cleared while TLB is flushed, which is suboptimal but should not
1164 * be frequent.
1165 */
1166 if (pmd_is_serializing(pmd))
1167 return false;
1168
1169 return pte_access_permitted(pmd_pte(pmd), write);
1170 }
1171
1172 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1173 extern pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot);
1174 extern pmd_t mk_pmd(struct page *page, pgprot_t pgprot);
1175 extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot);
1176 extern void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1177 pmd_t *pmdp, pmd_t pmd);
update_mmu_cache_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd)1178 static inline void update_mmu_cache_pmd(struct vm_area_struct *vma,
1179 unsigned long addr, pmd_t *pmd)
1180 {
1181 }
1182
1183 extern int hash__has_transparent_hugepage(void);
has_transparent_hugepage(void)1184 static inline int has_transparent_hugepage(void)
1185 {
1186 if (radix_enabled())
1187 return radix__has_transparent_hugepage();
1188 return hash__has_transparent_hugepage();
1189 }
1190 #define has_transparent_hugepage has_transparent_hugepage
1191
1192 static inline unsigned long
pmd_hugepage_update(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,unsigned long clr,unsigned long set)1193 pmd_hugepage_update(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp,
1194 unsigned long clr, unsigned long set)
1195 {
1196 if (radix_enabled())
1197 return radix__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1198 return hash__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1199 }
1200
1201 /*
1202 * returns true for pmd migration entries, THP, devmap, hugetlb
1203 * But compile time dependent on THP config
1204 */
pmd_large(pmd_t pmd)1205 static inline int pmd_large(pmd_t pmd)
1206 {
1207 return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE));
1208 }
1209
1210 /*
1211 * For radix we should always find H_PAGE_HASHPTE zero. Hence
1212 * the below will work for radix too
1213 */
__pmdp_test_and_clear_young(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)1214 static inline int __pmdp_test_and_clear_young(struct mm_struct *mm,
1215 unsigned long addr, pmd_t *pmdp)
1216 {
1217 unsigned long old;
1218
1219 if ((pmd_raw(*pmdp) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
1220 return 0;
1221 old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0);
1222 return ((old & _PAGE_ACCESSED) != 0);
1223 }
1224
1225 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)1226 static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr,
1227 pmd_t *pmdp)
1228 {
1229 if (__pmd_write((*pmdp)))
1230 pmd_hugepage_update(mm, addr, pmdp, _PAGE_WRITE, 0);
1231 else if (unlikely(pmd_savedwrite(*pmdp)))
1232 pmd_hugepage_update(mm, addr, pmdp, 0, _PAGE_PRIVILEGED);
1233 }
1234
1235 /*
1236 * Only returns true for a THP. False for pmd migration entry.
1237 * We also need to return true when we come across a pte that
1238 * in between a thp split. While splitting THP, we mark the pmd
1239 * invalid (pmdp_invalidate()) before we set it with pte page
1240 * address. A pmd_trans_huge() check against a pmd entry during that time
1241 * should return true.
1242 * We should not call this on a hugetlb entry. We should check for HugeTLB
1243 * entry using vma->vm_flags
1244 * The page table walk rule is explained in Documentation/vm/transhuge.rst
1245 */
pmd_trans_huge(pmd_t pmd)1246 static inline int pmd_trans_huge(pmd_t pmd)
1247 {
1248 if (!pmd_present(pmd))
1249 return false;
1250
1251 if (radix_enabled())
1252 return radix__pmd_trans_huge(pmd);
1253 return hash__pmd_trans_huge(pmd);
1254 }
1255
1256 #define __HAVE_ARCH_PMD_SAME
pmd_same(pmd_t pmd_a,pmd_t pmd_b)1257 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
1258 {
1259 if (radix_enabled())
1260 return radix__pmd_same(pmd_a, pmd_b);
1261 return hash__pmd_same(pmd_a, pmd_b);
1262 }
1263
__pmd_mkhuge(pmd_t pmd)1264 static inline pmd_t __pmd_mkhuge(pmd_t pmd)
1265 {
1266 if (radix_enabled())
1267 return radix__pmd_mkhuge(pmd);
1268 return hash__pmd_mkhuge(pmd);
1269 }
1270
1271 /*
1272 * pfn_pmd return a pmd_t that can be used as pmd pte entry.
1273 */
pmd_mkhuge(pmd_t pmd)1274 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1275 {
1276 #ifdef CONFIG_DEBUG_VM
1277 if (radix_enabled())
1278 WARN_ON((pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE)) == 0);
1279 else
1280 WARN_ON((pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE | H_PAGE_THP_HUGE)) !=
1281 cpu_to_be64(_PAGE_PTE | H_PAGE_THP_HUGE));
1282 #endif
1283 return pmd;
1284 }
1285
1286 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1287 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
1288 unsigned long address, pmd_t *pmdp,
1289 pmd_t entry, int dirty);
1290
1291 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1292 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1293 unsigned long address, pmd_t *pmdp);
1294
1295 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)1296 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1297 unsigned long addr, pmd_t *pmdp)
1298 {
1299 if (radix_enabled())
1300 return radix__pmdp_huge_get_and_clear(mm, addr, pmdp);
1301 return hash__pmdp_huge_get_and_clear(mm, addr, pmdp);
1302 }
1303
pmdp_collapse_flush(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)1304 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1305 unsigned long address, pmd_t *pmdp)
1306 {
1307 if (radix_enabled())
1308 return radix__pmdp_collapse_flush(vma, address, pmdp);
1309 return hash__pmdp_collapse_flush(vma, address, pmdp);
1310 }
1311 #define pmdp_collapse_flush pmdp_collapse_flush
1312
1313 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1314 pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
1315 unsigned long addr,
1316 pmd_t *pmdp, int full);
1317
1318 #define __HAVE_ARCH_PGTABLE_DEPOSIT
pgtable_trans_huge_deposit(struct mm_struct * mm,pmd_t * pmdp,pgtable_t pgtable)1319 static inline void pgtable_trans_huge_deposit(struct mm_struct *mm,
1320 pmd_t *pmdp, pgtable_t pgtable)
1321 {
1322 if (radix_enabled())
1323 return radix__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1324 return hash__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1325 }
1326
1327 #define __HAVE_ARCH_PGTABLE_WITHDRAW
pgtable_trans_huge_withdraw(struct mm_struct * mm,pmd_t * pmdp)1328 static inline pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm,
1329 pmd_t *pmdp)
1330 {
1331 if (radix_enabled())
1332 return radix__pgtable_trans_huge_withdraw(mm, pmdp);
1333 return hash__pgtable_trans_huge_withdraw(mm, pmdp);
1334 }
1335
1336 #define __HAVE_ARCH_PMDP_INVALIDATE
1337 extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
1338 pmd_t *pmdp);
1339
1340 #define pmd_move_must_withdraw pmd_move_must_withdraw
1341 struct spinlock;
1342 extern int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
1343 struct spinlock *old_pmd_ptl,
1344 struct vm_area_struct *vma);
1345 /*
1346 * Hash translation mode use the deposited table to store hash pte
1347 * slot information.
1348 */
1349 #define arch_needs_pgtable_deposit arch_needs_pgtable_deposit
arch_needs_pgtable_deposit(void)1350 static inline bool arch_needs_pgtable_deposit(void)
1351 {
1352 if (radix_enabled())
1353 return false;
1354 return true;
1355 }
1356 extern void serialize_against_pte_lookup(struct mm_struct *mm);
1357
1358
pmd_mkdevmap(pmd_t pmd)1359 static inline pmd_t pmd_mkdevmap(pmd_t pmd)
1360 {
1361 if (radix_enabled())
1362 return radix__pmd_mkdevmap(pmd);
1363 return hash__pmd_mkdevmap(pmd);
1364 }
1365
pmd_devmap(pmd_t pmd)1366 static inline int pmd_devmap(pmd_t pmd)
1367 {
1368 return pte_devmap(pmd_pte(pmd));
1369 }
1370
pud_devmap(pud_t pud)1371 static inline int pud_devmap(pud_t pud)
1372 {
1373 return 0;
1374 }
1375
pgd_devmap(pgd_t pgd)1376 static inline int pgd_devmap(pgd_t pgd)
1377 {
1378 return 0;
1379 }
1380 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1381
pud_pfn(pud_t pud)1382 static inline int pud_pfn(pud_t pud)
1383 {
1384 /*
1385 * Currently all calls to pud_pfn() are gated around a pud_devmap()
1386 * check so this should never be used. If it grows another user we
1387 * want to know about it.
1388 */
1389 BUILD_BUG();
1390 return 0;
1391 }
1392 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1393 pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1394 void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1395 pte_t *, pte_t, pte_t);
1396
1397 /*
1398 * Returns true for a R -> RW upgrade of pte
1399 */
is_pte_rw_upgrade(unsigned long old_val,unsigned long new_val)1400 static inline bool is_pte_rw_upgrade(unsigned long old_val, unsigned long new_val)
1401 {
1402 if (!(old_val & _PAGE_READ))
1403 return false;
1404
1405 if ((!(old_val & _PAGE_WRITE)) && (new_val & _PAGE_WRITE))
1406 return true;
1407
1408 return false;
1409 }
1410
1411 /*
1412 * Like pmd_huge() and pmd_large(), but works regardless of config options
1413 */
1414 #define pmd_is_leaf pmd_is_leaf
1415 #define pmd_leaf pmd_is_leaf
pmd_is_leaf(pmd_t pmd)1416 static inline bool pmd_is_leaf(pmd_t pmd)
1417 {
1418 return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE));
1419 }
1420
1421 #define pud_is_leaf pud_is_leaf
1422 #define pud_leaf pud_is_leaf
pud_is_leaf(pud_t pud)1423 static inline bool pud_is_leaf(pud_t pud)
1424 {
1425 return !!(pud_raw(pud) & cpu_to_be64(_PAGE_PTE));
1426 }
1427
1428 #define p4d_is_leaf p4d_is_leaf
1429 #define p4d_leaf p4d_is_leaf
p4d_is_leaf(p4d_t p4d)1430 static inline bool p4d_is_leaf(p4d_t p4d)
1431 {
1432 return !!(p4d_raw(p4d) & cpu_to_be64(_PAGE_PTE));
1433 }
1434
1435 #endif /* __ASSEMBLY__ */
1436 #endif /* _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ */
1437