1 /*
2  *  Generic process-grouping system.
3  *
4  *  Based originally on the cpuset system, extracted by Paul Menage
5  *  Copyright (C) 2006 Google, Inc
6  *
7  *  Notifications support
8  *  Copyright (C) 2009 Nokia Corporation
9  *  Author: Kirill A. Shutemov
10  *
11  *  Copyright notices from the original cpuset code:
12  *  --------------------------------------------------
13  *  Copyright (C) 2003 BULL SA.
14  *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
15  *
16  *  Portions derived from Patrick Mochel's sysfs code.
17  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
18  *
19  *  2003-10-10 Written by Simon Derr.
20  *  2003-10-22 Updates by Stephen Hemminger.
21  *  2004 May-July Rework by Paul Jackson.
22  *  ---------------------------------------------------
23  *
24  *  This file is subject to the terms and conditions of the GNU General Public
25  *  License.  See the file COPYING in the main directory of the Linux
26  *  distribution for more details.
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include "cgroup-internal.h"
32 
33 #include <linux/cred.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/magic.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/sched/task.h>
45 #include <linux/slab.h>
46 #include <linux/spinlock.h>
47 #include <linux/percpu-rwsem.h>
48 #include <linux/string.h>
49 #include <linux/hashtable.h>
50 #include <linux/idr.h>
51 #include <linux/kthread.h>
52 #include <linux/atomic.h>
53 #include <linux/cpuset.h>
54 #include <linux/proc_ns.h>
55 #include <linux/nsproxy.h>
56 #include <linux/file.h>
57 #include <linux/sched/cputime.h>
58 #include <net/sock.h>
59 
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/cgroup.h>
62 
63 #define CGROUP_FILE_NAME_MAX		(MAX_CGROUP_TYPE_NAMELEN +	\
64 					 MAX_CFTYPE_NAME + 2)
65 /* let's not notify more than 100 times per second */
66 #define CGROUP_FILE_NOTIFY_MIN_INTV	DIV_ROUND_UP(HZ, 100)
67 
68 /*
69  * cgroup_mutex is the master lock.  Any modification to cgroup or its
70  * hierarchy must be performed while holding it.
71  *
72  * css_set_lock protects task->cgroups pointer, the list of css_set
73  * objects, and the chain of tasks off each css_set.
74  *
75  * These locks are exported if CONFIG_PROVE_RCU so that accessors in
76  * cgroup.h can use them for lockdep annotations.
77  */
78 DEFINE_MUTEX(cgroup_mutex);
79 DEFINE_SPINLOCK(css_set_lock);
80 
81 #ifdef CONFIG_PROVE_RCU
82 EXPORT_SYMBOL_GPL(cgroup_mutex);
83 EXPORT_SYMBOL_GPL(css_set_lock);
84 #endif
85 
86 DEFINE_SPINLOCK(trace_cgroup_path_lock);
87 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
88 
89 /*
90  * Protects cgroup_idr and css_idr so that IDs can be released without
91  * grabbing cgroup_mutex.
92  */
93 static DEFINE_SPINLOCK(cgroup_idr_lock);
94 
95 /*
96  * Protects cgroup_file->kn for !self csses.  It synchronizes notifications
97  * against file removal/re-creation across css hiding.
98  */
99 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
100 
101 struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
102 
103 #define cgroup_assert_mutex_or_rcu_locked()				\
104 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
105 			   !lockdep_is_held(&cgroup_mutex),		\
106 			   "cgroup_mutex or RCU read lock required");
107 
108 /*
109  * cgroup destruction makes heavy use of work items and there can be a lot
110  * of concurrent destructions.  Use a separate workqueue so that cgroup
111  * destruction work items don't end up filling up max_active of system_wq
112  * which may lead to deadlock.
113  */
114 static struct workqueue_struct *cgroup_destroy_wq;
115 
116 /* generate an array of cgroup subsystem pointers */
117 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
118 struct cgroup_subsys *cgroup_subsys[] = {
119 #include <linux/cgroup_subsys.h>
120 };
121 #undef SUBSYS
122 
123 /* array of cgroup subsystem names */
124 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
125 static const char *cgroup_subsys_name[] = {
126 #include <linux/cgroup_subsys.h>
127 };
128 #undef SUBSYS
129 
130 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
131 #define SUBSYS(_x)								\
132 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key);			\
133 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key);			\
134 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key);			\
135 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
136 #include <linux/cgroup_subsys.h>
137 #undef SUBSYS
138 
139 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
140 static struct static_key_true *cgroup_subsys_enabled_key[] = {
141 #include <linux/cgroup_subsys.h>
142 };
143 #undef SUBSYS
144 
145 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
146 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
147 #include <linux/cgroup_subsys.h>
148 };
149 #undef SUBSYS
150 
151 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
152 
153 /*
154  * The default hierarchy, reserved for the subsystems that are otherwise
155  * unattached - it never has more than a single cgroup, and all tasks are
156  * part of that cgroup.
157  */
158 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
159 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
160 
161 /*
162  * The default hierarchy always exists but is hidden until mounted for the
163  * first time.  This is for backward compatibility.
164  */
165 static bool cgrp_dfl_visible;
166 
167 /* some controllers are not supported in the default hierarchy */
168 static u16 cgrp_dfl_inhibit_ss_mask;
169 
170 /* some controllers are implicitly enabled on the default hierarchy */
171 static u16 cgrp_dfl_implicit_ss_mask;
172 
173 /* some controllers can be threaded on the default hierarchy */
174 static u16 cgrp_dfl_threaded_ss_mask;
175 
176 /* The list of hierarchy roots */
177 LIST_HEAD(cgroup_roots);
178 static int cgroup_root_count;
179 
180 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
181 static DEFINE_IDR(cgroup_hierarchy_idr);
182 
183 /*
184  * Assign a monotonically increasing serial number to csses.  It guarantees
185  * cgroups with bigger numbers are newer than those with smaller numbers.
186  * Also, as csses are always appended to the parent's ->children list, it
187  * guarantees that sibling csses are always sorted in the ascending serial
188  * number order on the list.  Protected by cgroup_mutex.
189  */
190 static u64 css_serial_nr_next = 1;
191 
192 /*
193  * These bitmasks identify subsystems with specific features to avoid
194  * having to do iterative checks repeatedly.
195  */
196 static u16 have_fork_callback __read_mostly;
197 static u16 have_exit_callback __read_mostly;
198 static u16 have_free_callback __read_mostly;
199 static u16 have_canfork_callback __read_mostly;
200 
201 /* cgroup namespace for init task */
202 struct cgroup_namespace init_cgroup_ns = {
203 	.count		= REFCOUNT_INIT(2),
204 	.user_ns	= &init_user_ns,
205 	.ns.ops		= &cgroupns_operations,
206 	.ns.inum	= PROC_CGROUP_INIT_INO,
207 	.root_cset	= &init_css_set,
208 };
209 
210 static struct file_system_type cgroup2_fs_type;
211 static struct cftype cgroup_base_files[];
212 
213 static int cgroup_apply_control(struct cgroup *cgrp);
214 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
215 static void css_task_iter_advance(struct css_task_iter *it);
216 static int cgroup_destroy_locked(struct cgroup *cgrp);
217 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
218 					      struct cgroup_subsys *ss);
219 static void css_release(struct percpu_ref *ref);
220 static void kill_css(struct cgroup_subsys_state *css);
221 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
222 			      struct cgroup *cgrp, struct cftype cfts[],
223 			      bool is_add);
224 
225 /**
226  * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
227  * @ssid: subsys ID of interest
228  *
229  * cgroup_subsys_enabled() can only be used with literal subsys names which
230  * is fine for individual subsystems but unsuitable for cgroup core.  This
231  * is slower static_key_enabled() based test indexed by @ssid.
232  */
cgroup_ssid_enabled(int ssid)233 bool cgroup_ssid_enabled(int ssid)
234 {
235 	if (CGROUP_SUBSYS_COUNT == 0)
236 		return false;
237 
238 	return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
239 }
240 
241 /**
242  * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
243  * @cgrp: the cgroup of interest
244  *
245  * The default hierarchy is the v2 interface of cgroup and this function
246  * can be used to test whether a cgroup is on the default hierarchy for
247  * cases where a subsystem should behave differnetly depending on the
248  * interface version.
249  *
250  * The set of behaviors which change on the default hierarchy are still
251  * being determined and the mount option is prefixed with __DEVEL__.
252  *
253  * List of changed behaviors:
254  *
255  * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
256  *   and "name" are disallowed.
257  *
258  * - When mounting an existing superblock, mount options should match.
259  *
260  * - Remount is disallowed.
261  *
262  * - rename(2) is disallowed.
263  *
264  * - "tasks" is removed.  Everything should be at process granularity.  Use
265  *   "cgroup.procs" instead.
266  *
267  * - "cgroup.procs" is not sorted.  pids will be unique unless they got
268  *   recycled inbetween reads.
269  *
270  * - "release_agent" and "notify_on_release" are removed.  Replacement
271  *   notification mechanism will be implemented.
272  *
273  * - "cgroup.clone_children" is removed.
274  *
275  * - "cgroup.subtree_populated" is available.  Its value is 0 if the cgroup
276  *   and its descendants contain no task; otherwise, 1.  The file also
277  *   generates kernfs notification which can be monitored through poll and
278  *   [di]notify when the value of the file changes.
279  *
280  * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
281  *   take masks of ancestors with non-empty cpus/mems, instead of being
282  *   moved to an ancestor.
283  *
284  * - cpuset: a task can be moved into an empty cpuset, and again it takes
285  *   masks of ancestors.
286  *
287  * - memcg: use_hierarchy is on by default and the cgroup file for the flag
288  *   is not created.
289  *
290  * - blkcg: blk-throttle becomes properly hierarchical.
291  *
292  * - debug: disallowed on the default hierarchy.
293  */
cgroup_on_dfl(const struct cgroup * cgrp)294 bool cgroup_on_dfl(const struct cgroup *cgrp)
295 {
296 	return cgrp->root == &cgrp_dfl_root;
297 }
298 
299 /* IDR wrappers which synchronize using cgroup_idr_lock */
cgroup_idr_alloc(struct idr * idr,void * ptr,int start,int end,gfp_t gfp_mask)300 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
301 			    gfp_t gfp_mask)
302 {
303 	int ret;
304 
305 	idr_preload(gfp_mask);
306 	spin_lock_bh(&cgroup_idr_lock);
307 	ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
308 	spin_unlock_bh(&cgroup_idr_lock);
309 	idr_preload_end();
310 	return ret;
311 }
312 
cgroup_idr_replace(struct idr * idr,void * ptr,int id)313 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
314 {
315 	void *ret;
316 
317 	spin_lock_bh(&cgroup_idr_lock);
318 	ret = idr_replace(idr, ptr, id);
319 	spin_unlock_bh(&cgroup_idr_lock);
320 	return ret;
321 }
322 
cgroup_idr_remove(struct idr * idr,int id)323 static void cgroup_idr_remove(struct idr *idr, int id)
324 {
325 	spin_lock_bh(&cgroup_idr_lock);
326 	idr_remove(idr, id);
327 	spin_unlock_bh(&cgroup_idr_lock);
328 }
329 
cgroup_has_tasks(struct cgroup * cgrp)330 static bool cgroup_has_tasks(struct cgroup *cgrp)
331 {
332 	return cgrp->nr_populated_csets;
333 }
334 
cgroup_is_threaded(struct cgroup * cgrp)335 bool cgroup_is_threaded(struct cgroup *cgrp)
336 {
337 	return cgrp->dom_cgrp != cgrp;
338 }
339 
340 /* can @cgrp host both domain and threaded children? */
cgroup_is_mixable(struct cgroup * cgrp)341 static bool cgroup_is_mixable(struct cgroup *cgrp)
342 {
343 	/*
344 	 * Root isn't under domain level resource control exempting it from
345 	 * the no-internal-process constraint, so it can serve as a thread
346 	 * root and a parent of resource domains at the same time.
347 	 */
348 	return !cgroup_parent(cgrp);
349 }
350 
351 /* can @cgrp become a thread root? should always be true for a thread root */
cgroup_can_be_thread_root(struct cgroup * cgrp)352 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
353 {
354 	/* mixables don't care */
355 	if (cgroup_is_mixable(cgrp))
356 		return true;
357 
358 	/* domain roots can't be nested under threaded */
359 	if (cgroup_is_threaded(cgrp))
360 		return false;
361 
362 	/* can only have either domain or threaded children */
363 	if (cgrp->nr_populated_domain_children)
364 		return false;
365 
366 	/* and no domain controllers can be enabled */
367 	if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
368 		return false;
369 
370 	return true;
371 }
372 
373 /* is @cgrp root of a threaded subtree? */
cgroup_is_thread_root(struct cgroup * cgrp)374 bool cgroup_is_thread_root(struct cgroup *cgrp)
375 {
376 	/* thread root should be a domain */
377 	if (cgroup_is_threaded(cgrp))
378 		return false;
379 
380 	/* a domain w/ threaded children is a thread root */
381 	if (cgrp->nr_threaded_children)
382 		return true;
383 
384 	/*
385 	 * A domain which has tasks and explicit threaded controllers
386 	 * enabled is a thread root.
387 	 */
388 	if (cgroup_has_tasks(cgrp) &&
389 	    (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
390 		return true;
391 
392 	return false;
393 }
394 
395 /* a domain which isn't connected to the root w/o brekage can't be used */
cgroup_is_valid_domain(struct cgroup * cgrp)396 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
397 {
398 	/* the cgroup itself can be a thread root */
399 	if (cgroup_is_threaded(cgrp))
400 		return false;
401 
402 	/* but the ancestors can't be unless mixable */
403 	while ((cgrp = cgroup_parent(cgrp))) {
404 		if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
405 			return false;
406 		if (cgroup_is_threaded(cgrp))
407 			return false;
408 	}
409 
410 	return true;
411 }
412 
413 /* subsystems visibly enabled on a cgroup */
cgroup_control(struct cgroup * cgrp)414 static u16 cgroup_control(struct cgroup *cgrp)
415 {
416 	struct cgroup *parent = cgroup_parent(cgrp);
417 	u16 root_ss_mask = cgrp->root->subsys_mask;
418 
419 	if (parent) {
420 		u16 ss_mask = parent->subtree_control;
421 
422 		/* threaded cgroups can only have threaded controllers */
423 		if (cgroup_is_threaded(cgrp))
424 			ss_mask &= cgrp_dfl_threaded_ss_mask;
425 		return ss_mask;
426 	}
427 
428 	if (cgroup_on_dfl(cgrp))
429 		root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
430 				  cgrp_dfl_implicit_ss_mask);
431 	return root_ss_mask;
432 }
433 
434 /* subsystems enabled on a cgroup */
cgroup_ss_mask(struct cgroup * cgrp)435 static u16 cgroup_ss_mask(struct cgroup *cgrp)
436 {
437 	struct cgroup *parent = cgroup_parent(cgrp);
438 
439 	if (parent) {
440 		u16 ss_mask = parent->subtree_ss_mask;
441 
442 		/* threaded cgroups can only have threaded controllers */
443 		if (cgroup_is_threaded(cgrp))
444 			ss_mask &= cgrp_dfl_threaded_ss_mask;
445 		return ss_mask;
446 	}
447 
448 	return cgrp->root->subsys_mask;
449 }
450 
451 /**
452  * cgroup_css - obtain a cgroup's css for the specified subsystem
453  * @cgrp: the cgroup of interest
454  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
455  *
456  * Return @cgrp's css (cgroup_subsys_state) associated with @ss.  This
457  * function must be called either under cgroup_mutex or rcu_read_lock() and
458  * the caller is responsible for pinning the returned css if it wants to
459  * keep accessing it outside the said locks.  This function may return
460  * %NULL if @cgrp doesn't have @subsys_id enabled.
461  */
cgroup_css(struct cgroup * cgrp,struct cgroup_subsys * ss)462 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
463 					      struct cgroup_subsys *ss)
464 {
465 	if (ss)
466 		return rcu_dereference_check(cgrp->subsys[ss->id],
467 					lockdep_is_held(&cgroup_mutex));
468 	else
469 		return &cgrp->self;
470 }
471 
472 /**
473  * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
474  * @cgrp: the cgroup of interest
475  * @ss: the subsystem of interest
476  *
477  * Find and get @cgrp's css assocaited with @ss.  If the css doesn't exist
478  * or is offline, %NULL is returned.
479  */
cgroup_tryget_css(struct cgroup * cgrp,struct cgroup_subsys * ss)480 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
481 						     struct cgroup_subsys *ss)
482 {
483 	struct cgroup_subsys_state *css;
484 
485 	rcu_read_lock();
486 	css = cgroup_css(cgrp, ss);
487 	if (!css || !css_tryget_online(css))
488 		css = NULL;
489 	rcu_read_unlock();
490 
491 	return css;
492 }
493 
494 /**
495  * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
496  * @cgrp: the cgroup of interest
497  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
498  *
499  * Similar to cgroup_css() but returns the effective css, which is defined
500  * as the matching css of the nearest ancestor including self which has @ss
501  * enabled.  If @ss is associated with the hierarchy @cgrp is on, this
502  * function is guaranteed to return non-NULL css.
503  */
cgroup_e_css(struct cgroup * cgrp,struct cgroup_subsys * ss)504 static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
505 						struct cgroup_subsys *ss)
506 {
507 	lockdep_assert_held(&cgroup_mutex);
508 
509 	if (!ss)
510 		return &cgrp->self;
511 
512 	/*
513 	 * This function is used while updating css associations and thus
514 	 * can't test the csses directly.  Test ss_mask.
515 	 */
516 	while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
517 		cgrp = cgroup_parent(cgrp);
518 		if (!cgrp)
519 			return NULL;
520 	}
521 
522 	return cgroup_css(cgrp, ss);
523 }
524 
525 /**
526  * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
527  * @cgrp: the cgroup of interest
528  * @ss: the subsystem of interest
529  *
530  * Find and get the effective css of @cgrp for @ss.  The effective css is
531  * defined as the matching css of the nearest ancestor including self which
532  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
533  * the root css is returned, so this function always returns a valid css.
534  * The returned css must be put using css_put().
535  */
cgroup_get_e_css(struct cgroup * cgrp,struct cgroup_subsys * ss)536 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
537 					     struct cgroup_subsys *ss)
538 {
539 	struct cgroup_subsys_state *css;
540 
541 	rcu_read_lock();
542 
543 	do {
544 		css = cgroup_css(cgrp, ss);
545 
546 		if (css && css_tryget_online(css))
547 			goto out_unlock;
548 		cgrp = cgroup_parent(cgrp);
549 	} while (cgrp);
550 
551 	css = init_css_set.subsys[ss->id];
552 	css_get(css);
553 out_unlock:
554 	rcu_read_unlock();
555 	return css;
556 }
557 
cgroup_get_live(struct cgroup * cgrp)558 static void cgroup_get_live(struct cgroup *cgrp)
559 {
560 	WARN_ON_ONCE(cgroup_is_dead(cgrp));
561 	css_get(&cgrp->self);
562 }
563 
of_css(struct kernfs_open_file * of)564 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
565 {
566 	struct cgroup *cgrp = of->kn->parent->priv;
567 	struct cftype *cft = of_cft(of);
568 
569 	/*
570 	 * This is open and unprotected implementation of cgroup_css().
571 	 * seq_css() is only called from a kernfs file operation which has
572 	 * an active reference on the file.  Because all the subsystem
573 	 * files are drained before a css is disassociated with a cgroup,
574 	 * the matching css from the cgroup's subsys table is guaranteed to
575 	 * be and stay valid until the enclosing operation is complete.
576 	 */
577 	if (cft->ss)
578 		return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
579 	else
580 		return &cgrp->self;
581 }
582 EXPORT_SYMBOL_GPL(of_css);
583 
584 /**
585  * for_each_css - iterate all css's of a cgroup
586  * @css: the iteration cursor
587  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
588  * @cgrp: the target cgroup to iterate css's of
589  *
590  * Should be called under cgroup_[tree_]mutex.
591  */
592 #define for_each_css(css, ssid, cgrp)					\
593 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	\
594 		if (!((css) = rcu_dereference_check(			\
595 				(cgrp)->subsys[(ssid)],			\
596 				lockdep_is_held(&cgroup_mutex)))) { }	\
597 		else
598 
599 /**
600  * for_each_e_css - iterate all effective css's of a cgroup
601  * @css: the iteration cursor
602  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
603  * @cgrp: the target cgroup to iterate css's of
604  *
605  * Should be called under cgroup_[tree_]mutex.
606  */
607 #define for_each_e_css(css, ssid, cgrp)					\
608 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	\
609 		if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
610 			;						\
611 		else
612 
613 /**
614  * do_each_subsys_mask - filter for_each_subsys with a bitmask
615  * @ss: the iteration cursor
616  * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
617  * @ss_mask: the bitmask
618  *
619  * The block will only run for cases where the ssid-th bit (1 << ssid) of
620  * @ss_mask is set.
621  */
622 #define do_each_subsys_mask(ss, ssid, ss_mask) do {			\
623 	unsigned long __ss_mask = (ss_mask);				\
624 	if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */	\
625 		(ssid) = 0;						\
626 		break;							\
627 	}								\
628 	for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) {	\
629 		(ss) = cgroup_subsys[ssid];				\
630 		{
631 
632 #define while_each_subsys_mask()					\
633 		}							\
634 	}								\
635 } while (false)
636 
637 /* iterate over child cgrps, lock should be held throughout iteration */
638 #define cgroup_for_each_live_child(child, cgrp)				\
639 	list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
640 		if (({ lockdep_assert_held(&cgroup_mutex);		\
641 		       cgroup_is_dead(child); }))			\
642 			;						\
643 		else
644 
645 /* walk live descendants in preorder */
646 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)		\
647 	css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL))	\
648 		if (({ lockdep_assert_held(&cgroup_mutex);		\
649 		       (dsct) = (d_css)->cgroup;			\
650 		       cgroup_is_dead(dsct); }))			\
651 			;						\
652 		else
653 
654 /* walk live descendants in postorder */
655 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp)		\
656 	css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL))	\
657 		if (({ lockdep_assert_held(&cgroup_mutex);		\
658 		       (dsct) = (d_css)->cgroup;			\
659 		       cgroup_is_dead(dsct); }))			\
660 			;						\
661 		else
662 
663 /*
664  * The default css_set - used by init and its children prior to any
665  * hierarchies being mounted. It contains a pointer to the root state
666  * for each subsystem. Also used to anchor the list of css_sets. Not
667  * reference-counted, to improve performance when child cgroups
668  * haven't been created.
669  */
670 struct css_set init_css_set = {
671 	.refcount		= REFCOUNT_INIT(1),
672 	.dom_cset		= &init_css_set,
673 	.tasks			= LIST_HEAD_INIT(init_css_set.tasks),
674 	.mg_tasks		= LIST_HEAD_INIT(init_css_set.mg_tasks),
675 	.task_iters		= LIST_HEAD_INIT(init_css_set.task_iters),
676 	.threaded_csets		= LIST_HEAD_INIT(init_css_set.threaded_csets),
677 	.cgrp_links		= LIST_HEAD_INIT(init_css_set.cgrp_links),
678 	.mg_preload_node	= LIST_HEAD_INIT(init_css_set.mg_preload_node),
679 	.mg_node		= LIST_HEAD_INIT(init_css_set.mg_node),
680 
681 	/*
682 	 * The following field is re-initialized when this cset gets linked
683 	 * in cgroup_init().  However, let's initialize the field
684 	 * statically too so that the default cgroup can be accessed safely
685 	 * early during boot.
686 	 */
687 	.dfl_cgrp		= &cgrp_dfl_root.cgrp,
688 };
689 
690 static int css_set_count	= 1;	/* 1 for init_css_set */
691 
css_set_threaded(struct css_set * cset)692 static bool css_set_threaded(struct css_set *cset)
693 {
694 	return cset->dom_cset != cset;
695 }
696 
697 /**
698  * css_set_populated - does a css_set contain any tasks?
699  * @cset: target css_set
700  *
701  * css_set_populated() should be the same as !!cset->nr_tasks at steady
702  * state. However, css_set_populated() can be called while a task is being
703  * added to or removed from the linked list before the nr_tasks is
704  * properly updated. Hence, we can't just look at ->nr_tasks here.
705  */
css_set_populated(struct css_set * cset)706 static bool css_set_populated(struct css_set *cset)
707 {
708 	lockdep_assert_held(&css_set_lock);
709 
710 	return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
711 }
712 
713 /**
714  * cgroup_update_populated - update the populated count of a cgroup
715  * @cgrp: the target cgroup
716  * @populated: inc or dec populated count
717  *
718  * One of the css_sets associated with @cgrp is either getting its first
719  * task or losing the last.  Update @cgrp->nr_populated_* accordingly.  The
720  * count is propagated towards root so that a given cgroup's
721  * nr_populated_children is zero iff none of its descendants contain any
722  * tasks.
723  *
724  * @cgrp's interface file "cgroup.populated" is zero if both
725  * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
726  * 1 otherwise.  When the sum changes from or to zero, userland is notified
727  * that the content of the interface file has changed.  This can be used to
728  * detect when @cgrp and its descendants become populated or empty.
729  */
cgroup_update_populated(struct cgroup * cgrp,bool populated)730 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
731 {
732 	struct cgroup *child = NULL;
733 	int adj = populated ? 1 : -1;
734 
735 	lockdep_assert_held(&css_set_lock);
736 
737 	do {
738 		bool was_populated = cgroup_is_populated(cgrp);
739 
740 		if (!child) {
741 			cgrp->nr_populated_csets += adj;
742 		} else {
743 			if (cgroup_is_threaded(child))
744 				cgrp->nr_populated_threaded_children += adj;
745 			else
746 				cgrp->nr_populated_domain_children += adj;
747 		}
748 
749 		if (was_populated == cgroup_is_populated(cgrp))
750 			break;
751 
752 		cgroup1_check_for_release(cgrp);
753 		cgroup_file_notify(&cgrp->events_file);
754 
755 		child = cgrp;
756 		cgrp = cgroup_parent(cgrp);
757 	} while (cgrp);
758 }
759 
760 /**
761  * css_set_update_populated - update populated state of a css_set
762  * @cset: target css_set
763  * @populated: whether @cset is populated or depopulated
764  *
765  * @cset is either getting the first task or losing the last.  Update the
766  * populated counters of all associated cgroups accordingly.
767  */
css_set_update_populated(struct css_set * cset,bool populated)768 static void css_set_update_populated(struct css_set *cset, bool populated)
769 {
770 	struct cgrp_cset_link *link;
771 
772 	lockdep_assert_held(&css_set_lock);
773 
774 	list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
775 		cgroup_update_populated(link->cgrp, populated);
776 }
777 
778 /**
779  * css_set_move_task - move a task from one css_set to another
780  * @task: task being moved
781  * @from_cset: css_set @task currently belongs to (may be NULL)
782  * @to_cset: new css_set @task is being moved to (may be NULL)
783  * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
784  *
785  * Move @task from @from_cset to @to_cset.  If @task didn't belong to any
786  * css_set, @from_cset can be NULL.  If @task is being disassociated
787  * instead of moved, @to_cset can be NULL.
788  *
789  * This function automatically handles populated counter updates and
790  * css_task_iter adjustments but the caller is responsible for managing
791  * @from_cset and @to_cset's reference counts.
792  */
css_set_move_task(struct task_struct * task,struct css_set * from_cset,struct css_set * to_cset,bool use_mg_tasks)793 static void css_set_move_task(struct task_struct *task,
794 			      struct css_set *from_cset, struct css_set *to_cset,
795 			      bool use_mg_tasks)
796 {
797 	lockdep_assert_held(&css_set_lock);
798 
799 	if (to_cset && !css_set_populated(to_cset))
800 		css_set_update_populated(to_cset, true);
801 
802 	if (from_cset) {
803 		struct css_task_iter *it, *pos;
804 
805 		WARN_ON_ONCE(list_empty(&task->cg_list));
806 
807 		/*
808 		 * @task is leaving, advance task iterators which are
809 		 * pointing to it so that they can resume at the next
810 		 * position.  Advancing an iterator might remove it from
811 		 * the list, use safe walk.  See css_task_iter_advance*()
812 		 * for details.
813 		 */
814 		list_for_each_entry_safe(it, pos, &from_cset->task_iters,
815 					 iters_node)
816 			if (it->task_pos == &task->cg_list)
817 				css_task_iter_advance(it);
818 
819 		list_del_init(&task->cg_list);
820 		if (!css_set_populated(from_cset))
821 			css_set_update_populated(from_cset, false);
822 	} else {
823 		WARN_ON_ONCE(!list_empty(&task->cg_list));
824 	}
825 
826 	if (to_cset) {
827 		/*
828 		 * We are synchronized through cgroup_threadgroup_rwsem
829 		 * against PF_EXITING setting such that we can't race
830 		 * against cgroup_exit() changing the css_set to
831 		 * init_css_set and dropping the old one.
832 		 */
833 		WARN_ON_ONCE(task->flags & PF_EXITING);
834 
835 		rcu_assign_pointer(task->cgroups, to_cset);
836 		list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
837 							     &to_cset->tasks);
838 	}
839 }
840 
841 /*
842  * hash table for cgroup groups. This improves the performance to find
843  * an existing css_set. This hash doesn't (currently) take into
844  * account cgroups in empty hierarchies.
845  */
846 #define CSS_SET_HASH_BITS	7
847 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
848 
css_set_hash(struct cgroup_subsys_state * css[])849 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
850 {
851 	unsigned long key = 0UL;
852 	struct cgroup_subsys *ss;
853 	int i;
854 
855 	for_each_subsys(ss, i)
856 		key += (unsigned long)css[i];
857 	key = (key >> 16) ^ key;
858 
859 	return key;
860 }
861 
put_css_set_locked(struct css_set * cset)862 void put_css_set_locked(struct css_set *cset)
863 {
864 	struct cgrp_cset_link *link, *tmp_link;
865 	struct cgroup_subsys *ss;
866 	int ssid;
867 
868 	lockdep_assert_held(&css_set_lock);
869 
870 	if (!refcount_dec_and_test(&cset->refcount))
871 		return;
872 
873 	WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
874 
875 	/* This css_set is dead. unlink it and release cgroup and css refs */
876 	for_each_subsys(ss, ssid) {
877 		list_del(&cset->e_cset_node[ssid]);
878 		css_put(cset->subsys[ssid]);
879 	}
880 	hash_del(&cset->hlist);
881 	css_set_count--;
882 
883 	list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
884 		list_del(&link->cset_link);
885 		list_del(&link->cgrp_link);
886 		if (cgroup_parent(link->cgrp))
887 			cgroup_put(link->cgrp);
888 		kfree(link);
889 	}
890 
891 	if (css_set_threaded(cset)) {
892 		list_del(&cset->threaded_csets_node);
893 		put_css_set_locked(cset->dom_cset);
894 	}
895 
896 	kfree_rcu(cset, rcu_head);
897 }
898 
899 /**
900  * compare_css_sets - helper function for find_existing_css_set().
901  * @cset: candidate css_set being tested
902  * @old_cset: existing css_set for a task
903  * @new_cgrp: cgroup that's being entered by the task
904  * @template: desired set of css pointers in css_set (pre-calculated)
905  *
906  * Returns true if "cset" matches "old_cset" except for the hierarchy
907  * which "new_cgrp" belongs to, for which it should match "new_cgrp".
908  */
compare_css_sets(struct css_set * cset,struct css_set * old_cset,struct cgroup * new_cgrp,struct cgroup_subsys_state * template[])909 static bool compare_css_sets(struct css_set *cset,
910 			     struct css_set *old_cset,
911 			     struct cgroup *new_cgrp,
912 			     struct cgroup_subsys_state *template[])
913 {
914 	struct cgroup *new_dfl_cgrp;
915 	struct list_head *l1, *l2;
916 
917 	/*
918 	 * On the default hierarchy, there can be csets which are
919 	 * associated with the same set of cgroups but different csses.
920 	 * Let's first ensure that csses match.
921 	 */
922 	if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
923 		return false;
924 
925 
926 	/* @cset's domain should match the default cgroup's */
927 	if (cgroup_on_dfl(new_cgrp))
928 		new_dfl_cgrp = new_cgrp;
929 	else
930 		new_dfl_cgrp = old_cset->dfl_cgrp;
931 
932 	if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
933 		return false;
934 
935 	/*
936 	 * Compare cgroup pointers in order to distinguish between
937 	 * different cgroups in hierarchies.  As different cgroups may
938 	 * share the same effective css, this comparison is always
939 	 * necessary.
940 	 */
941 	l1 = &cset->cgrp_links;
942 	l2 = &old_cset->cgrp_links;
943 	while (1) {
944 		struct cgrp_cset_link *link1, *link2;
945 		struct cgroup *cgrp1, *cgrp2;
946 
947 		l1 = l1->next;
948 		l2 = l2->next;
949 		/* See if we reached the end - both lists are equal length. */
950 		if (l1 == &cset->cgrp_links) {
951 			BUG_ON(l2 != &old_cset->cgrp_links);
952 			break;
953 		} else {
954 			BUG_ON(l2 == &old_cset->cgrp_links);
955 		}
956 		/* Locate the cgroups associated with these links. */
957 		link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
958 		link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
959 		cgrp1 = link1->cgrp;
960 		cgrp2 = link2->cgrp;
961 		/* Hierarchies should be linked in the same order. */
962 		BUG_ON(cgrp1->root != cgrp2->root);
963 
964 		/*
965 		 * If this hierarchy is the hierarchy of the cgroup
966 		 * that's changing, then we need to check that this
967 		 * css_set points to the new cgroup; if it's any other
968 		 * hierarchy, then this css_set should point to the
969 		 * same cgroup as the old css_set.
970 		 */
971 		if (cgrp1->root == new_cgrp->root) {
972 			if (cgrp1 != new_cgrp)
973 				return false;
974 		} else {
975 			if (cgrp1 != cgrp2)
976 				return false;
977 		}
978 	}
979 	return true;
980 }
981 
982 /**
983  * find_existing_css_set - init css array and find the matching css_set
984  * @old_cset: the css_set that we're using before the cgroup transition
985  * @cgrp: the cgroup that we're moving into
986  * @template: out param for the new set of csses, should be clear on entry
987  */
find_existing_css_set(struct css_set * old_cset,struct cgroup * cgrp,struct cgroup_subsys_state * template[])988 static struct css_set *find_existing_css_set(struct css_set *old_cset,
989 					struct cgroup *cgrp,
990 					struct cgroup_subsys_state *template[])
991 {
992 	struct cgroup_root *root = cgrp->root;
993 	struct cgroup_subsys *ss;
994 	struct css_set *cset;
995 	unsigned long key;
996 	int i;
997 
998 	/*
999 	 * Build the set of subsystem state objects that we want to see in the
1000 	 * new css_set. while subsystems can change globally, the entries here
1001 	 * won't change, so no need for locking.
1002 	 */
1003 	for_each_subsys(ss, i) {
1004 		if (root->subsys_mask & (1UL << i)) {
1005 			/*
1006 			 * @ss is in this hierarchy, so we want the
1007 			 * effective css from @cgrp.
1008 			 */
1009 			template[i] = cgroup_e_css(cgrp, ss);
1010 		} else {
1011 			/*
1012 			 * @ss is not in this hierarchy, so we don't want
1013 			 * to change the css.
1014 			 */
1015 			template[i] = old_cset->subsys[i];
1016 		}
1017 	}
1018 
1019 	key = css_set_hash(template);
1020 	hash_for_each_possible(css_set_table, cset, hlist, key) {
1021 		if (!compare_css_sets(cset, old_cset, cgrp, template))
1022 			continue;
1023 
1024 		/* This css_set matches what we need */
1025 		return cset;
1026 	}
1027 
1028 	/* No existing cgroup group matched */
1029 	return NULL;
1030 }
1031 
free_cgrp_cset_links(struct list_head * links_to_free)1032 static void free_cgrp_cset_links(struct list_head *links_to_free)
1033 {
1034 	struct cgrp_cset_link *link, *tmp_link;
1035 
1036 	list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1037 		list_del(&link->cset_link);
1038 		kfree(link);
1039 	}
1040 }
1041 
1042 /**
1043  * allocate_cgrp_cset_links - allocate cgrp_cset_links
1044  * @count: the number of links to allocate
1045  * @tmp_links: list_head the allocated links are put on
1046  *
1047  * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1048  * through ->cset_link.  Returns 0 on success or -errno.
1049  */
allocate_cgrp_cset_links(int count,struct list_head * tmp_links)1050 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1051 {
1052 	struct cgrp_cset_link *link;
1053 	int i;
1054 
1055 	INIT_LIST_HEAD(tmp_links);
1056 
1057 	for (i = 0; i < count; i++) {
1058 		link = kzalloc(sizeof(*link), GFP_KERNEL);
1059 		if (!link) {
1060 			free_cgrp_cset_links(tmp_links);
1061 			return -ENOMEM;
1062 		}
1063 		list_add(&link->cset_link, tmp_links);
1064 	}
1065 	return 0;
1066 }
1067 
1068 /**
1069  * link_css_set - a helper function to link a css_set to a cgroup
1070  * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1071  * @cset: the css_set to be linked
1072  * @cgrp: the destination cgroup
1073  */
link_css_set(struct list_head * tmp_links,struct css_set * cset,struct cgroup * cgrp)1074 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1075 			 struct cgroup *cgrp)
1076 {
1077 	struct cgrp_cset_link *link;
1078 
1079 	BUG_ON(list_empty(tmp_links));
1080 
1081 	if (cgroup_on_dfl(cgrp))
1082 		cset->dfl_cgrp = cgrp;
1083 
1084 	link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1085 	link->cset = cset;
1086 	link->cgrp = cgrp;
1087 
1088 	/*
1089 	 * Always add links to the tail of the lists so that the lists are
1090 	 * in choronological order.
1091 	 */
1092 	list_move_tail(&link->cset_link, &cgrp->cset_links);
1093 	list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1094 
1095 	if (cgroup_parent(cgrp))
1096 		cgroup_get_live(cgrp);
1097 }
1098 
1099 /**
1100  * find_css_set - return a new css_set with one cgroup updated
1101  * @old_cset: the baseline css_set
1102  * @cgrp: the cgroup to be updated
1103  *
1104  * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1105  * substituted into the appropriate hierarchy.
1106  */
find_css_set(struct css_set * old_cset,struct cgroup * cgrp)1107 static struct css_set *find_css_set(struct css_set *old_cset,
1108 				    struct cgroup *cgrp)
1109 {
1110 	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1111 	struct css_set *cset;
1112 	struct list_head tmp_links;
1113 	struct cgrp_cset_link *link;
1114 	struct cgroup_subsys *ss;
1115 	unsigned long key;
1116 	int ssid;
1117 
1118 	lockdep_assert_held(&cgroup_mutex);
1119 
1120 	/* First see if we already have a cgroup group that matches
1121 	 * the desired set */
1122 	spin_lock_irq(&css_set_lock);
1123 	cset = find_existing_css_set(old_cset, cgrp, template);
1124 	if (cset)
1125 		get_css_set(cset);
1126 	spin_unlock_irq(&css_set_lock);
1127 
1128 	if (cset)
1129 		return cset;
1130 
1131 	cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1132 	if (!cset)
1133 		return NULL;
1134 
1135 	/* Allocate all the cgrp_cset_link objects that we'll need */
1136 	if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1137 		kfree(cset);
1138 		return NULL;
1139 	}
1140 
1141 	refcount_set(&cset->refcount, 1);
1142 	cset->dom_cset = cset;
1143 	INIT_LIST_HEAD(&cset->tasks);
1144 	INIT_LIST_HEAD(&cset->mg_tasks);
1145 	INIT_LIST_HEAD(&cset->task_iters);
1146 	INIT_LIST_HEAD(&cset->threaded_csets);
1147 	INIT_HLIST_NODE(&cset->hlist);
1148 	INIT_LIST_HEAD(&cset->cgrp_links);
1149 	INIT_LIST_HEAD(&cset->mg_preload_node);
1150 	INIT_LIST_HEAD(&cset->mg_node);
1151 
1152 	/* Copy the set of subsystem state objects generated in
1153 	 * find_existing_css_set() */
1154 	memcpy(cset->subsys, template, sizeof(cset->subsys));
1155 
1156 	spin_lock_irq(&css_set_lock);
1157 	/* Add reference counts and links from the new css_set. */
1158 	list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1159 		struct cgroup *c = link->cgrp;
1160 
1161 		if (c->root == cgrp->root)
1162 			c = cgrp;
1163 		link_css_set(&tmp_links, cset, c);
1164 	}
1165 
1166 	BUG_ON(!list_empty(&tmp_links));
1167 
1168 	css_set_count++;
1169 
1170 	/* Add @cset to the hash table */
1171 	key = css_set_hash(cset->subsys);
1172 	hash_add(css_set_table, &cset->hlist, key);
1173 
1174 	for_each_subsys(ss, ssid) {
1175 		struct cgroup_subsys_state *css = cset->subsys[ssid];
1176 
1177 		list_add_tail(&cset->e_cset_node[ssid],
1178 			      &css->cgroup->e_csets[ssid]);
1179 		css_get(css);
1180 	}
1181 
1182 	spin_unlock_irq(&css_set_lock);
1183 
1184 	/*
1185 	 * If @cset should be threaded, look up the matching dom_cset and
1186 	 * link them up.  We first fully initialize @cset then look for the
1187 	 * dom_cset.  It's simpler this way and safe as @cset is guaranteed
1188 	 * to stay empty until we return.
1189 	 */
1190 	if (cgroup_is_threaded(cset->dfl_cgrp)) {
1191 		struct css_set *dcset;
1192 
1193 		dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1194 		if (!dcset) {
1195 			put_css_set(cset);
1196 			return NULL;
1197 		}
1198 
1199 		spin_lock_irq(&css_set_lock);
1200 		cset->dom_cset = dcset;
1201 		list_add_tail(&cset->threaded_csets_node,
1202 			      &dcset->threaded_csets);
1203 		spin_unlock_irq(&css_set_lock);
1204 	}
1205 
1206 	return cset;
1207 }
1208 
cgroup_root_from_kf(struct kernfs_root * kf_root)1209 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1210 {
1211 	struct cgroup *root_cgrp = kf_root->kn->priv;
1212 
1213 	return root_cgrp->root;
1214 }
1215 
cgroup_init_root_id(struct cgroup_root * root)1216 static int cgroup_init_root_id(struct cgroup_root *root)
1217 {
1218 	int id;
1219 
1220 	lockdep_assert_held(&cgroup_mutex);
1221 
1222 	id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1223 	if (id < 0)
1224 		return id;
1225 
1226 	root->hierarchy_id = id;
1227 	return 0;
1228 }
1229 
cgroup_exit_root_id(struct cgroup_root * root)1230 static void cgroup_exit_root_id(struct cgroup_root *root)
1231 {
1232 	lockdep_assert_held(&cgroup_mutex);
1233 
1234 	idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1235 }
1236 
cgroup_free_root(struct cgroup_root * root)1237 void cgroup_free_root(struct cgroup_root *root)
1238 {
1239 	if (root) {
1240 		idr_destroy(&root->cgroup_idr);
1241 		kfree(root);
1242 	}
1243 }
1244 
cgroup_destroy_root(struct cgroup_root * root)1245 static void cgroup_destroy_root(struct cgroup_root *root)
1246 {
1247 	struct cgroup *cgrp = &root->cgrp;
1248 	struct cgrp_cset_link *link, *tmp_link;
1249 
1250 	trace_cgroup_destroy_root(root);
1251 
1252 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1253 
1254 	BUG_ON(atomic_read(&root->nr_cgrps));
1255 	BUG_ON(!list_empty(&cgrp->self.children));
1256 
1257 	/* Rebind all subsystems back to the default hierarchy */
1258 	WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1259 
1260 	/*
1261 	 * Release all the links from cset_links to this hierarchy's
1262 	 * root cgroup
1263 	 */
1264 	spin_lock_irq(&css_set_lock);
1265 
1266 	list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1267 		list_del(&link->cset_link);
1268 		list_del(&link->cgrp_link);
1269 		kfree(link);
1270 	}
1271 
1272 	spin_unlock_irq(&css_set_lock);
1273 
1274 	if (!list_empty(&root->root_list)) {
1275 		list_del(&root->root_list);
1276 		cgroup_root_count--;
1277 	}
1278 
1279 	cgroup_exit_root_id(root);
1280 
1281 	mutex_unlock(&cgroup_mutex);
1282 
1283 	kernfs_destroy_root(root->kf_root);
1284 	cgroup_free_root(root);
1285 }
1286 
1287 /*
1288  * look up cgroup associated with current task's cgroup namespace on the
1289  * specified hierarchy
1290  */
1291 static struct cgroup *
current_cgns_cgroup_from_root(struct cgroup_root * root)1292 current_cgns_cgroup_from_root(struct cgroup_root *root)
1293 {
1294 	struct cgroup *res = NULL;
1295 	struct css_set *cset;
1296 
1297 	lockdep_assert_held(&css_set_lock);
1298 
1299 	rcu_read_lock();
1300 
1301 	cset = current->nsproxy->cgroup_ns->root_cset;
1302 	if (cset == &init_css_set) {
1303 		res = &root->cgrp;
1304 	} else {
1305 		struct cgrp_cset_link *link;
1306 
1307 		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1308 			struct cgroup *c = link->cgrp;
1309 
1310 			if (c->root == root) {
1311 				res = c;
1312 				break;
1313 			}
1314 		}
1315 	}
1316 	rcu_read_unlock();
1317 
1318 	BUG_ON(!res);
1319 	return res;
1320 }
1321 
1322 /* look up cgroup associated with given css_set on the specified hierarchy */
cset_cgroup_from_root(struct css_set * cset,struct cgroup_root * root)1323 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1324 					    struct cgroup_root *root)
1325 {
1326 	struct cgroup *res = NULL;
1327 
1328 	lockdep_assert_held(&cgroup_mutex);
1329 	lockdep_assert_held(&css_set_lock);
1330 
1331 	if (cset == &init_css_set) {
1332 		res = &root->cgrp;
1333 	} else if (root == &cgrp_dfl_root) {
1334 		res = cset->dfl_cgrp;
1335 	} else {
1336 		struct cgrp_cset_link *link;
1337 
1338 		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1339 			struct cgroup *c = link->cgrp;
1340 
1341 			if (c->root == root) {
1342 				res = c;
1343 				break;
1344 			}
1345 		}
1346 	}
1347 
1348 	BUG_ON(!res);
1349 	return res;
1350 }
1351 
1352 /*
1353  * Return the cgroup for "task" from the given hierarchy. Must be
1354  * called with cgroup_mutex and css_set_lock held.
1355  */
task_cgroup_from_root(struct task_struct * task,struct cgroup_root * root)1356 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1357 				     struct cgroup_root *root)
1358 {
1359 	/*
1360 	 * No need to lock the task - since we hold cgroup_mutex the
1361 	 * task can't change groups, so the only thing that can happen
1362 	 * is that it exits and its css is set back to init_css_set.
1363 	 */
1364 	return cset_cgroup_from_root(task_css_set(task), root);
1365 }
1366 
1367 /*
1368  * A task must hold cgroup_mutex to modify cgroups.
1369  *
1370  * Any task can increment and decrement the count field without lock.
1371  * So in general, code holding cgroup_mutex can't rely on the count
1372  * field not changing.  However, if the count goes to zero, then only
1373  * cgroup_attach_task() can increment it again.  Because a count of zero
1374  * means that no tasks are currently attached, therefore there is no
1375  * way a task attached to that cgroup can fork (the other way to
1376  * increment the count).  So code holding cgroup_mutex can safely
1377  * assume that if the count is zero, it will stay zero. Similarly, if
1378  * a task holds cgroup_mutex on a cgroup with zero count, it
1379  * knows that the cgroup won't be removed, as cgroup_rmdir()
1380  * needs that mutex.
1381  *
1382  * A cgroup can only be deleted if both its 'count' of using tasks
1383  * is zero, and its list of 'children' cgroups is empty.  Since all
1384  * tasks in the system use _some_ cgroup, and since there is always at
1385  * least one task in the system (init, pid == 1), therefore, root cgroup
1386  * always has either children cgroups and/or using tasks.  So we don't
1387  * need a special hack to ensure that root cgroup cannot be deleted.
1388  *
1389  * P.S.  One more locking exception.  RCU is used to guard the
1390  * update of a tasks cgroup pointer by cgroup_attach_task()
1391  */
1392 
1393 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1394 
cgroup_file_name(struct cgroup * cgrp,const struct cftype * cft,char * buf)1395 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1396 			      char *buf)
1397 {
1398 	struct cgroup_subsys *ss = cft->ss;
1399 
1400 	if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1401 	    !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1402 		snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
1403 			 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1404 			 cft->name);
1405 	else
1406 		strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1407 	return buf;
1408 }
1409 
1410 /**
1411  * cgroup_file_mode - deduce file mode of a control file
1412  * @cft: the control file in question
1413  *
1414  * S_IRUGO for read, S_IWUSR for write.
1415  */
cgroup_file_mode(const struct cftype * cft)1416 static umode_t cgroup_file_mode(const struct cftype *cft)
1417 {
1418 	umode_t mode = 0;
1419 
1420 	if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1421 		mode |= S_IRUGO;
1422 
1423 	if (cft->write_u64 || cft->write_s64 || cft->write) {
1424 		if (cft->flags & CFTYPE_WORLD_WRITABLE)
1425 			mode |= S_IWUGO;
1426 		else
1427 			mode |= S_IWUSR;
1428 	}
1429 
1430 	return mode;
1431 }
1432 
1433 /**
1434  * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1435  * @subtree_control: the new subtree_control mask to consider
1436  * @this_ss_mask: available subsystems
1437  *
1438  * On the default hierarchy, a subsystem may request other subsystems to be
1439  * enabled together through its ->depends_on mask.  In such cases, more
1440  * subsystems than specified in "cgroup.subtree_control" may be enabled.
1441  *
1442  * This function calculates which subsystems need to be enabled if
1443  * @subtree_control is to be applied while restricted to @this_ss_mask.
1444  */
cgroup_calc_subtree_ss_mask(u16 subtree_control,u16 this_ss_mask)1445 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1446 {
1447 	u16 cur_ss_mask = subtree_control;
1448 	struct cgroup_subsys *ss;
1449 	int ssid;
1450 
1451 	lockdep_assert_held(&cgroup_mutex);
1452 
1453 	cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1454 
1455 	while (true) {
1456 		u16 new_ss_mask = cur_ss_mask;
1457 
1458 		do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1459 			new_ss_mask |= ss->depends_on;
1460 		} while_each_subsys_mask();
1461 
1462 		/*
1463 		 * Mask out subsystems which aren't available.  This can
1464 		 * happen only if some depended-upon subsystems were bound
1465 		 * to non-default hierarchies.
1466 		 */
1467 		new_ss_mask &= this_ss_mask;
1468 
1469 		if (new_ss_mask == cur_ss_mask)
1470 			break;
1471 		cur_ss_mask = new_ss_mask;
1472 	}
1473 
1474 	return cur_ss_mask;
1475 }
1476 
1477 /**
1478  * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1479  * @kn: the kernfs_node being serviced
1480  *
1481  * This helper undoes cgroup_kn_lock_live() and should be invoked before
1482  * the method finishes if locking succeeded.  Note that once this function
1483  * returns the cgroup returned by cgroup_kn_lock_live() may become
1484  * inaccessible any time.  If the caller intends to continue to access the
1485  * cgroup, it should pin it before invoking this function.
1486  */
cgroup_kn_unlock(struct kernfs_node * kn)1487 void cgroup_kn_unlock(struct kernfs_node *kn)
1488 {
1489 	struct cgroup *cgrp;
1490 
1491 	if (kernfs_type(kn) == KERNFS_DIR)
1492 		cgrp = kn->priv;
1493 	else
1494 		cgrp = kn->parent->priv;
1495 
1496 	mutex_unlock(&cgroup_mutex);
1497 
1498 	kernfs_unbreak_active_protection(kn);
1499 	cgroup_put(cgrp);
1500 }
1501 
1502 /**
1503  * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1504  * @kn: the kernfs_node being serviced
1505  * @drain_offline: perform offline draining on the cgroup
1506  *
1507  * This helper is to be used by a cgroup kernfs method currently servicing
1508  * @kn.  It breaks the active protection, performs cgroup locking and
1509  * verifies that the associated cgroup is alive.  Returns the cgroup if
1510  * alive; otherwise, %NULL.  A successful return should be undone by a
1511  * matching cgroup_kn_unlock() invocation.  If @drain_offline is %true, the
1512  * cgroup is drained of offlining csses before return.
1513  *
1514  * Any cgroup kernfs method implementation which requires locking the
1515  * associated cgroup should use this helper.  It avoids nesting cgroup
1516  * locking under kernfs active protection and allows all kernfs operations
1517  * including self-removal.
1518  */
cgroup_kn_lock_live(struct kernfs_node * kn,bool drain_offline)1519 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1520 {
1521 	struct cgroup *cgrp;
1522 
1523 	if (kernfs_type(kn) == KERNFS_DIR)
1524 		cgrp = kn->priv;
1525 	else
1526 		cgrp = kn->parent->priv;
1527 
1528 	/*
1529 	 * We're gonna grab cgroup_mutex which nests outside kernfs
1530 	 * active_ref.  cgroup liveliness check alone provides enough
1531 	 * protection against removal.  Ensure @cgrp stays accessible and
1532 	 * break the active_ref protection.
1533 	 */
1534 	if (!cgroup_tryget(cgrp))
1535 		return NULL;
1536 	kernfs_break_active_protection(kn);
1537 
1538 	if (drain_offline)
1539 		cgroup_lock_and_drain_offline(cgrp);
1540 	else
1541 		mutex_lock(&cgroup_mutex);
1542 
1543 	if (!cgroup_is_dead(cgrp))
1544 		return cgrp;
1545 
1546 	cgroup_kn_unlock(kn);
1547 	return NULL;
1548 }
1549 
cgroup_rm_file(struct cgroup * cgrp,const struct cftype * cft)1550 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1551 {
1552 	char name[CGROUP_FILE_NAME_MAX];
1553 
1554 	lockdep_assert_held(&cgroup_mutex);
1555 
1556 	if (cft->file_offset) {
1557 		struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1558 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
1559 
1560 		spin_lock_irq(&cgroup_file_kn_lock);
1561 		cfile->kn = NULL;
1562 		spin_unlock_irq(&cgroup_file_kn_lock);
1563 
1564 		del_timer_sync(&cfile->notify_timer);
1565 	}
1566 
1567 	kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1568 }
1569 
1570 /**
1571  * css_clear_dir - remove subsys files in a cgroup directory
1572  * @css: taget css
1573  */
css_clear_dir(struct cgroup_subsys_state * css)1574 static void css_clear_dir(struct cgroup_subsys_state *css)
1575 {
1576 	struct cgroup *cgrp = css->cgroup;
1577 	struct cftype *cfts;
1578 
1579 	if (!(css->flags & CSS_VISIBLE))
1580 		return;
1581 
1582 	css->flags &= ~CSS_VISIBLE;
1583 
1584 	if (!css->ss) {
1585 		if (cgroup_on_dfl(cgrp))
1586 			cfts = cgroup_base_files;
1587 		else
1588 			cfts = cgroup1_base_files;
1589 
1590 		cgroup_addrm_files(css, cgrp, cfts, false);
1591 	} else {
1592 		list_for_each_entry(cfts, &css->ss->cfts, node)
1593 			cgroup_addrm_files(css, cgrp, cfts, false);
1594 	}
1595 }
1596 
1597 /**
1598  * css_populate_dir - create subsys files in a cgroup directory
1599  * @css: target css
1600  *
1601  * On failure, no file is added.
1602  */
css_populate_dir(struct cgroup_subsys_state * css)1603 static int css_populate_dir(struct cgroup_subsys_state *css)
1604 {
1605 	struct cgroup *cgrp = css->cgroup;
1606 	struct cftype *cfts, *failed_cfts;
1607 	int ret;
1608 
1609 	if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1610 		return 0;
1611 
1612 	if (!css->ss) {
1613 		if (cgroup_on_dfl(cgrp))
1614 			cfts = cgroup_base_files;
1615 		else
1616 			cfts = cgroup1_base_files;
1617 
1618 		ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1619 		if (ret < 0)
1620 			return ret;
1621 	} else {
1622 		list_for_each_entry(cfts, &css->ss->cfts, node) {
1623 			ret = cgroup_addrm_files(css, cgrp, cfts, true);
1624 			if (ret < 0) {
1625 				failed_cfts = cfts;
1626 				goto err;
1627 			}
1628 		}
1629 	}
1630 
1631 	css->flags |= CSS_VISIBLE;
1632 
1633 	return 0;
1634 err:
1635 	list_for_each_entry(cfts, &css->ss->cfts, node) {
1636 		if (cfts == failed_cfts)
1637 			break;
1638 		cgroup_addrm_files(css, cgrp, cfts, false);
1639 	}
1640 	return ret;
1641 }
1642 
rebind_subsystems(struct cgroup_root * dst_root,u16 ss_mask)1643 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1644 {
1645 	struct cgroup *dcgrp = &dst_root->cgrp;
1646 	struct cgroup_subsys *ss;
1647 	int ssid, i, ret;
1648 
1649 	lockdep_assert_held(&cgroup_mutex);
1650 
1651 	do_each_subsys_mask(ss, ssid, ss_mask) {
1652 		/*
1653 		 * If @ss has non-root csses attached to it, can't move.
1654 		 * If @ss is an implicit controller, it is exempt from this
1655 		 * rule and can be stolen.
1656 		 */
1657 		if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1658 		    !ss->implicit_on_dfl)
1659 			return -EBUSY;
1660 
1661 		/* can't move between two non-dummy roots either */
1662 		if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1663 			return -EBUSY;
1664 	} while_each_subsys_mask();
1665 
1666 	do_each_subsys_mask(ss, ssid, ss_mask) {
1667 		struct cgroup_root *src_root = ss->root;
1668 		struct cgroup *scgrp = &src_root->cgrp;
1669 		struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1670 		struct css_set *cset;
1671 
1672 		WARN_ON(!css || cgroup_css(dcgrp, ss));
1673 
1674 		/* disable from the source */
1675 		src_root->subsys_mask &= ~(1 << ssid);
1676 		WARN_ON(cgroup_apply_control(scgrp));
1677 		cgroup_finalize_control(scgrp, 0);
1678 
1679 		/* rebind */
1680 		RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1681 		rcu_assign_pointer(dcgrp->subsys[ssid], css);
1682 		ss->root = dst_root;
1683 		css->cgroup = dcgrp;
1684 
1685 		spin_lock_irq(&css_set_lock);
1686 		hash_for_each(css_set_table, i, cset, hlist)
1687 			list_move_tail(&cset->e_cset_node[ss->id],
1688 				       &dcgrp->e_csets[ss->id]);
1689 		spin_unlock_irq(&css_set_lock);
1690 
1691 		/* default hierarchy doesn't enable controllers by default */
1692 		dst_root->subsys_mask |= 1 << ssid;
1693 		if (dst_root == &cgrp_dfl_root) {
1694 			static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1695 		} else {
1696 			dcgrp->subtree_control |= 1 << ssid;
1697 			static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1698 		}
1699 
1700 		ret = cgroup_apply_control(dcgrp);
1701 		if (ret)
1702 			pr_warn("partial failure to rebind %s controller (err=%d)\n",
1703 				ss->name, ret);
1704 
1705 		if (ss->bind)
1706 			ss->bind(css);
1707 	} while_each_subsys_mask();
1708 
1709 	kernfs_activate(dcgrp->kn);
1710 	return 0;
1711 }
1712 
cgroup_show_path(struct seq_file * sf,struct kernfs_node * kf_node,struct kernfs_root * kf_root)1713 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1714 		     struct kernfs_root *kf_root)
1715 {
1716 	int len = 0;
1717 	char *buf = NULL;
1718 	struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1719 	struct cgroup *ns_cgroup;
1720 
1721 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
1722 	if (!buf)
1723 		return -ENOMEM;
1724 
1725 	spin_lock_irq(&css_set_lock);
1726 	ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1727 	len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1728 	spin_unlock_irq(&css_set_lock);
1729 
1730 	if (len >= PATH_MAX)
1731 		len = -ERANGE;
1732 	else if (len > 0) {
1733 		seq_escape(sf, buf, " \t\n\\");
1734 		len = 0;
1735 	}
1736 	kfree(buf);
1737 	return len;
1738 }
1739 
parse_cgroup_root_flags(char * data,unsigned int * root_flags)1740 static int parse_cgroup_root_flags(char *data, unsigned int *root_flags)
1741 {
1742 	char *token;
1743 
1744 	*root_flags = 0;
1745 
1746 	if (!data)
1747 		return 0;
1748 
1749 	while ((token = strsep(&data, ",")) != NULL) {
1750 		if (!strcmp(token, "nsdelegate")) {
1751 			*root_flags |= CGRP_ROOT_NS_DELEGATE;
1752 			continue;
1753 		}
1754 
1755 		pr_err("cgroup2: unknown option \"%s\"\n", token);
1756 		return -EINVAL;
1757 	}
1758 
1759 	return 0;
1760 }
1761 
apply_cgroup_root_flags(unsigned int root_flags)1762 static void apply_cgroup_root_flags(unsigned int root_flags)
1763 {
1764 	if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1765 		if (root_flags & CGRP_ROOT_NS_DELEGATE)
1766 			cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1767 		else
1768 			cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1769 	}
1770 }
1771 
cgroup_show_options(struct seq_file * seq,struct kernfs_root * kf_root)1772 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1773 {
1774 	if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1775 		seq_puts(seq, ",nsdelegate");
1776 	return 0;
1777 }
1778 
cgroup_remount(struct kernfs_root * kf_root,int * flags,char * data)1779 static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
1780 {
1781 	unsigned int root_flags;
1782 	int ret;
1783 
1784 	ret = parse_cgroup_root_flags(data, &root_flags);
1785 	if (ret)
1786 		return ret;
1787 
1788 	apply_cgroup_root_flags(root_flags);
1789 	return 0;
1790 }
1791 
1792 /*
1793  * To reduce the fork() overhead for systems that are not actually using
1794  * their cgroups capability, we don't maintain the lists running through
1795  * each css_set to its tasks until we see the list actually used - in other
1796  * words after the first mount.
1797  */
1798 static bool use_task_css_set_links __read_mostly;
1799 
cgroup_enable_task_cg_lists(void)1800 static void cgroup_enable_task_cg_lists(void)
1801 {
1802 	struct task_struct *p, *g;
1803 
1804 	/*
1805 	 * We need tasklist_lock because RCU is not safe against
1806 	 * while_each_thread(). Besides, a forking task that has passed
1807 	 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1808 	 * is not guaranteed to have its child immediately visible in the
1809 	 * tasklist if we walk through it with RCU.
1810 	 */
1811 	read_lock(&tasklist_lock);
1812 	spin_lock_irq(&css_set_lock);
1813 
1814 	if (use_task_css_set_links)
1815 		goto out_unlock;
1816 
1817 	use_task_css_set_links = true;
1818 
1819 	do_each_thread(g, p) {
1820 		WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1821 			     task_css_set(p) != &init_css_set);
1822 
1823 		/*
1824 		 * We should check if the process is exiting, otherwise
1825 		 * it will race with cgroup_exit() in that the list
1826 		 * entry won't be deleted though the process has exited.
1827 		 * Do it while holding siglock so that we don't end up
1828 		 * racing against cgroup_exit().
1829 		 *
1830 		 * Interrupts were already disabled while acquiring
1831 		 * the css_set_lock, so we do not need to disable it
1832 		 * again when acquiring the sighand->siglock here.
1833 		 */
1834 		spin_lock(&p->sighand->siglock);
1835 		if (!(p->flags & PF_EXITING)) {
1836 			struct css_set *cset = task_css_set(p);
1837 
1838 			if (!css_set_populated(cset))
1839 				css_set_update_populated(cset, true);
1840 			list_add_tail(&p->cg_list, &cset->tasks);
1841 			get_css_set(cset);
1842 			cset->nr_tasks++;
1843 		}
1844 		spin_unlock(&p->sighand->siglock);
1845 	} while_each_thread(g, p);
1846 out_unlock:
1847 	spin_unlock_irq(&css_set_lock);
1848 	read_unlock(&tasklist_lock);
1849 }
1850 
init_cgroup_housekeeping(struct cgroup * cgrp)1851 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1852 {
1853 	struct cgroup_subsys *ss;
1854 	int ssid;
1855 
1856 	INIT_LIST_HEAD(&cgrp->self.sibling);
1857 	INIT_LIST_HEAD(&cgrp->self.children);
1858 	INIT_LIST_HEAD(&cgrp->cset_links);
1859 	INIT_LIST_HEAD(&cgrp->pidlists);
1860 	mutex_init(&cgrp->pidlist_mutex);
1861 	cgrp->self.cgroup = cgrp;
1862 	cgrp->self.flags |= CSS_ONLINE;
1863 	cgrp->dom_cgrp = cgrp;
1864 	cgrp->max_descendants = INT_MAX;
1865 	cgrp->max_depth = INT_MAX;
1866 	INIT_LIST_HEAD(&cgrp->rstat_css_list);
1867 	prev_cputime_init(&cgrp->prev_cputime);
1868 
1869 	for_each_subsys(ss, ssid)
1870 		INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1871 
1872 	init_waitqueue_head(&cgrp->offline_waitq);
1873 	INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
1874 }
1875 
init_cgroup_root(struct cgroup_root * root,struct cgroup_sb_opts * opts)1876 void init_cgroup_root(struct cgroup_root *root, struct cgroup_sb_opts *opts)
1877 {
1878 	struct cgroup *cgrp = &root->cgrp;
1879 
1880 	INIT_LIST_HEAD(&root->root_list);
1881 	atomic_set(&root->nr_cgrps, 1);
1882 	cgrp->root = root;
1883 	init_cgroup_housekeeping(cgrp);
1884 	idr_init(&root->cgroup_idr);
1885 
1886 	root->flags = opts->flags;
1887 	if (opts->release_agent)
1888 		strscpy(root->release_agent_path, opts->release_agent, PATH_MAX);
1889 	if (opts->name)
1890 		strscpy(root->name, opts->name, MAX_CGROUP_ROOT_NAMELEN);
1891 	if (opts->cpuset_clone_children)
1892 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1893 }
1894 
cgroup_setup_root(struct cgroup_root * root,u16 ss_mask,int ref_flags)1895 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask, int ref_flags)
1896 {
1897 	LIST_HEAD(tmp_links);
1898 	struct cgroup *root_cgrp = &root->cgrp;
1899 	struct kernfs_syscall_ops *kf_sops;
1900 	struct css_set *cset;
1901 	int i, ret;
1902 
1903 	lockdep_assert_held(&cgroup_mutex);
1904 
1905 	ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
1906 	if (ret < 0)
1907 		goto out;
1908 	root_cgrp->id = ret;
1909 	root_cgrp->ancestor_ids[0] = ret;
1910 
1911 	ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
1912 			      ref_flags, GFP_KERNEL);
1913 	if (ret)
1914 		goto out;
1915 
1916 	/*
1917 	 * We're accessing css_set_count without locking css_set_lock here,
1918 	 * but that's OK - it can only be increased by someone holding
1919 	 * cgroup_lock, and that's us.  Later rebinding may disable
1920 	 * controllers on the default hierarchy and thus create new csets,
1921 	 * which can't be more than the existing ones.  Allocate 2x.
1922 	 */
1923 	ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
1924 	if (ret)
1925 		goto cancel_ref;
1926 
1927 	ret = cgroup_init_root_id(root);
1928 	if (ret)
1929 		goto cancel_ref;
1930 
1931 	kf_sops = root == &cgrp_dfl_root ?
1932 		&cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
1933 
1934 	root->kf_root = kernfs_create_root(kf_sops,
1935 					   KERNFS_ROOT_CREATE_DEACTIVATED |
1936 					   KERNFS_ROOT_SUPPORT_EXPORTOP,
1937 					   root_cgrp);
1938 	if (IS_ERR(root->kf_root)) {
1939 		ret = PTR_ERR(root->kf_root);
1940 		goto exit_root_id;
1941 	}
1942 	root_cgrp->kn = root->kf_root->kn;
1943 
1944 	ret = css_populate_dir(&root_cgrp->self);
1945 	if (ret)
1946 		goto destroy_root;
1947 
1948 	ret = rebind_subsystems(root, ss_mask);
1949 	if (ret)
1950 		goto destroy_root;
1951 
1952 	ret = cgroup_bpf_inherit(root_cgrp);
1953 	WARN_ON_ONCE(ret);
1954 
1955 	trace_cgroup_setup_root(root);
1956 
1957 	/*
1958 	 * There must be no failure case after here, since rebinding takes
1959 	 * care of subsystems' refcounts, which are explicitly dropped in
1960 	 * the failure exit path.
1961 	 */
1962 	list_add(&root->root_list, &cgroup_roots);
1963 	cgroup_root_count++;
1964 
1965 	/*
1966 	 * Link the root cgroup in this hierarchy into all the css_set
1967 	 * objects.
1968 	 */
1969 	spin_lock_irq(&css_set_lock);
1970 	hash_for_each(css_set_table, i, cset, hlist) {
1971 		link_css_set(&tmp_links, cset, root_cgrp);
1972 		if (css_set_populated(cset))
1973 			cgroup_update_populated(root_cgrp, true);
1974 	}
1975 	spin_unlock_irq(&css_set_lock);
1976 
1977 	BUG_ON(!list_empty(&root_cgrp->self.children));
1978 	BUG_ON(atomic_read(&root->nr_cgrps) != 1);
1979 
1980 	kernfs_activate(root_cgrp->kn);
1981 	ret = 0;
1982 	goto out;
1983 
1984 destroy_root:
1985 	kernfs_destroy_root(root->kf_root);
1986 	root->kf_root = NULL;
1987 exit_root_id:
1988 	cgroup_exit_root_id(root);
1989 cancel_ref:
1990 	percpu_ref_exit(&root_cgrp->self.refcnt);
1991 out:
1992 	free_cgrp_cset_links(&tmp_links);
1993 	return ret;
1994 }
1995 
cgroup_do_mount(struct file_system_type * fs_type,int flags,struct cgroup_root * root,unsigned long magic,struct cgroup_namespace * ns)1996 struct dentry *cgroup_do_mount(struct file_system_type *fs_type, int flags,
1997 			       struct cgroup_root *root, unsigned long magic,
1998 			       struct cgroup_namespace *ns)
1999 {
2000 	struct dentry *dentry;
2001 	bool new_sb;
2002 
2003 	dentry = kernfs_mount(fs_type, flags, root->kf_root, magic, &new_sb);
2004 
2005 	/*
2006 	 * In non-init cgroup namespace, instead of root cgroup's dentry,
2007 	 * we return the dentry corresponding to the cgroupns->root_cgrp.
2008 	 */
2009 	if (!IS_ERR(dentry) && ns != &init_cgroup_ns) {
2010 		struct dentry *nsdentry;
2011 		struct cgroup *cgrp;
2012 
2013 		mutex_lock(&cgroup_mutex);
2014 		spin_lock_irq(&css_set_lock);
2015 
2016 		cgrp = cset_cgroup_from_root(ns->root_cset, root);
2017 
2018 		spin_unlock_irq(&css_set_lock);
2019 		mutex_unlock(&cgroup_mutex);
2020 
2021 		nsdentry = kernfs_node_dentry(cgrp->kn, dentry->d_sb);
2022 		dput(dentry);
2023 		dentry = nsdentry;
2024 	}
2025 
2026 	if (IS_ERR(dentry) || !new_sb)
2027 		cgroup_put(&root->cgrp);
2028 
2029 	return dentry;
2030 }
2031 
cgroup_mount(struct file_system_type * fs_type,int flags,const char * unused_dev_name,void * data)2032 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
2033 			 int flags, const char *unused_dev_name,
2034 			 void *data)
2035 {
2036 	struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
2037 	struct dentry *dentry;
2038 	int ret;
2039 
2040 	get_cgroup_ns(ns);
2041 
2042 	/* Check if the caller has permission to mount. */
2043 	if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN)) {
2044 		put_cgroup_ns(ns);
2045 		return ERR_PTR(-EPERM);
2046 	}
2047 
2048 	/*
2049 	 * The first time anyone tries to mount a cgroup, enable the list
2050 	 * linking each css_set to its tasks and fix up all existing tasks.
2051 	 */
2052 	if (!use_task_css_set_links)
2053 		cgroup_enable_task_cg_lists();
2054 
2055 	if (fs_type == &cgroup2_fs_type) {
2056 		unsigned int root_flags;
2057 
2058 		ret = parse_cgroup_root_flags(data, &root_flags);
2059 		if (ret) {
2060 			put_cgroup_ns(ns);
2061 			return ERR_PTR(ret);
2062 		}
2063 
2064 		cgrp_dfl_visible = true;
2065 		cgroup_get_live(&cgrp_dfl_root.cgrp);
2066 
2067 		dentry = cgroup_do_mount(&cgroup2_fs_type, flags, &cgrp_dfl_root,
2068 					 CGROUP2_SUPER_MAGIC, ns);
2069 		if (!IS_ERR(dentry))
2070 			apply_cgroup_root_flags(root_flags);
2071 	} else {
2072 		dentry = cgroup1_mount(&cgroup_fs_type, flags, data,
2073 				       CGROUP_SUPER_MAGIC, ns);
2074 	}
2075 
2076 	put_cgroup_ns(ns);
2077 	return dentry;
2078 }
2079 
cgroup_kill_sb(struct super_block * sb)2080 static void cgroup_kill_sb(struct super_block *sb)
2081 {
2082 	struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2083 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2084 
2085 	/*
2086 	 * If @root doesn't have any mounts or children, start killing it.
2087 	 * This prevents new mounts by disabling percpu_ref_tryget_live().
2088 	 * cgroup_mount() may wait for @root's release.
2089 	 *
2090 	 * And don't kill the default root.
2091 	 */
2092 	if (!list_empty(&root->cgrp.self.children) ||
2093 	    root == &cgrp_dfl_root)
2094 		cgroup_put(&root->cgrp);
2095 	else
2096 		percpu_ref_kill(&root->cgrp.self.refcnt);
2097 
2098 	kernfs_kill_sb(sb);
2099 }
2100 
2101 struct file_system_type cgroup_fs_type = {
2102 	.name = "cgroup",
2103 	.mount = cgroup_mount,
2104 	.kill_sb = cgroup_kill_sb,
2105 	.fs_flags = FS_USERNS_MOUNT,
2106 };
2107 
2108 static struct file_system_type cgroup2_fs_type = {
2109 	.name = "cgroup2",
2110 	.mount = cgroup_mount,
2111 	.kill_sb = cgroup_kill_sb,
2112 	.fs_flags = FS_USERNS_MOUNT,
2113 };
2114 
cgroup_path_ns_locked(struct cgroup * cgrp,char * buf,size_t buflen,struct cgroup_namespace * ns)2115 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2116 			  struct cgroup_namespace *ns)
2117 {
2118 	struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2119 
2120 	return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2121 }
2122 
cgroup_path_ns(struct cgroup * cgrp,char * buf,size_t buflen,struct cgroup_namespace * ns)2123 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2124 		   struct cgroup_namespace *ns)
2125 {
2126 	int ret;
2127 
2128 	mutex_lock(&cgroup_mutex);
2129 	spin_lock_irq(&css_set_lock);
2130 
2131 	ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2132 
2133 	spin_unlock_irq(&css_set_lock);
2134 	mutex_unlock(&cgroup_mutex);
2135 
2136 	return ret;
2137 }
2138 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2139 
2140 /**
2141  * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2142  * @task: target task
2143  * @buf: the buffer to write the path into
2144  * @buflen: the length of the buffer
2145  *
2146  * Determine @task's cgroup on the first (the one with the lowest non-zero
2147  * hierarchy_id) cgroup hierarchy and copy its path into @buf.  This
2148  * function grabs cgroup_mutex and shouldn't be used inside locks used by
2149  * cgroup controller callbacks.
2150  *
2151  * Return value is the same as kernfs_path().
2152  */
task_cgroup_path(struct task_struct * task,char * buf,size_t buflen)2153 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2154 {
2155 	struct cgroup_root *root;
2156 	struct cgroup *cgrp;
2157 	int hierarchy_id = 1;
2158 	int ret;
2159 
2160 	mutex_lock(&cgroup_mutex);
2161 	spin_lock_irq(&css_set_lock);
2162 
2163 	root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2164 
2165 	if (root) {
2166 		cgrp = task_cgroup_from_root(task, root);
2167 		ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2168 	} else {
2169 		/* if no hierarchy exists, everyone is in "/" */
2170 		ret = strlcpy(buf, "/", buflen);
2171 	}
2172 
2173 	spin_unlock_irq(&css_set_lock);
2174 	mutex_unlock(&cgroup_mutex);
2175 	return ret;
2176 }
2177 EXPORT_SYMBOL_GPL(task_cgroup_path);
2178 
2179 /**
2180  * cgroup_migrate_add_task - add a migration target task to a migration context
2181  * @task: target task
2182  * @mgctx: target migration context
2183  *
2184  * Add @task, which is a migration target, to @mgctx->tset.  This function
2185  * becomes noop if @task doesn't need to be migrated.  @task's css_set
2186  * should have been added as a migration source and @task->cg_list will be
2187  * moved from the css_set's tasks list to mg_tasks one.
2188  */
cgroup_migrate_add_task(struct task_struct * task,struct cgroup_mgctx * mgctx)2189 static void cgroup_migrate_add_task(struct task_struct *task,
2190 				    struct cgroup_mgctx *mgctx)
2191 {
2192 	struct css_set *cset;
2193 
2194 	lockdep_assert_held(&css_set_lock);
2195 
2196 	/* @task either already exited or can't exit until the end */
2197 	if (task->flags & PF_EXITING)
2198 		return;
2199 
2200 	/* leave @task alone if post_fork() hasn't linked it yet */
2201 	if (list_empty(&task->cg_list))
2202 		return;
2203 
2204 	cset = task_css_set(task);
2205 	if (!cset->mg_src_cgrp)
2206 		return;
2207 
2208 	mgctx->tset.nr_tasks++;
2209 
2210 	list_move_tail(&task->cg_list, &cset->mg_tasks);
2211 	if (list_empty(&cset->mg_node))
2212 		list_add_tail(&cset->mg_node,
2213 			      &mgctx->tset.src_csets);
2214 	if (list_empty(&cset->mg_dst_cset->mg_node))
2215 		list_add_tail(&cset->mg_dst_cset->mg_node,
2216 			      &mgctx->tset.dst_csets);
2217 }
2218 
2219 /**
2220  * cgroup_taskset_first - reset taskset and return the first task
2221  * @tset: taskset of interest
2222  * @dst_cssp: output variable for the destination css
2223  *
2224  * @tset iteration is initialized and the first task is returned.
2225  */
cgroup_taskset_first(struct cgroup_taskset * tset,struct cgroup_subsys_state ** dst_cssp)2226 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2227 					 struct cgroup_subsys_state **dst_cssp)
2228 {
2229 	tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2230 	tset->cur_task = NULL;
2231 
2232 	return cgroup_taskset_next(tset, dst_cssp);
2233 }
2234 
2235 /**
2236  * cgroup_taskset_next - iterate to the next task in taskset
2237  * @tset: taskset of interest
2238  * @dst_cssp: output variable for the destination css
2239  *
2240  * Return the next task in @tset.  Iteration must have been initialized
2241  * with cgroup_taskset_first().
2242  */
cgroup_taskset_next(struct cgroup_taskset * tset,struct cgroup_subsys_state ** dst_cssp)2243 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2244 					struct cgroup_subsys_state **dst_cssp)
2245 {
2246 	struct css_set *cset = tset->cur_cset;
2247 	struct task_struct *task = tset->cur_task;
2248 
2249 	while (&cset->mg_node != tset->csets) {
2250 		if (!task)
2251 			task = list_first_entry(&cset->mg_tasks,
2252 						struct task_struct, cg_list);
2253 		else
2254 			task = list_next_entry(task, cg_list);
2255 
2256 		if (&task->cg_list != &cset->mg_tasks) {
2257 			tset->cur_cset = cset;
2258 			tset->cur_task = task;
2259 
2260 			/*
2261 			 * This function may be called both before and
2262 			 * after cgroup_taskset_migrate().  The two cases
2263 			 * can be distinguished by looking at whether @cset
2264 			 * has its ->mg_dst_cset set.
2265 			 */
2266 			if (cset->mg_dst_cset)
2267 				*dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2268 			else
2269 				*dst_cssp = cset->subsys[tset->ssid];
2270 
2271 			return task;
2272 		}
2273 
2274 		cset = list_next_entry(cset, mg_node);
2275 		task = NULL;
2276 	}
2277 
2278 	return NULL;
2279 }
2280 
2281 /**
2282  * cgroup_taskset_migrate - migrate a taskset
2283  * @mgctx: migration context
2284  *
2285  * Migrate tasks in @mgctx as setup by migration preparation functions.
2286  * This function fails iff one of the ->can_attach callbacks fails and
2287  * guarantees that either all or none of the tasks in @mgctx are migrated.
2288  * @mgctx is consumed regardless of success.
2289  */
cgroup_migrate_execute(struct cgroup_mgctx * mgctx)2290 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2291 {
2292 	struct cgroup_taskset *tset = &mgctx->tset;
2293 	struct cgroup_subsys *ss;
2294 	struct task_struct *task, *tmp_task;
2295 	struct css_set *cset, *tmp_cset;
2296 	int ssid, failed_ssid, ret;
2297 
2298 	/* check that we can legitimately attach to the cgroup */
2299 	if (tset->nr_tasks) {
2300 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2301 			if (ss->can_attach) {
2302 				tset->ssid = ssid;
2303 				ret = ss->can_attach(tset);
2304 				if (ret) {
2305 					failed_ssid = ssid;
2306 					goto out_cancel_attach;
2307 				}
2308 			}
2309 		} while_each_subsys_mask();
2310 	}
2311 
2312 	/*
2313 	 * Now that we're guaranteed success, proceed to move all tasks to
2314 	 * the new cgroup.  There are no failure cases after here, so this
2315 	 * is the commit point.
2316 	 */
2317 	spin_lock_irq(&css_set_lock);
2318 	list_for_each_entry(cset, &tset->src_csets, mg_node) {
2319 		list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2320 			struct css_set *from_cset = task_css_set(task);
2321 			struct css_set *to_cset = cset->mg_dst_cset;
2322 
2323 			get_css_set(to_cset);
2324 			to_cset->nr_tasks++;
2325 			css_set_move_task(task, from_cset, to_cset, true);
2326 			put_css_set_locked(from_cset);
2327 			from_cset->nr_tasks--;
2328 		}
2329 	}
2330 	spin_unlock_irq(&css_set_lock);
2331 
2332 	/*
2333 	 * Migration is committed, all target tasks are now on dst_csets.
2334 	 * Nothing is sensitive to fork() after this point.  Notify
2335 	 * controllers that migration is complete.
2336 	 */
2337 	tset->csets = &tset->dst_csets;
2338 
2339 	if (tset->nr_tasks) {
2340 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2341 			if (ss->attach) {
2342 				tset->ssid = ssid;
2343 				ss->attach(tset);
2344 			}
2345 		} while_each_subsys_mask();
2346 	}
2347 
2348 	ret = 0;
2349 	goto out_release_tset;
2350 
2351 out_cancel_attach:
2352 	if (tset->nr_tasks) {
2353 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2354 			if (ssid == failed_ssid)
2355 				break;
2356 			if (ss->cancel_attach) {
2357 				tset->ssid = ssid;
2358 				ss->cancel_attach(tset);
2359 			}
2360 		} while_each_subsys_mask();
2361 	}
2362 out_release_tset:
2363 	spin_lock_irq(&css_set_lock);
2364 	list_splice_init(&tset->dst_csets, &tset->src_csets);
2365 	list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2366 		list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2367 		list_del_init(&cset->mg_node);
2368 	}
2369 	spin_unlock_irq(&css_set_lock);
2370 
2371 	/*
2372 	 * Re-initialize the cgroup_taskset structure in case it is reused
2373 	 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2374 	 * iteration.
2375 	 */
2376 	tset->nr_tasks = 0;
2377 	tset->csets    = &tset->src_csets;
2378 	return ret;
2379 }
2380 
2381 /**
2382  * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2383  * @dst_cgrp: destination cgroup to test
2384  *
2385  * On the default hierarchy, except for the mixable, (possible) thread root
2386  * and threaded cgroups, subtree_control must be zero for migration
2387  * destination cgroups with tasks so that child cgroups don't compete
2388  * against tasks.
2389  */
cgroup_migrate_vet_dst(struct cgroup * dst_cgrp)2390 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2391 {
2392 	/* v1 doesn't have any restriction */
2393 	if (!cgroup_on_dfl(dst_cgrp))
2394 		return 0;
2395 
2396 	/* verify @dst_cgrp can host resources */
2397 	if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2398 		return -EOPNOTSUPP;
2399 
2400 	/* mixables don't care */
2401 	if (cgroup_is_mixable(dst_cgrp))
2402 		return 0;
2403 
2404 	/*
2405 	 * If @dst_cgrp is already or can become a thread root or is
2406 	 * threaded, it doesn't matter.
2407 	 */
2408 	if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2409 		return 0;
2410 
2411 	/* apply no-internal-process constraint */
2412 	if (dst_cgrp->subtree_control)
2413 		return -EBUSY;
2414 
2415 	return 0;
2416 }
2417 
2418 /**
2419  * cgroup_migrate_finish - cleanup after attach
2420  * @mgctx: migration context
2421  *
2422  * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst().  See
2423  * those functions for details.
2424  */
cgroup_migrate_finish(struct cgroup_mgctx * mgctx)2425 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2426 {
2427 	LIST_HEAD(preloaded);
2428 	struct css_set *cset, *tmp_cset;
2429 
2430 	lockdep_assert_held(&cgroup_mutex);
2431 
2432 	spin_lock_irq(&css_set_lock);
2433 
2434 	list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded);
2435 	list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded);
2436 
2437 	list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) {
2438 		cset->mg_src_cgrp = NULL;
2439 		cset->mg_dst_cgrp = NULL;
2440 		cset->mg_dst_cset = NULL;
2441 		list_del_init(&cset->mg_preload_node);
2442 		put_css_set_locked(cset);
2443 	}
2444 
2445 	spin_unlock_irq(&css_set_lock);
2446 }
2447 
2448 /**
2449  * cgroup_migrate_add_src - add a migration source css_set
2450  * @src_cset: the source css_set to add
2451  * @dst_cgrp: the destination cgroup
2452  * @mgctx: migration context
2453  *
2454  * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp.  Pin
2455  * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2456  * up by cgroup_migrate_finish().
2457  *
2458  * This function may be called without holding cgroup_threadgroup_rwsem
2459  * even if the target is a process.  Threads may be created and destroyed
2460  * but as long as cgroup_mutex is not dropped, no new css_set can be put
2461  * into play and the preloaded css_sets are guaranteed to cover all
2462  * migrations.
2463  */
cgroup_migrate_add_src(struct css_set * src_cset,struct cgroup * dst_cgrp,struct cgroup_mgctx * mgctx)2464 void cgroup_migrate_add_src(struct css_set *src_cset,
2465 			    struct cgroup *dst_cgrp,
2466 			    struct cgroup_mgctx *mgctx)
2467 {
2468 	struct cgroup *src_cgrp;
2469 
2470 	lockdep_assert_held(&cgroup_mutex);
2471 	lockdep_assert_held(&css_set_lock);
2472 
2473 	/*
2474 	 * If ->dead, @src_set is associated with one or more dead cgroups
2475 	 * and doesn't contain any migratable tasks.  Ignore it early so
2476 	 * that the rest of migration path doesn't get confused by it.
2477 	 */
2478 	if (src_cset->dead)
2479 		return;
2480 
2481 	src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2482 
2483 	if (!list_empty(&src_cset->mg_preload_node))
2484 		return;
2485 
2486 	WARN_ON(src_cset->mg_src_cgrp);
2487 	WARN_ON(src_cset->mg_dst_cgrp);
2488 	WARN_ON(!list_empty(&src_cset->mg_tasks));
2489 	WARN_ON(!list_empty(&src_cset->mg_node));
2490 
2491 	src_cset->mg_src_cgrp = src_cgrp;
2492 	src_cset->mg_dst_cgrp = dst_cgrp;
2493 	get_css_set(src_cset);
2494 	list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets);
2495 }
2496 
2497 /**
2498  * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2499  * @mgctx: migration context
2500  *
2501  * Tasks are about to be moved and all the source css_sets have been
2502  * preloaded to @mgctx->preloaded_src_csets.  This function looks up and
2503  * pins all destination css_sets, links each to its source, and append them
2504  * to @mgctx->preloaded_dst_csets.
2505  *
2506  * This function must be called after cgroup_migrate_add_src() has been
2507  * called on each migration source css_set.  After migration is performed
2508  * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2509  * @mgctx.
2510  */
cgroup_migrate_prepare_dst(struct cgroup_mgctx * mgctx)2511 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2512 {
2513 	struct css_set *src_cset, *tmp_cset;
2514 
2515 	lockdep_assert_held(&cgroup_mutex);
2516 
2517 	/* look up the dst cset for each src cset and link it to src */
2518 	list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2519 				 mg_preload_node) {
2520 		struct css_set *dst_cset;
2521 		struct cgroup_subsys *ss;
2522 		int ssid;
2523 
2524 		dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2525 		if (!dst_cset)
2526 			goto err;
2527 
2528 		WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2529 
2530 		/*
2531 		 * If src cset equals dst, it's noop.  Drop the src.
2532 		 * cgroup_migrate() will skip the cset too.  Note that we
2533 		 * can't handle src == dst as some nodes are used by both.
2534 		 */
2535 		if (src_cset == dst_cset) {
2536 			src_cset->mg_src_cgrp = NULL;
2537 			src_cset->mg_dst_cgrp = NULL;
2538 			list_del_init(&src_cset->mg_preload_node);
2539 			put_css_set(src_cset);
2540 			put_css_set(dst_cset);
2541 			continue;
2542 		}
2543 
2544 		src_cset->mg_dst_cset = dst_cset;
2545 
2546 		if (list_empty(&dst_cset->mg_preload_node))
2547 			list_add_tail(&dst_cset->mg_preload_node,
2548 				      &mgctx->preloaded_dst_csets);
2549 		else
2550 			put_css_set(dst_cset);
2551 
2552 		for_each_subsys(ss, ssid)
2553 			if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2554 				mgctx->ss_mask |= 1 << ssid;
2555 	}
2556 
2557 	return 0;
2558 err:
2559 	cgroup_migrate_finish(mgctx);
2560 	return -ENOMEM;
2561 }
2562 
2563 /**
2564  * cgroup_migrate - migrate a process or task to a cgroup
2565  * @leader: the leader of the process or the task to migrate
2566  * @threadgroup: whether @leader points to the whole process or a single task
2567  * @mgctx: migration context
2568  *
2569  * Migrate a process or task denoted by @leader.  If migrating a process,
2570  * the caller must be holding cgroup_threadgroup_rwsem.  The caller is also
2571  * responsible for invoking cgroup_migrate_add_src() and
2572  * cgroup_migrate_prepare_dst() on the targets before invoking this
2573  * function and following up with cgroup_migrate_finish().
2574  *
2575  * As long as a controller's ->can_attach() doesn't fail, this function is
2576  * guaranteed to succeed.  This means that, excluding ->can_attach()
2577  * failure, when migrating multiple targets, the success or failure can be
2578  * decided for all targets by invoking group_migrate_prepare_dst() before
2579  * actually starting migrating.
2580  */
cgroup_migrate(struct task_struct * leader,bool threadgroup,struct cgroup_mgctx * mgctx)2581 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2582 		   struct cgroup_mgctx *mgctx)
2583 {
2584 	struct task_struct *task;
2585 
2586 	/*
2587 	 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2588 	 * already PF_EXITING could be freed from underneath us unless we
2589 	 * take an rcu_read_lock.
2590 	 */
2591 	spin_lock_irq(&css_set_lock);
2592 	rcu_read_lock();
2593 	task = leader;
2594 	do {
2595 		cgroup_migrate_add_task(task, mgctx);
2596 		if (!threadgroup)
2597 			break;
2598 	} while_each_thread(leader, task);
2599 	rcu_read_unlock();
2600 	spin_unlock_irq(&css_set_lock);
2601 
2602 	return cgroup_migrate_execute(mgctx);
2603 }
2604 
2605 /**
2606  * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2607  * @dst_cgrp: the cgroup to attach to
2608  * @leader: the task or the leader of the threadgroup to be attached
2609  * @threadgroup: attach the whole threadgroup?
2610  *
2611  * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2612  */
cgroup_attach_task(struct cgroup * dst_cgrp,struct task_struct * leader,bool threadgroup)2613 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2614 		       bool threadgroup)
2615 {
2616 	DEFINE_CGROUP_MGCTX(mgctx);
2617 	struct task_struct *task;
2618 	int ret;
2619 
2620 	ret = cgroup_migrate_vet_dst(dst_cgrp);
2621 	if (ret)
2622 		return ret;
2623 
2624 	/* look up all src csets */
2625 	spin_lock_irq(&css_set_lock);
2626 	rcu_read_lock();
2627 	task = leader;
2628 	do {
2629 		cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2630 		if (!threadgroup)
2631 			break;
2632 	} while_each_thread(leader, task);
2633 	rcu_read_unlock();
2634 	spin_unlock_irq(&css_set_lock);
2635 
2636 	/* prepare dst csets and commit */
2637 	ret = cgroup_migrate_prepare_dst(&mgctx);
2638 	if (!ret)
2639 		ret = cgroup_migrate(leader, threadgroup, &mgctx);
2640 
2641 	cgroup_migrate_finish(&mgctx);
2642 
2643 	if (!ret)
2644 		TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2645 
2646 	return ret;
2647 }
2648 
cgroup_procs_write_start(char * buf,bool threadgroup)2649 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup)
2650 	__acquires(&cgroup_threadgroup_rwsem)
2651 {
2652 	struct task_struct *tsk;
2653 	pid_t pid;
2654 
2655 	if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2656 		return ERR_PTR(-EINVAL);
2657 
2658 	percpu_down_write(&cgroup_threadgroup_rwsem);
2659 
2660 	rcu_read_lock();
2661 	if (pid) {
2662 		tsk = find_task_by_vpid(pid);
2663 		if (!tsk) {
2664 			tsk = ERR_PTR(-ESRCH);
2665 			goto out_unlock_threadgroup;
2666 		}
2667 	} else {
2668 		tsk = current;
2669 	}
2670 
2671 	if (threadgroup)
2672 		tsk = tsk->group_leader;
2673 
2674 	/*
2675 	 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2676 	 * If userland migrates such a kthread to a non-root cgroup, it can
2677 	 * become trapped in a cpuset, or RT kthread may be born in a
2678 	 * cgroup with no rt_runtime allocated.  Just say no.
2679 	 */
2680 	if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2681 		tsk = ERR_PTR(-EINVAL);
2682 		goto out_unlock_threadgroup;
2683 	}
2684 
2685 	get_task_struct(tsk);
2686 	goto out_unlock_rcu;
2687 
2688 out_unlock_threadgroup:
2689 	percpu_up_write(&cgroup_threadgroup_rwsem);
2690 out_unlock_rcu:
2691 	rcu_read_unlock();
2692 	return tsk;
2693 }
2694 
cgroup_procs_write_finish(struct task_struct * task)2695 void cgroup_procs_write_finish(struct task_struct *task)
2696 	__releases(&cgroup_threadgroup_rwsem)
2697 {
2698 	struct cgroup_subsys *ss;
2699 	int ssid;
2700 
2701 	/* release reference from cgroup_procs_write_start() */
2702 	put_task_struct(task);
2703 
2704 	percpu_up_write(&cgroup_threadgroup_rwsem);
2705 	for_each_subsys(ss, ssid)
2706 		if (ss->post_attach)
2707 			ss->post_attach();
2708 }
2709 
cgroup_print_ss_mask(struct seq_file * seq,u16 ss_mask)2710 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2711 {
2712 	struct cgroup_subsys *ss;
2713 	bool printed = false;
2714 	int ssid;
2715 
2716 	do_each_subsys_mask(ss, ssid, ss_mask) {
2717 		if (printed)
2718 			seq_putc(seq, ' ');
2719 		seq_printf(seq, "%s", ss->name);
2720 		printed = true;
2721 	} while_each_subsys_mask();
2722 	if (printed)
2723 		seq_putc(seq, '\n');
2724 }
2725 
2726 /* show controllers which are enabled from the parent */
cgroup_controllers_show(struct seq_file * seq,void * v)2727 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2728 {
2729 	struct cgroup *cgrp = seq_css(seq)->cgroup;
2730 
2731 	cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2732 	return 0;
2733 }
2734 
2735 /* show controllers which are enabled for a given cgroup's children */
cgroup_subtree_control_show(struct seq_file * seq,void * v)2736 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2737 {
2738 	struct cgroup *cgrp = seq_css(seq)->cgroup;
2739 
2740 	cgroup_print_ss_mask(seq, cgrp->subtree_control);
2741 	return 0;
2742 }
2743 
2744 /**
2745  * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2746  * @cgrp: root of the subtree to update csses for
2747  *
2748  * @cgrp's control masks have changed and its subtree's css associations
2749  * need to be updated accordingly.  This function looks up all css_sets
2750  * which are attached to the subtree, creates the matching updated css_sets
2751  * and migrates the tasks to the new ones.
2752  */
cgroup_update_dfl_csses(struct cgroup * cgrp)2753 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2754 {
2755 	DEFINE_CGROUP_MGCTX(mgctx);
2756 	struct cgroup_subsys_state *d_css;
2757 	struct cgroup *dsct;
2758 	struct css_set *src_cset;
2759 	int ret;
2760 
2761 	lockdep_assert_held(&cgroup_mutex);
2762 
2763 	percpu_down_write(&cgroup_threadgroup_rwsem);
2764 
2765 	/* look up all csses currently attached to @cgrp's subtree */
2766 	spin_lock_irq(&css_set_lock);
2767 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2768 		struct cgrp_cset_link *link;
2769 
2770 		list_for_each_entry(link, &dsct->cset_links, cset_link)
2771 			cgroup_migrate_add_src(link->cset, dsct, &mgctx);
2772 	}
2773 	spin_unlock_irq(&css_set_lock);
2774 
2775 	/* NULL dst indicates self on default hierarchy */
2776 	ret = cgroup_migrate_prepare_dst(&mgctx);
2777 	if (ret)
2778 		goto out_finish;
2779 
2780 	spin_lock_irq(&css_set_lock);
2781 	list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) {
2782 		struct task_struct *task, *ntask;
2783 
2784 		/* all tasks in src_csets need to be migrated */
2785 		list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2786 			cgroup_migrate_add_task(task, &mgctx);
2787 	}
2788 	spin_unlock_irq(&css_set_lock);
2789 
2790 	ret = cgroup_migrate_execute(&mgctx);
2791 out_finish:
2792 	cgroup_migrate_finish(&mgctx);
2793 	percpu_up_write(&cgroup_threadgroup_rwsem);
2794 	return ret;
2795 }
2796 
2797 /**
2798  * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
2799  * @cgrp: root of the target subtree
2800  *
2801  * Because css offlining is asynchronous, userland may try to re-enable a
2802  * controller while the previous css is still around.  This function grabs
2803  * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
2804  */
cgroup_lock_and_drain_offline(struct cgroup * cgrp)2805 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
2806 	__acquires(&cgroup_mutex)
2807 {
2808 	struct cgroup *dsct;
2809 	struct cgroup_subsys_state *d_css;
2810 	struct cgroup_subsys *ss;
2811 	int ssid;
2812 
2813 restart:
2814 	mutex_lock(&cgroup_mutex);
2815 
2816 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2817 		for_each_subsys(ss, ssid) {
2818 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2819 			DEFINE_WAIT(wait);
2820 
2821 			if (!css || !percpu_ref_is_dying(&css->refcnt))
2822 				continue;
2823 
2824 			cgroup_get_live(dsct);
2825 			prepare_to_wait(&dsct->offline_waitq, &wait,
2826 					TASK_UNINTERRUPTIBLE);
2827 
2828 			mutex_unlock(&cgroup_mutex);
2829 			schedule();
2830 			finish_wait(&dsct->offline_waitq, &wait);
2831 
2832 			cgroup_put(dsct);
2833 			goto restart;
2834 		}
2835 	}
2836 }
2837 
2838 /**
2839  * cgroup_save_control - save control masks and dom_cgrp of a subtree
2840  * @cgrp: root of the target subtree
2841  *
2842  * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
2843  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
2844  * itself.
2845  */
cgroup_save_control(struct cgroup * cgrp)2846 static void cgroup_save_control(struct cgroup *cgrp)
2847 {
2848 	struct cgroup *dsct;
2849 	struct cgroup_subsys_state *d_css;
2850 
2851 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2852 		dsct->old_subtree_control = dsct->subtree_control;
2853 		dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
2854 		dsct->old_dom_cgrp = dsct->dom_cgrp;
2855 	}
2856 }
2857 
2858 /**
2859  * cgroup_propagate_control - refresh control masks of a subtree
2860  * @cgrp: root of the target subtree
2861  *
2862  * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
2863  * ->subtree_control and propagate controller availability through the
2864  * subtree so that descendants don't have unavailable controllers enabled.
2865  */
cgroup_propagate_control(struct cgroup * cgrp)2866 static void cgroup_propagate_control(struct cgroup *cgrp)
2867 {
2868 	struct cgroup *dsct;
2869 	struct cgroup_subsys_state *d_css;
2870 
2871 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2872 		dsct->subtree_control &= cgroup_control(dsct);
2873 		dsct->subtree_ss_mask =
2874 			cgroup_calc_subtree_ss_mask(dsct->subtree_control,
2875 						    cgroup_ss_mask(dsct));
2876 	}
2877 }
2878 
2879 /**
2880  * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
2881  * @cgrp: root of the target subtree
2882  *
2883  * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
2884  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
2885  * itself.
2886  */
cgroup_restore_control(struct cgroup * cgrp)2887 static void cgroup_restore_control(struct cgroup *cgrp)
2888 {
2889 	struct cgroup *dsct;
2890 	struct cgroup_subsys_state *d_css;
2891 
2892 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2893 		dsct->subtree_control = dsct->old_subtree_control;
2894 		dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
2895 		dsct->dom_cgrp = dsct->old_dom_cgrp;
2896 	}
2897 }
2898 
css_visible(struct cgroup_subsys_state * css)2899 static bool css_visible(struct cgroup_subsys_state *css)
2900 {
2901 	struct cgroup_subsys *ss = css->ss;
2902 	struct cgroup *cgrp = css->cgroup;
2903 
2904 	if (cgroup_control(cgrp) & (1 << ss->id))
2905 		return true;
2906 	if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
2907 		return false;
2908 	return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
2909 }
2910 
2911 /**
2912  * cgroup_apply_control_enable - enable or show csses according to control
2913  * @cgrp: root of the target subtree
2914  *
2915  * Walk @cgrp's subtree and create new csses or make the existing ones
2916  * visible.  A css is created invisible if it's being implicitly enabled
2917  * through dependency.  An invisible css is made visible when the userland
2918  * explicitly enables it.
2919  *
2920  * Returns 0 on success, -errno on failure.  On failure, csses which have
2921  * been processed already aren't cleaned up.  The caller is responsible for
2922  * cleaning up with cgroup_apply_control_disable().
2923  */
cgroup_apply_control_enable(struct cgroup * cgrp)2924 static int cgroup_apply_control_enable(struct cgroup *cgrp)
2925 {
2926 	struct cgroup *dsct;
2927 	struct cgroup_subsys_state *d_css;
2928 	struct cgroup_subsys *ss;
2929 	int ssid, ret;
2930 
2931 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2932 		for_each_subsys(ss, ssid) {
2933 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2934 
2935 			WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
2936 
2937 			if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
2938 				continue;
2939 
2940 			if (!css) {
2941 				css = css_create(dsct, ss);
2942 				if (IS_ERR(css))
2943 					return PTR_ERR(css);
2944 			}
2945 
2946 			if (css_visible(css)) {
2947 				ret = css_populate_dir(css);
2948 				if (ret)
2949 					return ret;
2950 			}
2951 		}
2952 	}
2953 
2954 	return 0;
2955 }
2956 
2957 /**
2958  * cgroup_apply_control_disable - kill or hide csses according to control
2959  * @cgrp: root of the target subtree
2960  *
2961  * Walk @cgrp's subtree and kill and hide csses so that they match
2962  * cgroup_ss_mask() and cgroup_visible_mask().
2963  *
2964  * A css is hidden when the userland requests it to be disabled while other
2965  * subsystems are still depending on it.  The css must not actively control
2966  * resources and be in the vanilla state if it's made visible again later.
2967  * Controllers which may be depended upon should provide ->css_reset() for
2968  * this purpose.
2969  */
cgroup_apply_control_disable(struct cgroup * cgrp)2970 static void cgroup_apply_control_disable(struct cgroup *cgrp)
2971 {
2972 	struct cgroup *dsct;
2973 	struct cgroup_subsys_state *d_css;
2974 	struct cgroup_subsys *ss;
2975 	int ssid;
2976 
2977 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2978 		for_each_subsys(ss, ssid) {
2979 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2980 
2981 			WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
2982 
2983 			if (!css)
2984 				continue;
2985 
2986 			if (css->parent &&
2987 			    !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
2988 				kill_css(css);
2989 			} else if (!css_visible(css)) {
2990 				css_clear_dir(css);
2991 				if (ss->css_reset)
2992 					ss->css_reset(css);
2993 			}
2994 		}
2995 	}
2996 }
2997 
2998 /**
2999  * cgroup_apply_control - apply control mask updates to the subtree
3000  * @cgrp: root of the target subtree
3001  *
3002  * subsystems can be enabled and disabled in a subtree using the following
3003  * steps.
3004  *
3005  * 1. Call cgroup_save_control() to stash the current state.
3006  * 2. Update ->subtree_control masks in the subtree as desired.
3007  * 3. Call cgroup_apply_control() to apply the changes.
3008  * 4. Optionally perform other related operations.
3009  * 5. Call cgroup_finalize_control() to finish up.
3010  *
3011  * This function implements step 3 and propagates the mask changes
3012  * throughout @cgrp's subtree, updates csses accordingly and perform
3013  * process migrations.
3014  */
cgroup_apply_control(struct cgroup * cgrp)3015 static int cgroup_apply_control(struct cgroup *cgrp)
3016 {
3017 	int ret;
3018 
3019 	cgroup_propagate_control(cgrp);
3020 
3021 	ret = cgroup_apply_control_enable(cgrp);
3022 	if (ret)
3023 		return ret;
3024 
3025 	/*
3026 	 * At this point, cgroup_e_css() results reflect the new csses
3027 	 * making the following cgroup_update_dfl_csses() properly update
3028 	 * css associations of all tasks in the subtree.
3029 	 */
3030 	ret = cgroup_update_dfl_csses(cgrp);
3031 	if (ret)
3032 		return ret;
3033 
3034 	return 0;
3035 }
3036 
3037 /**
3038  * cgroup_finalize_control - finalize control mask update
3039  * @cgrp: root of the target subtree
3040  * @ret: the result of the update
3041  *
3042  * Finalize control mask update.  See cgroup_apply_control() for more info.
3043  */
cgroup_finalize_control(struct cgroup * cgrp,int ret)3044 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3045 {
3046 	if (ret) {
3047 		cgroup_restore_control(cgrp);
3048 		cgroup_propagate_control(cgrp);
3049 	}
3050 
3051 	cgroup_apply_control_disable(cgrp);
3052 }
3053 
cgroup_vet_subtree_control_enable(struct cgroup * cgrp,u16 enable)3054 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3055 {
3056 	u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3057 
3058 	/* if nothing is getting enabled, nothing to worry about */
3059 	if (!enable)
3060 		return 0;
3061 
3062 	/* can @cgrp host any resources? */
3063 	if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3064 		return -EOPNOTSUPP;
3065 
3066 	/* mixables don't care */
3067 	if (cgroup_is_mixable(cgrp))
3068 		return 0;
3069 
3070 	if (domain_enable) {
3071 		/* can't enable domain controllers inside a thread subtree */
3072 		if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3073 			return -EOPNOTSUPP;
3074 	} else {
3075 		/*
3076 		 * Threaded controllers can handle internal competitions
3077 		 * and are always allowed inside a (prospective) thread
3078 		 * subtree.
3079 		 */
3080 		if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3081 			return 0;
3082 	}
3083 
3084 	/*
3085 	 * Controllers can't be enabled for a cgroup with tasks to avoid
3086 	 * child cgroups competing against tasks.
3087 	 */
3088 	if (cgroup_has_tasks(cgrp))
3089 		return -EBUSY;
3090 
3091 	return 0;
3092 }
3093 
3094 /* change the enabled child controllers for a cgroup in the default hierarchy */
cgroup_subtree_control_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3095 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3096 					    char *buf, size_t nbytes,
3097 					    loff_t off)
3098 {
3099 	u16 enable = 0, disable = 0;
3100 	struct cgroup *cgrp, *child;
3101 	struct cgroup_subsys *ss;
3102 	char *tok;
3103 	int ssid, ret;
3104 
3105 	/*
3106 	 * Parse input - space separated list of subsystem names prefixed
3107 	 * with either + or -.
3108 	 */
3109 	buf = strstrip(buf);
3110 	while ((tok = strsep(&buf, " "))) {
3111 		if (tok[0] == '\0')
3112 			continue;
3113 		do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3114 			if (!cgroup_ssid_enabled(ssid) ||
3115 			    strcmp(tok + 1, ss->name))
3116 				continue;
3117 
3118 			if (*tok == '+') {
3119 				enable |= 1 << ssid;
3120 				disable &= ~(1 << ssid);
3121 			} else if (*tok == '-') {
3122 				disable |= 1 << ssid;
3123 				enable &= ~(1 << ssid);
3124 			} else {
3125 				return -EINVAL;
3126 			}
3127 			break;
3128 		} while_each_subsys_mask();
3129 		if (ssid == CGROUP_SUBSYS_COUNT)
3130 			return -EINVAL;
3131 	}
3132 
3133 	cgrp = cgroup_kn_lock_live(of->kn, true);
3134 	if (!cgrp)
3135 		return -ENODEV;
3136 
3137 	for_each_subsys(ss, ssid) {
3138 		if (enable & (1 << ssid)) {
3139 			if (cgrp->subtree_control & (1 << ssid)) {
3140 				enable &= ~(1 << ssid);
3141 				continue;
3142 			}
3143 
3144 			if (!(cgroup_control(cgrp) & (1 << ssid))) {
3145 				ret = -ENOENT;
3146 				goto out_unlock;
3147 			}
3148 		} else if (disable & (1 << ssid)) {
3149 			if (!(cgrp->subtree_control & (1 << ssid))) {
3150 				disable &= ~(1 << ssid);
3151 				continue;
3152 			}
3153 
3154 			/* a child has it enabled? */
3155 			cgroup_for_each_live_child(child, cgrp) {
3156 				if (child->subtree_control & (1 << ssid)) {
3157 					ret = -EBUSY;
3158 					goto out_unlock;
3159 				}
3160 			}
3161 		}
3162 	}
3163 
3164 	if (!enable && !disable) {
3165 		ret = 0;
3166 		goto out_unlock;
3167 	}
3168 
3169 	ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3170 	if (ret)
3171 		goto out_unlock;
3172 
3173 	/* save and update control masks and prepare csses */
3174 	cgroup_save_control(cgrp);
3175 
3176 	cgrp->subtree_control |= enable;
3177 	cgrp->subtree_control &= ~disable;
3178 
3179 	ret = cgroup_apply_control(cgrp);
3180 	cgroup_finalize_control(cgrp, ret);
3181 	if (ret)
3182 		goto out_unlock;
3183 
3184 	kernfs_activate(cgrp->kn);
3185 out_unlock:
3186 	cgroup_kn_unlock(of->kn);
3187 	return ret ?: nbytes;
3188 }
3189 
3190 /**
3191  * cgroup_enable_threaded - make @cgrp threaded
3192  * @cgrp: the target cgroup
3193  *
3194  * Called when "threaded" is written to the cgroup.type interface file and
3195  * tries to make @cgrp threaded and join the parent's resource domain.
3196  * This function is never called on the root cgroup as cgroup.type doesn't
3197  * exist on it.
3198  */
cgroup_enable_threaded(struct cgroup * cgrp)3199 static int cgroup_enable_threaded(struct cgroup *cgrp)
3200 {
3201 	struct cgroup *parent = cgroup_parent(cgrp);
3202 	struct cgroup *dom_cgrp = parent->dom_cgrp;
3203 	struct cgroup *dsct;
3204 	struct cgroup_subsys_state *d_css;
3205 	int ret;
3206 
3207 	lockdep_assert_held(&cgroup_mutex);
3208 
3209 	/* noop if already threaded */
3210 	if (cgroup_is_threaded(cgrp))
3211 		return 0;
3212 
3213 	/*
3214 	 * If @cgroup is populated or has domain controllers enabled, it
3215 	 * can't be switched.  While the below cgroup_can_be_thread_root()
3216 	 * test can catch the same conditions, that's only when @parent is
3217 	 * not mixable, so let's check it explicitly.
3218 	 */
3219 	if (cgroup_is_populated(cgrp) ||
3220 	    cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3221 		return -EOPNOTSUPP;
3222 
3223 	/* we're joining the parent's domain, ensure its validity */
3224 	if (!cgroup_is_valid_domain(dom_cgrp) ||
3225 	    !cgroup_can_be_thread_root(dom_cgrp))
3226 		return -EOPNOTSUPP;
3227 
3228 	/*
3229 	 * The following shouldn't cause actual migrations and should
3230 	 * always succeed.
3231 	 */
3232 	cgroup_save_control(cgrp);
3233 
3234 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3235 		if (dsct == cgrp || cgroup_is_threaded(dsct))
3236 			dsct->dom_cgrp = dom_cgrp;
3237 
3238 	ret = cgroup_apply_control(cgrp);
3239 	if (!ret)
3240 		parent->nr_threaded_children++;
3241 
3242 	cgroup_finalize_control(cgrp, ret);
3243 	return ret;
3244 }
3245 
cgroup_type_show(struct seq_file * seq,void * v)3246 static int cgroup_type_show(struct seq_file *seq, void *v)
3247 {
3248 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3249 
3250 	if (cgroup_is_threaded(cgrp))
3251 		seq_puts(seq, "threaded\n");
3252 	else if (!cgroup_is_valid_domain(cgrp))
3253 		seq_puts(seq, "domain invalid\n");
3254 	else if (cgroup_is_thread_root(cgrp))
3255 		seq_puts(seq, "domain threaded\n");
3256 	else
3257 		seq_puts(seq, "domain\n");
3258 
3259 	return 0;
3260 }
3261 
cgroup_type_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3262 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3263 				 size_t nbytes, loff_t off)
3264 {
3265 	struct cgroup *cgrp;
3266 	int ret;
3267 
3268 	/* only switching to threaded mode is supported */
3269 	if (strcmp(strstrip(buf), "threaded"))
3270 		return -EINVAL;
3271 
3272 	cgrp = cgroup_kn_lock_live(of->kn, false);
3273 	if (!cgrp)
3274 		return -ENOENT;
3275 
3276 	/* threaded can only be enabled */
3277 	ret = cgroup_enable_threaded(cgrp);
3278 
3279 	cgroup_kn_unlock(of->kn);
3280 	return ret ?: nbytes;
3281 }
3282 
cgroup_max_descendants_show(struct seq_file * seq,void * v)3283 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3284 {
3285 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3286 	int descendants = READ_ONCE(cgrp->max_descendants);
3287 
3288 	if (descendants == INT_MAX)
3289 		seq_puts(seq, "max\n");
3290 	else
3291 		seq_printf(seq, "%d\n", descendants);
3292 
3293 	return 0;
3294 }
3295 
cgroup_max_descendants_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3296 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3297 					   char *buf, size_t nbytes, loff_t off)
3298 {
3299 	struct cgroup *cgrp;
3300 	int descendants;
3301 	ssize_t ret;
3302 
3303 	buf = strstrip(buf);
3304 	if (!strcmp(buf, "max")) {
3305 		descendants = INT_MAX;
3306 	} else {
3307 		ret = kstrtoint(buf, 0, &descendants);
3308 		if (ret)
3309 			return ret;
3310 	}
3311 
3312 	if (descendants < 0)
3313 		return -ERANGE;
3314 
3315 	cgrp = cgroup_kn_lock_live(of->kn, false);
3316 	if (!cgrp)
3317 		return -ENOENT;
3318 
3319 	cgrp->max_descendants = descendants;
3320 
3321 	cgroup_kn_unlock(of->kn);
3322 
3323 	return nbytes;
3324 }
3325 
cgroup_max_depth_show(struct seq_file * seq,void * v)3326 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3327 {
3328 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3329 	int depth = READ_ONCE(cgrp->max_depth);
3330 
3331 	if (depth == INT_MAX)
3332 		seq_puts(seq, "max\n");
3333 	else
3334 		seq_printf(seq, "%d\n", depth);
3335 
3336 	return 0;
3337 }
3338 
cgroup_max_depth_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3339 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3340 				      char *buf, size_t nbytes, loff_t off)
3341 {
3342 	struct cgroup *cgrp;
3343 	ssize_t ret;
3344 	int depth;
3345 
3346 	buf = strstrip(buf);
3347 	if (!strcmp(buf, "max")) {
3348 		depth = INT_MAX;
3349 	} else {
3350 		ret = kstrtoint(buf, 0, &depth);
3351 		if (ret)
3352 			return ret;
3353 	}
3354 
3355 	if (depth < 0)
3356 		return -ERANGE;
3357 
3358 	cgrp = cgroup_kn_lock_live(of->kn, false);
3359 	if (!cgrp)
3360 		return -ENOENT;
3361 
3362 	cgrp->max_depth = depth;
3363 
3364 	cgroup_kn_unlock(of->kn);
3365 
3366 	return nbytes;
3367 }
3368 
cgroup_events_show(struct seq_file * seq,void * v)3369 static int cgroup_events_show(struct seq_file *seq, void *v)
3370 {
3371 	seq_printf(seq, "populated %d\n",
3372 		   cgroup_is_populated(seq_css(seq)->cgroup));
3373 	return 0;
3374 }
3375 
cgroup_stat_show(struct seq_file * seq,void * v)3376 static int cgroup_stat_show(struct seq_file *seq, void *v)
3377 {
3378 	struct cgroup *cgroup = seq_css(seq)->cgroup;
3379 
3380 	seq_printf(seq, "nr_descendants %d\n",
3381 		   cgroup->nr_descendants);
3382 	seq_printf(seq, "nr_dying_descendants %d\n",
3383 		   cgroup->nr_dying_descendants);
3384 
3385 	return 0;
3386 }
3387 
cgroup_extra_stat_show(struct seq_file * seq,struct cgroup * cgrp,int ssid)3388 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3389 						 struct cgroup *cgrp, int ssid)
3390 {
3391 	struct cgroup_subsys *ss = cgroup_subsys[ssid];
3392 	struct cgroup_subsys_state *css;
3393 	int ret;
3394 
3395 	if (!ss->css_extra_stat_show)
3396 		return 0;
3397 
3398 	css = cgroup_tryget_css(cgrp, ss);
3399 	if (!css)
3400 		return 0;
3401 
3402 	ret = ss->css_extra_stat_show(seq, css);
3403 	css_put(css);
3404 	return ret;
3405 }
3406 
cpu_stat_show(struct seq_file * seq,void * v)3407 static int cpu_stat_show(struct seq_file *seq, void *v)
3408 {
3409 	struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3410 	int ret = 0;
3411 
3412 	cgroup_base_stat_cputime_show(seq);
3413 #ifdef CONFIG_CGROUP_SCHED
3414 	ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3415 #endif
3416 	return ret;
3417 }
3418 
cgroup_file_open(struct kernfs_open_file * of)3419 static int cgroup_file_open(struct kernfs_open_file *of)
3420 {
3421 	struct cftype *cft = of->kn->priv;
3422 
3423 	if (cft->open)
3424 		return cft->open(of);
3425 	return 0;
3426 }
3427 
cgroup_file_release(struct kernfs_open_file * of)3428 static void cgroup_file_release(struct kernfs_open_file *of)
3429 {
3430 	struct cftype *cft = of->kn->priv;
3431 
3432 	if (cft->release)
3433 		cft->release(of);
3434 }
3435 
cgroup_file_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3436 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3437 				 size_t nbytes, loff_t off)
3438 {
3439 	struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
3440 	struct cgroup *cgrp = of->kn->parent->priv;
3441 	struct cftype *cft = of->kn->priv;
3442 	struct cgroup_subsys_state *css;
3443 	int ret;
3444 
3445 	/*
3446 	 * If namespaces are delegation boundaries, disallow writes to
3447 	 * files in an non-init namespace root from inside the namespace
3448 	 * except for the files explicitly marked delegatable -
3449 	 * cgroup.procs and cgroup.subtree_control.
3450 	 */
3451 	if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3452 	    !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3453 	    ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp)
3454 		return -EPERM;
3455 
3456 	if (cft->write)
3457 		return cft->write(of, buf, nbytes, off);
3458 
3459 	/*
3460 	 * kernfs guarantees that a file isn't deleted with operations in
3461 	 * flight, which means that the matching css is and stays alive and
3462 	 * doesn't need to be pinned.  The RCU locking is not necessary
3463 	 * either.  It's just for the convenience of using cgroup_css().
3464 	 */
3465 	rcu_read_lock();
3466 	css = cgroup_css(cgrp, cft->ss);
3467 	rcu_read_unlock();
3468 
3469 	if (cft->write_u64) {
3470 		unsigned long long v;
3471 		ret = kstrtoull(buf, 0, &v);
3472 		if (!ret)
3473 			ret = cft->write_u64(css, cft, v);
3474 	} else if (cft->write_s64) {
3475 		long long v;
3476 		ret = kstrtoll(buf, 0, &v);
3477 		if (!ret)
3478 			ret = cft->write_s64(css, cft, v);
3479 	} else {
3480 		ret = -EINVAL;
3481 	}
3482 
3483 	return ret ?: nbytes;
3484 }
3485 
cgroup_seqfile_start(struct seq_file * seq,loff_t * ppos)3486 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3487 {
3488 	return seq_cft(seq)->seq_start(seq, ppos);
3489 }
3490 
cgroup_seqfile_next(struct seq_file * seq,void * v,loff_t * ppos)3491 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3492 {
3493 	return seq_cft(seq)->seq_next(seq, v, ppos);
3494 }
3495 
cgroup_seqfile_stop(struct seq_file * seq,void * v)3496 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3497 {
3498 	if (seq_cft(seq)->seq_stop)
3499 		seq_cft(seq)->seq_stop(seq, v);
3500 }
3501 
cgroup_seqfile_show(struct seq_file * m,void * arg)3502 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3503 {
3504 	struct cftype *cft = seq_cft(m);
3505 	struct cgroup_subsys_state *css = seq_css(m);
3506 
3507 	if (cft->seq_show)
3508 		return cft->seq_show(m, arg);
3509 
3510 	if (cft->read_u64)
3511 		seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3512 	else if (cft->read_s64)
3513 		seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3514 	else
3515 		return -EINVAL;
3516 	return 0;
3517 }
3518 
3519 static struct kernfs_ops cgroup_kf_single_ops = {
3520 	.atomic_write_len	= PAGE_SIZE,
3521 	.open			= cgroup_file_open,
3522 	.release		= cgroup_file_release,
3523 	.write			= cgroup_file_write,
3524 	.seq_show		= cgroup_seqfile_show,
3525 };
3526 
3527 static struct kernfs_ops cgroup_kf_ops = {
3528 	.atomic_write_len	= PAGE_SIZE,
3529 	.open			= cgroup_file_open,
3530 	.release		= cgroup_file_release,
3531 	.write			= cgroup_file_write,
3532 	.seq_start		= cgroup_seqfile_start,
3533 	.seq_next		= cgroup_seqfile_next,
3534 	.seq_stop		= cgroup_seqfile_stop,
3535 	.seq_show		= cgroup_seqfile_show,
3536 };
3537 
3538 /* set uid and gid of cgroup dirs and files to that of the creator */
cgroup_kn_set_ugid(struct kernfs_node * kn)3539 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3540 {
3541 	struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3542 			       .ia_uid = current_fsuid(),
3543 			       .ia_gid = current_fsgid(), };
3544 
3545 	if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3546 	    gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3547 		return 0;
3548 
3549 	return kernfs_setattr(kn, &iattr);
3550 }
3551 
cgroup_file_notify_timer(struct timer_list * timer)3552 static void cgroup_file_notify_timer(struct timer_list *timer)
3553 {
3554 	cgroup_file_notify(container_of(timer, struct cgroup_file,
3555 					notify_timer));
3556 }
3557 
cgroup_add_file(struct cgroup_subsys_state * css,struct cgroup * cgrp,struct cftype * cft)3558 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3559 			   struct cftype *cft)
3560 {
3561 	char name[CGROUP_FILE_NAME_MAX];
3562 	struct kernfs_node *kn;
3563 	struct lock_class_key *key = NULL;
3564 	int ret;
3565 
3566 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3567 	key = &cft->lockdep_key;
3568 #endif
3569 	kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3570 				  cgroup_file_mode(cft),
3571 				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
3572 				  0, cft->kf_ops, cft,
3573 				  NULL, key);
3574 	if (IS_ERR(kn))
3575 		return PTR_ERR(kn);
3576 
3577 	ret = cgroup_kn_set_ugid(kn);
3578 	if (ret) {
3579 		kernfs_remove(kn);
3580 		return ret;
3581 	}
3582 
3583 	if (cft->file_offset) {
3584 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
3585 
3586 		timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
3587 
3588 		spin_lock_irq(&cgroup_file_kn_lock);
3589 		cfile->kn = kn;
3590 		spin_unlock_irq(&cgroup_file_kn_lock);
3591 	}
3592 
3593 	return 0;
3594 }
3595 
3596 /**
3597  * cgroup_addrm_files - add or remove files to a cgroup directory
3598  * @css: the target css
3599  * @cgrp: the target cgroup (usually css->cgroup)
3600  * @cfts: array of cftypes to be added
3601  * @is_add: whether to add or remove
3602  *
3603  * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3604  * For removals, this function never fails.
3605  */
cgroup_addrm_files(struct cgroup_subsys_state * css,struct cgroup * cgrp,struct cftype cfts[],bool is_add)3606 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3607 			      struct cgroup *cgrp, struct cftype cfts[],
3608 			      bool is_add)
3609 {
3610 	struct cftype *cft, *cft_end = NULL;
3611 	int ret = 0;
3612 
3613 	lockdep_assert_held(&cgroup_mutex);
3614 
3615 restart:
3616 	for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3617 		/* does cft->flags tell us to skip this file on @cgrp? */
3618 		if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3619 			continue;
3620 		if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3621 			continue;
3622 		if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3623 			continue;
3624 		if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3625 			continue;
3626 
3627 		if (is_add) {
3628 			ret = cgroup_add_file(css, cgrp, cft);
3629 			if (ret) {
3630 				pr_warn("%s: failed to add %s, err=%d\n",
3631 					__func__, cft->name, ret);
3632 				cft_end = cft;
3633 				is_add = false;
3634 				goto restart;
3635 			}
3636 		} else {
3637 			cgroup_rm_file(cgrp, cft);
3638 		}
3639 	}
3640 	return ret;
3641 }
3642 
cgroup_apply_cftypes(struct cftype * cfts,bool is_add)3643 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3644 {
3645 	struct cgroup_subsys *ss = cfts[0].ss;
3646 	struct cgroup *root = &ss->root->cgrp;
3647 	struct cgroup_subsys_state *css;
3648 	int ret = 0;
3649 
3650 	lockdep_assert_held(&cgroup_mutex);
3651 
3652 	/* add/rm files for all cgroups created before */
3653 	css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3654 		struct cgroup *cgrp = css->cgroup;
3655 
3656 		if (!(css->flags & CSS_VISIBLE))
3657 			continue;
3658 
3659 		ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3660 		if (ret)
3661 			break;
3662 	}
3663 
3664 	if (is_add && !ret)
3665 		kernfs_activate(root->kn);
3666 	return ret;
3667 }
3668 
cgroup_exit_cftypes(struct cftype * cfts)3669 static void cgroup_exit_cftypes(struct cftype *cfts)
3670 {
3671 	struct cftype *cft;
3672 
3673 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
3674 		/* free copy for custom atomic_write_len, see init_cftypes() */
3675 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3676 			kfree(cft->kf_ops);
3677 		cft->kf_ops = NULL;
3678 		cft->ss = NULL;
3679 
3680 		/* revert flags set by cgroup core while adding @cfts */
3681 		cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3682 	}
3683 }
3684 
cgroup_init_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)3685 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3686 {
3687 	struct cftype *cft;
3688 
3689 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
3690 		struct kernfs_ops *kf_ops;
3691 
3692 		WARN_ON(cft->ss || cft->kf_ops);
3693 
3694 		if (cft->seq_start)
3695 			kf_ops = &cgroup_kf_ops;
3696 		else
3697 			kf_ops = &cgroup_kf_single_ops;
3698 
3699 		/*
3700 		 * Ugh... if @cft wants a custom max_write_len, we need to
3701 		 * make a copy of kf_ops to set its atomic_write_len.
3702 		 */
3703 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3704 			kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3705 			if (!kf_ops) {
3706 				cgroup_exit_cftypes(cfts);
3707 				return -ENOMEM;
3708 			}
3709 			kf_ops->atomic_write_len = cft->max_write_len;
3710 		}
3711 
3712 		cft->kf_ops = kf_ops;
3713 		cft->ss = ss;
3714 	}
3715 
3716 	return 0;
3717 }
3718 
cgroup_rm_cftypes_locked(struct cftype * cfts)3719 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3720 {
3721 	lockdep_assert_held(&cgroup_mutex);
3722 
3723 	if (!cfts || !cfts[0].ss)
3724 		return -ENOENT;
3725 
3726 	list_del(&cfts->node);
3727 	cgroup_apply_cftypes(cfts, false);
3728 	cgroup_exit_cftypes(cfts);
3729 	return 0;
3730 }
3731 
3732 /**
3733  * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3734  * @cfts: zero-length name terminated array of cftypes
3735  *
3736  * Unregister @cfts.  Files described by @cfts are removed from all
3737  * existing cgroups and all future cgroups won't have them either.  This
3738  * function can be called anytime whether @cfts' subsys is attached or not.
3739  *
3740  * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3741  * registered.
3742  */
cgroup_rm_cftypes(struct cftype * cfts)3743 int cgroup_rm_cftypes(struct cftype *cfts)
3744 {
3745 	int ret;
3746 
3747 	mutex_lock(&cgroup_mutex);
3748 	ret = cgroup_rm_cftypes_locked(cfts);
3749 	mutex_unlock(&cgroup_mutex);
3750 	return ret;
3751 }
3752 
3753 /**
3754  * cgroup_add_cftypes - add an array of cftypes to a subsystem
3755  * @ss: target cgroup subsystem
3756  * @cfts: zero-length name terminated array of cftypes
3757  *
3758  * Register @cfts to @ss.  Files described by @cfts are created for all
3759  * existing cgroups to which @ss is attached and all future cgroups will
3760  * have them too.  This function can be called anytime whether @ss is
3761  * attached or not.
3762  *
3763  * Returns 0 on successful registration, -errno on failure.  Note that this
3764  * function currently returns 0 as long as @cfts registration is successful
3765  * even if some file creation attempts on existing cgroups fail.
3766  */
cgroup_add_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)3767 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3768 {
3769 	int ret;
3770 
3771 	if (!cgroup_ssid_enabled(ss->id))
3772 		return 0;
3773 
3774 	if (!cfts || cfts[0].name[0] == '\0')
3775 		return 0;
3776 
3777 	ret = cgroup_init_cftypes(ss, cfts);
3778 	if (ret)
3779 		return ret;
3780 
3781 	mutex_lock(&cgroup_mutex);
3782 
3783 	list_add_tail(&cfts->node, &ss->cfts);
3784 	ret = cgroup_apply_cftypes(cfts, true);
3785 	if (ret)
3786 		cgroup_rm_cftypes_locked(cfts);
3787 
3788 	mutex_unlock(&cgroup_mutex);
3789 	return ret;
3790 }
3791 
3792 /**
3793  * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3794  * @ss: target cgroup subsystem
3795  * @cfts: zero-length name terminated array of cftypes
3796  *
3797  * Similar to cgroup_add_cftypes() but the added files are only used for
3798  * the default hierarchy.
3799  */
cgroup_add_dfl_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)3800 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3801 {
3802 	struct cftype *cft;
3803 
3804 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3805 		cft->flags |= __CFTYPE_ONLY_ON_DFL;
3806 	return cgroup_add_cftypes(ss, cfts);
3807 }
3808 
3809 /**
3810  * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3811  * @ss: target cgroup subsystem
3812  * @cfts: zero-length name terminated array of cftypes
3813  *
3814  * Similar to cgroup_add_cftypes() but the added files are only used for
3815  * the legacy hierarchies.
3816  */
cgroup_add_legacy_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)3817 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3818 {
3819 	struct cftype *cft;
3820 
3821 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3822 		cft->flags |= __CFTYPE_NOT_ON_DFL;
3823 	return cgroup_add_cftypes(ss, cfts);
3824 }
3825 
3826 /**
3827  * cgroup_file_notify - generate a file modified event for a cgroup_file
3828  * @cfile: target cgroup_file
3829  *
3830  * @cfile must have been obtained by setting cftype->file_offset.
3831  */
cgroup_file_notify(struct cgroup_file * cfile)3832 void cgroup_file_notify(struct cgroup_file *cfile)
3833 {
3834 	unsigned long flags;
3835 
3836 	spin_lock_irqsave(&cgroup_file_kn_lock, flags);
3837 	if (cfile->kn) {
3838 		unsigned long last = cfile->notified_at;
3839 		unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
3840 
3841 		if (time_in_range(jiffies, last, next)) {
3842 			timer_reduce(&cfile->notify_timer, next);
3843 		} else {
3844 			kernfs_notify(cfile->kn);
3845 			cfile->notified_at = jiffies;
3846 		}
3847 	}
3848 	spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
3849 }
3850 
3851 /**
3852  * css_next_child - find the next child of a given css
3853  * @pos: the current position (%NULL to initiate traversal)
3854  * @parent: css whose children to walk
3855  *
3856  * This function returns the next child of @parent and should be called
3857  * under either cgroup_mutex or RCU read lock.  The only requirement is
3858  * that @parent and @pos are accessible.  The next sibling is guaranteed to
3859  * be returned regardless of their states.
3860  *
3861  * If a subsystem synchronizes ->css_online() and the start of iteration, a
3862  * css which finished ->css_online() is guaranteed to be visible in the
3863  * future iterations and will stay visible until the last reference is put.
3864  * A css which hasn't finished ->css_online() or already finished
3865  * ->css_offline() may show up during traversal.  It's each subsystem's
3866  * responsibility to synchronize against on/offlining.
3867  */
css_next_child(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * parent)3868 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3869 					   struct cgroup_subsys_state *parent)
3870 {
3871 	struct cgroup_subsys_state *next;
3872 
3873 	cgroup_assert_mutex_or_rcu_locked();
3874 
3875 	/*
3876 	 * @pos could already have been unlinked from the sibling list.
3877 	 * Once a cgroup is removed, its ->sibling.next is no longer
3878 	 * updated when its next sibling changes.  CSS_RELEASED is set when
3879 	 * @pos is taken off list, at which time its next pointer is valid,
3880 	 * and, as releases are serialized, the one pointed to by the next
3881 	 * pointer is guaranteed to not have started release yet.  This
3882 	 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3883 	 * critical section, the one pointed to by its next pointer is
3884 	 * guaranteed to not have finished its RCU grace period even if we
3885 	 * have dropped rcu_read_lock() inbetween iterations.
3886 	 *
3887 	 * If @pos has CSS_RELEASED set, its next pointer can't be
3888 	 * dereferenced; however, as each css is given a monotonically
3889 	 * increasing unique serial number and always appended to the
3890 	 * sibling list, the next one can be found by walking the parent's
3891 	 * children until the first css with higher serial number than
3892 	 * @pos's.  While this path can be slower, it happens iff iteration
3893 	 * races against release and the race window is very small.
3894 	 */
3895 	if (!pos) {
3896 		next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3897 	} else if (likely(!(pos->flags & CSS_RELEASED))) {
3898 		next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3899 	} else {
3900 		list_for_each_entry_rcu(next, &parent->children, sibling)
3901 			if (next->serial_nr > pos->serial_nr)
3902 				break;
3903 	}
3904 
3905 	/*
3906 	 * @next, if not pointing to the head, can be dereferenced and is
3907 	 * the next sibling.
3908 	 */
3909 	if (&next->sibling != &parent->children)
3910 		return next;
3911 	return NULL;
3912 }
3913 
3914 /**
3915  * css_next_descendant_pre - find the next descendant for pre-order walk
3916  * @pos: the current position (%NULL to initiate traversal)
3917  * @root: css whose descendants to walk
3918  *
3919  * To be used by css_for_each_descendant_pre().  Find the next descendant
3920  * to visit for pre-order traversal of @root's descendants.  @root is
3921  * included in the iteration and the first node to be visited.
3922  *
3923  * While this function requires cgroup_mutex or RCU read locking, it
3924  * doesn't require the whole traversal to be contained in a single critical
3925  * section.  This function will return the correct next descendant as long
3926  * as both @pos and @root are accessible and @pos is a descendant of @root.
3927  *
3928  * If a subsystem synchronizes ->css_online() and the start of iteration, a
3929  * css which finished ->css_online() is guaranteed to be visible in the
3930  * future iterations and will stay visible until the last reference is put.
3931  * A css which hasn't finished ->css_online() or already finished
3932  * ->css_offline() may show up during traversal.  It's each subsystem's
3933  * responsibility to synchronize against on/offlining.
3934  */
3935 struct cgroup_subsys_state *
css_next_descendant_pre(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * root)3936 css_next_descendant_pre(struct cgroup_subsys_state *pos,
3937 			struct cgroup_subsys_state *root)
3938 {
3939 	struct cgroup_subsys_state *next;
3940 
3941 	cgroup_assert_mutex_or_rcu_locked();
3942 
3943 	/* if first iteration, visit @root */
3944 	if (!pos)
3945 		return root;
3946 
3947 	/* visit the first child if exists */
3948 	next = css_next_child(NULL, pos);
3949 	if (next)
3950 		return next;
3951 
3952 	/* no child, visit my or the closest ancestor's next sibling */
3953 	while (pos != root) {
3954 		next = css_next_child(pos, pos->parent);
3955 		if (next)
3956 			return next;
3957 		pos = pos->parent;
3958 	}
3959 
3960 	return NULL;
3961 }
3962 
3963 /**
3964  * css_rightmost_descendant - return the rightmost descendant of a css
3965  * @pos: css of interest
3966  *
3967  * Return the rightmost descendant of @pos.  If there's no descendant, @pos
3968  * is returned.  This can be used during pre-order traversal to skip
3969  * subtree of @pos.
3970  *
3971  * While this function requires cgroup_mutex or RCU read locking, it
3972  * doesn't require the whole traversal to be contained in a single critical
3973  * section.  This function will return the correct rightmost descendant as
3974  * long as @pos is accessible.
3975  */
3976 struct cgroup_subsys_state *
css_rightmost_descendant(struct cgroup_subsys_state * pos)3977 css_rightmost_descendant(struct cgroup_subsys_state *pos)
3978 {
3979 	struct cgroup_subsys_state *last, *tmp;
3980 
3981 	cgroup_assert_mutex_or_rcu_locked();
3982 
3983 	do {
3984 		last = pos;
3985 		/* ->prev isn't RCU safe, walk ->next till the end */
3986 		pos = NULL;
3987 		css_for_each_child(tmp, last)
3988 			pos = tmp;
3989 	} while (pos);
3990 
3991 	return last;
3992 }
3993 
3994 static struct cgroup_subsys_state *
css_leftmost_descendant(struct cgroup_subsys_state * pos)3995 css_leftmost_descendant(struct cgroup_subsys_state *pos)
3996 {
3997 	struct cgroup_subsys_state *last;
3998 
3999 	do {
4000 		last = pos;
4001 		pos = css_next_child(NULL, pos);
4002 	} while (pos);
4003 
4004 	return last;
4005 }
4006 
4007 /**
4008  * css_next_descendant_post - find the next descendant for post-order walk
4009  * @pos: the current position (%NULL to initiate traversal)
4010  * @root: css whose descendants to walk
4011  *
4012  * To be used by css_for_each_descendant_post().  Find the next descendant
4013  * to visit for post-order traversal of @root's descendants.  @root is
4014  * included in the iteration and the last node to be visited.
4015  *
4016  * While this function requires cgroup_mutex or RCU read locking, it
4017  * doesn't require the whole traversal to be contained in a single critical
4018  * section.  This function will return the correct next descendant as long
4019  * as both @pos and @cgroup are accessible and @pos is a descendant of
4020  * @cgroup.
4021  *
4022  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4023  * css which finished ->css_online() is guaranteed to be visible in the
4024  * future iterations and will stay visible until the last reference is put.
4025  * A css which hasn't finished ->css_online() or already finished
4026  * ->css_offline() may show up during traversal.  It's each subsystem's
4027  * responsibility to synchronize against on/offlining.
4028  */
4029 struct cgroup_subsys_state *
css_next_descendant_post(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * root)4030 css_next_descendant_post(struct cgroup_subsys_state *pos,
4031 			 struct cgroup_subsys_state *root)
4032 {
4033 	struct cgroup_subsys_state *next;
4034 
4035 	cgroup_assert_mutex_or_rcu_locked();
4036 
4037 	/* if first iteration, visit leftmost descendant which may be @root */
4038 	if (!pos)
4039 		return css_leftmost_descendant(root);
4040 
4041 	/* if we visited @root, we're done */
4042 	if (pos == root)
4043 		return NULL;
4044 
4045 	/* if there's an unvisited sibling, visit its leftmost descendant */
4046 	next = css_next_child(pos, pos->parent);
4047 	if (next)
4048 		return css_leftmost_descendant(next);
4049 
4050 	/* no sibling left, visit parent */
4051 	return pos->parent;
4052 }
4053 
4054 /**
4055  * css_has_online_children - does a css have online children
4056  * @css: the target css
4057  *
4058  * Returns %true if @css has any online children; otherwise, %false.  This
4059  * function can be called from any context but the caller is responsible
4060  * for synchronizing against on/offlining as necessary.
4061  */
css_has_online_children(struct cgroup_subsys_state * css)4062 bool css_has_online_children(struct cgroup_subsys_state *css)
4063 {
4064 	struct cgroup_subsys_state *child;
4065 	bool ret = false;
4066 
4067 	rcu_read_lock();
4068 	css_for_each_child(child, css) {
4069 		if (child->flags & CSS_ONLINE) {
4070 			ret = true;
4071 			break;
4072 		}
4073 	}
4074 	rcu_read_unlock();
4075 	return ret;
4076 }
4077 
css_task_iter_next_css_set(struct css_task_iter * it)4078 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4079 {
4080 	struct list_head *l;
4081 	struct cgrp_cset_link *link;
4082 	struct css_set *cset;
4083 
4084 	lockdep_assert_held(&css_set_lock);
4085 
4086 	/* find the next threaded cset */
4087 	if (it->tcset_pos) {
4088 		l = it->tcset_pos->next;
4089 
4090 		if (l != it->tcset_head) {
4091 			it->tcset_pos = l;
4092 			return container_of(l, struct css_set,
4093 					    threaded_csets_node);
4094 		}
4095 
4096 		it->tcset_pos = NULL;
4097 	}
4098 
4099 	/* find the next cset */
4100 	l = it->cset_pos;
4101 	l = l->next;
4102 	if (l == it->cset_head) {
4103 		it->cset_pos = NULL;
4104 		return NULL;
4105 	}
4106 
4107 	if (it->ss) {
4108 		cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4109 	} else {
4110 		link = list_entry(l, struct cgrp_cset_link, cset_link);
4111 		cset = link->cset;
4112 	}
4113 
4114 	it->cset_pos = l;
4115 
4116 	/* initialize threaded css_set walking */
4117 	if (it->flags & CSS_TASK_ITER_THREADED) {
4118 		if (it->cur_dcset)
4119 			put_css_set_locked(it->cur_dcset);
4120 		it->cur_dcset = cset;
4121 		get_css_set(cset);
4122 
4123 		it->tcset_head = &cset->threaded_csets;
4124 		it->tcset_pos = &cset->threaded_csets;
4125 	}
4126 
4127 	return cset;
4128 }
4129 
4130 /**
4131  * css_task_iter_advance_css_set - advance a task itererator to the next css_set
4132  * @it: the iterator to advance
4133  *
4134  * Advance @it to the next css_set to walk.
4135  */
css_task_iter_advance_css_set(struct css_task_iter * it)4136 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4137 {
4138 	struct css_set *cset;
4139 
4140 	lockdep_assert_held(&css_set_lock);
4141 
4142 	/* Advance to the next non-empty css_set */
4143 	do {
4144 		cset = css_task_iter_next_css_set(it);
4145 		if (!cset) {
4146 			it->task_pos = NULL;
4147 			return;
4148 		}
4149 	} while (!css_set_populated(cset));
4150 
4151 	if (!list_empty(&cset->tasks))
4152 		it->task_pos = cset->tasks.next;
4153 	else
4154 		it->task_pos = cset->mg_tasks.next;
4155 
4156 	it->tasks_head = &cset->tasks;
4157 	it->mg_tasks_head = &cset->mg_tasks;
4158 
4159 	/*
4160 	 * We don't keep css_sets locked across iteration steps and thus
4161 	 * need to take steps to ensure that iteration can be resumed after
4162 	 * the lock is re-acquired.  Iteration is performed at two levels -
4163 	 * css_sets and tasks in them.
4164 	 *
4165 	 * Once created, a css_set never leaves its cgroup lists, so a
4166 	 * pinned css_set is guaranteed to stay put and we can resume
4167 	 * iteration afterwards.
4168 	 *
4169 	 * Tasks may leave @cset across iteration steps.  This is resolved
4170 	 * by registering each iterator with the css_set currently being
4171 	 * walked and making css_set_move_task() advance iterators whose
4172 	 * next task is leaving.
4173 	 */
4174 	if (it->cur_cset) {
4175 		list_del(&it->iters_node);
4176 		put_css_set_locked(it->cur_cset);
4177 	}
4178 	get_css_set(cset);
4179 	it->cur_cset = cset;
4180 	list_add(&it->iters_node, &cset->task_iters);
4181 }
4182 
css_task_iter_advance(struct css_task_iter * it)4183 static void css_task_iter_advance(struct css_task_iter *it)
4184 {
4185 	struct list_head *next;
4186 
4187 	lockdep_assert_held(&css_set_lock);
4188 repeat:
4189 	/*
4190 	 * Advance iterator to find next entry.  cset->tasks is consumed
4191 	 * first and then ->mg_tasks.  After ->mg_tasks, we move onto the
4192 	 * next cset.
4193 	 */
4194 	next = it->task_pos->next;
4195 
4196 	if (next == it->tasks_head)
4197 		next = it->mg_tasks_head->next;
4198 
4199 	if (next == it->mg_tasks_head)
4200 		css_task_iter_advance_css_set(it);
4201 	else
4202 		it->task_pos = next;
4203 
4204 	/* if PROCS, skip over tasks which aren't group leaders */
4205 	if ((it->flags & CSS_TASK_ITER_PROCS) && it->task_pos &&
4206 	    !thread_group_leader(list_entry(it->task_pos, struct task_struct,
4207 					    cg_list)))
4208 		goto repeat;
4209 }
4210 
4211 /**
4212  * css_task_iter_start - initiate task iteration
4213  * @css: the css to walk tasks of
4214  * @flags: CSS_TASK_ITER_* flags
4215  * @it: the task iterator to use
4216  *
4217  * Initiate iteration through the tasks of @css.  The caller can call
4218  * css_task_iter_next() to walk through the tasks until the function
4219  * returns NULL.  On completion of iteration, css_task_iter_end() must be
4220  * called.
4221  */
css_task_iter_start(struct cgroup_subsys_state * css,unsigned int flags,struct css_task_iter * it)4222 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4223 			 struct css_task_iter *it)
4224 {
4225 	/* no one should try to iterate before mounting cgroups */
4226 	WARN_ON_ONCE(!use_task_css_set_links);
4227 
4228 	memset(it, 0, sizeof(*it));
4229 
4230 	spin_lock_irq(&css_set_lock);
4231 
4232 	it->ss = css->ss;
4233 	it->flags = flags;
4234 
4235 	if (it->ss)
4236 		it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4237 	else
4238 		it->cset_pos = &css->cgroup->cset_links;
4239 
4240 	it->cset_head = it->cset_pos;
4241 
4242 	css_task_iter_advance_css_set(it);
4243 
4244 	spin_unlock_irq(&css_set_lock);
4245 }
4246 
4247 /**
4248  * css_task_iter_next - return the next task for the iterator
4249  * @it: the task iterator being iterated
4250  *
4251  * The "next" function for task iteration.  @it should have been
4252  * initialized via css_task_iter_start().  Returns NULL when the iteration
4253  * reaches the end.
4254  */
css_task_iter_next(struct css_task_iter * it)4255 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4256 {
4257 	if (it->cur_task) {
4258 		put_task_struct(it->cur_task);
4259 		it->cur_task = NULL;
4260 	}
4261 
4262 	spin_lock_irq(&css_set_lock);
4263 
4264 	if (it->task_pos) {
4265 		it->cur_task = list_entry(it->task_pos, struct task_struct,
4266 					  cg_list);
4267 		get_task_struct(it->cur_task);
4268 		css_task_iter_advance(it);
4269 	}
4270 
4271 	spin_unlock_irq(&css_set_lock);
4272 
4273 	return it->cur_task;
4274 }
4275 
4276 /**
4277  * css_task_iter_end - finish task iteration
4278  * @it: the task iterator to finish
4279  *
4280  * Finish task iteration started by css_task_iter_start().
4281  */
css_task_iter_end(struct css_task_iter * it)4282 void css_task_iter_end(struct css_task_iter *it)
4283 {
4284 	if (it->cur_cset) {
4285 		spin_lock_irq(&css_set_lock);
4286 		list_del(&it->iters_node);
4287 		put_css_set_locked(it->cur_cset);
4288 		spin_unlock_irq(&css_set_lock);
4289 	}
4290 
4291 	if (it->cur_dcset)
4292 		put_css_set(it->cur_dcset);
4293 
4294 	if (it->cur_task)
4295 		put_task_struct(it->cur_task);
4296 }
4297 
cgroup_procs_release(struct kernfs_open_file * of)4298 static void cgroup_procs_release(struct kernfs_open_file *of)
4299 {
4300 	if (of->priv) {
4301 		css_task_iter_end(of->priv);
4302 		kfree(of->priv);
4303 	}
4304 }
4305 
cgroup_procs_next(struct seq_file * s,void * v,loff_t * pos)4306 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
4307 {
4308 	struct kernfs_open_file *of = s->private;
4309 	struct css_task_iter *it = of->priv;
4310 
4311 	return css_task_iter_next(it);
4312 }
4313 
__cgroup_procs_start(struct seq_file * s,loff_t * pos,unsigned int iter_flags)4314 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
4315 				  unsigned int iter_flags)
4316 {
4317 	struct kernfs_open_file *of = s->private;
4318 	struct cgroup *cgrp = seq_css(s)->cgroup;
4319 	struct css_task_iter *it = of->priv;
4320 
4321 	/*
4322 	 * When a seq_file is seeked, it's always traversed sequentially
4323 	 * from position 0, so we can simply keep iterating on !0 *pos.
4324 	 */
4325 	if (!it) {
4326 		if (WARN_ON_ONCE((*pos)++))
4327 			return ERR_PTR(-EINVAL);
4328 
4329 		it = kzalloc(sizeof(*it), GFP_KERNEL);
4330 		if (!it)
4331 			return ERR_PTR(-ENOMEM);
4332 		of->priv = it;
4333 		css_task_iter_start(&cgrp->self, iter_flags, it);
4334 	} else if (!(*pos)++) {
4335 		css_task_iter_end(it);
4336 		css_task_iter_start(&cgrp->self, iter_flags, it);
4337 	}
4338 
4339 	return cgroup_procs_next(s, NULL, NULL);
4340 }
4341 
cgroup_procs_start(struct seq_file * s,loff_t * pos)4342 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
4343 {
4344 	struct cgroup *cgrp = seq_css(s)->cgroup;
4345 
4346 	/*
4347 	 * All processes of a threaded subtree belong to the domain cgroup
4348 	 * of the subtree.  Only threads can be distributed across the
4349 	 * subtree.  Reject reads on cgroup.procs in the subtree proper.
4350 	 * They're always empty anyway.
4351 	 */
4352 	if (cgroup_is_threaded(cgrp))
4353 		return ERR_PTR(-EOPNOTSUPP);
4354 
4355 	return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
4356 					    CSS_TASK_ITER_THREADED);
4357 }
4358 
cgroup_procs_show(struct seq_file * s,void * v)4359 static int cgroup_procs_show(struct seq_file *s, void *v)
4360 {
4361 	seq_printf(s, "%d\n", task_pid_vnr(v));
4362 	return 0;
4363 }
4364 
cgroup_procs_write_permission(struct cgroup * src_cgrp,struct cgroup * dst_cgrp,struct super_block * sb)4365 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
4366 					 struct cgroup *dst_cgrp,
4367 					 struct super_block *sb)
4368 {
4369 	struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
4370 	struct cgroup *com_cgrp = src_cgrp;
4371 	struct inode *inode;
4372 	int ret;
4373 
4374 	lockdep_assert_held(&cgroup_mutex);
4375 
4376 	/* find the common ancestor */
4377 	while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
4378 		com_cgrp = cgroup_parent(com_cgrp);
4379 
4380 	/* %current should be authorized to migrate to the common ancestor */
4381 	inode = kernfs_get_inode(sb, com_cgrp->procs_file.kn);
4382 	if (!inode)
4383 		return -ENOMEM;
4384 
4385 	ret = inode_permission(inode, MAY_WRITE);
4386 	iput(inode);
4387 	if (ret)
4388 		return ret;
4389 
4390 	/*
4391 	 * If namespaces are delegation boundaries, %current must be able
4392 	 * to see both source and destination cgroups from its namespace.
4393 	 */
4394 	if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
4395 	    (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
4396 	     !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
4397 		return -ENOENT;
4398 
4399 	return 0;
4400 }
4401 
cgroup_procs_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4402 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
4403 				  char *buf, size_t nbytes, loff_t off)
4404 {
4405 	struct cgroup *src_cgrp, *dst_cgrp;
4406 	struct task_struct *task;
4407 	ssize_t ret;
4408 
4409 	dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4410 	if (!dst_cgrp)
4411 		return -ENODEV;
4412 
4413 	task = cgroup_procs_write_start(buf, true);
4414 	ret = PTR_ERR_OR_ZERO(task);
4415 	if (ret)
4416 		goto out_unlock;
4417 
4418 	/* find the source cgroup */
4419 	spin_lock_irq(&css_set_lock);
4420 	src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4421 	spin_unlock_irq(&css_set_lock);
4422 
4423 	ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp,
4424 					    of->file->f_path.dentry->d_sb);
4425 	if (ret)
4426 		goto out_finish;
4427 
4428 	ret = cgroup_attach_task(dst_cgrp, task, true);
4429 
4430 out_finish:
4431 	cgroup_procs_write_finish(task);
4432 out_unlock:
4433 	cgroup_kn_unlock(of->kn);
4434 
4435 	return ret ?: nbytes;
4436 }
4437 
cgroup_threads_start(struct seq_file * s,loff_t * pos)4438 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
4439 {
4440 	return __cgroup_procs_start(s, pos, 0);
4441 }
4442 
cgroup_threads_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4443 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
4444 				    char *buf, size_t nbytes, loff_t off)
4445 {
4446 	struct cgroup *src_cgrp, *dst_cgrp;
4447 	struct task_struct *task;
4448 	ssize_t ret;
4449 
4450 	buf = strstrip(buf);
4451 
4452 	dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4453 	if (!dst_cgrp)
4454 		return -ENODEV;
4455 
4456 	task = cgroup_procs_write_start(buf, false);
4457 	ret = PTR_ERR_OR_ZERO(task);
4458 	if (ret)
4459 		goto out_unlock;
4460 
4461 	/* find the source cgroup */
4462 	spin_lock_irq(&css_set_lock);
4463 	src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4464 	spin_unlock_irq(&css_set_lock);
4465 
4466 	/* thread migrations follow the cgroup.procs delegation rule */
4467 	ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp,
4468 					    of->file->f_path.dentry->d_sb);
4469 	if (ret)
4470 		goto out_finish;
4471 
4472 	/* and must be contained in the same domain */
4473 	ret = -EOPNOTSUPP;
4474 	if (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp)
4475 		goto out_finish;
4476 
4477 	ret = cgroup_attach_task(dst_cgrp, task, false);
4478 
4479 out_finish:
4480 	cgroup_procs_write_finish(task);
4481 out_unlock:
4482 	cgroup_kn_unlock(of->kn);
4483 
4484 	return ret ?: nbytes;
4485 }
4486 
4487 /* cgroup core interface files for the default hierarchy */
4488 static struct cftype cgroup_base_files[] = {
4489 	{
4490 		.name = "cgroup.type",
4491 		.flags = CFTYPE_NOT_ON_ROOT,
4492 		.seq_show = cgroup_type_show,
4493 		.write = cgroup_type_write,
4494 	},
4495 	{
4496 		.name = "cgroup.procs",
4497 		.flags = CFTYPE_NS_DELEGATABLE,
4498 		.file_offset = offsetof(struct cgroup, procs_file),
4499 		.release = cgroup_procs_release,
4500 		.seq_start = cgroup_procs_start,
4501 		.seq_next = cgroup_procs_next,
4502 		.seq_show = cgroup_procs_show,
4503 		.write = cgroup_procs_write,
4504 	},
4505 	{
4506 		.name = "cgroup.threads",
4507 		.flags = CFTYPE_NS_DELEGATABLE,
4508 		.release = cgroup_procs_release,
4509 		.seq_start = cgroup_threads_start,
4510 		.seq_next = cgroup_procs_next,
4511 		.seq_show = cgroup_procs_show,
4512 		.write = cgroup_threads_write,
4513 	},
4514 	{
4515 		.name = "cgroup.controllers",
4516 		.seq_show = cgroup_controllers_show,
4517 	},
4518 	{
4519 		.name = "cgroup.subtree_control",
4520 		.flags = CFTYPE_NS_DELEGATABLE,
4521 		.seq_show = cgroup_subtree_control_show,
4522 		.write = cgroup_subtree_control_write,
4523 	},
4524 	{
4525 		.name = "cgroup.events",
4526 		.flags = CFTYPE_NOT_ON_ROOT,
4527 		.file_offset = offsetof(struct cgroup, events_file),
4528 		.seq_show = cgroup_events_show,
4529 	},
4530 	{
4531 		.name = "cgroup.max.descendants",
4532 		.seq_show = cgroup_max_descendants_show,
4533 		.write = cgroup_max_descendants_write,
4534 	},
4535 	{
4536 		.name = "cgroup.max.depth",
4537 		.seq_show = cgroup_max_depth_show,
4538 		.write = cgroup_max_depth_write,
4539 	},
4540 	{
4541 		.name = "cgroup.stat",
4542 		.seq_show = cgroup_stat_show,
4543 	},
4544 	{
4545 		.name = "cpu.stat",
4546 		.flags = CFTYPE_NOT_ON_ROOT,
4547 		.seq_show = cpu_stat_show,
4548 	},
4549 	{ }	/* terminate */
4550 };
4551 
4552 /*
4553  * css destruction is four-stage process.
4554  *
4555  * 1. Destruction starts.  Killing of the percpu_ref is initiated.
4556  *    Implemented in kill_css().
4557  *
4558  * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4559  *    and thus css_tryget_online() is guaranteed to fail, the css can be
4560  *    offlined by invoking offline_css().  After offlining, the base ref is
4561  *    put.  Implemented in css_killed_work_fn().
4562  *
4563  * 3. When the percpu_ref reaches zero, the only possible remaining
4564  *    accessors are inside RCU read sections.  css_release() schedules the
4565  *    RCU callback.
4566  *
4567  * 4. After the grace period, the css can be freed.  Implemented in
4568  *    css_free_work_fn().
4569  *
4570  * It is actually hairier because both step 2 and 4 require process context
4571  * and thus involve punting to css->destroy_work adding two additional
4572  * steps to the already complex sequence.
4573  */
css_free_rwork_fn(struct work_struct * work)4574 static void css_free_rwork_fn(struct work_struct *work)
4575 {
4576 	struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
4577 				struct cgroup_subsys_state, destroy_rwork);
4578 	struct cgroup_subsys *ss = css->ss;
4579 	struct cgroup *cgrp = css->cgroup;
4580 
4581 	percpu_ref_exit(&css->refcnt);
4582 
4583 	if (ss) {
4584 		/* css free path */
4585 		struct cgroup_subsys_state *parent = css->parent;
4586 		int id = css->id;
4587 
4588 		ss->css_free(css);
4589 		cgroup_idr_remove(&ss->css_idr, id);
4590 		cgroup_put(cgrp);
4591 
4592 		if (parent)
4593 			css_put(parent);
4594 	} else {
4595 		/* cgroup free path */
4596 		atomic_dec(&cgrp->root->nr_cgrps);
4597 		cgroup1_pidlist_destroy_all(cgrp);
4598 		cancel_work_sync(&cgrp->release_agent_work);
4599 
4600 		if (cgroup_parent(cgrp)) {
4601 			/*
4602 			 * We get a ref to the parent, and put the ref when
4603 			 * this cgroup is being freed, so it's guaranteed
4604 			 * that the parent won't be destroyed before its
4605 			 * children.
4606 			 */
4607 			cgroup_put(cgroup_parent(cgrp));
4608 			kernfs_put(cgrp->kn);
4609 			if (cgroup_on_dfl(cgrp))
4610 				cgroup_rstat_exit(cgrp);
4611 			kfree(cgrp);
4612 		} else {
4613 			/*
4614 			 * This is root cgroup's refcnt reaching zero,
4615 			 * which indicates that the root should be
4616 			 * released.
4617 			 */
4618 			cgroup_destroy_root(cgrp->root);
4619 		}
4620 	}
4621 }
4622 
css_release_work_fn(struct work_struct * work)4623 static void css_release_work_fn(struct work_struct *work)
4624 {
4625 	struct cgroup_subsys_state *css =
4626 		container_of(work, struct cgroup_subsys_state, destroy_work);
4627 	struct cgroup_subsys *ss = css->ss;
4628 	struct cgroup *cgrp = css->cgroup;
4629 
4630 	mutex_lock(&cgroup_mutex);
4631 
4632 	css->flags |= CSS_RELEASED;
4633 	list_del_rcu(&css->sibling);
4634 
4635 	if (ss) {
4636 		/* css release path */
4637 		if (!list_empty(&css->rstat_css_node)) {
4638 			cgroup_rstat_flush(cgrp);
4639 			list_del_rcu(&css->rstat_css_node);
4640 		}
4641 
4642 		cgroup_idr_replace(&ss->css_idr, NULL, css->id);
4643 		if (ss->css_released)
4644 			ss->css_released(css);
4645 	} else {
4646 		struct cgroup *tcgrp;
4647 
4648 		/* cgroup release path */
4649 		TRACE_CGROUP_PATH(release, cgrp);
4650 
4651 		if (cgroup_on_dfl(cgrp))
4652 			cgroup_rstat_flush(cgrp);
4653 
4654 		for (tcgrp = cgroup_parent(cgrp); tcgrp;
4655 		     tcgrp = cgroup_parent(tcgrp))
4656 			tcgrp->nr_dying_descendants--;
4657 
4658 		cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4659 		cgrp->id = -1;
4660 
4661 		/*
4662 		 * There are two control paths which try to determine
4663 		 * cgroup from dentry without going through kernfs -
4664 		 * cgroupstats_build() and css_tryget_online_from_dir().
4665 		 * Those are supported by RCU protecting clearing of
4666 		 * cgrp->kn->priv backpointer.
4667 		 */
4668 		if (cgrp->kn)
4669 			RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
4670 					 NULL);
4671 
4672 		cgroup_bpf_put(cgrp);
4673 	}
4674 
4675 	mutex_unlock(&cgroup_mutex);
4676 
4677 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
4678 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
4679 }
4680 
css_release(struct percpu_ref * ref)4681 static void css_release(struct percpu_ref *ref)
4682 {
4683 	struct cgroup_subsys_state *css =
4684 		container_of(ref, struct cgroup_subsys_state, refcnt);
4685 
4686 	INIT_WORK(&css->destroy_work, css_release_work_fn);
4687 	queue_work(cgroup_destroy_wq, &css->destroy_work);
4688 }
4689 
init_and_link_css(struct cgroup_subsys_state * css,struct cgroup_subsys * ss,struct cgroup * cgrp)4690 static void init_and_link_css(struct cgroup_subsys_state *css,
4691 			      struct cgroup_subsys *ss, struct cgroup *cgrp)
4692 {
4693 	lockdep_assert_held(&cgroup_mutex);
4694 
4695 	cgroup_get_live(cgrp);
4696 
4697 	memset(css, 0, sizeof(*css));
4698 	css->cgroup = cgrp;
4699 	css->ss = ss;
4700 	css->id = -1;
4701 	INIT_LIST_HEAD(&css->sibling);
4702 	INIT_LIST_HEAD(&css->children);
4703 	INIT_LIST_HEAD(&css->rstat_css_node);
4704 	css->serial_nr = css_serial_nr_next++;
4705 	atomic_set(&css->online_cnt, 0);
4706 
4707 	if (cgroup_parent(cgrp)) {
4708 		css->parent = cgroup_css(cgroup_parent(cgrp), ss);
4709 		css_get(css->parent);
4710 	}
4711 
4712 	if (cgroup_on_dfl(cgrp) && ss->css_rstat_flush)
4713 		list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
4714 
4715 	BUG_ON(cgroup_css(cgrp, ss));
4716 }
4717 
4718 /* invoke ->css_online() on a new CSS and mark it online if successful */
online_css(struct cgroup_subsys_state * css)4719 static int online_css(struct cgroup_subsys_state *css)
4720 {
4721 	struct cgroup_subsys *ss = css->ss;
4722 	int ret = 0;
4723 
4724 	lockdep_assert_held(&cgroup_mutex);
4725 
4726 	if (ss->css_online)
4727 		ret = ss->css_online(css);
4728 	if (!ret) {
4729 		css->flags |= CSS_ONLINE;
4730 		rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
4731 
4732 		atomic_inc(&css->online_cnt);
4733 		if (css->parent)
4734 			atomic_inc(&css->parent->online_cnt);
4735 	}
4736 	return ret;
4737 }
4738 
4739 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
offline_css(struct cgroup_subsys_state * css)4740 static void offline_css(struct cgroup_subsys_state *css)
4741 {
4742 	struct cgroup_subsys *ss = css->ss;
4743 
4744 	lockdep_assert_held(&cgroup_mutex);
4745 
4746 	if (!(css->flags & CSS_ONLINE))
4747 		return;
4748 
4749 	if (ss->css_offline)
4750 		ss->css_offline(css);
4751 
4752 	css->flags &= ~CSS_ONLINE;
4753 	RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
4754 
4755 	wake_up_all(&css->cgroup->offline_waitq);
4756 }
4757 
4758 /**
4759  * css_create - create a cgroup_subsys_state
4760  * @cgrp: the cgroup new css will be associated with
4761  * @ss: the subsys of new css
4762  *
4763  * Create a new css associated with @cgrp - @ss pair.  On success, the new
4764  * css is online and installed in @cgrp.  This function doesn't create the
4765  * interface files.  Returns 0 on success, -errno on failure.
4766  */
css_create(struct cgroup * cgrp,struct cgroup_subsys * ss)4767 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
4768 					      struct cgroup_subsys *ss)
4769 {
4770 	struct cgroup *parent = cgroup_parent(cgrp);
4771 	struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
4772 	struct cgroup_subsys_state *css;
4773 	int err;
4774 
4775 	lockdep_assert_held(&cgroup_mutex);
4776 
4777 	css = ss->css_alloc(parent_css);
4778 	if (!css)
4779 		css = ERR_PTR(-ENOMEM);
4780 	if (IS_ERR(css))
4781 		return css;
4782 
4783 	init_and_link_css(css, ss, cgrp);
4784 
4785 	err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
4786 	if (err)
4787 		goto err_free_css;
4788 
4789 	err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
4790 	if (err < 0)
4791 		goto err_free_css;
4792 	css->id = err;
4793 
4794 	/* @css is ready to be brought online now, make it visible */
4795 	list_add_tail_rcu(&css->sibling, &parent_css->children);
4796 	cgroup_idr_replace(&ss->css_idr, css, css->id);
4797 
4798 	err = online_css(css);
4799 	if (err)
4800 		goto err_list_del;
4801 
4802 	if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4803 	    cgroup_parent(parent)) {
4804 		pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4805 			current->comm, current->pid, ss->name);
4806 		if (!strcmp(ss->name, "memory"))
4807 			pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
4808 		ss->warned_broken_hierarchy = true;
4809 	}
4810 
4811 	return css;
4812 
4813 err_list_del:
4814 	list_del_rcu(&css->sibling);
4815 err_free_css:
4816 	list_del_rcu(&css->rstat_css_node);
4817 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
4818 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
4819 	return ERR_PTR(err);
4820 }
4821 
4822 /*
4823  * The returned cgroup is fully initialized including its control mask, but
4824  * it isn't associated with its kernfs_node and doesn't have the control
4825  * mask applied.
4826  */
cgroup_create(struct cgroup * parent)4827 static struct cgroup *cgroup_create(struct cgroup *parent)
4828 {
4829 	struct cgroup_root *root = parent->root;
4830 	struct cgroup *cgrp, *tcgrp;
4831 	int level = parent->level + 1;
4832 	int ret;
4833 
4834 	/* allocate the cgroup and its ID, 0 is reserved for the root */
4835 	cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)),
4836 		       GFP_KERNEL);
4837 	if (!cgrp)
4838 		return ERR_PTR(-ENOMEM);
4839 
4840 	ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
4841 	if (ret)
4842 		goto out_free_cgrp;
4843 
4844 	if (cgroup_on_dfl(parent)) {
4845 		ret = cgroup_rstat_init(cgrp);
4846 		if (ret)
4847 			goto out_cancel_ref;
4848 	}
4849 
4850 	/*
4851 	 * Temporarily set the pointer to NULL, so idr_find() won't return
4852 	 * a half-baked cgroup.
4853 	 */
4854 	cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
4855 	if (cgrp->id < 0) {
4856 		ret = -ENOMEM;
4857 		goto out_stat_exit;
4858 	}
4859 
4860 	init_cgroup_housekeeping(cgrp);
4861 
4862 	cgrp->self.parent = &parent->self;
4863 	cgrp->root = root;
4864 	cgrp->level = level;
4865 	ret = cgroup_bpf_inherit(cgrp);
4866 	if (ret)
4867 		goto out_idr_free;
4868 
4869 	for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
4870 		cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
4871 
4872 		if (tcgrp != cgrp)
4873 			tcgrp->nr_descendants++;
4874 	}
4875 
4876 	if (notify_on_release(parent))
4877 		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4878 
4879 	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4880 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4881 
4882 	cgrp->self.serial_nr = css_serial_nr_next++;
4883 
4884 	/* allocation complete, commit to creation */
4885 	list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
4886 	atomic_inc(&root->nr_cgrps);
4887 	cgroup_get_live(parent);
4888 
4889 	/*
4890 	 * @cgrp is now fully operational.  If something fails after this
4891 	 * point, it'll be released via the normal destruction path.
4892 	 */
4893 	cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4894 
4895 	/*
4896 	 * On the default hierarchy, a child doesn't automatically inherit
4897 	 * subtree_control from the parent.  Each is configured manually.
4898 	 */
4899 	if (!cgroup_on_dfl(cgrp))
4900 		cgrp->subtree_control = cgroup_control(cgrp);
4901 
4902 	cgroup_propagate_control(cgrp);
4903 
4904 	return cgrp;
4905 
4906 out_idr_free:
4907 	cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
4908 out_stat_exit:
4909 	if (cgroup_on_dfl(parent))
4910 		cgroup_rstat_exit(cgrp);
4911 out_cancel_ref:
4912 	percpu_ref_exit(&cgrp->self.refcnt);
4913 out_free_cgrp:
4914 	kfree(cgrp);
4915 	return ERR_PTR(ret);
4916 }
4917 
cgroup_check_hierarchy_limits(struct cgroup * parent)4918 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
4919 {
4920 	struct cgroup *cgroup;
4921 	int ret = false;
4922 	int level = 1;
4923 
4924 	lockdep_assert_held(&cgroup_mutex);
4925 
4926 	for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
4927 		if (cgroup->nr_descendants >= cgroup->max_descendants)
4928 			goto fail;
4929 
4930 		if (level > cgroup->max_depth)
4931 			goto fail;
4932 
4933 		level++;
4934 	}
4935 
4936 	ret = true;
4937 fail:
4938 	return ret;
4939 }
4940 
cgroup_mkdir(struct kernfs_node * parent_kn,const char * name,umode_t mode)4941 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
4942 {
4943 	struct cgroup *parent, *cgrp;
4944 	struct kernfs_node *kn;
4945 	int ret;
4946 
4947 	/* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
4948 	if (strchr(name, '\n'))
4949 		return -EINVAL;
4950 
4951 	parent = cgroup_kn_lock_live(parent_kn, false);
4952 	if (!parent)
4953 		return -ENODEV;
4954 
4955 	if (!cgroup_check_hierarchy_limits(parent)) {
4956 		ret = -EAGAIN;
4957 		goto out_unlock;
4958 	}
4959 
4960 	cgrp = cgroup_create(parent);
4961 	if (IS_ERR(cgrp)) {
4962 		ret = PTR_ERR(cgrp);
4963 		goto out_unlock;
4964 	}
4965 
4966 	/* create the directory */
4967 	kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
4968 	if (IS_ERR(kn)) {
4969 		ret = PTR_ERR(kn);
4970 		goto out_destroy;
4971 	}
4972 	cgrp->kn = kn;
4973 
4974 	/*
4975 	 * This extra ref will be put in cgroup_free_fn() and guarantees
4976 	 * that @cgrp->kn is always accessible.
4977 	 */
4978 	kernfs_get(kn);
4979 
4980 	ret = cgroup_kn_set_ugid(kn);
4981 	if (ret)
4982 		goto out_destroy;
4983 
4984 	ret = css_populate_dir(&cgrp->self);
4985 	if (ret)
4986 		goto out_destroy;
4987 
4988 	ret = cgroup_apply_control_enable(cgrp);
4989 	if (ret)
4990 		goto out_destroy;
4991 
4992 	TRACE_CGROUP_PATH(mkdir, cgrp);
4993 
4994 	/* let's create and online css's */
4995 	kernfs_activate(kn);
4996 
4997 	ret = 0;
4998 	goto out_unlock;
4999 
5000 out_destroy:
5001 	cgroup_destroy_locked(cgrp);
5002 out_unlock:
5003 	cgroup_kn_unlock(parent_kn);
5004 	return ret;
5005 }
5006 
5007 /*
5008  * This is called when the refcnt of a css is confirmed to be killed.
5009  * css_tryget_online() is now guaranteed to fail.  Tell the subsystem to
5010  * initate destruction and put the css ref from kill_css().
5011  */
css_killed_work_fn(struct work_struct * work)5012 static void css_killed_work_fn(struct work_struct *work)
5013 {
5014 	struct cgroup_subsys_state *css =
5015 		container_of(work, struct cgroup_subsys_state, destroy_work);
5016 
5017 	mutex_lock(&cgroup_mutex);
5018 
5019 	do {
5020 		offline_css(css);
5021 		css_put(css);
5022 		/* @css can't go away while we're holding cgroup_mutex */
5023 		css = css->parent;
5024 	} while (css && atomic_dec_and_test(&css->online_cnt));
5025 
5026 	mutex_unlock(&cgroup_mutex);
5027 }
5028 
5029 /* css kill confirmation processing requires process context, bounce */
css_killed_ref_fn(struct percpu_ref * ref)5030 static void css_killed_ref_fn(struct percpu_ref *ref)
5031 {
5032 	struct cgroup_subsys_state *css =
5033 		container_of(ref, struct cgroup_subsys_state, refcnt);
5034 
5035 	if (atomic_dec_and_test(&css->online_cnt)) {
5036 		INIT_WORK(&css->destroy_work, css_killed_work_fn);
5037 		queue_work(cgroup_destroy_wq, &css->destroy_work);
5038 	}
5039 }
5040 
5041 /**
5042  * kill_css - destroy a css
5043  * @css: css to destroy
5044  *
5045  * This function initiates destruction of @css by removing cgroup interface
5046  * files and putting its base reference.  ->css_offline() will be invoked
5047  * asynchronously once css_tryget_online() is guaranteed to fail and when
5048  * the reference count reaches zero, @css will be released.
5049  */
kill_css(struct cgroup_subsys_state * css)5050 static void kill_css(struct cgroup_subsys_state *css)
5051 {
5052 	lockdep_assert_held(&cgroup_mutex);
5053 
5054 	if (css->flags & CSS_DYING)
5055 		return;
5056 
5057 	css->flags |= CSS_DYING;
5058 
5059 	/*
5060 	 * This must happen before css is disassociated with its cgroup.
5061 	 * See seq_css() for details.
5062 	 */
5063 	css_clear_dir(css);
5064 
5065 	/*
5066 	 * Killing would put the base ref, but we need to keep it alive
5067 	 * until after ->css_offline().
5068 	 */
5069 	css_get(css);
5070 
5071 	/*
5072 	 * cgroup core guarantees that, by the time ->css_offline() is
5073 	 * invoked, no new css reference will be given out via
5074 	 * css_tryget_online().  We can't simply call percpu_ref_kill() and
5075 	 * proceed to offlining css's because percpu_ref_kill() doesn't
5076 	 * guarantee that the ref is seen as killed on all CPUs on return.
5077 	 *
5078 	 * Use percpu_ref_kill_and_confirm() to get notifications as each
5079 	 * css is confirmed to be seen as killed on all CPUs.
5080 	 */
5081 	percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5082 }
5083 
5084 /**
5085  * cgroup_destroy_locked - the first stage of cgroup destruction
5086  * @cgrp: cgroup to be destroyed
5087  *
5088  * css's make use of percpu refcnts whose killing latency shouldn't be
5089  * exposed to userland and are RCU protected.  Also, cgroup core needs to
5090  * guarantee that css_tryget_online() won't succeed by the time
5091  * ->css_offline() is invoked.  To satisfy all the requirements,
5092  * destruction is implemented in the following two steps.
5093  *
5094  * s1. Verify @cgrp can be destroyed and mark it dying.  Remove all
5095  *     userland visible parts and start killing the percpu refcnts of
5096  *     css's.  Set up so that the next stage will be kicked off once all
5097  *     the percpu refcnts are confirmed to be killed.
5098  *
5099  * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5100  *     rest of destruction.  Once all cgroup references are gone, the
5101  *     cgroup is RCU-freed.
5102  *
5103  * This function implements s1.  After this step, @cgrp is gone as far as
5104  * the userland is concerned and a new cgroup with the same name may be
5105  * created.  As cgroup doesn't care about the names internally, this
5106  * doesn't cause any problem.
5107  */
cgroup_destroy_locked(struct cgroup * cgrp)5108 static int cgroup_destroy_locked(struct cgroup *cgrp)
5109 	__releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5110 {
5111 	struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5112 	struct cgroup_subsys_state *css;
5113 	struct cgrp_cset_link *link;
5114 	int ssid;
5115 
5116 	lockdep_assert_held(&cgroup_mutex);
5117 
5118 	/*
5119 	 * Only migration can raise populated from zero and we're already
5120 	 * holding cgroup_mutex.
5121 	 */
5122 	if (cgroup_is_populated(cgrp))
5123 		return -EBUSY;
5124 
5125 	/*
5126 	 * Make sure there's no live children.  We can't test emptiness of
5127 	 * ->self.children as dead children linger on it while being
5128 	 * drained; otherwise, "rmdir parent/child parent" may fail.
5129 	 */
5130 	if (css_has_online_children(&cgrp->self))
5131 		return -EBUSY;
5132 
5133 	/*
5134 	 * Mark @cgrp and the associated csets dead.  The former prevents
5135 	 * further task migration and child creation by disabling
5136 	 * cgroup_lock_live_group().  The latter makes the csets ignored by
5137 	 * the migration path.
5138 	 */
5139 	cgrp->self.flags &= ~CSS_ONLINE;
5140 
5141 	spin_lock_irq(&css_set_lock);
5142 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
5143 		link->cset->dead = true;
5144 	spin_unlock_irq(&css_set_lock);
5145 
5146 	/* initiate massacre of all css's */
5147 	for_each_css(css, ssid, cgrp)
5148 		kill_css(css);
5149 
5150 	/* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5151 	css_clear_dir(&cgrp->self);
5152 	kernfs_remove(cgrp->kn);
5153 
5154 	if (parent && cgroup_is_threaded(cgrp))
5155 		parent->nr_threaded_children--;
5156 
5157 	for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5158 		tcgrp->nr_descendants--;
5159 		tcgrp->nr_dying_descendants++;
5160 	}
5161 
5162 	cgroup1_check_for_release(parent);
5163 
5164 	/* put the base reference */
5165 	percpu_ref_kill(&cgrp->self.refcnt);
5166 
5167 	return 0;
5168 };
5169 
cgroup_rmdir(struct kernfs_node * kn)5170 int cgroup_rmdir(struct kernfs_node *kn)
5171 {
5172 	struct cgroup *cgrp;
5173 	int ret = 0;
5174 
5175 	cgrp = cgroup_kn_lock_live(kn, false);
5176 	if (!cgrp)
5177 		return 0;
5178 
5179 	ret = cgroup_destroy_locked(cgrp);
5180 	if (!ret)
5181 		TRACE_CGROUP_PATH(rmdir, cgrp);
5182 
5183 	cgroup_kn_unlock(kn);
5184 	return ret;
5185 }
5186 
5187 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5188 	.show_options		= cgroup_show_options,
5189 	.remount_fs		= cgroup_remount,
5190 	.mkdir			= cgroup_mkdir,
5191 	.rmdir			= cgroup_rmdir,
5192 	.show_path		= cgroup_show_path,
5193 };
5194 
cgroup_init_subsys(struct cgroup_subsys * ss,bool early)5195 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5196 {
5197 	struct cgroup_subsys_state *css;
5198 
5199 	pr_debug("Initializing cgroup subsys %s\n", ss->name);
5200 
5201 	mutex_lock(&cgroup_mutex);
5202 
5203 	idr_init(&ss->css_idr);
5204 	INIT_LIST_HEAD(&ss->cfts);
5205 
5206 	/* Create the root cgroup state for this subsystem */
5207 	ss->root = &cgrp_dfl_root;
5208 	css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5209 	/* We don't handle early failures gracefully */
5210 	BUG_ON(IS_ERR(css));
5211 	init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5212 
5213 	/*
5214 	 * Root csses are never destroyed and we can't initialize
5215 	 * percpu_ref during early init.  Disable refcnting.
5216 	 */
5217 	css->flags |= CSS_NO_REF;
5218 
5219 	if (early) {
5220 		/* allocation can't be done safely during early init */
5221 		css->id = 1;
5222 	} else {
5223 		css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5224 		BUG_ON(css->id < 0);
5225 	}
5226 
5227 	/* Update the init_css_set to contain a subsys
5228 	 * pointer to this state - since the subsystem is
5229 	 * newly registered, all tasks and hence the
5230 	 * init_css_set is in the subsystem's root cgroup. */
5231 	init_css_set.subsys[ss->id] = css;
5232 
5233 	have_fork_callback |= (bool)ss->fork << ss->id;
5234 	have_exit_callback |= (bool)ss->exit << ss->id;
5235 	have_free_callback |= (bool)ss->free << ss->id;
5236 	have_canfork_callback |= (bool)ss->can_fork << ss->id;
5237 
5238 	/* At system boot, before all subsystems have been
5239 	 * registered, no tasks have been forked, so we don't
5240 	 * need to invoke fork callbacks here. */
5241 	BUG_ON(!list_empty(&init_task.tasks));
5242 
5243 	BUG_ON(online_css(css));
5244 
5245 	mutex_unlock(&cgroup_mutex);
5246 }
5247 
5248 /**
5249  * cgroup_init_early - cgroup initialization at system boot
5250  *
5251  * Initialize cgroups at system boot, and initialize any
5252  * subsystems that request early init.
5253  */
cgroup_init_early(void)5254 int __init cgroup_init_early(void)
5255 {
5256 	static struct cgroup_sb_opts __initdata opts;
5257 	struct cgroup_subsys *ss;
5258 	int i;
5259 
5260 	init_cgroup_root(&cgrp_dfl_root, &opts);
5261 	cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5262 
5263 	RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5264 
5265 	for_each_subsys(ss, i) {
5266 		WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5267 		     "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5268 		     i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5269 		     ss->id, ss->name);
5270 		WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5271 		     "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5272 
5273 		ss->id = i;
5274 		ss->name = cgroup_subsys_name[i];
5275 		if (!ss->legacy_name)
5276 			ss->legacy_name = cgroup_subsys_name[i];
5277 
5278 		if (ss->early_init)
5279 			cgroup_init_subsys(ss, true);
5280 	}
5281 	return 0;
5282 }
5283 
5284 static u16 cgroup_disable_mask __initdata;
5285 
5286 /**
5287  * cgroup_init - cgroup initialization
5288  *
5289  * Register cgroup filesystem and /proc file, and initialize
5290  * any subsystems that didn't request early init.
5291  */
cgroup_init(void)5292 int __init cgroup_init(void)
5293 {
5294 	struct cgroup_subsys *ss;
5295 	int ssid;
5296 
5297 	BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5298 	BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
5299 	BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
5300 	BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
5301 
5302 	cgroup_rstat_boot();
5303 
5304 	/*
5305 	 * The latency of the synchronize_sched() is too high for cgroups,
5306 	 * avoid it at the cost of forcing all readers into the slow path.
5307 	 */
5308 	rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
5309 
5310 	get_user_ns(init_cgroup_ns.user_ns);
5311 
5312 	mutex_lock(&cgroup_mutex);
5313 
5314 	/*
5315 	 * Add init_css_set to the hash table so that dfl_root can link to
5316 	 * it during init.
5317 	 */
5318 	hash_add(css_set_table, &init_css_set.hlist,
5319 		 css_set_hash(init_css_set.subsys));
5320 
5321 	BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0, 0));
5322 
5323 	mutex_unlock(&cgroup_mutex);
5324 
5325 	for_each_subsys(ss, ssid) {
5326 		if (ss->early_init) {
5327 			struct cgroup_subsys_state *css =
5328 				init_css_set.subsys[ss->id];
5329 
5330 			css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5331 						   GFP_KERNEL);
5332 			BUG_ON(css->id < 0);
5333 		} else {
5334 			cgroup_init_subsys(ss, false);
5335 		}
5336 
5337 		list_add_tail(&init_css_set.e_cset_node[ssid],
5338 			      &cgrp_dfl_root.cgrp.e_csets[ssid]);
5339 
5340 		/*
5341 		 * Setting dfl_root subsys_mask needs to consider the
5342 		 * disabled flag and cftype registration needs kmalloc,
5343 		 * both of which aren't available during early_init.
5344 		 */
5345 		if (cgroup_disable_mask & (1 << ssid)) {
5346 			static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5347 			printk(KERN_INFO "Disabling %s control group subsystem\n",
5348 			       ss->name);
5349 			continue;
5350 		}
5351 
5352 		if (cgroup1_ssid_disabled(ssid))
5353 			printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5354 			       ss->name);
5355 
5356 		cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5357 
5358 		/* implicit controllers must be threaded too */
5359 		WARN_ON(ss->implicit_on_dfl && !ss->threaded);
5360 
5361 		if (ss->implicit_on_dfl)
5362 			cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5363 		else if (!ss->dfl_cftypes)
5364 			cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5365 
5366 		if (ss->threaded)
5367 			cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
5368 
5369 		if (ss->dfl_cftypes == ss->legacy_cftypes) {
5370 			WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5371 		} else {
5372 			WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5373 			WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5374 		}
5375 
5376 		if (ss->bind)
5377 			ss->bind(init_css_set.subsys[ssid]);
5378 
5379 		mutex_lock(&cgroup_mutex);
5380 		css_populate_dir(init_css_set.subsys[ssid]);
5381 		mutex_unlock(&cgroup_mutex);
5382 	}
5383 
5384 	/* init_css_set.subsys[] has been updated, re-hash */
5385 	hash_del(&init_css_set.hlist);
5386 	hash_add(css_set_table, &init_css_set.hlist,
5387 		 css_set_hash(init_css_set.subsys));
5388 
5389 	WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5390 	WARN_ON(register_filesystem(&cgroup_fs_type));
5391 	WARN_ON(register_filesystem(&cgroup2_fs_type));
5392 	WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
5393 
5394 	return 0;
5395 }
5396 
cgroup_wq_init(void)5397 static int __init cgroup_wq_init(void)
5398 {
5399 	/*
5400 	 * There isn't much point in executing destruction path in
5401 	 * parallel.  Good chunk is serialized with cgroup_mutex anyway.
5402 	 * Use 1 for @max_active.
5403 	 *
5404 	 * We would prefer to do this in cgroup_init() above, but that
5405 	 * is called before init_workqueues(): so leave this until after.
5406 	 */
5407 	cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5408 	BUG_ON(!cgroup_destroy_wq);
5409 	return 0;
5410 }
5411 core_initcall(cgroup_wq_init);
5412 
cgroup_path_from_kernfs_id(const union kernfs_node_id * id,char * buf,size_t buflen)5413 void cgroup_path_from_kernfs_id(const union kernfs_node_id *id,
5414 					char *buf, size_t buflen)
5415 {
5416 	struct kernfs_node *kn;
5417 
5418 	kn = kernfs_get_node_by_id(cgrp_dfl_root.kf_root, id);
5419 	if (!kn)
5420 		return;
5421 	kernfs_path(kn, buf, buflen);
5422 	kernfs_put(kn);
5423 }
5424 
5425 /*
5426  * proc_cgroup_show()
5427  *  - Print task's cgroup paths into seq_file, one line for each hierarchy
5428  *  - Used for /proc/<pid>/cgroup.
5429  */
proc_cgroup_show(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * tsk)5430 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5431 		     struct pid *pid, struct task_struct *tsk)
5432 {
5433 	char *buf;
5434 	int retval;
5435 	struct cgroup_root *root;
5436 
5437 	retval = -ENOMEM;
5438 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
5439 	if (!buf)
5440 		goto out;
5441 
5442 	mutex_lock(&cgroup_mutex);
5443 	spin_lock_irq(&css_set_lock);
5444 
5445 	for_each_root(root) {
5446 		struct cgroup_subsys *ss;
5447 		struct cgroup *cgrp;
5448 		int ssid, count = 0;
5449 
5450 		if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
5451 			continue;
5452 
5453 		seq_printf(m, "%d:", root->hierarchy_id);
5454 		if (root != &cgrp_dfl_root)
5455 			for_each_subsys(ss, ssid)
5456 				if (root->subsys_mask & (1 << ssid))
5457 					seq_printf(m, "%s%s", count++ ? "," : "",
5458 						   ss->legacy_name);
5459 		if (strlen(root->name))
5460 			seq_printf(m, "%sname=%s", count ? "," : "",
5461 				   root->name);
5462 		seq_putc(m, ':');
5463 
5464 		cgrp = task_cgroup_from_root(tsk, root);
5465 
5466 		/*
5467 		 * On traditional hierarchies, all zombie tasks show up as
5468 		 * belonging to the root cgroup.  On the default hierarchy,
5469 		 * while a zombie doesn't show up in "cgroup.procs" and
5470 		 * thus can't be migrated, its /proc/PID/cgroup keeps
5471 		 * reporting the cgroup it belonged to before exiting.  If
5472 		 * the cgroup is removed before the zombie is reaped,
5473 		 * " (deleted)" is appended to the cgroup path.
5474 		 */
5475 		if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5476 			retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
5477 						current->nsproxy->cgroup_ns);
5478 			if (retval >= PATH_MAX)
5479 				retval = -ENAMETOOLONG;
5480 			if (retval < 0)
5481 				goto out_unlock;
5482 
5483 			seq_puts(m, buf);
5484 		} else {
5485 			seq_puts(m, "/");
5486 		}
5487 
5488 		if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5489 			seq_puts(m, " (deleted)\n");
5490 		else
5491 			seq_putc(m, '\n');
5492 	}
5493 
5494 	retval = 0;
5495 out_unlock:
5496 	spin_unlock_irq(&css_set_lock);
5497 	mutex_unlock(&cgroup_mutex);
5498 	kfree(buf);
5499 out:
5500 	return retval;
5501 }
5502 
5503 /**
5504  * cgroup_fork - initialize cgroup related fields during copy_process()
5505  * @child: pointer to task_struct of forking parent process.
5506  *
5507  * A task is associated with the init_css_set until cgroup_post_fork()
5508  * attaches it to the parent's css_set.  Empty cg_list indicates that
5509  * @child isn't holding reference to its css_set.
5510  */
cgroup_fork(struct task_struct * child)5511 void cgroup_fork(struct task_struct *child)
5512 {
5513 	RCU_INIT_POINTER(child->cgroups, &init_css_set);
5514 	INIT_LIST_HEAD(&child->cg_list);
5515 }
5516 
5517 /**
5518  * cgroup_can_fork - called on a new task before the process is exposed
5519  * @child: the task in question.
5520  *
5521  * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5522  * returns an error, the fork aborts with that error code. This allows for
5523  * a cgroup subsystem to conditionally allow or deny new forks.
5524  */
cgroup_can_fork(struct task_struct * child)5525 int cgroup_can_fork(struct task_struct *child)
5526 {
5527 	struct cgroup_subsys *ss;
5528 	int i, j, ret;
5529 
5530 	do_each_subsys_mask(ss, i, have_canfork_callback) {
5531 		ret = ss->can_fork(child);
5532 		if (ret)
5533 			goto out_revert;
5534 	} while_each_subsys_mask();
5535 
5536 	return 0;
5537 
5538 out_revert:
5539 	for_each_subsys(ss, j) {
5540 		if (j >= i)
5541 			break;
5542 		if (ss->cancel_fork)
5543 			ss->cancel_fork(child);
5544 	}
5545 
5546 	return ret;
5547 }
5548 
5549 /**
5550  * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5551  * @child: the task in question
5552  *
5553  * This calls the cancel_fork() callbacks if a fork failed *after*
5554  * cgroup_can_fork() succeded.
5555  */
cgroup_cancel_fork(struct task_struct * child)5556 void cgroup_cancel_fork(struct task_struct *child)
5557 {
5558 	struct cgroup_subsys *ss;
5559 	int i;
5560 
5561 	for_each_subsys(ss, i)
5562 		if (ss->cancel_fork)
5563 			ss->cancel_fork(child);
5564 }
5565 
5566 /**
5567  * cgroup_post_fork - called on a new task after adding it to the task list
5568  * @child: the task in question
5569  *
5570  * Adds the task to the list running through its css_set if necessary and
5571  * call the subsystem fork() callbacks.  Has to be after the task is
5572  * visible on the task list in case we race with the first call to
5573  * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5574  * list.
5575  */
cgroup_post_fork(struct task_struct * child)5576 void cgroup_post_fork(struct task_struct *child)
5577 {
5578 	struct cgroup_subsys *ss;
5579 	int i;
5580 
5581 	/*
5582 	 * This may race against cgroup_enable_task_cg_lists().  As that
5583 	 * function sets use_task_css_set_links before grabbing
5584 	 * tasklist_lock and we just went through tasklist_lock to add
5585 	 * @child, it's guaranteed that either we see the set
5586 	 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5587 	 * @child during its iteration.
5588 	 *
5589 	 * If we won the race, @child is associated with %current's
5590 	 * css_set.  Grabbing css_set_lock guarantees both that the
5591 	 * association is stable, and, on completion of the parent's
5592 	 * migration, @child is visible in the source of migration or
5593 	 * already in the destination cgroup.  This guarantee is necessary
5594 	 * when implementing operations which need to migrate all tasks of
5595 	 * a cgroup to another.
5596 	 *
5597 	 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5598 	 * will remain in init_css_set.  This is safe because all tasks are
5599 	 * in the init_css_set before cg_links is enabled and there's no
5600 	 * operation which transfers all tasks out of init_css_set.
5601 	 */
5602 	if (use_task_css_set_links) {
5603 		struct css_set *cset;
5604 
5605 		spin_lock_irq(&css_set_lock);
5606 		cset = task_css_set(current);
5607 		if (list_empty(&child->cg_list)) {
5608 			get_css_set(cset);
5609 			cset->nr_tasks++;
5610 			css_set_move_task(child, NULL, cset, false);
5611 		}
5612 		spin_unlock_irq(&css_set_lock);
5613 	}
5614 
5615 	/*
5616 	 * Call ss->fork().  This must happen after @child is linked on
5617 	 * css_set; otherwise, @child might change state between ->fork()
5618 	 * and addition to css_set.
5619 	 */
5620 	do_each_subsys_mask(ss, i, have_fork_callback) {
5621 		ss->fork(child);
5622 	} while_each_subsys_mask();
5623 }
5624 
5625 /**
5626  * cgroup_exit - detach cgroup from exiting task
5627  * @tsk: pointer to task_struct of exiting process
5628  *
5629  * Description: Detach cgroup from @tsk and release it.
5630  *
5631  * Note that cgroups marked notify_on_release force every task in
5632  * them to take the global cgroup_mutex mutex when exiting.
5633  * This could impact scaling on very large systems.  Be reluctant to
5634  * use notify_on_release cgroups where very high task exit scaling
5635  * is required on large systems.
5636  *
5637  * We set the exiting tasks cgroup to the root cgroup (top_cgroup).  We
5638  * call cgroup_exit() while the task is still competent to handle
5639  * notify_on_release(), then leave the task attached to the root cgroup in
5640  * each hierarchy for the remainder of its exit.  No need to bother with
5641  * init_css_set refcnting.  init_css_set never goes away and we can't race
5642  * with migration path - PF_EXITING is visible to migration path.
5643  */
cgroup_exit(struct task_struct * tsk)5644 void cgroup_exit(struct task_struct *tsk)
5645 {
5646 	struct cgroup_subsys *ss;
5647 	struct css_set *cset;
5648 	int i;
5649 
5650 	/*
5651 	 * Unlink from @tsk from its css_set.  As migration path can't race
5652 	 * with us, we can check css_set and cg_list without synchronization.
5653 	 */
5654 	cset = task_css_set(tsk);
5655 
5656 	if (!list_empty(&tsk->cg_list)) {
5657 		spin_lock_irq(&css_set_lock);
5658 		css_set_move_task(tsk, cset, NULL, false);
5659 		cset->nr_tasks--;
5660 		spin_unlock_irq(&css_set_lock);
5661 	} else {
5662 		get_css_set(cset);
5663 	}
5664 
5665 	/* see cgroup_post_fork() for details */
5666 	do_each_subsys_mask(ss, i, have_exit_callback) {
5667 		ss->exit(tsk);
5668 	} while_each_subsys_mask();
5669 }
5670 
cgroup_free(struct task_struct * task)5671 void cgroup_free(struct task_struct *task)
5672 {
5673 	struct css_set *cset = task_css_set(task);
5674 	struct cgroup_subsys *ss;
5675 	int ssid;
5676 
5677 	do_each_subsys_mask(ss, ssid, have_free_callback) {
5678 		ss->free(task);
5679 	} while_each_subsys_mask();
5680 
5681 	put_css_set(cset);
5682 }
5683 
cgroup_disable(char * str)5684 static int __init cgroup_disable(char *str)
5685 {
5686 	struct cgroup_subsys *ss;
5687 	char *token;
5688 	int i;
5689 
5690 	while ((token = strsep(&str, ",")) != NULL) {
5691 		if (!*token)
5692 			continue;
5693 
5694 		for_each_subsys(ss, i) {
5695 			if (strcmp(token, ss->name) &&
5696 			    strcmp(token, ss->legacy_name))
5697 				continue;
5698 			cgroup_disable_mask |= 1 << i;
5699 		}
5700 	}
5701 	return 1;
5702 }
5703 __setup("cgroup_disable=", cgroup_disable);
5704 
5705 /**
5706  * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
5707  * @dentry: directory dentry of interest
5708  * @ss: subsystem of interest
5709  *
5710  * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5711  * to get the corresponding css and return it.  If such css doesn't exist
5712  * or can't be pinned, an ERR_PTR value is returned.
5713  */
css_tryget_online_from_dir(struct dentry * dentry,struct cgroup_subsys * ss)5714 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5715 						       struct cgroup_subsys *ss)
5716 {
5717 	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5718 	struct file_system_type *s_type = dentry->d_sb->s_type;
5719 	struct cgroup_subsys_state *css = NULL;
5720 	struct cgroup *cgrp;
5721 
5722 	/* is @dentry a cgroup dir? */
5723 	if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
5724 	    !kn || kernfs_type(kn) != KERNFS_DIR)
5725 		return ERR_PTR(-EBADF);
5726 
5727 	rcu_read_lock();
5728 
5729 	/*
5730 	 * This path doesn't originate from kernfs and @kn could already
5731 	 * have been or be removed at any point.  @kn->priv is RCU
5732 	 * protected for this access.  See css_release_work_fn() for details.
5733 	 */
5734 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
5735 	if (cgrp)
5736 		css = cgroup_css(cgrp, ss);
5737 
5738 	if (!css || !css_tryget_online(css))
5739 		css = ERR_PTR(-ENOENT);
5740 
5741 	rcu_read_unlock();
5742 	return css;
5743 }
5744 
5745 /**
5746  * css_from_id - lookup css by id
5747  * @id: the cgroup id
5748  * @ss: cgroup subsys to be looked into
5749  *
5750  * Returns the css if there's valid one with @id, otherwise returns NULL.
5751  * Should be called under rcu_read_lock().
5752  */
css_from_id(int id,struct cgroup_subsys * ss)5753 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5754 {
5755 	WARN_ON_ONCE(!rcu_read_lock_held());
5756 	return idr_find(&ss->css_idr, id);
5757 }
5758 
5759 /**
5760  * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
5761  * @path: path on the default hierarchy
5762  *
5763  * Find the cgroup at @path on the default hierarchy, increment its
5764  * reference count and return it.  Returns pointer to the found cgroup on
5765  * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
5766  * if @path points to a non-directory.
5767  */
cgroup_get_from_path(const char * path)5768 struct cgroup *cgroup_get_from_path(const char *path)
5769 {
5770 	struct kernfs_node *kn;
5771 	struct cgroup *cgrp;
5772 
5773 	mutex_lock(&cgroup_mutex);
5774 
5775 	kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
5776 	if (kn) {
5777 		if (kernfs_type(kn) == KERNFS_DIR) {
5778 			cgrp = kn->priv;
5779 			cgroup_get_live(cgrp);
5780 		} else {
5781 			cgrp = ERR_PTR(-ENOTDIR);
5782 		}
5783 		kernfs_put(kn);
5784 	} else {
5785 		cgrp = ERR_PTR(-ENOENT);
5786 	}
5787 
5788 	mutex_unlock(&cgroup_mutex);
5789 	return cgrp;
5790 }
5791 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
5792 
5793 /**
5794  * cgroup_get_from_fd - get a cgroup pointer from a fd
5795  * @fd: fd obtained by open(cgroup2_dir)
5796  *
5797  * Find the cgroup from a fd which should be obtained
5798  * by opening a cgroup directory.  Returns a pointer to the
5799  * cgroup on success. ERR_PTR is returned if the cgroup
5800  * cannot be found.
5801  */
cgroup_get_from_fd(int fd)5802 struct cgroup *cgroup_get_from_fd(int fd)
5803 {
5804 	struct cgroup_subsys_state *css;
5805 	struct cgroup *cgrp;
5806 	struct file *f;
5807 
5808 	f = fget_raw(fd);
5809 	if (!f)
5810 		return ERR_PTR(-EBADF);
5811 
5812 	css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
5813 	fput(f);
5814 	if (IS_ERR(css))
5815 		return ERR_CAST(css);
5816 
5817 	cgrp = css->cgroup;
5818 	if (!cgroup_on_dfl(cgrp)) {
5819 		cgroup_put(cgrp);
5820 		return ERR_PTR(-EBADF);
5821 	}
5822 
5823 	return cgrp;
5824 }
5825 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
5826 
5827 /*
5828  * sock->sk_cgrp_data handling.  For more info, see sock_cgroup_data
5829  * definition in cgroup-defs.h.
5830  */
5831 #ifdef CONFIG_SOCK_CGROUP_DATA
5832 
5833 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
5834 
5835 DEFINE_SPINLOCK(cgroup_sk_update_lock);
5836 static bool cgroup_sk_alloc_disabled __read_mostly;
5837 
cgroup_sk_alloc_disable(void)5838 void cgroup_sk_alloc_disable(void)
5839 {
5840 	if (cgroup_sk_alloc_disabled)
5841 		return;
5842 	pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
5843 	cgroup_sk_alloc_disabled = true;
5844 }
5845 
5846 #else
5847 
5848 #define cgroup_sk_alloc_disabled	false
5849 
5850 #endif
5851 
cgroup_sk_alloc(struct sock_cgroup_data * skcd)5852 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
5853 {
5854 	if (cgroup_sk_alloc_disabled)
5855 		return;
5856 
5857 	/* Socket clone path */
5858 	if (skcd->val) {
5859 		/*
5860 		 * We might be cloning a socket which is left in an empty
5861 		 * cgroup and the cgroup might have already been rmdir'd.
5862 		 * Don't use cgroup_get_live().
5863 		 */
5864 		cgroup_get(sock_cgroup_ptr(skcd));
5865 		return;
5866 	}
5867 
5868 	rcu_read_lock();
5869 
5870 	while (true) {
5871 		struct css_set *cset;
5872 
5873 		cset = task_css_set(current);
5874 		if (likely(cgroup_tryget(cset->dfl_cgrp))) {
5875 			skcd->val = (unsigned long)cset->dfl_cgrp;
5876 			break;
5877 		}
5878 		cpu_relax();
5879 	}
5880 
5881 	rcu_read_unlock();
5882 }
5883 
cgroup_sk_free(struct sock_cgroup_data * skcd)5884 void cgroup_sk_free(struct sock_cgroup_data *skcd)
5885 {
5886 	cgroup_put(sock_cgroup_ptr(skcd));
5887 }
5888 
5889 #endif	/* CONFIG_SOCK_CGROUP_DATA */
5890 
5891 #ifdef CONFIG_CGROUP_BPF
cgroup_bpf_attach(struct cgroup * cgrp,struct bpf_prog * prog,enum bpf_attach_type type,u32 flags)5892 int cgroup_bpf_attach(struct cgroup *cgrp, struct bpf_prog *prog,
5893 		      enum bpf_attach_type type, u32 flags)
5894 {
5895 	int ret;
5896 
5897 	mutex_lock(&cgroup_mutex);
5898 	ret = __cgroup_bpf_attach(cgrp, prog, type, flags);
5899 	mutex_unlock(&cgroup_mutex);
5900 	return ret;
5901 }
cgroup_bpf_detach(struct cgroup * cgrp,struct bpf_prog * prog,enum bpf_attach_type type,u32 flags)5902 int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
5903 		      enum bpf_attach_type type, u32 flags)
5904 {
5905 	int ret;
5906 
5907 	mutex_lock(&cgroup_mutex);
5908 	ret = __cgroup_bpf_detach(cgrp, prog, type, flags);
5909 	mutex_unlock(&cgroup_mutex);
5910 	return ret;
5911 }
cgroup_bpf_query(struct cgroup * cgrp,const union bpf_attr * attr,union bpf_attr __user * uattr)5912 int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
5913 		     union bpf_attr __user *uattr)
5914 {
5915 	int ret;
5916 
5917 	mutex_lock(&cgroup_mutex);
5918 	ret = __cgroup_bpf_query(cgrp, attr, uattr);
5919 	mutex_unlock(&cgroup_mutex);
5920 	return ret;
5921 }
5922 #endif /* CONFIG_CGROUP_BPF */
5923 
5924 #ifdef CONFIG_SYSFS
show_delegatable_files(struct cftype * files,char * buf,ssize_t size,const char * prefix)5925 static ssize_t show_delegatable_files(struct cftype *files, char *buf,
5926 				      ssize_t size, const char *prefix)
5927 {
5928 	struct cftype *cft;
5929 	ssize_t ret = 0;
5930 
5931 	for (cft = files; cft && cft->name[0] != '\0'; cft++) {
5932 		if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
5933 			continue;
5934 
5935 		if (prefix)
5936 			ret += snprintf(buf + ret, size - ret, "%s.", prefix);
5937 
5938 		ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
5939 
5940 		if (unlikely(ret >= size)) {
5941 			WARN_ON(1);
5942 			break;
5943 		}
5944 	}
5945 
5946 	return ret;
5947 }
5948 
delegate_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)5949 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
5950 			      char *buf)
5951 {
5952 	struct cgroup_subsys *ss;
5953 	int ssid;
5954 	ssize_t ret = 0;
5955 
5956 	ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret,
5957 				     NULL);
5958 
5959 	for_each_subsys(ss, ssid)
5960 		ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
5961 					      PAGE_SIZE - ret,
5962 					      cgroup_subsys_name[ssid]);
5963 
5964 	return ret;
5965 }
5966 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
5967 
features_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)5968 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
5969 			     char *buf)
5970 {
5971 	return snprintf(buf, PAGE_SIZE, "nsdelegate\n");
5972 }
5973 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
5974 
5975 static struct attribute *cgroup_sysfs_attrs[] = {
5976 	&cgroup_delegate_attr.attr,
5977 	&cgroup_features_attr.attr,
5978 	NULL,
5979 };
5980 
5981 static const struct attribute_group cgroup_sysfs_attr_group = {
5982 	.attrs = cgroup_sysfs_attrs,
5983 	.name = "cgroup",
5984 };
5985 
cgroup_sysfs_init(void)5986 static int __init cgroup_sysfs_init(void)
5987 {
5988 	return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
5989 }
5990 subsys_initcall(cgroup_sysfs_init);
5991 #endif /* CONFIG_SYSFS */
5992