1 /*
2  *  Generic process-grouping system.
3  *
4  *  Based originally on the cpuset system, extracted by Paul Menage
5  *  Copyright (C) 2006 Google, Inc
6  *
7  *  Notifications support
8  *  Copyright (C) 2009 Nokia Corporation
9  *  Author: Kirill A. Shutemov
10  *
11  *  Copyright notices from the original cpuset code:
12  *  --------------------------------------------------
13  *  Copyright (C) 2003 BULL SA.
14  *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
15  *
16  *  Portions derived from Patrick Mochel's sysfs code.
17  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
18  *
19  *  2003-10-10 Written by Simon Derr.
20  *  2003-10-22 Updates by Stephen Hemminger.
21  *  2004 May-July Rework by Paul Jackson.
22  *  ---------------------------------------------------
23  *
24  *  This file is subject to the terms and conditions of the GNU General Public
25  *  License.  See the file COPYING in the main directory of the Linux
26  *  distribution for more details.
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include "cgroup-internal.h"
32 
33 #include <linux/cred.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/magic.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/sched/task.h>
45 #include <linux/slab.h>
46 #include <linux/spinlock.h>
47 #include <linux/percpu-rwsem.h>
48 #include <linux/string.h>
49 #include <linux/hashtable.h>
50 #include <linux/idr.h>
51 #include <linux/kthread.h>
52 #include <linux/atomic.h>
53 #include <linux/cpuset.h>
54 #include <linux/proc_ns.h>
55 #include <linux/nsproxy.h>
56 #include <linux/file.h>
57 #include <linux/fs_parser.h>
58 #include <linux/sched/cputime.h>
59 #include <linux/psi.h>
60 #include <net/sock.h>
61 
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/cgroup.h>
64 
65 #define CGROUP_FILE_NAME_MAX		(MAX_CGROUP_TYPE_NAMELEN +	\
66 					 MAX_CFTYPE_NAME + 2)
67 /* let's not notify more than 100 times per second */
68 #define CGROUP_FILE_NOTIFY_MIN_INTV	DIV_ROUND_UP(HZ, 100)
69 
70 /*
71  * cgroup_mutex is the master lock.  Any modification to cgroup or its
72  * hierarchy must be performed while holding it.
73  *
74  * css_set_lock protects task->cgroups pointer, the list of css_set
75  * objects, and the chain of tasks off each css_set.
76  *
77  * These locks are exported if CONFIG_PROVE_RCU so that accessors in
78  * cgroup.h can use them for lockdep annotations.
79  */
80 DEFINE_MUTEX(cgroup_mutex);
81 DEFINE_SPINLOCK(css_set_lock);
82 
83 #ifdef CONFIG_PROVE_RCU
84 EXPORT_SYMBOL_GPL(cgroup_mutex);
85 EXPORT_SYMBOL_GPL(css_set_lock);
86 #endif
87 
88 DEFINE_SPINLOCK(trace_cgroup_path_lock);
89 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
90 bool cgroup_debug __read_mostly;
91 
92 /*
93  * Protects cgroup_idr and css_idr so that IDs can be released without
94  * grabbing cgroup_mutex.
95  */
96 static DEFINE_SPINLOCK(cgroup_idr_lock);
97 
98 /*
99  * Protects cgroup_file->kn for !self csses.  It synchronizes notifications
100  * against file removal/re-creation across css hiding.
101  */
102 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
103 
104 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem);
105 
106 #define cgroup_assert_mutex_or_rcu_locked()				\
107 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
108 			   !lockdep_is_held(&cgroup_mutex),		\
109 			   "cgroup_mutex or RCU read lock required");
110 
111 /*
112  * cgroup destruction makes heavy use of work items and there can be a lot
113  * of concurrent destructions.  Use a separate workqueue so that cgroup
114  * destruction work items don't end up filling up max_active of system_wq
115  * which may lead to deadlock.
116  */
117 static struct workqueue_struct *cgroup_destroy_wq;
118 
119 /* generate an array of cgroup subsystem pointers */
120 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
121 struct cgroup_subsys *cgroup_subsys[] = {
122 #include <linux/cgroup_subsys.h>
123 };
124 #undef SUBSYS
125 
126 /* array of cgroup subsystem names */
127 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
128 static const char *cgroup_subsys_name[] = {
129 #include <linux/cgroup_subsys.h>
130 };
131 #undef SUBSYS
132 
133 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
134 #define SUBSYS(_x)								\
135 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key);			\
136 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key);			\
137 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key);			\
138 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
139 #include <linux/cgroup_subsys.h>
140 #undef SUBSYS
141 
142 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
143 static struct static_key_true *cgroup_subsys_enabled_key[] = {
144 #include <linux/cgroup_subsys.h>
145 };
146 #undef SUBSYS
147 
148 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
149 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
150 #include <linux/cgroup_subsys.h>
151 };
152 #undef SUBSYS
153 
154 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
155 
156 /* the default hierarchy */
157 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
158 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
159 
160 /*
161  * The default hierarchy always exists but is hidden until mounted for the
162  * first time.  This is for backward compatibility.
163  */
164 static bool cgrp_dfl_visible;
165 
166 /* some controllers are not supported in the default hierarchy */
167 static u16 cgrp_dfl_inhibit_ss_mask;
168 
169 /* some controllers are implicitly enabled on the default hierarchy */
170 static u16 cgrp_dfl_implicit_ss_mask;
171 
172 /* some controllers can be threaded on the default hierarchy */
173 static u16 cgrp_dfl_threaded_ss_mask;
174 
175 /* The list of hierarchy roots */
176 LIST_HEAD(cgroup_roots);
177 static int cgroup_root_count;
178 
179 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
180 static DEFINE_IDR(cgroup_hierarchy_idr);
181 
182 /*
183  * Assign a monotonically increasing serial number to csses.  It guarantees
184  * cgroups with bigger numbers are newer than those with smaller numbers.
185  * Also, as csses are always appended to the parent's ->children list, it
186  * guarantees that sibling csses are always sorted in the ascending serial
187  * number order on the list.  Protected by cgroup_mutex.
188  */
189 static u64 css_serial_nr_next = 1;
190 
191 /*
192  * These bitmasks identify subsystems with specific features to avoid
193  * having to do iterative checks repeatedly.
194  */
195 static u16 have_fork_callback __read_mostly;
196 static u16 have_exit_callback __read_mostly;
197 static u16 have_release_callback __read_mostly;
198 static u16 have_canfork_callback __read_mostly;
199 
200 /* cgroup namespace for init task */
201 struct cgroup_namespace init_cgroup_ns = {
202 	.count		= REFCOUNT_INIT(2),
203 	.user_ns	= &init_user_ns,
204 	.ns.ops		= &cgroupns_operations,
205 	.ns.inum	= PROC_CGROUP_INIT_INO,
206 	.root_cset	= &init_css_set,
207 };
208 
209 static struct file_system_type cgroup2_fs_type;
210 static struct cftype cgroup_base_files[];
211 
212 static int cgroup_apply_control(struct cgroup *cgrp);
213 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
214 static void css_task_iter_skip(struct css_task_iter *it,
215 			       struct task_struct *task);
216 static int cgroup_destroy_locked(struct cgroup *cgrp);
217 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
218 					      struct cgroup_subsys *ss);
219 static void css_release(struct percpu_ref *ref);
220 static void kill_css(struct cgroup_subsys_state *css);
221 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
222 			      struct cgroup *cgrp, struct cftype cfts[],
223 			      bool is_add);
224 
225 /**
226  * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
227  * @ssid: subsys ID of interest
228  *
229  * cgroup_subsys_enabled() can only be used with literal subsys names which
230  * is fine for individual subsystems but unsuitable for cgroup core.  This
231  * is slower static_key_enabled() based test indexed by @ssid.
232  */
cgroup_ssid_enabled(int ssid)233 bool cgroup_ssid_enabled(int ssid)
234 {
235 	if (CGROUP_SUBSYS_COUNT == 0)
236 		return false;
237 
238 	return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
239 }
240 
241 /**
242  * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
243  * @cgrp: the cgroup of interest
244  *
245  * The default hierarchy is the v2 interface of cgroup and this function
246  * can be used to test whether a cgroup is on the default hierarchy for
247  * cases where a subsystem should behave differnetly depending on the
248  * interface version.
249  *
250  * List of changed behaviors:
251  *
252  * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
253  *   and "name" are disallowed.
254  *
255  * - When mounting an existing superblock, mount options should match.
256  *
257  * - Remount is disallowed.
258  *
259  * - rename(2) is disallowed.
260  *
261  * - "tasks" is removed.  Everything should be at process granularity.  Use
262  *   "cgroup.procs" instead.
263  *
264  * - "cgroup.procs" is not sorted.  pids will be unique unless they got
265  *   recycled inbetween reads.
266  *
267  * - "release_agent" and "notify_on_release" are removed.  Replacement
268  *   notification mechanism will be implemented.
269  *
270  * - "cgroup.clone_children" is removed.
271  *
272  * - "cgroup.subtree_populated" is available.  Its value is 0 if the cgroup
273  *   and its descendants contain no task; otherwise, 1.  The file also
274  *   generates kernfs notification which can be monitored through poll and
275  *   [di]notify when the value of the file changes.
276  *
277  * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
278  *   take masks of ancestors with non-empty cpus/mems, instead of being
279  *   moved to an ancestor.
280  *
281  * - cpuset: a task can be moved into an empty cpuset, and again it takes
282  *   masks of ancestors.
283  *
284  * - memcg: use_hierarchy is on by default and the cgroup file for the flag
285  *   is not created.
286  *
287  * - blkcg: blk-throttle becomes properly hierarchical.
288  *
289  * - debug: disallowed on the default hierarchy.
290  */
cgroup_on_dfl(const struct cgroup * cgrp)291 bool cgroup_on_dfl(const struct cgroup *cgrp)
292 {
293 	return cgrp->root == &cgrp_dfl_root;
294 }
295 
296 /* IDR wrappers which synchronize using cgroup_idr_lock */
cgroup_idr_alloc(struct idr * idr,void * ptr,int start,int end,gfp_t gfp_mask)297 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
298 			    gfp_t gfp_mask)
299 {
300 	int ret;
301 
302 	idr_preload(gfp_mask);
303 	spin_lock_bh(&cgroup_idr_lock);
304 	ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
305 	spin_unlock_bh(&cgroup_idr_lock);
306 	idr_preload_end();
307 	return ret;
308 }
309 
cgroup_idr_replace(struct idr * idr,void * ptr,int id)310 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
311 {
312 	void *ret;
313 
314 	spin_lock_bh(&cgroup_idr_lock);
315 	ret = idr_replace(idr, ptr, id);
316 	spin_unlock_bh(&cgroup_idr_lock);
317 	return ret;
318 }
319 
cgroup_idr_remove(struct idr * idr,int id)320 static void cgroup_idr_remove(struct idr *idr, int id)
321 {
322 	spin_lock_bh(&cgroup_idr_lock);
323 	idr_remove(idr, id);
324 	spin_unlock_bh(&cgroup_idr_lock);
325 }
326 
cgroup_has_tasks(struct cgroup * cgrp)327 static bool cgroup_has_tasks(struct cgroup *cgrp)
328 {
329 	return cgrp->nr_populated_csets;
330 }
331 
cgroup_is_threaded(struct cgroup * cgrp)332 bool cgroup_is_threaded(struct cgroup *cgrp)
333 {
334 	return cgrp->dom_cgrp != cgrp;
335 }
336 
337 /* can @cgrp host both domain and threaded children? */
cgroup_is_mixable(struct cgroup * cgrp)338 static bool cgroup_is_mixable(struct cgroup *cgrp)
339 {
340 	/*
341 	 * Root isn't under domain level resource control exempting it from
342 	 * the no-internal-process constraint, so it can serve as a thread
343 	 * root and a parent of resource domains at the same time.
344 	 */
345 	return !cgroup_parent(cgrp);
346 }
347 
348 /* can @cgrp become a thread root? should always be true for a thread root */
cgroup_can_be_thread_root(struct cgroup * cgrp)349 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
350 {
351 	/* mixables don't care */
352 	if (cgroup_is_mixable(cgrp))
353 		return true;
354 
355 	/* domain roots can't be nested under threaded */
356 	if (cgroup_is_threaded(cgrp))
357 		return false;
358 
359 	/* can only have either domain or threaded children */
360 	if (cgrp->nr_populated_domain_children)
361 		return false;
362 
363 	/* and no domain controllers can be enabled */
364 	if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
365 		return false;
366 
367 	return true;
368 }
369 
370 /* is @cgrp root of a threaded subtree? */
cgroup_is_thread_root(struct cgroup * cgrp)371 bool cgroup_is_thread_root(struct cgroup *cgrp)
372 {
373 	/* thread root should be a domain */
374 	if (cgroup_is_threaded(cgrp))
375 		return false;
376 
377 	/* a domain w/ threaded children is a thread root */
378 	if (cgrp->nr_threaded_children)
379 		return true;
380 
381 	/*
382 	 * A domain which has tasks and explicit threaded controllers
383 	 * enabled is a thread root.
384 	 */
385 	if (cgroup_has_tasks(cgrp) &&
386 	    (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
387 		return true;
388 
389 	return false;
390 }
391 
392 /* a domain which isn't connected to the root w/o brekage can't be used */
cgroup_is_valid_domain(struct cgroup * cgrp)393 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
394 {
395 	/* the cgroup itself can be a thread root */
396 	if (cgroup_is_threaded(cgrp))
397 		return false;
398 
399 	/* but the ancestors can't be unless mixable */
400 	while ((cgrp = cgroup_parent(cgrp))) {
401 		if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
402 			return false;
403 		if (cgroup_is_threaded(cgrp))
404 			return false;
405 	}
406 
407 	return true;
408 }
409 
410 /* subsystems visibly enabled on a cgroup */
cgroup_control(struct cgroup * cgrp)411 static u16 cgroup_control(struct cgroup *cgrp)
412 {
413 	struct cgroup *parent = cgroup_parent(cgrp);
414 	u16 root_ss_mask = cgrp->root->subsys_mask;
415 
416 	if (parent) {
417 		u16 ss_mask = parent->subtree_control;
418 
419 		/* threaded cgroups can only have threaded controllers */
420 		if (cgroup_is_threaded(cgrp))
421 			ss_mask &= cgrp_dfl_threaded_ss_mask;
422 		return ss_mask;
423 	}
424 
425 	if (cgroup_on_dfl(cgrp))
426 		root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
427 				  cgrp_dfl_implicit_ss_mask);
428 	return root_ss_mask;
429 }
430 
431 /* subsystems enabled on a cgroup */
cgroup_ss_mask(struct cgroup * cgrp)432 static u16 cgroup_ss_mask(struct cgroup *cgrp)
433 {
434 	struct cgroup *parent = cgroup_parent(cgrp);
435 
436 	if (parent) {
437 		u16 ss_mask = parent->subtree_ss_mask;
438 
439 		/* threaded cgroups can only have threaded controllers */
440 		if (cgroup_is_threaded(cgrp))
441 			ss_mask &= cgrp_dfl_threaded_ss_mask;
442 		return ss_mask;
443 	}
444 
445 	return cgrp->root->subsys_mask;
446 }
447 
448 /**
449  * cgroup_css - obtain a cgroup's css for the specified subsystem
450  * @cgrp: the cgroup of interest
451  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
452  *
453  * Return @cgrp's css (cgroup_subsys_state) associated with @ss.  This
454  * function must be called either under cgroup_mutex or rcu_read_lock() and
455  * the caller is responsible for pinning the returned css if it wants to
456  * keep accessing it outside the said locks.  This function may return
457  * %NULL if @cgrp doesn't have @subsys_id enabled.
458  */
cgroup_css(struct cgroup * cgrp,struct cgroup_subsys * ss)459 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
460 					      struct cgroup_subsys *ss)
461 {
462 	if (ss)
463 		return rcu_dereference_check(cgrp->subsys[ss->id],
464 					lockdep_is_held(&cgroup_mutex));
465 	else
466 		return &cgrp->self;
467 }
468 
469 /**
470  * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
471  * @cgrp: the cgroup of interest
472  * @ss: the subsystem of interest
473  *
474  * Find and get @cgrp's css assocaited with @ss.  If the css doesn't exist
475  * or is offline, %NULL is returned.
476  */
cgroup_tryget_css(struct cgroup * cgrp,struct cgroup_subsys * ss)477 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
478 						     struct cgroup_subsys *ss)
479 {
480 	struct cgroup_subsys_state *css;
481 
482 	rcu_read_lock();
483 	css = cgroup_css(cgrp, ss);
484 	if (css && !css_tryget_online(css))
485 		css = NULL;
486 	rcu_read_unlock();
487 
488 	return css;
489 }
490 
491 /**
492  * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
493  * @cgrp: the cgroup of interest
494  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
495  *
496  * Similar to cgroup_css() but returns the effective css, which is defined
497  * as the matching css of the nearest ancestor including self which has @ss
498  * enabled.  If @ss is associated with the hierarchy @cgrp is on, this
499  * function is guaranteed to return non-NULL css.
500  */
cgroup_e_css_by_mask(struct cgroup * cgrp,struct cgroup_subsys * ss)501 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
502 							struct cgroup_subsys *ss)
503 {
504 	lockdep_assert_held(&cgroup_mutex);
505 
506 	if (!ss)
507 		return &cgrp->self;
508 
509 	/*
510 	 * This function is used while updating css associations and thus
511 	 * can't test the csses directly.  Test ss_mask.
512 	 */
513 	while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
514 		cgrp = cgroup_parent(cgrp);
515 		if (!cgrp)
516 			return NULL;
517 	}
518 
519 	return cgroup_css(cgrp, ss);
520 }
521 
522 /**
523  * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
524  * @cgrp: the cgroup of interest
525  * @ss: the subsystem of interest
526  *
527  * Find and get the effective css of @cgrp for @ss.  The effective css is
528  * defined as the matching css of the nearest ancestor including self which
529  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
530  * the root css is returned, so this function always returns a valid css.
531  *
532  * The returned css is not guaranteed to be online, and therefore it is the
533  * callers responsiblity to tryget a reference for it.
534  */
cgroup_e_css(struct cgroup * cgrp,struct cgroup_subsys * ss)535 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
536 					 struct cgroup_subsys *ss)
537 {
538 	struct cgroup_subsys_state *css;
539 
540 	do {
541 		css = cgroup_css(cgrp, ss);
542 
543 		if (css)
544 			return css;
545 		cgrp = cgroup_parent(cgrp);
546 	} while (cgrp);
547 
548 	return init_css_set.subsys[ss->id];
549 }
550 
551 /**
552  * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
553  * @cgrp: the cgroup of interest
554  * @ss: the subsystem of interest
555  *
556  * Find and get the effective css of @cgrp for @ss.  The effective css is
557  * defined as the matching css of the nearest ancestor including self which
558  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
559  * the root css is returned, so this function always returns a valid css.
560  * The returned css must be put using css_put().
561  */
cgroup_get_e_css(struct cgroup * cgrp,struct cgroup_subsys * ss)562 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
563 					     struct cgroup_subsys *ss)
564 {
565 	struct cgroup_subsys_state *css;
566 
567 	rcu_read_lock();
568 
569 	do {
570 		css = cgroup_css(cgrp, ss);
571 
572 		if (css && css_tryget_online(css))
573 			goto out_unlock;
574 		cgrp = cgroup_parent(cgrp);
575 	} while (cgrp);
576 
577 	css = init_css_set.subsys[ss->id];
578 	css_get(css);
579 out_unlock:
580 	rcu_read_unlock();
581 	return css;
582 }
583 
cgroup_get_live(struct cgroup * cgrp)584 static void cgroup_get_live(struct cgroup *cgrp)
585 {
586 	WARN_ON_ONCE(cgroup_is_dead(cgrp));
587 	css_get(&cgrp->self);
588 }
589 
590 /**
591  * __cgroup_task_count - count the number of tasks in a cgroup. The caller
592  * is responsible for taking the css_set_lock.
593  * @cgrp: the cgroup in question
594  */
__cgroup_task_count(const struct cgroup * cgrp)595 int __cgroup_task_count(const struct cgroup *cgrp)
596 {
597 	int count = 0;
598 	struct cgrp_cset_link *link;
599 
600 	lockdep_assert_held(&css_set_lock);
601 
602 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
603 		count += link->cset->nr_tasks;
604 
605 	return count;
606 }
607 
608 /**
609  * cgroup_task_count - count the number of tasks in a cgroup.
610  * @cgrp: the cgroup in question
611  */
cgroup_task_count(const struct cgroup * cgrp)612 int cgroup_task_count(const struct cgroup *cgrp)
613 {
614 	int count;
615 
616 	spin_lock_irq(&css_set_lock);
617 	count = __cgroup_task_count(cgrp);
618 	spin_unlock_irq(&css_set_lock);
619 
620 	return count;
621 }
622 
of_css(struct kernfs_open_file * of)623 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
624 {
625 	struct cgroup *cgrp = of->kn->parent->priv;
626 	struct cftype *cft = of_cft(of);
627 
628 	/*
629 	 * This is open and unprotected implementation of cgroup_css().
630 	 * seq_css() is only called from a kernfs file operation which has
631 	 * an active reference on the file.  Because all the subsystem
632 	 * files are drained before a css is disassociated with a cgroup,
633 	 * the matching css from the cgroup's subsys table is guaranteed to
634 	 * be and stay valid until the enclosing operation is complete.
635 	 */
636 	if (cft->ss)
637 		return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
638 	else
639 		return &cgrp->self;
640 }
641 EXPORT_SYMBOL_GPL(of_css);
642 
643 /**
644  * for_each_css - iterate all css's of a cgroup
645  * @css: the iteration cursor
646  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
647  * @cgrp: the target cgroup to iterate css's of
648  *
649  * Should be called under cgroup_[tree_]mutex.
650  */
651 #define for_each_css(css, ssid, cgrp)					\
652 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	\
653 		if (!((css) = rcu_dereference_check(			\
654 				(cgrp)->subsys[(ssid)],			\
655 				lockdep_is_held(&cgroup_mutex)))) { }	\
656 		else
657 
658 /**
659  * for_each_e_css - iterate all effective css's of a cgroup
660  * @css: the iteration cursor
661  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
662  * @cgrp: the target cgroup to iterate css's of
663  *
664  * Should be called under cgroup_[tree_]mutex.
665  */
666 #define for_each_e_css(css, ssid, cgrp)					    \
667 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	    \
668 		if (!((css) = cgroup_e_css_by_mask(cgrp,		    \
669 						   cgroup_subsys[(ssid)]))) \
670 			;						    \
671 		else
672 
673 /**
674  * do_each_subsys_mask - filter for_each_subsys with a bitmask
675  * @ss: the iteration cursor
676  * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
677  * @ss_mask: the bitmask
678  *
679  * The block will only run for cases where the ssid-th bit (1 << ssid) of
680  * @ss_mask is set.
681  */
682 #define do_each_subsys_mask(ss, ssid, ss_mask) do {			\
683 	unsigned long __ss_mask = (ss_mask);				\
684 	if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */	\
685 		(ssid) = 0;						\
686 		break;							\
687 	}								\
688 	for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) {	\
689 		(ss) = cgroup_subsys[ssid];				\
690 		{
691 
692 #define while_each_subsys_mask()					\
693 		}							\
694 	}								\
695 } while (false)
696 
697 /* iterate over child cgrps, lock should be held throughout iteration */
698 #define cgroup_for_each_live_child(child, cgrp)				\
699 	list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
700 		if (({ lockdep_assert_held(&cgroup_mutex);		\
701 		       cgroup_is_dead(child); }))			\
702 			;						\
703 		else
704 
705 /* walk live descendants in preorder */
706 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)		\
707 	css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL))	\
708 		if (({ lockdep_assert_held(&cgroup_mutex);		\
709 		       (dsct) = (d_css)->cgroup;			\
710 		       cgroup_is_dead(dsct); }))			\
711 			;						\
712 		else
713 
714 /* walk live descendants in postorder */
715 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp)		\
716 	css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL))	\
717 		if (({ lockdep_assert_held(&cgroup_mutex);		\
718 		       (dsct) = (d_css)->cgroup;			\
719 		       cgroup_is_dead(dsct); }))			\
720 			;						\
721 		else
722 
723 /*
724  * The default css_set - used by init and its children prior to any
725  * hierarchies being mounted. It contains a pointer to the root state
726  * for each subsystem. Also used to anchor the list of css_sets. Not
727  * reference-counted, to improve performance when child cgroups
728  * haven't been created.
729  */
730 struct css_set init_css_set = {
731 	.refcount		= REFCOUNT_INIT(1),
732 	.dom_cset		= &init_css_set,
733 	.tasks			= LIST_HEAD_INIT(init_css_set.tasks),
734 	.mg_tasks		= LIST_HEAD_INIT(init_css_set.mg_tasks),
735 	.dying_tasks		= LIST_HEAD_INIT(init_css_set.dying_tasks),
736 	.task_iters		= LIST_HEAD_INIT(init_css_set.task_iters),
737 	.threaded_csets		= LIST_HEAD_INIT(init_css_set.threaded_csets),
738 	.cgrp_links		= LIST_HEAD_INIT(init_css_set.cgrp_links),
739 	.mg_preload_node	= LIST_HEAD_INIT(init_css_set.mg_preload_node),
740 	.mg_node		= LIST_HEAD_INIT(init_css_set.mg_node),
741 
742 	/*
743 	 * The following field is re-initialized when this cset gets linked
744 	 * in cgroup_init().  However, let's initialize the field
745 	 * statically too so that the default cgroup can be accessed safely
746 	 * early during boot.
747 	 */
748 	.dfl_cgrp		= &cgrp_dfl_root.cgrp,
749 };
750 
751 static int css_set_count	= 1;	/* 1 for init_css_set */
752 
css_set_threaded(struct css_set * cset)753 static bool css_set_threaded(struct css_set *cset)
754 {
755 	return cset->dom_cset != cset;
756 }
757 
758 /**
759  * css_set_populated - does a css_set contain any tasks?
760  * @cset: target css_set
761  *
762  * css_set_populated() should be the same as !!cset->nr_tasks at steady
763  * state. However, css_set_populated() can be called while a task is being
764  * added to or removed from the linked list before the nr_tasks is
765  * properly updated. Hence, we can't just look at ->nr_tasks here.
766  */
css_set_populated(struct css_set * cset)767 static bool css_set_populated(struct css_set *cset)
768 {
769 	lockdep_assert_held(&css_set_lock);
770 
771 	return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
772 }
773 
774 /**
775  * cgroup_update_populated - update the populated count of a cgroup
776  * @cgrp: the target cgroup
777  * @populated: inc or dec populated count
778  *
779  * One of the css_sets associated with @cgrp is either getting its first
780  * task or losing the last.  Update @cgrp->nr_populated_* accordingly.  The
781  * count is propagated towards root so that a given cgroup's
782  * nr_populated_children is zero iff none of its descendants contain any
783  * tasks.
784  *
785  * @cgrp's interface file "cgroup.populated" is zero if both
786  * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
787  * 1 otherwise.  When the sum changes from or to zero, userland is notified
788  * that the content of the interface file has changed.  This can be used to
789  * detect when @cgrp and its descendants become populated or empty.
790  */
cgroup_update_populated(struct cgroup * cgrp,bool populated)791 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
792 {
793 	struct cgroup *child = NULL;
794 	int adj = populated ? 1 : -1;
795 
796 	lockdep_assert_held(&css_set_lock);
797 
798 	do {
799 		bool was_populated = cgroup_is_populated(cgrp);
800 
801 		if (!child) {
802 			cgrp->nr_populated_csets += adj;
803 		} else {
804 			if (cgroup_is_threaded(child))
805 				cgrp->nr_populated_threaded_children += adj;
806 			else
807 				cgrp->nr_populated_domain_children += adj;
808 		}
809 
810 		if (was_populated == cgroup_is_populated(cgrp))
811 			break;
812 
813 		cgroup1_check_for_release(cgrp);
814 		TRACE_CGROUP_PATH(notify_populated, cgrp,
815 				  cgroup_is_populated(cgrp));
816 		cgroup_file_notify(&cgrp->events_file);
817 
818 		child = cgrp;
819 		cgrp = cgroup_parent(cgrp);
820 	} while (cgrp);
821 }
822 
823 /**
824  * css_set_update_populated - update populated state of a css_set
825  * @cset: target css_set
826  * @populated: whether @cset is populated or depopulated
827  *
828  * @cset is either getting the first task or losing the last.  Update the
829  * populated counters of all associated cgroups accordingly.
830  */
css_set_update_populated(struct css_set * cset,bool populated)831 static void css_set_update_populated(struct css_set *cset, bool populated)
832 {
833 	struct cgrp_cset_link *link;
834 
835 	lockdep_assert_held(&css_set_lock);
836 
837 	list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
838 		cgroup_update_populated(link->cgrp, populated);
839 }
840 
841 /*
842  * @task is leaving, advance task iterators which are pointing to it so
843  * that they can resume at the next position.  Advancing an iterator might
844  * remove it from the list, use safe walk.  See css_task_iter_skip() for
845  * details.
846  */
css_set_skip_task_iters(struct css_set * cset,struct task_struct * task)847 static void css_set_skip_task_iters(struct css_set *cset,
848 				    struct task_struct *task)
849 {
850 	struct css_task_iter *it, *pos;
851 
852 	list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node)
853 		css_task_iter_skip(it, task);
854 }
855 
856 /**
857  * css_set_move_task - move a task from one css_set to another
858  * @task: task being moved
859  * @from_cset: css_set @task currently belongs to (may be NULL)
860  * @to_cset: new css_set @task is being moved to (may be NULL)
861  * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
862  *
863  * Move @task from @from_cset to @to_cset.  If @task didn't belong to any
864  * css_set, @from_cset can be NULL.  If @task is being disassociated
865  * instead of moved, @to_cset can be NULL.
866  *
867  * This function automatically handles populated counter updates and
868  * css_task_iter adjustments but the caller is responsible for managing
869  * @from_cset and @to_cset's reference counts.
870  */
css_set_move_task(struct task_struct * task,struct css_set * from_cset,struct css_set * to_cset,bool use_mg_tasks)871 static void css_set_move_task(struct task_struct *task,
872 			      struct css_set *from_cset, struct css_set *to_cset,
873 			      bool use_mg_tasks)
874 {
875 	lockdep_assert_held(&css_set_lock);
876 
877 	if (to_cset && !css_set_populated(to_cset))
878 		css_set_update_populated(to_cset, true);
879 
880 	if (from_cset) {
881 		WARN_ON_ONCE(list_empty(&task->cg_list));
882 
883 		css_set_skip_task_iters(from_cset, task);
884 		list_del_init(&task->cg_list);
885 		if (!css_set_populated(from_cset))
886 			css_set_update_populated(from_cset, false);
887 	} else {
888 		WARN_ON_ONCE(!list_empty(&task->cg_list));
889 	}
890 
891 	if (to_cset) {
892 		/*
893 		 * We are synchronized through cgroup_threadgroup_rwsem
894 		 * against PF_EXITING setting such that we can't race
895 		 * against cgroup_exit()/cgroup_free() dropping the css_set.
896 		 */
897 		WARN_ON_ONCE(task->flags & PF_EXITING);
898 
899 		cgroup_move_task(task, to_cset);
900 		list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
901 							     &to_cset->tasks);
902 	}
903 }
904 
905 /*
906  * hash table for cgroup groups. This improves the performance to find
907  * an existing css_set. This hash doesn't (currently) take into
908  * account cgroups in empty hierarchies.
909  */
910 #define CSS_SET_HASH_BITS	7
911 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
912 
css_set_hash(struct cgroup_subsys_state * css[])913 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
914 {
915 	unsigned long key = 0UL;
916 	struct cgroup_subsys *ss;
917 	int i;
918 
919 	for_each_subsys(ss, i)
920 		key += (unsigned long)css[i];
921 	key = (key >> 16) ^ key;
922 
923 	return key;
924 }
925 
put_css_set_locked(struct css_set * cset)926 void put_css_set_locked(struct css_set *cset)
927 {
928 	struct cgrp_cset_link *link, *tmp_link;
929 	struct cgroup_subsys *ss;
930 	int ssid;
931 
932 	lockdep_assert_held(&css_set_lock);
933 
934 	if (!refcount_dec_and_test(&cset->refcount))
935 		return;
936 
937 	WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
938 
939 	/* This css_set is dead. unlink it and release cgroup and css refs */
940 	for_each_subsys(ss, ssid) {
941 		list_del(&cset->e_cset_node[ssid]);
942 		css_put(cset->subsys[ssid]);
943 	}
944 	hash_del(&cset->hlist);
945 	css_set_count--;
946 
947 	list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
948 		list_del(&link->cset_link);
949 		list_del(&link->cgrp_link);
950 		if (cgroup_parent(link->cgrp))
951 			cgroup_put(link->cgrp);
952 		kfree(link);
953 	}
954 
955 	if (css_set_threaded(cset)) {
956 		list_del(&cset->threaded_csets_node);
957 		put_css_set_locked(cset->dom_cset);
958 	}
959 
960 	kfree_rcu(cset, rcu_head);
961 }
962 
963 /**
964  * compare_css_sets - helper function for find_existing_css_set().
965  * @cset: candidate css_set being tested
966  * @old_cset: existing css_set for a task
967  * @new_cgrp: cgroup that's being entered by the task
968  * @template: desired set of css pointers in css_set (pre-calculated)
969  *
970  * Returns true if "cset" matches "old_cset" except for the hierarchy
971  * which "new_cgrp" belongs to, for which it should match "new_cgrp".
972  */
compare_css_sets(struct css_set * cset,struct css_set * old_cset,struct cgroup * new_cgrp,struct cgroup_subsys_state * template[])973 static bool compare_css_sets(struct css_set *cset,
974 			     struct css_set *old_cset,
975 			     struct cgroup *new_cgrp,
976 			     struct cgroup_subsys_state *template[])
977 {
978 	struct cgroup *new_dfl_cgrp;
979 	struct list_head *l1, *l2;
980 
981 	/*
982 	 * On the default hierarchy, there can be csets which are
983 	 * associated with the same set of cgroups but different csses.
984 	 * Let's first ensure that csses match.
985 	 */
986 	if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
987 		return false;
988 
989 
990 	/* @cset's domain should match the default cgroup's */
991 	if (cgroup_on_dfl(new_cgrp))
992 		new_dfl_cgrp = new_cgrp;
993 	else
994 		new_dfl_cgrp = old_cset->dfl_cgrp;
995 
996 	if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
997 		return false;
998 
999 	/*
1000 	 * Compare cgroup pointers in order to distinguish between
1001 	 * different cgroups in hierarchies.  As different cgroups may
1002 	 * share the same effective css, this comparison is always
1003 	 * necessary.
1004 	 */
1005 	l1 = &cset->cgrp_links;
1006 	l2 = &old_cset->cgrp_links;
1007 	while (1) {
1008 		struct cgrp_cset_link *link1, *link2;
1009 		struct cgroup *cgrp1, *cgrp2;
1010 
1011 		l1 = l1->next;
1012 		l2 = l2->next;
1013 		/* See if we reached the end - both lists are equal length. */
1014 		if (l1 == &cset->cgrp_links) {
1015 			BUG_ON(l2 != &old_cset->cgrp_links);
1016 			break;
1017 		} else {
1018 			BUG_ON(l2 == &old_cset->cgrp_links);
1019 		}
1020 		/* Locate the cgroups associated with these links. */
1021 		link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
1022 		link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
1023 		cgrp1 = link1->cgrp;
1024 		cgrp2 = link2->cgrp;
1025 		/* Hierarchies should be linked in the same order. */
1026 		BUG_ON(cgrp1->root != cgrp2->root);
1027 
1028 		/*
1029 		 * If this hierarchy is the hierarchy of the cgroup
1030 		 * that's changing, then we need to check that this
1031 		 * css_set points to the new cgroup; if it's any other
1032 		 * hierarchy, then this css_set should point to the
1033 		 * same cgroup as the old css_set.
1034 		 */
1035 		if (cgrp1->root == new_cgrp->root) {
1036 			if (cgrp1 != new_cgrp)
1037 				return false;
1038 		} else {
1039 			if (cgrp1 != cgrp2)
1040 				return false;
1041 		}
1042 	}
1043 	return true;
1044 }
1045 
1046 /**
1047  * find_existing_css_set - init css array and find the matching css_set
1048  * @old_cset: the css_set that we're using before the cgroup transition
1049  * @cgrp: the cgroup that we're moving into
1050  * @template: out param for the new set of csses, should be clear on entry
1051  */
find_existing_css_set(struct css_set * old_cset,struct cgroup * cgrp,struct cgroup_subsys_state * template[])1052 static struct css_set *find_existing_css_set(struct css_set *old_cset,
1053 					struct cgroup *cgrp,
1054 					struct cgroup_subsys_state *template[])
1055 {
1056 	struct cgroup_root *root = cgrp->root;
1057 	struct cgroup_subsys *ss;
1058 	struct css_set *cset;
1059 	unsigned long key;
1060 	int i;
1061 
1062 	/*
1063 	 * Build the set of subsystem state objects that we want to see in the
1064 	 * new css_set. while subsystems can change globally, the entries here
1065 	 * won't change, so no need for locking.
1066 	 */
1067 	for_each_subsys(ss, i) {
1068 		if (root->subsys_mask & (1UL << i)) {
1069 			/*
1070 			 * @ss is in this hierarchy, so we want the
1071 			 * effective css from @cgrp.
1072 			 */
1073 			template[i] = cgroup_e_css_by_mask(cgrp, ss);
1074 		} else {
1075 			/*
1076 			 * @ss is not in this hierarchy, so we don't want
1077 			 * to change the css.
1078 			 */
1079 			template[i] = old_cset->subsys[i];
1080 		}
1081 	}
1082 
1083 	key = css_set_hash(template);
1084 	hash_for_each_possible(css_set_table, cset, hlist, key) {
1085 		if (!compare_css_sets(cset, old_cset, cgrp, template))
1086 			continue;
1087 
1088 		/* This css_set matches what we need */
1089 		return cset;
1090 	}
1091 
1092 	/* No existing cgroup group matched */
1093 	return NULL;
1094 }
1095 
free_cgrp_cset_links(struct list_head * links_to_free)1096 static void free_cgrp_cset_links(struct list_head *links_to_free)
1097 {
1098 	struct cgrp_cset_link *link, *tmp_link;
1099 
1100 	list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1101 		list_del(&link->cset_link);
1102 		kfree(link);
1103 	}
1104 }
1105 
1106 /**
1107  * allocate_cgrp_cset_links - allocate cgrp_cset_links
1108  * @count: the number of links to allocate
1109  * @tmp_links: list_head the allocated links are put on
1110  *
1111  * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1112  * through ->cset_link.  Returns 0 on success or -errno.
1113  */
allocate_cgrp_cset_links(int count,struct list_head * tmp_links)1114 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1115 {
1116 	struct cgrp_cset_link *link;
1117 	int i;
1118 
1119 	INIT_LIST_HEAD(tmp_links);
1120 
1121 	for (i = 0; i < count; i++) {
1122 		link = kzalloc(sizeof(*link), GFP_KERNEL);
1123 		if (!link) {
1124 			free_cgrp_cset_links(tmp_links);
1125 			return -ENOMEM;
1126 		}
1127 		list_add(&link->cset_link, tmp_links);
1128 	}
1129 	return 0;
1130 }
1131 
1132 /**
1133  * link_css_set - a helper function to link a css_set to a cgroup
1134  * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1135  * @cset: the css_set to be linked
1136  * @cgrp: the destination cgroup
1137  */
link_css_set(struct list_head * tmp_links,struct css_set * cset,struct cgroup * cgrp)1138 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1139 			 struct cgroup *cgrp)
1140 {
1141 	struct cgrp_cset_link *link;
1142 
1143 	BUG_ON(list_empty(tmp_links));
1144 
1145 	if (cgroup_on_dfl(cgrp))
1146 		cset->dfl_cgrp = cgrp;
1147 
1148 	link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1149 	link->cset = cset;
1150 	link->cgrp = cgrp;
1151 
1152 	/*
1153 	 * Always add links to the tail of the lists so that the lists are
1154 	 * in choronological order.
1155 	 */
1156 	list_move_tail(&link->cset_link, &cgrp->cset_links);
1157 	list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1158 
1159 	if (cgroup_parent(cgrp))
1160 		cgroup_get_live(cgrp);
1161 }
1162 
1163 /**
1164  * find_css_set - return a new css_set with one cgroup updated
1165  * @old_cset: the baseline css_set
1166  * @cgrp: the cgroup to be updated
1167  *
1168  * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1169  * substituted into the appropriate hierarchy.
1170  */
find_css_set(struct css_set * old_cset,struct cgroup * cgrp)1171 static struct css_set *find_css_set(struct css_set *old_cset,
1172 				    struct cgroup *cgrp)
1173 {
1174 	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1175 	struct css_set *cset;
1176 	struct list_head tmp_links;
1177 	struct cgrp_cset_link *link;
1178 	struct cgroup_subsys *ss;
1179 	unsigned long key;
1180 	int ssid;
1181 
1182 	lockdep_assert_held(&cgroup_mutex);
1183 
1184 	/* First see if we already have a cgroup group that matches
1185 	 * the desired set */
1186 	spin_lock_irq(&css_set_lock);
1187 	cset = find_existing_css_set(old_cset, cgrp, template);
1188 	if (cset)
1189 		get_css_set(cset);
1190 	spin_unlock_irq(&css_set_lock);
1191 
1192 	if (cset)
1193 		return cset;
1194 
1195 	cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1196 	if (!cset)
1197 		return NULL;
1198 
1199 	/* Allocate all the cgrp_cset_link objects that we'll need */
1200 	if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1201 		kfree(cset);
1202 		return NULL;
1203 	}
1204 
1205 	refcount_set(&cset->refcount, 1);
1206 	cset->dom_cset = cset;
1207 	INIT_LIST_HEAD(&cset->tasks);
1208 	INIT_LIST_HEAD(&cset->mg_tasks);
1209 	INIT_LIST_HEAD(&cset->dying_tasks);
1210 	INIT_LIST_HEAD(&cset->task_iters);
1211 	INIT_LIST_HEAD(&cset->threaded_csets);
1212 	INIT_HLIST_NODE(&cset->hlist);
1213 	INIT_LIST_HEAD(&cset->cgrp_links);
1214 	INIT_LIST_HEAD(&cset->mg_preload_node);
1215 	INIT_LIST_HEAD(&cset->mg_node);
1216 
1217 	/* Copy the set of subsystem state objects generated in
1218 	 * find_existing_css_set() */
1219 	memcpy(cset->subsys, template, sizeof(cset->subsys));
1220 
1221 	spin_lock_irq(&css_set_lock);
1222 	/* Add reference counts and links from the new css_set. */
1223 	list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1224 		struct cgroup *c = link->cgrp;
1225 
1226 		if (c->root == cgrp->root)
1227 			c = cgrp;
1228 		link_css_set(&tmp_links, cset, c);
1229 	}
1230 
1231 	BUG_ON(!list_empty(&tmp_links));
1232 
1233 	css_set_count++;
1234 
1235 	/* Add @cset to the hash table */
1236 	key = css_set_hash(cset->subsys);
1237 	hash_add(css_set_table, &cset->hlist, key);
1238 
1239 	for_each_subsys(ss, ssid) {
1240 		struct cgroup_subsys_state *css = cset->subsys[ssid];
1241 
1242 		list_add_tail(&cset->e_cset_node[ssid],
1243 			      &css->cgroup->e_csets[ssid]);
1244 		css_get(css);
1245 	}
1246 
1247 	spin_unlock_irq(&css_set_lock);
1248 
1249 	/*
1250 	 * If @cset should be threaded, look up the matching dom_cset and
1251 	 * link them up.  We first fully initialize @cset then look for the
1252 	 * dom_cset.  It's simpler this way and safe as @cset is guaranteed
1253 	 * to stay empty until we return.
1254 	 */
1255 	if (cgroup_is_threaded(cset->dfl_cgrp)) {
1256 		struct css_set *dcset;
1257 
1258 		dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1259 		if (!dcset) {
1260 			put_css_set(cset);
1261 			return NULL;
1262 		}
1263 
1264 		spin_lock_irq(&css_set_lock);
1265 		cset->dom_cset = dcset;
1266 		list_add_tail(&cset->threaded_csets_node,
1267 			      &dcset->threaded_csets);
1268 		spin_unlock_irq(&css_set_lock);
1269 	}
1270 
1271 	return cset;
1272 }
1273 
cgroup_root_from_kf(struct kernfs_root * kf_root)1274 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1275 {
1276 	struct cgroup *root_cgrp = kf_root->kn->priv;
1277 
1278 	return root_cgrp->root;
1279 }
1280 
cgroup_init_root_id(struct cgroup_root * root)1281 static int cgroup_init_root_id(struct cgroup_root *root)
1282 {
1283 	int id;
1284 
1285 	lockdep_assert_held(&cgroup_mutex);
1286 
1287 	id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1288 	if (id < 0)
1289 		return id;
1290 
1291 	root->hierarchy_id = id;
1292 	return 0;
1293 }
1294 
cgroup_exit_root_id(struct cgroup_root * root)1295 static void cgroup_exit_root_id(struct cgroup_root *root)
1296 {
1297 	lockdep_assert_held(&cgroup_mutex);
1298 
1299 	idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1300 }
1301 
cgroup_free_root(struct cgroup_root * root)1302 void cgroup_free_root(struct cgroup_root *root)
1303 {
1304 	kfree(root);
1305 }
1306 
cgroup_destroy_root(struct cgroup_root * root)1307 static void cgroup_destroy_root(struct cgroup_root *root)
1308 {
1309 	struct cgroup *cgrp = &root->cgrp;
1310 	struct cgrp_cset_link *link, *tmp_link;
1311 
1312 	trace_cgroup_destroy_root(root);
1313 
1314 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1315 
1316 	BUG_ON(atomic_read(&root->nr_cgrps));
1317 	BUG_ON(!list_empty(&cgrp->self.children));
1318 
1319 	/* Rebind all subsystems back to the default hierarchy */
1320 	WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1321 
1322 	/*
1323 	 * Release all the links from cset_links to this hierarchy's
1324 	 * root cgroup
1325 	 */
1326 	spin_lock_irq(&css_set_lock);
1327 
1328 	list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1329 		list_del(&link->cset_link);
1330 		list_del(&link->cgrp_link);
1331 		kfree(link);
1332 	}
1333 
1334 	spin_unlock_irq(&css_set_lock);
1335 
1336 	if (!list_empty(&root->root_list)) {
1337 		list_del(&root->root_list);
1338 		cgroup_root_count--;
1339 	}
1340 
1341 	cgroup_exit_root_id(root);
1342 
1343 	mutex_unlock(&cgroup_mutex);
1344 
1345 	kernfs_destroy_root(root->kf_root);
1346 	cgroup_free_root(root);
1347 }
1348 
1349 /*
1350  * look up cgroup associated with current task's cgroup namespace on the
1351  * specified hierarchy
1352  */
1353 static struct cgroup *
current_cgns_cgroup_from_root(struct cgroup_root * root)1354 current_cgns_cgroup_from_root(struct cgroup_root *root)
1355 {
1356 	struct cgroup *res = NULL;
1357 	struct css_set *cset;
1358 
1359 	lockdep_assert_held(&css_set_lock);
1360 
1361 	rcu_read_lock();
1362 
1363 	cset = current->nsproxy->cgroup_ns->root_cset;
1364 	if (cset == &init_css_set) {
1365 		res = &root->cgrp;
1366 	} else if (root == &cgrp_dfl_root) {
1367 		res = cset->dfl_cgrp;
1368 	} else {
1369 		struct cgrp_cset_link *link;
1370 
1371 		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1372 			struct cgroup *c = link->cgrp;
1373 
1374 			if (c->root == root) {
1375 				res = c;
1376 				break;
1377 			}
1378 		}
1379 	}
1380 	rcu_read_unlock();
1381 
1382 	BUG_ON(!res);
1383 	return res;
1384 }
1385 
1386 /* look up cgroup associated with given css_set on the specified hierarchy */
cset_cgroup_from_root(struct css_set * cset,struct cgroup_root * root)1387 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1388 					    struct cgroup_root *root)
1389 {
1390 	struct cgroup *res = NULL;
1391 
1392 	lockdep_assert_held(&cgroup_mutex);
1393 	lockdep_assert_held(&css_set_lock);
1394 
1395 	if (cset == &init_css_set) {
1396 		res = &root->cgrp;
1397 	} else if (root == &cgrp_dfl_root) {
1398 		res = cset->dfl_cgrp;
1399 	} else {
1400 		struct cgrp_cset_link *link;
1401 
1402 		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1403 			struct cgroup *c = link->cgrp;
1404 
1405 			if (c->root == root) {
1406 				res = c;
1407 				break;
1408 			}
1409 		}
1410 	}
1411 
1412 	BUG_ON(!res);
1413 	return res;
1414 }
1415 
1416 /*
1417  * Return the cgroup for "task" from the given hierarchy. Must be
1418  * called with cgroup_mutex and css_set_lock held.
1419  */
task_cgroup_from_root(struct task_struct * task,struct cgroup_root * root)1420 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1421 				     struct cgroup_root *root)
1422 {
1423 	/*
1424 	 * No need to lock the task - since we hold css_set_lock the
1425 	 * task can't change groups.
1426 	 */
1427 	return cset_cgroup_from_root(task_css_set(task), root);
1428 }
1429 
1430 /*
1431  * A task must hold cgroup_mutex to modify cgroups.
1432  *
1433  * Any task can increment and decrement the count field without lock.
1434  * So in general, code holding cgroup_mutex can't rely on the count
1435  * field not changing.  However, if the count goes to zero, then only
1436  * cgroup_attach_task() can increment it again.  Because a count of zero
1437  * means that no tasks are currently attached, therefore there is no
1438  * way a task attached to that cgroup can fork (the other way to
1439  * increment the count).  So code holding cgroup_mutex can safely
1440  * assume that if the count is zero, it will stay zero. Similarly, if
1441  * a task holds cgroup_mutex on a cgroup with zero count, it
1442  * knows that the cgroup won't be removed, as cgroup_rmdir()
1443  * needs that mutex.
1444  *
1445  * A cgroup can only be deleted if both its 'count' of using tasks
1446  * is zero, and its list of 'children' cgroups is empty.  Since all
1447  * tasks in the system use _some_ cgroup, and since there is always at
1448  * least one task in the system (init, pid == 1), therefore, root cgroup
1449  * always has either children cgroups and/or using tasks.  So we don't
1450  * need a special hack to ensure that root cgroup cannot be deleted.
1451  *
1452  * P.S.  One more locking exception.  RCU is used to guard the
1453  * update of a tasks cgroup pointer by cgroup_attach_task()
1454  */
1455 
1456 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1457 
cgroup_file_name(struct cgroup * cgrp,const struct cftype * cft,char * buf)1458 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1459 			      char *buf)
1460 {
1461 	struct cgroup_subsys *ss = cft->ss;
1462 
1463 	if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1464 	    !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
1465 		const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
1466 
1467 		snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s",
1468 			 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1469 			 cft->name);
1470 	} else {
1471 		strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1472 	}
1473 	return buf;
1474 }
1475 
1476 /**
1477  * cgroup_file_mode - deduce file mode of a control file
1478  * @cft: the control file in question
1479  *
1480  * S_IRUGO for read, S_IWUSR for write.
1481  */
cgroup_file_mode(const struct cftype * cft)1482 static umode_t cgroup_file_mode(const struct cftype *cft)
1483 {
1484 	umode_t mode = 0;
1485 
1486 	if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1487 		mode |= S_IRUGO;
1488 
1489 	if (cft->write_u64 || cft->write_s64 || cft->write) {
1490 		if (cft->flags & CFTYPE_WORLD_WRITABLE)
1491 			mode |= S_IWUGO;
1492 		else
1493 			mode |= S_IWUSR;
1494 	}
1495 
1496 	return mode;
1497 }
1498 
1499 /**
1500  * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1501  * @subtree_control: the new subtree_control mask to consider
1502  * @this_ss_mask: available subsystems
1503  *
1504  * On the default hierarchy, a subsystem may request other subsystems to be
1505  * enabled together through its ->depends_on mask.  In such cases, more
1506  * subsystems than specified in "cgroup.subtree_control" may be enabled.
1507  *
1508  * This function calculates which subsystems need to be enabled if
1509  * @subtree_control is to be applied while restricted to @this_ss_mask.
1510  */
cgroup_calc_subtree_ss_mask(u16 subtree_control,u16 this_ss_mask)1511 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1512 {
1513 	u16 cur_ss_mask = subtree_control;
1514 	struct cgroup_subsys *ss;
1515 	int ssid;
1516 
1517 	lockdep_assert_held(&cgroup_mutex);
1518 
1519 	cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1520 
1521 	while (true) {
1522 		u16 new_ss_mask = cur_ss_mask;
1523 
1524 		do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1525 			new_ss_mask |= ss->depends_on;
1526 		} while_each_subsys_mask();
1527 
1528 		/*
1529 		 * Mask out subsystems which aren't available.  This can
1530 		 * happen only if some depended-upon subsystems were bound
1531 		 * to non-default hierarchies.
1532 		 */
1533 		new_ss_mask &= this_ss_mask;
1534 
1535 		if (new_ss_mask == cur_ss_mask)
1536 			break;
1537 		cur_ss_mask = new_ss_mask;
1538 	}
1539 
1540 	return cur_ss_mask;
1541 }
1542 
1543 /**
1544  * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1545  * @kn: the kernfs_node being serviced
1546  *
1547  * This helper undoes cgroup_kn_lock_live() and should be invoked before
1548  * the method finishes if locking succeeded.  Note that once this function
1549  * returns the cgroup returned by cgroup_kn_lock_live() may become
1550  * inaccessible any time.  If the caller intends to continue to access the
1551  * cgroup, it should pin it before invoking this function.
1552  */
cgroup_kn_unlock(struct kernfs_node * kn)1553 void cgroup_kn_unlock(struct kernfs_node *kn)
1554 {
1555 	struct cgroup *cgrp;
1556 
1557 	if (kernfs_type(kn) == KERNFS_DIR)
1558 		cgrp = kn->priv;
1559 	else
1560 		cgrp = kn->parent->priv;
1561 
1562 	mutex_unlock(&cgroup_mutex);
1563 
1564 	kernfs_unbreak_active_protection(kn);
1565 	cgroup_put(cgrp);
1566 }
1567 
1568 /**
1569  * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1570  * @kn: the kernfs_node being serviced
1571  * @drain_offline: perform offline draining on the cgroup
1572  *
1573  * This helper is to be used by a cgroup kernfs method currently servicing
1574  * @kn.  It breaks the active protection, performs cgroup locking and
1575  * verifies that the associated cgroup is alive.  Returns the cgroup if
1576  * alive; otherwise, %NULL.  A successful return should be undone by a
1577  * matching cgroup_kn_unlock() invocation.  If @drain_offline is %true, the
1578  * cgroup is drained of offlining csses before return.
1579  *
1580  * Any cgroup kernfs method implementation which requires locking the
1581  * associated cgroup should use this helper.  It avoids nesting cgroup
1582  * locking under kernfs active protection and allows all kernfs operations
1583  * including self-removal.
1584  */
cgroup_kn_lock_live(struct kernfs_node * kn,bool drain_offline)1585 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1586 {
1587 	struct cgroup *cgrp;
1588 
1589 	if (kernfs_type(kn) == KERNFS_DIR)
1590 		cgrp = kn->priv;
1591 	else
1592 		cgrp = kn->parent->priv;
1593 
1594 	/*
1595 	 * We're gonna grab cgroup_mutex which nests outside kernfs
1596 	 * active_ref.  cgroup liveliness check alone provides enough
1597 	 * protection against removal.  Ensure @cgrp stays accessible and
1598 	 * break the active_ref protection.
1599 	 */
1600 	if (!cgroup_tryget(cgrp))
1601 		return NULL;
1602 	kernfs_break_active_protection(kn);
1603 
1604 	if (drain_offline)
1605 		cgroup_lock_and_drain_offline(cgrp);
1606 	else
1607 		mutex_lock(&cgroup_mutex);
1608 
1609 	if (!cgroup_is_dead(cgrp))
1610 		return cgrp;
1611 
1612 	cgroup_kn_unlock(kn);
1613 	return NULL;
1614 }
1615 
cgroup_rm_file(struct cgroup * cgrp,const struct cftype * cft)1616 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1617 {
1618 	char name[CGROUP_FILE_NAME_MAX];
1619 
1620 	lockdep_assert_held(&cgroup_mutex);
1621 
1622 	if (cft->file_offset) {
1623 		struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1624 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
1625 
1626 		spin_lock_irq(&cgroup_file_kn_lock);
1627 		cfile->kn = NULL;
1628 		spin_unlock_irq(&cgroup_file_kn_lock);
1629 
1630 		del_timer_sync(&cfile->notify_timer);
1631 	}
1632 
1633 	kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1634 }
1635 
1636 /**
1637  * css_clear_dir - remove subsys files in a cgroup directory
1638  * @css: taget css
1639  */
css_clear_dir(struct cgroup_subsys_state * css)1640 static void css_clear_dir(struct cgroup_subsys_state *css)
1641 {
1642 	struct cgroup *cgrp = css->cgroup;
1643 	struct cftype *cfts;
1644 
1645 	if (!(css->flags & CSS_VISIBLE))
1646 		return;
1647 
1648 	css->flags &= ~CSS_VISIBLE;
1649 
1650 	if (!css->ss) {
1651 		if (cgroup_on_dfl(cgrp))
1652 			cfts = cgroup_base_files;
1653 		else
1654 			cfts = cgroup1_base_files;
1655 
1656 		cgroup_addrm_files(css, cgrp, cfts, false);
1657 	} else {
1658 		list_for_each_entry(cfts, &css->ss->cfts, node)
1659 			cgroup_addrm_files(css, cgrp, cfts, false);
1660 	}
1661 }
1662 
1663 /**
1664  * css_populate_dir - create subsys files in a cgroup directory
1665  * @css: target css
1666  *
1667  * On failure, no file is added.
1668  */
css_populate_dir(struct cgroup_subsys_state * css)1669 static int css_populate_dir(struct cgroup_subsys_state *css)
1670 {
1671 	struct cgroup *cgrp = css->cgroup;
1672 	struct cftype *cfts, *failed_cfts;
1673 	int ret;
1674 
1675 	if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1676 		return 0;
1677 
1678 	if (!css->ss) {
1679 		if (cgroup_on_dfl(cgrp))
1680 			cfts = cgroup_base_files;
1681 		else
1682 			cfts = cgroup1_base_files;
1683 
1684 		ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1685 		if (ret < 0)
1686 			return ret;
1687 	} else {
1688 		list_for_each_entry(cfts, &css->ss->cfts, node) {
1689 			ret = cgroup_addrm_files(css, cgrp, cfts, true);
1690 			if (ret < 0) {
1691 				failed_cfts = cfts;
1692 				goto err;
1693 			}
1694 		}
1695 	}
1696 
1697 	css->flags |= CSS_VISIBLE;
1698 
1699 	return 0;
1700 err:
1701 	list_for_each_entry(cfts, &css->ss->cfts, node) {
1702 		if (cfts == failed_cfts)
1703 			break;
1704 		cgroup_addrm_files(css, cgrp, cfts, false);
1705 	}
1706 	return ret;
1707 }
1708 
rebind_subsystems(struct cgroup_root * dst_root,u16 ss_mask)1709 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1710 {
1711 	struct cgroup *dcgrp = &dst_root->cgrp;
1712 	struct cgroup_subsys *ss;
1713 	int ssid, i, ret;
1714 
1715 	lockdep_assert_held(&cgroup_mutex);
1716 
1717 	do_each_subsys_mask(ss, ssid, ss_mask) {
1718 		/*
1719 		 * If @ss has non-root csses attached to it, can't move.
1720 		 * If @ss is an implicit controller, it is exempt from this
1721 		 * rule and can be stolen.
1722 		 */
1723 		if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1724 		    !ss->implicit_on_dfl)
1725 			return -EBUSY;
1726 
1727 		/* can't move between two non-dummy roots either */
1728 		if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1729 			return -EBUSY;
1730 	} while_each_subsys_mask();
1731 
1732 	do_each_subsys_mask(ss, ssid, ss_mask) {
1733 		struct cgroup_root *src_root = ss->root;
1734 		struct cgroup *scgrp = &src_root->cgrp;
1735 		struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1736 		struct css_set *cset;
1737 
1738 		WARN_ON(!css || cgroup_css(dcgrp, ss));
1739 
1740 		/* disable from the source */
1741 		src_root->subsys_mask &= ~(1 << ssid);
1742 		WARN_ON(cgroup_apply_control(scgrp));
1743 		cgroup_finalize_control(scgrp, 0);
1744 
1745 		/* rebind */
1746 		RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1747 		rcu_assign_pointer(dcgrp->subsys[ssid], css);
1748 		ss->root = dst_root;
1749 		css->cgroup = dcgrp;
1750 
1751 		spin_lock_irq(&css_set_lock);
1752 		hash_for_each(css_set_table, i, cset, hlist)
1753 			list_move_tail(&cset->e_cset_node[ss->id],
1754 				       &dcgrp->e_csets[ss->id]);
1755 		spin_unlock_irq(&css_set_lock);
1756 
1757 		/* default hierarchy doesn't enable controllers by default */
1758 		dst_root->subsys_mask |= 1 << ssid;
1759 		if (dst_root == &cgrp_dfl_root) {
1760 			static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1761 		} else {
1762 			dcgrp->subtree_control |= 1 << ssid;
1763 			static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1764 		}
1765 
1766 		ret = cgroup_apply_control(dcgrp);
1767 		if (ret)
1768 			pr_warn("partial failure to rebind %s controller (err=%d)\n",
1769 				ss->name, ret);
1770 
1771 		if (ss->bind)
1772 			ss->bind(css);
1773 	} while_each_subsys_mask();
1774 
1775 	kernfs_activate(dcgrp->kn);
1776 	return 0;
1777 }
1778 
cgroup_show_path(struct seq_file * sf,struct kernfs_node * kf_node,struct kernfs_root * kf_root)1779 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1780 		     struct kernfs_root *kf_root)
1781 {
1782 	int len = 0;
1783 	char *buf = NULL;
1784 	struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1785 	struct cgroup *ns_cgroup;
1786 
1787 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
1788 	if (!buf)
1789 		return -ENOMEM;
1790 
1791 	spin_lock_irq(&css_set_lock);
1792 	ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1793 	len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1794 	spin_unlock_irq(&css_set_lock);
1795 
1796 	if (len >= PATH_MAX)
1797 		len = -ERANGE;
1798 	else if (len > 0) {
1799 		seq_escape(sf, buf, " \t\n\\");
1800 		len = 0;
1801 	}
1802 	kfree(buf);
1803 	return len;
1804 }
1805 
1806 enum cgroup2_param {
1807 	Opt_nsdelegate,
1808 	Opt_memory_localevents,
1809 	Opt_memory_recursiveprot,
1810 	nr__cgroup2_params
1811 };
1812 
1813 static const struct fs_parameter_spec cgroup2_fs_parameters[] = {
1814 	fsparam_flag("nsdelegate",		Opt_nsdelegate),
1815 	fsparam_flag("memory_localevents",	Opt_memory_localevents),
1816 	fsparam_flag("memory_recursiveprot",	Opt_memory_recursiveprot),
1817 	{}
1818 };
1819 
cgroup2_parse_param(struct fs_context * fc,struct fs_parameter * param)1820 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param)
1821 {
1822 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1823 	struct fs_parse_result result;
1824 	int opt;
1825 
1826 	opt = fs_parse(fc, cgroup2_fs_parameters, param, &result);
1827 	if (opt < 0)
1828 		return opt;
1829 
1830 	switch (opt) {
1831 	case Opt_nsdelegate:
1832 		ctx->flags |= CGRP_ROOT_NS_DELEGATE;
1833 		return 0;
1834 	case Opt_memory_localevents:
1835 		ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1836 		return 0;
1837 	case Opt_memory_recursiveprot:
1838 		ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1839 		return 0;
1840 	}
1841 	return -EINVAL;
1842 }
1843 
apply_cgroup_root_flags(unsigned int root_flags)1844 static void apply_cgroup_root_flags(unsigned int root_flags)
1845 {
1846 	if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1847 		if (root_flags & CGRP_ROOT_NS_DELEGATE)
1848 			cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1849 		else
1850 			cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1851 
1852 		if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1853 			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1854 		else
1855 			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1856 
1857 		if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1858 			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1859 		else
1860 			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1861 	}
1862 }
1863 
cgroup_show_options(struct seq_file * seq,struct kernfs_root * kf_root)1864 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1865 {
1866 	if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1867 		seq_puts(seq, ",nsdelegate");
1868 	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1869 		seq_puts(seq, ",memory_localevents");
1870 	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1871 		seq_puts(seq, ",memory_recursiveprot");
1872 	return 0;
1873 }
1874 
cgroup_reconfigure(struct fs_context * fc)1875 static int cgroup_reconfigure(struct fs_context *fc)
1876 {
1877 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1878 
1879 	apply_cgroup_root_flags(ctx->flags);
1880 	return 0;
1881 }
1882 
init_cgroup_housekeeping(struct cgroup * cgrp)1883 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1884 {
1885 	struct cgroup_subsys *ss;
1886 	int ssid;
1887 
1888 	INIT_LIST_HEAD(&cgrp->self.sibling);
1889 	INIT_LIST_HEAD(&cgrp->self.children);
1890 	INIT_LIST_HEAD(&cgrp->cset_links);
1891 	INIT_LIST_HEAD(&cgrp->pidlists);
1892 	mutex_init(&cgrp->pidlist_mutex);
1893 	cgrp->self.cgroup = cgrp;
1894 	cgrp->self.flags |= CSS_ONLINE;
1895 	cgrp->dom_cgrp = cgrp;
1896 	cgrp->max_descendants = INT_MAX;
1897 	cgrp->max_depth = INT_MAX;
1898 	INIT_LIST_HEAD(&cgrp->rstat_css_list);
1899 	prev_cputime_init(&cgrp->prev_cputime);
1900 
1901 	for_each_subsys(ss, ssid)
1902 		INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1903 
1904 	init_waitqueue_head(&cgrp->offline_waitq);
1905 	INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
1906 }
1907 
init_cgroup_root(struct cgroup_fs_context * ctx)1908 void init_cgroup_root(struct cgroup_fs_context *ctx)
1909 {
1910 	struct cgroup_root *root = ctx->root;
1911 	struct cgroup *cgrp = &root->cgrp;
1912 
1913 	INIT_LIST_HEAD(&root->root_list);
1914 	atomic_set(&root->nr_cgrps, 1);
1915 	cgrp->root = root;
1916 	init_cgroup_housekeeping(cgrp);
1917 
1918 	root->flags = ctx->flags;
1919 	if (ctx->release_agent)
1920 		strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX);
1921 	if (ctx->name)
1922 		strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN);
1923 	if (ctx->cpuset_clone_children)
1924 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1925 }
1926 
cgroup_setup_root(struct cgroup_root * root,u16 ss_mask)1927 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
1928 {
1929 	LIST_HEAD(tmp_links);
1930 	struct cgroup *root_cgrp = &root->cgrp;
1931 	struct kernfs_syscall_ops *kf_sops;
1932 	struct css_set *cset;
1933 	int i, ret;
1934 
1935 	lockdep_assert_held(&cgroup_mutex);
1936 
1937 	ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
1938 			      0, GFP_KERNEL);
1939 	if (ret)
1940 		goto out;
1941 
1942 	/*
1943 	 * We're accessing css_set_count without locking css_set_lock here,
1944 	 * but that's OK - it can only be increased by someone holding
1945 	 * cgroup_lock, and that's us.  Later rebinding may disable
1946 	 * controllers on the default hierarchy and thus create new csets,
1947 	 * which can't be more than the existing ones.  Allocate 2x.
1948 	 */
1949 	ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
1950 	if (ret)
1951 		goto cancel_ref;
1952 
1953 	ret = cgroup_init_root_id(root);
1954 	if (ret)
1955 		goto cancel_ref;
1956 
1957 	kf_sops = root == &cgrp_dfl_root ?
1958 		&cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
1959 
1960 	root->kf_root = kernfs_create_root(kf_sops,
1961 					   KERNFS_ROOT_CREATE_DEACTIVATED |
1962 					   KERNFS_ROOT_SUPPORT_EXPORTOP |
1963 					   KERNFS_ROOT_SUPPORT_USER_XATTR,
1964 					   root_cgrp);
1965 	if (IS_ERR(root->kf_root)) {
1966 		ret = PTR_ERR(root->kf_root);
1967 		goto exit_root_id;
1968 	}
1969 	root_cgrp->kn = root->kf_root->kn;
1970 	WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1);
1971 	root_cgrp->ancestor_ids[0] = cgroup_id(root_cgrp);
1972 
1973 	ret = css_populate_dir(&root_cgrp->self);
1974 	if (ret)
1975 		goto destroy_root;
1976 
1977 	ret = rebind_subsystems(root, ss_mask);
1978 	if (ret)
1979 		goto destroy_root;
1980 
1981 	ret = cgroup_bpf_inherit(root_cgrp);
1982 	WARN_ON_ONCE(ret);
1983 
1984 	trace_cgroup_setup_root(root);
1985 
1986 	/*
1987 	 * There must be no failure case after here, since rebinding takes
1988 	 * care of subsystems' refcounts, which are explicitly dropped in
1989 	 * the failure exit path.
1990 	 */
1991 	list_add(&root->root_list, &cgroup_roots);
1992 	cgroup_root_count++;
1993 
1994 	/*
1995 	 * Link the root cgroup in this hierarchy into all the css_set
1996 	 * objects.
1997 	 */
1998 	spin_lock_irq(&css_set_lock);
1999 	hash_for_each(css_set_table, i, cset, hlist) {
2000 		link_css_set(&tmp_links, cset, root_cgrp);
2001 		if (css_set_populated(cset))
2002 			cgroup_update_populated(root_cgrp, true);
2003 	}
2004 	spin_unlock_irq(&css_set_lock);
2005 
2006 	BUG_ON(!list_empty(&root_cgrp->self.children));
2007 	BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2008 
2009 	ret = 0;
2010 	goto out;
2011 
2012 destroy_root:
2013 	kernfs_destroy_root(root->kf_root);
2014 	root->kf_root = NULL;
2015 exit_root_id:
2016 	cgroup_exit_root_id(root);
2017 cancel_ref:
2018 	percpu_ref_exit(&root_cgrp->self.refcnt);
2019 out:
2020 	free_cgrp_cset_links(&tmp_links);
2021 	return ret;
2022 }
2023 
cgroup_do_get_tree(struct fs_context * fc)2024 int cgroup_do_get_tree(struct fs_context *fc)
2025 {
2026 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2027 	int ret;
2028 
2029 	ctx->kfc.root = ctx->root->kf_root;
2030 	if (fc->fs_type == &cgroup2_fs_type)
2031 		ctx->kfc.magic = CGROUP2_SUPER_MAGIC;
2032 	else
2033 		ctx->kfc.magic = CGROUP_SUPER_MAGIC;
2034 	ret = kernfs_get_tree(fc);
2035 
2036 	/*
2037 	 * In non-init cgroup namespace, instead of root cgroup's dentry,
2038 	 * we return the dentry corresponding to the cgroupns->root_cgrp.
2039 	 */
2040 	if (!ret && ctx->ns != &init_cgroup_ns) {
2041 		struct dentry *nsdentry;
2042 		struct super_block *sb = fc->root->d_sb;
2043 		struct cgroup *cgrp;
2044 
2045 		mutex_lock(&cgroup_mutex);
2046 		spin_lock_irq(&css_set_lock);
2047 
2048 		cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root);
2049 
2050 		spin_unlock_irq(&css_set_lock);
2051 		mutex_unlock(&cgroup_mutex);
2052 
2053 		nsdentry = kernfs_node_dentry(cgrp->kn, sb);
2054 		dput(fc->root);
2055 		if (IS_ERR(nsdentry)) {
2056 			deactivate_locked_super(sb);
2057 			ret = PTR_ERR(nsdentry);
2058 			nsdentry = NULL;
2059 		}
2060 		fc->root = nsdentry;
2061 	}
2062 
2063 	if (!ctx->kfc.new_sb_created)
2064 		cgroup_put(&ctx->root->cgrp);
2065 
2066 	return ret;
2067 }
2068 
2069 /*
2070  * Destroy a cgroup filesystem context.
2071  */
cgroup_fs_context_free(struct fs_context * fc)2072 static void cgroup_fs_context_free(struct fs_context *fc)
2073 {
2074 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2075 
2076 	kfree(ctx->name);
2077 	kfree(ctx->release_agent);
2078 	put_cgroup_ns(ctx->ns);
2079 	kernfs_free_fs_context(fc);
2080 	kfree(ctx);
2081 }
2082 
cgroup_get_tree(struct fs_context * fc)2083 static int cgroup_get_tree(struct fs_context *fc)
2084 {
2085 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2086 	int ret;
2087 
2088 	cgrp_dfl_visible = true;
2089 	cgroup_get_live(&cgrp_dfl_root.cgrp);
2090 	ctx->root = &cgrp_dfl_root;
2091 
2092 	ret = cgroup_do_get_tree(fc);
2093 	if (!ret)
2094 		apply_cgroup_root_flags(ctx->flags);
2095 	return ret;
2096 }
2097 
2098 static const struct fs_context_operations cgroup_fs_context_ops = {
2099 	.free		= cgroup_fs_context_free,
2100 	.parse_param	= cgroup2_parse_param,
2101 	.get_tree	= cgroup_get_tree,
2102 	.reconfigure	= cgroup_reconfigure,
2103 };
2104 
2105 static const struct fs_context_operations cgroup1_fs_context_ops = {
2106 	.free		= cgroup_fs_context_free,
2107 	.parse_param	= cgroup1_parse_param,
2108 	.get_tree	= cgroup1_get_tree,
2109 	.reconfigure	= cgroup1_reconfigure,
2110 };
2111 
2112 /*
2113  * Initialise the cgroup filesystem creation/reconfiguration context.  Notably,
2114  * we select the namespace we're going to use.
2115  */
cgroup_init_fs_context(struct fs_context * fc)2116 static int cgroup_init_fs_context(struct fs_context *fc)
2117 {
2118 	struct cgroup_fs_context *ctx;
2119 
2120 	ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL);
2121 	if (!ctx)
2122 		return -ENOMEM;
2123 
2124 	ctx->ns = current->nsproxy->cgroup_ns;
2125 	get_cgroup_ns(ctx->ns);
2126 	fc->fs_private = &ctx->kfc;
2127 	if (fc->fs_type == &cgroup2_fs_type)
2128 		fc->ops = &cgroup_fs_context_ops;
2129 	else
2130 		fc->ops = &cgroup1_fs_context_ops;
2131 	put_user_ns(fc->user_ns);
2132 	fc->user_ns = get_user_ns(ctx->ns->user_ns);
2133 	fc->global = true;
2134 	return 0;
2135 }
2136 
cgroup_kill_sb(struct super_block * sb)2137 static void cgroup_kill_sb(struct super_block *sb)
2138 {
2139 	struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2140 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2141 
2142 	/*
2143 	 * If @root doesn't have any children, start killing it.
2144 	 * This prevents new mounts by disabling percpu_ref_tryget_live().
2145 	 * cgroup_mount() may wait for @root's release.
2146 	 *
2147 	 * And don't kill the default root.
2148 	 */
2149 	if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root &&
2150 	    !percpu_ref_is_dying(&root->cgrp.self.refcnt))
2151 		percpu_ref_kill(&root->cgrp.self.refcnt);
2152 	cgroup_put(&root->cgrp);
2153 	kernfs_kill_sb(sb);
2154 }
2155 
2156 struct file_system_type cgroup_fs_type = {
2157 	.name			= "cgroup",
2158 	.init_fs_context	= cgroup_init_fs_context,
2159 	.parameters		= cgroup1_fs_parameters,
2160 	.kill_sb		= cgroup_kill_sb,
2161 	.fs_flags		= FS_USERNS_MOUNT,
2162 };
2163 
2164 static struct file_system_type cgroup2_fs_type = {
2165 	.name			= "cgroup2",
2166 	.init_fs_context	= cgroup_init_fs_context,
2167 	.parameters		= cgroup2_fs_parameters,
2168 	.kill_sb		= cgroup_kill_sb,
2169 	.fs_flags		= FS_USERNS_MOUNT,
2170 };
2171 
2172 #ifdef CONFIG_CPUSETS
2173 static const struct fs_context_operations cpuset_fs_context_ops = {
2174 	.get_tree	= cgroup1_get_tree,
2175 	.free		= cgroup_fs_context_free,
2176 };
2177 
2178 /*
2179  * This is ugly, but preserves the userspace API for existing cpuset
2180  * users. If someone tries to mount the "cpuset" filesystem, we
2181  * silently switch it to mount "cgroup" instead
2182  */
cpuset_init_fs_context(struct fs_context * fc)2183 static int cpuset_init_fs_context(struct fs_context *fc)
2184 {
2185 	char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER);
2186 	struct cgroup_fs_context *ctx;
2187 	int err;
2188 
2189 	err = cgroup_init_fs_context(fc);
2190 	if (err) {
2191 		kfree(agent);
2192 		return err;
2193 	}
2194 
2195 	fc->ops = &cpuset_fs_context_ops;
2196 
2197 	ctx = cgroup_fc2context(fc);
2198 	ctx->subsys_mask = 1 << cpuset_cgrp_id;
2199 	ctx->flags |= CGRP_ROOT_NOPREFIX;
2200 	ctx->release_agent = agent;
2201 
2202 	get_filesystem(&cgroup_fs_type);
2203 	put_filesystem(fc->fs_type);
2204 	fc->fs_type = &cgroup_fs_type;
2205 
2206 	return 0;
2207 }
2208 
2209 static struct file_system_type cpuset_fs_type = {
2210 	.name			= "cpuset",
2211 	.init_fs_context	= cpuset_init_fs_context,
2212 	.fs_flags		= FS_USERNS_MOUNT,
2213 };
2214 #endif
2215 
cgroup_path_ns_locked(struct cgroup * cgrp,char * buf,size_t buflen,struct cgroup_namespace * ns)2216 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2217 			  struct cgroup_namespace *ns)
2218 {
2219 	struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2220 
2221 	return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2222 }
2223 
cgroup_path_ns(struct cgroup * cgrp,char * buf,size_t buflen,struct cgroup_namespace * ns)2224 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2225 		   struct cgroup_namespace *ns)
2226 {
2227 	int ret;
2228 
2229 	mutex_lock(&cgroup_mutex);
2230 	spin_lock_irq(&css_set_lock);
2231 
2232 	ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2233 
2234 	spin_unlock_irq(&css_set_lock);
2235 	mutex_unlock(&cgroup_mutex);
2236 
2237 	return ret;
2238 }
2239 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2240 
2241 /**
2242  * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2243  * @task: target task
2244  * @buf: the buffer to write the path into
2245  * @buflen: the length of the buffer
2246  *
2247  * Determine @task's cgroup on the first (the one with the lowest non-zero
2248  * hierarchy_id) cgroup hierarchy and copy its path into @buf.  This
2249  * function grabs cgroup_mutex and shouldn't be used inside locks used by
2250  * cgroup controller callbacks.
2251  *
2252  * Return value is the same as kernfs_path().
2253  */
task_cgroup_path(struct task_struct * task,char * buf,size_t buflen)2254 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2255 {
2256 	struct cgroup_root *root;
2257 	struct cgroup *cgrp;
2258 	int hierarchy_id = 1;
2259 	int ret;
2260 
2261 	mutex_lock(&cgroup_mutex);
2262 	spin_lock_irq(&css_set_lock);
2263 
2264 	root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2265 
2266 	if (root) {
2267 		cgrp = task_cgroup_from_root(task, root);
2268 		ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2269 	} else {
2270 		/* if no hierarchy exists, everyone is in "/" */
2271 		ret = strlcpy(buf, "/", buflen);
2272 	}
2273 
2274 	spin_unlock_irq(&css_set_lock);
2275 	mutex_unlock(&cgroup_mutex);
2276 	return ret;
2277 }
2278 EXPORT_SYMBOL_GPL(task_cgroup_path);
2279 
2280 /**
2281  * cgroup_migrate_add_task - add a migration target task to a migration context
2282  * @task: target task
2283  * @mgctx: target migration context
2284  *
2285  * Add @task, which is a migration target, to @mgctx->tset.  This function
2286  * becomes noop if @task doesn't need to be migrated.  @task's css_set
2287  * should have been added as a migration source and @task->cg_list will be
2288  * moved from the css_set's tasks list to mg_tasks one.
2289  */
cgroup_migrate_add_task(struct task_struct * task,struct cgroup_mgctx * mgctx)2290 static void cgroup_migrate_add_task(struct task_struct *task,
2291 				    struct cgroup_mgctx *mgctx)
2292 {
2293 	struct css_set *cset;
2294 
2295 	lockdep_assert_held(&css_set_lock);
2296 
2297 	/* @task either already exited or can't exit until the end */
2298 	if (task->flags & PF_EXITING)
2299 		return;
2300 
2301 	/* cgroup_threadgroup_rwsem protects racing against forks */
2302 	WARN_ON_ONCE(list_empty(&task->cg_list));
2303 
2304 	cset = task_css_set(task);
2305 	if (!cset->mg_src_cgrp)
2306 		return;
2307 
2308 	mgctx->tset.nr_tasks++;
2309 
2310 	list_move_tail(&task->cg_list, &cset->mg_tasks);
2311 	if (list_empty(&cset->mg_node))
2312 		list_add_tail(&cset->mg_node,
2313 			      &mgctx->tset.src_csets);
2314 	if (list_empty(&cset->mg_dst_cset->mg_node))
2315 		list_add_tail(&cset->mg_dst_cset->mg_node,
2316 			      &mgctx->tset.dst_csets);
2317 }
2318 
2319 /**
2320  * cgroup_taskset_first - reset taskset and return the first task
2321  * @tset: taskset of interest
2322  * @dst_cssp: output variable for the destination css
2323  *
2324  * @tset iteration is initialized and the first task is returned.
2325  */
cgroup_taskset_first(struct cgroup_taskset * tset,struct cgroup_subsys_state ** dst_cssp)2326 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2327 					 struct cgroup_subsys_state **dst_cssp)
2328 {
2329 	tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2330 	tset->cur_task = NULL;
2331 
2332 	return cgroup_taskset_next(tset, dst_cssp);
2333 }
2334 
2335 /**
2336  * cgroup_taskset_next - iterate to the next task in taskset
2337  * @tset: taskset of interest
2338  * @dst_cssp: output variable for the destination css
2339  *
2340  * Return the next task in @tset.  Iteration must have been initialized
2341  * with cgroup_taskset_first().
2342  */
cgroup_taskset_next(struct cgroup_taskset * tset,struct cgroup_subsys_state ** dst_cssp)2343 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2344 					struct cgroup_subsys_state **dst_cssp)
2345 {
2346 	struct css_set *cset = tset->cur_cset;
2347 	struct task_struct *task = tset->cur_task;
2348 
2349 	while (&cset->mg_node != tset->csets) {
2350 		if (!task)
2351 			task = list_first_entry(&cset->mg_tasks,
2352 						struct task_struct, cg_list);
2353 		else
2354 			task = list_next_entry(task, cg_list);
2355 
2356 		if (&task->cg_list != &cset->mg_tasks) {
2357 			tset->cur_cset = cset;
2358 			tset->cur_task = task;
2359 
2360 			/*
2361 			 * This function may be called both before and
2362 			 * after cgroup_taskset_migrate().  The two cases
2363 			 * can be distinguished by looking at whether @cset
2364 			 * has its ->mg_dst_cset set.
2365 			 */
2366 			if (cset->mg_dst_cset)
2367 				*dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2368 			else
2369 				*dst_cssp = cset->subsys[tset->ssid];
2370 
2371 			return task;
2372 		}
2373 
2374 		cset = list_next_entry(cset, mg_node);
2375 		task = NULL;
2376 	}
2377 
2378 	return NULL;
2379 }
2380 
2381 /**
2382  * cgroup_taskset_migrate - migrate a taskset
2383  * @mgctx: migration context
2384  *
2385  * Migrate tasks in @mgctx as setup by migration preparation functions.
2386  * This function fails iff one of the ->can_attach callbacks fails and
2387  * guarantees that either all or none of the tasks in @mgctx are migrated.
2388  * @mgctx is consumed regardless of success.
2389  */
cgroup_migrate_execute(struct cgroup_mgctx * mgctx)2390 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2391 {
2392 	struct cgroup_taskset *tset = &mgctx->tset;
2393 	struct cgroup_subsys *ss;
2394 	struct task_struct *task, *tmp_task;
2395 	struct css_set *cset, *tmp_cset;
2396 	int ssid, failed_ssid, ret;
2397 
2398 	/* check that we can legitimately attach to the cgroup */
2399 	if (tset->nr_tasks) {
2400 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2401 			if (ss->can_attach) {
2402 				tset->ssid = ssid;
2403 				ret = ss->can_attach(tset);
2404 				if (ret) {
2405 					failed_ssid = ssid;
2406 					goto out_cancel_attach;
2407 				}
2408 			}
2409 		} while_each_subsys_mask();
2410 	}
2411 
2412 	/*
2413 	 * Now that we're guaranteed success, proceed to move all tasks to
2414 	 * the new cgroup.  There are no failure cases after here, so this
2415 	 * is the commit point.
2416 	 */
2417 	spin_lock_irq(&css_set_lock);
2418 	list_for_each_entry(cset, &tset->src_csets, mg_node) {
2419 		list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2420 			struct css_set *from_cset = task_css_set(task);
2421 			struct css_set *to_cset = cset->mg_dst_cset;
2422 
2423 			get_css_set(to_cset);
2424 			to_cset->nr_tasks++;
2425 			css_set_move_task(task, from_cset, to_cset, true);
2426 			from_cset->nr_tasks--;
2427 			/*
2428 			 * If the source or destination cgroup is frozen,
2429 			 * the task might require to change its state.
2430 			 */
2431 			cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp,
2432 						    to_cset->dfl_cgrp);
2433 			put_css_set_locked(from_cset);
2434 
2435 		}
2436 	}
2437 	spin_unlock_irq(&css_set_lock);
2438 
2439 	/*
2440 	 * Migration is committed, all target tasks are now on dst_csets.
2441 	 * Nothing is sensitive to fork() after this point.  Notify
2442 	 * controllers that migration is complete.
2443 	 */
2444 	tset->csets = &tset->dst_csets;
2445 
2446 	if (tset->nr_tasks) {
2447 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2448 			if (ss->attach) {
2449 				tset->ssid = ssid;
2450 				ss->attach(tset);
2451 			}
2452 		} while_each_subsys_mask();
2453 	}
2454 
2455 	ret = 0;
2456 	goto out_release_tset;
2457 
2458 out_cancel_attach:
2459 	if (tset->nr_tasks) {
2460 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2461 			if (ssid == failed_ssid)
2462 				break;
2463 			if (ss->cancel_attach) {
2464 				tset->ssid = ssid;
2465 				ss->cancel_attach(tset);
2466 			}
2467 		} while_each_subsys_mask();
2468 	}
2469 out_release_tset:
2470 	spin_lock_irq(&css_set_lock);
2471 	list_splice_init(&tset->dst_csets, &tset->src_csets);
2472 	list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2473 		list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2474 		list_del_init(&cset->mg_node);
2475 	}
2476 	spin_unlock_irq(&css_set_lock);
2477 
2478 	/*
2479 	 * Re-initialize the cgroup_taskset structure in case it is reused
2480 	 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2481 	 * iteration.
2482 	 */
2483 	tset->nr_tasks = 0;
2484 	tset->csets    = &tset->src_csets;
2485 	return ret;
2486 }
2487 
2488 /**
2489  * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2490  * @dst_cgrp: destination cgroup to test
2491  *
2492  * On the default hierarchy, except for the mixable, (possible) thread root
2493  * and threaded cgroups, subtree_control must be zero for migration
2494  * destination cgroups with tasks so that child cgroups don't compete
2495  * against tasks.
2496  */
cgroup_migrate_vet_dst(struct cgroup * dst_cgrp)2497 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2498 {
2499 	/* v1 doesn't have any restriction */
2500 	if (!cgroup_on_dfl(dst_cgrp))
2501 		return 0;
2502 
2503 	/* verify @dst_cgrp can host resources */
2504 	if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2505 		return -EOPNOTSUPP;
2506 
2507 	/* mixables don't care */
2508 	if (cgroup_is_mixable(dst_cgrp))
2509 		return 0;
2510 
2511 	/*
2512 	 * If @dst_cgrp is already or can become a thread root or is
2513 	 * threaded, it doesn't matter.
2514 	 */
2515 	if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2516 		return 0;
2517 
2518 	/* apply no-internal-process constraint */
2519 	if (dst_cgrp->subtree_control)
2520 		return -EBUSY;
2521 
2522 	return 0;
2523 }
2524 
2525 /**
2526  * cgroup_migrate_finish - cleanup after attach
2527  * @mgctx: migration context
2528  *
2529  * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst().  See
2530  * those functions for details.
2531  */
cgroup_migrate_finish(struct cgroup_mgctx * mgctx)2532 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2533 {
2534 	LIST_HEAD(preloaded);
2535 	struct css_set *cset, *tmp_cset;
2536 
2537 	lockdep_assert_held(&cgroup_mutex);
2538 
2539 	spin_lock_irq(&css_set_lock);
2540 
2541 	list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded);
2542 	list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded);
2543 
2544 	list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) {
2545 		cset->mg_src_cgrp = NULL;
2546 		cset->mg_dst_cgrp = NULL;
2547 		cset->mg_dst_cset = NULL;
2548 		list_del_init(&cset->mg_preload_node);
2549 		put_css_set_locked(cset);
2550 	}
2551 
2552 	spin_unlock_irq(&css_set_lock);
2553 }
2554 
2555 /**
2556  * cgroup_migrate_add_src - add a migration source css_set
2557  * @src_cset: the source css_set to add
2558  * @dst_cgrp: the destination cgroup
2559  * @mgctx: migration context
2560  *
2561  * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp.  Pin
2562  * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2563  * up by cgroup_migrate_finish().
2564  *
2565  * This function may be called without holding cgroup_threadgroup_rwsem
2566  * even if the target is a process.  Threads may be created and destroyed
2567  * but as long as cgroup_mutex is not dropped, no new css_set can be put
2568  * into play and the preloaded css_sets are guaranteed to cover all
2569  * migrations.
2570  */
cgroup_migrate_add_src(struct css_set * src_cset,struct cgroup * dst_cgrp,struct cgroup_mgctx * mgctx)2571 void cgroup_migrate_add_src(struct css_set *src_cset,
2572 			    struct cgroup *dst_cgrp,
2573 			    struct cgroup_mgctx *mgctx)
2574 {
2575 	struct cgroup *src_cgrp;
2576 
2577 	lockdep_assert_held(&cgroup_mutex);
2578 	lockdep_assert_held(&css_set_lock);
2579 
2580 	/*
2581 	 * If ->dead, @src_set is associated with one or more dead cgroups
2582 	 * and doesn't contain any migratable tasks.  Ignore it early so
2583 	 * that the rest of migration path doesn't get confused by it.
2584 	 */
2585 	if (src_cset->dead)
2586 		return;
2587 
2588 	src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2589 
2590 	if (!list_empty(&src_cset->mg_preload_node))
2591 		return;
2592 
2593 	WARN_ON(src_cset->mg_src_cgrp);
2594 	WARN_ON(src_cset->mg_dst_cgrp);
2595 	WARN_ON(!list_empty(&src_cset->mg_tasks));
2596 	WARN_ON(!list_empty(&src_cset->mg_node));
2597 
2598 	src_cset->mg_src_cgrp = src_cgrp;
2599 	src_cset->mg_dst_cgrp = dst_cgrp;
2600 	get_css_set(src_cset);
2601 	list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets);
2602 }
2603 
2604 /**
2605  * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2606  * @mgctx: migration context
2607  *
2608  * Tasks are about to be moved and all the source css_sets have been
2609  * preloaded to @mgctx->preloaded_src_csets.  This function looks up and
2610  * pins all destination css_sets, links each to its source, and append them
2611  * to @mgctx->preloaded_dst_csets.
2612  *
2613  * This function must be called after cgroup_migrate_add_src() has been
2614  * called on each migration source css_set.  After migration is performed
2615  * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2616  * @mgctx.
2617  */
cgroup_migrate_prepare_dst(struct cgroup_mgctx * mgctx)2618 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2619 {
2620 	struct css_set *src_cset, *tmp_cset;
2621 
2622 	lockdep_assert_held(&cgroup_mutex);
2623 
2624 	/* look up the dst cset for each src cset and link it to src */
2625 	list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2626 				 mg_preload_node) {
2627 		struct css_set *dst_cset;
2628 		struct cgroup_subsys *ss;
2629 		int ssid;
2630 
2631 		dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2632 		if (!dst_cset)
2633 			return -ENOMEM;
2634 
2635 		WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2636 
2637 		/*
2638 		 * If src cset equals dst, it's noop.  Drop the src.
2639 		 * cgroup_migrate() will skip the cset too.  Note that we
2640 		 * can't handle src == dst as some nodes are used by both.
2641 		 */
2642 		if (src_cset == dst_cset) {
2643 			src_cset->mg_src_cgrp = NULL;
2644 			src_cset->mg_dst_cgrp = NULL;
2645 			list_del_init(&src_cset->mg_preload_node);
2646 			put_css_set(src_cset);
2647 			put_css_set(dst_cset);
2648 			continue;
2649 		}
2650 
2651 		src_cset->mg_dst_cset = dst_cset;
2652 
2653 		if (list_empty(&dst_cset->mg_preload_node))
2654 			list_add_tail(&dst_cset->mg_preload_node,
2655 				      &mgctx->preloaded_dst_csets);
2656 		else
2657 			put_css_set(dst_cset);
2658 
2659 		for_each_subsys(ss, ssid)
2660 			if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2661 				mgctx->ss_mask |= 1 << ssid;
2662 	}
2663 
2664 	return 0;
2665 }
2666 
2667 /**
2668  * cgroup_migrate - migrate a process or task to a cgroup
2669  * @leader: the leader of the process or the task to migrate
2670  * @threadgroup: whether @leader points to the whole process or a single task
2671  * @mgctx: migration context
2672  *
2673  * Migrate a process or task denoted by @leader.  If migrating a process,
2674  * the caller must be holding cgroup_threadgroup_rwsem.  The caller is also
2675  * responsible for invoking cgroup_migrate_add_src() and
2676  * cgroup_migrate_prepare_dst() on the targets before invoking this
2677  * function and following up with cgroup_migrate_finish().
2678  *
2679  * As long as a controller's ->can_attach() doesn't fail, this function is
2680  * guaranteed to succeed.  This means that, excluding ->can_attach()
2681  * failure, when migrating multiple targets, the success or failure can be
2682  * decided for all targets by invoking group_migrate_prepare_dst() before
2683  * actually starting migrating.
2684  */
cgroup_migrate(struct task_struct * leader,bool threadgroup,struct cgroup_mgctx * mgctx)2685 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2686 		   struct cgroup_mgctx *mgctx)
2687 {
2688 	struct task_struct *task;
2689 
2690 	/*
2691 	 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2692 	 * already PF_EXITING could be freed from underneath us unless we
2693 	 * take an rcu_read_lock.
2694 	 */
2695 	spin_lock_irq(&css_set_lock);
2696 	rcu_read_lock();
2697 	task = leader;
2698 	do {
2699 		cgroup_migrate_add_task(task, mgctx);
2700 		if (!threadgroup)
2701 			break;
2702 	} while_each_thread(leader, task);
2703 	rcu_read_unlock();
2704 	spin_unlock_irq(&css_set_lock);
2705 
2706 	return cgroup_migrate_execute(mgctx);
2707 }
2708 
2709 /**
2710  * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2711  * @dst_cgrp: the cgroup to attach to
2712  * @leader: the task or the leader of the threadgroup to be attached
2713  * @threadgroup: attach the whole threadgroup?
2714  *
2715  * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2716  */
cgroup_attach_task(struct cgroup * dst_cgrp,struct task_struct * leader,bool threadgroup)2717 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2718 		       bool threadgroup)
2719 {
2720 	DEFINE_CGROUP_MGCTX(mgctx);
2721 	struct task_struct *task;
2722 	int ret = 0;
2723 
2724 	/* look up all src csets */
2725 	spin_lock_irq(&css_set_lock);
2726 	rcu_read_lock();
2727 	task = leader;
2728 	do {
2729 		cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2730 		if (!threadgroup)
2731 			break;
2732 	} while_each_thread(leader, task);
2733 	rcu_read_unlock();
2734 	spin_unlock_irq(&css_set_lock);
2735 
2736 	/* prepare dst csets and commit */
2737 	ret = cgroup_migrate_prepare_dst(&mgctx);
2738 	if (!ret)
2739 		ret = cgroup_migrate(leader, threadgroup, &mgctx);
2740 
2741 	cgroup_migrate_finish(&mgctx);
2742 
2743 	if (!ret)
2744 		TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2745 
2746 	return ret;
2747 }
2748 
cgroup_procs_write_start(char * buf,bool threadgroup,bool * locked)2749 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup,
2750 					     bool *locked)
2751 	__acquires(&cgroup_threadgroup_rwsem)
2752 {
2753 	struct task_struct *tsk;
2754 	pid_t pid;
2755 
2756 	if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2757 		return ERR_PTR(-EINVAL);
2758 
2759 	/*
2760 	 * If we migrate a single thread, we don't care about threadgroup
2761 	 * stability. If the thread is `current`, it won't exit(2) under our
2762 	 * hands or change PID through exec(2). We exclude
2763 	 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write
2764 	 * callers by cgroup_mutex.
2765 	 * Therefore, we can skip the global lock.
2766 	 */
2767 	lockdep_assert_held(&cgroup_mutex);
2768 	if (pid || threadgroup) {
2769 		percpu_down_write(&cgroup_threadgroup_rwsem);
2770 		*locked = true;
2771 	} else {
2772 		*locked = false;
2773 	}
2774 
2775 	rcu_read_lock();
2776 	if (pid) {
2777 		tsk = find_task_by_vpid(pid);
2778 		if (!tsk) {
2779 			tsk = ERR_PTR(-ESRCH);
2780 			goto out_unlock_threadgroup;
2781 		}
2782 	} else {
2783 		tsk = current;
2784 	}
2785 
2786 	if (threadgroup)
2787 		tsk = tsk->group_leader;
2788 
2789 	/*
2790 	 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2791 	 * If userland migrates such a kthread to a non-root cgroup, it can
2792 	 * become trapped in a cpuset, or RT kthread may be born in a
2793 	 * cgroup with no rt_runtime allocated.  Just say no.
2794 	 */
2795 	if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2796 		tsk = ERR_PTR(-EINVAL);
2797 		goto out_unlock_threadgroup;
2798 	}
2799 
2800 	get_task_struct(tsk);
2801 	goto out_unlock_rcu;
2802 
2803 out_unlock_threadgroup:
2804 	if (*locked) {
2805 		percpu_up_write(&cgroup_threadgroup_rwsem);
2806 		*locked = false;
2807 	}
2808 out_unlock_rcu:
2809 	rcu_read_unlock();
2810 	return tsk;
2811 }
2812 
cgroup_procs_write_finish(struct task_struct * task,bool locked)2813 void cgroup_procs_write_finish(struct task_struct *task, bool locked)
2814 	__releases(&cgroup_threadgroup_rwsem)
2815 {
2816 	struct cgroup_subsys *ss;
2817 	int ssid;
2818 
2819 	/* release reference from cgroup_procs_write_start() */
2820 	put_task_struct(task);
2821 
2822 	if (locked)
2823 		percpu_up_write(&cgroup_threadgroup_rwsem);
2824 	for_each_subsys(ss, ssid)
2825 		if (ss->post_attach)
2826 			ss->post_attach();
2827 }
2828 
cgroup_print_ss_mask(struct seq_file * seq,u16 ss_mask)2829 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2830 {
2831 	struct cgroup_subsys *ss;
2832 	bool printed = false;
2833 	int ssid;
2834 
2835 	do_each_subsys_mask(ss, ssid, ss_mask) {
2836 		if (printed)
2837 			seq_putc(seq, ' ');
2838 		seq_puts(seq, ss->name);
2839 		printed = true;
2840 	} while_each_subsys_mask();
2841 	if (printed)
2842 		seq_putc(seq, '\n');
2843 }
2844 
2845 /* show controllers which are enabled from the parent */
cgroup_controllers_show(struct seq_file * seq,void * v)2846 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2847 {
2848 	struct cgroup *cgrp = seq_css(seq)->cgroup;
2849 
2850 	cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2851 	return 0;
2852 }
2853 
2854 /* show controllers which are enabled for a given cgroup's children */
cgroup_subtree_control_show(struct seq_file * seq,void * v)2855 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2856 {
2857 	struct cgroup *cgrp = seq_css(seq)->cgroup;
2858 
2859 	cgroup_print_ss_mask(seq, cgrp->subtree_control);
2860 	return 0;
2861 }
2862 
2863 /**
2864  * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2865  * @cgrp: root of the subtree to update csses for
2866  *
2867  * @cgrp's control masks have changed and its subtree's css associations
2868  * need to be updated accordingly.  This function looks up all css_sets
2869  * which are attached to the subtree, creates the matching updated css_sets
2870  * and migrates the tasks to the new ones.
2871  */
cgroup_update_dfl_csses(struct cgroup * cgrp)2872 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2873 {
2874 	DEFINE_CGROUP_MGCTX(mgctx);
2875 	struct cgroup_subsys_state *d_css;
2876 	struct cgroup *dsct;
2877 	struct css_set *src_cset;
2878 	int ret;
2879 
2880 	lockdep_assert_held(&cgroup_mutex);
2881 
2882 	percpu_down_write(&cgroup_threadgroup_rwsem);
2883 
2884 	/* look up all csses currently attached to @cgrp's subtree */
2885 	spin_lock_irq(&css_set_lock);
2886 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2887 		struct cgrp_cset_link *link;
2888 
2889 		list_for_each_entry(link, &dsct->cset_links, cset_link)
2890 			cgroup_migrate_add_src(link->cset, dsct, &mgctx);
2891 	}
2892 	spin_unlock_irq(&css_set_lock);
2893 
2894 	/* NULL dst indicates self on default hierarchy */
2895 	ret = cgroup_migrate_prepare_dst(&mgctx);
2896 	if (ret)
2897 		goto out_finish;
2898 
2899 	spin_lock_irq(&css_set_lock);
2900 	list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) {
2901 		struct task_struct *task, *ntask;
2902 
2903 		/* all tasks in src_csets need to be migrated */
2904 		list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2905 			cgroup_migrate_add_task(task, &mgctx);
2906 	}
2907 	spin_unlock_irq(&css_set_lock);
2908 
2909 	ret = cgroup_migrate_execute(&mgctx);
2910 out_finish:
2911 	cgroup_migrate_finish(&mgctx);
2912 	percpu_up_write(&cgroup_threadgroup_rwsem);
2913 	return ret;
2914 }
2915 
2916 /**
2917  * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
2918  * @cgrp: root of the target subtree
2919  *
2920  * Because css offlining is asynchronous, userland may try to re-enable a
2921  * controller while the previous css is still around.  This function grabs
2922  * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
2923  */
cgroup_lock_and_drain_offline(struct cgroup * cgrp)2924 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
2925 	__acquires(&cgroup_mutex)
2926 {
2927 	struct cgroup *dsct;
2928 	struct cgroup_subsys_state *d_css;
2929 	struct cgroup_subsys *ss;
2930 	int ssid;
2931 
2932 restart:
2933 	mutex_lock(&cgroup_mutex);
2934 
2935 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2936 		for_each_subsys(ss, ssid) {
2937 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2938 			DEFINE_WAIT(wait);
2939 
2940 			if (!css || !percpu_ref_is_dying(&css->refcnt))
2941 				continue;
2942 
2943 			cgroup_get_live(dsct);
2944 			prepare_to_wait(&dsct->offline_waitq, &wait,
2945 					TASK_UNINTERRUPTIBLE);
2946 
2947 			mutex_unlock(&cgroup_mutex);
2948 			schedule();
2949 			finish_wait(&dsct->offline_waitq, &wait);
2950 
2951 			cgroup_put(dsct);
2952 			goto restart;
2953 		}
2954 	}
2955 }
2956 
2957 /**
2958  * cgroup_save_control - save control masks and dom_cgrp of a subtree
2959  * @cgrp: root of the target subtree
2960  *
2961  * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
2962  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
2963  * itself.
2964  */
cgroup_save_control(struct cgroup * cgrp)2965 static void cgroup_save_control(struct cgroup *cgrp)
2966 {
2967 	struct cgroup *dsct;
2968 	struct cgroup_subsys_state *d_css;
2969 
2970 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2971 		dsct->old_subtree_control = dsct->subtree_control;
2972 		dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
2973 		dsct->old_dom_cgrp = dsct->dom_cgrp;
2974 	}
2975 }
2976 
2977 /**
2978  * cgroup_propagate_control - refresh control masks of a subtree
2979  * @cgrp: root of the target subtree
2980  *
2981  * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
2982  * ->subtree_control and propagate controller availability through the
2983  * subtree so that descendants don't have unavailable controllers enabled.
2984  */
cgroup_propagate_control(struct cgroup * cgrp)2985 static void cgroup_propagate_control(struct cgroup *cgrp)
2986 {
2987 	struct cgroup *dsct;
2988 	struct cgroup_subsys_state *d_css;
2989 
2990 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2991 		dsct->subtree_control &= cgroup_control(dsct);
2992 		dsct->subtree_ss_mask =
2993 			cgroup_calc_subtree_ss_mask(dsct->subtree_control,
2994 						    cgroup_ss_mask(dsct));
2995 	}
2996 }
2997 
2998 /**
2999  * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
3000  * @cgrp: root of the target subtree
3001  *
3002  * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
3003  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3004  * itself.
3005  */
cgroup_restore_control(struct cgroup * cgrp)3006 static void cgroup_restore_control(struct cgroup *cgrp)
3007 {
3008 	struct cgroup *dsct;
3009 	struct cgroup_subsys_state *d_css;
3010 
3011 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3012 		dsct->subtree_control = dsct->old_subtree_control;
3013 		dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3014 		dsct->dom_cgrp = dsct->old_dom_cgrp;
3015 	}
3016 }
3017 
css_visible(struct cgroup_subsys_state * css)3018 static bool css_visible(struct cgroup_subsys_state *css)
3019 {
3020 	struct cgroup_subsys *ss = css->ss;
3021 	struct cgroup *cgrp = css->cgroup;
3022 
3023 	if (cgroup_control(cgrp) & (1 << ss->id))
3024 		return true;
3025 	if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3026 		return false;
3027 	return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3028 }
3029 
3030 /**
3031  * cgroup_apply_control_enable - enable or show csses according to control
3032  * @cgrp: root of the target subtree
3033  *
3034  * Walk @cgrp's subtree and create new csses or make the existing ones
3035  * visible.  A css is created invisible if it's being implicitly enabled
3036  * through dependency.  An invisible css is made visible when the userland
3037  * explicitly enables it.
3038  *
3039  * Returns 0 on success, -errno on failure.  On failure, csses which have
3040  * been processed already aren't cleaned up.  The caller is responsible for
3041  * cleaning up with cgroup_apply_control_disable().
3042  */
cgroup_apply_control_enable(struct cgroup * cgrp)3043 static int cgroup_apply_control_enable(struct cgroup *cgrp)
3044 {
3045 	struct cgroup *dsct;
3046 	struct cgroup_subsys_state *d_css;
3047 	struct cgroup_subsys *ss;
3048 	int ssid, ret;
3049 
3050 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3051 		for_each_subsys(ss, ssid) {
3052 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3053 
3054 			if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3055 				continue;
3056 
3057 			if (!css) {
3058 				css = css_create(dsct, ss);
3059 				if (IS_ERR(css))
3060 					return PTR_ERR(css);
3061 			}
3062 
3063 			WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3064 
3065 			if (css_visible(css)) {
3066 				ret = css_populate_dir(css);
3067 				if (ret)
3068 					return ret;
3069 			}
3070 		}
3071 	}
3072 
3073 	return 0;
3074 }
3075 
3076 /**
3077  * cgroup_apply_control_disable - kill or hide csses according to control
3078  * @cgrp: root of the target subtree
3079  *
3080  * Walk @cgrp's subtree and kill and hide csses so that they match
3081  * cgroup_ss_mask() and cgroup_visible_mask().
3082  *
3083  * A css is hidden when the userland requests it to be disabled while other
3084  * subsystems are still depending on it.  The css must not actively control
3085  * resources and be in the vanilla state if it's made visible again later.
3086  * Controllers which may be depended upon should provide ->css_reset() for
3087  * this purpose.
3088  */
cgroup_apply_control_disable(struct cgroup * cgrp)3089 static void cgroup_apply_control_disable(struct cgroup *cgrp)
3090 {
3091 	struct cgroup *dsct;
3092 	struct cgroup_subsys_state *d_css;
3093 	struct cgroup_subsys *ss;
3094 	int ssid;
3095 
3096 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3097 		for_each_subsys(ss, ssid) {
3098 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3099 
3100 			if (!css)
3101 				continue;
3102 
3103 			WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3104 
3105 			if (css->parent &&
3106 			    !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3107 				kill_css(css);
3108 			} else if (!css_visible(css)) {
3109 				css_clear_dir(css);
3110 				if (ss->css_reset)
3111 					ss->css_reset(css);
3112 			}
3113 		}
3114 	}
3115 }
3116 
3117 /**
3118  * cgroup_apply_control - apply control mask updates to the subtree
3119  * @cgrp: root of the target subtree
3120  *
3121  * subsystems can be enabled and disabled in a subtree using the following
3122  * steps.
3123  *
3124  * 1. Call cgroup_save_control() to stash the current state.
3125  * 2. Update ->subtree_control masks in the subtree as desired.
3126  * 3. Call cgroup_apply_control() to apply the changes.
3127  * 4. Optionally perform other related operations.
3128  * 5. Call cgroup_finalize_control() to finish up.
3129  *
3130  * This function implements step 3 and propagates the mask changes
3131  * throughout @cgrp's subtree, updates csses accordingly and perform
3132  * process migrations.
3133  */
cgroup_apply_control(struct cgroup * cgrp)3134 static int cgroup_apply_control(struct cgroup *cgrp)
3135 {
3136 	int ret;
3137 
3138 	cgroup_propagate_control(cgrp);
3139 
3140 	ret = cgroup_apply_control_enable(cgrp);
3141 	if (ret)
3142 		return ret;
3143 
3144 	/*
3145 	 * At this point, cgroup_e_css_by_mask() results reflect the new csses
3146 	 * making the following cgroup_update_dfl_csses() properly update
3147 	 * css associations of all tasks in the subtree.
3148 	 */
3149 	ret = cgroup_update_dfl_csses(cgrp);
3150 	if (ret)
3151 		return ret;
3152 
3153 	return 0;
3154 }
3155 
3156 /**
3157  * cgroup_finalize_control - finalize control mask update
3158  * @cgrp: root of the target subtree
3159  * @ret: the result of the update
3160  *
3161  * Finalize control mask update.  See cgroup_apply_control() for more info.
3162  */
cgroup_finalize_control(struct cgroup * cgrp,int ret)3163 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3164 {
3165 	if (ret) {
3166 		cgroup_restore_control(cgrp);
3167 		cgroup_propagate_control(cgrp);
3168 	}
3169 
3170 	cgroup_apply_control_disable(cgrp);
3171 }
3172 
cgroup_vet_subtree_control_enable(struct cgroup * cgrp,u16 enable)3173 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3174 {
3175 	u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3176 
3177 	/* if nothing is getting enabled, nothing to worry about */
3178 	if (!enable)
3179 		return 0;
3180 
3181 	/* can @cgrp host any resources? */
3182 	if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3183 		return -EOPNOTSUPP;
3184 
3185 	/* mixables don't care */
3186 	if (cgroup_is_mixable(cgrp))
3187 		return 0;
3188 
3189 	if (domain_enable) {
3190 		/* can't enable domain controllers inside a thread subtree */
3191 		if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3192 			return -EOPNOTSUPP;
3193 	} else {
3194 		/*
3195 		 * Threaded controllers can handle internal competitions
3196 		 * and are always allowed inside a (prospective) thread
3197 		 * subtree.
3198 		 */
3199 		if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3200 			return 0;
3201 	}
3202 
3203 	/*
3204 	 * Controllers can't be enabled for a cgroup with tasks to avoid
3205 	 * child cgroups competing against tasks.
3206 	 */
3207 	if (cgroup_has_tasks(cgrp))
3208 		return -EBUSY;
3209 
3210 	return 0;
3211 }
3212 
3213 /* change the enabled child controllers for a cgroup in the default hierarchy */
cgroup_subtree_control_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3214 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3215 					    char *buf, size_t nbytes,
3216 					    loff_t off)
3217 {
3218 	u16 enable = 0, disable = 0;
3219 	struct cgroup *cgrp, *child;
3220 	struct cgroup_subsys *ss;
3221 	char *tok;
3222 	int ssid, ret;
3223 
3224 	/*
3225 	 * Parse input - space separated list of subsystem names prefixed
3226 	 * with either + or -.
3227 	 */
3228 	buf = strstrip(buf);
3229 	while ((tok = strsep(&buf, " "))) {
3230 		if (tok[0] == '\0')
3231 			continue;
3232 		do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3233 			if (!cgroup_ssid_enabled(ssid) ||
3234 			    strcmp(tok + 1, ss->name))
3235 				continue;
3236 
3237 			if (*tok == '+') {
3238 				enable |= 1 << ssid;
3239 				disable &= ~(1 << ssid);
3240 			} else if (*tok == '-') {
3241 				disable |= 1 << ssid;
3242 				enable &= ~(1 << ssid);
3243 			} else {
3244 				return -EINVAL;
3245 			}
3246 			break;
3247 		} while_each_subsys_mask();
3248 		if (ssid == CGROUP_SUBSYS_COUNT)
3249 			return -EINVAL;
3250 	}
3251 
3252 	cgrp = cgroup_kn_lock_live(of->kn, true);
3253 	if (!cgrp)
3254 		return -ENODEV;
3255 
3256 	for_each_subsys(ss, ssid) {
3257 		if (enable & (1 << ssid)) {
3258 			if (cgrp->subtree_control & (1 << ssid)) {
3259 				enable &= ~(1 << ssid);
3260 				continue;
3261 			}
3262 
3263 			if (!(cgroup_control(cgrp) & (1 << ssid))) {
3264 				ret = -ENOENT;
3265 				goto out_unlock;
3266 			}
3267 		} else if (disable & (1 << ssid)) {
3268 			if (!(cgrp->subtree_control & (1 << ssid))) {
3269 				disable &= ~(1 << ssid);
3270 				continue;
3271 			}
3272 
3273 			/* a child has it enabled? */
3274 			cgroup_for_each_live_child(child, cgrp) {
3275 				if (child->subtree_control & (1 << ssid)) {
3276 					ret = -EBUSY;
3277 					goto out_unlock;
3278 				}
3279 			}
3280 		}
3281 	}
3282 
3283 	if (!enable && !disable) {
3284 		ret = 0;
3285 		goto out_unlock;
3286 	}
3287 
3288 	ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3289 	if (ret)
3290 		goto out_unlock;
3291 
3292 	/* save and update control masks and prepare csses */
3293 	cgroup_save_control(cgrp);
3294 
3295 	cgrp->subtree_control |= enable;
3296 	cgrp->subtree_control &= ~disable;
3297 
3298 	ret = cgroup_apply_control(cgrp);
3299 	cgroup_finalize_control(cgrp, ret);
3300 	if (ret)
3301 		goto out_unlock;
3302 
3303 	kernfs_activate(cgrp->kn);
3304 out_unlock:
3305 	cgroup_kn_unlock(of->kn);
3306 	return ret ?: nbytes;
3307 }
3308 
3309 /**
3310  * cgroup_enable_threaded - make @cgrp threaded
3311  * @cgrp: the target cgroup
3312  *
3313  * Called when "threaded" is written to the cgroup.type interface file and
3314  * tries to make @cgrp threaded and join the parent's resource domain.
3315  * This function is never called on the root cgroup as cgroup.type doesn't
3316  * exist on it.
3317  */
cgroup_enable_threaded(struct cgroup * cgrp)3318 static int cgroup_enable_threaded(struct cgroup *cgrp)
3319 {
3320 	struct cgroup *parent = cgroup_parent(cgrp);
3321 	struct cgroup *dom_cgrp = parent->dom_cgrp;
3322 	struct cgroup *dsct;
3323 	struct cgroup_subsys_state *d_css;
3324 	int ret;
3325 
3326 	lockdep_assert_held(&cgroup_mutex);
3327 
3328 	/* noop if already threaded */
3329 	if (cgroup_is_threaded(cgrp))
3330 		return 0;
3331 
3332 	/*
3333 	 * If @cgroup is populated or has domain controllers enabled, it
3334 	 * can't be switched.  While the below cgroup_can_be_thread_root()
3335 	 * test can catch the same conditions, that's only when @parent is
3336 	 * not mixable, so let's check it explicitly.
3337 	 */
3338 	if (cgroup_is_populated(cgrp) ||
3339 	    cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3340 		return -EOPNOTSUPP;
3341 
3342 	/* we're joining the parent's domain, ensure its validity */
3343 	if (!cgroup_is_valid_domain(dom_cgrp) ||
3344 	    !cgroup_can_be_thread_root(dom_cgrp))
3345 		return -EOPNOTSUPP;
3346 
3347 	/*
3348 	 * The following shouldn't cause actual migrations and should
3349 	 * always succeed.
3350 	 */
3351 	cgroup_save_control(cgrp);
3352 
3353 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3354 		if (dsct == cgrp || cgroup_is_threaded(dsct))
3355 			dsct->dom_cgrp = dom_cgrp;
3356 
3357 	ret = cgroup_apply_control(cgrp);
3358 	if (!ret)
3359 		parent->nr_threaded_children++;
3360 
3361 	cgroup_finalize_control(cgrp, ret);
3362 	return ret;
3363 }
3364 
cgroup_type_show(struct seq_file * seq,void * v)3365 static int cgroup_type_show(struct seq_file *seq, void *v)
3366 {
3367 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3368 
3369 	if (cgroup_is_threaded(cgrp))
3370 		seq_puts(seq, "threaded\n");
3371 	else if (!cgroup_is_valid_domain(cgrp))
3372 		seq_puts(seq, "domain invalid\n");
3373 	else if (cgroup_is_thread_root(cgrp))
3374 		seq_puts(seq, "domain threaded\n");
3375 	else
3376 		seq_puts(seq, "domain\n");
3377 
3378 	return 0;
3379 }
3380 
cgroup_type_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3381 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3382 				 size_t nbytes, loff_t off)
3383 {
3384 	struct cgroup *cgrp;
3385 	int ret;
3386 
3387 	/* only switching to threaded mode is supported */
3388 	if (strcmp(strstrip(buf), "threaded"))
3389 		return -EINVAL;
3390 
3391 	/* drain dying csses before we re-apply (threaded) subtree control */
3392 	cgrp = cgroup_kn_lock_live(of->kn, true);
3393 	if (!cgrp)
3394 		return -ENOENT;
3395 
3396 	/* threaded can only be enabled */
3397 	ret = cgroup_enable_threaded(cgrp);
3398 
3399 	cgroup_kn_unlock(of->kn);
3400 	return ret ?: nbytes;
3401 }
3402 
cgroup_max_descendants_show(struct seq_file * seq,void * v)3403 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3404 {
3405 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3406 	int descendants = READ_ONCE(cgrp->max_descendants);
3407 
3408 	if (descendants == INT_MAX)
3409 		seq_puts(seq, "max\n");
3410 	else
3411 		seq_printf(seq, "%d\n", descendants);
3412 
3413 	return 0;
3414 }
3415 
cgroup_max_descendants_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3416 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3417 					   char *buf, size_t nbytes, loff_t off)
3418 {
3419 	struct cgroup *cgrp;
3420 	int descendants;
3421 	ssize_t ret;
3422 
3423 	buf = strstrip(buf);
3424 	if (!strcmp(buf, "max")) {
3425 		descendants = INT_MAX;
3426 	} else {
3427 		ret = kstrtoint(buf, 0, &descendants);
3428 		if (ret)
3429 			return ret;
3430 	}
3431 
3432 	if (descendants < 0)
3433 		return -ERANGE;
3434 
3435 	cgrp = cgroup_kn_lock_live(of->kn, false);
3436 	if (!cgrp)
3437 		return -ENOENT;
3438 
3439 	cgrp->max_descendants = descendants;
3440 
3441 	cgroup_kn_unlock(of->kn);
3442 
3443 	return nbytes;
3444 }
3445 
cgroup_max_depth_show(struct seq_file * seq,void * v)3446 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3447 {
3448 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3449 	int depth = READ_ONCE(cgrp->max_depth);
3450 
3451 	if (depth == INT_MAX)
3452 		seq_puts(seq, "max\n");
3453 	else
3454 		seq_printf(seq, "%d\n", depth);
3455 
3456 	return 0;
3457 }
3458 
cgroup_max_depth_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3459 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3460 				      char *buf, size_t nbytes, loff_t off)
3461 {
3462 	struct cgroup *cgrp;
3463 	ssize_t ret;
3464 	int depth;
3465 
3466 	buf = strstrip(buf);
3467 	if (!strcmp(buf, "max")) {
3468 		depth = INT_MAX;
3469 	} else {
3470 		ret = kstrtoint(buf, 0, &depth);
3471 		if (ret)
3472 			return ret;
3473 	}
3474 
3475 	if (depth < 0)
3476 		return -ERANGE;
3477 
3478 	cgrp = cgroup_kn_lock_live(of->kn, false);
3479 	if (!cgrp)
3480 		return -ENOENT;
3481 
3482 	cgrp->max_depth = depth;
3483 
3484 	cgroup_kn_unlock(of->kn);
3485 
3486 	return nbytes;
3487 }
3488 
cgroup_events_show(struct seq_file * seq,void * v)3489 static int cgroup_events_show(struct seq_file *seq, void *v)
3490 {
3491 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3492 
3493 	seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp));
3494 	seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags));
3495 
3496 	return 0;
3497 }
3498 
cgroup_stat_show(struct seq_file * seq,void * v)3499 static int cgroup_stat_show(struct seq_file *seq, void *v)
3500 {
3501 	struct cgroup *cgroup = seq_css(seq)->cgroup;
3502 
3503 	seq_printf(seq, "nr_descendants %d\n",
3504 		   cgroup->nr_descendants);
3505 	seq_printf(seq, "nr_dying_descendants %d\n",
3506 		   cgroup->nr_dying_descendants);
3507 
3508 	return 0;
3509 }
3510 
cgroup_extra_stat_show(struct seq_file * seq,struct cgroup * cgrp,int ssid)3511 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3512 						 struct cgroup *cgrp, int ssid)
3513 {
3514 	struct cgroup_subsys *ss = cgroup_subsys[ssid];
3515 	struct cgroup_subsys_state *css;
3516 	int ret;
3517 
3518 	if (!ss->css_extra_stat_show)
3519 		return 0;
3520 
3521 	css = cgroup_tryget_css(cgrp, ss);
3522 	if (!css)
3523 		return 0;
3524 
3525 	ret = ss->css_extra_stat_show(seq, css);
3526 	css_put(css);
3527 	return ret;
3528 }
3529 
cpu_stat_show(struct seq_file * seq,void * v)3530 static int cpu_stat_show(struct seq_file *seq, void *v)
3531 {
3532 	struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3533 	int ret = 0;
3534 
3535 	cgroup_base_stat_cputime_show(seq);
3536 #ifdef CONFIG_CGROUP_SCHED
3537 	ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3538 #endif
3539 	return ret;
3540 }
3541 
3542 #ifdef CONFIG_PSI
cgroup_io_pressure_show(struct seq_file * seq,void * v)3543 static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3544 {
3545 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3546 	struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3547 
3548 	return psi_show(seq, psi, PSI_IO);
3549 }
cgroup_memory_pressure_show(struct seq_file * seq,void * v)3550 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3551 {
3552 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3553 	struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3554 
3555 	return psi_show(seq, psi, PSI_MEM);
3556 }
cgroup_cpu_pressure_show(struct seq_file * seq,void * v)3557 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3558 {
3559 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3560 	struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3561 
3562 	return psi_show(seq, psi, PSI_CPU);
3563 }
3564 
cgroup_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,enum psi_res res)3565 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, char *buf,
3566 					  size_t nbytes, enum psi_res res)
3567 {
3568 	struct psi_trigger *new;
3569 	struct cgroup *cgrp;
3570 
3571 	cgrp = cgroup_kn_lock_live(of->kn, false);
3572 	if (!cgrp)
3573 		return -ENODEV;
3574 
3575 	cgroup_get(cgrp);
3576 	cgroup_kn_unlock(of->kn);
3577 
3578 	new = psi_trigger_create(&cgrp->psi, buf, nbytes, res);
3579 	if (IS_ERR(new)) {
3580 		cgroup_put(cgrp);
3581 		return PTR_ERR(new);
3582 	}
3583 
3584 	psi_trigger_replace(&of->priv, new);
3585 
3586 	cgroup_put(cgrp);
3587 
3588 	return nbytes;
3589 }
3590 
cgroup_io_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3591 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of,
3592 					  char *buf, size_t nbytes,
3593 					  loff_t off)
3594 {
3595 	return cgroup_pressure_write(of, buf, nbytes, PSI_IO);
3596 }
3597 
cgroup_memory_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3598 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of,
3599 					  char *buf, size_t nbytes,
3600 					  loff_t off)
3601 {
3602 	return cgroup_pressure_write(of, buf, nbytes, PSI_MEM);
3603 }
3604 
cgroup_cpu_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3605 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of,
3606 					  char *buf, size_t nbytes,
3607 					  loff_t off)
3608 {
3609 	return cgroup_pressure_write(of, buf, nbytes, PSI_CPU);
3610 }
3611 
cgroup_pressure_poll(struct kernfs_open_file * of,poll_table * pt)3612 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of,
3613 					  poll_table *pt)
3614 {
3615 	return psi_trigger_poll(&of->priv, of->file, pt);
3616 }
3617 
cgroup_pressure_release(struct kernfs_open_file * of)3618 static void cgroup_pressure_release(struct kernfs_open_file *of)
3619 {
3620 	psi_trigger_replace(&of->priv, NULL);
3621 }
3622 #endif /* CONFIG_PSI */
3623 
cgroup_freeze_show(struct seq_file * seq,void * v)3624 static int cgroup_freeze_show(struct seq_file *seq, void *v)
3625 {
3626 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3627 
3628 	seq_printf(seq, "%d\n", cgrp->freezer.freeze);
3629 
3630 	return 0;
3631 }
3632 
cgroup_freeze_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3633 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of,
3634 				   char *buf, size_t nbytes, loff_t off)
3635 {
3636 	struct cgroup *cgrp;
3637 	ssize_t ret;
3638 	int freeze;
3639 
3640 	ret = kstrtoint(strstrip(buf), 0, &freeze);
3641 	if (ret)
3642 		return ret;
3643 
3644 	if (freeze < 0 || freeze > 1)
3645 		return -ERANGE;
3646 
3647 	cgrp = cgroup_kn_lock_live(of->kn, false);
3648 	if (!cgrp)
3649 		return -ENOENT;
3650 
3651 	cgroup_freeze(cgrp, freeze);
3652 
3653 	cgroup_kn_unlock(of->kn);
3654 
3655 	return nbytes;
3656 }
3657 
cgroup_file_open(struct kernfs_open_file * of)3658 static int cgroup_file_open(struct kernfs_open_file *of)
3659 {
3660 	struct cftype *cft = of->kn->priv;
3661 
3662 	if (cft->open)
3663 		return cft->open(of);
3664 	return 0;
3665 }
3666 
cgroup_file_release(struct kernfs_open_file * of)3667 static void cgroup_file_release(struct kernfs_open_file *of)
3668 {
3669 	struct cftype *cft = of->kn->priv;
3670 
3671 	if (cft->release)
3672 		cft->release(of);
3673 }
3674 
cgroup_file_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3675 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3676 				 size_t nbytes, loff_t off)
3677 {
3678 	struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
3679 	struct cgroup *cgrp = of->kn->parent->priv;
3680 	struct cftype *cft = of->kn->priv;
3681 	struct cgroup_subsys_state *css;
3682 	int ret;
3683 
3684 	if (!nbytes)
3685 		return 0;
3686 
3687 	/*
3688 	 * If namespaces are delegation boundaries, disallow writes to
3689 	 * files in an non-init namespace root from inside the namespace
3690 	 * except for the files explicitly marked delegatable -
3691 	 * cgroup.procs and cgroup.subtree_control.
3692 	 */
3693 	if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3694 	    !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3695 	    ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp)
3696 		return -EPERM;
3697 
3698 	if (cft->write)
3699 		return cft->write(of, buf, nbytes, off);
3700 
3701 	/*
3702 	 * kernfs guarantees that a file isn't deleted with operations in
3703 	 * flight, which means that the matching css is and stays alive and
3704 	 * doesn't need to be pinned.  The RCU locking is not necessary
3705 	 * either.  It's just for the convenience of using cgroup_css().
3706 	 */
3707 	rcu_read_lock();
3708 	css = cgroup_css(cgrp, cft->ss);
3709 	rcu_read_unlock();
3710 
3711 	if (cft->write_u64) {
3712 		unsigned long long v;
3713 		ret = kstrtoull(buf, 0, &v);
3714 		if (!ret)
3715 			ret = cft->write_u64(css, cft, v);
3716 	} else if (cft->write_s64) {
3717 		long long v;
3718 		ret = kstrtoll(buf, 0, &v);
3719 		if (!ret)
3720 			ret = cft->write_s64(css, cft, v);
3721 	} else {
3722 		ret = -EINVAL;
3723 	}
3724 
3725 	return ret ?: nbytes;
3726 }
3727 
cgroup_file_poll(struct kernfs_open_file * of,poll_table * pt)3728 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt)
3729 {
3730 	struct cftype *cft = of->kn->priv;
3731 
3732 	if (cft->poll)
3733 		return cft->poll(of, pt);
3734 
3735 	return kernfs_generic_poll(of, pt);
3736 }
3737 
cgroup_seqfile_start(struct seq_file * seq,loff_t * ppos)3738 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3739 {
3740 	return seq_cft(seq)->seq_start(seq, ppos);
3741 }
3742 
cgroup_seqfile_next(struct seq_file * seq,void * v,loff_t * ppos)3743 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3744 {
3745 	return seq_cft(seq)->seq_next(seq, v, ppos);
3746 }
3747 
cgroup_seqfile_stop(struct seq_file * seq,void * v)3748 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3749 {
3750 	if (seq_cft(seq)->seq_stop)
3751 		seq_cft(seq)->seq_stop(seq, v);
3752 }
3753 
cgroup_seqfile_show(struct seq_file * m,void * arg)3754 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3755 {
3756 	struct cftype *cft = seq_cft(m);
3757 	struct cgroup_subsys_state *css = seq_css(m);
3758 
3759 	if (cft->seq_show)
3760 		return cft->seq_show(m, arg);
3761 
3762 	if (cft->read_u64)
3763 		seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3764 	else if (cft->read_s64)
3765 		seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3766 	else
3767 		return -EINVAL;
3768 	return 0;
3769 }
3770 
3771 static struct kernfs_ops cgroup_kf_single_ops = {
3772 	.atomic_write_len	= PAGE_SIZE,
3773 	.open			= cgroup_file_open,
3774 	.release		= cgroup_file_release,
3775 	.write			= cgroup_file_write,
3776 	.poll			= cgroup_file_poll,
3777 	.seq_show		= cgroup_seqfile_show,
3778 };
3779 
3780 static struct kernfs_ops cgroup_kf_ops = {
3781 	.atomic_write_len	= PAGE_SIZE,
3782 	.open			= cgroup_file_open,
3783 	.release		= cgroup_file_release,
3784 	.write			= cgroup_file_write,
3785 	.poll			= cgroup_file_poll,
3786 	.seq_start		= cgroup_seqfile_start,
3787 	.seq_next		= cgroup_seqfile_next,
3788 	.seq_stop		= cgroup_seqfile_stop,
3789 	.seq_show		= cgroup_seqfile_show,
3790 };
3791 
3792 /* set uid and gid of cgroup dirs and files to that of the creator */
cgroup_kn_set_ugid(struct kernfs_node * kn)3793 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3794 {
3795 	struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3796 			       .ia_uid = current_fsuid(),
3797 			       .ia_gid = current_fsgid(), };
3798 
3799 	if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3800 	    gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3801 		return 0;
3802 
3803 	return kernfs_setattr(kn, &iattr);
3804 }
3805 
cgroup_file_notify_timer(struct timer_list * timer)3806 static void cgroup_file_notify_timer(struct timer_list *timer)
3807 {
3808 	cgroup_file_notify(container_of(timer, struct cgroup_file,
3809 					notify_timer));
3810 }
3811 
cgroup_add_file(struct cgroup_subsys_state * css,struct cgroup * cgrp,struct cftype * cft)3812 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3813 			   struct cftype *cft)
3814 {
3815 	char name[CGROUP_FILE_NAME_MAX];
3816 	struct kernfs_node *kn;
3817 	struct lock_class_key *key = NULL;
3818 	int ret;
3819 
3820 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3821 	key = &cft->lockdep_key;
3822 #endif
3823 	kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3824 				  cgroup_file_mode(cft),
3825 				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
3826 				  0, cft->kf_ops, cft,
3827 				  NULL, key);
3828 	if (IS_ERR(kn))
3829 		return PTR_ERR(kn);
3830 
3831 	ret = cgroup_kn_set_ugid(kn);
3832 	if (ret) {
3833 		kernfs_remove(kn);
3834 		return ret;
3835 	}
3836 
3837 	if (cft->file_offset) {
3838 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
3839 
3840 		timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
3841 
3842 		spin_lock_irq(&cgroup_file_kn_lock);
3843 		cfile->kn = kn;
3844 		spin_unlock_irq(&cgroup_file_kn_lock);
3845 	}
3846 
3847 	return 0;
3848 }
3849 
3850 /**
3851  * cgroup_addrm_files - add or remove files to a cgroup directory
3852  * @css: the target css
3853  * @cgrp: the target cgroup (usually css->cgroup)
3854  * @cfts: array of cftypes to be added
3855  * @is_add: whether to add or remove
3856  *
3857  * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3858  * For removals, this function never fails.
3859  */
cgroup_addrm_files(struct cgroup_subsys_state * css,struct cgroup * cgrp,struct cftype cfts[],bool is_add)3860 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3861 			      struct cgroup *cgrp, struct cftype cfts[],
3862 			      bool is_add)
3863 {
3864 	struct cftype *cft, *cft_end = NULL;
3865 	int ret = 0;
3866 
3867 	lockdep_assert_held(&cgroup_mutex);
3868 
3869 restart:
3870 	for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3871 		/* does cft->flags tell us to skip this file on @cgrp? */
3872 		if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3873 			continue;
3874 		if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3875 			continue;
3876 		if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3877 			continue;
3878 		if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3879 			continue;
3880 		if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
3881 			continue;
3882 		if (is_add) {
3883 			ret = cgroup_add_file(css, cgrp, cft);
3884 			if (ret) {
3885 				pr_warn("%s: failed to add %s, err=%d\n",
3886 					__func__, cft->name, ret);
3887 				cft_end = cft;
3888 				is_add = false;
3889 				goto restart;
3890 			}
3891 		} else {
3892 			cgroup_rm_file(cgrp, cft);
3893 		}
3894 	}
3895 	return ret;
3896 }
3897 
cgroup_apply_cftypes(struct cftype * cfts,bool is_add)3898 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3899 {
3900 	struct cgroup_subsys *ss = cfts[0].ss;
3901 	struct cgroup *root = &ss->root->cgrp;
3902 	struct cgroup_subsys_state *css;
3903 	int ret = 0;
3904 
3905 	lockdep_assert_held(&cgroup_mutex);
3906 
3907 	/* add/rm files for all cgroups created before */
3908 	css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3909 		struct cgroup *cgrp = css->cgroup;
3910 
3911 		if (!(css->flags & CSS_VISIBLE))
3912 			continue;
3913 
3914 		ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3915 		if (ret)
3916 			break;
3917 	}
3918 
3919 	if (is_add && !ret)
3920 		kernfs_activate(root->kn);
3921 	return ret;
3922 }
3923 
cgroup_exit_cftypes(struct cftype * cfts)3924 static void cgroup_exit_cftypes(struct cftype *cfts)
3925 {
3926 	struct cftype *cft;
3927 
3928 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
3929 		/* free copy for custom atomic_write_len, see init_cftypes() */
3930 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3931 			kfree(cft->kf_ops);
3932 		cft->kf_ops = NULL;
3933 		cft->ss = NULL;
3934 
3935 		/* revert flags set by cgroup core while adding @cfts */
3936 		cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3937 	}
3938 }
3939 
cgroup_init_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)3940 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3941 {
3942 	struct cftype *cft;
3943 
3944 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
3945 		struct kernfs_ops *kf_ops;
3946 
3947 		WARN_ON(cft->ss || cft->kf_ops);
3948 
3949 		if (cft->seq_start)
3950 			kf_ops = &cgroup_kf_ops;
3951 		else
3952 			kf_ops = &cgroup_kf_single_ops;
3953 
3954 		/*
3955 		 * Ugh... if @cft wants a custom max_write_len, we need to
3956 		 * make a copy of kf_ops to set its atomic_write_len.
3957 		 */
3958 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3959 			kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3960 			if (!kf_ops) {
3961 				cgroup_exit_cftypes(cfts);
3962 				return -ENOMEM;
3963 			}
3964 			kf_ops->atomic_write_len = cft->max_write_len;
3965 		}
3966 
3967 		cft->kf_ops = kf_ops;
3968 		cft->ss = ss;
3969 	}
3970 
3971 	return 0;
3972 }
3973 
cgroup_rm_cftypes_locked(struct cftype * cfts)3974 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3975 {
3976 	lockdep_assert_held(&cgroup_mutex);
3977 
3978 	if (!cfts || !cfts[0].ss)
3979 		return -ENOENT;
3980 
3981 	list_del(&cfts->node);
3982 	cgroup_apply_cftypes(cfts, false);
3983 	cgroup_exit_cftypes(cfts);
3984 	return 0;
3985 }
3986 
3987 /**
3988  * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3989  * @cfts: zero-length name terminated array of cftypes
3990  *
3991  * Unregister @cfts.  Files described by @cfts are removed from all
3992  * existing cgroups and all future cgroups won't have them either.  This
3993  * function can be called anytime whether @cfts' subsys is attached or not.
3994  *
3995  * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3996  * registered.
3997  */
cgroup_rm_cftypes(struct cftype * cfts)3998 int cgroup_rm_cftypes(struct cftype *cfts)
3999 {
4000 	int ret;
4001 
4002 	mutex_lock(&cgroup_mutex);
4003 	ret = cgroup_rm_cftypes_locked(cfts);
4004 	mutex_unlock(&cgroup_mutex);
4005 	return ret;
4006 }
4007 
4008 /**
4009  * cgroup_add_cftypes - add an array of cftypes to a subsystem
4010  * @ss: target cgroup subsystem
4011  * @cfts: zero-length name terminated array of cftypes
4012  *
4013  * Register @cfts to @ss.  Files described by @cfts are created for all
4014  * existing cgroups to which @ss is attached and all future cgroups will
4015  * have them too.  This function can be called anytime whether @ss is
4016  * attached or not.
4017  *
4018  * Returns 0 on successful registration, -errno on failure.  Note that this
4019  * function currently returns 0 as long as @cfts registration is successful
4020  * even if some file creation attempts on existing cgroups fail.
4021  */
cgroup_add_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4022 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4023 {
4024 	int ret;
4025 
4026 	if (!cgroup_ssid_enabled(ss->id))
4027 		return 0;
4028 
4029 	if (!cfts || cfts[0].name[0] == '\0')
4030 		return 0;
4031 
4032 	ret = cgroup_init_cftypes(ss, cfts);
4033 	if (ret)
4034 		return ret;
4035 
4036 	mutex_lock(&cgroup_mutex);
4037 
4038 	list_add_tail(&cfts->node, &ss->cfts);
4039 	ret = cgroup_apply_cftypes(cfts, true);
4040 	if (ret)
4041 		cgroup_rm_cftypes_locked(cfts);
4042 
4043 	mutex_unlock(&cgroup_mutex);
4044 	return ret;
4045 }
4046 
4047 /**
4048  * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
4049  * @ss: target cgroup subsystem
4050  * @cfts: zero-length name terminated array of cftypes
4051  *
4052  * Similar to cgroup_add_cftypes() but the added files are only used for
4053  * the default hierarchy.
4054  */
cgroup_add_dfl_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4055 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4056 {
4057 	struct cftype *cft;
4058 
4059 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4060 		cft->flags |= __CFTYPE_ONLY_ON_DFL;
4061 	return cgroup_add_cftypes(ss, cfts);
4062 }
4063 
4064 /**
4065  * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
4066  * @ss: target cgroup subsystem
4067  * @cfts: zero-length name terminated array of cftypes
4068  *
4069  * Similar to cgroup_add_cftypes() but the added files are only used for
4070  * the legacy hierarchies.
4071  */
cgroup_add_legacy_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4072 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4073 {
4074 	struct cftype *cft;
4075 
4076 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4077 		cft->flags |= __CFTYPE_NOT_ON_DFL;
4078 	return cgroup_add_cftypes(ss, cfts);
4079 }
4080 
4081 /**
4082  * cgroup_file_notify - generate a file modified event for a cgroup_file
4083  * @cfile: target cgroup_file
4084  *
4085  * @cfile must have been obtained by setting cftype->file_offset.
4086  */
cgroup_file_notify(struct cgroup_file * cfile)4087 void cgroup_file_notify(struct cgroup_file *cfile)
4088 {
4089 	unsigned long flags;
4090 
4091 	spin_lock_irqsave(&cgroup_file_kn_lock, flags);
4092 	if (cfile->kn) {
4093 		unsigned long last = cfile->notified_at;
4094 		unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
4095 
4096 		if (time_in_range(jiffies, last, next)) {
4097 			timer_reduce(&cfile->notify_timer, next);
4098 		} else {
4099 			kernfs_notify(cfile->kn);
4100 			cfile->notified_at = jiffies;
4101 		}
4102 	}
4103 	spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
4104 }
4105 
4106 /**
4107  * css_next_child - find the next child of a given css
4108  * @pos: the current position (%NULL to initiate traversal)
4109  * @parent: css whose children to walk
4110  *
4111  * This function returns the next child of @parent and should be called
4112  * under either cgroup_mutex or RCU read lock.  The only requirement is
4113  * that @parent and @pos are accessible.  The next sibling is guaranteed to
4114  * be returned regardless of their states.
4115  *
4116  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4117  * css which finished ->css_online() is guaranteed to be visible in the
4118  * future iterations and will stay visible until the last reference is put.
4119  * A css which hasn't finished ->css_online() or already finished
4120  * ->css_offline() may show up during traversal.  It's each subsystem's
4121  * responsibility to synchronize against on/offlining.
4122  */
css_next_child(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * parent)4123 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
4124 					   struct cgroup_subsys_state *parent)
4125 {
4126 	struct cgroup_subsys_state *next;
4127 
4128 	cgroup_assert_mutex_or_rcu_locked();
4129 
4130 	/*
4131 	 * @pos could already have been unlinked from the sibling list.
4132 	 * Once a cgroup is removed, its ->sibling.next is no longer
4133 	 * updated when its next sibling changes.  CSS_RELEASED is set when
4134 	 * @pos is taken off list, at which time its next pointer is valid,
4135 	 * and, as releases are serialized, the one pointed to by the next
4136 	 * pointer is guaranteed to not have started release yet.  This
4137 	 * implies that if we observe !CSS_RELEASED on @pos in this RCU
4138 	 * critical section, the one pointed to by its next pointer is
4139 	 * guaranteed to not have finished its RCU grace period even if we
4140 	 * have dropped rcu_read_lock() inbetween iterations.
4141 	 *
4142 	 * If @pos has CSS_RELEASED set, its next pointer can't be
4143 	 * dereferenced; however, as each css is given a monotonically
4144 	 * increasing unique serial number and always appended to the
4145 	 * sibling list, the next one can be found by walking the parent's
4146 	 * children until the first css with higher serial number than
4147 	 * @pos's.  While this path can be slower, it happens iff iteration
4148 	 * races against release and the race window is very small.
4149 	 */
4150 	if (!pos) {
4151 		next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
4152 	} else if (likely(!(pos->flags & CSS_RELEASED))) {
4153 		next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
4154 	} else {
4155 		list_for_each_entry_rcu(next, &parent->children, sibling,
4156 					lockdep_is_held(&cgroup_mutex))
4157 			if (next->serial_nr > pos->serial_nr)
4158 				break;
4159 	}
4160 
4161 	/*
4162 	 * @next, if not pointing to the head, can be dereferenced and is
4163 	 * the next sibling.
4164 	 */
4165 	if (&next->sibling != &parent->children)
4166 		return next;
4167 	return NULL;
4168 }
4169 
4170 /**
4171  * css_next_descendant_pre - find the next descendant for pre-order walk
4172  * @pos: the current position (%NULL to initiate traversal)
4173  * @root: css whose descendants to walk
4174  *
4175  * To be used by css_for_each_descendant_pre().  Find the next descendant
4176  * to visit for pre-order traversal of @root's descendants.  @root is
4177  * included in the iteration and the first node to be visited.
4178  *
4179  * While this function requires cgroup_mutex or RCU read locking, it
4180  * doesn't require the whole traversal to be contained in a single critical
4181  * section.  This function will return the correct next descendant as long
4182  * as both @pos and @root are accessible and @pos is a descendant of @root.
4183  *
4184  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4185  * css which finished ->css_online() is guaranteed to be visible in the
4186  * future iterations and will stay visible until the last reference is put.
4187  * A css which hasn't finished ->css_online() or already finished
4188  * ->css_offline() may show up during traversal.  It's each subsystem's
4189  * responsibility to synchronize against on/offlining.
4190  */
4191 struct cgroup_subsys_state *
css_next_descendant_pre(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * root)4192 css_next_descendant_pre(struct cgroup_subsys_state *pos,
4193 			struct cgroup_subsys_state *root)
4194 {
4195 	struct cgroup_subsys_state *next;
4196 
4197 	cgroup_assert_mutex_or_rcu_locked();
4198 
4199 	/* if first iteration, visit @root */
4200 	if (!pos)
4201 		return root;
4202 
4203 	/* visit the first child if exists */
4204 	next = css_next_child(NULL, pos);
4205 	if (next)
4206 		return next;
4207 
4208 	/* no child, visit my or the closest ancestor's next sibling */
4209 	while (pos != root) {
4210 		next = css_next_child(pos, pos->parent);
4211 		if (next)
4212 			return next;
4213 		pos = pos->parent;
4214 	}
4215 
4216 	return NULL;
4217 }
4218 EXPORT_SYMBOL_GPL(css_next_descendant_pre);
4219 
4220 /**
4221  * css_rightmost_descendant - return the rightmost descendant of a css
4222  * @pos: css of interest
4223  *
4224  * Return the rightmost descendant of @pos.  If there's no descendant, @pos
4225  * is returned.  This can be used during pre-order traversal to skip
4226  * subtree of @pos.
4227  *
4228  * While this function requires cgroup_mutex or RCU read locking, it
4229  * doesn't require the whole traversal to be contained in a single critical
4230  * section.  This function will return the correct rightmost descendant as
4231  * long as @pos is accessible.
4232  */
4233 struct cgroup_subsys_state *
css_rightmost_descendant(struct cgroup_subsys_state * pos)4234 css_rightmost_descendant(struct cgroup_subsys_state *pos)
4235 {
4236 	struct cgroup_subsys_state *last, *tmp;
4237 
4238 	cgroup_assert_mutex_or_rcu_locked();
4239 
4240 	do {
4241 		last = pos;
4242 		/* ->prev isn't RCU safe, walk ->next till the end */
4243 		pos = NULL;
4244 		css_for_each_child(tmp, last)
4245 			pos = tmp;
4246 	} while (pos);
4247 
4248 	return last;
4249 }
4250 
4251 static struct cgroup_subsys_state *
css_leftmost_descendant(struct cgroup_subsys_state * pos)4252 css_leftmost_descendant(struct cgroup_subsys_state *pos)
4253 {
4254 	struct cgroup_subsys_state *last;
4255 
4256 	do {
4257 		last = pos;
4258 		pos = css_next_child(NULL, pos);
4259 	} while (pos);
4260 
4261 	return last;
4262 }
4263 
4264 /**
4265  * css_next_descendant_post - find the next descendant for post-order walk
4266  * @pos: the current position (%NULL to initiate traversal)
4267  * @root: css whose descendants to walk
4268  *
4269  * To be used by css_for_each_descendant_post().  Find the next descendant
4270  * to visit for post-order traversal of @root's descendants.  @root is
4271  * included in the iteration and the last node to be visited.
4272  *
4273  * While this function requires cgroup_mutex or RCU read locking, it
4274  * doesn't require the whole traversal to be contained in a single critical
4275  * section.  This function will return the correct next descendant as long
4276  * as both @pos and @cgroup are accessible and @pos is a descendant of
4277  * @cgroup.
4278  *
4279  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4280  * css which finished ->css_online() is guaranteed to be visible in the
4281  * future iterations and will stay visible until the last reference is put.
4282  * A css which hasn't finished ->css_online() or already finished
4283  * ->css_offline() may show up during traversal.  It's each subsystem's
4284  * responsibility to synchronize against on/offlining.
4285  */
4286 struct cgroup_subsys_state *
css_next_descendant_post(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * root)4287 css_next_descendant_post(struct cgroup_subsys_state *pos,
4288 			 struct cgroup_subsys_state *root)
4289 {
4290 	struct cgroup_subsys_state *next;
4291 
4292 	cgroup_assert_mutex_or_rcu_locked();
4293 
4294 	/* if first iteration, visit leftmost descendant which may be @root */
4295 	if (!pos)
4296 		return css_leftmost_descendant(root);
4297 
4298 	/* if we visited @root, we're done */
4299 	if (pos == root)
4300 		return NULL;
4301 
4302 	/* if there's an unvisited sibling, visit its leftmost descendant */
4303 	next = css_next_child(pos, pos->parent);
4304 	if (next)
4305 		return css_leftmost_descendant(next);
4306 
4307 	/* no sibling left, visit parent */
4308 	return pos->parent;
4309 }
4310 
4311 /**
4312  * css_has_online_children - does a css have online children
4313  * @css: the target css
4314  *
4315  * Returns %true if @css has any online children; otherwise, %false.  This
4316  * function can be called from any context but the caller is responsible
4317  * for synchronizing against on/offlining as necessary.
4318  */
css_has_online_children(struct cgroup_subsys_state * css)4319 bool css_has_online_children(struct cgroup_subsys_state *css)
4320 {
4321 	struct cgroup_subsys_state *child;
4322 	bool ret = false;
4323 
4324 	rcu_read_lock();
4325 	css_for_each_child(child, css) {
4326 		if (child->flags & CSS_ONLINE) {
4327 			ret = true;
4328 			break;
4329 		}
4330 	}
4331 	rcu_read_unlock();
4332 	return ret;
4333 }
4334 
css_task_iter_next_css_set(struct css_task_iter * it)4335 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4336 {
4337 	struct list_head *l;
4338 	struct cgrp_cset_link *link;
4339 	struct css_set *cset;
4340 
4341 	lockdep_assert_held(&css_set_lock);
4342 
4343 	/* find the next threaded cset */
4344 	if (it->tcset_pos) {
4345 		l = it->tcset_pos->next;
4346 
4347 		if (l != it->tcset_head) {
4348 			it->tcset_pos = l;
4349 			return container_of(l, struct css_set,
4350 					    threaded_csets_node);
4351 		}
4352 
4353 		it->tcset_pos = NULL;
4354 	}
4355 
4356 	/* find the next cset */
4357 	l = it->cset_pos;
4358 	l = l->next;
4359 	if (l == it->cset_head) {
4360 		it->cset_pos = NULL;
4361 		return NULL;
4362 	}
4363 
4364 	if (it->ss) {
4365 		cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4366 	} else {
4367 		link = list_entry(l, struct cgrp_cset_link, cset_link);
4368 		cset = link->cset;
4369 	}
4370 
4371 	it->cset_pos = l;
4372 
4373 	/* initialize threaded css_set walking */
4374 	if (it->flags & CSS_TASK_ITER_THREADED) {
4375 		if (it->cur_dcset)
4376 			put_css_set_locked(it->cur_dcset);
4377 		it->cur_dcset = cset;
4378 		get_css_set(cset);
4379 
4380 		it->tcset_head = &cset->threaded_csets;
4381 		it->tcset_pos = &cset->threaded_csets;
4382 	}
4383 
4384 	return cset;
4385 }
4386 
4387 /**
4388  * css_task_iter_advance_css_set - advance a task itererator to the next css_set
4389  * @it: the iterator to advance
4390  *
4391  * Advance @it to the next css_set to walk.
4392  */
css_task_iter_advance_css_set(struct css_task_iter * it)4393 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4394 {
4395 	struct css_set *cset;
4396 
4397 	lockdep_assert_held(&css_set_lock);
4398 
4399 	/* Advance to the next non-empty css_set and find first non-empty tasks list*/
4400 	while ((cset = css_task_iter_next_css_set(it))) {
4401 		if (!list_empty(&cset->tasks)) {
4402 			it->cur_tasks_head = &cset->tasks;
4403 			break;
4404 		} else if (!list_empty(&cset->mg_tasks)) {
4405 			it->cur_tasks_head = &cset->mg_tasks;
4406 			break;
4407 		} else if (!list_empty(&cset->dying_tasks)) {
4408 			it->cur_tasks_head = &cset->dying_tasks;
4409 			break;
4410 		}
4411 	}
4412 	if (!cset) {
4413 		it->task_pos = NULL;
4414 		return;
4415 	}
4416 	it->task_pos = it->cur_tasks_head->next;
4417 
4418 	/*
4419 	 * We don't keep css_sets locked across iteration steps and thus
4420 	 * need to take steps to ensure that iteration can be resumed after
4421 	 * the lock is re-acquired.  Iteration is performed at two levels -
4422 	 * css_sets and tasks in them.
4423 	 *
4424 	 * Once created, a css_set never leaves its cgroup lists, so a
4425 	 * pinned css_set is guaranteed to stay put and we can resume
4426 	 * iteration afterwards.
4427 	 *
4428 	 * Tasks may leave @cset across iteration steps.  This is resolved
4429 	 * by registering each iterator with the css_set currently being
4430 	 * walked and making css_set_move_task() advance iterators whose
4431 	 * next task is leaving.
4432 	 */
4433 	if (it->cur_cset) {
4434 		list_del(&it->iters_node);
4435 		put_css_set_locked(it->cur_cset);
4436 	}
4437 	get_css_set(cset);
4438 	it->cur_cset = cset;
4439 	list_add(&it->iters_node, &cset->task_iters);
4440 }
4441 
css_task_iter_skip(struct css_task_iter * it,struct task_struct * task)4442 static void css_task_iter_skip(struct css_task_iter *it,
4443 			       struct task_struct *task)
4444 {
4445 	lockdep_assert_held(&css_set_lock);
4446 
4447 	if (it->task_pos == &task->cg_list) {
4448 		it->task_pos = it->task_pos->next;
4449 		it->flags |= CSS_TASK_ITER_SKIPPED;
4450 	}
4451 }
4452 
css_task_iter_advance(struct css_task_iter * it)4453 static void css_task_iter_advance(struct css_task_iter *it)
4454 {
4455 	struct task_struct *task;
4456 
4457 	lockdep_assert_held(&css_set_lock);
4458 repeat:
4459 	if (it->task_pos) {
4460 		/*
4461 		 * Advance iterator to find next entry. We go through cset
4462 		 * tasks, mg_tasks and dying_tasks, when consumed we move onto
4463 		 * the next cset.
4464 		 */
4465 		if (it->flags & CSS_TASK_ITER_SKIPPED)
4466 			it->flags &= ~CSS_TASK_ITER_SKIPPED;
4467 		else
4468 			it->task_pos = it->task_pos->next;
4469 
4470 		if (it->task_pos == &it->cur_cset->tasks) {
4471 			it->cur_tasks_head = &it->cur_cset->mg_tasks;
4472 			it->task_pos = it->cur_tasks_head->next;
4473 		}
4474 		if (it->task_pos == &it->cur_cset->mg_tasks) {
4475 			it->cur_tasks_head = &it->cur_cset->dying_tasks;
4476 			it->task_pos = it->cur_tasks_head->next;
4477 		}
4478 		if (it->task_pos == &it->cur_cset->dying_tasks)
4479 			css_task_iter_advance_css_set(it);
4480 	} else {
4481 		/* called from start, proceed to the first cset */
4482 		css_task_iter_advance_css_set(it);
4483 	}
4484 
4485 	if (!it->task_pos)
4486 		return;
4487 
4488 	task = list_entry(it->task_pos, struct task_struct, cg_list);
4489 
4490 	if (it->flags & CSS_TASK_ITER_PROCS) {
4491 		/* if PROCS, skip over tasks which aren't group leaders */
4492 		if (!thread_group_leader(task))
4493 			goto repeat;
4494 
4495 		/* and dying leaders w/o live member threads */
4496 		if (it->cur_tasks_head == &it->cur_cset->dying_tasks &&
4497 		    !atomic_read(&task->signal->live))
4498 			goto repeat;
4499 	} else {
4500 		/* skip all dying ones */
4501 		if (it->cur_tasks_head == &it->cur_cset->dying_tasks)
4502 			goto repeat;
4503 	}
4504 }
4505 
4506 /**
4507  * css_task_iter_start - initiate task iteration
4508  * @css: the css to walk tasks of
4509  * @flags: CSS_TASK_ITER_* flags
4510  * @it: the task iterator to use
4511  *
4512  * Initiate iteration through the tasks of @css.  The caller can call
4513  * css_task_iter_next() to walk through the tasks until the function
4514  * returns NULL.  On completion of iteration, css_task_iter_end() must be
4515  * called.
4516  */
css_task_iter_start(struct cgroup_subsys_state * css,unsigned int flags,struct css_task_iter * it)4517 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4518 			 struct css_task_iter *it)
4519 {
4520 	memset(it, 0, sizeof(*it));
4521 
4522 	spin_lock_irq(&css_set_lock);
4523 
4524 	it->ss = css->ss;
4525 	it->flags = flags;
4526 
4527 	if (it->ss)
4528 		it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4529 	else
4530 		it->cset_pos = &css->cgroup->cset_links;
4531 
4532 	it->cset_head = it->cset_pos;
4533 
4534 	css_task_iter_advance(it);
4535 
4536 	spin_unlock_irq(&css_set_lock);
4537 }
4538 
4539 /**
4540  * css_task_iter_next - return the next task for the iterator
4541  * @it: the task iterator being iterated
4542  *
4543  * The "next" function for task iteration.  @it should have been
4544  * initialized via css_task_iter_start().  Returns NULL when the iteration
4545  * reaches the end.
4546  */
css_task_iter_next(struct css_task_iter * it)4547 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4548 {
4549 	if (it->cur_task) {
4550 		put_task_struct(it->cur_task);
4551 		it->cur_task = NULL;
4552 	}
4553 
4554 	spin_lock_irq(&css_set_lock);
4555 
4556 	/* @it may be half-advanced by skips, finish advancing */
4557 	if (it->flags & CSS_TASK_ITER_SKIPPED)
4558 		css_task_iter_advance(it);
4559 
4560 	if (it->task_pos) {
4561 		it->cur_task = list_entry(it->task_pos, struct task_struct,
4562 					  cg_list);
4563 		get_task_struct(it->cur_task);
4564 		css_task_iter_advance(it);
4565 	}
4566 
4567 	spin_unlock_irq(&css_set_lock);
4568 
4569 	return it->cur_task;
4570 }
4571 
4572 /**
4573  * css_task_iter_end - finish task iteration
4574  * @it: the task iterator to finish
4575  *
4576  * Finish task iteration started by css_task_iter_start().
4577  */
css_task_iter_end(struct css_task_iter * it)4578 void css_task_iter_end(struct css_task_iter *it)
4579 {
4580 	if (it->cur_cset) {
4581 		spin_lock_irq(&css_set_lock);
4582 		list_del(&it->iters_node);
4583 		put_css_set_locked(it->cur_cset);
4584 		spin_unlock_irq(&css_set_lock);
4585 	}
4586 
4587 	if (it->cur_dcset)
4588 		put_css_set(it->cur_dcset);
4589 
4590 	if (it->cur_task)
4591 		put_task_struct(it->cur_task);
4592 }
4593 
cgroup_procs_release(struct kernfs_open_file * of)4594 static void cgroup_procs_release(struct kernfs_open_file *of)
4595 {
4596 	if (of->priv) {
4597 		css_task_iter_end(of->priv);
4598 		kfree(of->priv);
4599 	}
4600 }
4601 
cgroup_procs_next(struct seq_file * s,void * v,loff_t * pos)4602 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
4603 {
4604 	struct kernfs_open_file *of = s->private;
4605 	struct css_task_iter *it = of->priv;
4606 
4607 	if (pos)
4608 		(*pos)++;
4609 
4610 	return css_task_iter_next(it);
4611 }
4612 
__cgroup_procs_start(struct seq_file * s,loff_t * pos,unsigned int iter_flags)4613 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
4614 				  unsigned int iter_flags)
4615 {
4616 	struct kernfs_open_file *of = s->private;
4617 	struct cgroup *cgrp = seq_css(s)->cgroup;
4618 	struct css_task_iter *it = of->priv;
4619 
4620 	/*
4621 	 * When a seq_file is seeked, it's always traversed sequentially
4622 	 * from position 0, so we can simply keep iterating on !0 *pos.
4623 	 */
4624 	if (!it) {
4625 		if (WARN_ON_ONCE((*pos)))
4626 			return ERR_PTR(-EINVAL);
4627 
4628 		it = kzalloc(sizeof(*it), GFP_KERNEL);
4629 		if (!it)
4630 			return ERR_PTR(-ENOMEM);
4631 		of->priv = it;
4632 		css_task_iter_start(&cgrp->self, iter_flags, it);
4633 	} else if (!(*pos)) {
4634 		css_task_iter_end(it);
4635 		css_task_iter_start(&cgrp->self, iter_flags, it);
4636 	} else
4637 		return it->cur_task;
4638 
4639 	return cgroup_procs_next(s, NULL, NULL);
4640 }
4641 
cgroup_procs_start(struct seq_file * s,loff_t * pos)4642 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
4643 {
4644 	struct cgroup *cgrp = seq_css(s)->cgroup;
4645 
4646 	/*
4647 	 * All processes of a threaded subtree belong to the domain cgroup
4648 	 * of the subtree.  Only threads can be distributed across the
4649 	 * subtree.  Reject reads on cgroup.procs in the subtree proper.
4650 	 * They're always empty anyway.
4651 	 */
4652 	if (cgroup_is_threaded(cgrp))
4653 		return ERR_PTR(-EOPNOTSUPP);
4654 
4655 	return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
4656 					    CSS_TASK_ITER_THREADED);
4657 }
4658 
cgroup_procs_show(struct seq_file * s,void * v)4659 static int cgroup_procs_show(struct seq_file *s, void *v)
4660 {
4661 	seq_printf(s, "%d\n", task_pid_vnr(v));
4662 	return 0;
4663 }
4664 
cgroup_may_write(const struct cgroup * cgrp,struct super_block * sb)4665 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb)
4666 {
4667 	int ret;
4668 	struct inode *inode;
4669 
4670 	lockdep_assert_held(&cgroup_mutex);
4671 
4672 	inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
4673 	if (!inode)
4674 		return -ENOMEM;
4675 
4676 	ret = inode_permission(inode, MAY_WRITE);
4677 	iput(inode);
4678 	return ret;
4679 }
4680 
cgroup_procs_write_permission(struct cgroup * src_cgrp,struct cgroup * dst_cgrp,struct super_block * sb)4681 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
4682 					 struct cgroup *dst_cgrp,
4683 					 struct super_block *sb)
4684 {
4685 	struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
4686 	struct cgroup *com_cgrp = src_cgrp;
4687 	int ret;
4688 
4689 	lockdep_assert_held(&cgroup_mutex);
4690 
4691 	/* find the common ancestor */
4692 	while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
4693 		com_cgrp = cgroup_parent(com_cgrp);
4694 
4695 	/* %current should be authorized to migrate to the common ancestor */
4696 	ret = cgroup_may_write(com_cgrp, sb);
4697 	if (ret)
4698 		return ret;
4699 
4700 	/*
4701 	 * If namespaces are delegation boundaries, %current must be able
4702 	 * to see both source and destination cgroups from its namespace.
4703 	 */
4704 	if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
4705 	    (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
4706 	     !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
4707 		return -ENOENT;
4708 
4709 	return 0;
4710 }
4711 
cgroup_attach_permissions(struct cgroup * src_cgrp,struct cgroup * dst_cgrp,struct super_block * sb,bool threadgroup)4712 static int cgroup_attach_permissions(struct cgroup *src_cgrp,
4713 				     struct cgroup *dst_cgrp,
4714 				     struct super_block *sb, bool threadgroup)
4715 {
4716 	int ret = 0;
4717 
4718 	ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb);
4719 	if (ret)
4720 		return ret;
4721 
4722 	ret = cgroup_migrate_vet_dst(dst_cgrp);
4723 	if (ret)
4724 		return ret;
4725 
4726 	if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp))
4727 		ret = -EOPNOTSUPP;
4728 
4729 	return ret;
4730 }
4731 
cgroup_procs_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4732 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
4733 				  char *buf, size_t nbytes, loff_t off)
4734 {
4735 	struct cgroup *src_cgrp, *dst_cgrp;
4736 	struct task_struct *task;
4737 	ssize_t ret;
4738 	bool locked;
4739 
4740 	dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4741 	if (!dst_cgrp)
4742 		return -ENODEV;
4743 
4744 	task = cgroup_procs_write_start(buf, true, &locked);
4745 	ret = PTR_ERR_OR_ZERO(task);
4746 	if (ret)
4747 		goto out_unlock;
4748 
4749 	/* find the source cgroup */
4750 	spin_lock_irq(&css_set_lock);
4751 	src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4752 	spin_unlock_irq(&css_set_lock);
4753 
4754 	ret = cgroup_attach_permissions(src_cgrp, dst_cgrp,
4755 					of->file->f_path.dentry->d_sb, true);
4756 	if (ret)
4757 		goto out_finish;
4758 
4759 	ret = cgroup_attach_task(dst_cgrp, task, true);
4760 
4761 out_finish:
4762 	cgroup_procs_write_finish(task, locked);
4763 out_unlock:
4764 	cgroup_kn_unlock(of->kn);
4765 
4766 	return ret ?: nbytes;
4767 }
4768 
cgroup_threads_start(struct seq_file * s,loff_t * pos)4769 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
4770 {
4771 	return __cgroup_procs_start(s, pos, 0);
4772 }
4773 
cgroup_threads_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4774 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
4775 				    char *buf, size_t nbytes, loff_t off)
4776 {
4777 	struct cgroup *src_cgrp, *dst_cgrp;
4778 	struct task_struct *task;
4779 	ssize_t ret;
4780 	bool locked;
4781 
4782 	buf = strstrip(buf);
4783 
4784 	dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4785 	if (!dst_cgrp)
4786 		return -ENODEV;
4787 
4788 	task = cgroup_procs_write_start(buf, false, &locked);
4789 	ret = PTR_ERR_OR_ZERO(task);
4790 	if (ret)
4791 		goto out_unlock;
4792 
4793 	/* find the source cgroup */
4794 	spin_lock_irq(&css_set_lock);
4795 	src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4796 	spin_unlock_irq(&css_set_lock);
4797 
4798 	/* thread migrations follow the cgroup.procs delegation rule */
4799 	ret = cgroup_attach_permissions(src_cgrp, dst_cgrp,
4800 					of->file->f_path.dentry->d_sb, false);
4801 	if (ret)
4802 		goto out_finish;
4803 
4804 	ret = cgroup_attach_task(dst_cgrp, task, false);
4805 
4806 out_finish:
4807 	cgroup_procs_write_finish(task, locked);
4808 out_unlock:
4809 	cgroup_kn_unlock(of->kn);
4810 
4811 	return ret ?: nbytes;
4812 }
4813 
4814 /* cgroup core interface files for the default hierarchy */
4815 static struct cftype cgroup_base_files[] = {
4816 	{
4817 		.name = "cgroup.type",
4818 		.flags = CFTYPE_NOT_ON_ROOT,
4819 		.seq_show = cgroup_type_show,
4820 		.write = cgroup_type_write,
4821 	},
4822 	{
4823 		.name = "cgroup.procs",
4824 		.flags = CFTYPE_NS_DELEGATABLE,
4825 		.file_offset = offsetof(struct cgroup, procs_file),
4826 		.release = cgroup_procs_release,
4827 		.seq_start = cgroup_procs_start,
4828 		.seq_next = cgroup_procs_next,
4829 		.seq_show = cgroup_procs_show,
4830 		.write = cgroup_procs_write,
4831 	},
4832 	{
4833 		.name = "cgroup.threads",
4834 		.flags = CFTYPE_NS_DELEGATABLE,
4835 		.release = cgroup_procs_release,
4836 		.seq_start = cgroup_threads_start,
4837 		.seq_next = cgroup_procs_next,
4838 		.seq_show = cgroup_procs_show,
4839 		.write = cgroup_threads_write,
4840 	},
4841 	{
4842 		.name = "cgroup.controllers",
4843 		.seq_show = cgroup_controllers_show,
4844 	},
4845 	{
4846 		.name = "cgroup.subtree_control",
4847 		.flags = CFTYPE_NS_DELEGATABLE,
4848 		.seq_show = cgroup_subtree_control_show,
4849 		.write = cgroup_subtree_control_write,
4850 	},
4851 	{
4852 		.name = "cgroup.events",
4853 		.flags = CFTYPE_NOT_ON_ROOT,
4854 		.file_offset = offsetof(struct cgroup, events_file),
4855 		.seq_show = cgroup_events_show,
4856 	},
4857 	{
4858 		.name = "cgroup.max.descendants",
4859 		.seq_show = cgroup_max_descendants_show,
4860 		.write = cgroup_max_descendants_write,
4861 	},
4862 	{
4863 		.name = "cgroup.max.depth",
4864 		.seq_show = cgroup_max_depth_show,
4865 		.write = cgroup_max_depth_write,
4866 	},
4867 	{
4868 		.name = "cgroup.stat",
4869 		.seq_show = cgroup_stat_show,
4870 	},
4871 	{
4872 		.name = "cgroup.freeze",
4873 		.flags = CFTYPE_NOT_ON_ROOT,
4874 		.seq_show = cgroup_freeze_show,
4875 		.write = cgroup_freeze_write,
4876 	},
4877 	{
4878 		.name = "cpu.stat",
4879 		.seq_show = cpu_stat_show,
4880 	},
4881 #ifdef CONFIG_PSI
4882 	{
4883 		.name = "io.pressure",
4884 		.seq_show = cgroup_io_pressure_show,
4885 		.write = cgroup_io_pressure_write,
4886 		.poll = cgroup_pressure_poll,
4887 		.release = cgroup_pressure_release,
4888 	},
4889 	{
4890 		.name = "memory.pressure",
4891 		.seq_show = cgroup_memory_pressure_show,
4892 		.write = cgroup_memory_pressure_write,
4893 		.poll = cgroup_pressure_poll,
4894 		.release = cgroup_pressure_release,
4895 	},
4896 	{
4897 		.name = "cpu.pressure",
4898 		.seq_show = cgroup_cpu_pressure_show,
4899 		.write = cgroup_cpu_pressure_write,
4900 		.poll = cgroup_pressure_poll,
4901 		.release = cgroup_pressure_release,
4902 	},
4903 #endif /* CONFIG_PSI */
4904 	{ }	/* terminate */
4905 };
4906 
4907 /*
4908  * css destruction is four-stage process.
4909  *
4910  * 1. Destruction starts.  Killing of the percpu_ref is initiated.
4911  *    Implemented in kill_css().
4912  *
4913  * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4914  *    and thus css_tryget_online() is guaranteed to fail, the css can be
4915  *    offlined by invoking offline_css().  After offlining, the base ref is
4916  *    put.  Implemented in css_killed_work_fn().
4917  *
4918  * 3. When the percpu_ref reaches zero, the only possible remaining
4919  *    accessors are inside RCU read sections.  css_release() schedules the
4920  *    RCU callback.
4921  *
4922  * 4. After the grace period, the css can be freed.  Implemented in
4923  *    css_free_work_fn().
4924  *
4925  * It is actually hairier because both step 2 and 4 require process context
4926  * and thus involve punting to css->destroy_work adding two additional
4927  * steps to the already complex sequence.
4928  */
css_free_rwork_fn(struct work_struct * work)4929 static void css_free_rwork_fn(struct work_struct *work)
4930 {
4931 	struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
4932 				struct cgroup_subsys_state, destroy_rwork);
4933 	struct cgroup_subsys *ss = css->ss;
4934 	struct cgroup *cgrp = css->cgroup;
4935 
4936 	percpu_ref_exit(&css->refcnt);
4937 
4938 	if (ss) {
4939 		/* css free path */
4940 		struct cgroup_subsys_state *parent = css->parent;
4941 		int id = css->id;
4942 
4943 		ss->css_free(css);
4944 		cgroup_idr_remove(&ss->css_idr, id);
4945 		cgroup_put(cgrp);
4946 
4947 		if (parent)
4948 			css_put(parent);
4949 	} else {
4950 		/* cgroup free path */
4951 		atomic_dec(&cgrp->root->nr_cgrps);
4952 		cgroup1_pidlist_destroy_all(cgrp);
4953 		cancel_work_sync(&cgrp->release_agent_work);
4954 
4955 		if (cgroup_parent(cgrp)) {
4956 			/*
4957 			 * We get a ref to the parent, and put the ref when
4958 			 * this cgroup is being freed, so it's guaranteed
4959 			 * that the parent won't be destroyed before its
4960 			 * children.
4961 			 */
4962 			cgroup_put(cgroup_parent(cgrp));
4963 			kernfs_put(cgrp->kn);
4964 			psi_cgroup_free(cgrp);
4965 			if (cgroup_on_dfl(cgrp))
4966 				cgroup_rstat_exit(cgrp);
4967 			kfree(cgrp);
4968 		} else {
4969 			/*
4970 			 * This is root cgroup's refcnt reaching zero,
4971 			 * which indicates that the root should be
4972 			 * released.
4973 			 */
4974 			cgroup_destroy_root(cgrp->root);
4975 		}
4976 	}
4977 }
4978 
css_release_work_fn(struct work_struct * work)4979 static void css_release_work_fn(struct work_struct *work)
4980 {
4981 	struct cgroup_subsys_state *css =
4982 		container_of(work, struct cgroup_subsys_state, destroy_work);
4983 	struct cgroup_subsys *ss = css->ss;
4984 	struct cgroup *cgrp = css->cgroup;
4985 
4986 	mutex_lock(&cgroup_mutex);
4987 
4988 	css->flags |= CSS_RELEASED;
4989 	list_del_rcu(&css->sibling);
4990 
4991 	if (ss) {
4992 		/* css release path */
4993 		if (!list_empty(&css->rstat_css_node)) {
4994 			cgroup_rstat_flush(cgrp);
4995 			list_del_rcu(&css->rstat_css_node);
4996 		}
4997 
4998 		cgroup_idr_replace(&ss->css_idr, NULL, css->id);
4999 		if (ss->css_released)
5000 			ss->css_released(css);
5001 	} else {
5002 		struct cgroup *tcgrp;
5003 
5004 		/* cgroup release path */
5005 		TRACE_CGROUP_PATH(release, cgrp);
5006 
5007 		if (cgroup_on_dfl(cgrp))
5008 			cgroup_rstat_flush(cgrp);
5009 
5010 		spin_lock_irq(&css_set_lock);
5011 		for (tcgrp = cgroup_parent(cgrp); tcgrp;
5012 		     tcgrp = cgroup_parent(tcgrp))
5013 			tcgrp->nr_dying_descendants--;
5014 		spin_unlock_irq(&css_set_lock);
5015 
5016 		/*
5017 		 * There are two control paths which try to determine
5018 		 * cgroup from dentry without going through kernfs -
5019 		 * cgroupstats_build() and css_tryget_online_from_dir().
5020 		 * Those are supported by RCU protecting clearing of
5021 		 * cgrp->kn->priv backpointer.
5022 		 */
5023 		if (cgrp->kn)
5024 			RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5025 					 NULL);
5026 	}
5027 
5028 	mutex_unlock(&cgroup_mutex);
5029 
5030 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5031 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5032 }
5033 
css_release(struct percpu_ref * ref)5034 static void css_release(struct percpu_ref *ref)
5035 {
5036 	struct cgroup_subsys_state *css =
5037 		container_of(ref, struct cgroup_subsys_state, refcnt);
5038 
5039 	INIT_WORK(&css->destroy_work, css_release_work_fn);
5040 	queue_work(cgroup_destroy_wq, &css->destroy_work);
5041 }
5042 
init_and_link_css(struct cgroup_subsys_state * css,struct cgroup_subsys * ss,struct cgroup * cgrp)5043 static void init_and_link_css(struct cgroup_subsys_state *css,
5044 			      struct cgroup_subsys *ss, struct cgroup *cgrp)
5045 {
5046 	lockdep_assert_held(&cgroup_mutex);
5047 
5048 	cgroup_get_live(cgrp);
5049 
5050 	memset(css, 0, sizeof(*css));
5051 	css->cgroup = cgrp;
5052 	css->ss = ss;
5053 	css->id = -1;
5054 	INIT_LIST_HEAD(&css->sibling);
5055 	INIT_LIST_HEAD(&css->children);
5056 	INIT_LIST_HEAD(&css->rstat_css_node);
5057 	css->serial_nr = css_serial_nr_next++;
5058 	atomic_set(&css->online_cnt, 0);
5059 
5060 	if (cgroup_parent(cgrp)) {
5061 		css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5062 		css_get(css->parent);
5063 	}
5064 
5065 	if (cgroup_on_dfl(cgrp) && ss->css_rstat_flush)
5066 		list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
5067 
5068 	BUG_ON(cgroup_css(cgrp, ss));
5069 }
5070 
5071 /* invoke ->css_online() on a new CSS and mark it online if successful */
online_css(struct cgroup_subsys_state * css)5072 static int online_css(struct cgroup_subsys_state *css)
5073 {
5074 	struct cgroup_subsys *ss = css->ss;
5075 	int ret = 0;
5076 
5077 	lockdep_assert_held(&cgroup_mutex);
5078 
5079 	if (ss->css_online)
5080 		ret = ss->css_online(css);
5081 	if (!ret) {
5082 		css->flags |= CSS_ONLINE;
5083 		rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5084 
5085 		atomic_inc(&css->online_cnt);
5086 		if (css->parent)
5087 			atomic_inc(&css->parent->online_cnt);
5088 	}
5089 	return ret;
5090 }
5091 
5092 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
offline_css(struct cgroup_subsys_state * css)5093 static void offline_css(struct cgroup_subsys_state *css)
5094 {
5095 	struct cgroup_subsys *ss = css->ss;
5096 
5097 	lockdep_assert_held(&cgroup_mutex);
5098 
5099 	if (!(css->flags & CSS_ONLINE))
5100 		return;
5101 
5102 	if (ss->css_offline)
5103 		ss->css_offline(css);
5104 
5105 	css->flags &= ~CSS_ONLINE;
5106 	RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5107 
5108 	wake_up_all(&css->cgroup->offline_waitq);
5109 }
5110 
5111 /**
5112  * css_create - create a cgroup_subsys_state
5113  * @cgrp: the cgroup new css will be associated with
5114  * @ss: the subsys of new css
5115  *
5116  * Create a new css associated with @cgrp - @ss pair.  On success, the new
5117  * css is online and installed in @cgrp.  This function doesn't create the
5118  * interface files.  Returns 0 on success, -errno on failure.
5119  */
css_create(struct cgroup * cgrp,struct cgroup_subsys * ss)5120 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5121 					      struct cgroup_subsys *ss)
5122 {
5123 	struct cgroup *parent = cgroup_parent(cgrp);
5124 	struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5125 	struct cgroup_subsys_state *css;
5126 	int err;
5127 
5128 	lockdep_assert_held(&cgroup_mutex);
5129 
5130 	css = ss->css_alloc(parent_css);
5131 	if (!css)
5132 		css = ERR_PTR(-ENOMEM);
5133 	if (IS_ERR(css))
5134 		return css;
5135 
5136 	init_and_link_css(css, ss, cgrp);
5137 
5138 	err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5139 	if (err)
5140 		goto err_free_css;
5141 
5142 	err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5143 	if (err < 0)
5144 		goto err_free_css;
5145 	css->id = err;
5146 
5147 	/* @css is ready to be brought online now, make it visible */
5148 	list_add_tail_rcu(&css->sibling, &parent_css->children);
5149 	cgroup_idr_replace(&ss->css_idr, css, css->id);
5150 
5151 	err = online_css(css);
5152 	if (err)
5153 		goto err_list_del;
5154 
5155 	if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
5156 	    cgroup_parent(parent)) {
5157 		pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
5158 			current->comm, current->pid, ss->name);
5159 		if (!strcmp(ss->name, "memory"))
5160 			pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
5161 		ss->warned_broken_hierarchy = true;
5162 	}
5163 
5164 	return css;
5165 
5166 err_list_del:
5167 	list_del_rcu(&css->sibling);
5168 err_free_css:
5169 	list_del_rcu(&css->rstat_css_node);
5170 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5171 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5172 	return ERR_PTR(err);
5173 }
5174 
5175 /*
5176  * The returned cgroup is fully initialized including its control mask, but
5177  * it isn't associated with its kernfs_node and doesn't have the control
5178  * mask applied.
5179  */
cgroup_create(struct cgroup * parent,const char * name,umode_t mode)5180 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name,
5181 				    umode_t mode)
5182 {
5183 	struct cgroup_root *root = parent->root;
5184 	struct cgroup *cgrp, *tcgrp;
5185 	struct kernfs_node *kn;
5186 	int level = parent->level + 1;
5187 	int ret;
5188 
5189 	/* allocate the cgroup and its ID, 0 is reserved for the root */
5190 	cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)),
5191 		       GFP_KERNEL);
5192 	if (!cgrp)
5193 		return ERR_PTR(-ENOMEM);
5194 
5195 	ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5196 	if (ret)
5197 		goto out_free_cgrp;
5198 
5199 	if (cgroup_on_dfl(parent)) {
5200 		ret = cgroup_rstat_init(cgrp);
5201 		if (ret)
5202 			goto out_cancel_ref;
5203 	}
5204 
5205 	/* create the directory */
5206 	kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5207 	if (IS_ERR(kn)) {
5208 		ret = PTR_ERR(kn);
5209 		goto out_stat_exit;
5210 	}
5211 	cgrp->kn = kn;
5212 
5213 	init_cgroup_housekeeping(cgrp);
5214 
5215 	cgrp->self.parent = &parent->self;
5216 	cgrp->root = root;
5217 	cgrp->level = level;
5218 
5219 	ret = psi_cgroup_alloc(cgrp);
5220 	if (ret)
5221 		goto out_kernfs_remove;
5222 
5223 	ret = cgroup_bpf_inherit(cgrp);
5224 	if (ret)
5225 		goto out_psi_free;
5226 
5227 	/*
5228 	 * New cgroup inherits effective freeze counter, and
5229 	 * if the parent has to be frozen, the child has too.
5230 	 */
5231 	cgrp->freezer.e_freeze = parent->freezer.e_freeze;
5232 	if (cgrp->freezer.e_freeze) {
5233 		/*
5234 		 * Set the CGRP_FREEZE flag, so when a process will be
5235 		 * attached to the child cgroup, it will become frozen.
5236 		 * At this point the new cgroup is unpopulated, so we can
5237 		 * consider it frozen immediately.
5238 		 */
5239 		set_bit(CGRP_FREEZE, &cgrp->flags);
5240 		set_bit(CGRP_FROZEN, &cgrp->flags);
5241 	}
5242 
5243 	spin_lock_irq(&css_set_lock);
5244 	for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5245 		cgrp->ancestor_ids[tcgrp->level] = cgroup_id(tcgrp);
5246 
5247 		if (tcgrp != cgrp) {
5248 			tcgrp->nr_descendants++;
5249 
5250 			/*
5251 			 * If the new cgroup is frozen, all ancestor cgroups
5252 			 * get a new frozen descendant, but their state can't
5253 			 * change because of this.
5254 			 */
5255 			if (cgrp->freezer.e_freeze)
5256 				tcgrp->freezer.nr_frozen_descendants++;
5257 		}
5258 	}
5259 	spin_unlock_irq(&css_set_lock);
5260 
5261 	if (notify_on_release(parent))
5262 		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5263 
5264 	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5265 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5266 
5267 	cgrp->self.serial_nr = css_serial_nr_next++;
5268 
5269 	/* allocation complete, commit to creation */
5270 	list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5271 	atomic_inc(&root->nr_cgrps);
5272 	cgroup_get_live(parent);
5273 
5274 	/*
5275 	 * On the default hierarchy, a child doesn't automatically inherit
5276 	 * subtree_control from the parent.  Each is configured manually.
5277 	 */
5278 	if (!cgroup_on_dfl(cgrp))
5279 		cgrp->subtree_control = cgroup_control(cgrp);
5280 
5281 	cgroup_propagate_control(cgrp);
5282 
5283 	return cgrp;
5284 
5285 out_psi_free:
5286 	psi_cgroup_free(cgrp);
5287 out_kernfs_remove:
5288 	kernfs_remove(cgrp->kn);
5289 out_stat_exit:
5290 	if (cgroup_on_dfl(parent))
5291 		cgroup_rstat_exit(cgrp);
5292 out_cancel_ref:
5293 	percpu_ref_exit(&cgrp->self.refcnt);
5294 out_free_cgrp:
5295 	kfree(cgrp);
5296 	return ERR_PTR(ret);
5297 }
5298 
cgroup_check_hierarchy_limits(struct cgroup * parent)5299 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
5300 {
5301 	struct cgroup *cgroup;
5302 	int ret = false;
5303 	int level = 1;
5304 
5305 	lockdep_assert_held(&cgroup_mutex);
5306 
5307 	for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
5308 		if (cgroup->nr_descendants >= cgroup->max_descendants)
5309 			goto fail;
5310 
5311 		if (level > cgroup->max_depth)
5312 			goto fail;
5313 
5314 		level++;
5315 	}
5316 
5317 	ret = true;
5318 fail:
5319 	return ret;
5320 }
5321 
cgroup_mkdir(struct kernfs_node * parent_kn,const char * name,umode_t mode)5322 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
5323 {
5324 	struct cgroup *parent, *cgrp;
5325 	int ret;
5326 
5327 	/* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5328 	if (strchr(name, '\n'))
5329 		return -EINVAL;
5330 
5331 	parent = cgroup_kn_lock_live(parent_kn, false);
5332 	if (!parent)
5333 		return -ENODEV;
5334 
5335 	if (!cgroup_check_hierarchy_limits(parent)) {
5336 		ret = -EAGAIN;
5337 		goto out_unlock;
5338 	}
5339 
5340 	cgrp = cgroup_create(parent, name, mode);
5341 	if (IS_ERR(cgrp)) {
5342 		ret = PTR_ERR(cgrp);
5343 		goto out_unlock;
5344 	}
5345 
5346 	/*
5347 	 * This extra ref will be put in cgroup_free_fn() and guarantees
5348 	 * that @cgrp->kn is always accessible.
5349 	 */
5350 	kernfs_get(cgrp->kn);
5351 
5352 	ret = cgroup_kn_set_ugid(cgrp->kn);
5353 	if (ret)
5354 		goto out_destroy;
5355 
5356 	ret = css_populate_dir(&cgrp->self);
5357 	if (ret)
5358 		goto out_destroy;
5359 
5360 	ret = cgroup_apply_control_enable(cgrp);
5361 	if (ret)
5362 		goto out_destroy;
5363 
5364 	TRACE_CGROUP_PATH(mkdir, cgrp);
5365 
5366 	/* let's create and online css's */
5367 	kernfs_activate(cgrp->kn);
5368 
5369 	ret = 0;
5370 	goto out_unlock;
5371 
5372 out_destroy:
5373 	cgroup_destroy_locked(cgrp);
5374 out_unlock:
5375 	cgroup_kn_unlock(parent_kn);
5376 	return ret;
5377 }
5378 
5379 /*
5380  * This is called when the refcnt of a css is confirmed to be killed.
5381  * css_tryget_online() is now guaranteed to fail.  Tell the subsystem to
5382  * initate destruction and put the css ref from kill_css().
5383  */
css_killed_work_fn(struct work_struct * work)5384 static void css_killed_work_fn(struct work_struct *work)
5385 {
5386 	struct cgroup_subsys_state *css =
5387 		container_of(work, struct cgroup_subsys_state, destroy_work);
5388 
5389 	mutex_lock(&cgroup_mutex);
5390 
5391 	do {
5392 		offline_css(css);
5393 		css_put(css);
5394 		/* @css can't go away while we're holding cgroup_mutex */
5395 		css = css->parent;
5396 	} while (css && atomic_dec_and_test(&css->online_cnt));
5397 
5398 	mutex_unlock(&cgroup_mutex);
5399 }
5400 
5401 /* css kill confirmation processing requires process context, bounce */
css_killed_ref_fn(struct percpu_ref * ref)5402 static void css_killed_ref_fn(struct percpu_ref *ref)
5403 {
5404 	struct cgroup_subsys_state *css =
5405 		container_of(ref, struct cgroup_subsys_state, refcnt);
5406 
5407 	if (atomic_dec_and_test(&css->online_cnt)) {
5408 		INIT_WORK(&css->destroy_work, css_killed_work_fn);
5409 		queue_work(cgroup_destroy_wq, &css->destroy_work);
5410 	}
5411 }
5412 
5413 /**
5414  * kill_css - destroy a css
5415  * @css: css to destroy
5416  *
5417  * This function initiates destruction of @css by removing cgroup interface
5418  * files and putting its base reference.  ->css_offline() will be invoked
5419  * asynchronously once css_tryget_online() is guaranteed to fail and when
5420  * the reference count reaches zero, @css will be released.
5421  */
kill_css(struct cgroup_subsys_state * css)5422 static void kill_css(struct cgroup_subsys_state *css)
5423 {
5424 	lockdep_assert_held(&cgroup_mutex);
5425 
5426 	if (css->flags & CSS_DYING)
5427 		return;
5428 
5429 	css->flags |= CSS_DYING;
5430 
5431 	/*
5432 	 * This must happen before css is disassociated with its cgroup.
5433 	 * See seq_css() for details.
5434 	 */
5435 	css_clear_dir(css);
5436 
5437 	/*
5438 	 * Killing would put the base ref, but we need to keep it alive
5439 	 * until after ->css_offline().
5440 	 */
5441 	css_get(css);
5442 
5443 	/*
5444 	 * cgroup core guarantees that, by the time ->css_offline() is
5445 	 * invoked, no new css reference will be given out via
5446 	 * css_tryget_online().  We can't simply call percpu_ref_kill() and
5447 	 * proceed to offlining css's because percpu_ref_kill() doesn't
5448 	 * guarantee that the ref is seen as killed on all CPUs on return.
5449 	 *
5450 	 * Use percpu_ref_kill_and_confirm() to get notifications as each
5451 	 * css is confirmed to be seen as killed on all CPUs.
5452 	 */
5453 	percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5454 }
5455 
5456 /**
5457  * cgroup_destroy_locked - the first stage of cgroup destruction
5458  * @cgrp: cgroup to be destroyed
5459  *
5460  * css's make use of percpu refcnts whose killing latency shouldn't be
5461  * exposed to userland and are RCU protected.  Also, cgroup core needs to
5462  * guarantee that css_tryget_online() won't succeed by the time
5463  * ->css_offline() is invoked.  To satisfy all the requirements,
5464  * destruction is implemented in the following two steps.
5465  *
5466  * s1. Verify @cgrp can be destroyed and mark it dying.  Remove all
5467  *     userland visible parts and start killing the percpu refcnts of
5468  *     css's.  Set up so that the next stage will be kicked off once all
5469  *     the percpu refcnts are confirmed to be killed.
5470  *
5471  * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5472  *     rest of destruction.  Once all cgroup references are gone, the
5473  *     cgroup is RCU-freed.
5474  *
5475  * This function implements s1.  After this step, @cgrp is gone as far as
5476  * the userland is concerned and a new cgroup with the same name may be
5477  * created.  As cgroup doesn't care about the names internally, this
5478  * doesn't cause any problem.
5479  */
cgroup_destroy_locked(struct cgroup * cgrp)5480 static int cgroup_destroy_locked(struct cgroup *cgrp)
5481 	__releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5482 {
5483 	struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5484 	struct cgroup_subsys_state *css;
5485 	struct cgrp_cset_link *link;
5486 	int ssid;
5487 
5488 	lockdep_assert_held(&cgroup_mutex);
5489 
5490 	/*
5491 	 * Only migration can raise populated from zero and we're already
5492 	 * holding cgroup_mutex.
5493 	 */
5494 	if (cgroup_is_populated(cgrp))
5495 		return -EBUSY;
5496 
5497 	/*
5498 	 * Make sure there's no live children.  We can't test emptiness of
5499 	 * ->self.children as dead children linger on it while being
5500 	 * drained; otherwise, "rmdir parent/child parent" may fail.
5501 	 */
5502 	if (css_has_online_children(&cgrp->self))
5503 		return -EBUSY;
5504 
5505 	/*
5506 	 * Mark @cgrp and the associated csets dead.  The former prevents
5507 	 * further task migration and child creation by disabling
5508 	 * cgroup_lock_live_group().  The latter makes the csets ignored by
5509 	 * the migration path.
5510 	 */
5511 	cgrp->self.flags &= ~CSS_ONLINE;
5512 
5513 	spin_lock_irq(&css_set_lock);
5514 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
5515 		link->cset->dead = true;
5516 	spin_unlock_irq(&css_set_lock);
5517 
5518 	/* initiate massacre of all css's */
5519 	for_each_css(css, ssid, cgrp)
5520 		kill_css(css);
5521 
5522 	/* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5523 	css_clear_dir(&cgrp->self);
5524 	kernfs_remove(cgrp->kn);
5525 
5526 	if (parent && cgroup_is_threaded(cgrp))
5527 		parent->nr_threaded_children--;
5528 
5529 	spin_lock_irq(&css_set_lock);
5530 	for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5531 		tcgrp->nr_descendants--;
5532 		tcgrp->nr_dying_descendants++;
5533 		/*
5534 		 * If the dying cgroup is frozen, decrease frozen descendants
5535 		 * counters of ancestor cgroups.
5536 		 */
5537 		if (test_bit(CGRP_FROZEN, &cgrp->flags))
5538 			tcgrp->freezer.nr_frozen_descendants--;
5539 	}
5540 	spin_unlock_irq(&css_set_lock);
5541 
5542 	cgroup1_check_for_release(parent);
5543 
5544 	cgroup_bpf_offline(cgrp);
5545 
5546 	/* put the base reference */
5547 	percpu_ref_kill(&cgrp->self.refcnt);
5548 
5549 	return 0;
5550 };
5551 
cgroup_rmdir(struct kernfs_node * kn)5552 int cgroup_rmdir(struct kernfs_node *kn)
5553 {
5554 	struct cgroup *cgrp;
5555 	int ret = 0;
5556 
5557 	cgrp = cgroup_kn_lock_live(kn, false);
5558 	if (!cgrp)
5559 		return 0;
5560 
5561 	ret = cgroup_destroy_locked(cgrp);
5562 	if (!ret)
5563 		TRACE_CGROUP_PATH(rmdir, cgrp);
5564 
5565 	cgroup_kn_unlock(kn);
5566 	return ret;
5567 }
5568 
5569 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5570 	.show_options		= cgroup_show_options,
5571 	.mkdir			= cgroup_mkdir,
5572 	.rmdir			= cgroup_rmdir,
5573 	.show_path		= cgroup_show_path,
5574 };
5575 
cgroup_init_subsys(struct cgroup_subsys * ss,bool early)5576 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5577 {
5578 	struct cgroup_subsys_state *css;
5579 
5580 	pr_debug("Initializing cgroup subsys %s\n", ss->name);
5581 
5582 	mutex_lock(&cgroup_mutex);
5583 
5584 	idr_init(&ss->css_idr);
5585 	INIT_LIST_HEAD(&ss->cfts);
5586 
5587 	/* Create the root cgroup state for this subsystem */
5588 	ss->root = &cgrp_dfl_root;
5589 	css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5590 	/* We don't handle early failures gracefully */
5591 	BUG_ON(IS_ERR(css));
5592 	init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5593 
5594 	/*
5595 	 * Root csses are never destroyed and we can't initialize
5596 	 * percpu_ref during early init.  Disable refcnting.
5597 	 */
5598 	css->flags |= CSS_NO_REF;
5599 
5600 	if (early) {
5601 		/* allocation can't be done safely during early init */
5602 		css->id = 1;
5603 	} else {
5604 		css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5605 		BUG_ON(css->id < 0);
5606 	}
5607 
5608 	/* Update the init_css_set to contain a subsys
5609 	 * pointer to this state - since the subsystem is
5610 	 * newly registered, all tasks and hence the
5611 	 * init_css_set is in the subsystem's root cgroup. */
5612 	init_css_set.subsys[ss->id] = css;
5613 
5614 	have_fork_callback |= (bool)ss->fork << ss->id;
5615 	have_exit_callback |= (bool)ss->exit << ss->id;
5616 	have_release_callback |= (bool)ss->release << ss->id;
5617 	have_canfork_callback |= (bool)ss->can_fork << ss->id;
5618 
5619 	/* At system boot, before all subsystems have been
5620 	 * registered, no tasks have been forked, so we don't
5621 	 * need to invoke fork callbacks here. */
5622 	BUG_ON(!list_empty(&init_task.tasks));
5623 
5624 	BUG_ON(online_css(css));
5625 
5626 	mutex_unlock(&cgroup_mutex);
5627 }
5628 
5629 /**
5630  * cgroup_init_early - cgroup initialization at system boot
5631  *
5632  * Initialize cgroups at system boot, and initialize any
5633  * subsystems that request early init.
5634  */
cgroup_init_early(void)5635 int __init cgroup_init_early(void)
5636 {
5637 	static struct cgroup_fs_context __initdata ctx;
5638 	struct cgroup_subsys *ss;
5639 	int i;
5640 
5641 	ctx.root = &cgrp_dfl_root;
5642 	init_cgroup_root(&ctx);
5643 	cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5644 
5645 	RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5646 
5647 	for_each_subsys(ss, i) {
5648 		WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5649 		     "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5650 		     i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5651 		     ss->id, ss->name);
5652 		WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5653 		     "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5654 
5655 		ss->id = i;
5656 		ss->name = cgroup_subsys_name[i];
5657 		if (!ss->legacy_name)
5658 			ss->legacy_name = cgroup_subsys_name[i];
5659 
5660 		if (ss->early_init)
5661 			cgroup_init_subsys(ss, true);
5662 	}
5663 	return 0;
5664 }
5665 
5666 static u16 cgroup_disable_mask __initdata;
5667 
5668 /**
5669  * cgroup_init - cgroup initialization
5670  *
5671  * Register cgroup filesystem and /proc file, and initialize
5672  * any subsystems that didn't request early init.
5673  */
cgroup_init(void)5674 int __init cgroup_init(void)
5675 {
5676 	struct cgroup_subsys *ss;
5677 	int ssid;
5678 
5679 	BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5680 	BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
5681 	BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
5682 
5683 	cgroup_rstat_boot();
5684 
5685 	/*
5686 	 * The latency of the synchronize_rcu() is too high for cgroups,
5687 	 * avoid it at the cost of forcing all readers into the slow path.
5688 	 */
5689 	rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
5690 
5691 	get_user_ns(init_cgroup_ns.user_ns);
5692 
5693 	mutex_lock(&cgroup_mutex);
5694 
5695 	/*
5696 	 * Add init_css_set to the hash table so that dfl_root can link to
5697 	 * it during init.
5698 	 */
5699 	hash_add(css_set_table, &init_css_set.hlist,
5700 		 css_set_hash(init_css_set.subsys));
5701 
5702 	BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5703 
5704 	mutex_unlock(&cgroup_mutex);
5705 
5706 	for_each_subsys(ss, ssid) {
5707 		if (ss->early_init) {
5708 			struct cgroup_subsys_state *css =
5709 				init_css_set.subsys[ss->id];
5710 
5711 			css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5712 						   GFP_KERNEL);
5713 			BUG_ON(css->id < 0);
5714 		} else {
5715 			cgroup_init_subsys(ss, false);
5716 		}
5717 
5718 		list_add_tail(&init_css_set.e_cset_node[ssid],
5719 			      &cgrp_dfl_root.cgrp.e_csets[ssid]);
5720 
5721 		/*
5722 		 * Setting dfl_root subsys_mask needs to consider the
5723 		 * disabled flag and cftype registration needs kmalloc,
5724 		 * both of which aren't available during early_init.
5725 		 */
5726 		if (cgroup_disable_mask & (1 << ssid)) {
5727 			static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5728 			printk(KERN_INFO "Disabling %s control group subsystem\n",
5729 			       ss->name);
5730 			continue;
5731 		}
5732 
5733 		if (cgroup1_ssid_disabled(ssid))
5734 			printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5735 			       ss->name);
5736 
5737 		cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5738 
5739 		/* implicit controllers must be threaded too */
5740 		WARN_ON(ss->implicit_on_dfl && !ss->threaded);
5741 
5742 		if (ss->implicit_on_dfl)
5743 			cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5744 		else if (!ss->dfl_cftypes)
5745 			cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5746 
5747 		if (ss->threaded)
5748 			cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
5749 
5750 		if (ss->dfl_cftypes == ss->legacy_cftypes) {
5751 			WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5752 		} else {
5753 			WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5754 			WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5755 		}
5756 
5757 		if (ss->bind)
5758 			ss->bind(init_css_set.subsys[ssid]);
5759 
5760 		mutex_lock(&cgroup_mutex);
5761 		css_populate_dir(init_css_set.subsys[ssid]);
5762 		mutex_unlock(&cgroup_mutex);
5763 	}
5764 
5765 	/* init_css_set.subsys[] has been updated, re-hash */
5766 	hash_del(&init_css_set.hlist);
5767 	hash_add(css_set_table, &init_css_set.hlist,
5768 		 css_set_hash(init_css_set.subsys));
5769 
5770 	WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5771 	WARN_ON(register_filesystem(&cgroup_fs_type));
5772 	WARN_ON(register_filesystem(&cgroup2_fs_type));
5773 	WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
5774 #ifdef CONFIG_CPUSETS
5775 	WARN_ON(register_filesystem(&cpuset_fs_type));
5776 #endif
5777 
5778 	return 0;
5779 }
5780 
cgroup_wq_init(void)5781 static int __init cgroup_wq_init(void)
5782 {
5783 	/*
5784 	 * There isn't much point in executing destruction path in
5785 	 * parallel.  Good chunk is serialized with cgroup_mutex anyway.
5786 	 * Use 1 for @max_active.
5787 	 *
5788 	 * We would prefer to do this in cgroup_init() above, but that
5789 	 * is called before init_workqueues(): so leave this until after.
5790 	 */
5791 	cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5792 	BUG_ON(!cgroup_destroy_wq);
5793 	return 0;
5794 }
5795 core_initcall(cgroup_wq_init);
5796 
cgroup_path_from_kernfs_id(u64 id,char * buf,size_t buflen)5797 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen)
5798 {
5799 	struct kernfs_node *kn;
5800 
5801 	kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
5802 	if (!kn)
5803 		return;
5804 	kernfs_path(kn, buf, buflen);
5805 	kernfs_put(kn);
5806 }
5807 
5808 /*
5809  * proc_cgroup_show()
5810  *  - Print task's cgroup paths into seq_file, one line for each hierarchy
5811  *  - Used for /proc/<pid>/cgroup.
5812  */
proc_cgroup_show(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * tsk)5813 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5814 		     struct pid *pid, struct task_struct *tsk)
5815 {
5816 	char *buf;
5817 	int retval;
5818 	struct cgroup_root *root;
5819 
5820 	retval = -ENOMEM;
5821 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
5822 	if (!buf)
5823 		goto out;
5824 
5825 	mutex_lock(&cgroup_mutex);
5826 	spin_lock_irq(&css_set_lock);
5827 
5828 	for_each_root(root) {
5829 		struct cgroup_subsys *ss;
5830 		struct cgroup *cgrp;
5831 		int ssid, count = 0;
5832 
5833 		if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
5834 			continue;
5835 
5836 		seq_printf(m, "%d:", root->hierarchy_id);
5837 		if (root != &cgrp_dfl_root)
5838 			for_each_subsys(ss, ssid)
5839 				if (root->subsys_mask & (1 << ssid))
5840 					seq_printf(m, "%s%s", count++ ? "," : "",
5841 						   ss->legacy_name);
5842 		if (strlen(root->name))
5843 			seq_printf(m, "%sname=%s", count ? "," : "",
5844 				   root->name);
5845 		seq_putc(m, ':');
5846 
5847 		cgrp = task_cgroup_from_root(tsk, root);
5848 
5849 		/*
5850 		 * On traditional hierarchies, all zombie tasks show up as
5851 		 * belonging to the root cgroup.  On the default hierarchy,
5852 		 * while a zombie doesn't show up in "cgroup.procs" and
5853 		 * thus can't be migrated, its /proc/PID/cgroup keeps
5854 		 * reporting the cgroup it belonged to before exiting.  If
5855 		 * the cgroup is removed before the zombie is reaped,
5856 		 * " (deleted)" is appended to the cgroup path.
5857 		 */
5858 		if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5859 			retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
5860 						current->nsproxy->cgroup_ns);
5861 			if (retval >= PATH_MAX)
5862 				retval = -ENAMETOOLONG;
5863 			if (retval < 0)
5864 				goto out_unlock;
5865 
5866 			seq_puts(m, buf);
5867 		} else {
5868 			seq_puts(m, "/");
5869 		}
5870 
5871 		if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5872 			seq_puts(m, " (deleted)\n");
5873 		else
5874 			seq_putc(m, '\n');
5875 	}
5876 
5877 	retval = 0;
5878 out_unlock:
5879 	spin_unlock_irq(&css_set_lock);
5880 	mutex_unlock(&cgroup_mutex);
5881 	kfree(buf);
5882 out:
5883 	return retval;
5884 }
5885 
5886 /**
5887  * cgroup_fork - initialize cgroup related fields during copy_process()
5888  * @child: pointer to task_struct of forking parent process.
5889  *
5890  * A task is associated with the init_css_set until cgroup_post_fork()
5891  * attaches it to the target css_set.
5892  */
cgroup_fork(struct task_struct * child)5893 void cgroup_fork(struct task_struct *child)
5894 {
5895 	RCU_INIT_POINTER(child->cgroups, &init_css_set);
5896 	INIT_LIST_HEAD(&child->cg_list);
5897 }
5898 
cgroup_get_from_file(struct file * f)5899 static struct cgroup *cgroup_get_from_file(struct file *f)
5900 {
5901 	struct cgroup_subsys_state *css;
5902 	struct cgroup *cgrp;
5903 
5904 	css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
5905 	if (IS_ERR(css))
5906 		return ERR_CAST(css);
5907 
5908 	cgrp = css->cgroup;
5909 	if (!cgroup_on_dfl(cgrp)) {
5910 		cgroup_put(cgrp);
5911 		return ERR_PTR(-EBADF);
5912 	}
5913 
5914 	return cgrp;
5915 }
5916 
5917 /**
5918  * cgroup_css_set_fork - find or create a css_set for a child process
5919  * @kargs: the arguments passed to create the child process
5920  *
5921  * This functions finds or creates a new css_set which the child
5922  * process will be attached to in cgroup_post_fork(). By default,
5923  * the child process will be given the same css_set as its parent.
5924  *
5925  * If CLONE_INTO_CGROUP is specified this function will try to find an
5926  * existing css_set which includes the requested cgroup and if not create
5927  * a new css_set that the child will be attached to later. If this function
5928  * succeeds it will hold cgroup_threadgroup_rwsem on return. If
5929  * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex
5930  * before grabbing cgroup_threadgroup_rwsem and will hold a reference
5931  * to the target cgroup.
5932  */
cgroup_css_set_fork(struct kernel_clone_args * kargs)5933 static int cgroup_css_set_fork(struct kernel_clone_args *kargs)
5934 	__acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem)
5935 {
5936 	int ret;
5937 	struct cgroup *dst_cgrp = NULL;
5938 	struct css_set *cset;
5939 	struct super_block *sb;
5940 	struct file *f;
5941 
5942 	if (kargs->flags & CLONE_INTO_CGROUP)
5943 		mutex_lock(&cgroup_mutex);
5944 
5945 	cgroup_threadgroup_change_begin(current);
5946 
5947 	spin_lock_irq(&css_set_lock);
5948 	cset = task_css_set(current);
5949 	get_css_set(cset);
5950 	spin_unlock_irq(&css_set_lock);
5951 
5952 	if (!(kargs->flags & CLONE_INTO_CGROUP)) {
5953 		kargs->cset = cset;
5954 		return 0;
5955 	}
5956 
5957 	f = fget_raw(kargs->cgroup);
5958 	if (!f) {
5959 		ret = -EBADF;
5960 		goto err;
5961 	}
5962 	sb = f->f_path.dentry->d_sb;
5963 
5964 	dst_cgrp = cgroup_get_from_file(f);
5965 	if (IS_ERR(dst_cgrp)) {
5966 		ret = PTR_ERR(dst_cgrp);
5967 		dst_cgrp = NULL;
5968 		goto err;
5969 	}
5970 
5971 	if (cgroup_is_dead(dst_cgrp)) {
5972 		ret = -ENODEV;
5973 		goto err;
5974 	}
5975 
5976 	/*
5977 	 * Verify that we the target cgroup is writable for us. This is
5978 	 * usually done by the vfs layer but since we're not going through
5979 	 * the vfs layer here we need to do it "manually".
5980 	 */
5981 	ret = cgroup_may_write(dst_cgrp, sb);
5982 	if (ret)
5983 		goto err;
5984 
5985 	ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb,
5986 					!(kargs->flags & CLONE_THREAD));
5987 	if (ret)
5988 		goto err;
5989 
5990 	kargs->cset = find_css_set(cset, dst_cgrp);
5991 	if (!kargs->cset) {
5992 		ret = -ENOMEM;
5993 		goto err;
5994 	}
5995 
5996 	put_css_set(cset);
5997 	fput(f);
5998 	kargs->cgrp = dst_cgrp;
5999 	return ret;
6000 
6001 err:
6002 	cgroup_threadgroup_change_end(current);
6003 	mutex_unlock(&cgroup_mutex);
6004 	if (f)
6005 		fput(f);
6006 	if (dst_cgrp)
6007 		cgroup_put(dst_cgrp);
6008 	put_css_set(cset);
6009 	if (kargs->cset)
6010 		put_css_set(kargs->cset);
6011 	return ret;
6012 }
6013 
6014 /**
6015  * cgroup_css_set_put_fork - drop references we took during fork
6016  * @kargs: the arguments passed to create the child process
6017  *
6018  * Drop references to the prepared css_set and target cgroup if
6019  * CLONE_INTO_CGROUP was requested.
6020  */
cgroup_css_set_put_fork(struct kernel_clone_args * kargs)6021 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs)
6022 	__releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6023 {
6024 	cgroup_threadgroup_change_end(current);
6025 
6026 	if (kargs->flags & CLONE_INTO_CGROUP) {
6027 		struct cgroup *cgrp = kargs->cgrp;
6028 		struct css_set *cset = kargs->cset;
6029 
6030 		mutex_unlock(&cgroup_mutex);
6031 
6032 		if (cset) {
6033 			put_css_set(cset);
6034 			kargs->cset = NULL;
6035 		}
6036 
6037 		if (cgrp) {
6038 			cgroup_put(cgrp);
6039 			kargs->cgrp = NULL;
6040 		}
6041 	}
6042 }
6043 
6044 /**
6045  * cgroup_can_fork - called on a new task before the process is exposed
6046  * @child: the child process
6047  *
6048  * This prepares a new css_set for the child process which the child will
6049  * be attached to in cgroup_post_fork().
6050  * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork()
6051  * callback returns an error, the fork aborts with that error code. This
6052  * allows for a cgroup subsystem to conditionally allow or deny new forks.
6053  */
cgroup_can_fork(struct task_struct * child,struct kernel_clone_args * kargs)6054 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs)
6055 {
6056 	struct cgroup_subsys *ss;
6057 	int i, j, ret;
6058 
6059 	ret = cgroup_css_set_fork(kargs);
6060 	if (ret)
6061 		return ret;
6062 
6063 	do_each_subsys_mask(ss, i, have_canfork_callback) {
6064 		ret = ss->can_fork(child, kargs->cset);
6065 		if (ret)
6066 			goto out_revert;
6067 	} while_each_subsys_mask();
6068 
6069 	return 0;
6070 
6071 out_revert:
6072 	for_each_subsys(ss, j) {
6073 		if (j >= i)
6074 			break;
6075 		if (ss->cancel_fork)
6076 			ss->cancel_fork(child, kargs->cset);
6077 	}
6078 
6079 	cgroup_css_set_put_fork(kargs);
6080 
6081 	return ret;
6082 }
6083 
6084 /**
6085  * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
6086  * @child: the child process
6087  * @kargs: the arguments passed to create the child process
6088  *
6089  * This calls the cancel_fork() callbacks if a fork failed *after*
6090  * cgroup_can_fork() succeded and cleans up references we took to
6091  * prepare a new css_set for the child process in cgroup_can_fork().
6092  */
cgroup_cancel_fork(struct task_struct * child,struct kernel_clone_args * kargs)6093 void cgroup_cancel_fork(struct task_struct *child,
6094 			struct kernel_clone_args *kargs)
6095 {
6096 	struct cgroup_subsys *ss;
6097 	int i;
6098 
6099 	for_each_subsys(ss, i)
6100 		if (ss->cancel_fork)
6101 			ss->cancel_fork(child, kargs->cset);
6102 
6103 	cgroup_css_set_put_fork(kargs);
6104 }
6105 
6106 /**
6107  * cgroup_post_fork - finalize cgroup setup for the child process
6108  * @child: the child process
6109  *
6110  * Attach the child process to its css_set calling the subsystem fork()
6111  * callbacks.
6112  */
cgroup_post_fork(struct task_struct * child,struct kernel_clone_args * kargs)6113 void cgroup_post_fork(struct task_struct *child,
6114 		      struct kernel_clone_args *kargs)
6115 	__releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6116 {
6117 	struct cgroup_subsys *ss;
6118 	struct css_set *cset;
6119 	int i;
6120 
6121 	cset = kargs->cset;
6122 	kargs->cset = NULL;
6123 
6124 	spin_lock_irq(&css_set_lock);
6125 
6126 	/* init tasks are special, only link regular threads */
6127 	if (likely(child->pid)) {
6128 		WARN_ON_ONCE(!list_empty(&child->cg_list));
6129 		cset->nr_tasks++;
6130 		css_set_move_task(child, NULL, cset, false);
6131 	} else {
6132 		put_css_set(cset);
6133 		cset = NULL;
6134 	}
6135 
6136 	/*
6137 	 * If the cgroup has to be frozen, the new task has too.  Let's set
6138 	 * the JOBCTL_TRAP_FREEZE jobctl bit to get the task into the
6139 	 * frozen state.
6140 	 */
6141 	if (unlikely(cgroup_task_freeze(child))) {
6142 		spin_lock(&child->sighand->siglock);
6143 		WARN_ON_ONCE(child->frozen);
6144 		child->jobctl |= JOBCTL_TRAP_FREEZE;
6145 		spin_unlock(&child->sighand->siglock);
6146 
6147 		/*
6148 		 * Calling cgroup_update_frozen() isn't required here,
6149 		 * because it will be called anyway a bit later from
6150 		 * do_freezer_trap(). So we avoid cgroup's transient switch
6151 		 * from the frozen state and back.
6152 		 */
6153 	}
6154 
6155 	spin_unlock_irq(&css_set_lock);
6156 
6157 	/*
6158 	 * Call ss->fork().  This must happen after @child is linked on
6159 	 * css_set; otherwise, @child might change state between ->fork()
6160 	 * and addition to css_set.
6161 	 */
6162 	do_each_subsys_mask(ss, i, have_fork_callback) {
6163 		ss->fork(child);
6164 	} while_each_subsys_mask();
6165 
6166 	/* Make the new cset the root_cset of the new cgroup namespace. */
6167 	if (kargs->flags & CLONE_NEWCGROUP) {
6168 		struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset;
6169 
6170 		get_css_set(cset);
6171 		child->nsproxy->cgroup_ns->root_cset = cset;
6172 		put_css_set(rcset);
6173 	}
6174 
6175 	cgroup_css_set_put_fork(kargs);
6176 }
6177 
6178 /**
6179  * cgroup_exit - detach cgroup from exiting task
6180  * @tsk: pointer to task_struct of exiting process
6181  *
6182  * Description: Detach cgroup from @tsk.
6183  *
6184  */
cgroup_exit(struct task_struct * tsk)6185 void cgroup_exit(struct task_struct *tsk)
6186 {
6187 	struct cgroup_subsys *ss;
6188 	struct css_set *cset;
6189 	int i;
6190 
6191 	spin_lock_irq(&css_set_lock);
6192 
6193 	WARN_ON_ONCE(list_empty(&tsk->cg_list));
6194 	cset = task_css_set(tsk);
6195 	css_set_move_task(tsk, cset, NULL, false);
6196 	list_add_tail(&tsk->cg_list, &cset->dying_tasks);
6197 	cset->nr_tasks--;
6198 
6199 	WARN_ON_ONCE(cgroup_task_frozen(tsk));
6200 	if (unlikely(cgroup_task_freeze(tsk)))
6201 		cgroup_update_frozen(task_dfl_cgroup(tsk));
6202 
6203 	spin_unlock_irq(&css_set_lock);
6204 
6205 	/* see cgroup_post_fork() for details */
6206 	do_each_subsys_mask(ss, i, have_exit_callback) {
6207 		ss->exit(tsk);
6208 	} while_each_subsys_mask();
6209 }
6210 
cgroup_release(struct task_struct * task)6211 void cgroup_release(struct task_struct *task)
6212 {
6213 	struct cgroup_subsys *ss;
6214 	int ssid;
6215 
6216 	do_each_subsys_mask(ss, ssid, have_release_callback) {
6217 		ss->release(task);
6218 	} while_each_subsys_mask();
6219 
6220 	spin_lock_irq(&css_set_lock);
6221 	css_set_skip_task_iters(task_css_set(task), task);
6222 	list_del_init(&task->cg_list);
6223 	spin_unlock_irq(&css_set_lock);
6224 }
6225 
cgroup_free(struct task_struct * task)6226 void cgroup_free(struct task_struct *task)
6227 {
6228 	struct css_set *cset = task_css_set(task);
6229 	put_css_set(cset);
6230 }
6231 
cgroup_disable(char * str)6232 static int __init cgroup_disable(char *str)
6233 {
6234 	struct cgroup_subsys *ss;
6235 	char *token;
6236 	int i;
6237 
6238 	while ((token = strsep(&str, ",")) != NULL) {
6239 		if (!*token)
6240 			continue;
6241 
6242 		for_each_subsys(ss, i) {
6243 			if (strcmp(token, ss->name) &&
6244 			    strcmp(token, ss->legacy_name))
6245 				continue;
6246 			cgroup_disable_mask |= 1 << i;
6247 		}
6248 	}
6249 	return 1;
6250 }
6251 __setup("cgroup_disable=", cgroup_disable);
6252 
enable_debug_cgroup(void)6253 void __init __weak enable_debug_cgroup(void) { }
6254 
enable_cgroup_debug(char * str)6255 static int __init enable_cgroup_debug(char *str)
6256 {
6257 	cgroup_debug = true;
6258 	enable_debug_cgroup();
6259 	return 1;
6260 }
6261 __setup("cgroup_debug", enable_cgroup_debug);
6262 
6263 /**
6264  * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6265  * @dentry: directory dentry of interest
6266  * @ss: subsystem of interest
6267  *
6268  * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6269  * to get the corresponding css and return it.  If such css doesn't exist
6270  * or can't be pinned, an ERR_PTR value is returned.
6271  */
css_tryget_online_from_dir(struct dentry * dentry,struct cgroup_subsys * ss)6272 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6273 						       struct cgroup_subsys *ss)
6274 {
6275 	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6276 	struct file_system_type *s_type = dentry->d_sb->s_type;
6277 	struct cgroup_subsys_state *css = NULL;
6278 	struct cgroup *cgrp;
6279 
6280 	/* is @dentry a cgroup dir? */
6281 	if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6282 	    !kn || kernfs_type(kn) != KERNFS_DIR)
6283 		return ERR_PTR(-EBADF);
6284 
6285 	rcu_read_lock();
6286 
6287 	/*
6288 	 * This path doesn't originate from kernfs and @kn could already
6289 	 * have been or be removed at any point.  @kn->priv is RCU
6290 	 * protected for this access.  See css_release_work_fn() for details.
6291 	 */
6292 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6293 	if (cgrp)
6294 		css = cgroup_css(cgrp, ss);
6295 
6296 	if (!css || !css_tryget_online(css))
6297 		css = ERR_PTR(-ENOENT);
6298 
6299 	rcu_read_unlock();
6300 	return css;
6301 }
6302 
6303 /**
6304  * css_from_id - lookup css by id
6305  * @id: the cgroup id
6306  * @ss: cgroup subsys to be looked into
6307  *
6308  * Returns the css if there's valid one with @id, otherwise returns NULL.
6309  * Should be called under rcu_read_lock().
6310  */
css_from_id(int id,struct cgroup_subsys * ss)6311 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6312 {
6313 	WARN_ON_ONCE(!rcu_read_lock_held());
6314 	return idr_find(&ss->css_idr, id);
6315 }
6316 
6317 /**
6318  * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6319  * @path: path on the default hierarchy
6320  *
6321  * Find the cgroup at @path on the default hierarchy, increment its
6322  * reference count and return it.  Returns pointer to the found cgroup on
6323  * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
6324  * if @path points to a non-directory.
6325  */
cgroup_get_from_path(const char * path)6326 struct cgroup *cgroup_get_from_path(const char *path)
6327 {
6328 	struct kernfs_node *kn;
6329 	struct cgroup *cgrp;
6330 
6331 	mutex_lock(&cgroup_mutex);
6332 
6333 	kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
6334 	if (kn) {
6335 		if (kernfs_type(kn) == KERNFS_DIR) {
6336 			cgrp = kn->priv;
6337 			cgroup_get_live(cgrp);
6338 		} else {
6339 			cgrp = ERR_PTR(-ENOTDIR);
6340 		}
6341 		kernfs_put(kn);
6342 	} else {
6343 		cgrp = ERR_PTR(-ENOENT);
6344 	}
6345 
6346 	mutex_unlock(&cgroup_mutex);
6347 	return cgrp;
6348 }
6349 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6350 
6351 /**
6352  * cgroup_get_from_fd - get a cgroup pointer from a fd
6353  * @fd: fd obtained by open(cgroup2_dir)
6354  *
6355  * Find the cgroup from a fd which should be obtained
6356  * by opening a cgroup directory.  Returns a pointer to the
6357  * cgroup on success. ERR_PTR is returned if the cgroup
6358  * cannot be found.
6359  */
cgroup_get_from_fd(int fd)6360 struct cgroup *cgroup_get_from_fd(int fd)
6361 {
6362 	struct cgroup *cgrp;
6363 	struct file *f;
6364 
6365 	f = fget_raw(fd);
6366 	if (!f)
6367 		return ERR_PTR(-EBADF);
6368 
6369 	cgrp = cgroup_get_from_file(f);
6370 	fput(f);
6371 	return cgrp;
6372 }
6373 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
6374 
power_of_ten(int power)6375 static u64 power_of_ten(int power)
6376 {
6377 	u64 v = 1;
6378 	while (power--)
6379 		v *= 10;
6380 	return v;
6381 }
6382 
6383 /**
6384  * cgroup_parse_float - parse a floating number
6385  * @input: input string
6386  * @dec_shift: number of decimal digits to shift
6387  * @v: output
6388  *
6389  * Parse a decimal floating point number in @input and store the result in
6390  * @v with decimal point right shifted @dec_shift times.  For example, if
6391  * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345.
6392  * Returns 0 on success, -errno otherwise.
6393  *
6394  * There's nothing cgroup specific about this function except that it's
6395  * currently the only user.
6396  */
cgroup_parse_float(const char * input,unsigned dec_shift,s64 * v)6397 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v)
6398 {
6399 	s64 whole, frac = 0;
6400 	int fstart = 0, fend = 0, flen;
6401 
6402 	if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend))
6403 		return -EINVAL;
6404 	if (frac < 0)
6405 		return -EINVAL;
6406 
6407 	flen = fend > fstart ? fend - fstart : 0;
6408 	if (flen < dec_shift)
6409 		frac *= power_of_ten(dec_shift - flen);
6410 	else
6411 		frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift));
6412 
6413 	*v = whole * power_of_ten(dec_shift) + frac;
6414 	return 0;
6415 }
6416 
6417 /*
6418  * sock->sk_cgrp_data handling.  For more info, see sock_cgroup_data
6419  * definition in cgroup-defs.h.
6420  */
6421 #ifdef CONFIG_SOCK_CGROUP_DATA
6422 
6423 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
6424 
6425 DEFINE_SPINLOCK(cgroup_sk_update_lock);
6426 static bool cgroup_sk_alloc_disabled __read_mostly;
6427 
cgroup_sk_alloc_disable(void)6428 void cgroup_sk_alloc_disable(void)
6429 {
6430 	if (cgroup_sk_alloc_disabled)
6431 		return;
6432 	pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
6433 	cgroup_sk_alloc_disabled = true;
6434 }
6435 
6436 #else
6437 
6438 #define cgroup_sk_alloc_disabled	false
6439 
6440 #endif
6441 
cgroup_sk_alloc(struct sock_cgroup_data * skcd)6442 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6443 {
6444 	if (cgroup_sk_alloc_disabled) {
6445 		skcd->no_refcnt = 1;
6446 		return;
6447 	}
6448 
6449 	/* Don't associate the sock with unrelated interrupted task's cgroup. */
6450 	if (in_interrupt())
6451 		return;
6452 
6453 	rcu_read_lock();
6454 
6455 	while (true) {
6456 		struct css_set *cset;
6457 
6458 		cset = task_css_set(current);
6459 		if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6460 			skcd->val = (unsigned long)cset->dfl_cgrp;
6461 			cgroup_bpf_get(cset->dfl_cgrp);
6462 			break;
6463 		}
6464 		cpu_relax();
6465 	}
6466 
6467 	rcu_read_unlock();
6468 }
6469 
cgroup_sk_clone(struct sock_cgroup_data * skcd)6470 void cgroup_sk_clone(struct sock_cgroup_data *skcd)
6471 {
6472 	if (skcd->val) {
6473 		if (skcd->no_refcnt)
6474 			return;
6475 		/*
6476 		 * We might be cloning a socket which is left in an empty
6477 		 * cgroup and the cgroup might have already been rmdir'd.
6478 		 * Don't use cgroup_get_live().
6479 		 */
6480 		cgroup_get(sock_cgroup_ptr(skcd));
6481 		cgroup_bpf_get(sock_cgroup_ptr(skcd));
6482 	}
6483 }
6484 
cgroup_sk_free(struct sock_cgroup_data * skcd)6485 void cgroup_sk_free(struct sock_cgroup_data *skcd)
6486 {
6487 	struct cgroup *cgrp = sock_cgroup_ptr(skcd);
6488 
6489 	if (skcd->no_refcnt)
6490 		return;
6491 	cgroup_bpf_put(cgrp);
6492 	cgroup_put(cgrp);
6493 }
6494 
6495 #endif	/* CONFIG_SOCK_CGROUP_DATA */
6496 
6497 #ifdef CONFIG_CGROUP_BPF
cgroup_bpf_attach(struct cgroup * cgrp,struct bpf_prog * prog,struct bpf_prog * replace_prog,struct bpf_cgroup_link * link,enum bpf_attach_type type,u32 flags)6498 int cgroup_bpf_attach(struct cgroup *cgrp,
6499 		      struct bpf_prog *prog, struct bpf_prog *replace_prog,
6500 		      struct bpf_cgroup_link *link,
6501 		      enum bpf_attach_type type,
6502 		      u32 flags)
6503 {
6504 	int ret;
6505 
6506 	mutex_lock(&cgroup_mutex);
6507 	ret = __cgroup_bpf_attach(cgrp, prog, replace_prog, link, type, flags);
6508 	mutex_unlock(&cgroup_mutex);
6509 	return ret;
6510 }
6511 
cgroup_bpf_detach(struct cgroup * cgrp,struct bpf_prog * prog,enum bpf_attach_type type)6512 int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
6513 		      enum bpf_attach_type type)
6514 {
6515 	int ret;
6516 
6517 	mutex_lock(&cgroup_mutex);
6518 	ret = __cgroup_bpf_detach(cgrp, prog, NULL, type);
6519 	mutex_unlock(&cgroup_mutex);
6520 	return ret;
6521 }
6522 
cgroup_bpf_query(struct cgroup * cgrp,const union bpf_attr * attr,union bpf_attr __user * uattr)6523 int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
6524 		     union bpf_attr __user *uattr)
6525 {
6526 	int ret;
6527 
6528 	mutex_lock(&cgroup_mutex);
6529 	ret = __cgroup_bpf_query(cgrp, attr, uattr);
6530 	mutex_unlock(&cgroup_mutex);
6531 	return ret;
6532 }
6533 #endif /* CONFIG_CGROUP_BPF */
6534 
6535 #ifdef CONFIG_SYSFS
show_delegatable_files(struct cftype * files,char * buf,ssize_t size,const char * prefix)6536 static ssize_t show_delegatable_files(struct cftype *files, char *buf,
6537 				      ssize_t size, const char *prefix)
6538 {
6539 	struct cftype *cft;
6540 	ssize_t ret = 0;
6541 
6542 	for (cft = files; cft && cft->name[0] != '\0'; cft++) {
6543 		if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
6544 			continue;
6545 
6546 		if (prefix)
6547 			ret += snprintf(buf + ret, size - ret, "%s.", prefix);
6548 
6549 		ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
6550 
6551 		if (WARN_ON(ret >= size))
6552 			break;
6553 	}
6554 
6555 	return ret;
6556 }
6557 
delegate_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)6558 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
6559 			      char *buf)
6560 {
6561 	struct cgroup_subsys *ss;
6562 	int ssid;
6563 	ssize_t ret = 0;
6564 
6565 	ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret,
6566 				     NULL);
6567 
6568 	for_each_subsys(ss, ssid)
6569 		ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
6570 					      PAGE_SIZE - ret,
6571 					      cgroup_subsys_name[ssid]);
6572 
6573 	return ret;
6574 }
6575 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
6576 
features_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)6577 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
6578 			     char *buf)
6579 {
6580 	return snprintf(buf, PAGE_SIZE,
6581 			"nsdelegate\n"
6582 			"memory_localevents\n"
6583 			"memory_recursiveprot\n");
6584 }
6585 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
6586 
6587 static struct attribute *cgroup_sysfs_attrs[] = {
6588 	&cgroup_delegate_attr.attr,
6589 	&cgroup_features_attr.attr,
6590 	NULL,
6591 };
6592 
6593 static const struct attribute_group cgroup_sysfs_attr_group = {
6594 	.attrs = cgroup_sysfs_attrs,
6595 	.name = "cgroup",
6596 };
6597 
cgroup_sysfs_init(void)6598 static int __init cgroup_sysfs_init(void)
6599 {
6600 	return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
6601 }
6602 subsys_initcall(cgroup_sysfs_init);
6603 
6604 #endif /* CONFIG_SYSFS */
6605