1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include "cgroup-internal.h"
32
33 #include <linux/cred.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/magic.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/sched/task.h>
45 #include <linux/slab.h>
46 #include <linux/spinlock.h>
47 #include <linux/percpu-rwsem.h>
48 #include <linux/string.h>
49 #include <linux/hashtable.h>
50 #include <linux/idr.h>
51 #include <linux/kthread.h>
52 #include <linux/atomic.h>
53 #include <linux/cpuset.h>
54 #include <linux/proc_ns.h>
55 #include <linux/nsproxy.h>
56 #include <linux/file.h>
57 #include <linux/fs_parser.h>
58 #include <linux/sched/cputime.h>
59 #include <linux/psi.h>
60 #include <net/sock.h>
61
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/cgroup.h>
64
65 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
66 MAX_CFTYPE_NAME + 2)
67 /* let's not notify more than 100 times per second */
68 #define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100)
69
70 /*
71 * cgroup_mutex is the master lock. Any modification to cgroup or its
72 * hierarchy must be performed while holding it.
73 *
74 * css_set_lock protects task->cgroups pointer, the list of css_set
75 * objects, and the chain of tasks off each css_set.
76 *
77 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
78 * cgroup.h can use them for lockdep annotations.
79 */
80 DEFINE_MUTEX(cgroup_mutex);
81 DEFINE_SPINLOCK(css_set_lock);
82
83 #ifdef CONFIG_PROVE_RCU
84 EXPORT_SYMBOL_GPL(cgroup_mutex);
85 EXPORT_SYMBOL_GPL(css_set_lock);
86 #endif
87
88 DEFINE_SPINLOCK(trace_cgroup_path_lock);
89 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
90 bool cgroup_debug __read_mostly;
91
92 /*
93 * Protects cgroup_idr and css_idr so that IDs can be released without
94 * grabbing cgroup_mutex.
95 */
96 static DEFINE_SPINLOCK(cgroup_idr_lock);
97
98 /*
99 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
100 * against file removal/re-creation across css hiding.
101 */
102 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
103
104 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem);
105
106 #define cgroup_assert_mutex_or_rcu_locked() \
107 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
108 !lockdep_is_held(&cgroup_mutex), \
109 "cgroup_mutex or RCU read lock required");
110
111 /*
112 * cgroup destruction makes heavy use of work items and there can be a lot
113 * of concurrent destructions. Use a separate workqueue so that cgroup
114 * destruction work items don't end up filling up max_active of system_wq
115 * which may lead to deadlock.
116 */
117 static struct workqueue_struct *cgroup_destroy_wq;
118
119 /* generate an array of cgroup subsystem pointers */
120 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
121 struct cgroup_subsys *cgroup_subsys[] = {
122 #include <linux/cgroup_subsys.h>
123 };
124 #undef SUBSYS
125
126 /* array of cgroup subsystem names */
127 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
128 static const char *cgroup_subsys_name[] = {
129 #include <linux/cgroup_subsys.h>
130 };
131 #undef SUBSYS
132
133 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
134 #define SUBSYS(_x) \
135 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
136 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
137 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
138 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
139 #include <linux/cgroup_subsys.h>
140 #undef SUBSYS
141
142 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
143 static struct static_key_true *cgroup_subsys_enabled_key[] = {
144 #include <linux/cgroup_subsys.h>
145 };
146 #undef SUBSYS
147
148 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
149 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
150 #include <linux/cgroup_subsys.h>
151 };
152 #undef SUBSYS
153
154 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
155
156 /* the default hierarchy */
157 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
158 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
159
160 /*
161 * The default hierarchy always exists but is hidden until mounted for the
162 * first time. This is for backward compatibility.
163 */
164 static bool cgrp_dfl_visible;
165
166 /* some controllers are not supported in the default hierarchy */
167 static u16 cgrp_dfl_inhibit_ss_mask;
168
169 /* some controllers are implicitly enabled on the default hierarchy */
170 static u16 cgrp_dfl_implicit_ss_mask;
171
172 /* some controllers can be threaded on the default hierarchy */
173 static u16 cgrp_dfl_threaded_ss_mask;
174
175 /* The list of hierarchy roots */
176 LIST_HEAD(cgroup_roots);
177 static int cgroup_root_count;
178
179 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
180 static DEFINE_IDR(cgroup_hierarchy_idr);
181
182 /*
183 * Assign a monotonically increasing serial number to csses. It guarantees
184 * cgroups with bigger numbers are newer than those with smaller numbers.
185 * Also, as csses are always appended to the parent's ->children list, it
186 * guarantees that sibling csses are always sorted in the ascending serial
187 * number order on the list. Protected by cgroup_mutex.
188 */
189 static u64 css_serial_nr_next = 1;
190
191 /*
192 * These bitmasks identify subsystems with specific features to avoid
193 * having to do iterative checks repeatedly.
194 */
195 static u16 have_fork_callback __read_mostly;
196 static u16 have_exit_callback __read_mostly;
197 static u16 have_release_callback __read_mostly;
198 static u16 have_canfork_callback __read_mostly;
199
200 /* cgroup namespace for init task */
201 struct cgroup_namespace init_cgroup_ns = {
202 .count = REFCOUNT_INIT(2),
203 .user_ns = &init_user_ns,
204 .ns.ops = &cgroupns_operations,
205 .ns.inum = PROC_CGROUP_INIT_INO,
206 .root_cset = &init_css_set,
207 };
208
209 static struct file_system_type cgroup2_fs_type;
210 static struct cftype cgroup_base_files[];
211
212 static int cgroup_apply_control(struct cgroup *cgrp);
213 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
214 static void css_task_iter_skip(struct css_task_iter *it,
215 struct task_struct *task);
216 static int cgroup_destroy_locked(struct cgroup *cgrp);
217 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
218 struct cgroup_subsys *ss);
219 static void css_release(struct percpu_ref *ref);
220 static void kill_css(struct cgroup_subsys_state *css);
221 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
222 struct cgroup *cgrp, struct cftype cfts[],
223 bool is_add);
224
225 /**
226 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
227 * @ssid: subsys ID of interest
228 *
229 * cgroup_subsys_enabled() can only be used with literal subsys names which
230 * is fine for individual subsystems but unsuitable for cgroup core. This
231 * is slower static_key_enabled() based test indexed by @ssid.
232 */
cgroup_ssid_enabled(int ssid)233 bool cgroup_ssid_enabled(int ssid)
234 {
235 if (CGROUP_SUBSYS_COUNT == 0)
236 return false;
237
238 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
239 }
240
241 /**
242 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
243 * @cgrp: the cgroup of interest
244 *
245 * The default hierarchy is the v2 interface of cgroup and this function
246 * can be used to test whether a cgroup is on the default hierarchy for
247 * cases where a subsystem should behave differnetly depending on the
248 * interface version.
249 *
250 * List of changed behaviors:
251 *
252 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
253 * and "name" are disallowed.
254 *
255 * - When mounting an existing superblock, mount options should match.
256 *
257 * - Remount is disallowed.
258 *
259 * - rename(2) is disallowed.
260 *
261 * - "tasks" is removed. Everything should be at process granularity. Use
262 * "cgroup.procs" instead.
263 *
264 * - "cgroup.procs" is not sorted. pids will be unique unless they got
265 * recycled inbetween reads.
266 *
267 * - "release_agent" and "notify_on_release" are removed. Replacement
268 * notification mechanism will be implemented.
269 *
270 * - "cgroup.clone_children" is removed.
271 *
272 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
273 * and its descendants contain no task; otherwise, 1. The file also
274 * generates kernfs notification which can be monitored through poll and
275 * [di]notify when the value of the file changes.
276 *
277 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
278 * take masks of ancestors with non-empty cpus/mems, instead of being
279 * moved to an ancestor.
280 *
281 * - cpuset: a task can be moved into an empty cpuset, and again it takes
282 * masks of ancestors.
283 *
284 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
285 * is not created.
286 *
287 * - blkcg: blk-throttle becomes properly hierarchical.
288 *
289 * - debug: disallowed on the default hierarchy.
290 */
cgroup_on_dfl(const struct cgroup * cgrp)291 bool cgroup_on_dfl(const struct cgroup *cgrp)
292 {
293 return cgrp->root == &cgrp_dfl_root;
294 }
295
296 /* IDR wrappers which synchronize using cgroup_idr_lock */
cgroup_idr_alloc(struct idr * idr,void * ptr,int start,int end,gfp_t gfp_mask)297 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
298 gfp_t gfp_mask)
299 {
300 int ret;
301
302 idr_preload(gfp_mask);
303 spin_lock_bh(&cgroup_idr_lock);
304 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
305 spin_unlock_bh(&cgroup_idr_lock);
306 idr_preload_end();
307 return ret;
308 }
309
cgroup_idr_replace(struct idr * idr,void * ptr,int id)310 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
311 {
312 void *ret;
313
314 spin_lock_bh(&cgroup_idr_lock);
315 ret = idr_replace(idr, ptr, id);
316 spin_unlock_bh(&cgroup_idr_lock);
317 return ret;
318 }
319
cgroup_idr_remove(struct idr * idr,int id)320 static void cgroup_idr_remove(struct idr *idr, int id)
321 {
322 spin_lock_bh(&cgroup_idr_lock);
323 idr_remove(idr, id);
324 spin_unlock_bh(&cgroup_idr_lock);
325 }
326
cgroup_has_tasks(struct cgroup * cgrp)327 static bool cgroup_has_tasks(struct cgroup *cgrp)
328 {
329 return cgrp->nr_populated_csets;
330 }
331
cgroup_is_threaded(struct cgroup * cgrp)332 bool cgroup_is_threaded(struct cgroup *cgrp)
333 {
334 return cgrp->dom_cgrp != cgrp;
335 }
336
337 /* can @cgrp host both domain and threaded children? */
cgroup_is_mixable(struct cgroup * cgrp)338 static bool cgroup_is_mixable(struct cgroup *cgrp)
339 {
340 /*
341 * Root isn't under domain level resource control exempting it from
342 * the no-internal-process constraint, so it can serve as a thread
343 * root and a parent of resource domains at the same time.
344 */
345 return !cgroup_parent(cgrp);
346 }
347
348 /* can @cgrp become a thread root? should always be true for a thread root */
cgroup_can_be_thread_root(struct cgroup * cgrp)349 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
350 {
351 /* mixables don't care */
352 if (cgroup_is_mixable(cgrp))
353 return true;
354
355 /* domain roots can't be nested under threaded */
356 if (cgroup_is_threaded(cgrp))
357 return false;
358
359 /* can only have either domain or threaded children */
360 if (cgrp->nr_populated_domain_children)
361 return false;
362
363 /* and no domain controllers can be enabled */
364 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
365 return false;
366
367 return true;
368 }
369
370 /* is @cgrp root of a threaded subtree? */
cgroup_is_thread_root(struct cgroup * cgrp)371 bool cgroup_is_thread_root(struct cgroup *cgrp)
372 {
373 /* thread root should be a domain */
374 if (cgroup_is_threaded(cgrp))
375 return false;
376
377 /* a domain w/ threaded children is a thread root */
378 if (cgrp->nr_threaded_children)
379 return true;
380
381 /*
382 * A domain which has tasks and explicit threaded controllers
383 * enabled is a thread root.
384 */
385 if (cgroup_has_tasks(cgrp) &&
386 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
387 return true;
388
389 return false;
390 }
391
392 /* a domain which isn't connected to the root w/o brekage can't be used */
cgroup_is_valid_domain(struct cgroup * cgrp)393 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
394 {
395 /* the cgroup itself can be a thread root */
396 if (cgroup_is_threaded(cgrp))
397 return false;
398
399 /* but the ancestors can't be unless mixable */
400 while ((cgrp = cgroup_parent(cgrp))) {
401 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
402 return false;
403 if (cgroup_is_threaded(cgrp))
404 return false;
405 }
406
407 return true;
408 }
409
410 /* subsystems visibly enabled on a cgroup */
cgroup_control(struct cgroup * cgrp)411 static u16 cgroup_control(struct cgroup *cgrp)
412 {
413 struct cgroup *parent = cgroup_parent(cgrp);
414 u16 root_ss_mask = cgrp->root->subsys_mask;
415
416 if (parent) {
417 u16 ss_mask = parent->subtree_control;
418
419 /* threaded cgroups can only have threaded controllers */
420 if (cgroup_is_threaded(cgrp))
421 ss_mask &= cgrp_dfl_threaded_ss_mask;
422 return ss_mask;
423 }
424
425 if (cgroup_on_dfl(cgrp))
426 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
427 cgrp_dfl_implicit_ss_mask);
428 return root_ss_mask;
429 }
430
431 /* subsystems enabled on a cgroup */
cgroup_ss_mask(struct cgroup * cgrp)432 static u16 cgroup_ss_mask(struct cgroup *cgrp)
433 {
434 struct cgroup *parent = cgroup_parent(cgrp);
435
436 if (parent) {
437 u16 ss_mask = parent->subtree_ss_mask;
438
439 /* threaded cgroups can only have threaded controllers */
440 if (cgroup_is_threaded(cgrp))
441 ss_mask &= cgrp_dfl_threaded_ss_mask;
442 return ss_mask;
443 }
444
445 return cgrp->root->subsys_mask;
446 }
447
448 /**
449 * cgroup_css - obtain a cgroup's css for the specified subsystem
450 * @cgrp: the cgroup of interest
451 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
452 *
453 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
454 * function must be called either under cgroup_mutex or rcu_read_lock() and
455 * the caller is responsible for pinning the returned css if it wants to
456 * keep accessing it outside the said locks. This function may return
457 * %NULL if @cgrp doesn't have @subsys_id enabled.
458 */
cgroup_css(struct cgroup * cgrp,struct cgroup_subsys * ss)459 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
460 struct cgroup_subsys *ss)
461 {
462 if (ss)
463 return rcu_dereference_check(cgrp->subsys[ss->id],
464 lockdep_is_held(&cgroup_mutex));
465 else
466 return &cgrp->self;
467 }
468
469 /**
470 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
471 * @cgrp: the cgroup of interest
472 * @ss: the subsystem of interest
473 *
474 * Find and get @cgrp's css assocaited with @ss. If the css doesn't exist
475 * or is offline, %NULL is returned.
476 */
cgroup_tryget_css(struct cgroup * cgrp,struct cgroup_subsys * ss)477 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
478 struct cgroup_subsys *ss)
479 {
480 struct cgroup_subsys_state *css;
481
482 rcu_read_lock();
483 css = cgroup_css(cgrp, ss);
484 if (css && !css_tryget_online(css))
485 css = NULL;
486 rcu_read_unlock();
487
488 return css;
489 }
490
491 /**
492 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
493 * @cgrp: the cgroup of interest
494 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
495 *
496 * Similar to cgroup_css() but returns the effective css, which is defined
497 * as the matching css of the nearest ancestor including self which has @ss
498 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
499 * function is guaranteed to return non-NULL css.
500 */
cgroup_e_css_by_mask(struct cgroup * cgrp,struct cgroup_subsys * ss)501 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
502 struct cgroup_subsys *ss)
503 {
504 lockdep_assert_held(&cgroup_mutex);
505
506 if (!ss)
507 return &cgrp->self;
508
509 /*
510 * This function is used while updating css associations and thus
511 * can't test the csses directly. Test ss_mask.
512 */
513 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
514 cgrp = cgroup_parent(cgrp);
515 if (!cgrp)
516 return NULL;
517 }
518
519 return cgroup_css(cgrp, ss);
520 }
521
522 /**
523 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
524 * @cgrp: the cgroup of interest
525 * @ss: the subsystem of interest
526 *
527 * Find and get the effective css of @cgrp for @ss. The effective css is
528 * defined as the matching css of the nearest ancestor including self which
529 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
530 * the root css is returned, so this function always returns a valid css.
531 *
532 * The returned css is not guaranteed to be online, and therefore it is the
533 * callers responsiblity to tryget a reference for it.
534 */
cgroup_e_css(struct cgroup * cgrp,struct cgroup_subsys * ss)535 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
536 struct cgroup_subsys *ss)
537 {
538 struct cgroup_subsys_state *css;
539
540 do {
541 css = cgroup_css(cgrp, ss);
542
543 if (css)
544 return css;
545 cgrp = cgroup_parent(cgrp);
546 } while (cgrp);
547
548 return init_css_set.subsys[ss->id];
549 }
550
551 /**
552 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
553 * @cgrp: the cgroup of interest
554 * @ss: the subsystem of interest
555 *
556 * Find and get the effective css of @cgrp for @ss. The effective css is
557 * defined as the matching css of the nearest ancestor including self which
558 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
559 * the root css is returned, so this function always returns a valid css.
560 * The returned css must be put using css_put().
561 */
cgroup_get_e_css(struct cgroup * cgrp,struct cgroup_subsys * ss)562 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
563 struct cgroup_subsys *ss)
564 {
565 struct cgroup_subsys_state *css;
566
567 rcu_read_lock();
568
569 do {
570 css = cgroup_css(cgrp, ss);
571
572 if (css && css_tryget_online(css))
573 goto out_unlock;
574 cgrp = cgroup_parent(cgrp);
575 } while (cgrp);
576
577 css = init_css_set.subsys[ss->id];
578 css_get(css);
579 out_unlock:
580 rcu_read_unlock();
581 return css;
582 }
583
cgroup_get_live(struct cgroup * cgrp)584 static void cgroup_get_live(struct cgroup *cgrp)
585 {
586 WARN_ON_ONCE(cgroup_is_dead(cgrp));
587 css_get(&cgrp->self);
588 }
589
590 /**
591 * __cgroup_task_count - count the number of tasks in a cgroup. The caller
592 * is responsible for taking the css_set_lock.
593 * @cgrp: the cgroup in question
594 */
__cgroup_task_count(const struct cgroup * cgrp)595 int __cgroup_task_count(const struct cgroup *cgrp)
596 {
597 int count = 0;
598 struct cgrp_cset_link *link;
599
600 lockdep_assert_held(&css_set_lock);
601
602 list_for_each_entry(link, &cgrp->cset_links, cset_link)
603 count += link->cset->nr_tasks;
604
605 return count;
606 }
607
608 /**
609 * cgroup_task_count - count the number of tasks in a cgroup.
610 * @cgrp: the cgroup in question
611 */
cgroup_task_count(const struct cgroup * cgrp)612 int cgroup_task_count(const struct cgroup *cgrp)
613 {
614 int count;
615
616 spin_lock_irq(&css_set_lock);
617 count = __cgroup_task_count(cgrp);
618 spin_unlock_irq(&css_set_lock);
619
620 return count;
621 }
622
of_css(struct kernfs_open_file * of)623 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
624 {
625 struct cgroup *cgrp = of->kn->parent->priv;
626 struct cftype *cft = of_cft(of);
627
628 /*
629 * This is open and unprotected implementation of cgroup_css().
630 * seq_css() is only called from a kernfs file operation which has
631 * an active reference on the file. Because all the subsystem
632 * files are drained before a css is disassociated with a cgroup,
633 * the matching css from the cgroup's subsys table is guaranteed to
634 * be and stay valid until the enclosing operation is complete.
635 */
636 if (cft->ss)
637 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
638 else
639 return &cgrp->self;
640 }
641 EXPORT_SYMBOL_GPL(of_css);
642
643 /**
644 * for_each_css - iterate all css's of a cgroup
645 * @css: the iteration cursor
646 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
647 * @cgrp: the target cgroup to iterate css's of
648 *
649 * Should be called under cgroup_[tree_]mutex.
650 */
651 #define for_each_css(css, ssid, cgrp) \
652 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
653 if (!((css) = rcu_dereference_check( \
654 (cgrp)->subsys[(ssid)], \
655 lockdep_is_held(&cgroup_mutex)))) { } \
656 else
657
658 /**
659 * for_each_e_css - iterate all effective css's of a cgroup
660 * @css: the iteration cursor
661 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
662 * @cgrp: the target cgroup to iterate css's of
663 *
664 * Should be called under cgroup_[tree_]mutex.
665 */
666 #define for_each_e_css(css, ssid, cgrp) \
667 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
668 if (!((css) = cgroup_e_css_by_mask(cgrp, \
669 cgroup_subsys[(ssid)]))) \
670 ; \
671 else
672
673 /**
674 * do_each_subsys_mask - filter for_each_subsys with a bitmask
675 * @ss: the iteration cursor
676 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
677 * @ss_mask: the bitmask
678 *
679 * The block will only run for cases where the ssid-th bit (1 << ssid) of
680 * @ss_mask is set.
681 */
682 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \
683 unsigned long __ss_mask = (ss_mask); \
684 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \
685 (ssid) = 0; \
686 break; \
687 } \
688 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
689 (ss) = cgroup_subsys[ssid]; \
690 {
691
692 #define while_each_subsys_mask() \
693 } \
694 } \
695 } while (false)
696
697 /* iterate over child cgrps, lock should be held throughout iteration */
698 #define cgroup_for_each_live_child(child, cgrp) \
699 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
700 if (({ lockdep_assert_held(&cgroup_mutex); \
701 cgroup_is_dead(child); })) \
702 ; \
703 else
704
705 /* walk live descendants in preorder */
706 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \
707 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \
708 if (({ lockdep_assert_held(&cgroup_mutex); \
709 (dsct) = (d_css)->cgroup; \
710 cgroup_is_dead(dsct); })) \
711 ; \
712 else
713
714 /* walk live descendants in postorder */
715 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \
716 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
717 if (({ lockdep_assert_held(&cgroup_mutex); \
718 (dsct) = (d_css)->cgroup; \
719 cgroup_is_dead(dsct); })) \
720 ; \
721 else
722
723 /*
724 * The default css_set - used by init and its children prior to any
725 * hierarchies being mounted. It contains a pointer to the root state
726 * for each subsystem. Also used to anchor the list of css_sets. Not
727 * reference-counted, to improve performance when child cgroups
728 * haven't been created.
729 */
730 struct css_set init_css_set = {
731 .refcount = REFCOUNT_INIT(1),
732 .dom_cset = &init_css_set,
733 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
734 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
735 .dying_tasks = LIST_HEAD_INIT(init_css_set.dying_tasks),
736 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
737 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets),
738 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
739 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
740 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
741
742 /*
743 * The following field is re-initialized when this cset gets linked
744 * in cgroup_init(). However, let's initialize the field
745 * statically too so that the default cgroup can be accessed safely
746 * early during boot.
747 */
748 .dfl_cgrp = &cgrp_dfl_root.cgrp,
749 };
750
751 static int css_set_count = 1; /* 1 for init_css_set */
752
css_set_threaded(struct css_set * cset)753 static bool css_set_threaded(struct css_set *cset)
754 {
755 return cset->dom_cset != cset;
756 }
757
758 /**
759 * css_set_populated - does a css_set contain any tasks?
760 * @cset: target css_set
761 *
762 * css_set_populated() should be the same as !!cset->nr_tasks at steady
763 * state. However, css_set_populated() can be called while a task is being
764 * added to or removed from the linked list before the nr_tasks is
765 * properly updated. Hence, we can't just look at ->nr_tasks here.
766 */
css_set_populated(struct css_set * cset)767 static bool css_set_populated(struct css_set *cset)
768 {
769 lockdep_assert_held(&css_set_lock);
770
771 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
772 }
773
774 /**
775 * cgroup_update_populated - update the populated count of a cgroup
776 * @cgrp: the target cgroup
777 * @populated: inc or dec populated count
778 *
779 * One of the css_sets associated with @cgrp is either getting its first
780 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The
781 * count is propagated towards root so that a given cgroup's
782 * nr_populated_children is zero iff none of its descendants contain any
783 * tasks.
784 *
785 * @cgrp's interface file "cgroup.populated" is zero if both
786 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
787 * 1 otherwise. When the sum changes from or to zero, userland is notified
788 * that the content of the interface file has changed. This can be used to
789 * detect when @cgrp and its descendants become populated or empty.
790 */
cgroup_update_populated(struct cgroup * cgrp,bool populated)791 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
792 {
793 struct cgroup *child = NULL;
794 int adj = populated ? 1 : -1;
795
796 lockdep_assert_held(&css_set_lock);
797
798 do {
799 bool was_populated = cgroup_is_populated(cgrp);
800
801 if (!child) {
802 cgrp->nr_populated_csets += adj;
803 } else {
804 if (cgroup_is_threaded(child))
805 cgrp->nr_populated_threaded_children += adj;
806 else
807 cgrp->nr_populated_domain_children += adj;
808 }
809
810 if (was_populated == cgroup_is_populated(cgrp))
811 break;
812
813 cgroup1_check_for_release(cgrp);
814 TRACE_CGROUP_PATH(notify_populated, cgrp,
815 cgroup_is_populated(cgrp));
816 cgroup_file_notify(&cgrp->events_file);
817
818 child = cgrp;
819 cgrp = cgroup_parent(cgrp);
820 } while (cgrp);
821 }
822
823 /**
824 * css_set_update_populated - update populated state of a css_set
825 * @cset: target css_set
826 * @populated: whether @cset is populated or depopulated
827 *
828 * @cset is either getting the first task or losing the last. Update the
829 * populated counters of all associated cgroups accordingly.
830 */
css_set_update_populated(struct css_set * cset,bool populated)831 static void css_set_update_populated(struct css_set *cset, bool populated)
832 {
833 struct cgrp_cset_link *link;
834
835 lockdep_assert_held(&css_set_lock);
836
837 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
838 cgroup_update_populated(link->cgrp, populated);
839 }
840
841 /*
842 * @task is leaving, advance task iterators which are pointing to it so
843 * that they can resume at the next position. Advancing an iterator might
844 * remove it from the list, use safe walk. See css_task_iter_skip() for
845 * details.
846 */
css_set_skip_task_iters(struct css_set * cset,struct task_struct * task)847 static void css_set_skip_task_iters(struct css_set *cset,
848 struct task_struct *task)
849 {
850 struct css_task_iter *it, *pos;
851
852 list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node)
853 css_task_iter_skip(it, task);
854 }
855
856 /**
857 * css_set_move_task - move a task from one css_set to another
858 * @task: task being moved
859 * @from_cset: css_set @task currently belongs to (may be NULL)
860 * @to_cset: new css_set @task is being moved to (may be NULL)
861 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
862 *
863 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
864 * css_set, @from_cset can be NULL. If @task is being disassociated
865 * instead of moved, @to_cset can be NULL.
866 *
867 * This function automatically handles populated counter updates and
868 * css_task_iter adjustments but the caller is responsible for managing
869 * @from_cset and @to_cset's reference counts.
870 */
css_set_move_task(struct task_struct * task,struct css_set * from_cset,struct css_set * to_cset,bool use_mg_tasks)871 static void css_set_move_task(struct task_struct *task,
872 struct css_set *from_cset, struct css_set *to_cset,
873 bool use_mg_tasks)
874 {
875 lockdep_assert_held(&css_set_lock);
876
877 if (to_cset && !css_set_populated(to_cset))
878 css_set_update_populated(to_cset, true);
879
880 if (from_cset) {
881 WARN_ON_ONCE(list_empty(&task->cg_list));
882
883 css_set_skip_task_iters(from_cset, task);
884 list_del_init(&task->cg_list);
885 if (!css_set_populated(from_cset))
886 css_set_update_populated(from_cset, false);
887 } else {
888 WARN_ON_ONCE(!list_empty(&task->cg_list));
889 }
890
891 if (to_cset) {
892 /*
893 * We are synchronized through cgroup_threadgroup_rwsem
894 * against PF_EXITING setting such that we can't race
895 * against cgroup_exit()/cgroup_free() dropping the css_set.
896 */
897 WARN_ON_ONCE(task->flags & PF_EXITING);
898
899 cgroup_move_task(task, to_cset);
900 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
901 &to_cset->tasks);
902 }
903 }
904
905 /*
906 * hash table for cgroup groups. This improves the performance to find
907 * an existing css_set. This hash doesn't (currently) take into
908 * account cgroups in empty hierarchies.
909 */
910 #define CSS_SET_HASH_BITS 7
911 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
912
css_set_hash(struct cgroup_subsys_state * css[])913 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
914 {
915 unsigned long key = 0UL;
916 struct cgroup_subsys *ss;
917 int i;
918
919 for_each_subsys(ss, i)
920 key += (unsigned long)css[i];
921 key = (key >> 16) ^ key;
922
923 return key;
924 }
925
put_css_set_locked(struct css_set * cset)926 void put_css_set_locked(struct css_set *cset)
927 {
928 struct cgrp_cset_link *link, *tmp_link;
929 struct cgroup_subsys *ss;
930 int ssid;
931
932 lockdep_assert_held(&css_set_lock);
933
934 if (!refcount_dec_and_test(&cset->refcount))
935 return;
936
937 WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
938
939 /* This css_set is dead. unlink it and release cgroup and css refs */
940 for_each_subsys(ss, ssid) {
941 list_del(&cset->e_cset_node[ssid]);
942 css_put(cset->subsys[ssid]);
943 }
944 hash_del(&cset->hlist);
945 css_set_count--;
946
947 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
948 list_del(&link->cset_link);
949 list_del(&link->cgrp_link);
950 if (cgroup_parent(link->cgrp))
951 cgroup_put(link->cgrp);
952 kfree(link);
953 }
954
955 if (css_set_threaded(cset)) {
956 list_del(&cset->threaded_csets_node);
957 put_css_set_locked(cset->dom_cset);
958 }
959
960 kfree_rcu(cset, rcu_head);
961 }
962
963 /**
964 * compare_css_sets - helper function for find_existing_css_set().
965 * @cset: candidate css_set being tested
966 * @old_cset: existing css_set for a task
967 * @new_cgrp: cgroup that's being entered by the task
968 * @template: desired set of css pointers in css_set (pre-calculated)
969 *
970 * Returns true if "cset" matches "old_cset" except for the hierarchy
971 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
972 */
compare_css_sets(struct css_set * cset,struct css_set * old_cset,struct cgroup * new_cgrp,struct cgroup_subsys_state * template[])973 static bool compare_css_sets(struct css_set *cset,
974 struct css_set *old_cset,
975 struct cgroup *new_cgrp,
976 struct cgroup_subsys_state *template[])
977 {
978 struct cgroup *new_dfl_cgrp;
979 struct list_head *l1, *l2;
980
981 /*
982 * On the default hierarchy, there can be csets which are
983 * associated with the same set of cgroups but different csses.
984 * Let's first ensure that csses match.
985 */
986 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
987 return false;
988
989
990 /* @cset's domain should match the default cgroup's */
991 if (cgroup_on_dfl(new_cgrp))
992 new_dfl_cgrp = new_cgrp;
993 else
994 new_dfl_cgrp = old_cset->dfl_cgrp;
995
996 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
997 return false;
998
999 /*
1000 * Compare cgroup pointers in order to distinguish between
1001 * different cgroups in hierarchies. As different cgroups may
1002 * share the same effective css, this comparison is always
1003 * necessary.
1004 */
1005 l1 = &cset->cgrp_links;
1006 l2 = &old_cset->cgrp_links;
1007 while (1) {
1008 struct cgrp_cset_link *link1, *link2;
1009 struct cgroup *cgrp1, *cgrp2;
1010
1011 l1 = l1->next;
1012 l2 = l2->next;
1013 /* See if we reached the end - both lists are equal length. */
1014 if (l1 == &cset->cgrp_links) {
1015 BUG_ON(l2 != &old_cset->cgrp_links);
1016 break;
1017 } else {
1018 BUG_ON(l2 == &old_cset->cgrp_links);
1019 }
1020 /* Locate the cgroups associated with these links. */
1021 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
1022 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
1023 cgrp1 = link1->cgrp;
1024 cgrp2 = link2->cgrp;
1025 /* Hierarchies should be linked in the same order. */
1026 BUG_ON(cgrp1->root != cgrp2->root);
1027
1028 /*
1029 * If this hierarchy is the hierarchy of the cgroup
1030 * that's changing, then we need to check that this
1031 * css_set points to the new cgroup; if it's any other
1032 * hierarchy, then this css_set should point to the
1033 * same cgroup as the old css_set.
1034 */
1035 if (cgrp1->root == new_cgrp->root) {
1036 if (cgrp1 != new_cgrp)
1037 return false;
1038 } else {
1039 if (cgrp1 != cgrp2)
1040 return false;
1041 }
1042 }
1043 return true;
1044 }
1045
1046 /**
1047 * find_existing_css_set - init css array and find the matching css_set
1048 * @old_cset: the css_set that we're using before the cgroup transition
1049 * @cgrp: the cgroup that we're moving into
1050 * @template: out param for the new set of csses, should be clear on entry
1051 */
find_existing_css_set(struct css_set * old_cset,struct cgroup * cgrp,struct cgroup_subsys_state * template[])1052 static struct css_set *find_existing_css_set(struct css_set *old_cset,
1053 struct cgroup *cgrp,
1054 struct cgroup_subsys_state *template[])
1055 {
1056 struct cgroup_root *root = cgrp->root;
1057 struct cgroup_subsys *ss;
1058 struct css_set *cset;
1059 unsigned long key;
1060 int i;
1061
1062 /*
1063 * Build the set of subsystem state objects that we want to see in the
1064 * new css_set. while subsystems can change globally, the entries here
1065 * won't change, so no need for locking.
1066 */
1067 for_each_subsys(ss, i) {
1068 if (root->subsys_mask & (1UL << i)) {
1069 /*
1070 * @ss is in this hierarchy, so we want the
1071 * effective css from @cgrp.
1072 */
1073 template[i] = cgroup_e_css_by_mask(cgrp, ss);
1074 } else {
1075 /*
1076 * @ss is not in this hierarchy, so we don't want
1077 * to change the css.
1078 */
1079 template[i] = old_cset->subsys[i];
1080 }
1081 }
1082
1083 key = css_set_hash(template);
1084 hash_for_each_possible(css_set_table, cset, hlist, key) {
1085 if (!compare_css_sets(cset, old_cset, cgrp, template))
1086 continue;
1087
1088 /* This css_set matches what we need */
1089 return cset;
1090 }
1091
1092 /* No existing cgroup group matched */
1093 return NULL;
1094 }
1095
free_cgrp_cset_links(struct list_head * links_to_free)1096 static void free_cgrp_cset_links(struct list_head *links_to_free)
1097 {
1098 struct cgrp_cset_link *link, *tmp_link;
1099
1100 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1101 list_del(&link->cset_link);
1102 kfree(link);
1103 }
1104 }
1105
1106 /**
1107 * allocate_cgrp_cset_links - allocate cgrp_cset_links
1108 * @count: the number of links to allocate
1109 * @tmp_links: list_head the allocated links are put on
1110 *
1111 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1112 * through ->cset_link. Returns 0 on success or -errno.
1113 */
allocate_cgrp_cset_links(int count,struct list_head * tmp_links)1114 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1115 {
1116 struct cgrp_cset_link *link;
1117 int i;
1118
1119 INIT_LIST_HEAD(tmp_links);
1120
1121 for (i = 0; i < count; i++) {
1122 link = kzalloc(sizeof(*link), GFP_KERNEL);
1123 if (!link) {
1124 free_cgrp_cset_links(tmp_links);
1125 return -ENOMEM;
1126 }
1127 list_add(&link->cset_link, tmp_links);
1128 }
1129 return 0;
1130 }
1131
1132 /**
1133 * link_css_set - a helper function to link a css_set to a cgroup
1134 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1135 * @cset: the css_set to be linked
1136 * @cgrp: the destination cgroup
1137 */
link_css_set(struct list_head * tmp_links,struct css_set * cset,struct cgroup * cgrp)1138 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1139 struct cgroup *cgrp)
1140 {
1141 struct cgrp_cset_link *link;
1142
1143 BUG_ON(list_empty(tmp_links));
1144
1145 if (cgroup_on_dfl(cgrp))
1146 cset->dfl_cgrp = cgrp;
1147
1148 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1149 link->cset = cset;
1150 link->cgrp = cgrp;
1151
1152 /*
1153 * Always add links to the tail of the lists so that the lists are
1154 * in choronological order.
1155 */
1156 list_move_tail(&link->cset_link, &cgrp->cset_links);
1157 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1158
1159 if (cgroup_parent(cgrp))
1160 cgroup_get_live(cgrp);
1161 }
1162
1163 /**
1164 * find_css_set - return a new css_set with one cgroup updated
1165 * @old_cset: the baseline css_set
1166 * @cgrp: the cgroup to be updated
1167 *
1168 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1169 * substituted into the appropriate hierarchy.
1170 */
find_css_set(struct css_set * old_cset,struct cgroup * cgrp)1171 static struct css_set *find_css_set(struct css_set *old_cset,
1172 struct cgroup *cgrp)
1173 {
1174 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1175 struct css_set *cset;
1176 struct list_head tmp_links;
1177 struct cgrp_cset_link *link;
1178 struct cgroup_subsys *ss;
1179 unsigned long key;
1180 int ssid;
1181
1182 lockdep_assert_held(&cgroup_mutex);
1183
1184 /* First see if we already have a cgroup group that matches
1185 * the desired set */
1186 spin_lock_irq(&css_set_lock);
1187 cset = find_existing_css_set(old_cset, cgrp, template);
1188 if (cset)
1189 get_css_set(cset);
1190 spin_unlock_irq(&css_set_lock);
1191
1192 if (cset)
1193 return cset;
1194
1195 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1196 if (!cset)
1197 return NULL;
1198
1199 /* Allocate all the cgrp_cset_link objects that we'll need */
1200 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1201 kfree(cset);
1202 return NULL;
1203 }
1204
1205 refcount_set(&cset->refcount, 1);
1206 cset->dom_cset = cset;
1207 INIT_LIST_HEAD(&cset->tasks);
1208 INIT_LIST_HEAD(&cset->mg_tasks);
1209 INIT_LIST_HEAD(&cset->dying_tasks);
1210 INIT_LIST_HEAD(&cset->task_iters);
1211 INIT_LIST_HEAD(&cset->threaded_csets);
1212 INIT_HLIST_NODE(&cset->hlist);
1213 INIT_LIST_HEAD(&cset->cgrp_links);
1214 INIT_LIST_HEAD(&cset->mg_preload_node);
1215 INIT_LIST_HEAD(&cset->mg_node);
1216
1217 /* Copy the set of subsystem state objects generated in
1218 * find_existing_css_set() */
1219 memcpy(cset->subsys, template, sizeof(cset->subsys));
1220
1221 spin_lock_irq(&css_set_lock);
1222 /* Add reference counts and links from the new css_set. */
1223 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1224 struct cgroup *c = link->cgrp;
1225
1226 if (c->root == cgrp->root)
1227 c = cgrp;
1228 link_css_set(&tmp_links, cset, c);
1229 }
1230
1231 BUG_ON(!list_empty(&tmp_links));
1232
1233 css_set_count++;
1234
1235 /* Add @cset to the hash table */
1236 key = css_set_hash(cset->subsys);
1237 hash_add(css_set_table, &cset->hlist, key);
1238
1239 for_each_subsys(ss, ssid) {
1240 struct cgroup_subsys_state *css = cset->subsys[ssid];
1241
1242 list_add_tail(&cset->e_cset_node[ssid],
1243 &css->cgroup->e_csets[ssid]);
1244 css_get(css);
1245 }
1246
1247 spin_unlock_irq(&css_set_lock);
1248
1249 /*
1250 * If @cset should be threaded, look up the matching dom_cset and
1251 * link them up. We first fully initialize @cset then look for the
1252 * dom_cset. It's simpler this way and safe as @cset is guaranteed
1253 * to stay empty until we return.
1254 */
1255 if (cgroup_is_threaded(cset->dfl_cgrp)) {
1256 struct css_set *dcset;
1257
1258 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1259 if (!dcset) {
1260 put_css_set(cset);
1261 return NULL;
1262 }
1263
1264 spin_lock_irq(&css_set_lock);
1265 cset->dom_cset = dcset;
1266 list_add_tail(&cset->threaded_csets_node,
1267 &dcset->threaded_csets);
1268 spin_unlock_irq(&css_set_lock);
1269 }
1270
1271 return cset;
1272 }
1273
cgroup_root_from_kf(struct kernfs_root * kf_root)1274 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1275 {
1276 struct cgroup *root_cgrp = kf_root->kn->priv;
1277
1278 return root_cgrp->root;
1279 }
1280
cgroup_init_root_id(struct cgroup_root * root)1281 static int cgroup_init_root_id(struct cgroup_root *root)
1282 {
1283 int id;
1284
1285 lockdep_assert_held(&cgroup_mutex);
1286
1287 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1288 if (id < 0)
1289 return id;
1290
1291 root->hierarchy_id = id;
1292 return 0;
1293 }
1294
cgroup_exit_root_id(struct cgroup_root * root)1295 static void cgroup_exit_root_id(struct cgroup_root *root)
1296 {
1297 lockdep_assert_held(&cgroup_mutex);
1298
1299 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1300 }
1301
cgroup_free_root(struct cgroup_root * root)1302 void cgroup_free_root(struct cgroup_root *root)
1303 {
1304 kfree(root);
1305 }
1306
cgroup_destroy_root(struct cgroup_root * root)1307 static void cgroup_destroy_root(struct cgroup_root *root)
1308 {
1309 struct cgroup *cgrp = &root->cgrp;
1310 struct cgrp_cset_link *link, *tmp_link;
1311
1312 trace_cgroup_destroy_root(root);
1313
1314 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1315
1316 BUG_ON(atomic_read(&root->nr_cgrps));
1317 BUG_ON(!list_empty(&cgrp->self.children));
1318
1319 /* Rebind all subsystems back to the default hierarchy */
1320 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1321
1322 /*
1323 * Release all the links from cset_links to this hierarchy's
1324 * root cgroup
1325 */
1326 spin_lock_irq(&css_set_lock);
1327
1328 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1329 list_del(&link->cset_link);
1330 list_del(&link->cgrp_link);
1331 kfree(link);
1332 }
1333
1334 spin_unlock_irq(&css_set_lock);
1335
1336 if (!list_empty(&root->root_list)) {
1337 list_del(&root->root_list);
1338 cgroup_root_count--;
1339 }
1340
1341 cgroup_exit_root_id(root);
1342
1343 mutex_unlock(&cgroup_mutex);
1344
1345 kernfs_destroy_root(root->kf_root);
1346 cgroup_free_root(root);
1347 }
1348
1349 /*
1350 * look up cgroup associated with current task's cgroup namespace on the
1351 * specified hierarchy
1352 */
1353 static struct cgroup *
current_cgns_cgroup_from_root(struct cgroup_root * root)1354 current_cgns_cgroup_from_root(struct cgroup_root *root)
1355 {
1356 struct cgroup *res = NULL;
1357 struct css_set *cset;
1358
1359 lockdep_assert_held(&css_set_lock);
1360
1361 rcu_read_lock();
1362
1363 cset = current->nsproxy->cgroup_ns->root_cset;
1364 if (cset == &init_css_set) {
1365 res = &root->cgrp;
1366 } else if (root == &cgrp_dfl_root) {
1367 res = cset->dfl_cgrp;
1368 } else {
1369 struct cgrp_cset_link *link;
1370
1371 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1372 struct cgroup *c = link->cgrp;
1373
1374 if (c->root == root) {
1375 res = c;
1376 break;
1377 }
1378 }
1379 }
1380 rcu_read_unlock();
1381
1382 BUG_ON(!res);
1383 return res;
1384 }
1385
1386 /* look up cgroup associated with given css_set on the specified hierarchy */
cset_cgroup_from_root(struct css_set * cset,struct cgroup_root * root)1387 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1388 struct cgroup_root *root)
1389 {
1390 struct cgroup *res = NULL;
1391
1392 lockdep_assert_held(&cgroup_mutex);
1393 lockdep_assert_held(&css_set_lock);
1394
1395 if (cset == &init_css_set) {
1396 res = &root->cgrp;
1397 } else if (root == &cgrp_dfl_root) {
1398 res = cset->dfl_cgrp;
1399 } else {
1400 struct cgrp_cset_link *link;
1401
1402 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1403 struct cgroup *c = link->cgrp;
1404
1405 if (c->root == root) {
1406 res = c;
1407 break;
1408 }
1409 }
1410 }
1411
1412 BUG_ON(!res);
1413 return res;
1414 }
1415
1416 /*
1417 * Return the cgroup for "task" from the given hierarchy. Must be
1418 * called with cgroup_mutex and css_set_lock held.
1419 */
task_cgroup_from_root(struct task_struct * task,struct cgroup_root * root)1420 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1421 struct cgroup_root *root)
1422 {
1423 /*
1424 * No need to lock the task - since we hold css_set_lock the
1425 * task can't change groups.
1426 */
1427 return cset_cgroup_from_root(task_css_set(task), root);
1428 }
1429
1430 /*
1431 * A task must hold cgroup_mutex to modify cgroups.
1432 *
1433 * Any task can increment and decrement the count field without lock.
1434 * So in general, code holding cgroup_mutex can't rely on the count
1435 * field not changing. However, if the count goes to zero, then only
1436 * cgroup_attach_task() can increment it again. Because a count of zero
1437 * means that no tasks are currently attached, therefore there is no
1438 * way a task attached to that cgroup can fork (the other way to
1439 * increment the count). So code holding cgroup_mutex can safely
1440 * assume that if the count is zero, it will stay zero. Similarly, if
1441 * a task holds cgroup_mutex on a cgroup with zero count, it
1442 * knows that the cgroup won't be removed, as cgroup_rmdir()
1443 * needs that mutex.
1444 *
1445 * A cgroup can only be deleted if both its 'count' of using tasks
1446 * is zero, and its list of 'children' cgroups is empty. Since all
1447 * tasks in the system use _some_ cgroup, and since there is always at
1448 * least one task in the system (init, pid == 1), therefore, root cgroup
1449 * always has either children cgroups and/or using tasks. So we don't
1450 * need a special hack to ensure that root cgroup cannot be deleted.
1451 *
1452 * P.S. One more locking exception. RCU is used to guard the
1453 * update of a tasks cgroup pointer by cgroup_attach_task()
1454 */
1455
1456 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1457
cgroup_file_name(struct cgroup * cgrp,const struct cftype * cft,char * buf)1458 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1459 char *buf)
1460 {
1461 struct cgroup_subsys *ss = cft->ss;
1462
1463 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1464 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
1465 const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
1466
1467 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s",
1468 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1469 cft->name);
1470 } else {
1471 strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1472 }
1473 return buf;
1474 }
1475
1476 /**
1477 * cgroup_file_mode - deduce file mode of a control file
1478 * @cft: the control file in question
1479 *
1480 * S_IRUGO for read, S_IWUSR for write.
1481 */
cgroup_file_mode(const struct cftype * cft)1482 static umode_t cgroup_file_mode(const struct cftype *cft)
1483 {
1484 umode_t mode = 0;
1485
1486 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1487 mode |= S_IRUGO;
1488
1489 if (cft->write_u64 || cft->write_s64 || cft->write) {
1490 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1491 mode |= S_IWUGO;
1492 else
1493 mode |= S_IWUSR;
1494 }
1495
1496 return mode;
1497 }
1498
1499 /**
1500 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1501 * @subtree_control: the new subtree_control mask to consider
1502 * @this_ss_mask: available subsystems
1503 *
1504 * On the default hierarchy, a subsystem may request other subsystems to be
1505 * enabled together through its ->depends_on mask. In such cases, more
1506 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1507 *
1508 * This function calculates which subsystems need to be enabled if
1509 * @subtree_control is to be applied while restricted to @this_ss_mask.
1510 */
cgroup_calc_subtree_ss_mask(u16 subtree_control,u16 this_ss_mask)1511 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1512 {
1513 u16 cur_ss_mask = subtree_control;
1514 struct cgroup_subsys *ss;
1515 int ssid;
1516
1517 lockdep_assert_held(&cgroup_mutex);
1518
1519 cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1520
1521 while (true) {
1522 u16 new_ss_mask = cur_ss_mask;
1523
1524 do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1525 new_ss_mask |= ss->depends_on;
1526 } while_each_subsys_mask();
1527
1528 /*
1529 * Mask out subsystems which aren't available. This can
1530 * happen only if some depended-upon subsystems were bound
1531 * to non-default hierarchies.
1532 */
1533 new_ss_mask &= this_ss_mask;
1534
1535 if (new_ss_mask == cur_ss_mask)
1536 break;
1537 cur_ss_mask = new_ss_mask;
1538 }
1539
1540 return cur_ss_mask;
1541 }
1542
1543 /**
1544 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1545 * @kn: the kernfs_node being serviced
1546 *
1547 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1548 * the method finishes if locking succeeded. Note that once this function
1549 * returns the cgroup returned by cgroup_kn_lock_live() may become
1550 * inaccessible any time. If the caller intends to continue to access the
1551 * cgroup, it should pin it before invoking this function.
1552 */
cgroup_kn_unlock(struct kernfs_node * kn)1553 void cgroup_kn_unlock(struct kernfs_node *kn)
1554 {
1555 struct cgroup *cgrp;
1556
1557 if (kernfs_type(kn) == KERNFS_DIR)
1558 cgrp = kn->priv;
1559 else
1560 cgrp = kn->parent->priv;
1561
1562 mutex_unlock(&cgroup_mutex);
1563
1564 kernfs_unbreak_active_protection(kn);
1565 cgroup_put(cgrp);
1566 }
1567
1568 /**
1569 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1570 * @kn: the kernfs_node being serviced
1571 * @drain_offline: perform offline draining on the cgroup
1572 *
1573 * This helper is to be used by a cgroup kernfs method currently servicing
1574 * @kn. It breaks the active protection, performs cgroup locking and
1575 * verifies that the associated cgroup is alive. Returns the cgroup if
1576 * alive; otherwise, %NULL. A successful return should be undone by a
1577 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the
1578 * cgroup is drained of offlining csses before return.
1579 *
1580 * Any cgroup kernfs method implementation which requires locking the
1581 * associated cgroup should use this helper. It avoids nesting cgroup
1582 * locking under kernfs active protection and allows all kernfs operations
1583 * including self-removal.
1584 */
cgroup_kn_lock_live(struct kernfs_node * kn,bool drain_offline)1585 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1586 {
1587 struct cgroup *cgrp;
1588
1589 if (kernfs_type(kn) == KERNFS_DIR)
1590 cgrp = kn->priv;
1591 else
1592 cgrp = kn->parent->priv;
1593
1594 /*
1595 * We're gonna grab cgroup_mutex which nests outside kernfs
1596 * active_ref. cgroup liveliness check alone provides enough
1597 * protection against removal. Ensure @cgrp stays accessible and
1598 * break the active_ref protection.
1599 */
1600 if (!cgroup_tryget(cgrp))
1601 return NULL;
1602 kernfs_break_active_protection(kn);
1603
1604 if (drain_offline)
1605 cgroup_lock_and_drain_offline(cgrp);
1606 else
1607 mutex_lock(&cgroup_mutex);
1608
1609 if (!cgroup_is_dead(cgrp))
1610 return cgrp;
1611
1612 cgroup_kn_unlock(kn);
1613 return NULL;
1614 }
1615
cgroup_rm_file(struct cgroup * cgrp,const struct cftype * cft)1616 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1617 {
1618 char name[CGROUP_FILE_NAME_MAX];
1619
1620 lockdep_assert_held(&cgroup_mutex);
1621
1622 if (cft->file_offset) {
1623 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1624 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1625
1626 spin_lock_irq(&cgroup_file_kn_lock);
1627 cfile->kn = NULL;
1628 spin_unlock_irq(&cgroup_file_kn_lock);
1629
1630 del_timer_sync(&cfile->notify_timer);
1631 }
1632
1633 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1634 }
1635
1636 /**
1637 * css_clear_dir - remove subsys files in a cgroup directory
1638 * @css: taget css
1639 */
css_clear_dir(struct cgroup_subsys_state * css)1640 static void css_clear_dir(struct cgroup_subsys_state *css)
1641 {
1642 struct cgroup *cgrp = css->cgroup;
1643 struct cftype *cfts;
1644
1645 if (!(css->flags & CSS_VISIBLE))
1646 return;
1647
1648 css->flags &= ~CSS_VISIBLE;
1649
1650 if (!css->ss) {
1651 if (cgroup_on_dfl(cgrp))
1652 cfts = cgroup_base_files;
1653 else
1654 cfts = cgroup1_base_files;
1655
1656 cgroup_addrm_files(css, cgrp, cfts, false);
1657 } else {
1658 list_for_each_entry(cfts, &css->ss->cfts, node)
1659 cgroup_addrm_files(css, cgrp, cfts, false);
1660 }
1661 }
1662
1663 /**
1664 * css_populate_dir - create subsys files in a cgroup directory
1665 * @css: target css
1666 *
1667 * On failure, no file is added.
1668 */
css_populate_dir(struct cgroup_subsys_state * css)1669 static int css_populate_dir(struct cgroup_subsys_state *css)
1670 {
1671 struct cgroup *cgrp = css->cgroup;
1672 struct cftype *cfts, *failed_cfts;
1673 int ret;
1674
1675 if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1676 return 0;
1677
1678 if (!css->ss) {
1679 if (cgroup_on_dfl(cgrp))
1680 cfts = cgroup_base_files;
1681 else
1682 cfts = cgroup1_base_files;
1683
1684 ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1685 if (ret < 0)
1686 return ret;
1687 } else {
1688 list_for_each_entry(cfts, &css->ss->cfts, node) {
1689 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1690 if (ret < 0) {
1691 failed_cfts = cfts;
1692 goto err;
1693 }
1694 }
1695 }
1696
1697 css->flags |= CSS_VISIBLE;
1698
1699 return 0;
1700 err:
1701 list_for_each_entry(cfts, &css->ss->cfts, node) {
1702 if (cfts == failed_cfts)
1703 break;
1704 cgroup_addrm_files(css, cgrp, cfts, false);
1705 }
1706 return ret;
1707 }
1708
rebind_subsystems(struct cgroup_root * dst_root,u16 ss_mask)1709 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1710 {
1711 struct cgroup *dcgrp = &dst_root->cgrp;
1712 struct cgroup_subsys *ss;
1713 int ssid, i, ret;
1714
1715 lockdep_assert_held(&cgroup_mutex);
1716
1717 do_each_subsys_mask(ss, ssid, ss_mask) {
1718 /*
1719 * If @ss has non-root csses attached to it, can't move.
1720 * If @ss is an implicit controller, it is exempt from this
1721 * rule and can be stolen.
1722 */
1723 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1724 !ss->implicit_on_dfl)
1725 return -EBUSY;
1726
1727 /* can't move between two non-dummy roots either */
1728 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1729 return -EBUSY;
1730 } while_each_subsys_mask();
1731
1732 do_each_subsys_mask(ss, ssid, ss_mask) {
1733 struct cgroup_root *src_root = ss->root;
1734 struct cgroup *scgrp = &src_root->cgrp;
1735 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1736 struct css_set *cset;
1737
1738 WARN_ON(!css || cgroup_css(dcgrp, ss));
1739
1740 /* disable from the source */
1741 src_root->subsys_mask &= ~(1 << ssid);
1742 WARN_ON(cgroup_apply_control(scgrp));
1743 cgroup_finalize_control(scgrp, 0);
1744
1745 /* rebind */
1746 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1747 rcu_assign_pointer(dcgrp->subsys[ssid], css);
1748 ss->root = dst_root;
1749 css->cgroup = dcgrp;
1750
1751 spin_lock_irq(&css_set_lock);
1752 hash_for_each(css_set_table, i, cset, hlist)
1753 list_move_tail(&cset->e_cset_node[ss->id],
1754 &dcgrp->e_csets[ss->id]);
1755 spin_unlock_irq(&css_set_lock);
1756
1757 /* default hierarchy doesn't enable controllers by default */
1758 dst_root->subsys_mask |= 1 << ssid;
1759 if (dst_root == &cgrp_dfl_root) {
1760 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1761 } else {
1762 dcgrp->subtree_control |= 1 << ssid;
1763 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1764 }
1765
1766 ret = cgroup_apply_control(dcgrp);
1767 if (ret)
1768 pr_warn("partial failure to rebind %s controller (err=%d)\n",
1769 ss->name, ret);
1770
1771 if (ss->bind)
1772 ss->bind(css);
1773 } while_each_subsys_mask();
1774
1775 kernfs_activate(dcgrp->kn);
1776 return 0;
1777 }
1778
cgroup_show_path(struct seq_file * sf,struct kernfs_node * kf_node,struct kernfs_root * kf_root)1779 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1780 struct kernfs_root *kf_root)
1781 {
1782 int len = 0;
1783 char *buf = NULL;
1784 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1785 struct cgroup *ns_cgroup;
1786
1787 buf = kmalloc(PATH_MAX, GFP_KERNEL);
1788 if (!buf)
1789 return -ENOMEM;
1790
1791 spin_lock_irq(&css_set_lock);
1792 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1793 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1794 spin_unlock_irq(&css_set_lock);
1795
1796 if (len >= PATH_MAX)
1797 len = -ERANGE;
1798 else if (len > 0) {
1799 seq_escape(sf, buf, " \t\n\\");
1800 len = 0;
1801 }
1802 kfree(buf);
1803 return len;
1804 }
1805
1806 enum cgroup2_param {
1807 Opt_nsdelegate,
1808 Opt_memory_localevents,
1809 Opt_memory_recursiveprot,
1810 nr__cgroup2_params
1811 };
1812
1813 static const struct fs_parameter_spec cgroup2_fs_parameters[] = {
1814 fsparam_flag("nsdelegate", Opt_nsdelegate),
1815 fsparam_flag("memory_localevents", Opt_memory_localevents),
1816 fsparam_flag("memory_recursiveprot", Opt_memory_recursiveprot),
1817 {}
1818 };
1819
cgroup2_parse_param(struct fs_context * fc,struct fs_parameter * param)1820 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param)
1821 {
1822 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1823 struct fs_parse_result result;
1824 int opt;
1825
1826 opt = fs_parse(fc, cgroup2_fs_parameters, param, &result);
1827 if (opt < 0)
1828 return opt;
1829
1830 switch (opt) {
1831 case Opt_nsdelegate:
1832 ctx->flags |= CGRP_ROOT_NS_DELEGATE;
1833 return 0;
1834 case Opt_memory_localevents:
1835 ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1836 return 0;
1837 case Opt_memory_recursiveprot:
1838 ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1839 return 0;
1840 }
1841 return -EINVAL;
1842 }
1843
apply_cgroup_root_flags(unsigned int root_flags)1844 static void apply_cgroup_root_flags(unsigned int root_flags)
1845 {
1846 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1847 if (root_flags & CGRP_ROOT_NS_DELEGATE)
1848 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1849 else
1850 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1851
1852 if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1853 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1854 else
1855 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1856
1857 if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1858 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1859 else
1860 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1861 }
1862 }
1863
cgroup_show_options(struct seq_file * seq,struct kernfs_root * kf_root)1864 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1865 {
1866 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1867 seq_puts(seq, ",nsdelegate");
1868 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1869 seq_puts(seq, ",memory_localevents");
1870 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1871 seq_puts(seq, ",memory_recursiveprot");
1872 return 0;
1873 }
1874
cgroup_reconfigure(struct fs_context * fc)1875 static int cgroup_reconfigure(struct fs_context *fc)
1876 {
1877 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1878
1879 apply_cgroup_root_flags(ctx->flags);
1880 return 0;
1881 }
1882
init_cgroup_housekeeping(struct cgroup * cgrp)1883 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1884 {
1885 struct cgroup_subsys *ss;
1886 int ssid;
1887
1888 INIT_LIST_HEAD(&cgrp->self.sibling);
1889 INIT_LIST_HEAD(&cgrp->self.children);
1890 INIT_LIST_HEAD(&cgrp->cset_links);
1891 INIT_LIST_HEAD(&cgrp->pidlists);
1892 mutex_init(&cgrp->pidlist_mutex);
1893 cgrp->self.cgroup = cgrp;
1894 cgrp->self.flags |= CSS_ONLINE;
1895 cgrp->dom_cgrp = cgrp;
1896 cgrp->max_descendants = INT_MAX;
1897 cgrp->max_depth = INT_MAX;
1898 INIT_LIST_HEAD(&cgrp->rstat_css_list);
1899 prev_cputime_init(&cgrp->prev_cputime);
1900
1901 for_each_subsys(ss, ssid)
1902 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1903
1904 init_waitqueue_head(&cgrp->offline_waitq);
1905 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
1906 }
1907
init_cgroup_root(struct cgroup_fs_context * ctx)1908 void init_cgroup_root(struct cgroup_fs_context *ctx)
1909 {
1910 struct cgroup_root *root = ctx->root;
1911 struct cgroup *cgrp = &root->cgrp;
1912
1913 INIT_LIST_HEAD(&root->root_list);
1914 atomic_set(&root->nr_cgrps, 1);
1915 cgrp->root = root;
1916 init_cgroup_housekeeping(cgrp);
1917
1918 root->flags = ctx->flags;
1919 if (ctx->release_agent)
1920 strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX);
1921 if (ctx->name)
1922 strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN);
1923 if (ctx->cpuset_clone_children)
1924 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1925 }
1926
cgroup_setup_root(struct cgroup_root * root,u16 ss_mask)1927 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
1928 {
1929 LIST_HEAD(tmp_links);
1930 struct cgroup *root_cgrp = &root->cgrp;
1931 struct kernfs_syscall_ops *kf_sops;
1932 struct css_set *cset;
1933 int i, ret;
1934
1935 lockdep_assert_held(&cgroup_mutex);
1936
1937 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
1938 0, GFP_KERNEL);
1939 if (ret)
1940 goto out;
1941
1942 /*
1943 * We're accessing css_set_count without locking css_set_lock here,
1944 * but that's OK - it can only be increased by someone holding
1945 * cgroup_lock, and that's us. Later rebinding may disable
1946 * controllers on the default hierarchy and thus create new csets,
1947 * which can't be more than the existing ones. Allocate 2x.
1948 */
1949 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
1950 if (ret)
1951 goto cancel_ref;
1952
1953 ret = cgroup_init_root_id(root);
1954 if (ret)
1955 goto cancel_ref;
1956
1957 kf_sops = root == &cgrp_dfl_root ?
1958 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
1959
1960 root->kf_root = kernfs_create_root(kf_sops,
1961 KERNFS_ROOT_CREATE_DEACTIVATED |
1962 KERNFS_ROOT_SUPPORT_EXPORTOP |
1963 KERNFS_ROOT_SUPPORT_USER_XATTR,
1964 root_cgrp);
1965 if (IS_ERR(root->kf_root)) {
1966 ret = PTR_ERR(root->kf_root);
1967 goto exit_root_id;
1968 }
1969 root_cgrp->kn = root->kf_root->kn;
1970 WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1);
1971 root_cgrp->ancestor_ids[0] = cgroup_id(root_cgrp);
1972
1973 ret = css_populate_dir(&root_cgrp->self);
1974 if (ret)
1975 goto destroy_root;
1976
1977 ret = rebind_subsystems(root, ss_mask);
1978 if (ret)
1979 goto destroy_root;
1980
1981 ret = cgroup_bpf_inherit(root_cgrp);
1982 WARN_ON_ONCE(ret);
1983
1984 trace_cgroup_setup_root(root);
1985
1986 /*
1987 * There must be no failure case after here, since rebinding takes
1988 * care of subsystems' refcounts, which are explicitly dropped in
1989 * the failure exit path.
1990 */
1991 list_add(&root->root_list, &cgroup_roots);
1992 cgroup_root_count++;
1993
1994 /*
1995 * Link the root cgroup in this hierarchy into all the css_set
1996 * objects.
1997 */
1998 spin_lock_irq(&css_set_lock);
1999 hash_for_each(css_set_table, i, cset, hlist) {
2000 link_css_set(&tmp_links, cset, root_cgrp);
2001 if (css_set_populated(cset))
2002 cgroup_update_populated(root_cgrp, true);
2003 }
2004 spin_unlock_irq(&css_set_lock);
2005
2006 BUG_ON(!list_empty(&root_cgrp->self.children));
2007 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2008
2009 ret = 0;
2010 goto out;
2011
2012 destroy_root:
2013 kernfs_destroy_root(root->kf_root);
2014 root->kf_root = NULL;
2015 exit_root_id:
2016 cgroup_exit_root_id(root);
2017 cancel_ref:
2018 percpu_ref_exit(&root_cgrp->self.refcnt);
2019 out:
2020 free_cgrp_cset_links(&tmp_links);
2021 return ret;
2022 }
2023
cgroup_do_get_tree(struct fs_context * fc)2024 int cgroup_do_get_tree(struct fs_context *fc)
2025 {
2026 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2027 int ret;
2028
2029 ctx->kfc.root = ctx->root->kf_root;
2030 if (fc->fs_type == &cgroup2_fs_type)
2031 ctx->kfc.magic = CGROUP2_SUPER_MAGIC;
2032 else
2033 ctx->kfc.magic = CGROUP_SUPER_MAGIC;
2034 ret = kernfs_get_tree(fc);
2035
2036 /*
2037 * In non-init cgroup namespace, instead of root cgroup's dentry,
2038 * we return the dentry corresponding to the cgroupns->root_cgrp.
2039 */
2040 if (!ret && ctx->ns != &init_cgroup_ns) {
2041 struct dentry *nsdentry;
2042 struct super_block *sb = fc->root->d_sb;
2043 struct cgroup *cgrp;
2044
2045 mutex_lock(&cgroup_mutex);
2046 spin_lock_irq(&css_set_lock);
2047
2048 cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root);
2049
2050 spin_unlock_irq(&css_set_lock);
2051 mutex_unlock(&cgroup_mutex);
2052
2053 nsdentry = kernfs_node_dentry(cgrp->kn, sb);
2054 dput(fc->root);
2055 if (IS_ERR(nsdentry)) {
2056 deactivate_locked_super(sb);
2057 ret = PTR_ERR(nsdentry);
2058 nsdentry = NULL;
2059 }
2060 fc->root = nsdentry;
2061 }
2062
2063 if (!ctx->kfc.new_sb_created)
2064 cgroup_put(&ctx->root->cgrp);
2065
2066 return ret;
2067 }
2068
2069 /*
2070 * Destroy a cgroup filesystem context.
2071 */
cgroup_fs_context_free(struct fs_context * fc)2072 static void cgroup_fs_context_free(struct fs_context *fc)
2073 {
2074 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2075
2076 kfree(ctx->name);
2077 kfree(ctx->release_agent);
2078 put_cgroup_ns(ctx->ns);
2079 kernfs_free_fs_context(fc);
2080 kfree(ctx);
2081 }
2082
cgroup_get_tree(struct fs_context * fc)2083 static int cgroup_get_tree(struct fs_context *fc)
2084 {
2085 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2086 int ret;
2087
2088 cgrp_dfl_visible = true;
2089 cgroup_get_live(&cgrp_dfl_root.cgrp);
2090 ctx->root = &cgrp_dfl_root;
2091
2092 ret = cgroup_do_get_tree(fc);
2093 if (!ret)
2094 apply_cgroup_root_flags(ctx->flags);
2095 return ret;
2096 }
2097
2098 static const struct fs_context_operations cgroup_fs_context_ops = {
2099 .free = cgroup_fs_context_free,
2100 .parse_param = cgroup2_parse_param,
2101 .get_tree = cgroup_get_tree,
2102 .reconfigure = cgroup_reconfigure,
2103 };
2104
2105 static const struct fs_context_operations cgroup1_fs_context_ops = {
2106 .free = cgroup_fs_context_free,
2107 .parse_param = cgroup1_parse_param,
2108 .get_tree = cgroup1_get_tree,
2109 .reconfigure = cgroup1_reconfigure,
2110 };
2111
2112 /*
2113 * Initialise the cgroup filesystem creation/reconfiguration context. Notably,
2114 * we select the namespace we're going to use.
2115 */
cgroup_init_fs_context(struct fs_context * fc)2116 static int cgroup_init_fs_context(struct fs_context *fc)
2117 {
2118 struct cgroup_fs_context *ctx;
2119
2120 ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL);
2121 if (!ctx)
2122 return -ENOMEM;
2123
2124 ctx->ns = current->nsproxy->cgroup_ns;
2125 get_cgroup_ns(ctx->ns);
2126 fc->fs_private = &ctx->kfc;
2127 if (fc->fs_type == &cgroup2_fs_type)
2128 fc->ops = &cgroup_fs_context_ops;
2129 else
2130 fc->ops = &cgroup1_fs_context_ops;
2131 put_user_ns(fc->user_ns);
2132 fc->user_ns = get_user_ns(ctx->ns->user_ns);
2133 fc->global = true;
2134 return 0;
2135 }
2136
cgroup_kill_sb(struct super_block * sb)2137 static void cgroup_kill_sb(struct super_block *sb)
2138 {
2139 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2140 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2141
2142 /*
2143 * If @root doesn't have any children, start killing it.
2144 * This prevents new mounts by disabling percpu_ref_tryget_live().
2145 * cgroup_mount() may wait for @root's release.
2146 *
2147 * And don't kill the default root.
2148 */
2149 if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root &&
2150 !percpu_ref_is_dying(&root->cgrp.self.refcnt))
2151 percpu_ref_kill(&root->cgrp.self.refcnt);
2152 cgroup_put(&root->cgrp);
2153 kernfs_kill_sb(sb);
2154 }
2155
2156 struct file_system_type cgroup_fs_type = {
2157 .name = "cgroup",
2158 .init_fs_context = cgroup_init_fs_context,
2159 .parameters = cgroup1_fs_parameters,
2160 .kill_sb = cgroup_kill_sb,
2161 .fs_flags = FS_USERNS_MOUNT,
2162 };
2163
2164 static struct file_system_type cgroup2_fs_type = {
2165 .name = "cgroup2",
2166 .init_fs_context = cgroup_init_fs_context,
2167 .parameters = cgroup2_fs_parameters,
2168 .kill_sb = cgroup_kill_sb,
2169 .fs_flags = FS_USERNS_MOUNT,
2170 };
2171
2172 #ifdef CONFIG_CPUSETS
2173 static const struct fs_context_operations cpuset_fs_context_ops = {
2174 .get_tree = cgroup1_get_tree,
2175 .free = cgroup_fs_context_free,
2176 };
2177
2178 /*
2179 * This is ugly, but preserves the userspace API for existing cpuset
2180 * users. If someone tries to mount the "cpuset" filesystem, we
2181 * silently switch it to mount "cgroup" instead
2182 */
cpuset_init_fs_context(struct fs_context * fc)2183 static int cpuset_init_fs_context(struct fs_context *fc)
2184 {
2185 char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER);
2186 struct cgroup_fs_context *ctx;
2187 int err;
2188
2189 err = cgroup_init_fs_context(fc);
2190 if (err) {
2191 kfree(agent);
2192 return err;
2193 }
2194
2195 fc->ops = &cpuset_fs_context_ops;
2196
2197 ctx = cgroup_fc2context(fc);
2198 ctx->subsys_mask = 1 << cpuset_cgrp_id;
2199 ctx->flags |= CGRP_ROOT_NOPREFIX;
2200 ctx->release_agent = agent;
2201
2202 get_filesystem(&cgroup_fs_type);
2203 put_filesystem(fc->fs_type);
2204 fc->fs_type = &cgroup_fs_type;
2205
2206 return 0;
2207 }
2208
2209 static struct file_system_type cpuset_fs_type = {
2210 .name = "cpuset",
2211 .init_fs_context = cpuset_init_fs_context,
2212 .fs_flags = FS_USERNS_MOUNT,
2213 };
2214 #endif
2215
cgroup_path_ns_locked(struct cgroup * cgrp,char * buf,size_t buflen,struct cgroup_namespace * ns)2216 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2217 struct cgroup_namespace *ns)
2218 {
2219 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2220
2221 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2222 }
2223
cgroup_path_ns(struct cgroup * cgrp,char * buf,size_t buflen,struct cgroup_namespace * ns)2224 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2225 struct cgroup_namespace *ns)
2226 {
2227 int ret;
2228
2229 mutex_lock(&cgroup_mutex);
2230 spin_lock_irq(&css_set_lock);
2231
2232 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2233
2234 spin_unlock_irq(&css_set_lock);
2235 mutex_unlock(&cgroup_mutex);
2236
2237 return ret;
2238 }
2239 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2240
2241 /**
2242 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2243 * @task: target task
2244 * @buf: the buffer to write the path into
2245 * @buflen: the length of the buffer
2246 *
2247 * Determine @task's cgroup on the first (the one with the lowest non-zero
2248 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2249 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2250 * cgroup controller callbacks.
2251 *
2252 * Return value is the same as kernfs_path().
2253 */
task_cgroup_path(struct task_struct * task,char * buf,size_t buflen)2254 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2255 {
2256 struct cgroup_root *root;
2257 struct cgroup *cgrp;
2258 int hierarchy_id = 1;
2259 int ret;
2260
2261 mutex_lock(&cgroup_mutex);
2262 spin_lock_irq(&css_set_lock);
2263
2264 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2265
2266 if (root) {
2267 cgrp = task_cgroup_from_root(task, root);
2268 ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2269 } else {
2270 /* if no hierarchy exists, everyone is in "/" */
2271 ret = strlcpy(buf, "/", buflen);
2272 }
2273
2274 spin_unlock_irq(&css_set_lock);
2275 mutex_unlock(&cgroup_mutex);
2276 return ret;
2277 }
2278 EXPORT_SYMBOL_GPL(task_cgroup_path);
2279
2280 /**
2281 * cgroup_migrate_add_task - add a migration target task to a migration context
2282 * @task: target task
2283 * @mgctx: target migration context
2284 *
2285 * Add @task, which is a migration target, to @mgctx->tset. This function
2286 * becomes noop if @task doesn't need to be migrated. @task's css_set
2287 * should have been added as a migration source and @task->cg_list will be
2288 * moved from the css_set's tasks list to mg_tasks one.
2289 */
cgroup_migrate_add_task(struct task_struct * task,struct cgroup_mgctx * mgctx)2290 static void cgroup_migrate_add_task(struct task_struct *task,
2291 struct cgroup_mgctx *mgctx)
2292 {
2293 struct css_set *cset;
2294
2295 lockdep_assert_held(&css_set_lock);
2296
2297 /* @task either already exited or can't exit until the end */
2298 if (task->flags & PF_EXITING)
2299 return;
2300
2301 /* cgroup_threadgroup_rwsem protects racing against forks */
2302 WARN_ON_ONCE(list_empty(&task->cg_list));
2303
2304 cset = task_css_set(task);
2305 if (!cset->mg_src_cgrp)
2306 return;
2307
2308 mgctx->tset.nr_tasks++;
2309
2310 list_move_tail(&task->cg_list, &cset->mg_tasks);
2311 if (list_empty(&cset->mg_node))
2312 list_add_tail(&cset->mg_node,
2313 &mgctx->tset.src_csets);
2314 if (list_empty(&cset->mg_dst_cset->mg_node))
2315 list_add_tail(&cset->mg_dst_cset->mg_node,
2316 &mgctx->tset.dst_csets);
2317 }
2318
2319 /**
2320 * cgroup_taskset_first - reset taskset and return the first task
2321 * @tset: taskset of interest
2322 * @dst_cssp: output variable for the destination css
2323 *
2324 * @tset iteration is initialized and the first task is returned.
2325 */
cgroup_taskset_first(struct cgroup_taskset * tset,struct cgroup_subsys_state ** dst_cssp)2326 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2327 struct cgroup_subsys_state **dst_cssp)
2328 {
2329 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2330 tset->cur_task = NULL;
2331
2332 return cgroup_taskset_next(tset, dst_cssp);
2333 }
2334
2335 /**
2336 * cgroup_taskset_next - iterate to the next task in taskset
2337 * @tset: taskset of interest
2338 * @dst_cssp: output variable for the destination css
2339 *
2340 * Return the next task in @tset. Iteration must have been initialized
2341 * with cgroup_taskset_first().
2342 */
cgroup_taskset_next(struct cgroup_taskset * tset,struct cgroup_subsys_state ** dst_cssp)2343 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2344 struct cgroup_subsys_state **dst_cssp)
2345 {
2346 struct css_set *cset = tset->cur_cset;
2347 struct task_struct *task = tset->cur_task;
2348
2349 while (&cset->mg_node != tset->csets) {
2350 if (!task)
2351 task = list_first_entry(&cset->mg_tasks,
2352 struct task_struct, cg_list);
2353 else
2354 task = list_next_entry(task, cg_list);
2355
2356 if (&task->cg_list != &cset->mg_tasks) {
2357 tset->cur_cset = cset;
2358 tset->cur_task = task;
2359
2360 /*
2361 * This function may be called both before and
2362 * after cgroup_taskset_migrate(). The two cases
2363 * can be distinguished by looking at whether @cset
2364 * has its ->mg_dst_cset set.
2365 */
2366 if (cset->mg_dst_cset)
2367 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2368 else
2369 *dst_cssp = cset->subsys[tset->ssid];
2370
2371 return task;
2372 }
2373
2374 cset = list_next_entry(cset, mg_node);
2375 task = NULL;
2376 }
2377
2378 return NULL;
2379 }
2380
2381 /**
2382 * cgroup_taskset_migrate - migrate a taskset
2383 * @mgctx: migration context
2384 *
2385 * Migrate tasks in @mgctx as setup by migration preparation functions.
2386 * This function fails iff one of the ->can_attach callbacks fails and
2387 * guarantees that either all or none of the tasks in @mgctx are migrated.
2388 * @mgctx is consumed regardless of success.
2389 */
cgroup_migrate_execute(struct cgroup_mgctx * mgctx)2390 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2391 {
2392 struct cgroup_taskset *tset = &mgctx->tset;
2393 struct cgroup_subsys *ss;
2394 struct task_struct *task, *tmp_task;
2395 struct css_set *cset, *tmp_cset;
2396 int ssid, failed_ssid, ret;
2397
2398 /* check that we can legitimately attach to the cgroup */
2399 if (tset->nr_tasks) {
2400 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2401 if (ss->can_attach) {
2402 tset->ssid = ssid;
2403 ret = ss->can_attach(tset);
2404 if (ret) {
2405 failed_ssid = ssid;
2406 goto out_cancel_attach;
2407 }
2408 }
2409 } while_each_subsys_mask();
2410 }
2411
2412 /*
2413 * Now that we're guaranteed success, proceed to move all tasks to
2414 * the new cgroup. There are no failure cases after here, so this
2415 * is the commit point.
2416 */
2417 spin_lock_irq(&css_set_lock);
2418 list_for_each_entry(cset, &tset->src_csets, mg_node) {
2419 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2420 struct css_set *from_cset = task_css_set(task);
2421 struct css_set *to_cset = cset->mg_dst_cset;
2422
2423 get_css_set(to_cset);
2424 to_cset->nr_tasks++;
2425 css_set_move_task(task, from_cset, to_cset, true);
2426 from_cset->nr_tasks--;
2427 /*
2428 * If the source or destination cgroup is frozen,
2429 * the task might require to change its state.
2430 */
2431 cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp,
2432 to_cset->dfl_cgrp);
2433 put_css_set_locked(from_cset);
2434
2435 }
2436 }
2437 spin_unlock_irq(&css_set_lock);
2438
2439 /*
2440 * Migration is committed, all target tasks are now on dst_csets.
2441 * Nothing is sensitive to fork() after this point. Notify
2442 * controllers that migration is complete.
2443 */
2444 tset->csets = &tset->dst_csets;
2445
2446 if (tset->nr_tasks) {
2447 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2448 if (ss->attach) {
2449 tset->ssid = ssid;
2450 ss->attach(tset);
2451 }
2452 } while_each_subsys_mask();
2453 }
2454
2455 ret = 0;
2456 goto out_release_tset;
2457
2458 out_cancel_attach:
2459 if (tset->nr_tasks) {
2460 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2461 if (ssid == failed_ssid)
2462 break;
2463 if (ss->cancel_attach) {
2464 tset->ssid = ssid;
2465 ss->cancel_attach(tset);
2466 }
2467 } while_each_subsys_mask();
2468 }
2469 out_release_tset:
2470 spin_lock_irq(&css_set_lock);
2471 list_splice_init(&tset->dst_csets, &tset->src_csets);
2472 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2473 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2474 list_del_init(&cset->mg_node);
2475 }
2476 spin_unlock_irq(&css_set_lock);
2477
2478 /*
2479 * Re-initialize the cgroup_taskset structure in case it is reused
2480 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2481 * iteration.
2482 */
2483 tset->nr_tasks = 0;
2484 tset->csets = &tset->src_csets;
2485 return ret;
2486 }
2487
2488 /**
2489 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2490 * @dst_cgrp: destination cgroup to test
2491 *
2492 * On the default hierarchy, except for the mixable, (possible) thread root
2493 * and threaded cgroups, subtree_control must be zero for migration
2494 * destination cgroups with tasks so that child cgroups don't compete
2495 * against tasks.
2496 */
cgroup_migrate_vet_dst(struct cgroup * dst_cgrp)2497 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2498 {
2499 /* v1 doesn't have any restriction */
2500 if (!cgroup_on_dfl(dst_cgrp))
2501 return 0;
2502
2503 /* verify @dst_cgrp can host resources */
2504 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2505 return -EOPNOTSUPP;
2506
2507 /* mixables don't care */
2508 if (cgroup_is_mixable(dst_cgrp))
2509 return 0;
2510
2511 /*
2512 * If @dst_cgrp is already or can become a thread root or is
2513 * threaded, it doesn't matter.
2514 */
2515 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2516 return 0;
2517
2518 /* apply no-internal-process constraint */
2519 if (dst_cgrp->subtree_control)
2520 return -EBUSY;
2521
2522 return 0;
2523 }
2524
2525 /**
2526 * cgroup_migrate_finish - cleanup after attach
2527 * @mgctx: migration context
2528 *
2529 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2530 * those functions for details.
2531 */
cgroup_migrate_finish(struct cgroup_mgctx * mgctx)2532 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2533 {
2534 LIST_HEAD(preloaded);
2535 struct css_set *cset, *tmp_cset;
2536
2537 lockdep_assert_held(&cgroup_mutex);
2538
2539 spin_lock_irq(&css_set_lock);
2540
2541 list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded);
2542 list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded);
2543
2544 list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) {
2545 cset->mg_src_cgrp = NULL;
2546 cset->mg_dst_cgrp = NULL;
2547 cset->mg_dst_cset = NULL;
2548 list_del_init(&cset->mg_preload_node);
2549 put_css_set_locked(cset);
2550 }
2551
2552 spin_unlock_irq(&css_set_lock);
2553 }
2554
2555 /**
2556 * cgroup_migrate_add_src - add a migration source css_set
2557 * @src_cset: the source css_set to add
2558 * @dst_cgrp: the destination cgroup
2559 * @mgctx: migration context
2560 *
2561 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2562 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2563 * up by cgroup_migrate_finish().
2564 *
2565 * This function may be called without holding cgroup_threadgroup_rwsem
2566 * even if the target is a process. Threads may be created and destroyed
2567 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2568 * into play and the preloaded css_sets are guaranteed to cover all
2569 * migrations.
2570 */
cgroup_migrate_add_src(struct css_set * src_cset,struct cgroup * dst_cgrp,struct cgroup_mgctx * mgctx)2571 void cgroup_migrate_add_src(struct css_set *src_cset,
2572 struct cgroup *dst_cgrp,
2573 struct cgroup_mgctx *mgctx)
2574 {
2575 struct cgroup *src_cgrp;
2576
2577 lockdep_assert_held(&cgroup_mutex);
2578 lockdep_assert_held(&css_set_lock);
2579
2580 /*
2581 * If ->dead, @src_set is associated with one or more dead cgroups
2582 * and doesn't contain any migratable tasks. Ignore it early so
2583 * that the rest of migration path doesn't get confused by it.
2584 */
2585 if (src_cset->dead)
2586 return;
2587
2588 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2589
2590 if (!list_empty(&src_cset->mg_preload_node))
2591 return;
2592
2593 WARN_ON(src_cset->mg_src_cgrp);
2594 WARN_ON(src_cset->mg_dst_cgrp);
2595 WARN_ON(!list_empty(&src_cset->mg_tasks));
2596 WARN_ON(!list_empty(&src_cset->mg_node));
2597
2598 src_cset->mg_src_cgrp = src_cgrp;
2599 src_cset->mg_dst_cgrp = dst_cgrp;
2600 get_css_set(src_cset);
2601 list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets);
2602 }
2603
2604 /**
2605 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2606 * @mgctx: migration context
2607 *
2608 * Tasks are about to be moved and all the source css_sets have been
2609 * preloaded to @mgctx->preloaded_src_csets. This function looks up and
2610 * pins all destination css_sets, links each to its source, and append them
2611 * to @mgctx->preloaded_dst_csets.
2612 *
2613 * This function must be called after cgroup_migrate_add_src() has been
2614 * called on each migration source css_set. After migration is performed
2615 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2616 * @mgctx.
2617 */
cgroup_migrate_prepare_dst(struct cgroup_mgctx * mgctx)2618 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2619 {
2620 struct css_set *src_cset, *tmp_cset;
2621
2622 lockdep_assert_held(&cgroup_mutex);
2623
2624 /* look up the dst cset for each src cset and link it to src */
2625 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2626 mg_preload_node) {
2627 struct css_set *dst_cset;
2628 struct cgroup_subsys *ss;
2629 int ssid;
2630
2631 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2632 if (!dst_cset)
2633 return -ENOMEM;
2634
2635 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2636
2637 /*
2638 * If src cset equals dst, it's noop. Drop the src.
2639 * cgroup_migrate() will skip the cset too. Note that we
2640 * can't handle src == dst as some nodes are used by both.
2641 */
2642 if (src_cset == dst_cset) {
2643 src_cset->mg_src_cgrp = NULL;
2644 src_cset->mg_dst_cgrp = NULL;
2645 list_del_init(&src_cset->mg_preload_node);
2646 put_css_set(src_cset);
2647 put_css_set(dst_cset);
2648 continue;
2649 }
2650
2651 src_cset->mg_dst_cset = dst_cset;
2652
2653 if (list_empty(&dst_cset->mg_preload_node))
2654 list_add_tail(&dst_cset->mg_preload_node,
2655 &mgctx->preloaded_dst_csets);
2656 else
2657 put_css_set(dst_cset);
2658
2659 for_each_subsys(ss, ssid)
2660 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2661 mgctx->ss_mask |= 1 << ssid;
2662 }
2663
2664 return 0;
2665 }
2666
2667 /**
2668 * cgroup_migrate - migrate a process or task to a cgroup
2669 * @leader: the leader of the process or the task to migrate
2670 * @threadgroup: whether @leader points to the whole process or a single task
2671 * @mgctx: migration context
2672 *
2673 * Migrate a process or task denoted by @leader. If migrating a process,
2674 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also
2675 * responsible for invoking cgroup_migrate_add_src() and
2676 * cgroup_migrate_prepare_dst() on the targets before invoking this
2677 * function and following up with cgroup_migrate_finish().
2678 *
2679 * As long as a controller's ->can_attach() doesn't fail, this function is
2680 * guaranteed to succeed. This means that, excluding ->can_attach()
2681 * failure, when migrating multiple targets, the success or failure can be
2682 * decided for all targets by invoking group_migrate_prepare_dst() before
2683 * actually starting migrating.
2684 */
cgroup_migrate(struct task_struct * leader,bool threadgroup,struct cgroup_mgctx * mgctx)2685 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2686 struct cgroup_mgctx *mgctx)
2687 {
2688 struct task_struct *task;
2689
2690 /*
2691 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2692 * already PF_EXITING could be freed from underneath us unless we
2693 * take an rcu_read_lock.
2694 */
2695 spin_lock_irq(&css_set_lock);
2696 rcu_read_lock();
2697 task = leader;
2698 do {
2699 cgroup_migrate_add_task(task, mgctx);
2700 if (!threadgroup)
2701 break;
2702 } while_each_thread(leader, task);
2703 rcu_read_unlock();
2704 spin_unlock_irq(&css_set_lock);
2705
2706 return cgroup_migrate_execute(mgctx);
2707 }
2708
2709 /**
2710 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2711 * @dst_cgrp: the cgroup to attach to
2712 * @leader: the task or the leader of the threadgroup to be attached
2713 * @threadgroup: attach the whole threadgroup?
2714 *
2715 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2716 */
cgroup_attach_task(struct cgroup * dst_cgrp,struct task_struct * leader,bool threadgroup)2717 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2718 bool threadgroup)
2719 {
2720 DEFINE_CGROUP_MGCTX(mgctx);
2721 struct task_struct *task;
2722 int ret = 0;
2723
2724 /* look up all src csets */
2725 spin_lock_irq(&css_set_lock);
2726 rcu_read_lock();
2727 task = leader;
2728 do {
2729 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2730 if (!threadgroup)
2731 break;
2732 } while_each_thread(leader, task);
2733 rcu_read_unlock();
2734 spin_unlock_irq(&css_set_lock);
2735
2736 /* prepare dst csets and commit */
2737 ret = cgroup_migrate_prepare_dst(&mgctx);
2738 if (!ret)
2739 ret = cgroup_migrate(leader, threadgroup, &mgctx);
2740
2741 cgroup_migrate_finish(&mgctx);
2742
2743 if (!ret)
2744 TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2745
2746 return ret;
2747 }
2748
cgroup_procs_write_start(char * buf,bool threadgroup,bool * locked)2749 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup,
2750 bool *locked)
2751 __acquires(&cgroup_threadgroup_rwsem)
2752 {
2753 struct task_struct *tsk;
2754 pid_t pid;
2755
2756 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2757 return ERR_PTR(-EINVAL);
2758
2759 /*
2760 * If we migrate a single thread, we don't care about threadgroup
2761 * stability. If the thread is `current`, it won't exit(2) under our
2762 * hands or change PID through exec(2). We exclude
2763 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write
2764 * callers by cgroup_mutex.
2765 * Therefore, we can skip the global lock.
2766 */
2767 lockdep_assert_held(&cgroup_mutex);
2768 if (pid || threadgroup) {
2769 percpu_down_write(&cgroup_threadgroup_rwsem);
2770 *locked = true;
2771 } else {
2772 *locked = false;
2773 }
2774
2775 rcu_read_lock();
2776 if (pid) {
2777 tsk = find_task_by_vpid(pid);
2778 if (!tsk) {
2779 tsk = ERR_PTR(-ESRCH);
2780 goto out_unlock_threadgroup;
2781 }
2782 } else {
2783 tsk = current;
2784 }
2785
2786 if (threadgroup)
2787 tsk = tsk->group_leader;
2788
2789 /*
2790 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2791 * If userland migrates such a kthread to a non-root cgroup, it can
2792 * become trapped in a cpuset, or RT kthread may be born in a
2793 * cgroup with no rt_runtime allocated. Just say no.
2794 */
2795 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2796 tsk = ERR_PTR(-EINVAL);
2797 goto out_unlock_threadgroup;
2798 }
2799
2800 get_task_struct(tsk);
2801 goto out_unlock_rcu;
2802
2803 out_unlock_threadgroup:
2804 if (*locked) {
2805 percpu_up_write(&cgroup_threadgroup_rwsem);
2806 *locked = false;
2807 }
2808 out_unlock_rcu:
2809 rcu_read_unlock();
2810 return tsk;
2811 }
2812
cgroup_procs_write_finish(struct task_struct * task,bool locked)2813 void cgroup_procs_write_finish(struct task_struct *task, bool locked)
2814 __releases(&cgroup_threadgroup_rwsem)
2815 {
2816 struct cgroup_subsys *ss;
2817 int ssid;
2818
2819 /* release reference from cgroup_procs_write_start() */
2820 put_task_struct(task);
2821
2822 if (locked)
2823 percpu_up_write(&cgroup_threadgroup_rwsem);
2824 for_each_subsys(ss, ssid)
2825 if (ss->post_attach)
2826 ss->post_attach();
2827 }
2828
cgroup_print_ss_mask(struct seq_file * seq,u16 ss_mask)2829 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2830 {
2831 struct cgroup_subsys *ss;
2832 bool printed = false;
2833 int ssid;
2834
2835 do_each_subsys_mask(ss, ssid, ss_mask) {
2836 if (printed)
2837 seq_putc(seq, ' ');
2838 seq_puts(seq, ss->name);
2839 printed = true;
2840 } while_each_subsys_mask();
2841 if (printed)
2842 seq_putc(seq, '\n');
2843 }
2844
2845 /* show controllers which are enabled from the parent */
cgroup_controllers_show(struct seq_file * seq,void * v)2846 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2847 {
2848 struct cgroup *cgrp = seq_css(seq)->cgroup;
2849
2850 cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2851 return 0;
2852 }
2853
2854 /* show controllers which are enabled for a given cgroup's children */
cgroup_subtree_control_show(struct seq_file * seq,void * v)2855 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2856 {
2857 struct cgroup *cgrp = seq_css(seq)->cgroup;
2858
2859 cgroup_print_ss_mask(seq, cgrp->subtree_control);
2860 return 0;
2861 }
2862
2863 /**
2864 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2865 * @cgrp: root of the subtree to update csses for
2866 *
2867 * @cgrp's control masks have changed and its subtree's css associations
2868 * need to be updated accordingly. This function looks up all css_sets
2869 * which are attached to the subtree, creates the matching updated css_sets
2870 * and migrates the tasks to the new ones.
2871 */
cgroup_update_dfl_csses(struct cgroup * cgrp)2872 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2873 {
2874 DEFINE_CGROUP_MGCTX(mgctx);
2875 struct cgroup_subsys_state *d_css;
2876 struct cgroup *dsct;
2877 struct css_set *src_cset;
2878 int ret;
2879
2880 lockdep_assert_held(&cgroup_mutex);
2881
2882 percpu_down_write(&cgroup_threadgroup_rwsem);
2883
2884 /* look up all csses currently attached to @cgrp's subtree */
2885 spin_lock_irq(&css_set_lock);
2886 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2887 struct cgrp_cset_link *link;
2888
2889 list_for_each_entry(link, &dsct->cset_links, cset_link)
2890 cgroup_migrate_add_src(link->cset, dsct, &mgctx);
2891 }
2892 spin_unlock_irq(&css_set_lock);
2893
2894 /* NULL dst indicates self on default hierarchy */
2895 ret = cgroup_migrate_prepare_dst(&mgctx);
2896 if (ret)
2897 goto out_finish;
2898
2899 spin_lock_irq(&css_set_lock);
2900 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) {
2901 struct task_struct *task, *ntask;
2902
2903 /* all tasks in src_csets need to be migrated */
2904 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2905 cgroup_migrate_add_task(task, &mgctx);
2906 }
2907 spin_unlock_irq(&css_set_lock);
2908
2909 ret = cgroup_migrate_execute(&mgctx);
2910 out_finish:
2911 cgroup_migrate_finish(&mgctx);
2912 percpu_up_write(&cgroup_threadgroup_rwsem);
2913 return ret;
2914 }
2915
2916 /**
2917 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
2918 * @cgrp: root of the target subtree
2919 *
2920 * Because css offlining is asynchronous, userland may try to re-enable a
2921 * controller while the previous css is still around. This function grabs
2922 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
2923 */
cgroup_lock_and_drain_offline(struct cgroup * cgrp)2924 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
2925 __acquires(&cgroup_mutex)
2926 {
2927 struct cgroup *dsct;
2928 struct cgroup_subsys_state *d_css;
2929 struct cgroup_subsys *ss;
2930 int ssid;
2931
2932 restart:
2933 mutex_lock(&cgroup_mutex);
2934
2935 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2936 for_each_subsys(ss, ssid) {
2937 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2938 DEFINE_WAIT(wait);
2939
2940 if (!css || !percpu_ref_is_dying(&css->refcnt))
2941 continue;
2942
2943 cgroup_get_live(dsct);
2944 prepare_to_wait(&dsct->offline_waitq, &wait,
2945 TASK_UNINTERRUPTIBLE);
2946
2947 mutex_unlock(&cgroup_mutex);
2948 schedule();
2949 finish_wait(&dsct->offline_waitq, &wait);
2950
2951 cgroup_put(dsct);
2952 goto restart;
2953 }
2954 }
2955 }
2956
2957 /**
2958 * cgroup_save_control - save control masks and dom_cgrp of a subtree
2959 * @cgrp: root of the target subtree
2960 *
2961 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
2962 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
2963 * itself.
2964 */
cgroup_save_control(struct cgroup * cgrp)2965 static void cgroup_save_control(struct cgroup *cgrp)
2966 {
2967 struct cgroup *dsct;
2968 struct cgroup_subsys_state *d_css;
2969
2970 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2971 dsct->old_subtree_control = dsct->subtree_control;
2972 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
2973 dsct->old_dom_cgrp = dsct->dom_cgrp;
2974 }
2975 }
2976
2977 /**
2978 * cgroup_propagate_control - refresh control masks of a subtree
2979 * @cgrp: root of the target subtree
2980 *
2981 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
2982 * ->subtree_control and propagate controller availability through the
2983 * subtree so that descendants don't have unavailable controllers enabled.
2984 */
cgroup_propagate_control(struct cgroup * cgrp)2985 static void cgroup_propagate_control(struct cgroup *cgrp)
2986 {
2987 struct cgroup *dsct;
2988 struct cgroup_subsys_state *d_css;
2989
2990 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2991 dsct->subtree_control &= cgroup_control(dsct);
2992 dsct->subtree_ss_mask =
2993 cgroup_calc_subtree_ss_mask(dsct->subtree_control,
2994 cgroup_ss_mask(dsct));
2995 }
2996 }
2997
2998 /**
2999 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
3000 * @cgrp: root of the target subtree
3001 *
3002 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
3003 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3004 * itself.
3005 */
cgroup_restore_control(struct cgroup * cgrp)3006 static void cgroup_restore_control(struct cgroup *cgrp)
3007 {
3008 struct cgroup *dsct;
3009 struct cgroup_subsys_state *d_css;
3010
3011 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3012 dsct->subtree_control = dsct->old_subtree_control;
3013 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3014 dsct->dom_cgrp = dsct->old_dom_cgrp;
3015 }
3016 }
3017
css_visible(struct cgroup_subsys_state * css)3018 static bool css_visible(struct cgroup_subsys_state *css)
3019 {
3020 struct cgroup_subsys *ss = css->ss;
3021 struct cgroup *cgrp = css->cgroup;
3022
3023 if (cgroup_control(cgrp) & (1 << ss->id))
3024 return true;
3025 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3026 return false;
3027 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3028 }
3029
3030 /**
3031 * cgroup_apply_control_enable - enable or show csses according to control
3032 * @cgrp: root of the target subtree
3033 *
3034 * Walk @cgrp's subtree and create new csses or make the existing ones
3035 * visible. A css is created invisible if it's being implicitly enabled
3036 * through dependency. An invisible css is made visible when the userland
3037 * explicitly enables it.
3038 *
3039 * Returns 0 on success, -errno on failure. On failure, csses which have
3040 * been processed already aren't cleaned up. The caller is responsible for
3041 * cleaning up with cgroup_apply_control_disable().
3042 */
cgroup_apply_control_enable(struct cgroup * cgrp)3043 static int cgroup_apply_control_enable(struct cgroup *cgrp)
3044 {
3045 struct cgroup *dsct;
3046 struct cgroup_subsys_state *d_css;
3047 struct cgroup_subsys *ss;
3048 int ssid, ret;
3049
3050 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3051 for_each_subsys(ss, ssid) {
3052 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3053
3054 if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3055 continue;
3056
3057 if (!css) {
3058 css = css_create(dsct, ss);
3059 if (IS_ERR(css))
3060 return PTR_ERR(css);
3061 }
3062
3063 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3064
3065 if (css_visible(css)) {
3066 ret = css_populate_dir(css);
3067 if (ret)
3068 return ret;
3069 }
3070 }
3071 }
3072
3073 return 0;
3074 }
3075
3076 /**
3077 * cgroup_apply_control_disable - kill or hide csses according to control
3078 * @cgrp: root of the target subtree
3079 *
3080 * Walk @cgrp's subtree and kill and hide csses so that they match
3081 * cgroup_ss_mask() and cgroup_visible_mask().
3082 *
3083 * A css is hidden when the userland requests it to be disabled while other
3084 * subsystems are still depending on it. The css must not actively control
3085 * resources and be in the vanilla state if it's made visible again later.
3086 * Controllers which may be depended upon should provide ->css_reset() for
3087 * this purpose.
3088 */
cgroup_apply_control_disable(struct cgroup * cgrp)3089 static void cgroup_apply_control_disable(struct cgroup *cgrp)
3090 {
3091 struct cgroup *dsct;
3092 struct cgroup_subsys_state *d_css;
3093 struct cgroup_subsys *ss;
3094 int ssid;
3095
3096 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3097 for_each_subsys(ss, ssid) {
3098 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3099
3100 if (!css)
3101 continue;
3102
3103 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3104
3105 if (css->parent &&
3106 !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3107 kill_css(css);
3108 } else if (!css_visible(css)) {
3109 css_clear_dir(css);
3110 if (ss->css_reset)
3111 ss->css_reset(css);
3112 }
3113 }
3114 }
3115 }
3116
3117 /**
3118 * cgroup_apply_control - apply control mask updates to the subtree
3119 * @cgrp: root of the target subtree
3120 *
3121 * subsystems can be enabled and disabled in a subtree using the following
3122 * steps.
3123 *
3124 * 1. Call cgroup_save_control() to stash the current state.
3125 * 2. Update ->subtree_control masks in the subtree as desired.
3126 * 3. Call cgroup_apply_control() to apply the changes.
3127 * 4. Optionally perform other related operations.
3128 * 5. Call cgroup_finalize_control() to finish up.
3129 *
3130 * This function implements step 3 and propagates the mask changes
3131 * throughout @cgrp's subtree, updates csses accordingly and perform
3132 * process migrations.
3133 */
cgroup_apply_control(struct cgroup * cgrp)3134 static int cgroup_apply_control(struct cgroup *cgrp)
3135 {
3136 int ret;
3137
3138 cgroup_propagate_control(cgrp);
3139
3140 ret = cgroup_apply_control_enable(cgrp);
3141 if (ret)
3142 return ret;
3143
3144 /*
3145 * At this point, cgroup_e_css_by_mask() results reflect the new csses
3146 * making the following cgroup_update_dfl_csses() properly update
3147 * css associations of all tasks in the subtree.
3148 */
3149 ret = cgroup_update_dfl_csses(cgrp);
3150 if (ret)
3151 return ret;
3152
3153 return 0;
3154 }
3155
3156 /**
3157 * cgroup_finalize_control - finalize control mask update
3158 * @cgrp: root of the target subtree
3159 * @ret: the result of the update
3160 *
3161 * Finalize control mask update. See cgroup_apply_control() for more info.
3162 */
cgroup_finalize_control(struct cgroup * cgrp,int ret)3163 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3164 {
3165 if (ret) {
3166 cgroup_restore_control(cgrp);
3167 cgroup_propagate_control(cgrp);
3168 }
3169
3170 cgroup_apply_control_disable(cgrp);
3171 }
3172
cgroup_vet_subtree_control_enable(struct cgroup * cgrp,u16 enable)3173 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3174 {
3175 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3176
3177 /* if nothing is getting enabled, nothing to worry about */
3178 if (!enable)
3179 return 0;
3180
3181 /* can @cgrp host any resources? */
3182 if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3183 return -EOPNOTSUPP;
3184
3185 /* mixables don't care */
3186 if (cgroup_is_mixable(cgrp))
3187 return 0;
3188
3189 if (domain_enable) {
3190 /* can't enable domain controllers inside a thread subtree */
3191 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3192 return -EOPNOTSUPP;
3193 } else {
3194 /*
3195 * Threaded controllers can handle internal competitions
3196 * and are always allowed inside a (prospective) thread
3197 * subtree.
3198 */
3199 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3200 return 0;
3201 }
3202
3203 /*
3204 * Controllers can't be enabled for a cgroup with tasks to avoid
3205 * child cgroups competing against tasks.
3206 */
3207 if (cgroup_has_tasks(cgrp))
3208 return -EBUSY;
3209
3210 return 0;
3211 }
3212
3213 /* change the enabled child controllers for a cgroup in the default hierarchy */
cgroup_subtree_control_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3214 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3215 char *buf, size_t nbytes,
3216 loff_t off)
3217 {
3218 u16 enable = 0, disable = 0;
3219 struct cgroup *cgrp, *child;
3220 struct cgroup_subsys *ss;
3221 char *tok;
3222 int ssid, ret;
3223
3224 /*
3225 * Parse input - space separated list of subsystem names prefixed
3226 * with either + or -.
3227 */
3228 buf = strstrip(buf);
3229 while ((tok = strsep(&buf, " "))) {
3230 if (tok[0] == '\0')
3231 continue;
3232 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3233 if (!cgroup_ssid_enabled(ssid) ||
3234 strcmp(tok + 1, ss->name))
3235 continue;
3236
3237 if (*tok == '+') {
3238 enable |= 1 << ssid;
3239 disable &= ~(1 << ssid);
3240 } else if (*tok == '-') {
3241 disable |= 1 << ssid;
3242 enable &= ~(1 << ssid);
3243 } else {
3244 return -EINVAL;
3245 }
3246 break;
3247 } while_each_subsys_mask();
3248 if (ssid == CGROUP_SUBSYS_COUNT)
3249 return -EINVAL;
3250 }
3251
3252 cgrp = cgroup_kn_lock_live(of->kn, true);
3253 if (!cgrp)
3254 return -ENODEV;
3255
3256 for_each_subsys(ss, ssid) {
3257 if (enable & (1 << ssid)) {
3258 if (cgrp->subtree_control & (1 << ssid)) {
3259 enable &= ~(1 << ssid);
3260 continue;
3261 }
3262
3263 if (!(cgroup_control(cgrp) & (1 << ssid))) {
3264 ret = -ENOENT;
3265 goto out_unlock;
3266 }
3267 } else if (disable & (1 << ssid)) {
3268 if (!(cgrp->subtree_control & (1 << ssid))) {
3269 disable &= ~(1 << ssid);
3270 continue;
3271 }
3272
3273 /* a child has it enabled? */
3274 cgroup_for_each_live_child(child, cgrp) {
3275 if (child->subtree_control & (1 << ssid)) {
3276 ret = -EBUSY;
3277 goto out_unlock;
3278 }
3279 }
3280 }
3281 }
3282
3283 if (!enable && !disable) {
3284 ret = 0;
3285 goto out_unlock;
3286 }
3287
3288 ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3289 if (ret)
3290 goto out_unlock;
3291
3292 /* save and update control masks and prepare csses */
3293 cgroup_save_control(cgrp);
3294
3295 cgrp->subtree_control |= enable;
3296 cgrp->subtree_control &= ~disable;
3297
3298 ret = cgroup_apply_control(cgrp);
3299 cgroup_finalize_control(cgrp, ret);
3300 if (ret)
3301 goto out_unlock;
3302
3303 kernfs_activate(cgrp->kn);
3304 out_unlock:
3305 cgroup_kn_unlock(of->kn);
3306 return ret ?: nbytes;
3307 }
3308
3309 /**
3310 * cgroup_enable_threaded - make @cgrp threaded
3311 * @cgrp: the target cgroup
3312 *
3313 * Called when "threaded" is written to the cgroup.type interface file and
3314 * tries to make @cgrp threaded and join the parent's resource domain.
3315 * This function is never called on the root cgroup as cgroup.type doesn't
3316 * exist on it.
3317 */
cgroup_enable_threaded(struct cgroup * cgrp)3318 static int cgroup_enable_threaded(struct cgroup *cgrp)
3319 {
3320 struct cgroup *parent = cgroup_parent(cgrp);
3321 struct cgroup *dom_cgrp = parent->dom_cgrp;
3322 struct cgroup *dsct;
3323 struct cgroup_subsys_state *d_css;
3324 int ret;
3325
3326 lockdep_assert_held(&cgroup_mutex);
3327
3328 /* noop if already threaded */
3329 if (cgroup_is_threaded(cgrp))
3330 return 0;
3331
3332 /*
3333 * If @cgroup is populated or has domain controllers enabled, it
3334 * can't be switched. While the below cgroup_can_be_thread_root()
3335 * test can catch the same conditions, that's only when @parent is
3336 * not mixable, so let's check it explicitly.
3337 */
3338 if (cgroup_is_populated(cgrp) ||
3339 cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3340 return -EOPNOTSUPP;
3341
3342 /* we're joining the parent's domain, ensure its validity */
3343 if (!cgroup_is_valid_domain(dom_cgrp) ||
3344 !cgroup_can_be_thread_root(dom_cgrp))
3345 return -EOPNOTSUPP;
3346
3347 /*
3348 * The following shouldn't cause actual migrations and should
3349 * always succeed.
3350 */
3351 cgroup_save_control(cgrp);
3352
3353 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3354 if (dsct == cgrp || cgroup_is_threaded(dsct))
3355 dsct->dom_cgrp = dom_cgrp;
3356
3357 ret = cgroup_apply_control(cgrp);
3358 if (!ret)
3359 parent->nr_threaded_children++;
3360
3361 cgroup_finalize_control(cgrp, ret);
3362 return ret;
3363 }
3364
cgroup_type_show(struct seq_file * seq,void * v)3365 static int cgroup_type_show(struct seq_file *seq, void *v)
3366 {
3367 struct cgroup *cgrp = seq_css(seq)->cgroup;
3368
3369 if (cgroup_is_threaded(cgrp))
3370 seq_puts(seq, "threaded\n");
3371 else if (!cgroup_is_valid_domain(cgrp))
3372 seq_puts(seq, "domain invalid\n");
3373 else if (cgroup_is_thread_root(cgrp))
3374 seq_puts(seq, "domain threaded\n");
3375 else
3376 seq_puts(seq, "domain\n");
3377
3378 return 0;
3379 }
3380
cgroup_type_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3381 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3382 size_t nbytes, loff_t off)
3383 {
3384 struct cgroup *cgrp;
3385 int ret;
3386
3387 /* only switching to threaded mode is supported */
3388 if (strcmp(strstrip(buf), "threaded"))
3389 return -EINVAL;
3390
3391 /* drain dying csses before we re-apply (threaded) subtree control */
3392 cgrp = cgroup_kn_lock_live(of->kn, true);
3393 if (!cgrp)
3394 return -ENOENT;
3395
3396 /* threaded can only be enabled */
3397 ret = cgroup_enable_threaded(cgrp);
3398
3399 cgroup_kn_unlock(of->kn);
3400 return ret ?: nbytes;
3401 }
3402
cgroup_max_descendants_show(struct seq_file * seq,void * v)3403 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3404 {
3405 struct cgroup *cgrp = seq_css(seq)->cgroup;
3406 int descendants = READ_ONCE(cgrp->max_descendants);
3407
3408 if (descendants == INT_MAX)
3409 seq_puts(seq, "max\n");
3410 else
3411 seq_printf(seq, "%d\n", descendants);
3412
3413 return 0;
3414 }
3415
cgroup_max_descendants_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3416 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3417 char *buf, size_t nbytes, loff_t off)
3418 {
3419 struct cgroup *cgrp;
3420 int descendants;
3421 ssize_t ret;
3422
3423 buf = strstrip(buf);
3424 if (!strcmp(buf, "max")) {
3425 descendants = INT_MAX;
3426 } else {
3427 ret = kstrtoint(buf, 0, &descendants);
3428 if (ret)
3429 return ret;
3430 }
3431
3432 if (descendants < 0)
3433 return -ERANGE;
3434
3435 cgrp = cgroup_kn_lock_live(of->kn, false);
3436 if (!cgrp)
3437 return -ENOENT;
3438
3439 cgrp->max_descendants = descendants;
3440
3441 cgroup_kn_unlock(of->kn);
3442
3443 return nbytes;
3444 }
3445
cgroup_max_depth_show(struct seq_file * seq,void * v)3446 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3447 {
3448 struct cgroup *cgrp = seq_css(seq)->cgroup;
3449 int depth = READ_ONCE(cgrp->max_depth);
3450
3451 if (depth == INT_MAX)
3452 seq_puts(seq, "max\n");
3453 else
3454 seq_printf(seq, "%d\n", depth);
3455
3456 return 0;
3457 }
3458
cgroup_max_depth_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3459 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3460 char *buf, size_t nbytes, loff_t off)
3461 {
3462 struct cgroup *cgrp;
3463 ssize_t ret;
3464 int depth;
3465
3466 buf = strstrip(buf);
3467 if (!strcmp(buf, "max")) {
3468 depth = INT_MAX;
3469 } else {
3470 ret = kstrtoint(buf, 0, &depth);
3471 if (ret)
3472 return ret;
3473 }
3474
3475 if (depth < 0)
3476 return -ERANGE;
3477
3478 cgrp = cgroup_kn_lock_live(of->kn, false);
3479 if (!cgrp)
3480 return -ENOENT;
3481
3482 cgrp->max_depth = depth;
3483
3484 cgroup_kn_unlock(of->kn);
3485
3486 return nbytes;
3487 }
3488
cgroup_events_show(struct seq_file * seq,void * v)3489 static int cgroup_events_show(struct seq_file *seq, void *v)
3490 {
3491 struct cgroup *cgrp = seq_css(seq)->cgroup;
3492
3493 seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp));
3494 seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags));
3495
3496 return 0;
3497 }
3498
cgroup_stat_show(struct seq_file * seq,void * v)3499 static int cgroup_stat_show(struct seq_file *seq, void *v)
3500 {
3501 struct cgroup *cgroup = seq_css(seq)->cgroup;
3502
3503 seq_printf(seq, "nr_descendants %d\n",
3504 cgroup->nr_descendants);
3505 seq_printf(seq, "nr_dying_descendants %d\n",
3506 cgroup->nr_dying_descendants);
3507
3508 return 0;
3509 }
3510
cgroup_extra_stat_show(struct seq_file * seq,struct cgroup * cgrp,int ssid)3511 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3512 struct cgroup *cgrp, int ssid)
3513 {
3514 struct cgroup_subsys *ss = cgroup_subsys[ssid];
3515 struct cgroup_subsys_state *css;
3516 int ret;
3517
3518 if (!ss->css_extra_stat_show)
3519 return 0;
3520
3521 css = cgroup_tryget_css(cgrp, ss);
3522 if (!css)
3523 return 0;
3524
3525 ret = ss->css_extra_stat_show(seq, css);
3526 css_put(css);
3527 return ret;
3528 }
3529
cpu_stat_show(struct seq_file * seq,void * v)3530 static int cpu_stat_show(struct seq_file *seq, void *v)
3531 {
3532 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3533 int ret = 0;
3534
3535 cgroup_base_stat_cputime_show(seq);
3536 #ifdef CONFIG_CGROUP_SCHED
3537 ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3538 #endif
3539 return ret;
3540 }
3541
3542 #ifdef CONFIG_PSI
cgroup_io_pressure_show(struct seq_file * seq,void * v)3543 static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3544 {
3545 struct cgroup *cgrp = seq_css(seq)->cgroup;
3546 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3547
3548 return psi_show(seq, psi, PSI_IO);
3549 }
cgroup_memory_pressure_show(struct seq_file * seq,void * v)3550 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3551 {
3552 struct cgroup *cgrp = seq_css(seq)->cgroup;
3553 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3554
3555 return psi_show(seq, psi, PSI_MEM);
3556 }
cgroup_cpu_pressure_show(struct seq_file * seq,void * v)3557 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3558 {
3559 struct cgroup *cgrp = seq_css(seq)->cgroup;
3560 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3561
3562 return psi_show(seq, psi, PSI_CPU);
3563 }
3564
cgroup_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,enum psi_res res)3565 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, char *buf,
3566 size_t nbytes, enum psi_res res)
3567 {
3568 struct psi_trigger *new;
3569 struct cgroup *cgrp;
3570
3571 cgrp = cgroup_kn_lock_live(of->kn, false);
3572 if (!cgrp)
3573 return -ENODEV;
3574
3575 cgroup_get(cgrp);
3576 cgroup_kn_unlock(of->kn);
3577
3578 new = psi_trigger_create(&cgrp->psi, buf, nbytes, res);
3579 if (IS_ERR(new)) {
3580 cgroup_put(cgrp);
3581 return PTR_ERR(new);
3582 }
3583
3584 psi_trigger_replace(&of->priv, new);
3585
3586 cgroup_put(cgrp);
3587
3588 return nbytes;
3589 }
3590
cgroup_io_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3591 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of,
3592 char *buf, size_t nbytes,
3593 loff_t off)
3594 {
3595 return cgroup_pressure_write(of, buf, nbytes, PSI_IO);
3596 }
3597
cgroup_memory_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3598 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of,
3599 char *buf, size_t nbytes,
3600 loff_t off)
3601 {
3602 return cgroup_pressure_write(of, buf, nbytes, PSI_MEM);
3603 }
3604
cgroup_cpu_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3605 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of,
3606 char *buf, size_t nbytes,
3607 loff_t off)
3608 {
3609 return cgroup_pressure_write(of, buf, nbytes, PSI_CPU);
3610 }
3611
cgroup_pressure_poll(struct kernfs_open_file * of,poll_table * pt)3612 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of,
3613 poll_table *pt)
3614 {
3615 return psi_trigger_poll(&of->priv, of->file, pt);
3616 }
3617
cgroup_pressure_release(struct kernfs_open_file * of)3618 static void cgroup_pressure_release(struct kernfs_open_file *of)
3619 {
3620 psi_trigger_replace(&of->priv, NULL);
3621 }
3622 #endif /* CONFIG_PSI */
3623
cgroup_freeze_show(struct seq_file * seq,void * v)3624 static int cgroup_freeze_show(struct seq_file *seq, void *v)
3625 {
3626 struct cgroup *cgrp = seq_css(seq)->cgroup;
3627
3628 seq_printf(seq, "%d\n", cgrp->freezer.freeze);
3629
3630 return 0;
3631 }
3632
cgroup_freeze_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3633 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of,
3634 char *buf, size_t nbytes, loff_t off)
3635 {
3636 struct cgroup *cgrp;
3637 ssize_t ret;
3638 int freeze;
3639
3640 ret = kstrtoint(strstrip(buf), 0, &freeze);
3641 if (ret)
3642 return ret;
3643
3644 if (freeze < 0 || freeze > 1)
3645 return -ERANGE;
3646
3647 cgrp = cgroup_kn_lock_live(of->kn, false);
3648 if (!cgrp)
3649 return -ENOENT;
3650
3651 cgroup_freeze(cgrp, freeze);
3652
3653 cgroup_kn_unlock(of->kn);
3654
3655 return nbytes;
3656 }
3657
cgroup_file_open(struct kernfs_open_file * of)3658 static int cgroup_file_open(struct kernfs_open_file *of)
3659 {
3660 struct cftype *cft = of->kn->priv;
3661
3662 if (cft->open)
3663 return cft->open(of);
3664 return 0;
3665 }
3666
cgroup_file_release(struct kernfs_open_file * of)3667 static void cgroup_file_release(struct kernfs_open_file *of)
3668 {
3669 struct cftype *cft = of->kn->priv;
3670
3671 if (cft->release)
3672 cft->release(of);
3673 }
3674
cgroup_file_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3675 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3676 size_t nbytes, loff_t off)
3677 {
3678 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
3679 struct cgroup *cgrp = of->kn->parent->priv;
3680 struct cftype *cft = of->kn->priv;
3681 struct cgroup_subsys_state *css;
3682 int ret;
3683
3684 if (!nbytes)
3685 return 0;
3686
3687 /*
3688 * If namespaces are delegation boundaries, disallow writes to
3689 * files in an non-init namespace root from inside the namespace
3690 * except for the files explicitly marked delegatable -
3691 * cgroup.procs and cgroup.subtree_control.
3692 */
3693 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3694 !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3695 ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp)
3696 return -EPERM;
3697
3698 if (cft->write)
3699 return cft->write(of, buf, nbytes, off);
3700
3701 /*
3702 * kernfs guarantees that a file isn't deleted with operations in
3703 * flight, which means that the matching css is and stays alive and
3704 * doesn't need to be pinned. The RCU locking is not necessary
3705 * either. It's just for the convenience of using cgroup_css().
3706 */
3707 rcu_read_lock();
3708 css = cgroup_css(cgrp, cft->ss);
3709 rcu_read_unlock();
3710
3711 if (cft->write_u64) {
3712 unsigned long long v;
3713 ret = kstrtoull(buf, 0, &v);
3714 if (!ret)
3715 ret = cft->write_u64(css, cft, v);
3716 } else if (cft->write_s64) {
3717 long long v;
3718 ret = kstrtoll(buf, 0, &v);
3719 if (!ret)
3720 ret = cft->write_s64(css, cft, v);
3721 } else {
3722 ret = -EINVAL;
3723 }
3724
3725 return ret ?: nbytes;
3726 }
3727
cgroup_file_poll(struct kernfs_open_file * of,poll_table * pt)3728 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt)
3729 {
3730 struct cftype *cft = of->kn->priv;
3731
3732 if (cft->poll)
3733 return cft->poll(of, pt);
3734
3735 return kernfs_generic_poll(of, pt);
3736 }
3737
cgroup_seqfile_start(struct seq_file * seq,loff_t * ppos)3738 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3739 {
3740 return seq_cft(seq)->seq_start(seq, ppos);
3741 }
3742
cgroup_seqfile_next(struct seq_file * seq,void * v,loff_t * ppos)3743 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3744 {
3745 return seq_cft(seq)->seq_next(seq, v, ppos);
3746 }
3747
cgroup_seqfile_stop(struct seq_file * seq,void * v)3748 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3749 {
3750 if (seq_cft(seq)->seq_stop)
3751 seq_cft(seq)->seq_stop(seq, v);
3752 }
3753
cgroup_seqfile_show(struct seq_file * m,void * arg)3754 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3755 {
3756 struct cftype *cft = seq_cft(m);
3757 struct cgroup_subsys_state *css = seq_css(m);
3758
3759 if (cft->seq_show)
3760 return cft->seq_show(m, arg);
3761
3762 if (cft->read_u64)
3763 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3764 else if (cft->read_s64)
3765 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3766 else
3767 return -EINVAL;
3768 return 0;
3769 }
3770
3771 static struct kernfs_ops cgroup_kf_single_ops = {
3772 .atomic_write_len = PAGE_SIZE,
3773 .open = cgroup_file_open,
3774 .release = cgroup_file_release,
3775 .write = cgroup_file_write,
3776 .poll = cgroup_file_poll,
3777 .seq_show = cgroup_seqfile_show,
3778 };
3779
3780 static struct kernfs_ops cgroup_kf_ops = {
3781 .atomic_write_len = PAGE_SIZE,
3782 .open = cgroup_file_open,
3783 .release = cgroup_file_release,
3784 .write = cgroup_file_write,
3785 .poll = cgroup_file_poll,
3786 .seq_start = cgroup_seqfile_start,
3787 .seq_next = cgroup_seqfile_next,
3788 .seq_stop = cgroup_seqfile_stop,
3789 .seq_show = cgroup_seqfile_show,
3790 };
3791
3792 /* set uid and gid of cgroup dirs and files to that of the creator */
cgroup_kn_set_ugid(struct kernfs_node * kn)3793 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3794 {
3795 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3796 .ia_uid = current_fsuid(),
3797 .ia_gid = current_fsgid(), };
3798
3799 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3800 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3801 return 0;
3802
3803 return kernfs_setattr(kn, &iattr);
3804 }
3805
cgroup_file_notify_timer(struct timer_list * timer)3806 static void cgroup_file_notify_timer(struct timer_list *timer)
3807 {
3808 cgroup_file_notify(container_of(timer, struct cgroup_file,
3809 notify_timer));
3810 }
3811
cgroup_add_file(struct cgroup_subsys_state * css,struct cgroup * cgrp,struct cftype * cft)3812 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3813 struct cftype *cft)
3814 {
3815 char name[CGROUP_FILE_NAME_MAX];
3816 struct kernfs_node *kn;
3817 struct lock_class_key *key = NULL;
3818 int ret;
3819
3820 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3821 key = &cft->lockdep_key;
3822 #endif
3823 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3824 cgroup_file_mode(cft),
3825 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
3826 0, cft->kf_ops, cft,
3827 NULL, key);
3828 if (IS_ERR(kn))
3829 return PTR_ERR(kn);
3830
3831 ret = cgroup_kn_set_ugid(kn);
3832 if (ret) {
3833 kernfs_remove(kn);
3834 return ret;
3835 }
3836
3837 if (cft->file_offset) {
3838 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3839
3840 timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
3841
3842 spin_lock_irq(&cgroup_file_kn_lock);
3843 cfile->kn = kn;
3844 spin_unlock_irq(&cgroup_file_kn_lock);
3845 }
3846
3847 return 0;
3848 }
3849
3850 /**
3851 * cgroup_addrm_files - add or remove files to a cgroup directory
3852 * @css: the target css
3853 * @cgrp: the target cgroup (usually css->cgroup)
3854 * @cfts: array of cftypes to be added
3855 * @is_add: whether to add or remove
3856 *
3857 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3858 * For removals, this function never fails.
3859 */
cgroup_addrm_files(struct cgroup_subsys_state * css,struct cgroup * cgrp,struct cftype cfts[],bool is_add)3860 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3861 struct cgroup *cgrp, struct cftype cfts[],
3862 bool is_add)
3863 {
3864 struct cftype *cft, *cft_end = NULL;
3865 int ret = 0;
3866
3867 lockdep_assert_held(&cgroup_mutex);
3868
3869 restart:
3870 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3871 /* does cft->flags tell us to skip this file on @cgrp? */
3872 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3873 continue;
3874 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3875 continue;
3876 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3877 continue;
3878 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3879 continue;
3880 if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
3881 continue;
3882 if (is_add) {
3883 ret = cgroup_add_file(css, cgrp, cft);
3884 if (ret) {
3885 pr_warn("%s: failed to add %s, err=%d\n",
3886 __func__, cft->name, ret);
3887 cft_end = cft;
3888 is_add = false;
3889 goto restart;
3890 }
3891 } else {
3892 cgroup_rm_file(cgrp, cft);
3893 }
3894 }
3895 return ret;
3896 }
3897
cgroup_apply_cftypes(struct cftype * cfts,bool is_add)3898 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3899 {
3900 struct cgroup_subsys *ss = cfts[0].ss;
3901 struct cgroup *root = &ss->root->cgrp;
3902 struct cgroup_subsys_state *css;
3903 int ret = 0;
3904
3905 lockdep_assert_held(&cgroup_mutex);
3906
3907 /* add/rm files for all cgroups created before */
3908 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3909 struct cgroup *cgrp = css->cgroup;
3910
3911 if (!(css->flags & CSS_VISIBLE))
3912 continue;
3913
3914 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3915 if (ret)
3916 break;
3917 }
3918
3919 if (is_add && !ret)
3920 kernfs_activate(root->kn);
3921 return ret;
3922 }
3923
cgroup_exit_cftypes(struct cftype * cfts)3924 static void cgroup_exit_cftypes(struct cftype *cfts)
3925 {
3926 struct cftype *cft;
3927
3928 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3929 /* free copy for custom atomic_write_len, see init_cftypes() */
3930 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3931 kfree(cft->kf_ops);
3932 cft->kf_ops = NULL;
3933 cft->ss = NULL;
3934
3935 /* revert flags set by cgroup core while adding @cfts */
3936 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3937 }
3938 }
3939
cgroup_init_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)3940 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3941 {
3942 struct cftype *cft;
3943
3944 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3945 struct kernfs_ops *kf_ops;
3946
3947 WARN_ON(cft->ss || cft->kf_ops);
3948
3949 if (cft->seq_start)
3950 kf_ops = &cgroup_kf_ops;
3951 else
3952 kf_ops = &cgroup_kf_single_ops;
3953
3954 /*
3955 * Ugh... if @cft wants a custom max_write_len, we need to
3956 * make a copy of kf_ops to set its atomic_write_len.
3957 */
3958 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3959 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3960 if (!kf_ops) {
3961 cgroup_exit_cftypes(cfts);
3962 return -ENOMEM;
3963 }
3964 kf_ops->atomic_write_len = cft->max_write_len;
3965 }
3966
3967 cft->kf_ops = kf_ops;
3968 cft->ss = ss;
3969 }
3970
3971 return 0;
3972 }
3973
cgroup_rm_cftypes_locked(struct cftype * cfts)3974 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3975 {
3976 lockdep_assert_held(&cgroup_mutex);
3977
3978 if (!cfts || !cfts[0].ss)
3979 return -ENOENT;
3980
3981 list_del(&cfts->node);
3982 cgroup_apply_cftypes(cfts, false);
3983 cgroup_exit_cftypes(cfts);
3984 return 0;
3985 }
3986
3987 /**
3988 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3989 * @cfts: zero-length name terminated array of cftypes
3990 *
3991 * Unregister @cfts. Files described by @cfts are removed from all
3992 * existing cgroups and all future cgroups won't have them either. This
3993 * function can be called anytime whether @cfts' subsys is attached or not.
3994 *
3995 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3996 * registered.
3997 */
cgroup_rm_cftypes(struct cftype * cfts)3998 int cgroup_rm_cftypes(struct cftype *cfts)
3999 {
4000 int ret;
4001
4002 mutex_lock(&cgroup_mutex);
4003 ret = cgroup_rm_cftypes_locked(cfts);
4004 mutex_unlock(&cgroup_mutex);
4005 return ret;
4006 }
4007
4008 /**
4009 * cgroup_add_cftypes - add an array of cftypes to a subsystem
4010 * @ss: target cgroup subsystem
4011 * @cfts: zero-length name terminated array of cftypes
4012 *
4013 * Register @cfts to @ss. Files described by @cfts are created for all
4014 * existing cgroups to which @ss is attached and all future cgroups will
4015 * have them too. This function can be called anytime whether @ss is
4016 * attached or not.
4017 *
4018 * Returns 0 on successful registration, -errno on failure. Note that this
4019 * function currently returns 0 as long as @cfts registration is successful
4020 * even if some file creation attempts on existing cgroups fail.
4021 */
cgroup_add_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4022 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4023 {
4024 int ret;
4025
4026 if (!cgroup_ssid_enabled(ss->id))
4027 return 0;
4028
4029 if (!cfts || cfts[0].name[0] == '\0')
4030 return 0;
4031
4032 ret = cgroup_init_cftypes(ss, cfts);
4033 if (ret)
4034 return ret;
4035
4036 mutex_lock(&cgroup_mutex);
4037
4038 list_add_tail(&cfts->node, &ss->cfts);
4039 ret = cgroup_apply_cftypes(cfts, true);
4040 if (ret)
4041 cgroup_rm_cftypes_locked(cfts);
4042
4043 mutex_unlock(&cgroup_mutex);
4044 return ret;
4045 }
4046
4047 /**
4048 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
4049 * @ss: target cgroup subsystem
4050 * @cfts: zero-length name terminated array of cftypes
4051 *
4052 * Similar to cgroup_add_cftypes() but the added files are only used for
4053 * the default hierarchy.
4054 */
cgroup_add_dfl_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4055 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4056 {
4057 struct cftype *cft;
4058
4059 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4060 cft->flags |= __CFTYPE_ONLY_ON_DFL;
4061 return cgroup_add_cftypes(ss, cfts);
4062 }
4063
4064 /**
4065 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
4066 * @ss: target cgroup subsystem
4067 * @cfts: zero-length name terminated array of cftypes
4068 *
4069 * Similar to cgroup_add_cftypes() but the added files are only used for
4070 * the legacy hierarchies.
4071 */
cgroup_add_legacy_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4072 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4073 {
4074 struct cftype *cft;
4075
4076 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4077 cft->flags |= __CFTYPE_NOT_ON_DFL;
4078 return cgroup_add_cftypes(ss, cfts);
4079 }
4080
4081 /**
4082 * cgroup_file_notify - generate a file modified event for a cgroup_file
4083 * @cfile: target cgroup_file
4084 *
4085 * @cfile must have been obtained by setting cftype->file_offset.
4086 */
cgroup_file_notify(struct cgroup_file * cfile)4087 void cgroup_file_notify(struct cgroup_file *cfile)
4088 {
4089 unsigned long flags;
4090
4091 spin_lock_irqsave(&cgroup_file_kn_lock, flags);
4092 if (cfile->kn) {
4093 unsigned long last = cfile->notified_at;
4094 unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
4095
4096 if (time_in_range(jiffies, last, next)) {
4097 timer_reduce(&cfile->notify_timer, next);
4098 } else {
4099 kernfs_notify(cfile->kn);
4100 cfile->notified_at = jiffies;
4101 }
4102 }
4103 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
4104 }
4105
4106 /**
4107 * css_next_child - find the next child of a given css
4108 * @pos: the current position (%NULL to initiate traversal)
4109 * @parent: css whose children to walk
4110 *
4111 * This function returns the next child of @parent and should be called
4112 * under either cgroup_mutex or RCU read lock. The only requirement is
4113 * that @parent and @pos are accessible. The next sibling is guaranteed to
4114 * be returned regardless of their states.
4115 *
4116 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4117 * css which finished ->css_online() is guaranteed to be visible in the
4118 * future iterations and will stay visible until the last reference is put.
4119 * A css which hasn't finished ->css_online() or already finished
4120 * ->css_offline() may show up during traversal. It's each subsystem's
4121 * responsibility to synchronize against on/offlining.
4122 */
css_next_child(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * parent)4123 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
4124 struct cgroup_subsys_state *parent)
4125 {
4126 struct cgroup_subsys_state *next;
4127
4128 cgroup_assert_mutex_or_rcu_locked();
4129
4130 /*
4131 * @pos could already have been unlinked from the sibling list.
4132 * Once a cgroup is removed, its ->sibling.next is no longer
4133 * updated when its next sibling changes. CSS_RELEASED is set when
4134 * @pos is taken off list, at which time its next pointer is valid,
4135 * and, as releases are serialized, the one pointed to by the next
4136 * pointer is guaranteed to not have started release yet. This
4137 * implies that if we observe !CSS_RELEASED on @pos in this RCU
4138 * critical section, the one pointed to by its next pointer is
4139 * guaranteed to not have finished its RCU grace period even if we
4140 * have dropped rcu_read_lock() inbetween iterations.
4141 *
4142 * If @pos has CSS_RELEASED set, its next pointer can't be
4143 * dereferenced; however, as each css is given a monotonically
4144 * increasing unique serial number and always appended to the
4145 * sibling list, the next one can be found by walking the parent's
4146 * children until the first css with higher serial number than
4147 * @pos's. While this path can be slower, it happens iff iteration
4148 * races against release and the race window is very small.
4149 */
4150 if (!pos) {
4151 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
4152 } else if (likely(!(pos->flags & CSS_RELEASED))) {
4153 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
4154 } else {
4155 list_for_each_entry_rcu(next, &parent->children, sibling,
4156 lockdep_is_held(&cgroup_mutex))
4157 if (next->serial_nr > pos->serial_nr)
4158 break;
4159 }
4160
4161 /*
4162 * @next, if not pointing to the head, can be dereferenced and is
4163 * the next sibling.
4164 */
4165 if (&next->sibling != &parent->children)
4166 return next;
4167 return NULL;
4168 }
4169
4170 /**
4171 * css_next_descendant_pre - find the next descendant for pre-order walk
4172 * @pos: the current position (%NULL to initiate traversal)
4173 * @root: css whose descendants to walk
4174 *
4175 * To be used by css_for_each_descendant_pre(). Find the next descendant
4176 * to visit for pre-order traversal of @root's descendants. @root is
4177 * included in the iteration and the first node to be visited.
4178 *
4179 * While this function requires cgroup_mutex or RCU read locking, it
4180 * doesn't require the whole traversal to be contained in a single critical
4181 * section. This function will return the correct next descendant as long
4182 * as both @pos and @root are accessible and @pos is a descendant of @root.
4183 *
4184 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4185 * css which finished ->css_online() is guaranteed to be visible in the
4186 * future iterations and will stay visible until the last reference is put.
4187 * A css which hasn't finished ->css_online() or already finished
4188 * ->css_offline() may show up during traversal. It's each subsystem's
4189 * responsibility to synchronize against on/offlining.
4190 */
4191 struct cgroup_subsys_state *
css_next_descendant_pre(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * root)4192 css_next_descendant_pre(struct cgroup_subsys_state *pos,
4193 struct cgroup_subsys_state *root)
4194 {
4195 struct cgroup_subsys_state *next;
4196
4197 cgroup_assert_mutex_or_rcu_locked();
4198
4199 /* if first iteration, visit @root */
4200 if (!pos)
4201 return root;
4202
4203 /* visit the first child if exists */
4204 next = css_next_child(NULL, pos);
4205 if (next)
4206 return next;
4207
4208 /* no child, visit my or the closest ancestor's next sibling */
4209 while (pos != root) {
4210 next = css_next_child(pos, pos->parent);
4211 if (next)
4212 return next;
4213 pos = pos->parent;
4214 }
4215
4216 return NULL;
4217 }
4218 EXPORT_SYMBOL_GPL(css_next_descendant_pre);
4219
4220 /**
4221 * css_rightmost_descendant - return the rightmost descendant of a css
4222 * @pos: css of interest
4223 *
4224 * Return the rightmost descendant of @pos. If there's no descendant, @pos
4225 * is returned. This can be used during pre-order traversal to skip
4226 * subtree of @pos.
4227 *
4228 * While this function requires cgroup_mutex or RCU read locking, it
4229 * doesn't require the whole traversal to be contained in a single critical
4230 * section. This function will return the correct rightmost descendant as
4231 * long as @pos is accessible.
4232 */
4233 struct cgroup_subsys_state *
css_rightmost_descendant(struct cgroup_subsys_state * pos)4234 css_rightmost_descendant(struct cgroup_subsys_state *pos)
4235 {
4236 struct cgroup_subsys_state *last, *tmp;
4237
4238 cgroup_assert_mutex_or_rcu_locked();
4239
4240 do {
4241 last = pos;
4242 /* ->prev isn't RCU safe, walk ->next till the end */
4243 pos = NULL;
4244 css_for_each_child(tmp, last)
4245 pos = tmp;
4246 } while (pos);
4247
4248 return last;
4249 }
4250
4251 static struct cgroup_subsys_state *
css_leftmost_descendant(struct cgroup_subsys_state * pos)4252 css_leftmost_descendant(struct cgroup_subsys_state *pos)
4253 {
4254 struct cgroup_subsys_state *last;
4255
4256 do {
4257 last = pos;
4258 pos = css_next_child(NULL, pos);
4259 } while (pos);
4260
4261 return last;
4262 }
4263
4264 /**
4265 * css_next_descendant_post - find the next descendant for post-order walk
4266 * @pos: the current position (%NULL to initiate traversal)
4267 * @root: css whose descendants to walk
4268 *
4269 * To be used by css_for_each_descendant_post(). Find the next descendant
4270 * to visit for post-order traversal of @root's descendants. @root is
4271 * included in the iteration and the last node to be visited.
4272 *
4273 * While this function requires cgroup_mutex or RCU read locking, it
4274 * doesn't require the whole traversal to be contained in a single critical
4275 * section. This function will return the correct next descendant as long
4276 * as both @pos and @cgroup are accessible and @pos is a descendant of
4277 * @cgroup.
4278 *
4279 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4280 * css which finished ->css_online() is guaranteed to be visible in the
4281 * future iterations and will stay visible until the last reference is put.
4282 * A css which hasn't finished ->css_online() or already finished
4283 * ->css_offline() may show up during traversal. It's each subsystem's
4284 * responsibility to synchronize against on/offlining.
4285 */
4286 struct cgroup_subsys_state *
css_next_descendant_post(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * root)4287 css_next_descendant_post(struct cgroup_subsys_state *pos,
4288 struct cgroup_subsys_state *root)
4289 {
4290 struct cgroup_subsys_state *next;
4291
4292 cgroup_assert_mutex_or_rcu_locked();
4293
4294 /* if first iteration, visit leftmost descendant which may be @root */
4295 if (!pos)
4296 return css_leftmost_descendant(root);
4297
4298 /* if we visited @root, we're done */
4299 if (pos == root)
4300 return NULL;
4301
4302 /* if there's an unvisited sibling, visit its leftmost descendant */
4303 next = css_next_child(pos, pos->parent);
4304 if (next)
4305 return css_leftmost_descendant(next);
4306
4307 /* no sibling left, visit parent */
4308 return pos->parent;
4309 }
4310
4311 /**
4312 * css_has_online_children - does a css have online children
4313 * @css: the target css
4314 *
4315 * Returns %true if @css has any online children; otherwise, %false. This
4316 * function can be called from any context but the caller is responsible
4317 * for synchronizing against on/offlining as necessary.
4318 */
css_has_online_children(struct cgroup_subsys_state * css)4319 bool css_has_online_children(struct cgroup_subsys_state *css)
4320 {
4321 struct cgroup_subsys_state *child;
4322 bool ret = false;
4323
4324 rcu_read_lock();
4325 css_for_each_child(child, css) {
4326 if (child->flags & CSS_ONLINE) {
4327 ret = true;
4328 break;
4329 }
4330 }
4331 rcu_read_unlock();
4332 return ret;
4333 }
4334
css_task_iter_next_css_set(struct css_task_iter * it)4335 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4336 {
4337 struct list_head *l;
4338 struct cgrp_cset_link *link;
4339 struct css_set *cset;
4340
4341 lockdep_assert_held(&css_set_lock);
4342
4343 /* find the next threaded cset */
4344 if (it->tcset_pos) {
4345 l = it->tcset_pos->next;
4346
4347 if (l != it->tcset_head) {
4348 it->tcset_pos = l;
4349 return container_of(l, struct css_set,
4350 threaded_csets_node);
4351 }
4352
4353 it->tcset_pos = NULL;
4354 }
4355
4356 /* find the next cset */
4357 l = it->cset_pos;
4358 l = l->next;
4359 if (l == it->cset_head) {
4360 it->cset_pos = NULL;
4361 return NULL;
4362 }
4363
4364 if (it->ss) {
4365 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4366 } else {
4367 link = list_entry(l, struct cgrp_cset_link, cset_link);
4368 cset = link->cset;
4369 }
4370
4371 it->cset_pos = l;
4372
4373 /* initialize threaded css_set walking */
4374 if (it->flags & CSS_TASK_ITER_THREADED) {
4375 if (it->cur_dcset)
4376 put_css_set_locked(it->cur_dcset);
4377 it->cur_dcset = cset;
4378 get_css_set(cset);
4379
4380 it->tcset_head = &cset->threaded_csets;
4381 it->tcset_pos = &cset->threaded_csets;
4382 }
4383
4384 return cset;
4385 }
4386
4387 /**
4388 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
4389 * @it: the iterator to advance
4390 *
4391 * Advance @it to the next css_set to walk.
4392 */
css_task_iter_advance_css_set(struct css_task_iter * it)4393 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4394 {
4395 struct css_set *cset;
4396
4397 lockdep_assert_held(&css_set_lock);
4398
4399 /* Advance to the next non-empty css_set and find first non-empty tasks list*/
4400 while ((cset = css_task_iter_next_css_set(it))) {
4401 if (!list_empty(&cset->tasks)) {
4402 it->cur_tasks_head = &cset->tasks;
4403 break;
4404 } else if (!list_empty(&cset->mg_tasks)) {
4405 it->cur_tasks_head = &cset->mg_tasks;
4406 break;
4407 } else if (!list_empty(&cset->dying_tasks)) {
4408 it->cur_tasks_head = &cset->dying_tasks;
4409 break;
4410 }
4411 }
4412 if (!cset) {
4413 it->task_pos = NULL;
4414 return;
4415 }
4416 it->task_pos = it->cur_tasks_head->next;
4417
4418 /*
4419 * We don't keep css_sets locked across iteration steps and thus
4420 * need to take steps to ensure that iteration can be resumed after
4421 * the lock is re-acquired. Iteration is performed at two levels -
4422 * css_sets and tasks in them.
4423 *
4424 * Once created, a css_set never leaves its cgroup lists, so a
4425 * pinned css_set is guaranteed to stay put and we can resume
4426 * iteration afterwards.
4427 *
4428 * Tasks may leave @cset across iteration steps. This is resolved
4429 * by registering each iterator with the css_set currently being
4430 * walked and making css_set_move_task() advance iterators whose
4431 * next task is leaving.
4432 */
4433 if (it->cur_cset) {
4434 list_del(&it->iters_node);
4435 put_css_set_locked(it->cur_cset);
4436 }
4437 get_css_set(cset);
4438 it->cur_cset = cset;
4439 list_add(&it->iters_node, &cset->task_iters);
4440 }
4441
css_task_iter_skip(struct css_task_iter * it,struct task_struct * task)4442 static void css_task_iter_skip(struct css_task_iter *it,
4443 struct task_struct *task)
4444 {
4445 lockdep_assert_held(&css_set_lock);
4446
4447 if (it->task_pos == &task->cg_list) {
4448 it->task_pos = it->task_pos->next;
4449 it->flags |= CSS_TASK_ITER_SKIPPED;
4450 }
4451 }
4452
css_task_iter_advance(struct css_task_iter * it)4453 static void css_task_iter_advance(struct css_task_iter *it)
4454 {
4455 struct task_struct *task;
4456
4457 lockdep_assert_held(&css_set_lock);
4458 repeat:
4459 if (it->task_pos) {
4460 /*
4461 * Advance iterator to find next entry. We go through cset
4462 * tasks, mg_tasks and dying_tasks, when consumed we move onto
4463 * the next cset.
4464 */
4465 if (it->flags & CSS_TASK_ITER_SKIPPED)
4466 it->flags &= ~CSS_TASK_ITER_SKIPPED;
4467 else
4468 it->task_pos = it->task_pos->next;
4469
4470 if (it->task_pos == &it->cur_cset->tasks) {
4471 it->cur_tasks_head = &it->cur_cset->mg_tasks;
4472 it->task_pos = it->cur_tasks_head->next;
4473 }
4474 if (it->task_pos == &it->cur_cset->mg_tasks) {
4475 it->cur_tasks_head = &it->cur_cset->dying_tasks;
4476 it->task_pos = it->cur_tasks_head->next;
4477 }
4478 if (it->task_pos == &it->cur_cset->dying_tasks)
4479 css_task_iter_advance_css_set(it);
4480 } else {
4481 /* called from start, proceed to the first cset */
4482 css_task_iter_advance_css_set(it);
4483 }
4484
4485 if (!it->task_pos)
4486 return;
4487
4488 task = list_entry(it->task_pos, struct task_struct, cg_list);
4489
4490 if (it->flags & CSS_TASK_ITER_PROCS) {
4491 /* if PROCS, skip over tasks which aren't group leaders */
4492 if (!thread_group_leader(task))
4493 goto repeat;
4494
4495 /* and dying leaders w/o live member threads */
4496 if (it->cur_tasks_head == &it->cur_cset->dying_tasks &&
4497 !atomic_read(&task->signal->live))
4498 goto repeat;
4499 } else {
4500 /* skip all dying ones */
4501 if (it->cur_tasks_head == &it->cur_cset->dying_tasks)
4502 goto repeat;
4503 }
4504 }
4505
4506 /**
4507 * css_task_iter_start - initiate task iteration
4508 * @css: the css to walk tasks of
4509 * @flags: CSS_TASK_ITER_* flags
4510 * @it: the task iterator to use
4511 *
4512 * Initiate iteration through the tasks of @css. The caller can call
4513 * css_task_iter_next() to walk through the tasks until the function
4514 * returns NULL. On completion of iteration, css_task_iter_end() must be
4515 * called.
4516 */
css_task_iter_start(struct cgroup_subsys_state * css,unsigned int flags,struct css_task_iter * it)4517 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4518 struct css_task_iter *it)
4519 {
4520 memset(it, 0, sizeof(*it));
4521
4522 spin_lock_irq(&css_set_lock);
4523
4524 it->ss = css->ss;
4525 it->flags = flags;
4526
4527 if (it->ss)
4528 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4529 else
4530 it->cset_pos = &css->cgroup->cset_links;
4531
4532 it->cset_head = it->cset_pos;
4533
4534 css_task_iter_advance(it);
4535
4536 spin_unlock_irq(&css_set_lock);
4537 }
4538
4539 /**
4540 * css_task_iter_next - return the next task for the iterator
4541 * @it: the task iterator being iterated
4542 *
4543 * The "next" function for task iteration. @it should have been
4544 * initialized via css_task_iter_start(). Returns NULL when the iteration
4545 * reaches the end.
4546 */
css_task_iter_next(struct css_task_iter * it)4547 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4548 {
4549 if (it->cur_task) {
4550 put_task_struct(it->cur_task);
4551 it->cur_task = NULL;
4552 }
4553
4554 spin_lock_irq(&css_set_lock);
4555
4556 /* @it may be half-advanced by skips, finish advancing */
4557 if (it->flags & CSS_TASK_ITER_SKIPPED)
4558 css_task_iter_advance(it);
4559
4560 if (it->task_pos) {
4561 it->cur_task = list_entry(it->task_pos, struct task_struct,
4562 cg_list);
4563 get_task_struct(it->cur_task);
4564 css_task_iter_advance(it);
4565 }
4566
4567 spin_unlock_irq(&css_set_lock);
4568
4569 return it->cur_task;
4570 }
4571
4572 /**
4573 * css_task_iter_end - finish task iteration
4574 * @it: the task iterator to finish
4575 *
4576 * Finish task iteration started by css_task_iter_start().
4577 */
css_task_iter_end(struct css_task_iter * it)4578 void css_task_iter_end(struct css_task_iter *it)
4579 {
4580 if (it->cur_cset) {
4581 spin_lock_irq(&css_set_lock);
4582 list_del(&it->iters_node);
4583 put_css_set_locked(it->cur_cset);
4584 spin_unlock_irq(&css_set_lock);
4585 }
4586
4587 if (it->cur_dcset)
4588 put_css_set(it->cur_dcset);
4589
4590 if (it->cur_task)
4591 put_task_struct(it->cur_task);
4592 }
4593
cgroup_procs_release(struct kernfs_open_file * of)4594 static void cgroup_procs_release(struct kernfs_open_file *of)
4595 {
4596 if (of->priv) {
4597 css_task_iter_end(of->priv);
4598 kfree(of->priv);
4599 }
4600 }
4601
cgroup_procs_next(struct seq_file * s,void * v,loff_t * pos)4602 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
4603 {
4604 struct kernfs_open_file *of = s->private;
4605 struct css_task_iter *it = of->priv;
4606
4607 if (pos)
4608 (*pos)++;
4609
4610 return css_task_iter_next(it);
4611 }
4612
__cgroup_procs_start(struct seq_file * s,loff_t * pos,unsigned int iter_flags)4613 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
4614 unsigned int iter_flags)
4615 {
4616 struct kernfs_open_file *of = s->private;
4617 struct cgroup *cgrp = seq_css(s)->cgroup;
4618 struct css_task_iter *it = of->priv;
4619
4620 /*
4621 * When a seq_file is seeked, it's always traversed sequentially
4622 * from position 0, so we can simply keep iterating on !0 *pos.
4623 */
4624 if (!it) {
4625 if (WARN_ON_ONCE((*pos)))
4626 return ERR_PTR(-EINVAL);
4627
4628 it = kzalloc(sizeof(*it), GFP_KERNEL);
4629 if (!it)
4630 return ERR_PTR(-ENOMEM);
4631 of->priv = it;
4632 css_task_iter_start(&cgrp->self, iter_flags, it);
4633 } else if (!(*pos)) {
4634 css_task_iter_end(it);
4635 css_task_iter_start(&cgrp->self, iter_flags, it);
4636 } else
4637 return it->cur_task;
4638
4639 return cgroup_procs_next(s, NULL, NULL);
4640 }
4641
cgroup_procs_start(struct seq_file * s,loff_t * pos)4642 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
4643 {
4644 struct cgroup *cgrp = seq_css(s)->cgroup;
4645
4646 /*
4647 * All processes of a threaded subtree belong to the domain cgroup
4648 * of the subtree. Only threads can be distributed across the
4649 * subtree. Reject reads on cgroup.procs in the subtree proper.
4650 * They're always empty anyway.
4651 */
4652 if (cgroup_is_threaded(cgrp))
4653 return ERR_PTR(-EOPNOTSUPP);
4654
4655 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
4656 CSS_TASK_ITER_THREADED);
4657 }
4658
cgroup_procs_show(struct seq_file * s,void * v)4659 static int cgroup_procs_show(struct seq_file *s, void *v)
4660 {
4661 seq_printf(s, "%d\n", task_pid_vnr(v));
4662 return 0;
4663 }
4664
cgroup_may_write(const struct cgroup * cgrp,struct super_block * sb)4665 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb)
4666 {
4667 int ret;
4668 struct inode *inode;
4669
4670 lockdep_assert_held(&cgroup_mutex);
4671
4672 inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
4673 if (!inode)
4674 return -ENOMEM;
4675
4676 ret = inode_permission(inode, MAY_WRITE);
4677 iput(inode);
4678 return ret;
4679 }
4680
cgroup_procs_write_permission(struct cgroup * src_cgrp,struct cgroup * dst_cgrp,struct super_block * sb)4681 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
4682 struct cgroup *dst_cgrp,
4683 struct super_block *sb)
4684 {
4685 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
4686 struct cgroup *com_cgrp = src_cgrp;
4687 int ret;
4688
4689 lockdep_assert_held(&cgroup_mutex);
4690
4691 /* find the common ancestor */
4692 while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
4693 com_cgrp = cgroup_parent(com_cgrp);
4694
4695 /* %current should be authorized to migrate to the common ancestor */
4696 ret = cgroup_may_write(com_cgrp, sb);
4697 if (ret)
4698 return ret;
4699
4700 /*
4701 * If namespaces are delegation boundaries, %current must be able
4702 * to see both source and destination cgroups from its namespace.
4703 */
4704 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
4705 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
4706 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
4707 return -ENOENT;
4708
4709 return 0;
4710 }
4711
cgroup_attach_permissions(struct cgroup * src_cgrp,struct cgroup * dst_cgrp,struct super_block * sb,bool threadgroup)4712 static int cgroup_attach_permissions(struct cgroup *src_cgrp,
4713 struct cgroup *dst_cgrp,
4714 struct super_block *sb, bool threadgroup)
4715 {
4716 int ret = 0;
4717
4718 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb);
4719 if (ret)
4720 return ret;
4721
4722 ret = cgroup_migrate_vet_dst(dst_cgrp);
4723 if (ret)
4724 return ret;
4725
4726 if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp))
4727 ret = -EOPNOTSUPP;
4728
4729 return ret;
4730 }
4731
cgroup_procs_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4732 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
4733 char *buf, size_t nbytes, loff_t off)
4734 {
4735 struct cgroup *src_cgrp, *dst_cgrp;
4736 struct task_struct *task;
4737 ssize_t ret;
4738 bool locked;
4739
4740 dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4741 if (!dst_cgrp)
4742 return -ENODEV;
4743
4744 task = cgroup_procs_write_start(buf, true, &locked);
4745 ret = PTR_ERR_OR_ZERO(task);
4746 if (ret)
4747 goto out_unlock;
4748
4749 /* find the source cgroup */
4750 spin_lock_irq(&css_set_lock);
4751 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4752 spin_unlock_irq(&css_set_lock);
4753
4754 ret = cgroup_attach_permissions(src_cgrp, dst_cgrp,
4755 of->file->f_path.dentry->d_sb, true);
4756 if (ret)
4757 goto out_finish;
4758
4759 ret = cgroup_attach_task(dst_cgrp, task, true);
4760
4761 out_finish:
4762 cgroup_procs_write_finish(task, locked);
4763 out_unlock:
4764 cgroup_kn_unlock(of->kn);
4765
4766 return ret ?: nbytes;
4767 }
4768
cgroup_threads_start(struct seq_file * s,loff_t * pos)4769 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
4770 {
4771 return __cgroup_procs_start(s, pos, 0);
4772 }
4773
cgroup_threads_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4774 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
4775 char *buf, size_t nbytes, loff_t off)
4776 {
4777 struct cgroup *src_cgrp, *dst_cgrp;
4778 struct task_struct *task;
4779 ssize_t ret;
4780 bool locked;
4781
4782 buf = strstrip(buf);
4783
4784 dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4785 if (!dst_cgrp)
4786 return -ENODEV;
4787
4788 task = cgroup_procs_write_start(buf, false, &locked);
4789 ret = PTR_ERR_OR_ZERO(task);
4790 if (ret)
4791 goto out_unlock;
4792
4793 /* find the source cgroup */
4794 spin_lock_irq(&css_set_lock);
4795 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4796 spin_unlock_irq(&css_set_lock);
4797
4798 /* thread migrations follow the cgroup.procs delegation rule */
4799 ret = cgroup_attach_permissions(src_cgrp, dst_cgrp,
4800 of->file->f_path.dentry->d_sb, false);
4801 if (ret)
4802 goto out_finish;
4803
4804 ret = cgroup_attach_task(dst_cgrp, task, false);
4805
4806 out_finish:
4807 cgroup_procs_write_finish(task, locked);
4808 out_unlock:
4809 cgroup_kn_unlock(of->kn);
4810
4811 return ret ?: nbytes;
4812 }
4813
4814 /* cgroup core interface files for the default hierarchy */
4815 static struct cftype cgroup_base_files[] = {
4816 {
4817 .name = "cgroup.type",
4818 .flags = CFTYPE_NOT_ON_ROOT,
4819 .seq_show = cgroup_type_show,
4820 .write = cgroup_type_write,
4821 },
4822 {
4823 .name = "cgroup.procs",
4824 .flags = CFTYPE_NS_DELEGATABLE,
4825 .file_offset = offsetof(struct cgroup, procs_file),
4826 .release = cgroup_procs_release,
4827 .seq_start = cgroup_procs_start,
4828 .seq_next = cgroup_procs_next,
4829 .seq_show = cgroup_procs_show,
4830 .write = cgroup_procs_write,
4831 },
4832 {
4833 .name = "cgroup.threads",
4834 .flags = CFTYPE_NS_DELEGATABLE,
4835 .release = cgroup_procs_release,
4836 .seq_start = cgroup_threads_start,
4837 .seq_next = cgroup_procs_next,
4838 .seq_show = cgroup_procs_show,
4839 .write = cgroup_threads_write,
4840 },
4841 {
4842 .name = "cgroup.controllers",
4843 .seq_show = cgroup_controllers_show,
4844 },
4845 {
4846 .name = "cgroup.subtree_control",
4847 .flags = CFTYPE_NS_DELEGATABLE,
4848 .seq_show = cgroup_subtree_control_show,
4849 .write = cgroup_subtree_control_write,
4850 },
4851 {
4852 .name = "cgroup.events",
4853 .flags = CFTYPE_NOT_ON_ROOT,
4854 .file_offset = offsetof(struct cgroup, events_file),
4855 .seq_show = cgroup_events_show,
4856 },
4857 {
4858 .name = "cgroup.max.descendants",
4859 .seq_show = cgroup_max_descendants_show,
4860 .write = cgroup_max_descendants_write,
4861 },
4862 {
4863 .name = "cgroup.max.depth",
4864 .seq_show = cgroup_max_depth_show,
4865 .write = cgroup_max_depth_write,
4866 },
4867 {
4868 .name = "cgroup.stat",
4869 .seq_show = cgroup_stat_show,
4870 },
4871 {
4872 .name = "cgroup.freeze",
4873 .flags = CFTYPE_NOT_ON_ROOT,
4874 .seq_show = cgroup_freeze_show,
4875 .write = cgroup_freeze_write,
4876 },
4877 {
4878 .name = "cpu.stat",
4879 .seq_show = cpu_stat_show,
4880 },
4881 #ifdef CONFIG_PSI
4882 {
4883 .name = "io.pressure",
4884 .seq_show = cgroup_io_pressure_show,
4885 .write = cgroup_io_pressure_write,
4886 .poll = cgroup_pressure_poll,
4887 .release = cgroup_pressure_release,
4888 },
4889 {
4890 .name = "memory.pressure",
4891 .seq_show = cgroup_memory_pressure_show,
4892 .write = cgroup_memory_pressure_write,
4893 .poll = cgroup_pressure_poll,
4894 .release = cgroup_pressure_release,
4895 },
4896 {
4897 .name = "cpu.pressure",
4898 .seq_show = cgroup_cpu_pressure_show,
4899 .write = cgroup_cpu_pressure_write,
4900 .poll = cgroup_pressure_poll,
4901 .release = cgroup_pressure_release,
4902 },
4903 #endif /* CONFIG_PSI */
4904 { } /* terminate */
4905 };
4906
4907 /*
4908 * css destruction is four-stage process.
4909 *
4910 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4911 * Implemented in kill_css().
4912 *
4913 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4914 * and thus css_tryget_online() is guaranteed to fail, the css can be
4915 * offlined by invoking offline_css(). After offlining, the base ref is
4916 * put. Implemented in css_killed_work_fn().
4917 *
4918 * 3. When the percpu_ref reaches zero, the only possible remaining
4919 * accessors are inside RCU read sections. css_release() schedules the
4920 * RCU callback.
4921 *
4922 * 4. After the grace period, the css can be freed. Implemented in
4923 * css_free_work_fn().
4924 *
4925 * It is actually hairier because both step 2 and 4 require process context
4926 * and thus involve punting to css->destroy_work adding two additional
4927 * steps to the already complex sequence.
4928 */
css_free_rwork_fn(struct work_struct * work)4929 static void css_free_rwork_fn(struct work_struct *work)
4930 {
4931 struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
4932 struct cgroup_subsys_state, destroy_rwork);
4933 struct cgroup_subsys *ss = css->ss;
4934 struct cgroup *cgrp = css->cgroup;
4935
4936 percpu_ref_exit(&css->refcnt);
4937
4938 if (ss) {
4939 /* css free path */
4940 struct cgroup_subsys_state *parent = css->parent;
4941 int id = css->id;
4942
4943 ss->css_free(css);
4944 cgroup_idr_remove(&ss->css_idr, id);
4945 cgroup_put(cgrp);
4946
4947 if (parent)
4948 css_put(parent);
4949 } else {
4950 /* cgroup free path */
4951 atomic_dec(&cgrp->root->nr_cgrps);
4952 cgroup1_pidlist_destroy_all(cgrp);
4953 cancel_work_sync(&cgrp->release_agent_work);
4954
4955 if (cgroup_parent(cgrp)) {
4956 /*
4957 * We get a ref to the parent, and put the ref when
4958 * this cgroup is being freed, so it's guaranteed
4959 * that the parent won't be destroyed before its
4960 * children.
4961 */
4962 cgroup_put(cgroup_parent(cgrp));
4963 kernfs_put(cgrp->kn);
4964 psi_cgroup_free(cgrp);
4965 if (cgroup_on_dfl(cgrp))
4966 cgroup_rstat_exit(cgrp);
4967 kfree(cgrp);
4968 } else {
4969 /*
4970 * This is root cgroup's refcnt reaching zero,
4971 * which indicates that the root should be
4972 * released.
4973 */
4974 cgroup_destroy_root(cgrp->root);
4975 }
4976 }
4977 }
4978
css_release_work_fn(struct work_struct * work)4979 static void css_release_work_fn(struct work_struct *work)
4980 {
4981 struct cgroup_subsys_state *css =
4982 container_of(work, struct cgroup_subsys_state, destroy_work);
4983 struct cgroup_subsys *ss = css->ss;
4984 struct cgroup *cgrp = css->cgroup;
4985
4986 mutex_lock(&cgroup_mutex);
4987
4988 css->flags |= CSS_RELEASED;
4989 list_del_rcu(&css->sibling);
4990
4991 if (ss) {
4992 /* css release path */
4993 if (!list_empty(&css->rstat_css_node)) {
4994 cgroup_rstat_flush(cgrp);
4995 list_del_rcu(&css->rstat_css_node);
4996 }
4997
4998 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
4999 if (ss->css_released)
5000 ss->css_released(css);
5001 } else {
5002 struct cgroup *tcgrp;
5003
5004 /* cgroup release path */
5005 TRACE_CGROUP_PATH(release, cgrp);
5006
5007 if (cgroup_on_dfl(cgrp))
5008 cgroup_rstat_flush(cgrp);
5009
5010 spin_lock_irq(&css_set_lock);
5011 for (tcgrp = cgroup_parent(cgrp); tcgrp;
5012 tcgrp = cgroup_parent(tcgrp))
5013 tcgrp->nr_dying_descendants--;
5014 spin_unlock_irq(&css_set_lock);
5015
5016 /*
5017 * There are two control paths which try to determine
5018 * cgroup from dentry without going through kernfs -
5019 * cgroupstats_build() and css_tryget_online_from_dir().
5020 * Those are supported by RCU protecting clearing of
5021 * cgrp->kn->priv backpointer.
5022 */
5023 if (cgrp->kn)
5024 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5025 NULL);
5026 }
5027
5028 mutex_unlock(&cgroup_mutex);
5029
5030 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5031 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5032 }
5033
css_release(struct percpu_ref * ref)5034 static void css_release(struct percpu_ref *ref)
5035 {
5036 struct cgroup_subsys_state *css =
5037 container_of(ref, struct cgroup_subsys_state, refcnt);
5038
5039 INIT_WORK(&css->destroy_work, css_release_work_fn);
5040 queue_work(cgroup_destroy_wq, &css->destroy_work);
5041 }
5042
init_and_link_css(struct cgroup_subsys_state * css,struct cgroup_subsys * ss,struct cgroup * cgrp)5043 static void init_and_link_css(struct cgroup_subsys_state *css,
5044 struct cgroup_subsys *ss, struct cgroup *cgrp)
5045 {
5046 lockdep_assert_held(&cgroup_mutex);
5047
5048 cgroup_get_live(cgrp);
5049
5050 memset(css, 0, sizeof(*css));
5051 css->cgroup = cgrp;
5052 css->ss = ss;
5053 css->id = -1;
5054 INIT_LIST_HEAD(&css->sibling);
5055 INIT_LIST_HEAD(&css->children);
5056 INIT_LIST_HEAD(&css->rstat_css_node);
5057 css->serial_nr = css_serial_nr_next++;
5058 atomic_set(&css->online_cnt, 0);
5059
5060 if (cgroup_parent(cgrp)) {
5061 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5062 css_get(css->parent);
5063 }
5064
5065 if (cgroup_on_dfl(cgrp) && ss->css_rstat_flush)
5066 list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
5067
5068 BUG_ON(cgroup_css(cgrp, ss));
5069 }
5070
5071 /* invoke ->css_online() on a new CSS and mark it online if successful */
online_css(struct cgroup_subsys_state * css)5072 static int online_css(struct cgroup_subsys_state *css)
5073 {
5074 struct cgroup_subsys *ss = css->ss;
5075 int ret = 0;
5076
5077 lockdep_assert_held(&cgroup_mutex);
5078
5079 if (ss->css_online)
5080 ret = ss->css_online(css);
5081 if (!ret) {
5082 css->flags |= CSS_ONLINE;
5083 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5084
5085 atomic_inc(&css->online_cnt);
5086 if (css->parent)
5087 atomic_inc(&css->parent->online_cnt);
5088 }
5089 return ret;
5090 }
5091
5092 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
offline_css(struct cgroup_subsys_state * css)5093 static void offline_css(struct cgroup_subsys_state *css)
5094 {
5095 struct cgroup_subsys *ss = css->ss;
5096
5097 lockdep_assert_held(&cgroup_mutex);
5098
5099 if (!(css->flags & CSS_ONLINE))
5100 return;
5101
5102 if (ss->css_offline)
5103 ss->css_offline(css);
5104
5105 css->flags &= ~CSS_ONLINE;
5106 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5107
5108 wake_up_all(&css->cgroup->offline_waitq);
5109 }
5110
5111 /**
5112 * css_create - create a cgroup_subsys_state
5113 * @cgrp: the cgroup new css will be associated with
5114 * @ss: the subsys of new css
5115 *
5116 * Create a new css associated with @cgrp - @ss pair. On success, the new
5117 * css is online and installed in @cgrp. This function doesn't create the
5118 * interface files. Returns 0 on success, -errno on failure.
5119 */
css_create(struct cgroup * cgrp,struct cgroup_subsys * ss)5120 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5121 struct cgroup_subsys *ss)
5122 {
5123 struct cgroup *parent = cgroup_parent(cgrp);
5124 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5125 struct cgroup_subsys_state *css;
5126 int err;
5127
5128 lockdep_assert_held(&cgroup_mutex);
5129
5130 css = ss->css_alloc(parent_css);
5131 if (!css)
5132 css = ERR_PTR(-ENOMEM);
5133 if (IS_ERR(css))
5134 return css;
5135
5136 init_and_link_css(css, ss, cgrp);
5137
5138 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5139 if (err)
5140 goto err_free_css;
5141
5142 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5143 if (err < 0)
5144 goto err_free_css;
5145 css->id = err;
5146
5147 /* @css is ready to be brought online now, make it visible */
5148 list_add_tail_rcu(&css->sibling, &parent_css->children);
5149 cgroup_idr_replace(&ss->css_idr, css, css->id);
5150
5151 err = online_css(css);
5152 if (err)
5153 goto err_list_del;
5154
5155 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
5156 cgroup_parent(parent)) {
5157 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
5158 current->comm, current->pid, ss->name);
5159 if (!strcmp(ss->name, "memory"))
5160 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
5161 ss->warned_broken_hierarchy = true;
5162 }
5163
5164 return css;
5165
5166 err_list_del:
5167 list_del_rcu(&css->sibling);
5168 err_free_css:
5169 list_del_rcu(&css->rstat_css_node);
5170 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5171 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5172 return ERR_PTR(err);
5173 }
5174
5175 /*
5176 * The returned cgroup is fully initialized including its control mask, but
5177 * it isn't associated with its kernfs_node and doesn't have the control
5178 * mask applied.
5179 */
cgroup_create(struct cgroup * parent,const char * name,umode_t mode)5180 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name,
5181 umode_t mode)
5182 {
5183 struct cgroup_root *root = parent->root;
5184 struct cgroup *cgrp, *tcgrp;
5185 struct kernfs_node *kn;
5186 int level = parent->level + 1;
5187 int ret;
5188
5189 /* allocate the cgroup and its ID, 0 is reserved for the root */
5190 cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)),
5191 GFP_KERNEL);
5192 if (!cgrp)
5193 return ERR_PTR(-ENOMEM);
5194
5195 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5196 if (ret)
5197 goto out_free_cgrp;
5198
5199 if (cgroup_on_dfl(parent)) {
5200 ret = cgroup_rstat_init(cgrp);
5201 if (ret)
5202 goto out_cancel_ref;
5203 }
5204
5205 /* create the directory */
5206 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5207 if (IS_ERR(kn)) {
5208 ret = PTR_ERR(kn);
5209 goto out_stat_exit;
5210 }
5211 cgrp->kn = kn;
5212
5213 init_cgroup_housekeeping(cgrp);
5214
5215 cgrp->self.parent = &parent->self;
5216 cgrp->root = root;
5217 cgrp->level = level;
5218
5219 ret = psi_cgroup_alloc(cgrp);
5220 if (ret)
5221 goto out_kernfs_remove;
5222
5223 ret = cgroup_bpf_inherit(cgrp);
5224 if (ret)
5225 goto out_psi_free;
5226
5227 /*
5228 * New cgroup inherits effective freeze counter, and
5229 * if the parent has to be frozen, the child has too.
5230 */
5231 cgrp->freezer.e_freeze = parent->freezer.e_freeze;
5232 if (cgrp->freezer.e_freeze) {
5233 /*
5234 * Set the CGRP_FREEZE flag, so when a process will be
5235 * attached to the child cgroup, it will become frozen.
5236 * At this point the new cgroup is unpopulated, so we can
5237 * consider it frozen immediately.
5238 */
5239 set_bit(CGRP_FREEZE, &cgrp->flags);
5240 set_bit(CGRP_FROZEN, &cgrp->flags);
5241 }
5242
5243 spin_lock_irq(&css_set_lock);
5244 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5245 cgrp->ancestor_ids[tcgrp->level] = cgroup_id(tcgrp);
5246
5247 if (tcgrp != cgrp) {
5248 tcgrp->nr_descendants++;
5249
5250 /*
5251 * If the new cgroup is frozen, all ancestor cgroups
5252 * get a new frozen descendant, but their state can't
5253 * change because of this.
5254 */
5255 if (cgrp->freezer.e_freeze)
5256 tcgrp->freezer.nr_frozen_descendants++;
5257 }
5258 }
5259 spin_unlock_irq(&css_set_lock);
5260
5261 if (notify_on_release(parent))
5262 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5263
5264 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5265 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5266
5267 cgrp->self.serial_nr = css_serial_nr_next++;
5268
5269 /* allocation complete, commit to creation */
5270 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5271 atomic_inc(&root->nr_cgrps);
5272 cgroup_get_live(parent);
5273
5274 /*
5275 * On the default hierarchy, a child doesn't automatically inherit
5276 * subtree_control from the parent. Each is configured manually.
5277 */
5278 if (!cgroup_on_dfl(cgrp))
5279 cgrp->subtree_control = cgroup_control(cgrp);
5280
5281 cgroup_propagate_control(cgrp);
5282
5283 return cgrp;
5284
5285 out_psi_free:
5286 psi_cgroup_free(cgrp);
5287 out_kernfs_remove:
5288 kernfs_remove(cgrp->kn);
5289 out_stat_exit:
5290 if (cgroup_on_dfl(parent))
5291 cgroup_rstat_exit(cgrp);
5292 out_cancel_ref:
5293 percpu_ref_exit(&cgrp->self.refcnt);
5294 out_free_cgrp:
5295 kfree(cgrp);
5296 return ERR_PTR(ret);
5297 }
5298
cgroup_check_hierarchy_limits(struct cgroup * parent)5299 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
5300 {
5301 struct cgroup *cgroup;
5302 int ret = false;
5303 int level = 1;
5304
5305 lockdep_assert_held(&cgroup_mutex);
5306
5307 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
5308 if (cgroup->nr_descendants >= cgroup->max_descendants)
5309 goto fail;
5310
5311 if (level > cgroup->max_depth)
5312 goto fail;
5313
5314 level++;
5315 }
5316
5317 ret = true;
5318 fail:
5319 return ret;
5320 }
5321
cgroup_mkdir(struct kernfs_node * parent_kn,const char * name,umode_t mode)5322 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
5323 {
5324 struct cgroup *parent, *cgrp;
5325 int ret;
5326
5327 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5328 if (strchr(name, '\n'))
5329 return -EINVAL;
5330
5331 parent = cgroup_kn_lock_live(parent_kn, false);
5332 if (!parent)
5333 return -ENODEV;
5334
5335 if (!cgroup_check_hierarchy_limits(parent)) {
5336 ret = -EAGAIN;
5337 goto out_unlock;
5338 }
5339
5340 cgrp = cgroup_create(parent, name, mode);
5341 if (IS_ERR(cgrp)) {
5342 ret = PTR_ERR(cgrp);
5343 goto out_unlock;
5344 }
5345
5346 /*
5347 * This extra ref will be put in cgroup_free_fn() and guarantees
5348 * that @cgrp->kn is always accessible.
5349 */
5350 kernfs_get(cgrp->kn);
5351
5352 ret = cgroup_kn_set_ugid(cgrp->kn);
5353 if (ret)
5354 goto out_destroy;
5355
5356 ret = css_populate_dir(&cgrp->self);
5357 if (ret)
5358 goto out_destroy;
5359
5360 ret = cgroup_apply_control_enable(cgrp);
5361 if (ret)
5362 goto out_destroy;
5363
5364 TRACE_CGROUP_PATH(mkdir, cgrp);
5365
5366 /* let's create and online css's */
5367 kernfs_activate(cgrp->kn);
5368
5369 ret = 0;
5370 goto out_unlock;
5371
5372 out_destroy:
5373 cgroup_destroy_locked(cgrp);
5374 out_unlock:
5375 cgroup_kn_unlock(parent_kn);
5376 return ret;
5377 }
5378
5379 /*
5380 * This is called when the refcnt of a css is confirmed to be killed.
5381 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5382 * initate destruction and put the css ref from kill_css().
5383 */
css_killed_work_fn(struct work_struct * work)5384 static void css_killed_work_fn(struct work_struct *work)
5385 {
5386 struct cgroup_subsys_state *css =
5387 container_of(work, struct cgroup_subsys_state, destroy_work);
5388
5389 mutex_lock(&cgroup_mutex);
5390
5391 do {
5392 offline_css(css);
5393 css_put(css);
5394 /* @css can't go away while we're holding cgroup_mutex */
5395 css = css->parent;
5396 } while (css && atomic_dec_and_test(&css->online_cnt));
5397
5398 mutex_unlock(&cgroup_mutex);
5399 }
5400
5401 /* css kill confirmation processing requires process context, bounce */
css_killed_ref_fn(struct percpu_ref * ref)5402 static void css_killed_ref_fn(struct percpu_ref *ref)
5403 {
5404 struct cgroup_subsys_state *css =
5405 container_of(ref, struct cgroup_subsys_state, refcnt);
5406
5407 if (atomic_dec_and_test(&css->online_cnt)) {
5408 INIT_WORK(&css->destroy_work, css_killed_work_fn);
5409 queue_work(cgroup_destroy_wq, &css->destroy_work);
5410 }
5411 }
5412
5413 /**
5414 * kill_css - destroy a css
5415 * @css: css to destroy
5416 *
5417 * This function initiates destruction of @css by removing cgroup interface
5418 * files and putting its base reference. ->css_offline() will be invoked
5419 * asynchronously once css_tryget_online() is guaranteed to fail and when
5420 * the reference count reaches zero, @css will be released.
5421 */
kill_css(struct cgroup_subsys_state * css)5422 static void kill_css(struct cgroup_subsys_state *css)
5423 {
5424 lockdep_assert_held(&cgroup_mutex);
5425
5426 if (css->flags & CSS_DYING)
5427 return;
5428
5429 css->flags |= CSS_DYING;
5430
5431 /*
5432 * This must happen before css is disassociated with its cgroup.
5433 * See seq_css() for details.
5434 */
5435 css_clear_dir(css);
5436
5437 /*
5438 * Killing would put the base ref, but we need to keep it alive
5439 * until after ->css_offline().
5440 */
5441 css_get(css);
5442
5443 /*
5444 * cgroup core guarantees that, by the time ->css_offline() is
5445 * invoked, no new css reference will be given out via
5446 * css_tryget_online(). We can't simply call percpu_ref_kill() and
5447 * proceed to offlining css's because percpu_ref_kill() doesn't
5448 * guarantee that the ref is seen as killed on all CPUs on return.
5449 *
5450 * Use percpu_ref_kill_and_confirm() to get notifications as each
5451 * css is confirmed to be seen as killed on all CPUs.
5452 */
5453 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5454 }
5455
5456 /**
5457 * cgroup_destroy_locked - the first stage of cgroup destruction
5458 * @cgrp: cgroup to be destroyed
5459 *
5460 * css's make use of percpu refcnts whose killing latency shouldn't be
5461 * exposed to userland and are RCU protected. Also, cgroup core needs to
5462 * guarantee that css_tryget_online() won't succeed by the time
5463 * ->css_offline() is invoked. To satisfy all the requirements,
5464 * destruction is implemented in the following two steps.
5465 *
5466 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5467 * userland visible parts and start killing the percpu refcnts of
5468 * css's. Set up so that the next stage will be kicked off once all
5469 * the percpu refcnts are confirmed to be killed.
5470 *
5471 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5472 * rest of destruction. Once all cgroup references are gone, the
5473 * cgroup is RCU-freed.
5474 *
5475 * This function implements s1. After this step, @cgrp is gone as far as
5476 * the userland is concerned and a new cgroup with the same name may be
5477 * created. As cgroup doesn't care about the names internally, this
5478 * doesn't cause any problem.
5479 */
cgroup_destroy_locked(struct cgroup * cgrp)5480 static int cgroup_destroy_locked(struct cgroup *cgrp)
5481 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5482 {
5483 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5484 struct cgroup_subsys_state *css;
5485 struct cgrp_cset_link *link;
5486 int ssid;
5487
5488 lockdep_assert_held(&cgroup_mutex);
5489
5490 /*
5491 * Only migration can raise populated from zero and we're already
5492 * holding cgroup_mutex.
5493 */
5494 if (cgroup_is_populated(cgrp))
5495 return -EBUSY;
5496
5497 /*
5498 * Make sure there's no live children. We can't test emptiness of
5499 * ->self.children as dead children linger on it while being
5500 * drained; otherwise, "rmdir parent/child parent" may fail.
5501 */
5502 if (css_has_online_children(&cgrp->self))
5503 return -EBUSY;
5504
5505 /*
5506 * Mark @cgrp and the associated csets dead. The former prevents
5507 * further task migration and child creation by disabling
5508 * cgroup_lock_live_group(). The latter makes the csets ignored by
5509 * the migration path.
5510 */
5511 cgrp->self.flags &= ~CSS_ONLINE;
5512
5513 spin_lock_irq(&css_set_lock);
5514 list_for_each_entry(link, &cgrp->cset_links, cset_link)
5515 link->cset->dead = true;
5516 spin_unlock_irq(&css_set_lock);
5517
5518 /* initiate massacre of all css's */
5519 for_each_css(css, ssid, cgrp)
5520 kill_css(css);
5521
5522 /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5523 css_clear_dir(&cgrp->self);
5524 kernfs_remove(cgrp->kn);
5525
5526 if (parent && cgroup_is_threaded(cgrp))
5527 parent->nr_threaded_children--;
5528
5529 spin_lock_irq(&css_set_lock);
5530 for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5531 tcgrp->nr_descendants--;
5532 tcgrp->nr_dying_descendants++;
5533 /*
5534 * If the dying cgroup is frozen, decrease frozen descendants
5535 * counters of ancestor cgroups.
5536 */
5537 if (test_bit(CGRP_FROZEN, &cgrp->flags))
5538 tcgrp->freezer.nr_frozen_descendants--;
5539 }
5540 spin_unlock_irq(&css_set_lock);
5541
5542 cgroup1_check_for_release(parent);
5543
5544 cgroup_bpf_offline(cgrp);
5545
5546 /* put the base reference */
5547 percpu_ref_kill(&cgrp->self.refcnt);
5548
5549 return 0;
5550 };
5551
cgroup_rmdir(struct kernfs_node * kn)5552 int cgroup_rmdir(struct kernfs_node *kn)
5553 {
5554 struct cgroup *cgrp;
5555 int ret = 0;
5556
5557 cgrp = cgroup_kn_lock_live(kn, false);
5558 if (!cgrp)
5559 return 0;
5560
5561 ret = cgroup_destroy_locked(cgrp);
5562 if (!ret)
5563 TRACE_CGROUP_PATH(rmdir, cgrp);
5564
5565 cgroup_kn_unlock(kn);
5566 return ret;
5567 }
5568
5569 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5570 .show_options = cgroup_show_options,
5571 .mkdir = cgroup_mkdir,
5572 .rmdir = cgroup_rmdir,
5573 .show_path = cgroup_show_path,
5574 };
5575
cgroup_init_subsys(struct cgroup_subsys * ss,bool early)5576 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5577 {
5578 struct cgroup_subsys_state *css;
5579
5580 pr_debug("Initializing cgroup subsys %s\n", ss->name);
5581
5582 mutex_lock(&cgroup_mutex);
5583
5584 idr_init(&ss->css_idr);
5585 INIT_LIST_HEAD(&ss->cfts);
5586
5587 /* Create the root cgroup state for this subsystem */
5588 ss->root = &cgrp_dfl_root;
5589 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5590 /* We don't handle early failures gracefully */
5591 BUG_ON(IS_ERR(css));
5592 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5593
5594 /*
5595 * Root csses are never destroyed and we can't initialize
5596 * percpu_ref during early init. Disable refcnting.
5597 */
5598 css->flags |= CSS_NO_REF;
5599
5600 if (early) {
5601 /* allocation can't be done safely during early init */
5602 css->id = 1;
5603 } else {
5604 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5605 BUG_ON(css->id < 0);
5606 }
5607
5608 /* Update the init_css_set to contain a subsys
5609 * pointer to this state - since the subsystem is
5610 * newly registered, all tasks and hence the
5611 * init_css_set is in the subsystem's root cgroup. */
5612 init_css_set.subsys[ss->id] = css;
5613
5614 have_fork_callback |= (bool)ss->fork << ss->id;
5615 have_exit_callback |= (bool)ss->exit << ss->id;
5616 have_release_callback |= (bool)ss->release << ss->id;
5617 have_canfork_callback |= (bool)ss->can_fork << ss->id;
5618
5619 /* At system boot, before all subsystems have been
5620 * registered, no tasks have been forked, so we don't
5621 * need to invoke fork callbacks here. */
5622 BUG_ON(!list_empty(&init_task.tasks));
5623
5624 BUG_ON(online_css(css));
5625
5626 mutex_unlock(&cgroup_mutex);
5627 }
5628
5629 /**
5630 * cgroup_init_early - cgroup initialization at system boot
5631 *
5632 * Initialize cgroups at system boot, and initialize any
5633 * subsystems that request early init.
5634 */
cgroup_init_early(void)5635 int __init cgroup_init_early(void)
5636 {
5637 static struct cgroup_fs_context __initdata ctx;
5638 struct cgroup_subsys *ss;
5639 int i;
5640
5641 ctx.root = &cgrp_dfl_root;
5642 init_cgroup_root(&ctx);
5643 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5644
5645 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5646
5647 for_each_subsys(ss, i) {
5648 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5649 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5650 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5651 ss->id, ss->name);
5652 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5653 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5654
5655 ss->id = i;
5656 ss->name = cgroup_subsys_name[i];
5657 if (!ss->legacy_name)
5658 ss->legacy_name = cgroup_subsys_name[i];
5659
5660 if (ss->early_init)
5661 cgroup_init_subsys(ss, true);
5662 }
5663 return 0;
5664 }
5665
5666 static u16 cgroup_disable_mask __initdata;
5667
5668 /**
5669 * cgroup_init - cgroup initialization
5670 *
5671 * Register cgroup filesystem and /proc file, and initialize
5672 * any subsystems that didn't request early init.
5673 */
cgroup_init(void)5674 int __init cgroup_init(void)
5675 {
5676 struct cgroup_subsys *ss;
5677 int ssid;
5678
5679 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5680 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
5681 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
5682
5683 cgroup_rstat_boot();
5684
5685 /*
5686 * The latency of the synchronize_rcu() is too high for cgroups,
5687 * avoid it at the cost of forcing all readers into the slow path.
5688 */
5689 rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
5690
5691 get_user_ns(init_cgroup_ns.user_ns);
5692
5693 mutex_lock(&cgroup_mutex);
5694
5695 /*
5696 * Add init_css_set to the hash table so that dfl_root can link to
5697 * it during init.
5698 */
5699 hash_add(css_set_table, &init_css_set.hlist,
5700 css_set_hash(init_css_set.subsys));
5701
5702 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5703
5704 mutex_unlock(&cgroup_mutex);
5705
5706 for_each_subsys(ss, ssid) {
5707 if (ss->early_init) {
5708 struct cgroup_subsys_state *css =
5709 init_css_set.subsys[ss->id];
5710
5711 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5712 GFP_KERNEL);
5713 BUG_ON(css->id < 0);
5714 } else {
5715 cgroup_init_subsys(ss, false);
5716 }
5717
5718 list_add_tail(&init_css_set.e_cset_node[ssid],
5719 &cgrp_dfl_root.cgrp.e_csets[ssid]);
5720
5721 /*
5722 * Setting dfl_root subsys_mask needs to consider the
5723 * disabled flag and cftype registration needs kmalloc,
5724 * both of which aren't available during early_init.
5725 */
5726 if (cgroup_disable_mask & (1 << ssid)) {
5727 static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5728 printk(KERN_INFO "Disabling %s control group subsystem\n",
5729 ss->name);
5730 continue;
5731 }
5732
5733 if (cgroup1_ssid_disabled(ssid))
5734 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5735 ss->name);
5736
5737 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5738
5739 /* implicit controllers must be threaded too */
5740 WARN_ON(ss->implicit_on_dfl && !ss->threaded);
5741
5742 if (ss->implicit_on_dfl)
5743 cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5744 else if (!ss->dfl_cftypes)
5745 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5746
5747 if (ss->threaded)
5748 cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
5749
5750 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5751 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5752 } else {
5753 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5754 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5755 }
5756
5757 if (ss->bind)
5758 ss->bind(init_css_set.subsys[ssid]);
5759
5760 mutex_lock(&cgroup_mutex);
5761 css_populate_dir(init_css_set.subsys[ssid]);
5762 mutex_unlock(&cgroup_mutex);
5763 }
5764
5765 /* init_css_set.subsys[] has been updated, re-hash */
5766 hash_del(&init_css_set.hlist);
5767 hash_add(css_set_table, &init_css_set.hlist,
5768 css_set_hash(init_css_set.subsys));
5769
5770 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5771 WARN_ON(register_filesystem(&cgroup_fs_type));
5772 WARN_ON(register_filesystem(&cgroup2_fs_type));
5773 WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
5774 #ifdef CONFIG_CPUSETS
5775 WARN_ON(register_filesystem(&cpuset_fs_type));
5776 #endif
5777
5778 return 0;
5779 }
5780
cgroup_wq_init(void)5781 static int __init cgroup_wq_init(void)
5782 {
5783 /*
5784 * There isn't much point in executing destruction path in
5785 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5786 * Use 1 for @max_active.
5787 *
5788 * We would prefer to do this in cgroup_init() above, but that
5789 * is called before init_workqueues(): so leave this until after.
5790 */
5791 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5792 BUG_ON(!cgroup_destroy_wq);
5793 return 0;
5794 }
5795 core_initcall(cgroup_wq_init);
5796
cgroup_path_from_kernfs_id(u64 id,char * buf,size_t buflen)5797 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen)
5798 {
5799 struct kernfs_node *kn;
5800
5801 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
5802 if (!kn)
5803 return;
5804 kernfs_path(kn, buf, buflen);
5805 kernfs_put(kn);
5806 }
5807
5808 /*
5809 * proc_cgroup_show()
5810 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5811 * - Used for /proc/<pid>/cgroup.
5812 */
proc_cgroup_show(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * tsk)5813 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5814 struct pid *pid, struct task_struct *tsk)
5815 {
5816 char *buf;
5817 int retval;
5818 struct cgroup_root *root;
5819
5820 retval = -ENOMEM;
5821 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5822 if (!buf)
5823 goto out;
5824
5825 mutex_lock(&cgroup_mutex);
5826 spin_lock_irq(&css_set_lock);
5827
5828 for_each_root(root) {
5829 struct cgroup_subsys *ss;
5830 struct cgroup *cgrp;
5831 int ssid, count = 0;
5832
5833 if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
5834 continue;
5835
5836 seq_printf(m, "%d:", root->hierarchy_id);
5837 if (root != &cgrp_dfl_root)
5838 for_each_subsys(ss, ssid)
5839 if (root->subsys_mask & (1 << ssid))
5840 seq_printf(m, "%s%s", count++ ? "," : "",
5841 ss->legacy_name);
5842 if (strlen(root->name))
5843 seq_printf(m, "%sname=%s", count ? "," : "",
5844 root->name);
5845 seq_putc(m, ':');
5846
5847 cgrp = task_cgroup_from_root(tsk, root);
5848
5849 /*
5850 * On traditional hierarchies, all zombie tasks show up as
5851 * belonging to the root cgroup. On the default hierarchy,
5852 * while a zombie doesn't show up in "cgroup.procs" and
5853 * thus can't be migrated, its /proc/PID/cgroup keeps
5854 * reporting the cgroup it belonged to before exiting. If
5855 * the cgroup is removed before the zombie is reaped,
5856 * " (deleted)" is appended to the cgroup path.
5857 */
5858 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5859 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
5860 current->nsproxy->cgroup_ns);
5861 if (retval >= PATH_MAX)
5862 retval = -ENAMETOOLONG;
5863 if (retval < 0)
5864 goto out_unlock;
5865
5866 seq_puts(m, buf);
5867 } else {
5868 seq_puts(m, "/");
5869 }
5870
5871 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5872 seq_puts(m, " (deleted)\n");
5873 else
5874 seq_putc(m, '\n');
5875 }
5876
5877 retval = 0;
5878 out_unlock:
5879 spin_unlock_irq(&css_set_lock);
5880 mutex_unlock(&cgroup_mutex);
5881 kfree(buf);
5882 out:
5883 return retval;
5884 }
5885
5886 /**
5887 * cgroup_fork - initialize cgroup related fields during copy_process()
5888 * @child: pointer to task_struct of forking parent process.
5889 *
5890 * A task is associated with the init_css_set until cgroup_post_fork()
5891 * attaches it to the target css_set.
5892 */
cgroup_fork(struct task_struct * child)5893 void cgroup_fork(struct task_struct *child)
5894 {
5895 RCU_INIT_POINTER(child->cgroups, &init_css_set);
5896 INIT_LIST_HEAD(&child->cg_list);
5897 }
5898
cgroup_get_from_file(struct file * f)5899 static struct cgroup *cgroup_get_from_file(struct file *f)
5900 {
5901 struct cgroup_subsys_state *css;
5902 struct cgroup *cgrp;
5903
5904 css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
5905 if (IS_ERR(css))
5906 return ERR_CAST(css);
5907
5908 cgrp = css->cgroup;
5909 if (!cgroup_on_dfl(cgrp)) {
5910 cgroup_put(cgrp);
5911 return ERR_PTR(-EBADF);
5912 }
5913
5914 return cgrp;
5915 }
5916
5917 /**
5918 * cgroup_css_set_fork - find or create a css_set for a child process
5919 * @kargs: the arguments passed to create the child process
5920 *
5921 * This functions finds or creates a new css_set which the child
5922 * process will be attached to in cgroup_post_fork(). By default,
5923 * the child process will be given the same css_set as its parent.
5924 *
5925 * If CLONE_INTO_CGROUP is specified this function will try to find an
5926 * existing css_set which includes the requested cgroup and if not create
5927 * a new css_set that the child will be attached to later. If this function
5928 * succeeds it will hold cgroup_threadgroup_rwsem on return. If
5929 * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex
5930 * before grabbing cgroup_threadgroup_rwsem and will hold a reference
5931 * to the target cgroup.
5932 */
cgroup_css_set_fork(struct kernel_clone_args * kargs)5933 static int cgroup_css_set_fork(struct kernel_clone_args *kargs)
5934 __acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem)
5935 {
5936 int ret;
5937 struct cgroup *dst_cgrp = NULL;
5938 struct css_set *cset;
5939 struct super_block *sb;
5940 struct file *f;
5941
5942 if (kargs->flags & CLONE_INTO_CGROUP)
5943 mutex_lock(&cgroup_mutex);
5944
5945 cgroup_threadgroup_change_begin(current);
5946
5947 spin_lock_irq(&css_set_lock);
5948 cset = task_css_set(current);
5949 get_css_set(cset);
5950 spin_unlock_irq(&css_set_lock);
5951
5952 if (!(kargs->flags & CLONE_INTO_CGROUP)) {
5953 kargs->cset = cset;
5954 return 0;
5955 }
5956
5957 f = fget_raw(kargs->cgroup);
5958 if (!f) {
5959 ret = -EBADF;
5960 goto err;
5961 }
5962 sb = f->f_path.dentry->d_sb;
5963
5964 dst_cgrp = cgroup_get_from_file(f);
5965 if (IS_ERR(dst_cgrp)) {
5966 ret = PTR_ERR(dst_cgrp);
5967 dst_cgrp = NULL;
5968 goto err;
5969 }
5970
5971 if (cgroup_is_dead(dst_cgrp)) {
5972 ret = -ENODEV;
5973 goto err;
5974 }
5975
5976 /*
5977 * Verify that we the target cgroup is writable for us. This is
5978 * usually done by the vfs layer but since we're not going through
5979 * the vfs layer here we need to do it "manually".
5980 */
5981 ret = cgroup_may_write(dst_cgrp, sb);
5982 if (ret)
5983 goto err;
5984
5985 ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb,
5986 !(kargs->flags & CLONE_THREAD));
5987 if (ret)
5988 goto err;
5989
5990 kargs->cset = find_css_set(cset, dst_cgrp);
5991 if (!kargs->cset) {
5992 ret = -ENOMEM;
5993 goto err;
5994 }
5995
5996 put_css_set(cset);
5997 fput(f);
5998 kargs->cgrp = dst_cgrp;
5999 return ret;
6000
6001 err:
6002 cgroup_threadgroup_change_end(current);
6003 mutex_unlock(&cgroup_mutex);
6004 if (f)
6005 fput(f);
6006 if (dst_cgrp)
6007 cgroup_put(dst_cgrp);
6008 put_css_set(cset);
6009 if (kargs->cset)
6010 put_css_set(kargs->cset);
6011 return ret;
6012 }
6013
6014 /**
6015 * cgroup_css_set_put_fork - drop references we took during fork
6016 * @kargs: the arguments passed to create the child process
6017 *
6018 * Drop references to the prepared css_set and target cgroup if
6019 * CLONE_INTO_CGROUP was requested.
6020 */
cgroup_css_set_put_fork(struct kernel_clone_args * kargs)6021 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs)
6022 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6023 {
6024 cgroup_threadgroup_change_end(current);
6025
6026 if (kargs->flags & CLONE_INTO_CGROUP) {
6027 struct cgroup *cgrp = kargs->cgrp;
6028 struct css_set *cset = kargs->cset;
6029
6030 mutex_unlock(&cgroup_mutex);
6031
6032 if (cset) {
6033 put_css_set(cset);
6034 kargs->cset = NULL;
6035 }
6036
6037 if (cgrp) {
6038 cgroup_put(cgrp);
6039 kargs->cgrp = NULL;
6040 }
6041 }
6042 }
6043
6044 /**
6045 * cgroup_can_fork - called on a new task before the process is exposed
6046 * @child: the child process
6047 *
6048 * This prepares a new css_set for the child process which the child will
6049 * be attached to in cgroup_post_fork().
6050 * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork()
6051 * callback returns an error, the fork aborts with that error code. This
6052 * allows for a cgroup subsystem to conditionally allow or deny new forks.
6053 */
cgroup_can_fork(struct task_struct * child,struct kernel_clone_args * kargs)6054 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs)
6055 {
6056 struct cgroup_subsys *ss;
6057 int i, j, ret;
6058
6059 ret = cgroup_css_set_fork(kargs);
6060 if (ret)
6061 return ret;
6062
6063 do_each_subsys_mask(ss, i, have_canfork_callback) {
6064 ret = ss->can_fork(child, kargs->cset);
6065 if (ret)
6066 goto out_revert;
6067 } while_each_subsys_mask();
6068
6069 return 0;
6070
6071 out_revert:
6072 for_each_subsys(ss, j) {
6073 if (j >= i)
6074 break;
6075 if (ss->cancel_fork)
6076 ss->cancel_fork(child, kargs->cset);
6077 }
6078
6079 cgroup_css_set_put_fork(kargs);
6080
6081 return ret;
6082 }
6083
6084 /**
6085 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
6086 * @child: the child process
6087 * @kargs: the arguments passed to create the child process
6088 *
6089 * This calls the cancel_fork() callbacks if a fork failed *after*
6090 * cgroup_can_fork() succeded and cleans up references we took to
6091 * prepare a new css_set for the child process in cgroup_can_fork().
6092 */
cgroup_cancel_fork(struct task_struct * child,struct kernel_clone_args * kargs)6093 void cgroup_cancel_fork(struct task_struct *child,
6094 struct kernel_clone_args *kargs)
6095 {
6096 struct cgroup_subsys *ss;
6097 int i;
6098
6099 for_each_subsys(ss, i)
6100 if (ss->cancel_fork)
6101 ss->cancel_fork(child, kargs->cset);
6102
6103 cgroup_css_set_put_fork(kargs);
6104 }
6105
6106 /**
6107 * cgroup_post_fork - finalize cgroup setup for the child process
6108 * @child: the child process
6109 *
6110 * Attach the child process to its css_set calling the subsystem fork()
6111 * callbacks.
6112 */
cgroup_post_fork(struct task_struct * child,struct kernel_clone_args * kargs)6113 void cgroup_post_fork(struct task_struct *child,
6114 struct kernel_clone_args *kargs)
6115 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6116 {
6117 struct cgroup_subsys *ss;
6118 struct css_set *cset;
6119 int i;
6120
6121 cset = kargs->cset;
6122 kargs->cset = NULL;
6123
6124 spin_lock_irq(&css_set_lock);
6125
6126 /* init tasks are special, only link regular threads */
6127 if (likely(child->pid)) {
6128 WARN_ON_ONCE(!list_empty(&child->cg_list));
6129 cset->nr_tasks++;
6130 css_set_move_task(child, NULL, cset, false);
6131 } else {
6132 put_css_set(cset);
6133 cset = NULL;
6134 }
6135
6136 /*
6137 * If the cgroup has to be frozen, the new task has too. Let's set
6138 * the JOBCTL_TRAP_FREEZE jobctl bit to get the task into the
6139 * frozen state.
6140 */
6141 if (unlikely(cgroup_task_freeze(child))) {
6142 spin_lock(&child->sighand->siglock);
6143 WARN_ON_ONCE(child->frozen);
6144 child->jobctl |= JOBCTL_TRAP_FREEZE;
6145 spin_unlock(&child->sighand->siglock);
6146
6147 /*
6148 * Calling cgroup_update_frozen() isn't required here,
6149 * because it will be called anyway a bit later from
6150 * do_freezer_trap(). So we avoid cgroup's transient switch
6151 * from the frozen state and back.
6152 */
6153 }
6154
6155 spin_unlock_irq(&css_set_lock);
6156
6157 /*
6158 * Call ss->fork(). This must happen after @child is linked on
6159 * css_set; otherwise, @child might change state between ->fork()
6160 * and addition to css_set.
6161 */
6162 do_each_subsys_mask(ss, i, have_fork_callback) {
6163 ss->fork(child);
6164 } while_each_subsys_mask();
6165
6166 /* Make the new cset the root_cset of the new cgroup namespace. */
6167 if (kargs->flags & CLONE_NEWCGROUP) {
6168 struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset;
6169
6170 get_css_set(cset);
6171 child->nsproxy->cgroup_ns->root_cset = cset;
6172 put_css_set(rcset);
6173 }
6174
6175 cgroup_css_set_put_fork(kargs);
6176 }
6177
6178 /**
6179 * cgroup_exit - detach cgroup from exiting task
6180 * @tsk: pointer to task_struct of exiting process
6181 *
6182 * Description: Detach cgroup from @tsk.
6183 *
6184 */
cgroup_exit(struct task_struct * tsk)6185 void cgroup_exit(struct task_struct *tsk)
6186 {
6187 struct cgroup_subsys *ss;
6188 struct css_set *cset;
6189 int i;
6190
6191 spin_lock_irq(&css_set_lock);
6192
6193 WARN_ON_ONCE(list_empty(&tsk->cg_list));
6194 cset = task_css_set(tsk);
6195 css_set_move_task(tsk, cset, NULL, false);
6196 list_add_tail(&tsk->cg_list, &cset->dying_tasks);
6197 cset->nr_tasks--;
6198
6199 WARN_ON_ONCE(cgroup_task_frozen(tsk));
6200 if (unlikely(cgroup_task_freeze(tsk)))
6201 cgroup_update_frozen(task_dfl_cgroup(tsk));
6202
6203 spin_unlock_irq(&css_set_lock);
6204
6205 /* see cgroup_post_fork() for details */
6206 do_each_subsys_mask(ss, i, have_exit_callback) {
6207 ss->exit(tsk);
6208 } while_each_subsys_mask();
6209 }
6210
cgroup_release(struct task_struct * task)6211 void cgroup_release(struct task_struct *task)
6212 {
6213 struct cgroup_subsys *ss;
6214 int ssid;
6215
6216 do_each_subsys_mask(ss, ssid, have_release_callback) {
6217 ss->release(task);
6218 } while_each_subsys_mask();
6219
6220 spin_lock_irq(&css_set_lock);
6221 css_set_skip_task_iters(task_css_set(task), task);
6222 list_del_init(&task->cg_list);
6223 spin_unlock_irq(&css_set_lock);
6224 }
6225
cgroup_free(struct task_struct * task)6226 void cgroup_free(struct task_struct *task)
6227 {
6228 struct css_set *cset = task_css_set(task);
6229 put_css_set(cset);
6230 }
6231
cgroup_disable(char * str)6232 static int __init cgroup_disable(char *str)
6233 {
6234 struct cgroup_subsys *ss;
6235 char *token;
6236 int i;
6237
6238 while ((token = strsep(&str, ",")) != NULL) {
6239 if (!*token)
6240 continue;
6241
6242 for_each_subsys(ss, i) {
6243 if (strcmp(token, ss->name) &&
6244 strcmp(token, ss->legacy_name))
6245 continue;
6246 cgroup_disable_mask |= 1 << i;
6247 }
6248 }
6249 return 1;
6250 }
6251 __setup("cgroup_disable=", cgroup_disable);
6252
enable_debug_cgroup(void)6253 void __init __weak enable_debug_cgroup(void) { }
6254
enable_cgroup_debug(char * str)6255 static int __init enable_cgroup_debug(char *str)
6256 {
6257 cgroup_debug = true;
6258 enable_debug_cgroup();
6259 return 1;
6260 }
6261 __setup("cgroup_debug", enable_cgroup_debug);
6262
6263 /**
6264 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6265 * @dentry: directory dentry of interest
6266 * @ss: subsystem of interest
6267 *
6268 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6269 * to get the corresponding css and return it. If such css doesn't exist
6270 * or can't be pinned, an ERR_PTR value is returned.
6271 */
css_tryget_online_from_dir(struct dentry * dentry,struct cgroup_subsys * ss)6272 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6273 struct cgroup_subsys *ss)
6274 {
6275 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6276 struct file_system_type *s_type = dentry->d_sb->s_type;
6277 struct cgroup_subsys_state *css = NULL;
6278 struct cgroup *cgrp;
6279
6280 /* is @dentry a cgroup dir? */
6281 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6282 !kn || kernfs_type(kn) != KERNFS_DIR)
6283 return ERR_PTR(-EBADF);
6284
6285 rcu_read_lock();
6286
6287 /*
6288 * This path doesn't originate from kernfs and @kn could already
6289 * have been or be removed at any point. @kn->priv is RCU
6290 * protected for this access. See css_release_work_fn() for details.
6291 */
6292 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6293 if (cgrp)
6294 css = cgroup_css(cgrp, ss);
6295
6296 if (!css || !css_tryget_online(css))
6297 css = ERR_PTR(-ENOENT);
6298
6299 rcu_read_unlock();
6300 return css;
6301 }
6302
6303 /**
6304 * css_from_id - lookup css by id
6305 * @id: the cgroup id
6306 * @ss: cgroup subsys to be looked into
6307 *
6308 * Returns the css if there's valid one with @id, otherwise returns NULL.
6309 * Should be called under rcu_read_lock().
6310 */
css_from_id(int id,struct cgroup_subsys * ss)6311 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6312 {
6313 WARN_ON_ONCE(!rcu_read_lock_held());
6314 return idr_find(&ss->css_idr, id);
6315 }
6316
6317 /**
6318 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6319 * @path: path on the default hierarchy
6320 *
6321 * Find the cgroup at @path on the default hierarchy, increment its
6322 * reference count and return it. Returns pointer to the found cgroup on
6323 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
6324 * if @path points to a non-directory.
6325 */
cgroup_get_from_path(const char * path)6326 struct cgroup *cgroup_get_from_path(const char *path)
6327 {
6328 struct kernfs_node *kn;
6329 struct cgroup *cgrp;
6330
6331 mutex_lock(&cgroup_mutex);
6332
6333 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
6334 if (kn) {
6335 if (kernfs_type(kn) == KERNFS_DIR) {
6336 cgrp = kn->priv;
6337 cgroup_get_live(cgrp);
6338 } else {
6339 cgrp = ERR_PTR(-ENOTDIR);
6340 }
6341 kernfs_put(kn);
6342 } else {
6343 cgrp = ERR_PTR(-ENOENT);
6344 }
6345
6346 mutex_unlock(&cgroup_mutex);
6347 return cgrp;
6348 }
6349 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6350
6351 /**
6352 * cgroup_get_from_fd - get a cgroup pointer from a fd
6353 * @fd: fd obtained by open(cgroup2_dir)
6354 *
6355 * Find the cgroup from a fd which should be obtained
6356 * by opening a cgroup directory. Returns a pointer to the
6357 * cgroup on success. ERR_PTR is returned if the cgroup
6358 * cannot be found.
6359 */
cgroup_get_from_fd(int fd)6360 struct cgroup *cgroup_get_from_fd(int fd)
6361 {
6362 struct cgroup *cgrp;
6363 struct file *f;
6364
6365 f = fget_raw(fd);
6366 if (!f)
6367 return ERR_PTR(-EBADF);
6368
6369 cgrp = cgroup_get_from_file(f);
6370 fput(f);
6371 return cgrp;
6372 }
6373 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
6374
power_of_ten(int power)6375 static u64 power_of_ten(int power)
6376 {
6377 u64 v = 1;
6378 while (power--)
6379 v *= 10;
6380 return v;
6381 }
6382
6383 /**
6384 * cgroup_parse_float - parse a floating number
6385 * @input: input string
6386 * @dec_shift: number of decimal digits to shift
6387 * @v: output
6388 *
6389 * Parse a decimal floating point number in @input and store the result in
6390 * @v with decimal point right shifted @dec_shift times. For example, if
6391 * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345.
6392 * Returns 0 on success, -errno otherwise.
6393 *
6394 * There's nothing cgroup specific about this function except that it's
6395 * currently the only user.
6396 */
cgroup_parse_float(const char * input,unsigned dec_shift,s64 * v)6397 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v)
6398 {
6399 s64 whole, frac = 0;
6400 int fstart = 0, fend = 0, flen;
6401
6402 if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend))
6403 return -EINVAL;
6404 if (frac < 0)
6405 return -EINVAL;
6406
6407 flen = fend > fstart ? fend - fstart : 0;
6408 if (flen < dec_shift)
6409 frac *= power_of_ten(dec_shift - flen);
6410 else
6411 frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift));
6412
6413 *v = whole * power_of_ten(dec_shift) + frac;
6414 return 0;
6415 }
6416
6417 /*
6418 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
6419 * definition in cgroup-defs.h.
6420 */
6421 #ifdef CONFIG_SOCK_CGROUP_DATA
6422
6423 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
6424
6425 DEFINE_SPINLOCK(cgroup_sk_update_lock);
6426 static bool cgroup_sk_alloc_disabled __read_mostly;
6427
cgroup_sk_alloc_disable(void)6428 void cgroup_sk_alloc_disable(void)
6429 {
6430 if (cgroup_sk_alloc_disabled)
6431 return;
6432 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
6433 cgroup_sk_alloc_disabled = true;
6434 }
6435
6436 #else
6437
6438 #define cgroup_sk_alloc_disabled false
6439
6440 #endif
6441
cgroup_sk_alloc(struct sock_cgroup_data * skcd)6442 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6443 {
6444 if (cgroup_sk_alloc_disabled) {
6445 skcd->no_refcnt = 1;
6446 return;
6447 }
6448
6449 /* Don't associate the sock with unrelated interrupted task's cgroup. */
6450 if (in_interrupt())
6451 return;
6452
6453 rcu_read_lock();
6454
6455 while (true) {
6456 struct css_set *cset;
6457
6458 cset = task_css_set(current);
6459 if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6460 skcd->val = (unsigned long)cset->dfl_cgrp;
6461 cgroup_bpf_get(cset->dfl_cgrp);
6462 break;
6463 }
6464 cpu_relax();
6465 }
6466
6467 rcu_read_unlock();
6468 }
6469
cgroup_sk_clone(struct sock_cgroup_data * skcd)6470 void cgroup_sk_clone(struct sock_cgroup_data *skcd)
6471 {
6472 if (skcd->val) {
6473 if (skcd->no_refcnt)
6474 return;
6475 /*
6476 * We might be cloning a socket which is left in an empty
6477 * cgroup and the cgroup might have already been rmdir'd.
6478 * Don't use cgroup_get_live().
6479 */
6480 cgroup_get(sock_cgroup_ptr(skcd));
6481 cgroup_bpf_get(sock_cgroup_ptr(skcd));
6482 }
6483 }
6484
cgroup_sk_free(struct sock_cgroup_data * skcd)6485 void cgroup_sk_free(struct sock_cgroup_data *skcd)
6486 {
6487 struct cgroup *cgrp = sock_cgroup_ptr(skcd);
6488
6489 if (skcd->no_refcnt)
6490 return;
6491 cgroup_bpf_put(cgrp);
6492 cgroup_put(cgrp);
6493 }
6494
6495 #endif /* CONFIG_SOCK_CGROUP_DATA */
6496
6497 #ifdef CONFIG_CGROUP_BPF
cgroup_bpf_attach(struct cgroup * cgrp,struct bpf_prog * prog,struct bpf_prog * replace_prog,struct bpf_cgroup_link * link,enum bpf_attach_type type,u32 flags)6498 int cgroup_bpf_attach(struct cgroup *cgrp,
6499 struct bpf_prog *prog, struct bpf_prog *replace_prog,
6500 struct bpf_cgroup_link *link,
6501 enum bpf_attach_type type,
6502 u32 flags)
6503 {
6504 int ret;
6505
6506 mutex_lock(&cgroup_mutex);
6507 ret = __cgroup_bpf_attach(cgrp, prog, replace_prog, link, type, flags);
6508 mutex_unlock(&cgroup_mutex);
6509 return ret;
6510 }
6511
cgroup_bpf_detach(struct cgroup * cgrp,struct bpf_prog * prog,enum bpf_attach_type type)6512 int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
6513 enum bpf_attach_type type)
6514 {
6515 int ret;
6516
6517 mutex_lock(&cgroup_mutex);
6518 ret = __cgroup_bpf_detach(cgrp, prog, NULL, type);
6519 mutex_unlock(&cgroup_mutex);
6520 return ret;
6521 }
6522
cgroup_bpf_query(struct cgroup * cgrp,const union bpf_attr * attr,union bpf_attr __user * uattr)6523 int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
6524 union bpf_attr __user *uattr)
6525 {
6526 int ret;
6527
6528 mutex_lock(&cgroup_mutex);
6529 ret = __cgroup_bpf_query(cgrp, attr, uattr);
6530 mutex_unlock(&cgroup_mutex);
6531 return ret;
6532 }
6533 #endif /* CONFIG_CGROUP_BPF */
6534
6535 #ifdef CONFIG_SYSFS
show_delegatable_files(struct cftype * files,char * buf,ssize_t size,const char * prefix)6536 static ssize_t show_delegatable_files(struct cftype *files, char *buf,
6537 ssize_t size, const char *prefix)
6538 {
6539 struct cftype *cft;
6540 ssize_t ret = 0;
6541
6542 for (cft = files; cft && cft->name[0] != '\0'; cft++) {
6543 if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
6544 continue;
6545
6546 if (prefix)
6547 ret += snprintf(buf + ret, size - ret, "%s.", prefix);
6548
6549 ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
6550
6551 if (WARN_ON(ret >= size))
6552 break;
6553 }
6554
6555 return ret;
6556 }
6557
delegate_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)6558 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
6559 char *buf)
6560 {
6561 struct cgroup_subsys *ss;
6562 int ssid;
6563 ssize_t ret = 0;
6564
6565 ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret,
6566 NULL);
6567
6568 for_each_subsys(ss, ssid)
6569 ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
6570 PAGE_SIZE - ret,
6571 cgroup_subsys_name[ssid]);
6572
6573 return ret;
6574 }
6575 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
6576
features_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)6577 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
6578 char *buf)
6579 {
6580 return snprintf(buf, PAGE_SIZE,
6581 "nsdelegate\n"
6582 "memory_localevents\n"
6583 "memory_recursiveprot\n");
6584 }
6585 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
6586
6587 static struct attribute *cgroup_sysfs_attrs[] = {
6588 &cgroup_delegate_attr.attr,
6589 &cgroup_features_attr.attr,
6590 NULL,
6591 };
6592
6593 static const struct attribute_group cgroup_sysfs_attr_group = {
6594 .attrs = cgroup_sysfs_attrs,
6595 .name = "cgroup",
6596 };
6597
cgroup_sysfs_init(void)6598 static int __init cgroup_sysfs_init(void)
6599 {
6600 return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
6601 }
6602 subsys_initcall(cgroup_sysfs_init);
6603
6604 #endif /* CONFIG_SYSFS */
6605