1 /*
2  *  Generic process-grouping system.
3  *
4  *  Based originally on the cpuset system, extracted by Paul Menage
5  *  Copyright (C) 2006 Google, Inc
6  *
7  *  Notifications support
8  *  Copyright (C) 2009 Nokia Corporation
9  *  Author: Kirill A. Shutemov
10  *
11  *  Copyright notices from the original cpuset code:
12  *  --------------------------------------------------
13  *  Copyright (C) 2003 BULL SA.
14  *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
15  *
16  *  Portions derived from Patrick Mochel's sysfs code.
17  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
18  *
19  *  2003-10-10 Written by Simon Derr.
20  *  2003-10-22 Updates by Stephen Hemminger.
21  *  2004 May-July Rework by Paul Jackson.
22  *  ---------------------------------------------------
23  *
24  *  This file is subject to the terms and conditions of the GNU General Public
25  *  License.  See the file COPYING in the main directory of the Linux
26  *  distribution for more details.
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include "cgroup-internal.h"
32 
33 #include <linux/cred.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/magic.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/sched/task.h>
45 #include <linux/slab.h>
46 #include <linux/spinlock.h>
47 #include <linux/percpu-rwsem.h>
48 #include <linux/string.h>
49 #include <linux/hashtable.h>
50 #include <linux/idr.h>
51 #include <linux/kthread.h>
52 #include <linux/atomic.h>
53 #include <linux/cpuset.h>
54 #include <linux/proc_ns.h>
55 #include <linux/nsproxy.h>
56 #include <linux/file.h>
57 #include <linux/fs_parser.h>
58 #include <linux/sched/cputime.h>
59 #include <linux/psi.h>
60 #include <net/sock.h>
61 
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/cgroup.h>
64 
65 #define CGROUP_FILE_NAME_MAX		(MAX_CGROUP_TYPE_NAMELEN +	\
66 					 MAX_CFTYPE_NAME + 2)
67 /* let's not notify more than 100 times per second */
68 #define CGROUP_FILE_NOTIFY_MIN_INTV	DIV_ROUND_UP(HZ, 100)
69 
70 /*
71  * cgroup_mutex is the master lock.  Any modification to cgroup or its
72  * hierarchy must be performed while holding it.
73  *
74  * css_set_lock protects task->cgroups pointer, the list of css_set
75  * objects, and the chain of tasks off each css_set.
76  *
77  * These locks are exported if CONFIG_PROVE_RCU so that accessors in
78  * cgroup.h can use them for lockdep annotations.
79  */
80 DEFINE_MUTEX(cgroup_mutex);
81 DEFINE_SPINLOCK(css_set_lock);
82 
83 #ifdef CONFIG_PROVE_RCU
84 EXPORT_SYMBOL_GPL(cgroup_mutex);
85 EXPORT_SYMBOL_GPL(css_set_lock);
86 #endif
87 
88 DEFINE_SPINLOCK(trace_cgroup_path_lock);
89 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
90 bool cgroup_debug __read_mostly;
91 
92 /*
93  * Protects cgroup_idr and css_idr so that IDs can be released without
94  * grabbing cgroup_mutex.
95  */
96 static DEFINE_SPINLOCK(cgroup_idr_lock);
97 
98 /*
99  * Protects cgroup_file->kn for !self csses.  It synchronizes notifications
100  * against file removal/re-creation across css hiding.
101  */
102 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
103 
104 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem);
105 
106 #define cgroup_assert_mutex_or_rcu_locked()				\
107 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
108 			   !lockdep_is_held(&cgroup_mutex),		\
109 			   "cgroup_mutex or RCU read lock required");
110 
111 /*
112  * cgroup destruction makes heavy use of work items and there can be a lot
113  * of concurrent destructions.  Use a separate workqueue so that cgroup
114  * destruction work items don't end up filling up max_active of system_wq
115  * which may lead to deadlock.
116  */
117 static struct workqueue_struct *cgroup_destroy_wq;
118 
119 /* generate an array of cgroup subsystem pointers */
120 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
121 struct cgroup_subsys *cgroup_subsys[] = {
122 #include <linux/cgroup_subsys.h>
123 };
124 #undef SUBSYS
125 
126 /* array of cgroup subsystem names */
127 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
128 static const char *cgroup_subsys_name[] = {
129 #include <linux/cgroup_subsys.h>
130 };
131 #undef SUBSYS
132 
133 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
134 #define SUBSYS(_x)								\
135 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key);			\
136 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key);			\
137 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key);			\
138 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
139 #include <linux/cgroup_subsys.h>
140 #undef SUBSYS
141 
142 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
143 static struct static_key_true *cgroup_subsys_enabled_key[] = {
144 #include <linux/cgroup_subsys.h>
145 };
146 #undef SUBSYS
147 
148 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
149 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
150 #include <linux/cgroup_subsys.h>
151 };
152 #undef SUBSYS
153 
154 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
155 
156 /*
157  * The default hierarchy, reserved for the subsystems that are otherwise
158  * unattached - it never has more than a single cgroup, and all tasks are
159  * part of that cgroup.
160  */
161 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
162 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
163 
164 /*
165  * The default hierarchy always exists but is hidden until mounted for the
166  * first time.  This is for backward compatibility.
167  */
168 static bool cgrp_dfl_visible;
169 
170 /* some controllers are not supported in the default hierarchy */
171 static u16 cgrp_dfl_inhibit_ss_mask;
172 
173 /* some controllers are implicitly enabled on the default hierarchy */
174 static u16 cgrp_dfl_implicit_ss_mask;
175 
176 /* some controllers can be threaded on the default hierarchy */
177 static u16 cgrp_dfl_threaded_ss_mask;
178 
179 /* The list of hierarchy roots */
180 LIST_HEAD(cgroup_roots);
181 static int cgroup_root_count;
182 
183 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
184 static DEFINE_IDR(cgroup_hierarchy_idr);
185 
186 /*
187  * Assign a monotonically increasing serial number to csses.  It guarantees
188  * cgroups with bigger numbers are newer than those with smaller numbers.
189  * Also, as csses are always appended to the parent's ->children list, it
190  * guarantees that sibling csses are always sorted in the ascending serial
191  * number order on the list.  Protected by cgroup_mutex.
192  */
193 static u64 css_serial_nr_next = 1;
194 
195 /*
196  * These bitmasks identify subsystems with specific features to avoid
197  * having to do iterative checks repeatedly.
198  */
199 static u16 have_fork_callback __read_mostly;
200 static u16 have_exit_callback __read_mostly;
201 static u16 have_release_callback __read_mostly;
202 static u16 have_canfork_callback __read_mostly;
203 
204 /* cgroup namespace for init task */
205 struct cgroup_namespace init_cgroup_ns = {
206 	.count		= REFCOUNT_INIT(2),
207 	.user_ns	= &init_user_ns,
208 	.ns.ops		= &cgroupns_operations,
209 	.ns.inum	= PROC_CGROUP_INIT_INO,
210 	.root_cset	= &init_css_set,
211 };
212 
213 static struct file_system_type cgroup2_fs_type;
214 static struct cftype cgroup_base_files[];
215 
216 static int cgroup_apply_control(struct cgroup *cgrp);
217 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
218 static void css_task_iter_skip(struct css_task_iter *it,
219 			       struct task_struct *task);
220 static int cgroup_destroy_locked(struct cgroup *cgrp);
221 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
222 					      struct cgroup_subsys *ss);
223 static void css_release(struct percpu_ref *ref);
224 static void kill_css(struct cgroup_subsys_state *css);
225 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
226 			      struct cgroup *cgrp, struct cftype cfts[],
227 			      bool is_add);
228 
229 /**
230  * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
231  * @ssid: subsys ID of interest
232  *
233  * cgroup_subsys_enabled() can only be used with literal subsys names which
234  * is fine for individual subsystems but unsuitable for cgroup core.  This
235  * is slower static_key_enabled() based test indexed by @ssid.
236  */
cgroup_ssid_enabled(int ssid)237 bool cgroup_ssid_enabled(int ssid)
238 {
239 	if (CGROUP_SUBSYS_COUNT == 0)
240 		return false;
241 
242 	return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
243 }
244 
245 /**
246  * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
247  * @cgrp: the cgroup of interest
248  *
249  * The default hierarchy is the v2 interface of cgroup and this function
250  * can be used to test whether a cgroup is on the default hierarchy for
251  * cases where a subsystem should behave differnetly depending on the
252  * interface version.
253  *
254  * The set of behaviors which change on the default hierarchy are still
255  * being determined and the mount option is prefixed with __DEVEL__.
256  *
257  * List of changed behaviors:
258  *
259  * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
260  *   and "name" are disallowed.
261  *
262  * - When mounting an existing superblock, mount options should match.
263  *
264  * - Remount is disallowed.
265  *
266  * - rename(2) is disallowed.
267  *
268  * - "tasks" is removed.  Everything should be at process granularity.  Use
269  *   "cgroup.procs" instead.
270  *
271  * - "cgroup.procs" is not sorted.  pids will be unique unless they got
272  *   recycled inbetween reads.
273  *
274  * - "release_agent" and "notify_on_release" are removed.  Replacement
275  *   notification mechanism will be implemented.
276  *
277  * - "cgroup.clone_children" is removed.
278  *
279  * - "cgroup.subtree_populated" is available.  Its value is 0 if the cgroup
280  *   and its descendants contain no task; otherwise, 1.  The file also
281  *   generates kernfs notification which can be monitored through poll and
282  *   [di]notify when the value of the file changes.
283  *
284  * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
285  *   take masks of ancestors with non-empty cpus/mems, instead of being
286  *   moved to an ancestor.
287  *
288  * - cpuset: a task can be moved into an empty cpuset, and again it takes
289  *   masks of ancestors.
290  *
291  * - memcg: use_hierarchy is on by default and the cgroup file for the flag
292  *   is not created.
293  *
294  * - blkcg: blk-throttle becomes properly hierarchical.
295  *
296  * - debug: disallowed on the default hierarchy.
297  */
cgroup_on_dfl(const struct cgroup * cgrp)298 bool cgroup_on_dfl(const struct cgroup *cgrp)
299 {
300 	return cgrp->root == &cgrp_dfl_root;
301 }
302 
303 /* IDR wrappers which synchronize using cgroup_idr_lock */
cgroup_idr_alloc(struct idr * idr,void * ptr,int start,int end,gfp_t gfp_mask)304 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
305 			    gfp_t gfp_mask)
306 {
307 	int ret;
308 
309 	idr_preload(gfp_mask);
310 	spin_lock_bh(&cgroup_idr_lock);
311 	ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
312 	spin_unlock_bh(&cgroup_idr_lock);
313 	idr_preload_end();
314 	return ret;
315 }
316 
cgroup_idr_replace(struct idr * idr,void * ptr,int id)317 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
318 {
319 	void *ret;
320 
321 	spin_lock_bh(&cgroup_idr_lock);
322 	ret = idr_replace(idr, ptr, id);
323 	spin_unlock_bh(&cgroup_idr_lock);
324 	return ret;
325 }
326 
cgroup_idr_remove(struct idr * idr,int id)327 static void cgroup_idr_remove(struct idr *idr, int id)
328 {
329 	spin_lock_bh(&cgroup_idr_lock);
330 	idr_remove(idr, id);
331 	spin_unlock_bh(&cgroup_idr_lock);
332 }
333 
cgroup_has_tasks(struct cgroup * cgrp)334 static bool cgroup_has_tasks(struct cgroup *cgrp)
335 {
336 	return cgrp->nr_populated_csets;
337 }
338 
cgroup_is_threaded(struct cgroup * cgrp)339 bool cgroup_is_threaded(struct cgroup *cgrp)
340 {
341 	return cgrp->dom_cgrp != cgrp;
342 }
343 
344 /* can @cgrp host both domain and threaded children? */
cgroup_is_mixable(struct cgroup * cgrp)345 static bool cgroup_is_mixable(struct cgroup *cgrp)
346 {
347 	/*
348 	 * Root isn't under domain level resource control exempting it from
349 	 * the no-internal-process constraint, so it can serve as a thread
350 	 * root and a parent of resource domains at the same time.
351 	 */
352 	return !cgroup_parent(cgrp);
353 }
354 
355 /* can @cgrp become a thread root? should always be true for a thread root */
cgroup_can_be_thread_root(struct cgroup * cgrp)356 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
357 {
358 	/* mixables don't care */
359 	if (cgroup_is_mixable(cgrp))
360 		return true;
361 
362 	/* domain roots can't be nested under threaded */
363 	if (cgroup_is_threaded(cgrp))
364 		return false;
365 
366 	/* can only have either domain or threaded children */
367 	if (cgrp->nr_populated_domain_children)
368 		return false;
369 
370 	/* and no domain controllers can be enabled */
371 	if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
372 		return false;
373 
374 	return true;
375 }
376 
377 /* is @cgrp root of a threaded subtree? */
cgroup_is_thread_root(struct cgroup * cgrp)378 bool cgroup_is_thread_root(struct cgroup *cgrp)
379 {
380 	/* thread root should be a domain */
381 	if (cgroup_is_threaded(cgrp))
382 		return false;
383 
384 	/* a domain w/ threaded children is a thread root */
385 	if (cgrp->nr_threaded_children)
386 		return true;
387 
388 	/*
389 	 * A domain which has tasks and explicit threaded controllers
390 	 * enabled is a thread root.
391 	 */
392 	if (cgroup_has_tasks(cgrp) &&
393 	    (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
394 		return true;
395 
396 	return false;
397 }
398 
399 /* a domain which isn't connected to the root w/o brekage can't be used */
cgroup_is_valid_domain(struct cgroup * cgrp)400 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
401 {
402 	/* the cgroup itself can be a thread root */
403 	if (cgroup_is_threaded(cgrp))
404 		return false;
405 
406 	/* but the ancestors can't be unless mixable */
407 	while ((cgrp = cgroup_parent(cgrp))) {
408 		if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
409 			return false;
410 		if (cgroup_is_threaded(cgrp))
411 			return false;
412 	}
413 
414 	return true;
415 }
416 
417 /* subsystems visibly enabled on a cgroup */
cgroup_control(struct cgroup * cgrp)418 static u16 cgroup_control(struct cgroup *cgrp)
419 {
420 	struct cgroup *parent = cgroup_parent(cgrp);
421 	u16 root_ss_mask = cgrp->root->subsys_mask;
422 
423 	if (parent) {
424 		u16 ss_mask = parent->subtree_control;
425 
426 		/* threaded cgroups can only have threaded controllers */
427 		if (cgroup_is_threaded(cgrp))
428 			ss_mask &= cgrp_dfl_threaded_ss_mask;
429 		return ss_mask;
430 	}
431 
432 	if (cgroup_on_dfl(cgrp))
433 		root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
434 				  cgrp_dfl_implicit_ss_mask);
435 	return root_ss_mask;
436 }
437 
438 /* subsystems enabled on a cgroup */
cgroup_ss_mask(struct cgroup * cgrp)439 static u16 cgroup_ss_mask(struct cgroup *cgrp)
440 {
441 	struct cgroup *parent = cgroup_parent(cgrp);
442 
443 	if (parent) {
444 		u16 ss_mask = parent->subtree_ss_mask;
445 
446 		/* threaded cgroups can only have threaded controllers */
447 		if (cgroup_is_threaded(cgrp))
448 			ss_mask &= cgrp_dfl_threaded_ss_mask;
449 		return ss_mask;
450 	}
451 
452 	return cgrp->root->subsys_mask;
453 }
454 
455 /**
456  * cgroup_css - obtain a cgroup's css for the specified subsystem
457  * @cgrp: the cgroup of interest
458  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
459  *
460  * Return @cgrp's css (cgroup_subsys_state) associated with @ss.  This
461  * function must be called either under cgroup_mutex or rcu_read_lock() and
462  * the caller is responsible for pinning the returned css if it wants to
463  * keep accessing it outside the said locks.  This function may return
464  * %NULL if @cgrp doesn't have @subsys_id enabled.
465  */
cgroup_css(struct cgroup * cgrp,struct cgroup_subsys * ss)466 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
467 					      struct cgroup_subsys *ss)
468 {
469 	if (ss)
470 		return rcu_dereference_check(cgrp->subsys[ss->id],
471 					lockdep_is_held(&cgroup_mutex));
472 	else
473 		return &cgrp->self;
474 }
475 
476 /**
477  * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
478  * @cgrp: the cgroup of interest
479  * @ss: the subsystem of interest
480  *
481  * Find and get @cgrp's css assocaited with @ss.  If the css doesn't exist
482  * or is offline, %NULL is returned.
483  */
cgroup_tryget_css(struct cgroup * cgrp,struct cgroup_subsys * ss)484 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
485 						     struct cgroup_subsys *ss)
486 {
487 	struct cgroup_subsys_state *css;
488 
489 	rcu_read_lock();
490 	css = cgroup_css(cgrp, ss);
491 	if (css && !css_tryget_online(css))
492 		css = NULL;
493 	rcu_read_unlock();
494 
495 	return css;
496 }
497 
498 /**
499  * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
500  * @cgrp: the cgroup of interest
501  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
502  *
503  * Similar to cgroup_css() but returns the effective css, which is defined
504  * as the matching css of the nearest ancestor including self which has @ss
505  * enabled.  If @ss is associated with the hierarchy @cgrp is on, this
506  * function is guaranteed to return non-NULL css.
507  */
cgroup_e_css_by_mask(struct cgroup * cgrp,struct cgroup_subsys * ss)508 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
509 							struct cgroup_subsys *ss)
510 {
511 	lockdep_assert_held(&cgroup_mutex);
512 
513 	if (!ss)
514 		return &cgrp->self;
515 
516 	/*
517 	 * This function is used while updating css associations and thus
518 	 * can't test the csses directly.  Test ss_mask.
519 	 */
520 	while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
521 		cgrp = cgroup_parent(cgrp);
522 		if (!cgrp)
523 			return NULL;
524 	}
525 
526 	return cgroup_css(cgrp, ss);
527 }
528 
529 /**
530  * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
531  * @cgrp: the cgroup of interest
532  * @ss: the subsystem of interest
533  *
534  * Find and get the effective css of @cgrp for @ss.  The effective css is
535  * defined as the matching css of the nearest ancestor including self which
536  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
537  * the root css is returned, so this function always returns a valid css.
538  *
539  * The returned css is not guaranteed to be online, and therefore it is the
540  * callers responsiblity to tryget a reference for it.
541  */
cgroup_e_css(struct cgroup * cgrp,struct cgroup_subsys * ss)542 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
543 					 struct cgroup_subsys *ss)
544 {
545 	struct cgroup_subsys_state *css;
546 
547 	do {
548 		css = cgroup_css(cgrp, ss);
549 
550 		if (css)
551 			return css;
552 		cgrp = cgroup_parent(cgrp);
553 	} while (cgrp);
554 
555 	return init_css_set.subsys[ss->id];
556 }
557 
558 /**
559  * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
560  * @cgrp: the cgroup of interest
561  * @ss: the subsystem of interest
562  *
563  * Find and get the effective css of @cgrp for @ss.  The effective css is
564  * defined as the matching css of the nearest ancestor including self which
565  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
566  * the root css is returned, so this function always returns a valid css.
567  * The returned css must be put using css_put().
568  */
cgroup_get_e_css(struct cgroup * cgrp,struct cgroup_subsys * ss)569 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
570 					     struct cgroup_subsys *ss)
571 {
572 	struct cgroup_subsys_state *css;
573 
574 	rcu_read_lock();
575 
576 	do {
577 		css = cgroup_css(cgrp, ss);
578 
579 		if (css && css_tryget_online(css))
580 			goto out_unlock;
581 		cgrp = cgroup_parent(cgrp);
582 	} while (cgrp);
583 
584 	css = init_css_set.subsys[ss->id];
585 	css_get(css);
586 out_unlock:
587 	rcu_read_unlock();
588 	return css;
589 }
590 
cgroup_get_live(struct cgroup * cgrp)591 static void cgroup_get_live(struct cgroup *cgrp)
592 {
593 	WARN_ON_ONCE(cgroup_is_dead(cgrp));
594 	css_get(&cgrp->self);
595 }
596 
597 /**
598  * __cgroup_task_count - count the number of tasks in a cgroup. The caller
599  * is responsible for taking the css_set_lock.
600  * @cgrp: the cgroup in question
601  */
__cgroup_task_count(const struct cgroup * cgrp)602 int __cgroup_task_count(const struct cgroup *cgrp)
603 {
604 	int count = 0;
605 	struct cgrp_cset_link *link;
606 
607 	lockdep_assert_held(&css_set_lock);
608 
609 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
610 		count += link->cset->nr_tasks;
611 
612 	return count;
613 }
614 
615 /**
616  * cgroup_task_count - count the number of tasks in a cgroup.
617  * @cgrp: the cgroup in question
618  */
cgroup_task_count(const struct cgroup * cgrp)619 int cgroup_task_count(const struct cgroup *cgrp)
620 {
621 	int count;
622 
623 	spin_lock_irq(&css_set_lock);
624 	count = __cgroup_task_count(cgrp);
625 	spin_unlock_irq(&css_set_lock);
626 
627 	return count;
628 }
629 
of_css(struct kernfs_open_file * of)630 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
631 {
632 	struct cgroup *cgrp = of->kn->parent->priv;
633 	struct cftype *cft = of_cft(of);
634 
635 	/*
636 	 * This is open and unprotected implementation of cgroup_css().
637 	 * seq_css() is only called from a kernfs file operation which has
638 	 * an active reference on the file.  Because all the subsystem
639 	 * files are drained before a css is disassociated with a cgroup,
640 	 * the matching css from the cgroup's subsys table is guaranteed to
641 	 * be and stay valid until the enclosing operation is complete.
642 	 */
643 	if (cft->ss)
644 		return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
645 	else
646 		return &cgrp->self;
647 }
648 EXPORT_SYMBOL_GPL(of_css);
649 
650 /**
651  * for_each_css - iterate all css's of a cgroup
652  * @css: the iteration cursor
653  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
654  * @cgrp: the target cgroup to iterate css's of
655  *
656  * Should be called under cgroup_[tree_]mutex.
657  */
658 #define for_each_css(css, ssid, cgrp)					\
659 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	\
660 		if (!((css) = rcu_dereference_check(			\
661 				(cgrp)->subsys[(ssid)],			\
662 				lockdep_is_held(&cgroup_mutex)))) { }	\
663 		else
664 
665 /**
666  * for_each_e_css - iterate all effective css's of a cgroup
667  * @css: the iteration cursor
668  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
669  * @cgrp: the target cgroup to iterate css's of
670  *
671  * Should be called under cgroup_[tree_]mutex.
672  */
673 #define for_each_e_css(css, ssid, cgrp)					    \
674 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	    \
675 		if (!((css) = cgroup_e_css_by_mask(cgrp,		    \
676 						   cgroup_subsys[(ssid)]))) \
677 			;						    \
678 		else
679 
680 /**
681  * do_each_subsys_mask - filter for_each_subsys with a bitmask
682  * @ss: the iteration cursor
683  * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
684  * @ss_mask: the bitmask
685  *
686  * The block will only run for cases where the ssid-th bit (1 << ssid) of
687  * @ss_mask is set.
688  */
689 #define do_each_subsys_mask(ss, ssid, ss_mask) do {			\
690 	unsigned long __ss_mask = (ss_mask);				\
691 	if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */	\
692 		(ssid) = 0;						\
693 		break;							\
694 	}								\
695 	for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) {	\
696 		(ss) = cgroup_subsys[ssid];				\
697 		{
698 
699 #define while_each_subsys_mask()					\
700 		}							\
701 	}								\
702 } while (false)
703 
704 /* iterate over child cgrps, lock should be held throughout iteration */
705 #define cgroup_for_each_live_child(child, cgrp)				\
706 	list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
707 		if (({ lockdep_assert_held(&cgroup_mutex);		\
708 		       cgroup_is_dead(child); }))			\
709 			;						\
710 		else
711 
712 /* walk live descendants in preorder */
713 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)		\
714 	css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL))	\
715 		if (({ lockdep_assert_held(&cgroup_mutex);		\
716 		       (dsct) = (d_css)->cgroup;			\
717 		       cgroup_is_dead(dsct); }))			\
718 			;						\
719 		else
720 
721 /* walk live descendants in postorder */
722 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp)		\
723 	css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL))	\
724 		if (({ lockdep_assert_held(&cgroup_mutex);		\
725 		       (dsct) = (d_css)->cgroup;			\
726 		       cgroup_is_dead(dsct); }))			\
727 			;						\
728 		else
729 
730 /*
731  * The default css_set - used by init and its children prior to any
732  * hierarchies being mounted. It contains a pointer to the root state
733  * for each subsystem. Also used to anchor the list of css_sets. Not
734  * reference-counted, to improve performance when child cgroups
735  * haven't been created.
736  */
737 struct css_set init_css_set = {
738 	.refcount		= REFCOUNT_INIT(1),
739 	.dom_cset		= &init_css_set,
740 	.tasks			= LIST_HEAD_INIT(init_css_set.tasks),
741 	.mg_tasks		= LIST_HEAD_INIT(init_css_set.mg_tasks),
742 	.dying_tasks		= LIST_HEAD_INIT(init_css_set.dying_tasks),
743 	.task_iters		= LIST_HEAD_INIT(init_css_set.task_iters),
744 	.threaded_csets		= LIST_HEAD_INIT(init_css_set.threaded_csets),
745 	.cgrp_links		= LIST_HEAD_INIT(init_css_set.cgrp_links),
746 	.mg_preload_node	= LIST_HEAD_INIT(init_css_set.mg_preload_node),
747 	.mg_node		= LIST_HEAD_INIT(init_css_set.mg_node),
748 
749 	/*
750 	 * The following field is re-initialized when this cset gets linked
751 	 * in cgroup_init().  However, let's initialize the field
752 	 * statically too so that the default cgroup can be accessed safely
753 	 * early during boot.
754 	 */
755 	.dfl_cgrp		= &cgrp_dfl_root.cgrp,
756 };
757 
758 static int css_set_count	= 1;	/* 1 for init_css_set */
759 
css_set_threaded(struct css_set * cset)760 static bool css_set_threaded(struct css_set *cset)
761 {
762 	return cset->dom_cset != cset;
763 }
764 
765 /**
766  * css_set_populated - does a css_set contain any tasks?
767  * @cset: target css_set
768  *
769  * css_set_populated() should be the same as !!cset->nr_tasks at steady
770  * state. However, css_set_populated() can be called while a task is being
771  * added to or removed from the linked list before the nr_tasks is
772  * properly updated. Hence, we can't just look at ->nr_tasks here.
773  */
css_set_populated(struct css_set * cset)774 static bool css_set_populated(struct css_set *cset)
775 {
776 	lockdep_assert_held(&css_set_lock);
777 
778 	return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
779 }
780 
781 /**
782  * cgroup_update_populated - update the populated count of a cgroup
783  * @cgrp: the target cgroup
784  * @populated: inc or dec populated count
785  *
786  * One of the css_sets associated with @cgrp is either getting its first
787  * task or losing the last.  Update @cgrp->nr_populated_* accordingly.  The
788  * count is propagated towards root so that a given cgroup's
789  * nr_populated_children is zero iff none of its descendants contain any
790  * tasks.
791  *
792  * @cgrp's interface file "cgroup.populated" is zero if both
793  * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
794  * 1 otherwise.  When the sum changes from or to zero, userland is notified
795  * that the content of the interface file has changed.  This can be used to
796  * detect when @cgrp and its descendants become populated or empty.
797  */
cgroup_update_populated(struct cgroup * cgrp,bool populated)798 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
799 {
800 	struct cgroup *child = NULL;
801 	int adj = populated ? 1 : -1;
802 
803 	lockdep_assert_held(&css_set_lock);
804 
805 	do {
806 		bool was_populated = cgroup_is_populated(cgrp);
807 
808 		if (!child) {
809 			cgrp->nr_populated_csets += adj;
810 		} else {
811 			if (cgroup_is_threaded(child))
812 				cgrp->nr_populated_threaded_children += adj;
813 			else
814 				cgrp->nr_populated_domain_children += adj;
815 		}
816 
817 		if (was_populated == cgroup_is_populated(cgrp))
818 			break;
819 
820 		cgroup1_check_for_release(cgrp);
821 		TRACE_CGROUP_PATH(notify_populated, cgrp,
822 				  cgroup_is_populated(cgrp));
823 		cgroup_file_notify(&cgrp->events_file);
824 
825 		child = cgrp;
826 		cgrp = cgroup_parent(cgrp);
827 	} while (cgrp);
828 }
829 
830 /**
831  * css_set_update_populated - update populated state of a css_set
832  * @cset: target css_set
833  * @populated: whether @cset is populated or depopulated
834  *
835  * @cset is either getting the first task or losing the last.  Update the
836  * populated counters of all associated cgroups accordingly.
837  */
css_set_update_populated(struct css_set * cset,bool populated)838 static void css_set_update_populated(struct css_set *cset, bool populated)
839 {
840 	struct cgrp_cset_link *link;
841 
842 	lockdep_assert_held(&css_set_lock);
843 
844 	list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
845 		cgroup_update_populated(link->cgrp, populated);
846 }
847 
848 /*
849  * @task is leaving, advance task iterators which are pointing to it so
850  * that they can resume at the next position.  Advancing an iterator might
851  * remove it from the list, use safe walk.  See css_task_iter_skip() for
852  * details.
853  */
css_set_skip_task_iters(struct css_set * cset,struct task_struct * task)854 static void css_set_skip_task_iters(struct css_set *cset,
855 				    struct task_struct *task)
856 {
857 	struct css_task_iter *it, *pos;
858 
859 	list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node)
860 		css_task_iter_skip(it, task);
861 }
862 
863 /**
864  * css_set_move_task - move a task from one css_set to another
865  * @task: task being moved
866  * @from_cset: css_set @task currently belongs to (may be NULL)
867  * @to_cset: new css_set @task is being moved to (may be NULL)
868  * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
869  *
870  * Move @task from @from_cset to @to_cset.  If @task didn't belong to any
871  * css_set, @from_cset can be NULL.  If @task is being disassociated
872  * instead of moved, @to_cset can be NULL.
873  *
874  * This function automatically handles populated counter updates and
875  * css_task_iter adjustments but the caller is responsible for managing
876  * @from_cset and @to_cset's reference counts.
877  */
css_set_move_task(struct task_struct * task,struct css_set * from_cset,struct css_set * to_cset,bool use_mg_tasks)878 static void css_set_move_task(struct task_struct *task,
879 			      struct css_set *from_cset, struct css_set *to_cset,
880 			      bool use_mg_tasks)
881 {
882 	lockdep_assert_held(&css_set_lock);
883 
884 	if (to_cset && !css_set_populated(to_cset))
885 		css_set_update_populated(to_cset, true);
886 
887 	if (from_cset) {
888 		WARN_ON_ONCE(list_empty(&task->cg_list));
889 
890 		css_set_skip_task_iters(from_cset, task);
891 		list_del_init(&task->cg_list);
892 		if (!css_set_populated(from_cset))
893 			css_set_update_populated(from_cset, false);
894 	} else {
895 		WARN_ON_ONCE(!list_empty(&task->cg_list));
896 	}
897 
898 	if (to_cset) {
899 		/*
900 		 * We are synchronized through cgroup_threadgroup_rwsem
901 		 * against PF_EXITING setting such that we can't race
902 		 * against cgroup_exit() changing the css_set to
903 		 * init_css_set and dropping the old one.
904 		 */
905 		WARN_ON_ONCE(task->flags & PF_EXITING);
906 
907 		cgroup_move_task(task, to_cset);
908 		list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
909 							     &to_cset->tasks);
910 	}
911 }
912 
913 /*
914  * hash table for cgroup groups. This improves the performance to find
915  * an existing css_set. This hash doesn't (currently) take into
916  * account cgroups in empty hierarchies.
917  */
918 #define CSS_SET_HASH_BITS	7
919 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
920 
css_set_hash(struct cgroup_subsys_state * css[])921 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
922 {
923 	unsigned long key = 0UL;
924 	struct cgroup_subsys *ss;
925 	int i;
926 
927 	for_each_subsys(ss, i)
928 		key += (unsigned long)css[i];
929 	key = (key >> 16) ^ key;
930 
931 	return key;
932 }
933 
put_css_set_locked(struct css_set * cset)934 void put_css_set_locked(struct css_set *cset)
935 {
936 	struct cgrp_cset_link *link, *tmp_link;
937 	struct cgroup_subsys *ss;
938 	int ssid;
939 
940 	lockdep_assert_held(&css_set_lock);
941 
942 	if (!refcount_dec_and_test(&cset->refcount))
943 		return;
944 
945 	WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
946 
947 	/* This css_set is dead. unlink it and release cgroup and css refs */
948 	for_each_subsys(ss, ssid) {
949 		list_del(&cset->e_cset_node[ssid]);
950 		css_put(cset->subsys[ssid]);
951 	}
952 	hash_del(&cset->hlist);
953 	css_set_count--;
954 
955 	list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
956 		list_del(&link->cset_link);
957 		list_del(&link->cgrp_link);
958 		if (cgroup_parent(link->cgrp))
959 			cgroup_put(link->cgrp);
960 		kfree(link);
961 	}
962 
963 	if (css_set_threaded(cset)) {
964 		list_del(&cset->threaded_csets_node);
965 		put_css_set_locked(cset->dom_cset);
966 	}
967 
968 	kfree_rcu(cset, rcu_head);
969 }
970 
971 /**
972  * compare_css_sets - helper function for find_existing_css_set().
973  * @cset: candidate css_set being tested
974  * @old_cset: existing css_set for a task
975  * @new_cgrp: cgroup that's being entered by the task
976  * @template: desired set of css pointers in css_set (pre-calculated)
977  *
978  * Returns true if "cset" matches "old_cset" except for the hierarchy
979  * which "new_cgrp" belongs to, for which it should match "new_cgrp".
980  */
compare_css_sets(struct css_set * cset,struct css_set * old_cset,struct cgroup * new_cgrp,struct cgroup_subsys_state * template[])981 static bool compare_css_sets(struct css_set *cset,
982 			     struct css_set *old_cset,
983 			     struct cgroup *new_cgrp,
984 			     struct cgroup_subsys_state *template[])
985 {
986 	struct cgroup *new_dfl_cgrp;
987 	struct list_head *l1, *l2;
988 
989 	/*
990 	 * On the default hierarchy, there can be csets which are
991 	 * associated with the same set of cgroups but different csses.
992 	 * Let's first ensure that csses match.
993 	 */
994 	if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
995 		return false;
996 
997 
998 	/* @cset's domain should match the default cgroup's */
999 	if (cgroup_on_dfl(new_cgrp))
1000 		new_dfl_cgrp = new_cgrp;
1001 	else
1002 		new_dfl_cgrp = old_cset->dfl_cgrp;
1003 
1004 	if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
1005 		return false;
1006 
1007 	/*
1008 	 * Compare cgroup pointers in order to distinguish between
1009 	 * different cgroups in hierarchies.  As different cgroups may
1010 	 * share the same effective css, this comparison is always
1011 	 * necessary.
1012 	 */
1013 	l1 = &cset->cgrp_links;
1014 	l2 = &old_cset->cgrp_links;
1015 	while (1) {
1016 		struct cgrp_cset_link *link1, *link2;
1017 		struct cgroup *cgrp1, *cgrp2;
1018 
1019 		l1 = l1->next;
1020 		l2 = l2->next;
1021 		/* See if we reached the end - both lists are equal length. */
1022 		if (l1 == &cset->cgrp_links) {
1023 			BUG_ON(l2 != &old_cset->cgrp_links);
1024 			break;
1025 		} else {
1026 			BUG_ON(l2 == &old_cset->cgrp_links);
1027 		}
1028 		/* Locate the cgroups associated with these links. */
1029 		link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
1030 		link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
1031 		cgrp1 = link1->cgrp;
1032 		cgrp2 = link2->cgrp;
1033 		/* Hierarchies should be linked in the same order. */
1034 		BUG_ON(cgrp1->root != cgrp2->root);
1035 
1036 		/*
1037 		 * If this hierarchy is the hierarchy of the cgroup
1038 		 * that's changing, then we need to check that this
1039 		 * css_set points to the new cgroup; if it's any other
1040 		 * hierarchy, then this css_set should point to the
1041 		 * same cgroup as the old css_set.
1042 		 */
1043 		if (cgrp1->root == new_cgrp->root) {
1044 			if (cgrp1 != new_cgrp)
1045 				return false;
1046 		} else {
1047 			if (cgrp1 != cgrp2)
1048 				return false;
1049 		}
1050 	}
1051 	return true;
1052 }
1053 
1054 /**
1055  * find_existing_css_set - init css array and find the matching css_set
1056  * @old_cset: the css_set that we're using before the cgroup transition
1057  * @cgrp: the cgroup that we're moving into
1058  * @template: out param for the new set of csses, should be clear on entry
1059  */
find_existing_css_set(struct css_set * old_cset,struct cgroup * cgrp,struct cgroup_subsys_state * template[])1060 static struct css_set *find_existing_css_set(struct css_set *old_cset,
1061 					struct cgroup *cgrp,
1062 					struct cgroup_subsys_state *template[])
1063 {
1064 	struct cgroup_root *root = cgrp->root;
1065 	struct cgroup_subsys *ss;
1066 	struct css_set *cset;
1067 	unsigned long key;
1068 	int i;
1069 
1070 	/*
1071 	 * Build the set of subsystem state objects that we want to see in the
1072 	 * new css_set. while subsystems can change globally, the entries here
1073 	 * won't change, so no need for locking.
1074 	 */
1075 	for_each_subsys(ss, i) {
1076 		if (root->subsys_mask & (1UL << i)) {
1077 			/*
1078 			 * @ss is in this hierarchy, so we want the
1079 			 * effective css from @cgrp.
1080 			 */
1081 			template[i] = cgroup_e_css_by_mask(cgrp, ss);
1082 		} else {
1083 			/*
1084 			 * @ss is not in this hierarchy, so we don't want
1085 			 * to change the css.
1086 			 */
1087 			template[i] = old_cset->subsys[i];
1088 		}
1089 	}
1090 
1091 	key = css_set_hash(template);
1092 	hash_for_each_possible(css_set_table, cset, hlist, key) {
1093 		if (!compare_css_sets(cset, old_cset, cgrp, template))
1094 			continue;
1095 
1096 		/* This css_set matches what we need */
1097 		return cset;
1098 	}
1099 
1100 	/* No existing cgroup group matched */
1101 	return NULL;
1102 }
1103 
free_cgrp_cset_links(struct list_head * links_to_free)1104 static void free_cgrp_cset_links(struct list_head *links_to_free)
1105 {
1106 	struct cgrp_cset_link *link, *tmp_link;
1107 
1108 	list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1109 		list_del(&link->cset_link);
1110 		kfree(link);
1111 	}
1112 }
1113 
1114 /**
1115  * allocate_cgrp_cset_links - allocate cgrp_cset_links
1116  * @count: the number of links to allocate
1117  * @tmp_links: list_head the allocated links are put on
1118  *
1119  * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1120  * through ->cset_link.  Returns 0 on success or -errno.
1121  */
allocate_cgrp_cset_links(int count,struct list_head * tmp_links)1122 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1123 {
1124 	struct cgrp_cset_link *link;
1125 	int i;
1126 
1127 	INIT_LIST_HEAD(tmp_links);
1128 
1129 	for (i = 0; i < count; i++) {
1130 		link = kzalloc(sizeof(*link), GFP_KERNEL);
1131 		if (!link) {
1132 			free_cgrp_cset_links(tmp_links);
1133 			return -ENOMEM;
1134 		}
1135 		list_add(&link->cset_link, tmp_links);
1136 	}
1137 	return 0;
1138 }
1139 
1140 /**
1141  * link_css_set - a helper function to link a css_set to a cgroup
1142  * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1143  * @cset: the css_set to be linked
1144  * @cgrp: the destination cgroup
1145  */
link_css_set(struct list_head * tmp_links,struct css_set * cset,struct cgroup * cgrp)1146 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1147 			 struct cgroup *cgrp)
1148 {
1149 	struct cgrp_cset_link *link;
1150 
1151 	BUG_ON(list_empty(tmp_links));
1152 
1153 	if (cgroup_on_dfl(cgrp))
1154 		cset->dfl_cgrp = cgrp;
1155 
1156 	link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1157 	link->cset = cset;
1158 	link->cgrp = cgrp;
1159 
1160 	/*
1161 	 * Always add links to the tail of the lists so that the lists are
1162 	 * in choronological order.
1163 	 */
1164 	list_move_tail(&link->cset_link, &cgrp->cset_links);
1165 	list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1166 
1167 	if (cgroup_parent(cgrp))
1168 		cgroup_get_live(cgrp);
1169 }
1170 
1171 /**
1172  * find_css_set - return a new css_set with one cgroup updated
1173  * @old_cset: the baseline css_set
1174  * @cgrp: the cgroup to be updated
1175  *
1176  * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1177  * substituted into the appropriate hierarchy.
1178  */
find_css_set(struct css_set * old_cset,struct cgroup * cgrp)1179 static struct css_set *find_css_set(struct css_set *old_cset,
1180 				    struct cgroup *cgrp)
1181 {
1182 	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1183 	struct css_set *cset;
1184 	struct list_head tmp_links;
1185 	struct cgrp_cset_link *link;
1186 	struct cgroup_subsys *ss;
1187 	unsigned long key;
1188 	int ssid;
1189 
1190 	lockdep_assert_held(&cgroup_mutex);
1191 
1192 	/* First see if we already have a cgroup group that matches
1193 	 * the desired set */
1194 	spin_lock_irq(&css_set_lock);
1195 	cset = find_existing_css_set(old_cset, cgrp, template);
1196 	if (cset)
1197 		get_css_set(cset);
1198 	spin_unlock_irq(&css_set_lock);
1199 
1200 	if (cset)
1201 		return cset;
1202 
1203 	cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1204 	if (!cset)
1205 		return NULL;
1206 
1207 	/* Allocate all the cgrp_cset_link objects that we'll need */
1208 	if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1209 		kfree(cset);
1210 		return NULL;
1211 	}
1212 
1213 	refcount_set(&cset->refcount, 1);
1214 	cset->dom_cset = cset;
1215 	INIT_LIST_HEAD(&cset->tasks);
1216 	INIT_LIST_HEAD(&cset->mg_tasks);
1217 	INIT_LIST_HEAD(&cset->dying_tasks);
1218 	INIT_LIST_HEAD(&cset->task_iters);
1219 	INIT_LIST_HEAD(&cset->threaded_csets);
1220 	INIT_HLIST_NODE(&cset->hlist);
1221 	INIT_LIST_HEAD(&cset->cgrp_links);
1222 	INIT_LIST_HEAD(&cset->mg_preload_node);
1223 	INIT_LIST_HEAD(&cset->mg_node);
1224 
1225 	/* Copy the set of subsystem state objects generated in
1226 	 * find_existing_css_set() */
1227 	memcpy(cset->subsys, template, sizeof(cset->subsys));
1228 
1229 	spin_lock_irq(&css_set_lock);
1230 	/* Add reference counts and links from the new css_set. */
1231 	list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1232 		struct cgroup *c = link->cgrp;
1233 
1234 		if (c->root == cgrp->root)
1235 			c = cgrp;
1236 		link_css_set(&tmp_links, cset, c);
1237 	}
1238 
1239 	BUG_ON(!list_empty(&tmp_links));
1240 
1241 	css_set_count++;
1242 
1243 	/* Add @cset to the hash table */
1244 	key = css_set_hash(cset->subsys);
1245 	hash_add(css_set_table, &cset->hlist, key);
1246 
1247 	for_each_subsys(ss, ssid) {
1248 		struct cgroup_subsys_state *css = cset->subsys[ssid];
1249 
1250 		list_add_tail(&cset->e_cset_node[ssid],
1251 			      &css->cgroup->e_csets[ssid]);
1252 		css_get(css);
1253 	}
1254 
1255 	spin_unlock_irq(&css_set_lock);
1256 
1257 	/*
1258 	 * If @cset should be threaded, look up the matching dom_cset and
1259 	 * link them up.  We first fully initialize @cset then look for the
1260 	 * dom_cset.  It's simpler this way and safe as @cset is guaranteed
1261 	 * to stay empty until we return.
1262 	 */
1263 	if (cgroup_is_threaded(cset->dfl_cgrp)) {
1264 		struct css_set *dcset;
1265 
1266 		dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1267 		if (!dcset) {
1268 			put_css_set(cset);
1269 			return NULL;
1270 		}
1271 
1272 		spin_lock_irq(&css_set_lock);
1273 		cset->dom_cset = dcset;
1274 		list_add_tail(&cset->threaded_csets_node,
1275 			      &dcset->threaded_csets);
1276 		spin_unlock_irq(&css_set_lock);
1277 	}
1278 
1279 	return cset;
1280 }
1281 
cgroup_root_from_kf(struct kernfs_root * kf_root)1282 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1283 {
1284 	struct cgroup *root_cgrp = kf_root->kn->priv;
1285 
1286 	return root_cgrp->root;
1287 }
1288 
cgroup_init_root_id(struct cgroup_root * root)1289 static int cgroup_init_root_id(struct cgroup_root *root)
1290 {
1291 	int id;
1292 
1293 	lockdep_assert_held(&cgroup_mutex);
1294 
1295 	id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1296 	if (id < 0)
1297 		return id;
1298 
1299 	root->hierarchy_id = id;
1300 	return 0;
1301 }
1302 
cgroup_exit_root_id(struct cgroup_root * root)1303 static void cgroup_exit_root_id(struct cgroup_root *root)
1304 {
1305 	lockdep_assert_held(&cgroup_mutex);
1306 
1307 	idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1308 }
1309 
cgroup_free_root(struct cgroup_root * root)1310 void cgroup_free_root(struct cgroup_root *root)
1311 {
1312 	if (root) {
1313 		idr_destroy(&root->cgroup_idr);
1314 		kfree(root);
1315 	}
1316 }
1317 
cgroup_destroy_root(struct cgroup_root * root)1318 static void cgroup_destroy_root(struct cgroup_root *root)
1319 {
1320 	struct cgroup *cgrp = &root->cgrp;
1321 	struct cgrp_cset_link *link, *tmp_link;
1322 
1323 	trace_cgroup_destroy_root(root);
1324 
1325 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1326 
1327 	BUG_ON(atomic_read(&root->nr_cgrps));
1328 	BUG_ON(!list_empty(&cgrp->self.children));
1329 
1330 	/* Rebind all subsystems back to the default hierarchy */
1331 	WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1332 
1333 	/*
1334 	 * Release all the links from cset_links to this hierarchy's
1335 	 * root cgroup
1336 	 */
1337 	spin_lock_irq(&css_set_lock);
1338 
1339 	list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1340 		list_del(&link->cset_link);
1341 		list_del(&link->cgrp_link);
1342 		kfree(link);
1343 	}
1344 
1345 	spin_unlock_irq(&css_set_lock);
1346 
1347 	if (!list_empty(&root->root_list)) {
1348 		list_del(&root->root_list);
1349 		cgroup_root_count--;
1350 	}
1351 
1352 	cgroup_exit_root_id(root);
1353 
1354 	mutex_unlock(&cgroup_mutex);
1355 
1356 	kernfs_destroy_root(root->kf_root);
1357 	cgroup_free_root(root);
1358 }
1359 
1360 /*
1361  * look up cgroup associated with current task's cgroup namespace on the
1362  * specified hierarchy
1363  */
1364 static struct cgroup *
current_cgns_cgroup_from_root(struct cgroup_root * root)1365 current_cgns_cgroup_from_root(struct cgroup_root *root)
1366 {
1367 	struct cgroup *res = NULL;
1368 	struct css_set *cset;
1369 
1370 	lockdep_assert_held(&css_set_lock);
1371 
1372 	rcu_read_lock();
1373 
1374 	cset = current->nsproxy->cgroup_ns->root_cset;
1375 	if (cset == &init_css_set) {
1376 		res = &root->cgrp;
1377 	} else {
1378 		struct cgrp_cset_link *link;
1379 
1380 		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1381 			struct cgroup *c = link->cgrp;
1382 
1383 			if (c->root == root) {
1384 				res = c;
1385 				break;
1386 			}
1387 		}
1388 	}
1389 	rcu_read_unlock();
1390 
1391 	BUG_ON(!res);
1392 	return res;
1393 }
1394 
1395 /* look up cgroup associated with given css_set on the specified hierarchy */
cset_cgroup_from_root(struct css_set * cset,struct cgroup_root * root)1396 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1397 					    struct cgroup_root *root)
1398 {
1399 	struct cgroup *res = NULL;
1400 
1401 	lockdep_assert_held(&cgroup_mutex);
1402 	lockdep_assert_held(&css_set_lock);
1403 
1404 	if (cset == &init_css_set) {
1405 		res = &root->cgrp;
1406 	} else if (root == &cgrp_dfl_root) {
1407 		res = cset->dfl_cgrp;
1408 	} else {
1409 		struct cgrp_cset_link *link;
1410 
1411 		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1412 			struct cgroup *c = link->cgrp;
1413 
1414 			if (c->root == root) {
1415 				res = c;
1416 				break;
1417 			}
1418 		}
1419 	}
1420 
1421 	BUG_ON(!res);
1422 	return res;
1423 }
1424 
1425 /*
1426  * Return the cgroup for "task" from the given hierarchy. Must be
1427  * called with cgroup_mutex and css_set_lock held.
1428  */
task_cgroup_from_root(struct task_struct * task,struct cgroup_root * root)1429 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1430 				     struct cgroup_root *root)
1431 {
1432 	/*
1433 	 * No need to lock the task - since we hold cgroup_mutex the
1434 	 * task can't change groups, so the only thing that can happen
1435 	 * is that it exits and its css is set back to init_css_set.
1436 	 */
1437 	return cset_cgroup_from_root(task_css_set(task), root);
1438 }
1439 
1440 /*
1441  * A task must hold cgroup_mutex to modify cgroups.
1442  *
1443  * Any task can increment and decrement the count field without lock.
1444  * So in general, code holding cgroup_mutex can't rely on the count
1445  * field not changing.  However, if the count goes to zero, then only
1446  * cgroup_attach_task() can increment it again.  Because a count of zero
1447  * means that no tasks are currently attached, therefore there is no
1448  * way a task attached to that cgroup can fork (the other way to
1449  * increment the count).  So code holding cgroup_mutex can safely
1450  * assume that if the count is zero, it will stay zero. Similarly, if
1451  * a task holds cgroup_mutex on a cgroup with zero count, it
1452  * knows that the cgroup won't be removed, as cgroup_rmdir()
1453  * needs that mutex.
1454  *
1455  * A cgroup can only be deleted if both its 'count' of using tasks
1456  * is zero, and its list of 'children' cgroups is empty.  Since all
1457  * tasks in the system use _some_ cgroup, and since there is always at
1458  * least one task in the system (init, pid == 1), therefore, root cgroup
1459  * always has either children cgroups and/or using tasks.  So we don't
1460  * need a special hack to ensure that root cgroup cannot be deleted.
1461  *
1462  * P.S.  One more locking exception.  RCU is used to guard the
1463  * update of a tasks cgroup pointer by cgroup_attach_task()
1464  */
1465 
1466 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1467 
cgroup_file_name(struct cgroup * cgrp,const struct cftype * cft,char * buf)1468 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1469 			      char *buf)
1470 {
1471 	struct cgroup_subsys *ss = cft->ss;
1472 
1473 	if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1474 	    !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
1475 		const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
1476 
1477 		snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s",
1478 			 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1479 			 cft->name);
1480 	} else {
1481 		strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1482 	}
1483 	return buf;
1484 }
1485 
1486 /**
1487  * cgroup_file_mode - deduce file mode of a control file
1488  * @cft: the control file in question
1489  *
1490  * S_IRUGO for read, S_IWUSR for write.
1491  */
cgroup_file_mode(const struct cftype * cft)1492 static umode_t cgroup_file_mode(const struct cftype *cft)
1493 {
1494 	umode_t mode = 0;
1495 
1496 	if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1497 		mode |= S_IRUGO;
1498 
1499 	if (cft->write_u64 || cft->write_s64 || cft->write) {
1500 		if (cft->flags & CFTYPE_WORLD_WRITABLE)
1501 			mode |= S_IWUGO;
1502 		else
1503 			mode |= S_IWUSR;
1504 	}
1505 
1506 	return mode;
1507 }
1508 
1509 /**
1510  * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1511  * @subtree_control: the new subtree_control mask to consider
1512  * @this_ss_mask: available subsystems
1513  *
1514  * On the default hierarchy, a subsystem may request other subsystems to be
1515  * enabled together through its ->depends_on mask.  In such cases, more
1516  * subsystems than specified in "cgroup.subtree_control" may be enabled.
1517  *
1518  * This function calculates which subsystems need to be enabled if
1519  * @subtree_control is to be applied while restricted to @this_ss_mask.
1520  */
cgroup_calc_subtree_ss_mask(u16 subtree_control,u16 this_ss_mask)1521 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1522 {
1523 	u16 cur_ss_mask = subtree_control;
1524 	struct cgroup_subsys *ss;
1525 	int ssid;
1526 
1527 	lockdep_assert_held(&cgroup_mutex);
1528 
1529 	cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1530 
1531 	while (true) {
1532 		u16 new_ss_mask = cur_ss_mask;
1533 
1534 		do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1535 			new_ss_mask |= ss->depends_on;
1536 		} while_each_subsys_mask();
1537 
1538 		/*
1539 		 * Mask out subsystems which aren't available.  This can
1540 		 * happen only if some depended-upon subsystems were bound
1541 		 * to non-default hierarchies.
1542 		 */
1543 		new_ss_mask &= this_ss_mask;
1544 
1545 		if (new_ss_mask == cur_ss_mask)
1546 			break;
1547 		cur_ss_mask = new_ss_mask;
1548 	}
1549 
1550 	return cur_ss_mask;
1551 }
1552 
1553 /**
1554  * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1555  * @kn: the kernfs_node being serviced
1556  *
1557  * This helper undoes cgroup_kn_lock_live() and should be invoked before
1558  * the method finishes if locking succeeded.  Note that once this function
1559  * returns the cgroup returned by cgroup_kn_lock_live() may become
1560  * inaccessible any time.  If the caller intends to continue to access the
1561  * cgroup, it should pin it before invoking this function.
1562  */
cgroup_kn_unlock(struct kernfs_node * kn)1563 void cgroup_kn_unlock(struct kernfs_node *kn)
1564 {
1565 	struct cgroup *cgrp;
1566 
1567 	if (kernfs_type(kn) == KERNFS_DIR)
1568 		cgrp = kn->priv;
1569 	else
1570 		cgrp = kn->parent->priv;
1571 
1572 	mutex_unlock(&cgroup_mutex);
1573 
1574 	kernfs_unbreak_active_protection(kn);
1575 	cgroup_put(cgrp);
1576 }
1577 
1578 /**
1579  * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1580  * @kn: the kernfs_node being serviced
1581  * @drain_offline: perform offline draining on the cgroup
1582  *
1583  * This helper is to be used by a cgroup kernfs method currently servicing
1584  * @kn.  It breaks the active protection, performs cgroup locking and
1585  * verifies that the associated cgroup is alive.  Returns the cgroup if
1586  * alive; otherwise, %NULL.  A successful return should be undone by a
1587  * matching cgroup_kn_unlock() invocation.  If @drain_offline is %true, the
1588  * cgroup is drained of offlining csses before return.
1589  *
1590  * Any cgroup kernfs method implementation which requires locking the
1591  * associated cgroup should use this helper.  It avoids nesting cgroup
1592  * locking under kernfs active protection and allows all kernfs operations
1593  * including self-removal.
1594  */
cgroup_kn_lock_live(struct kernfs_node * kn,bool drain_offline)1595 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1596 {
1597 	struct cgroup *cgrp;
1598 
1599 	if (kernfs_type(kn) == KERNFS_DIR)
1600 		cgrp = kn->priv;
1601 	else
1602 		cgrp = kn->parent->priv;
1603 
1604 	/*
1605 	 * We're gonna grab cgroup_mutex which nests outside kernfs
1606 	 * active_ref.  cgroup liveliness check alone provides enough
1607 	 * protection against removal.  Ensure @cgrp stays accessible and
1608 	 * break the active_ref protection.
1609 	 */
1610 	if (!cgroup_tryget(cgrp))
1611 		return NULL;
1612 	kernfs_break_active_protection(kn);
1613 
1614 	if (drain_offline)
1615 		cgroup_lock_and_drain_offline(cgrp);
1616 	else
1617 		mutex_lock(&cgroup_mutex);
1618 
1619 	if (!cgroup_is_dead(cgrp))
1620 		return cgrp;
1621 
1622 	cgroup_kn_unlock(kn);
1623 	return NULL;
1624 }
1625 
cgroup_rm_file(struct cgroup * cgrp,const struct cftype * cft)1626 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1627 {
1628 	char name[CGROUP_FILE_NAME_MAX];
1629 
1630 	lockdep_assert_held(&cgroup_mutex);
1631 
1632 	if (cft->file_offset) {
1633 		struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1634 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
1635 
1636 		spin_lock_irq(&cgroup_file_kn_lock);
1637 		cfile->kn = NULL;
1638 		spin_unlock_irq(&cgroup_file_kn_lock);
1639 
1640 		del_timer_sync(&cfile->notify_timer);
1641 	}
1642 
1643 	kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1644 }
1645 
1646 /**
1647  * css_clear_dir - remove subsys files in a cgroup directory
1648  * @css: taget css
1649  */
css_clear_dir(struct cgroup_subsys_state * css)1650 static void css_clear_dir(struct cgroup_subsys_state *css)
1651 {
1652 	struct cgroup *cgrp = css->cgroup;
1653 	struct cftype *cfts;
1654 
1655 	if (!(css->flags & CSS_VISIBLE))
1656 		return;
1657 
1658 	css->flags &= ~CSS_VISIBLE;
1659 
1660 	if (!css->ss) {
1661 		if (cgroup_on_dfl(cgrp))
1662 			cfts = cgroup_base_files;
1663 		else
1664 			cfts = cgroup1_base_files;
1665 
1666 		cgroup_addrm_files(css, cgrp, cfts, false);
1667 	} else {
1668 		list_for_each_entry(cfts, &css->ss->cfts, node)
1669 			cgroup_addrm_files(css, cgrp, cfts, false);
1670 	}
1671 }
1672 
1673 /**
1674  * css_populate_dir - create subsys files in a cgroup directory
1675  * @css: target css
1676  *
1677  * On failure, no file is added.
1678  */
css_populate_dir(struct cgroup_subsys_state * css)1679 static int css_populate_dir(struct cgroup_subsys_state *css)
1680 {
1681 	struct cgroup *cgrp = css->cgroup;
1682 	struct cftype *cfts, *failed_cfts;
1683 	int ret;
1684 
1685 	if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1686 		return 0;
1687 
1688 	if (!css->ss) {
1689 		if (cgroup_on_dfl(cgrp))
1690 			cfts = cgroup_base_files;
1691 		else
1692 			cfts = cgroup1_base_files;
1693 
1694 		ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1695 		if (ret < 0)
1696 			return ret;
1697 	} else {
1698 		list_for_each_entry(cfts, &css->ss->cfts, node) {
1699 			ret = cgroup_addrm_files(css, cgrp, cfts, true);
1700 			if (ret < 0) {
1701 				failed_cfts = cfts;
1702 				goto err;
1703 			}
1704 		}
1705 	}
1706 
1707 	css->flags |= CSS_VISIBLE;
1708 
1709 	return 0;
1710 err:
1711 	list_for_each_entry(cfts, &css->ss->cfts, node) {
1712 		if (cfts == failed_cfts)
1713 			break;
1714 		cgroup_addrm_files(css, cgrp, cfts, false);
1715 	}
1716 	return ret;
1717 }
1718 
rebind_subsystems(struct cgroup_root * dst_root,u16 ss_mask)1719 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1720 {
1721 	struct cgroup *dcgrp = &dst_root->cgrp;
1722 	struct cgroup_subsys *ss;
1723 	int ssid, i, ret;
1724 
1725 	lockdep_assert_held(&cgroup_mutex);
1726 
1727 	do_each_subsys_mask(ss, ssid, ss_mask) {
1728 		/*
1729 		 * If @ss has non-root csses attached to it, can't move.
1730 		 * If @ss is an implicit controller, it is exempt from this
1731 		 * rule and can be stolen.
1732 		 */
1733 		if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1734 		    !ss->implicit_on_dfl)
1735 			return -EBUSY;
1736 
1737 		/* can't move between two non-dummy roots either */
1738 		if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1739 			return -EBUSY;
1740 	} while_each_subsys_mask();
1741 
1742 	do_each_subsys_mask(ss, ssid, ss_mask) {
1743 		struct cgroup_root *src_root = ss->root;
1744 		struct cgroup *scgrp = &src_root->cgrp;
1745 		struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1746 		struct css_set *cset;
1747 
1748 		WARN_ON(!css || cgroup_css(dcgrp, ss));
1749 
1750 		/* disable from the source */
1751 		src_root->subsys_mask &= ~(1 << ssid);
1752 		WARN_ON(cgroup_apply_control(scgrp));
1753 		cgroup_finalize_control(scgrp, 0);
1754 
1755 		/* rebind */
1756 		RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1757 		rcu_assign_pointer(dcgrp->subsys[ssid], css);
1758 		ss->root = dst_root;
1759 		css->cgroup = dcgrp;
1760 
1761 		spin_lock_irq(&css_set_lock);
1762 		hash_for_each(css_set_table, i, cset, hlist)
1763 			list_move_tail(&cset->e_cset_node[ss->id],
1764 				       &dcgrp->e_csets[ss->id]);
1765 		spin_unlock_irq(&css_set_lock);
1766 
1767 		/* default hierarchy doesn't enable controllers by default */
1768 		dst_root->subsys_mask |= 1 << ssid;
1769 		if (dst_root == &cgrp_dfl_root) {
1770 			static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1771 		} else {
1772 			dcgrp->subtree_control |= 1 << ssid;
1773 			static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1774 		}
1775 
1776 		ret = cgroup_apply_control(dcgrp);
1777 		if (ret)
1778 			pr_warn("partial failure to rebind %s controller (err=%d)\n",
1779 				ss->name, ret);
1780 
1781 		if (ss->bind)
1782 			ss->bind(css);
1783 	} while_each_subsys_mask();
1784 
1785 	kernfs_activate(dcgrp->kn);
1786 	return 0;
1787 }
1788 
cgroup_show_path(struct seq_file * sf,struct kernfs_node * kf_node,struct kernfs_root * kf_root)1789 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1790 		     struct kernfs_root *kf_root)
1791 {
1792 	int len = 0;
1793 	char *buf = NULL;
1794 	struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1795 	struct cgroup *ns_cgroup;
1796 
1797 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
1798 	if (!buf)
1799 		return -ENOMEM;
1800 
1801 	spin_lock_irq(&css_set_lock);
1802 	ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1803 	len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1804 	spin_unlock_irq(&css_set_lock);
1805 
1806 	if (len >= PATH_MAX)
1807 		len = -ERANGE;
1808 	else if (len > 0) {
1809 		seq_escape(sf, buf, " \t\n\\");
1810 		len = 0;
1811 	}
1812 	kfree(buf);
1813 	return len;
1814 }
1815 
1816 enum cgroup2_param {
1817 	Opt_nsdelegate,
1818 	Opt_memory_localevents,
1819 	nr__cgroup2_params
1820 };
1821 
1822 static const struct fs_parameter_spec cgroup2_param_specs[] = {
1823 	fsparam_flag("nsdelegate",		Opt_nsdelegate),
1824 	fsparam_flag("memory_localevents",	Opt_memory_localevents),
1825 	{}
1826 };
1827 
1828 static const struct fs_parameter_description cgroup2_fs_parameters = {
1829 	.name		= "cgroup2",
1830 	.specs		= cgroup2_param_specs,
1831 };
1832 
cgroup2_parse_param(struct fs_context * fc,struct fs_parameter * param)1833 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param)
1834 {
1835 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1836 	struct fs_parse_result result;
1837 	int opt;
1838 
1839 	opt = fs_parse(fc, &cgroup2_fs_parameters, param, &result);
1840 	if (opt < 0)
1841 		return opt;
1842 
1843 	switch (opt) {
1844 	case Opt_nsdelegate:
1845 		ctx->flags |= CGRP_ROOT_NS_DELEGATE;
1846 		return 0;
1847 	case Opt_memory_localevents:
1848 		ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1849 		return 0;
1850 	}
1851 	return -EINVAL;
1852 }
1853 
apply_cgroup_root_flags(unsigned int root_flags)1854 static void apply_cgroup_root_flags(unsigned int root_flags)
1855 {
1856 	if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1857 		if (root_flags & CGRP_ROOT_NS_DELEGATE)
1858 			cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1859 		else
1860 			cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1861 
1862 		if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1863 			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1864 		else
1865 			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1866 	}
1867 }
1868 
cgroup_show_options(struct seq_file * seq,struct kernfs_root * kf_root)1869 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1870 {
1871 	if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1872 		seq_puts(seq, ",nsdelegate");
1873 	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1874 		seq_puts(seq, ",memory_localevents");
1875 	return 0;
1876 }
1877 
cgroup_reconfigure(struct fs_context * fc)1878 static int cgroup_reconfigure(struct fs_context *fc)
1879 {
1880 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1881 
1882 	apply_cgroup_root_flags(ctx->flags);
1883 	return 0;
1884 }
1885 
1886 /*
1887  * To reduce the fork() overhead for systems that are not actually using
1888  * their cgroups capability, we don't maintain the lists running through
1889  * each css_set to its tasks until we see the list actually used - in other
1890  * words after the first mount.
1891  */
1892 static bool use_task_css_set_links __read_mostly;
1893 
cgroup_enable_task_cg_lists(void)1894 void cgroup_enable_task_cg_lists(void)
1895 {
1896 	struct task_struct *p, *g;
1897 
1898 	/*
1899 	 * We need tasklist_lock because RCU is not safe against
1900 	 * while_each_thread(). Besides, a forking task that has passed
1901 	 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1902 	 * is not guaranteed to have its child immediately visible in the
1903 	 * tasklist if we walk through it with RCU.
1904 	 */
1905 	read_lock(&tasklist_lock);
1906 	spin_lock_irq(&css_set_lock);
1907 
1908 	if (use_task_css_set_links)
1909 		goto out_unlock;
1910 
1911 	use_task_css_set_links = true;
1912 
1913 	do_each_thread(g, p) {
1914 		WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1915 			     task_css_set(p) != &init_css_set);
1916 
1917 		/*
1918 		 * We should check if the process is exiting, otherwise
1919 		 * it will race with cgroup_exit() in that the list
1920 		 * entry won't be deleted though the process has exited.
1921 		 * Do it while holding siglock so that we don't end up
1922 		 * racing against cgroup_exit().
1923 		 *
1924 		 * Interrupts were already disabled while acquiring
1925 		 * the css_set_lock, so we do not need to disable it
1926 		 * again when acquiring the sighand->siglock here.
1927 		 */
1928 		spin_lock(&p->sighand->siglock);
1929 		if (!(p->flags & PF_EXITING)) {
1930 			struct css_set *cset = task_css_set(p);
1931 
1932 			if (!css_set_populated(cset))
1933 				css_set_update_populated(cset, true);
1934 			list_add_tail(&p->cg_list, &cset->tasks);
1935 			get_css_set(cset);
1936 			cset->nr_tasks++;
1937 		}
1938 		spin_unlock(&p->sighand->siglock);
1939 	} while_each_thread(g, p);
1940 out_unlock:
1941 	spin_unlock_irq(&css_set_lock);
1942 	read_unlock(&tasklist_lock);
1943 }
1944 
init_cgroup_housekeeping(struct cgroup * cgrp)1945 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1946 {
1947 	struct cgroup_subsys *ss;
1948 	int ssid;
1949 
1950 	INIT_LIST_HEAD(&cgrp->self.sibling);
1951 	INIT_LIST_HEAD(&cgrp->self.children);
1952 	INIT_LIST_HEAD(&cgrp->cset_links);
1953 	INIT_LIST_HEAD(&cgrp->pidlists);
1954 	mutex_init(&cgrp->pidlist_mutex);
1955 	cgrp->self.cgroup = cgrp;
1956 	cgrp->self.flags |= CSS_ONLINE;
1957 	cgrp->dom_cgrp = cgrp;
1958 	cgrp->max_descendants = INT_MAX;
1959 	cgrp->max_depth = INT_MAX;
1960 	INIT_LIST_HEAD(&cgrp->rstat_css_list);
1961 	prev_cputime_init(&cgrp->prev_cputime);
1962 
1963 	for_each_subsys(ss, ssid)
1964 		INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1965 
1966 	init_waitqueue_head(&cgrp->offline_waitq);
1967 	INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
1968 }
1969 
init_cgroup_root(struct cgroup_fs_context * ctx)1970 void init_cgroup_root(struct cgroup_fs_context *ctx)
1971 {
1972 	struct cgroup_root *root = ctx->root;
1973 	struct cgroup *cgrp = &root->cgrp;
1974 
1975 	INIT_LIST_HEAD(&root->root_list);
1976 	atomic_set(&root->nr_cgrps, 1);
1977 	cgrp->root = root;
1978 	init_cgroup_housekeeping(cgrp);
1979 	idr_init(&root->cgroup_idr);
1980 
1981 	root->flags = ctx->flags;
1982 	if (ctx->release_agent)
1983 		strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX);
1984 	if (ctx->name)
1985 		strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN);
1986 	if (ctx->cpuset_clone_children)
1987 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1988 }
1989 
cgroup_setup_root(struct cgroup_root * root,u16 ss_mask)1990 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
1991 {
1992 	LIST_HEAD(tmp_links);
1993 	struct cgroup *root_cgrp = &root->cgrp;
1994 	struct kernfs_syscall_ops *kf_sops;
1995 	struct css_set *cset;
1996 	int i, ret;
1997 
1998 	lockdep_assert_held(&cgroup_mutex);
1999 
2000 	ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
2001 	if (ret < 0)
2002 		goto out;
2003 	root_cgrp->id = ret;
2004 	root_cgrp->ancestor_ids[0] = ret;
2005 
2006 	ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
2007 			      0, GFP_KERNEL);
2008 	if (ret)
2009 		goto out;
2010 
2011 	/*
2012 	 * We're accessing css_set_count without locking css_set_lock here,
2013 	 * but that's OK - it can only be increased by someone holding
2014 	 * cgroup_lock, and that's us.  Later rebinding may disable
2015 	 * controllers on the default hierarchy and thus create new csets,
2016 	 * which can't be more than the existing ones.  Allocate 2x.
2017 	 */
2018 	ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
2019 	if (ret)
2020 		goto cancel_ref;
2021 
2022 	ret = cgroup_init_root_id(root);
2023 	if (ret)
2024 		goto cancel_ref;
2025 
2026 	kf_sops = root == &cgrp_dfl_root ?
2027 		&cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
2028 
2029 	root->kf_root = kernfs_create_root(kf_sops,
2030 					   KERNFS_ROOT_CREATE_DEACTIVATED |
2031 					   KERNFS_ROOT_SUPPORT_EXPORTOP,
2032 					   root_cgrp);
2033 	if (IS_ERR(root->kf_root)) {
2034 		ret = PTR_ERR(root->kf_root);
2035 		goto exit_root_id;
2036 	}
2037 	root_cgrp->kn = root->kf_root->kn;
2038 
2039 	ret = css_populate_dir(&root_cgrp->self);
2040 	if (ret)
2041 		goto destroy_root;
2042 
2043 	ret = rebind_subsystems(root, ss_mask);
2044 	if (ret)
2045 		goto destroy_root;
2046 
2047 	ret = cgroup_bpf_inherit(root_cgrp);
2048 	WARN_ON_ONCE(ret);
2049 
2050 	trace_cgroup_setup_root(root);
2051 
2052 	/*
2053 	 * There must be no failure case after here, since rebinding takes
2054 	 * care of subsystems' refcounts, which are explicitly dropped in
2055 	 * the failure exit path.
2056 	 */
2057 	list_add(&root->root_list, &cgroup_roots);
2058 	cgroup_root_count++;
2059 
2060 	/*
2061 	 * Link the root cgroup in this hierarchy into all the css_set
2062 	 * objects.
2063 	 */
2064 	spin_lock_irq(&css_set_lock);
2065 	hash_for_each(css_set_table, i, cset, hlist) {
2066 		link_css_set(&tmp_links, cset, root_cgrp);
2067 		if (css_set_populated(cset))
2068 			cgroup_update_populated(root_cgrp, true);
2069 	}
2070 	spin_unlock_irq(&css_set_lock);
2071 
2072 	BUG_ON(!list_empty(&root_cgrp->self.children));
2073 	BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2074 
2075 	kernfs_activate(root_cgrp->kn);
2076 	ret = 0;
2077 	goto out;
2078 
2079 destroy_root:
2080 	kernfs_destroy_root(root->kf_root);
2081 	root->kf_root = NULL;
2082 exit_root_id:
2083 	cgroup_exit_root_id(root);
2084 cancel_ref:
2085 	percpu_ref_exit(&root_cgrp->self.refcnt);
2086 out:
2087 	free_cgrp_cset_links(&tmp_links);
2088 	return ret;
2089 }
2090 
cgroup_do_get_tree(struct fs_context * fc)2091 int cgroup_do_get_tree(struct fs_context *fc)
2092 {
2093 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2094 	int ret;
2095 
2096 	ctx->kfc.root = ctx->root->kf_root;
2097 	if (fc->fs_type == &cgroup2_fs_type)
2098 		ctx->kfc.magic = CGROUP2_SUPER_MAGIC;
2099 	else
2100 		ctx->kfc.magic = CGROUP_SUPER_MAGIC;
2101 	ret = kernfs_get_tree(fc);
2102 
2103 	/*
2104 	 * In non-init cgroup namespace, instead of root cgroup's dentry,
2105 	 * we return the dentry corresponding to the cgroupns->root_cgrp.
2106 	 */
2107 	if (!ret && ctx->ns != &init_cgroup_ns) {
2108 		struct dentry *nsdentry;
2109 		struct super_block *sb = fc->root->d_sb;
2110 		struct cgroup *cgrp;
2111 
2112 		mutex_lock(&cgroup_mutex);
2113 		spin_lock_irq(&css_set_lock);
2114 
2115 		cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root);
2116 
2117 		spin_unlock_irq(&css_set_lock);
2118 		mutex_unlock(&cgroup_mutex);
2119 
2120 		nsdentry = kernfs_node_dentry(cgrp->kn, sb);
2121 		dput(fc->root);
2122 		if (IS_ERR(nsdentry)) {
2123 			deactivate_locked_super(sb);
2124 			ret = PTR_ERR(nsdentry);
2125 			nsdentry = NULL;
2126 		}
2127 		fc->root = nsdentry;
2128 	}
2129 
2130 	if (!ctx->kfc.new_sb_created)
2131 		cgroup_put(&ctx->root->cgrp);
2132 
2133 	return ret;
2134 }
2135 
2136 /*
2137  * Destroy a cgroup filesystem context.
2138  */
cgroup_fs_context_free(struct fs_context * fc)2139 static void cgroup_fs_context_free(struct fs_context *fc)
2140 {
2141 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2142 
2143 	kfree(ctx->name);
2144 	kfree(ctx->release_agent);
2145 	put_cgroup_ns(ctx->ns);
2146 	kernfs_free_fs_context(fc);
2147 	kfree(ctx);
2148 }
2149 
cgroup_get_tree(struct fs_context * fc)2150 static int cgroup_get_tree(struct fs_context *fc)
2151 {
2152 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2153 	int ret;
2154 
2155 	cgrp_dfl_visible = true;
2156 	cgroup_get_live(&cgrp_dfl_root.cgrp);
2157 	ctx->root = &cgrp_dfl_root;
2158 
2159 	ret = cgroup_do_get_tree(fc);
2160 	if (!ret)
2161 		apply_cgroup_root_flags(ctx->flags);
2162 	return ret;
2163 }
2164 
2165 static const struct fs_context_operations cgroup_fs_context_ops = {
2166 	.free		= cgroup_fs_context_free,
2167 	.parse_param	= cgroup2_parse_param,
2168 	.get_tree	= cgroup_get_tree,
2169 	.reconfigure	= cgroup_reconfigure,
2170 };
2171 
2172 static const struct fs_context_operations cgroup1_fs_context_ops = {
2173 	.free		= cgroup_fs_context_free,
2174 	.parse_param	= cgroup1_parse_param,
2175 	.get_tree	= cgroup1_get_tree,
2176 	.reconfigure	= cgroup1_reconfigure,
2177 };
2178 
2179 /*
2180  * Initialise the cgroup filesystem creation/reconfiguration context.  Notably,
2181  * we select the namespace we're going to use.
2182  */
cgroup_init_fs_context(struct fs_context * fc)2183 static int cgroup_init_fs_context(struct fs_context *fc)
2184 {
2185 	struct cgroup_fs_context *ctx;
2186 
2187 	ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL);
2188 	if (!ctx)
2189 		return -ENOMEM;
2190 
2191 	/*
2192 	 * The first time anyone tries to mount a cgroup, enable the list
2193 	 * linking each css_set to its tasks and fix up all existing tasks.
2194 	 */
2195 	if (!use_task_css_set_links)
2196 		cgroup_enable_task_cg_lists();
2197 
2198 	ctx->ns = current->nsproxy->cgroup_ns;
2199 	get_cgroup_ns(ctx->ns);
2200 	fc->fs_private = &ctx->kfc;
2201 	if (fc->fs_type == &cgroup2_fs_type)
2202 		fc->ops = &cgroup_fs_context_ops;
2203 	else
2204 		fc->ops = &cgroup1_fs_context_ops;
2205 	put_user_ns(fc->user_ns);
2206 	fc->user_ns = get_user_ns(ctx->ns->user_ns);
2207 	fc->global = true;
2208 	return 0;
2209 }
2210 
cgroup_kill_sb(struct super_block * sb)2211 static void cgroup_kill_sb(struct super_block *sb)
2212 {
2213 	struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2214 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2215 
2216 	/*
2217 	 * If @root doesn't have any children, start killing it.
2218 	 * This prevents new mounts by disabling percpu_ref_tryget_live().
2219 	 * cgroup_mount() may wait for @root's release.
2220 	 *
2221 	 * And don't kill the default root.
2222 	 */
2223 	if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root &&
2224 	    !percpu_ref_is_dying(&root->cgrp.self.refcnt))
2225 		percpu_ref_kill(&root->cgrp.self.refcnt);
2226 	cgroup_put(&root->cgrp);
2227 	kernfs_kill_sb(sb);
2228 }
2229 
2230 struct file_system_type cgroup_fs_type = {
2231 	.name			= "cgroup",
2232 	.init_fs_context	= cgroup_init_fs_context,
2233 	.parameters		= &cgroup1_fs_parameters,
2234 	.kill_sb		= cgroup_kill_sb,
2235 	.fs_flags		= FS_USERNS_MOUNT,
2236 };
2237 
2238 static struct file_system_type cgroup2_fs_type = {
2239 	.name			= "cgroup2",
2240 	.init_fs_context	= cgroup_init_fs_context,
2241 	.parameters		= &cgroup2_fs_parameters,
2242 	.kill_sb		= cgroup_kill_sb,
2243 	.fs_flags		= FS_USERNS_MOUNT,
2244 };
2245 
2246 #ifdef CONFIG_CPUSETS
2247 static const struct fs_context_operations cpuset_fs_context_ops = {
2248 	.get_tree	= cgroup1_get_tree,
2249 	.free		= cgroup_fs_context_free,
2250 };
2251 
2252 /*
2253  * This is ugly, but preserves the userspace API for existing cpuset
2254  * users. If someone tries to mount the "cpuset" filesystem, we
2255  * silently switch it to mount "cgroup" instead
2256  */
cpuset_init_fs_context(struct fs_context * fc)2257 static int cpuset_init_fs_context(struct fs_context *fc)
2258 {
2259 	char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER);
2260 	struct cgroup_fs_context *ctx;
2261 	int err;
2262 
2263 	err = cgroup_init_fs_context(fc);
2264 	if (err) {
2265 		kfree(agent);
2266 		return err;
2267 	}
2268 
2269 	fc->ops = &cpuset_fs_context_ops;
2270 
2271 	ctx = cgroup_fc2context(fc);
2272 	ctx->subsys_mask = 1 << cpuset_cgrp_id;
2273 	ctx->flags |= CGRP_ROOT_NOPREFIX;
2274 	ctx->release_agent = agent;
2275 
2276 	get_filesystem(&cgroup_fs_type);
2277 	put_filesystem(fc->fs_type);
2278 	fc->fs_type = &cgroup_fs_type;
2279 
2280 	return 0;
2281 }
2282 
2283 static struct file_system_type cpuset_fs_type = {
2284 	.name			= "cpuset",
2285 	.init_fs_context	= cpuset_init_fs_context,
2286 	.fs_flags		= FS_USERNS_MOUNT,
2287 };
2288 #endif
2289 
cgroup_path_ns_locked(struct cgroup * cgrp,char * buf,size_t buflen,struct cgroup_namespace * ns)2290 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2291 			  struct cgroup_namespace *ns)
2292 {
2293 	struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2294 
2295 	return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2296 }
2297 
cgroup_path_ns(struct cgroup * cgrp,char * buf,size_t buflen,struct cgroup_namespace * ns)2298 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2299 		   struct cgroup_namespace *ns)
2300 {
2301 	int ret;
2302 
2303 	mutex_lock(&cgroup_mutex);
2304 	spin_lock_irq(&css_set_lock);
2305 
2306 	ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2307 
2308 	spin_unlock_irq(&css_set_lock);
2309 	mutex_unlock(&cgroup_mutex);
2310 
2311 	return ret;
2312 }
2313 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2314 
2315 /**
2316  * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2317  * @task: target task
2318  * @buf: the buffer to write the path into
2319  * @buflen: the length of the buffer
2320  *
2321  * Determine @task's cgroup on the first (the one with the lowest non-zero
2322  * hierarchy_id) cgroup hierarchy and copy its path into @buf.  This
2323  * function grabs cgroup_mutex and shouldn't be used inside locks used by
2324  * cgroup controller callbacks.
2325  *
2326  * Return value is the same as kernfs_path().
2327  */
task_cgroup_path(struct task_struct * task,char * buf,size_t buflen)2328 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2329 {
2330 	struct cgroup_root *root;
2331 	struct cgroup *cgrp;
2332 	int hierarchy_id = 1;
2333 	int ret;
2334 
2335 	mutex_lock(&cgroup_mutex);
2336 	spin_lock_irq(&css_set_lock);
2337 
2338 	root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2339 
2340 	if (root) {
2341 		cgrp = task_cgroup_from_root(task, root);
2342 		ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2343 	} else {
2344 		/* if no hierarchy exists, everyone is in "/" */
2345 		ret = strlcpy(buf, "/", buflen);
2346 	}
2347 
2348 	spin_unlock_irq(&css_set_lock);
2349 	mutex_unlock(&cgroup_mutex);
2350 	return ret;
2351 }
2352 EXPORT_SYMBOL_GPL(task_cgroup_path);
2353 
2354 /**
2355  * cgroup_migrate_add_task - add a migration target task to a migration context
2356  * @task: target task
2357  * @mgctx: target migration context
2358  *
2359  * Add @task, which is a migration target, to @mgctx->tset.  This function
2360  * becomes noop if @task doesn't need to be migrated.  @task's css_set
2361  * should have been added as a migration source and @task->cg_list will be
2362  * moved from the css_set's tasks list to mg_tasks one.
2363  */
cgroup_migrate_add_task(struct task_struct * task,struct cgroup_mgctx * mgctx)2364 static void cgroup_migrate_add_task(struct task_struct *task,
2365 				    struct cgroup_mgctx *mgctx)
2366 {
2367 	struct css_set *cset;
2368 
2369 	lockdep_assert_held(&css_set_lock);
2370 
2371 	/* @task either already exited or can't exit until the end */
2372 	if (task->flags & PF_EXITING)
2373 		return;
2374 
2375 	/* leave @task alone if post_fork() hasn't linked it yet */
2376 	if (list_empty(&task->cg_list))
2377 		return;
2378 
2379 	cset = task_css_set(task);
2380 	if (!cset->mg_src_cgrp)
2381 		return;
2382 
2383 	mgctx->tset.nr_tasks++;
2384 
2385 	list_move_tail(&task->cg_list, &cset->mg_tasks);
2386 	if (list_empty(&cset->mg_node))
2387 		list_add_tail(&cset->mg_node,
2388 			      &mgctx->tset.src_csets);
2389 	if (list_empty(&cset->mg_dst_cset->mg_node))
2390 		list_add_tail(&cset->mg_dst_cset->mg_node,
2391 			      &mgctx->tset.dst_csets);
2392 }
2393 
2394 /**
2395  * cgroup_taskset_first - reset taskset and return the first task
2396  * @tset: taskset of interest
2397  * @dst_cssp: output variable for the destination css
2398  *
2399  * @tset iteration is initialized and the first task is returned.
2400  */
cgroup_taskset_first(struct cgroup_taskset * tset,struct cgroup_subsys_state ** dst_cssp)2401 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2402 					 struct cgroup_subsys_state **dst_cssp)
2403 {
2404 	tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2405 	tset->cur_task = NULL;
2406 
2407 	return cgroup_taskset_next(tset, dst_cssp);
2408 }
2409 
2410 /**
2411  * cgroup_taskset_next - iterate to the next task in taskset
2412  * @tset: taskset of interest
2413  * @dst_cssp: output variable for the destination css
2414  *
2415  * Return the next task in @tset.  Iteration must have been initialized
2416  * with cgroup_taskset_first().
2417  */
cgroup_taskset_next(struct cgroup_taskset * tset,struct cgroup_subsys_state ** dst_cssp)2418 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2419 					struct cgroup_subsys_state **dst_cssp)
2420 {
2421 	struct css_set *cset = tset->cur_cset;
2422 	struct task_struct *task = tset->cur_task;
2423 
2424 	while (&cset->mg_node != tset->csets) {
2425 		if (!task)
2426 			task = list_first_entry(&cset->mg_tasks,
2427 						struct task_struct, cg_list);
2428 		else
2429 			task = list_next_entry(task, cg_list);
2430 
2431 		if (&task->cg_list != &cset->mg_tasks) {
2432 			tset->cur_cset = cset;
2433 			tset->cur_task = task;
2434 
2435 			/*
2436 			 * This function may be called both before and
2437 			 * after cgroup_taskset_migrate().  The two cases
2438 			 * can be distinguished by looking at whether @cset
2439 			 * has its ->mg_dst_cset set.
2440 			 */
2441 			if (cset->mg_dst_cset)
2442 				*dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2443 			else
2444 				*dst_cssp = cset->subsys[tset->ssid];
2445 
2446 			return task;
2447 		}
2448 
2449 		cset = list_next_entry(cset, mg_node);
2450 		task = NULL;
2451 	}
2452 
2453 	return NULL;
2454 }
2455 
2456 /**
2457  * cgroup_taskset_migrate - migrate a taskset
2458  * @mgctx: migration context
2459  *
2460  * Migrate tasks in @mgctx as setup by migration preparation functions.
2461  * This function fails iff one of the ->can_attach callbacks fails and
2462  * guarantees that either all or none of the tasks in @mgctx are migrated.
2463  * @mgctx is consumed regardless of success.
2464  */
cgroup_migrate_execute(struct cgroup_mgctx * mgctx)2465 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2466 {
2467 	struct cgroup_taskset *tset = &mgctx->tset;
2468 	struct cgroup_subsys *ss;
2469 	struct task_struct *task, *tmp_task;
2470 	struct css_set *cset, *tmp_cset;
2471 	int ssid, failed_ssid, ret;
2472 
2473 	/* check that we can legitimately attach to the cgroup */
2474 	if (tset->nr_tasks) {
2475 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2476 			if (ss->can_attach) {
2477 				tset->ssid = ssid;
2478 				ret = ss->can_attach(tset);
2479 				if (ret) {
2480 					failed_ssid = ssid;
2481 					goto out_cancel_attach;
2482 				}
2483 			}
2484 		} while_each_subsys_mask();
2485 	}
2486 
2487 	/*
2488 	 * Now that we're guaranteed success, proceed to move all tasks to
2489 	 * the new cgroup.  There are no failure cases after here, so this
2490 	 * is the commit point.
2491 	 */
2492 	spin_lock_irq(&css_set_lock);
2493 	list_for_each_entry(cset, &tset->src_csets, mg_node) {
2494 		list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2495 			struct css_set *from_cset = task_css_set(task);
2496 			struct css_set *to_cset = cset->mg_dst_cset;
2497 
2498 			get_css_set(to_cset);
2499 			to_cset->nr_tasks++;
2500 			css_set_move_task(task, from_cset, to_cset, true);
2501 			from_cset->nr_tasks--;
2502 			/*
2503 			 * If the source or destination cgroup is frozen,
2504 			 * the task might require to change its state.
2505 			 */
2506 			cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp,
2507 						    to_cset->dfl_cgrp);
2508 			put_css_set_locked(from_cset);
2509 
2510 		}
2511 	}
2512 	spin_unlock_irq(&css_set_lock);
2513 
2514 	/*
2515 	 * Migration is committed, all target tasks are now on dst_csets.
2516 	 * Nothing is sensitive to fork() after this point.  Notify
2517 	 * controllers that migration is complete.
2518 	 */
2519 	tset->csets = &tset->dst_csets;
2520 
2521 	if (tset->nr_tasks) {
2522 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2523 			if (ss->attach) {
2524 				tset->ssid = ssid;
2525 				ss->attach(tset);
2526 			}
2527 		} while_each_subsys_mask();
2528 	}
2529 
2530 	ret = 0;
2531 	goto out_release_tset;
2532 
2533 out_cancel_attach:
2534 	if (tset->nr_tasks) {
2535 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2536 			if (ssid == failed_ssid)
2537 				break;
2538 			if (ss->cancel_attach) {
2539 				tset->ssid = ssid;
2540 				ss->cancel_attach(tset);
2541 			}
2542 		} while_each_subsys_mask();
2543 	}
2544 out_release_tset:
2545 	spin_lock_irq(&css_set_lock);
2546 	list_splice_init(&tset->dst_csets, &tset->src_csets);
2547 	list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2548 		list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2549 		list_del_init(&cset->mg_node);
2550 	}
2551 	spin_unlock_irq(&css_set_lock);
2552 
2553 	/*
2554 	 * Re-initialize the cgroup_taskset structure in case it is reused
2555 	 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2556 	 * iteration.
2557 	 */
2558 	tset->nr_tasks = 0;
2559 	tset->csets    = &tset->src_csets;
2560 	return ret;
2561 }
2562 
2563 /**
2564  * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2565  * @dst_cgrp: destination cgroup to test
2566  *
2567  * On the default hierarchy, except for the mixable, (possible) thread root
2568  * and threaded cgroups, subtree_control must be zero for migration
2569  * destination cgroups with tasks so that child cgroups don't compete
2570  * against tasks.
2571  */
cgroup_migrate_vet_dst(struct cgroup * dst_cgrp)2572 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2573 {
2574 	/* v1 doesn't have any restriction */
2575 	if (!cgroup_on_dfl(dst_cgrp))
2576 		return 0;
2577 
2578 	/* verify @dst_cgrp can host resources */
2579 	if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2580 		return -EOPNOTSUPP;
2581 
2582 	/* mixables don't care */
2583 	if (cgroup_is_mixable(dst_cgrp))
2584 		return 0;
2585 
2586 	/*
2587 	 * If @dst_cgrp is already or can become a thread root or is
2588 	 * threaded, it doesn't matter.
2589 	 */
2590 	if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2591 		return 0;
2592 
2593 	/* apply no-internal-process constraint */
2594 	if (dst_cgrp->subtree_control)
2595 		return -EBUSY;
2596 
2597 	return 0;
2598 }
2599 
2600 /**
2601  * cgroup_migrate_finish - cleanup after attach
2602  * @mgctx: migration context
2603  *
2604  * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst().  See
2605  * those functions for details.
2606  */
cgroup_migrate_finish(struct cgroup_mgctx * mgctx)2607 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2608 {
2609 	LIST_HEAD(preloaded);
2610 	struct css_set *cset, *tmp_cset;
2611 
2612 	lockdep_assert_held(&cgroup_mutex);
2613 
2614 	spin_lock_irq(&css_set_lock);
2615 
2616 	list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded);
2617 	list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded);
2618 
2619 	list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) {
2620 		cset->mg_src_cgrp = NULL;
2621 		cset->mg_dst_cgrp = NULL;
2622 		cset->mg_dst_cset = NULL;
2623 		list_del_init(&cset->mg_preload_node);
2624 		put_css_set_locked(cset);
2625 	}
2626 
2627 	spin_unlock_irq(&css_set_lock);
2628 }
2629 
2630 /**
2631  * cgroup_migrate_add_src - add a migration source css_set
2632  * @src_cset: the source css_set to add
2633  * @dst_cgrp: the destination cgroup
2634  * @mgctx: migration context
2635  *
2636  * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp.  Pin
2637  * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2638  * up by cgroup_migrate_finish().
2639  *
2640  * This function may be called without holding cgroup_threadgroup_rwsem
2641  * even if the target is a process.  Threads may be created and destroyed
2642  * but as long as cgroup_mutex is not dropped, no new css_set can be put
2643  * into play and the preloaded css_sets are guaranteed to cover all
2644  * migrations.
2645  */
cgroup_migrate_add_src(struct css_set * src_cset,struct cgroup * dst_cgrp,struct cgroup_mgctx * mgctx)2646 void cgroup_migrate_add_src(struct css_set *src_cset,
2647 			    struct cgroup *dst_cgrp,
2648 			    struct cgroup_mgctx *mgctx)
2649 {
2650 	struct cgroup *src_cgrp;
2651 
2652 	lockdep_assert_held(&cgroup_mutex);
2653 	lockdep_assert_held(&css_set_lock);
2654 
2655 	/*
2656 	 * If ->dead, @src_set is associated with one or more dead cgroups
2657 	 * and doesn't contain any migratable tasks.  Ignore it early so
2658 	 * that the rest of migration path doesn't get confused by it.
2659 	 */
2660 	if (src_cset->dead)
2661 		return;
2662 
2663 	src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2664 
2665 	if (!list_empty(&src_cset->mg_preload_node))
2666 		return;
2667 
2668 	WARN_ON(src_cset->mg_src_cgrp);
2669 	WARN_ON(src_cset->mg_dst_cgrp);
2670 	WARN_ON(!list_empty(&src_cset->mg_tasks));
2671 	WARN_ON(!list_empty(&src_cset->mg_node));
2672 
2673 	src_cset->mg_src_cgrp = src_cgrp;
2674 	src_cset->mg_dst_cgrp = dst_cgrp;
2675 	get_css_set(src_cset);
2676 	list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets);
2677 }
2678 
2679 /**
2680  * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2681  * @mgctx: migration context
2682  *
2683  * Tasks are about to be moved and all the source css_sets have been
2684  * preloaded to @mgctx->preloaded_src_csets.  This function looks up and
2685  * pins all destination css_sets, links each to its source, and append them
2686  * to @mgctx->preloaded_dst_csets.
2687  *
2688  * This function must be called after cgroup_migrate_add_src() has been
2689  * called on each migration source css_set.  After migration is performed
2690  * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2691  * @mgctx.
2692  */
cgroup_migrate_prepare_dst(struct cgroup_mgctx * mgctx)2693 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2694 {
2695 	struct css_set *src_cset, *tmp_cset;
2696 
2697 	lockdep_assert_held(&cgroup_mutex);
2698 
2699 	/* look up the dst cset for each src cset and link it to src */
2700 	list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2701 				 mg_preload_node) {
2702 		struct css_set *dst_cset;
2703 		struct cgroup_subsys *ss;
2704 		int ssid;
2705 
2706 		dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2707 		if (!dst_cset)
2708 			return -ENOMEM;
2709 
2710 		WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2711 
2712 		/*
2713 		 * If src cset equals dst, it's noop.  Drop the src.
2714 		 * cgroup_migrate() will skip the cset too.  Note that we
2715 		 * can't handle src == dst as some nodes are used by both.
2716 		 */
2717 		if (src_cset == dst_cset) {
2718 			src_cset->mg_src_cgrp = NULL;
2719 			src_cset->mg_dst_cgrp = NULL;
2720 			list_del_init(&src_cset->mg_preload_node);
2721 			put_css_set(src_cset);
2722 			put_css_set(dst_cset);
2723 			continue;
2724 		}
2725 
2726 		src_cset->mg_dst_cset = dst_cset;
2727 
2728 		if (list_empty(&dst_cset->mg_preload_node))
2729 			list_add_tail(&dst_cset->mg_preload_node,
2730 				      &mgctx->preloaded_dst_csets);
2731 		else
2732 			put_css_set(dst_cset);
2733 
2734 		for_each_subsys(ss, ssid)
2735 			if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2736 				mgctx->ss_mask |= 1 << ssid;
2737 	}
2738 
2739 	return 0;
2740 }
2741 
2742 /**
2743  * cgroup_migrate - migrate a process or task to a cgroup
2744  * @leader: the leader of the process or the task to migrate
2745  * @threadgroup: whether @leader points to the whole process or a single task
2746  * @mgctx: migration context
2747  *
2748  * Migrate a process or task denoted by @leader.  If migrating a process,
2749  * the caller must be holding cgroup_threadgroup_rwsem.  The caller is also
2750  * responsible for invoking cgroup_migrate_add_src() and
2751  * cgroup_migrate_prepare_dst() on the targets before invoking this
2752  * function and following up with cgroup_migrate_finish().
2753  *
2754  * As long as a controller's ->can_attach() doesn't fail, this function is
2755  * guaranteed to succeed.  This means that, excluding ->can_attach()
2756  * failure, when migrating multiple targets, the success or failure can be
2757  * decided for all targets by invoking group_migrate_prepare_dst() before
2758  * actually starting migrating.
2759  */
cgroup_migrate(struct task_struct * leader,bool threadgroup,struct cgroup_mgctx * mgctx)2760 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2761 		   struct cgroup_mgctx *mgctx)
2762 {
2763 	struct task_struct *task;
2764 
2765 	/*
2766 	 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2767 	 * already PF_EXITING could be freed from underneath us unless we
2768 	 * take an rcu_read_lock.
2769 	 */
2770 	spin_lock_irq(&css_set_lock);
2771 	rcu_read_lock();
2772 	task = leader;
2773 	do {
2774 		cgroup_migrate_add_task(task, mgctx);
2775 		if (!threadgroup)
2776 			break;
2777 	} while_each_thread(leader, task);
2778 	rcu_read_unlock();
2779 	spin_unlock_irq(&css_set_lock);
2780 
2781 	return cgroup_migrate_execute(mgctx);
2782 }
2783 
2784 /**
2785  * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2786  * @dst_cgrp: the cgroup to attach to
2787  * @leader: the task or the leader of the threadgroup to be attached
2788  * @threadgroup: attach the whole threadgroup?
2789  *
2790  * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2791  */
cgroup_attach_task(struct cgroup * dst_cgrp,struct task_struct * leader,bool threadgroup)2792 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2793 		       bool threadgroup)
2794 {
2795 	DEFINE_CGROUP_MGCTX(mgctx);
2796 	struct task_struct *task;
2797 	int ret;
2798 
2799 	ret = cgroup_migrate_vet_dst(dst_cgrp);
2800 	if (ret)
2801 		return ret;
2802 
2803 	/* look up all src csets */
2804 	spin_lock_irq(&css_set_lock);
2805 	rcu_read_lock();
2806 	task = leader;
2807 	do {
2808 		cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2809 		if (!threadgroup)
2810 			break;
2811 	} while_each_thread(leader, task);
2812 	rcu_read_unlock();
2813 	spin_unlock_irq(&css_set_lock);
2814 
2815 	/* prepare dst csets and commit */
2816 	ret = cgroup_migrate_prepare_dst(&mgctx);
2817 	if (!ret)
2818 		ret = cgroup_migrate(leader, threadgroup, &mgctx);
2819 
2820 	cgroup_migrate_finish(&mgctx);
2821 
2822 	if (!ret)
2823 		TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2824 
2825 	return ret;
2826 }
2827 
cgroup_procs_write_start(char * buf,bool threadgroup)2828 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup)
2829 	__acquires(&cgroup_threadgroup_rwsem)
2830 {
2831 	struct task_struct *tsk;
2832 	pid_t pid;
2833 
2834 	if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2835 		return ERR_PTR(-EINVAL);
2836 
2837 	percpu_down_write(&cgroup_threadgroup_rwsem);
2838 
2839 	rcu_read_lock();
2840 	if (pid) {
2841 		tsk = find_task_by_vpid(pid);
2842 		if (!tsk) {
2843 			tsk = ERR_PTR(-ESRCH);
2844 			goto out_unlock_threadgroup;
2845 		}
2846 	} else {
2847 		tsk = current;
2848 	}
2849 
2850 	if (threadgroup)
2851 		tsk = tsk->group_leader;
2852 
2853 	/*
2854 	 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2855 	 * If userland migrates such a kthread to a non-root cgroup, it can
2856 	 * become trapped in a cpuset, or RT kthread may be born in a
2857 	 * cgroup with no rt_runtime allocated.  Just say no.
2858 	 */
2859 	if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2860 		tsk = ERR_PTR(-EINVAL);
2861 		goto out_unlock_threadgroup;
2862 	}
2863 
2864 	get_task_struct(tsk);
2865 	goto out_unlock_rcu;
2866 
2867 out_unlock_threadgroup:
2868 	percpu_up_write(&cgroup_threadgroup_rwsem);
2869 out_unlock_rcu:
2870 	rcu_read_unlock();
2871 	return tsk;
2872 }
2873 
cgroup_procs_write_finish(struct task_struct * task)2874 void cgroup_procs_write_finish(struct task_struct *task)
2875 	__releases(&cgroup_threadgroup_rwsem)
2876 {
2877 	struct cgroup_subsys *ss;
2878 	int ssid;
2879 
2880 	/* release reference from cgroup_procs_write_start() */
2881 	put_task_struct(task);
2882 
2883 	percpu_up_write(&cgroup_threadgroup_rwsem);
2884 	for_each_subsys(ss, ssid)
2885 		if (ss->post_attach)
2886 			ss->post_attach();
2887 }
2888 
cgroup_print_ss_mask(struct seq_file * seq,u16 ss_mask)2889 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2890 {
2891 	struct cgroup_subsys *ss;
2892 	bool printed = false;
2893 	int ssid;
2894 
2895 	do_each_subsys_mask(ss, ssid, ss_mask) {
2896 		if (printed)
2897 			seq_putc(seq, ' ');
2898 		seq_puts(seq, ss->name);
2899 		printed = true;
2900 	} while_each_subsys_mask();
2901 	if (printed)
2902 		seq_putc(seq, '\n');
2903 }
2904 
2905 /* show controllers which are enabled from the parent */
cgroup_controllers_show(struct seq_file * seq,void * v)2906 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2907 {
2908 	struct cgroup *cgrp = seq_css(seq)->cgroup;
2909 
2910 	cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2911 	return 0;
2912 }
2913 
2914 /* show controllers which are enabled for a given cgroup's children */
cgroup_subtree_control_show(struct seq_file * seq,void * v)2915 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2916 {
2917 	struct cgroup *cgrp = seq_css(seq)->cgroup;
2918 
2919 	cgroup_print_ss_mask(seq, cgrp->subtree_control);
2920 	return 0;
2921 }
2922 
2923 /**
2924  * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2925  * @cgrp: root of the subtree to update csses for
2926  *
2927  * @cgrp's control masks have changed and its subtree's css associations
2928  * need to be updated accordingly.  This function looks up all css_sets
2929  * which are attached to the subtree, creates the matching updated css_sets
2930  * and migrates the tasks to the new ones.
2931  */
cgroup_update_dfl_csses(struct cgroup * cgrp)2932 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2933 {
2934 	DEFINE_CGROUP_MGCTX(mgctx);
2935 	struct cgroup_subsys_state *d_css;
2936 	struct cgroup *dsct;
2937 	struct css_set *src_cset;
2938 	int ret;
2939 
2940 	lockdep_assert_held(&cgroup_mutex);
2941 
2942 	percpu_down_write(&cgroup_threadgroup_rwsem);
2943 
2944 	/* look up all csses currently attached to @cgrp's subtree */
2945 	spin_lock_irq(&css_set_lock);
2946 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2947 		struct cgrp_cset_link *link;
2948 
2949 		list_for_each_entry(link, &dsct->cset_links, cset_link)
2950 			cgroup_migrate_add_src(link->cset, dsct, &mgctx);
2951 	}
2952 	spin_unlock_irq(&css_set_lock);
2953 
2954 	/* NULL dst indicates self on default hierarchy */
2955 	ret = cgroup_migrate_prepare_dst(&mgctx);
2956 	if (ret)
2957 		goto out_finish;
2958 
2959 	spin_lock_irq(&css_set_lock);
2960 	list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) {
2961 		struct task_struct *task, *ntask;
2962 
2963 		/* all tasks in src_csets need to be migrated */
2964 		list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2965 			cgroup_migrate_add_task(task, &mgctx);
2966 	}
2967 	spin_unlock_irq(&css_set_lock);
2968 
2969 	ret = cgroup_migrate_execute(&mgctx);
2970 out_finish:
2971 	cgroup_migrate_finish(&mgctx);
2972 	percpu_up_write(&cgroup_threadgroup_rwsem);
2973 	return ret;
2974 }
2975 
2976 /**
2977  * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
2978  * @cgrp: root of the target subtree
2979  *
2980  * Because css offlining is asynchronous, userland may try to re-enable a
2981  * controller while the previous css is still around.  This function grabs
2982  * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
2983  */
cgroup_lock_and_drain_offline(struct cgroup * cgrp)2984 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
2985 	__acquires(&cgroup_mutex)
2986 {
2987 	struct cgroup *dsct;
2988 	struct cgroup_subsys_state *d_css;
2989 	struct cgroup_subsys *ss;
2990 	int ssid;
2991 
2992 restart:
2993 	mutex_lock(&cgroup_mutex);
2994 
2995 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2996 		for_each_subsys(ss, ssid) {
2997 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2998 			DEFINE_WAIT(wait);
2999 
3000 			if (!css || !percpu_ref_is_dying(&css->refcnt))
3001 				continue;
3002 
3003 			cgroup_get_live(dsct);
3004 			prepare_to_wait(&dsct->offline_waitq, &wait,
3005 					TASK_UNINTERRUPTIBLE);
3006 
3007 			mutex_unlock(&cgroup_mutex);
3008 			schedule();
3009 			finish_wait(&dsct->offline_waitq, &wait);
3010 
3011 			cgroup_put(dsct);
3012 			goto restart;
3013 		}
3014 	}
3015 }
3016 
3017 /**
3018  * cgroup_save_control - save control masks and dom_cgrp of a subtree
3019  * @cgrp: root of the target subtree
3020  *
3021  * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
3022  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3023  * itself.
3024  */
cgroup_save_control(struct cgroup * cgrp)3025 static void cgroup_save_control(struct cgroup *cgrp)
3026 {
3027 	struct cgroup *dsct;
3028 	struct cgroup_subsys_state *d_css;
3029 
3030 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3031 		dsct->old_subtree_control = dsct->subtree_control;
3032 		dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
3033 		dsct->old_dom_cgrp = dsct->dom_cgrp;
3034 	}
3035 }
3036 
3037 /**
3038  * cgroup_propagate_control - refresh control masks of a subtree
3039  * @cgrp: root of the target subtree
3040  *
3041  * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
3042  * ->subtree_control and propagate controller availability through the
3043  * subtree so that descendants don't have unavailable controllers enabled.
3044  */
cgroup_propagate_control(struct cgroup * cgrp)3045 static void cgroup_propagate_control(struct cgroup *cgrp)
3046 {
3047 	struct cgroup *dsct;
3048 	struct cgroup_subsys_state *d_css;
3049 
3050 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3051 		dsct->subtree_control &= cgroup_control(dsct);
3052 		dsct->subtree_ss_mask =
3053 			cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3054 						    cgroup_ss_mask(dsct));
3055 	}
3056 }
3057 
3058 /**
3059  * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
3060  * @cgrp: root of the target subtree
3061  *
3062  * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
3063  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3064  * itself.
3065  */
cgroup_restore_control(struct cgroup * cgrp)3066 static void cgroup_restore_control(struct cgroup *cgrp)
3067 {
3068 	struct cgroup *dsct;
3069 	struct cgroup_subsys_state *d_css;
3070 
3071 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3072 		dsct->subtree_control = dsct->old_subtree_control;
3073 		dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3074 		dsct->dom_cgrp = dsct->old_dom_cgrp;
3075 	}
3076 }
3077 
css_visible(struct cgroup_subsys_state * css)3078 static bool css_visible(struct cgroup_subsys_state *css)
3079 {
3080 	struct cgroup_subsys *ss = css->ss;
3081 	struct cgroup *cgrp = css->cgroup;
3082 
3083 	if (cgroup_control(cgrp) & (1 << ss->id))
3084 		return true;
3085 	if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3086 		return false;
3087 	return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3088 }
3089 
3090 /**
3091  * cgroup_apply_control_enable - enable or show csses according to control
3092  * @cgrp: root of the target subtree
3093  *
3094  * Walk @cgrp's subtree and create new csses or make the existing ones
3095  * visible.  A css is created invisible if it's being implicitly enabled
3096  * through dependency.  An invisible css is made visible when the userland
3097  * explicitly enables it.
3098  *
3099  * Returns 0 on success, -errno on failure.  On failure, csses which have
3100  * been processed already aren't cleaned up.  The caller is responsible for
3101  * cleaning up with cgroup_apply_control_disable().
3102  */
cgroup_apply_control_enable(struct cgroup * cgrp)3103 static int cgroup_apply_control_enable(struct cgroup *cgrp)
3104 {
3105 	struct cgroup *dsct;
3106 	struct cgroup_subsys_state *d_css;
3107 	struct cgroup_subsys *ss;
3108 	int ssid, ret;
3109 
3110 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3111 		for_each_subsys(ss, ssid) {
3112 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3113 
3114 			WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
3115 
3116 			if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3117 				continue;
3118 
3119 			if (!css) {
3120 				css = css_create(dsct, ss);
3121 				if (IS_ERR(css))
3122 					return PTR_ERR(css);
3123 			}
3124 
3125 			if (css_visible(css)) {
3126 				ret = css_populate_dir(css);
3127 				if (ret)
3128 					return ret;
3129 			}
3130 		}
3131 	}
3132 
3133 	return 0;
3134 }
3135 
3136 /**
3137  * cgroup_apply_control_disable - kill or hide csses according to control
3138  * @cgrp: root of the target subtree
3139  *
3140  * Walk @cgrp's subtree and kill and hide csses so that they match
3141  * cgroup_ss_mask() and cgroup_visible_mask().
3142  *
3143  * A css is hidden when the userland requests it to be disabled while other
3144  * subsystems are still depending on it.  The css must not actively control
3145  * resources and be in the vanilla state if it's made visible again later.
3146  * Controllers which may be depended upon should provide ->css_reset() for
3147  * this purpose.
3148  */
cgroup_apply_control_disable(struct cgroup * cgrp)3149 static void cgroup_apply_control_disable(struct cgroup *cgrp)
3150 {
3151 	struct cgroup *dsct;
3152 	struct cgroup_subsys_state *d_css;
3153 	struct cgroup_subsys *ss;
3154 	int ssid;
3155 
3156 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3157 		for_each_subsys(ss, ssid) {
3158 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3159 
3160 			WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
3161 
3162 			if (!css)
3163 				continue;
3164 
3165 			if (css->parent &&
3166 			    !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3167 				kill_css(css);
3168 			} else if (!css_visible(css)) {
3169 				css_clear_dir(css);
3170 				if (ss->css_reset)
3171 					ss->css_reset(css);
3172 			}
3173 		}
3174 	}
3175 }
3176 
3177 /**
3178  * cgroup_apply_control - apply control mask updates to the subtree
3179  * @cgrp: root of the target subtree
3180  *
3181  * subsystems can be enabled and disabled in a subtree using the following
3182  * steps.
3183  *
3184  * 1. Call cgroup_save_control() to stash the current state.
3185  * 2. Update ->subtree_control masks in the subtree as desired.
3186  * 3. Call cgroup_apply_control() to apply the changes.
3187  * 4. Optionally perform other related operations.
3188  * 5. Call cgroup_finalize_control() to finish up.
3189  *
3190  * This function implements step 3 and propagates the mask changes
3191  * throughout @cgrp's subtree, updates csses accordingly and perform
3192  * process migrations.
3193  */
cgroup_apply_control(struct cgroup * cgrp)3194 static int cgroup_apply_control(struct cgroup *cgrp)
3195 {
3196 	int ret;
3197 
3198 	cgroup_propagate_control(cgrp);
3199 
3200 	ret = cgroup_apply_control_enable(cgrp);
3201 	if (ret)
3202 		return ret;
3203 
3204 	/*
3205 	 * At this point, cgroup_e_css_by_mask() results reflect the new csses
3206 	 * making the following cgroup_update_dfl_csses() properly update
3207 	 * css associations of all tasks in the subtree.
3208 	 */
3209 	ret = cgroup_update_dfl_csses(cgrp);
3210 	if (ret)
3211 		return ret;
3212 
3213 	return 0;
3214 }
3215 
3216 /**
3217  * cgroup_finalize_control - finalize control mask update
3218  * @cgrp: root of the target subtree
3219  * @ret: the result of the update
3220  *
3221  * Finalize control mask update.  See cgroup_apply_control() for more info.
3222  */
cgroup_finalize_control(struct cgroup * cgrp,int ret)3223 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3224 {
3225 	if (ret) {
3226 		cgroup_restore_control(cgrp);
3227 		cgroup_propagate_control(cgrp);
3228 	}
3229 
3230 	cgroup_apply_control_disable(cgrp);
3231 }
3232 
cgroup_vet_subtree_control_enable(struct cgroup * cgrp,u16 enable)3233 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3234 {
3235 	u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3236 
3237 	/* if nothing is getting enabled, nothing to worry about */
3238 	if (!enable)
3239 		return 0;
3240 
3241 	/* can @cgrp host any resources? */
3242 	if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3243 		return -EOPNOTSUPP;
3244 
3245 	/* mixables don't care */
3246 	if (cgroup_is_mixable(cgrp))
3247 		return 0;
3248 
3249 	if (domain_enable) {
3250 		/* can't enable domain controllers inside a thread subtree */
3251 		if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3252 			return -EOPNOTSUPP;
3253 	} else {
3254 		/*
3255 		 * Threaded controllers can handle internal competitions
3256 		 * and are always allowed inside a (prospective) thread
3257 		 * subtree.
3258 		 */
3259 		if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3260 			return 0;
3261 	}
3262 
3263 	/*
3264 	 * Controllers can't be enabled for a cgroup with tasks to avoid
3265 	 * child cgroups competing against tasks.
3266 	 */
3267 	if (cgroup_has_tasks(cgrp))
3268 		return -EBUSY;
3269 
3270 	return 0;
3271 }
3272 
3273 /* change the enabled child controllers for a cgroup in the default hierarchy */
cgroup_subtree_control_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3274 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3275 					    char *buf, size_t nbytes,
3276 					    loff_t off)
3277 {
3278 	u16 enable = 0, disable = 0;
3279 	struct cgroup *cgrp, *child;
3280 	struct cgroup_subsys *ss;
3281 	char *tok;
3282 	int ssid, ret;
3283 
3284 	/*
3285 	 * Parse input - space separated list of subsystem names prefixed
3286 	 * with either + or -.
3287 	 */
3288 	buf = strstrip(buf);
3289 	while ((tok = strsep(&buf, " "))) {
3290 		if (tok[0] == '\0')
3291 			continue;
3292 		do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3293 			if (!cgroup_ssid_enabled(ssid) ||
3294 			    strcmp(tok + 1, ss->name))
3295 				continue;
3296 
3297 			if (*tok == '+') {
3298 				enable |= 1 << ssid;
3299 				disable &= ~(1 << ssid);
3300 			} else if (*tok == '-') {
3301 				disable |= 1 << ssid;
3302 				enable &= ~(1 << ssid);
3303 			} else {
3304 				return -EINVAL;
3305 			}
3306 			break;
3307 		} while_each_subsys_mask();
3308 		if (ssid == CGROUP_SUBSYS_COUNT)
3309 			return -EINVAL;
3310 	}
3311 
3312 	cgrp = cgroup_kn_lock_live(of->kn, true);
3313 	if (!cgrp)
3314 		return -ENODEV;
3315 
3316 	for_each_subsys(ss, ssid) {
3317 		if (enable & (1 << ssid)) {
3318 			if (cgrp->subtree_control & (1 << ssid)) {
3319 				enable &= ~(1 << ssid);
3320 				continue;
3321 			}
3322 
3323 			if (!(cgroup_control(cgrp) & (1 << ssid))) {
3324 				ret = -ENOENT;
3325 				goto out_unlock;
3326 			}
3327 		} else if (disable & (1 << ssid)) {
3328 			if (!(cgrp->subtree_control & (1 << ssid))) {
3329 				disable &= ~(1 << ssid);
3330 				continue;
3331 			}
3332 
3333 			/* a child has it enabled? */
3334 			cgroup_for_each_live_child(child, cgrp) {
3335 				if (child->subtree_control & (1 << ssid)) {
3336 					ret = -EBUSY;
3337 					goto out_unlock;
3338 				}
3339 			}
3340 		}
3341 	}
3342 
3343 	if (!enable && !disable) {
3344 		ret = 0;
3345 		goto out_unlock;
3346 	}
3347 
3348 	ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3349 	if (ret)
3350 		goto out_unlock;
3351 
3352 	/* save and update control masks and prepare csses */
3353 	cgroup_save_control(cgrp);
3354 
3355 	cgrp->subtree_control |= enable;
3356 	cgrp->subtree_control &= ~disable;
3357 
3358 	ret = cgroup_apply_control(cgrp);
3359 	cgroup_finalize_control(cgrp, ret);
3360 	if (ret)
3361 		goto out_unlock;
3362 
3363 	kernfs_activate(cgrp->kn);
3364 out_unlock:
3365 	cgroup_kn_unlock(of->kn);
3366 	return ret ?: nbytes;
3367 }
3368 
3369 /**
3370  * cgroup_enable_threaded - make @cgrp threaded
3371  * @cgrp: the target cgroup
3372  *
3373  * Called when "threaded" is written to the cgroup.type interface file and
3374  * tries to make @cgrp threaded and join the parent's resource domain.
3375  * This function is never called on the root cgroup as cgroup.type doesn't
3376  * exist on it.
3377  */
cgroup_enable_threaded(struct cgroup * cgrp)3378 static int cgroup_enable_threaded(struct cgroup *cgrp)
3379 {
3380 	struct cgroup *parent = cgroup_parent(cgrp);
3381 	struct cgroup *dom_cgrp = parent->dom_cgrp;
3382 	struct cgroup *dsct;
3383 	struct cgroup_subsys_state *d_css;
3384 	int ret;
3385 
3386 	lockdep_assert_held(&cgroup_mutex);
3387 
3388 	/* noop if already threaded */
3389 	if (cgroup_is_threaded(cgrp))
3390 		return 0;
3391 
3392 	/*
3393 	 * If @cgroup is populated or has domain controllers enabled, it
3394 	 * can't be switched.  While the below cgroup_can_be_thread_root()
3395 	 * test can catch the same conditions, that's only when @parent is
3396 	 * not mixable, so let's check it explicitly.
3397 	 */
3398 	if (cgroup_is_populated(cgrp) ||
3399 	    cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3400 		return -EOPNOTSUPP;
3401 
3402 	/* we're joining the parent's domain, ensure its validity */
3403 	if (!cgroup_is_valid_domain(dom_cgrp) ||
3404 	    !cgroup_can_be_thread_root(dom_cgrp))
3405 		return -EOPNOTSUPP;
3406 
3407 	/*
3408 	 * The following shouldn't cause actual migrations and should
3409 	 * always succeed.
3410 	 */
3411 	cgroup_save_control(cgrp);
3412 
3413 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3414 		if (dsct == cgrp || cgroup_is_threaded(dsct))
3415 			dsct->dom_cgrp = dom_cgrp;
3416 
3417 	ret = cgroup_apply_control(cgrp);
3418 	if (!ret)
3419 		parent->nr_threaded_children++;
3420 
3421 	cgroup_finalize_control(cgrp, ret);
3422 	return ret;
3423 }
3424 
cgroup_type_show(struct seq_file * seq,void * v)3425 static int cgroup_type_show(struct seq_file *seq, void *v)
3426 {
3427 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3428 
3429 	if (cgroup_is_threaded(cgrp))
3430 		seq_puts(seq, "threaded\n");
3431 	else if (!cgroup_is_valid_domain(cgrp))
3432 		seq_puts(seq, "domain invalid\n");
3433 	else if (cgroup_is_thread_root(cgrp))
3434 		seq_puts(seq, "domain threaded\n");
3435 	else
3436 		seq_puts(seq, "domain\n");
3437 
3438 	return 0;
3439 }
3440 
cgroup_type_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3441 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3442 				 size_t nbytes, loff_t off)
3443 {
3444 	struct cgroup *cgrp;
3445 	int ret;
3446 
3447 	/* only switching to threaded mode is supported */
3448 	if (strcmp(strstrip(buf), "threaded"))
3449 		return -EINVAL;
3450 
3451 	cgrp = cgroup_kn_lock_live(of->kn, false);
3452 	if (!cgrp)
3453 		return -ENOENT;
3454 
3455 	/* threaded can only be enabled */
3456 	ret = cgroup_enable_threaded(cgrp);
3457 
3458 	cgroup_kn_unlock(of->kn);
3459 	return ret ?: nbytes;
3460 }
3461 
cgroup_max_descendants_show(struct seq_file * seq,void * v)3462 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3463 {
3464 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3465 	int descendants = READ_ONCE(cgrp->max_descendants);
3466 
3467 	if (descendants == INT_MAX)
3468 		seq_puts(seq, "max\n");
3469 	else
3470 		seq_printf(seq, "%d\n", descendants);
3471 
3472 	return 0;
3473 }
3474 
cgroup_max_descendants_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3475 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3476 					   char *buf, size_t nbytes, loff_t off)
3477 {
3478 	struct cgroup *cgrp;
3479 	int descendants;
3480 	ssize_t ret;
3481 
3482 	buf = strstrip(buf);
3483 	if (!strcmp(buf, "max")) {
3484 		descendants = INT_MAX;
3485 	} else {
3486 		ret = kstrtoint(buf, 0, &descendants);
3487 		if (ret)
3488 			return ret;
3489 	}
3490 
3491 	if (descendants < 0)
3492 		return -ERANGE;
3493 
3494 	cgrp = cgroup_kn_lock_live(of->kn, false);
3495 	if (!cgrp)
3496 		return -ENOENT;
3497 
3498 	cgrp->max_descendants = descendants;
3499 
3500 	cgroup_kn_unlock(of->kn);
3501 
3502 	return nbytes;
3503 }
3504 
cgroup_max_depth_show(struct seq_file * seq,void * v)3505 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3506 {
3507 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3508 	int depth = READ_ONCE(cgrp->max_depth);
3509 
3510 	if (depth == INT_MAX)
3511 		seq_puts(seq, "max\n");
3512 	else
3513 		seq_printf(seq, "%d\n", depth);
3514 
3515 	return 0;
3516 }
3517 
cgroup_max_depth_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3518 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3519 				      char *buf, size_t nbytes, loff_t off)
3520 {
3521 	struct cgroup *cgrp;
3522 	ssize_t ret;
3523 	int depth;
3524 
3525 	buf = strstrip(buf);
3526 	if (!strcmp(buf, "max")) {
3527 		depth = INT_MAX;
3528 	} else {
3529 		ret = kstrtoint(buf, 0, &depth);
3530 		if (ret)
3531 			return ret;
3532 	}
3533 
3534 	if (depth < 0)
3535 		return -ERANGE;
3536 
3537 	cgrp = cgroup_kn_lock_live(of->kn, false);
3538 	if (!cgrp)
3539 		return -ENOENT;
3540 
3541 	cgrp->max_depth = depth;
3542 
3543 	cgroup_kn_unlock(of->kn);
3544 
3545 	return nbytes;
3546 }
3547 
cgroup_events_show(struct seq_file * seq,void * v)3548 static int cgroup_events_show(struct seq_file *seq, void *v)
3549 {
3550 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3551 
3552 	seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp));
3553 	seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags));
3554 
3555 	return 0;
3556 }
3557 
cgroup_stat_show(struct seq_file * seq,void * v)3558 static int cgroup_stat_show(struct seq_file *seq, void *v)
3559 {
3560 	struct cgroup *cgroup = seq_css(seq)->cgroup;
3561 
3562 	seq_printf(seq, "nr_descendants %d\n",
3563 		   cgroup->nr_descendants);
3564 	seq_printf(seq, "nr_dying_descendants %d\n",
3565 		   cgroup->nr_dying_descendants);
3566 
3567 	return 0;
3568 }
3569 
cgroup_extra_stat_show(struct seq_file * seq,struct cgroup * cgrp,int ssid)3570 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3571 						 struct cgroup *cgrp, int ssid)
3572 {
3573 	struct cgroup_subsys *ss = cgroup_subsys[ssid];
3574 	struct cgroup_subsys_state *css;
3575 	int ret;
3576 
3577 	if (!ss->css_extra_stat_show)
3578 		return 0;
3579 
3580 	css = cgroup_tryget_css(cgrp, ss);
3581 	if (!css)
3582 		return 0;
3583 
3584 	ret = ss->css_extra_stat_show(seq, css);
3585 	css_put(css);
3586 	return ret;
3587 }
3588 
cpu_stat_show(struct seq_file * seq,void * v)3589 static int cpu_stat_show(struct seq_file *seq, void *v)
3590 {
3591 	struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3592 	int ret = 0;
3593 
3594 	cgroup_base_stat_cputime_show(seq);
3595 #ifdef CONFIG_CGROUP_SCHED
3596 	ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3597 #endif
3598 	return ret;
3599 }
3600 
3601 #ifdef CONFIG_PSI
cgroup_io_pressure_show(struct seq_file * seq,void * v)3602 static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3603 {
3604 	struct cgroup *cgroup = seq_css(seq)->cgroup;
3605 	struct psi_group *psi = cgroup->id == 1 ? &psi_system : &cgroup->psi;
3606 
3607 	return psi_show(seq, psi, PSI_IO);
3608 }
cgroup_memory_pressure_show(struct seq_file * seq,void * v)3609 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3610 {
3611 	struct cgroup *cgroup = seq_css(seq)->cgroup;
3612 	struct psi_group *psi = cgroup->id == 1 ? &psi_system : &cgroup->psi;
3613 
3614 	return psi_show(seq, psi, PSI_MEM);
3615 }
cgroup_cpu_pressure_show(struct seq_file * seq,void * v)3616 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3617 {
3618 	struct cgroup *cgroup = seq_css(seq)->cgroup;
3619 	struct psi_group *psi = cgroup->id == 1 ? &psi_system : &cgroup->psi;
3620 
3621 	return psi_show(seq, psi, PSI_CPU);
3622 }
3623 
cgroup_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,enum psi_res res)3624 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, char *buf,
3625 					  size_t nbytes, enum psi_res res)
3626 {
3627 	struct psi_trigger *new;
3628 	struct cgroup *cgrp;
3629 
3630 	cgrp = cgroup_kn_lock_live(of->kn, false);
3631 	if (!cgrp)
3632 		return -ENODEV;
3633 
3634 	cgroup_get(cgrp);
3635 	cgroup_kn_unlock(of->kn);
3636 
3637 	new = psi_trigger_create(&cgrp->psi, buf, nbytes, res);
3638 	if (IS_ERR(new)) {
3639 		cgroup_put(cgrp);
3640 		return PTR_ERR(new);
3641 	}
3642 
3643 	psi_trigger_replace(&of->priv, new);
3644 
3645 	cgroup_put(cgrp);
3646 
3647 	return nbytes;
3648 }
3649 
cgroup_io_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3650 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of,
3651 					  char *buf, size_t nbytes,
3652 					  loff_t off)
3653 {
3654 	return cgroup_pressure_write(of, buf, nbytes, PSI_IO);
3655 }
3656 
cgroup_memory_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3657 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of,
3658 					  char *buf, size_t nbytes,
3659 					  loff_t off)
3660 {
3661 	return cgroup_pressure_write(of, buf, nbytes, PSI_MEM);
3662 }
3663 
cgroup_cpu_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3664 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of,
3665 					  char *buf, size_t nbytes,
3666 					  loff_t off)
3667 {
3668 	return cgroup_pressure_write(of, buf, nbytes, PSI_CPU);
3669 }
3670 
cgroup_pressure_poll(struct kernfs_open_file * of,poll_table * pt)3671 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of,
3672 					  poll_table *pt)
3673 {
3674 	return psi_trigger_poll(&of->priv, of->file, pt);
3675 }
3676 
cgroup_pressure_release(struct kernfs_open_file * of)3677 static void cgroup_pressure_release(struct kernfs_open_file *of)
3678 {
3679 	psi_trigger_replace(&of->priv, NULL);
3680 }
3681 #endif /* CONFIG_PSI */
3682 
cgroup_freeze_show(struct seq_file * seq,void * v)3683 static int cgroup_freeze_show(struct seq_file *seq, void *v)
3684 {
3685 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3686 
3687 	seq_printf(seq, "%d\n", cgrp->freezer.freeze);
3688 
3689 	return 0;
3690 }
3691 
cgroup_freeze_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3692 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of,
3693 				   char *buf, size_t nbytes, loff_t off)
3694 {
3695 	struct cgroup *cgrp;
3696 	ssize_t ret;
3697 	int freeze;
3698 
3699 	ret = kstrtoint(strstrip(buf), 0, &freeze);
3700 	if (ret)
3701 		return ret;
3702 
3703 	if (freeze < 0 || freeze > 1)
3704 		return -ERANGE;
3705 
3706 	cgrp = cgroup_kn_lock_live(of->kn, false);
3707 	if (!cgrp)
3708 		return -ENOENT;
3709 
3710 	cgroup_freeze(cgrp, freeze);
3711 
3712 	cgroup_kn_unlock(of->kn);
3713 
3714 	return nbytes;
3715 }
3716 
cgroup_file_open(struct kernfs_open_file * of)3717 static int cgroup_file_open(struct kernfs_open_file *of)
3718 {
3719 	struct cftype *cft = of->kn->priv;
3720 
3721 	if (cft->open)
3722 		return cft->open(of);
3723 	return 0;
3724 }
3725 
cgroup_file_release(struct kernfs_open_file * of)3726 static void cgroup_file_release(struct kernfs_open_file *of)
3727 {
3728 	struct cftype *cft = of->kn->priv;
3729 
3730 	if (cft->release)
3731 		cft->release(of);
3732 }
3733 
cgroup_file_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3734 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3735 				 size_t nbytes, loff_t off)
3736 {
3737 	struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
3738 	struct cgroup *cgrp = of->kn->parent->priv;
3739 	struct cftype *cft = of->kn->priv;
3740 	struct cgroup_subsys_state *css;
3741 	int ret;
3742 
3743 	/*
3744 	 * If namespaces are delegation boundaries, disallow writes to
3745 	 * files in an non-init namespace root from inside the namespace
3746 	 * except for the files explicitly marked delegatable -
3747 	 * cgroup.procs and cgroup.subtree_control.
3748 	 */
3749 	if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3750 	    !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3751 	    ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp)
3752 		return -EPERM;
3753 
3754 	if (cft->write)
3755 		return cft->write(of, buf, nbytes, off);
3756 
3757 	/*
3758 	 * kernfs guarantees that a file isn't deleted with operations in
3759 	 * flight, which means that the matching css is and stays alive and
3760 	 * doesn't need to be pinned.  The RCU locking is not necessary
3761 	 * either.  It's just for the convenience of using cgroup_css().
3762 	 */
3763 	rcu_read_lock();
3764 	css = cgroup_css(cgrp, cft->ss);
3765 	rcu_read_unlock();
3766 
3767 	if (cft->write_u64) {
3768 		unsigned long long v;
3769 		ret = kstrtoull(buf, 0, &v);
3770 		if (!ret)
3771 			ret = cft->write_u64(css, cft, v);
3772 	} else if (cft->write_s64) {
3773 		long long v;
3774 		ret = kstrtoll(buf, 0, &v);
3775 		if (!ret)
3776 			ret = cft->write_s64(css, cft, v);
3777 	} else {
3778 		ret = -EINVAL;
3779 	}
3780 
3781 	return ret ?: nbytes;
3782 }
3783 
cgroup_file_poll(struct kernfs_open_file * of,poll_table * pt)3784 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt)
3785 {
3786 	struct cftype *cft = of->kn->priv;
3787 
3788 	if (cft->poll)
3789 		return cft->poll(of, pt);
3790 
3791 	return kernfs_generic_poll(of, pt);
3792 }
3793 
cgroup_seqfile_start(struct seq_file * seq,loff_t * ppos)3794 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3795 {
3796 	return seq_cft(seq)->seq_start(seq, ppos);
3797 }
3798 
cgroup_seqfile_next(struct seq_file * seq,void * v,loff_t * ppos)3799 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3800 {
3801 	return seq_cft(seq)->seq_next(seq, v, ppos);
3802 }
3803 
cgroup_seqfile_stop(struct seq_file * seq,void * v)3804 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3805 {
3806 	if (seq_cft(seq)->seq_stop)
3807 		seq_cft(seq)->seq_stop(seq, v);
3808 }
3809 
cgroup_seqfile_show(struct seq_file * m,void * arg)3810 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3811 {
3812 	struct cftype *cft = seq_cft(m);
3813 	struct cgroup_subsys_state *css = seq_css(m);
3814 
3815 	if (cft->seq_show)
3816 		return cft->seq_show(m, arg);
3817 
3818 	if (cft->read_u64)
3819 		seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3820 	else if (cft->read_s64)
3821 		seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3822 	else
3823 		return -EINVAL;
3824 	return 0;
3825 }
3826 
3827 static struct kernfs_ops cgroup_kf_single_ops = {
3828 	.atomic_write_len	= PAGE_SIZE,
3829 	.open			= cgroup_file_open,
3830 	.release		= cgroup_file_release,
3831 	.write			= cgroup_file_write,
3832 	.poll			= cgroup_file_poll,
3833 	.seq_show		= cgroup_seqfile_show,
3834 };
3835 
3836 static struct kernfs_ops cgroup_kf_ops = {
3837 	.atomic_write_len	= PAGE_SIZE,
3838 	.open			= cgroup_file_open,
3839 	.release		= cgroup_file_release,
3840 	.write			= cgroup_file_write,
3841 	.poll			= cgroup_file_poll,
3842 	.seq_start		= cgroup_seqfile_start,
3843 	.seq_next		= cgroup_seqfile_next,
3844 	.seq_stop		= cgroup_seqfile_stop,
3845 	.seq_show		= cgroup_seqfile_show,
3846 };
3847 
3848 /* set uid and gid of cgroup dirs and files to that of the creator */
cgroup_kn_set_ugid(struct kernfs_node * kn)3849 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3850 {
3851 	struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3852 			       .ia_uid = current_fsuid(),
3853 			       .ia_gid = current_fsgid(), };
3854 
3855 	if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3856 	    gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3857 		return 0;
3858 
3859 	return kernfs_setattr(kn, &iattr);
3860 }
3861 
cgroup_file_notify_timer(struct timer_list * timer)3862 static void cgroup_file_notify_timer(struct timer_list *timer)
3863 {
3864 	cgroup_file_notify(container_of(timer, struct cgroup_file,
3865 					notify_timer));
3866 }
3867 
cgroup_add_file(struct cgroup_subsys_state * css,struct cgroup * cgrp,struct cftype * cft)3868 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3869 			   struct cftype *cft)
3870 {
3871 	char name[CGROUP_FILE_NAME_MAX];
3872 	struct kernfs_node *kn;
3873 	struct lock_class_key *key = NULL;
3874 	int ret;
3875 
3876 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3877 	key = &cft->lockdep_key;
3878 #endif
3879 	kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3880 				  cgroup_file_mode(cft),
3881 				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
3882 				  0, cft->kf_ops, cft,
3883 				  NULL, key);
3884 	if (IS_ERR(kn))
3885 		return PTR_ERR(kn);
3886 
3887 	ret = cgroup_kn_set_ugid(kn);
3888 	if (ret) {
3889 		kernfs_remove(kn);
3890 		return ret;
3891 	}
3892 
3893 	if (cft->file_offset) {
3894 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
3895 
3896 		timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
3897 
3898 		spin_lock_irq(&cgroup_file_kn_lock);
3899 		cfile->kn = kn;
3900 		spin_unlock_irq(&cgroup_file_kn_lock);
3901 	}
3902 
3903 	return 0;
3904 }
3905 
3906 /**
3907  * cgroup_addrm_files - add or remove files to a cgroup directory
3908  * @css: the target css
3909  * @cgrp: the target cgroup (usually css->cgroup)
3910  * @cfts: array of cftypes to be added
3911  * @is_add: whether to add or remove
3912  *
3913  * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3914  * For removals, this function never fails.
3915  */
cgroup_addrm_files(struct cgroup_subsys_state * css,struct cgroup * cgrp,struct cftype cfts[],bool is_add)3916 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3917 			      struct cgroup *cgrp, struct cftype cfts[],
3918 			      bool is_add)
3919 {
3920 	struct cftype *cft, *cft_end = NULL;
3921 	int ret = 0;
3922 
3923 	lockdep_assert_held(&cgroup_mutex);
3924 
3925 restart:
3926 	for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3927 		/* does cft->flags tell us to skip this file on @cgrp? */
3928 		if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3929 			continue;
3930 		if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3931 			continue;
3932 		if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3933 			continue;
3934 		if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3935 			continue;
3936 		if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
3937 			continue;
3938 		if (is_add) {
3939 			ret = cgroup_add_file(css, cgrp, cft);
3940 			if (ret) {
3941 				pr_warn("%s: failed to add %s, err=%d\n",
3942 					__func__, cft->name, ret);
3943 				cft_end = cft;
3944 				is_add = false;
3945 				goto restart;
3946 			}
3947 		} else {
3948 			cgroup_rm_file(cgrp, cft);
3949 		}
3950 	}
3951 	return ret;
3952 }
3953 
cgroup_apply_cftypes(struct cftype * cfts,bool is_add)3954 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3955 {
3956 	struct cgroup_subsys *ss = cfts[0].ss;
3957 	struct cgroup *root = &ss->root->cgrp;
3958 	struct cgroup_subsys_state *css;
3959 	int ret = 0;
3960 
3961 	lockdep_assert_held(&cgroup_mutex);
3962 
3963 	/* add/rm files for all cgroups created before */
3964 	css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3965 		struct cgroup *cgrp = css->cgroup;
3966 
3967 		if (!(css->flags & CSS_VISIBLE))
3968 			continue;
3969 
3970 		ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3971 		if (ret)
3972 			break;
3973 	}
3974 
3975 	if (is_add && !ret)
3976 		kernfs_activate(root->kn);
3977 	return ret;
3978 }
3979 
cgroup_exit_cftypes(struct cftype * cfts)3980 static void cgroup_exit_cftypes(struct cftype *cfts)
3981 {
3982 	struct cftype *cft;
3983 
3984 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
3985 		/* free copy for custom atomic_write_len, see init_cftypes() */
3986 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3987 			kfree(cft->kf_ops);
3988 		cft->kf_ops = NULL;
3989 		cft->ss = NULL;
3990 
3991 		/* revert flags set by cgroup core while adding @cfts */
3992 		cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3993 	}
3994 }
3995 
cgroup_init_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)3996 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3997 {
3998 	struct cftype *cft;
3999 
4000 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
4001 		struct kernfs_ops *kf_ops;
4002 
4003 		WARN_ON(cft->ss || cft->kf_ops);
4004 
4005 		if (cft->seq_start)
4006 			kf_ops = &cgroup_kf_ops;
4007 		else
4008 			kf_ops = &cgroup_kf_single_ops;
4009 
4010 		/*
4011 		 * Ugh... if @cft wants a custom max_write_len, we need to
4012 		 * make a copy of kf_ops to set its atomic_write_len.
4013 		 */
4014 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
4015 			kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
4016 			if (!kf_ops) {
4017 				cgroup_exit_cftypes(cfts);
4018 				return -ENOMEM;
4019 			}
4020 			kf_ops->atomic_write_len = cft->max_write_len;
4021 		}
4022 
4023 		cft->kf_ops = kf_ops;
4024 		cft->ss = ss;
4025 	}
4026 
4027 	return 0;
4028 }
4029 
cgroup_rm_cftypes_locked(struct cftype * cfts)4030 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
4031 {
4032 	lockdep_assert_held(&cgroup_mutex);
4033 
4034 	if (!cfts || !cfts[0].ss)
4035 		return -ENOENT;
4036 
4037 	list_del(&cfts->node);
4038 	cgroup_apply_cftypes(cfts, false);
4039 	cgroup_exit_cftypes(cfts);
4040 	return 0;
4041 }
4042 
4043 /**
4044  * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
4045  * @cfts: zero-length name terminated array of cftypes
4046  *
4047  * Unregister @cfts.  Files described by @cfts are removed from all
4048  * existing cgroups and all future cgroups won't have them either.  This
4049  * function can be called anytime whether @cfts' subsys is attached or not.
4050  *
4051  * Returns 0 on successful unregistration, -ENOENT if @cfts is not
4052  * registered.
4053  */
cgroup_rm_cftypes(struct cftype * cfts)4054 int cgroup_rm_cftypes(struct cftype *cfts)
4055 {
4056 	int ret;
4057 
4058 	mutex_lock(&cgroup_mutex);
4059 	ret = cgroup_rm_cftypes_locked(cfts);
4060 	mutex_unlock(&cgroup_mutex);
4061 	return ret;
4062 }
4063 
4064 /**
4065  * cgroup_add_cftypes - add an array of cftypes to a subsystem
4066  * @ss: target cgroup subsystem
4067  * @cfts: zero-length name terminated array of cftypes
4068  *
4069  * Register @cfts to @ss.  Files described by @cfts are created for all
4070  * existing cgroups to which @ss is attached and all future cgroups will
4071  * have them too.  This function can be called anytime whether @ss is
4072  * attached or not.
4073  *
4074  * Returns 0 on successful registration, -errno on failure.  Note that this
4075  * function currently returns 0 as long as @cfts registration is successful
4076  * even if some file creation attempts on existing cgroups fail.
4077  */
cgroup_add_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4078 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4079 {
4080 	int ret;
4081 
4082 	if (!cgroup_ssid_enabled(ss->id))
4083 		return 0;
4084 
4085 	if (!cfts || cfts[0].name[0] == '\0')
4086 		return 0;
4087 
4088 	ret = cgroup_init_cftypes(ss, cfts);
4089 	if (ret)
4090 		return ret;
4091 
4092 	mutex_lock(&cgroup_mutex);
4093 
4094 	list_add_tail(&cfts->node, &ss->cfts);
4095 	ret = cgroup_apply_cftypes(cfts, true);
4096 	if (ret)
4097 		cgroup_rm_cftypes_locked(cfts);
4098 
4099 	mutex_unlock(&cgroup_mutex);
4100 	return ret;
4101 }
4102 
4103 /**
4104  * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
4105  * @ss: target cgroup subsystem
4106  * @cfts: zero-length name terminated array of cftypes
4107  *
4108  * Similar to cgroup_add_cftypes() but the added files are only used for
4109  * the default hierarchy.
4110  */
cgroup_add_dfl_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4111 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4112 {
4113 	struct cftype *cft;
4114 
4115 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4116 		cft->flags |= __CFTYPE_ONLY_ON_DFL;
4117 	return cgroup_add_cftypes(ss, cfts);
4118 }
4119 
4120 /**
4121  * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
4122  * @ss: target cgroup subsystem
4123  * @cfts: zero-length name terminated array of cftypes
4124  *
4125  * Similar to cgroup_add_cftypes() but the added files are only used for
4126  * the legacy hierarchies.
4127  */
cgroup_add_legacy_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4128 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4129 {
4130 	struct cftype *cft;
4131 
4132 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4133 		cft->flags |= __CFTYPE_NOT_ON_DFL;
4134 	return cgroup_add_cftypes(ss, cfts);
4135 }
4136 
4137 /**
4138  * cgroup_file_notify - generate a file modified event for a cgroup_file
4139  * @cfile: target cgroup_file
4140  *
4141  * @cfile must have been obtained by setting cftype->file_offset.
4142  */
cgroup_file_notify(struct cgroup_file * cfile)4143 void cgroup_file_notify(struct cgroup_file *cfile)
4144 {
4145 	unsigned long flags;
4146 
4147 	spin_lock_irqsave(&cgroup_file_kn_lock, flags);
4148 	if (cfile->kn) {
4149 		unsigned long last = cfile->notified_at;
4150 		unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
4151 
4152 		if (time_in_range(jiffies, last, next)) {
4153 			timer_reduce(&cfile->notify_timer, next);
4154 		} else {
4155 			kernfs_notify(cfile->kn);
4156 			cfile->notified_at = jiffies;
4157 		}
4158 	}
4159 	spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
4160 }
4161 
4162 /**
4163  * css_next_child - find the next child of a given css
4164  * @pos: the current position (%NULL to initiate traversal)
4165  * @parent: css whose children to walk
4166  *
4167  * This function returns the next child of @parent and should be called
4168  * under either cgroup_mutex or RCU read lock.  The only requirement is
4169  * that @parent and @pos are accessible.  The next sibling is guaranteed to
4170  * be returned regardless of their states.
4171  *
4172  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4173  * css which finished ->css_online() is guaranteed to be visible in the
4174  * future iterations and will stay visible until the last reference is put.
4175  * A css which hasn't finished ->css_online() or already finished
4176  * ->css_offline() may show up during traversal.  It's each subsystem's
4177  * responsibility to synchronize against on/offlining.
4178  */
css_next_child(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * parent)4179 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
4180 					   struct cgroup_subsys_state *parent)
4181 {
4182 	struct cgroup_subsys_state *next;
4183 
4184 	cgroup_assert_mutex_or_rcu_locked();
4185 
4186 	/*
4187 	 * @pos could already have been unlinked from the sibling list.
4188 	 * Once a cgroup is removed, its ->sibling.next is no longer
4189 	 * updated when its next sibling changes.  CSS_RELEASED is set when
4190 	 * @pos is taken off list, at which time its next pointer is valid,
4191 	 * and, as releases are serialized, the one pointed to by the next
4192 	 * pointer is guaranteed to not have started release yet.  This
4193 	 * implies that if we observe !CSS_RELEASED on @pos in this RCU
4194 	 * critical section, the one pointed to by its next pointer is
4195 	 * guaranteed to not have finished its RCU grace period even if we
4196 	 * have dropped rcu_read_lock() inbetween iterations.
4197 	 *
4198 	 * If @pos has CSS_RELEASED set, its next pointer can't be
4199 	 * dereferenced; however, as each css is given a monotonically
4200 	 * increasing unique serial number and always appended to the
4201 	 * sibling list, the next one can be found by walking the parent's
4202 	 * children until the first css with higher serial number than
4203 	 * @pos's.  While this path can be slower, it happens iff iteration
4204 	 * races against release and the race window is very small.
4205 	 */
4206 	if (!pos) {
4207 		next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
4208 	} else if (likely(!(pos->flags & CSS_RELEASED))) {
4209 		next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
4210 	} else {
4211 		list_for_each_entry_rcu(next, &parent->children, sibling)
4212 			if (next->serial_nr > pos->serial_nr)
4213 				break;
4214 	}
4215 
4216 	/*
4217 	 * @next, if not pointing to the head, can be dereferenced and is
4218 	 * the next sibling.
4219 	 */
4220 	if (&next->sibling != &parent->children)
4221 		return next;
4222 	return NULL;
4223 }
4224 
4225 /**
4226  * css_next_descendant_pre - find the next descendant for pre-order walk
4227  * @pos: the current position (%NULL to initiate traversal)
4228  * @root: css whose descendants to walk
4229  *
4230  * To be used by css_for_each_descendant_pre().  Find the next descendant
4231  * to visit for pre-order traversal of @root's descendants.  @root is
4232  * included in the iteration and the first node to be visited.
4233  *
4234  * While this function requires cgroup_mutex or RCU read locking, it
4235  * doesn't require the whole traversal to be contained in a single critical
4236  * section.  This function will return the correct next descendant as long
4237  * as both @pos and @root are accessible and @pos is a descendant of @root.
4238  *
4239  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4240  * css which finished ->css_online() is guaranteed to be visible in the
4241  * future iterations and will stay visible until the last reference is put.
4242  * A css which hasn't finished ->css_online() or already finished
4243  * ->css_offline() may show up during traversal.  It's each subsystem's
4244  * responsibility to synchronize against on/offlining.
4245  */
4246 struct cgroup_subsys_state *
css_next_descendant_pre(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * root)4247 css_next_descendant_pre(struct cgroup_subsys_state *pos,
4248 			struct cgroup_subsys_state *root)
4249 {
4250 	struct cgroup_subsys_state *next;
4251 
4252 	cgroup_assert_mutex_or_rcu_locked();
4253 
4254 	/* if first iteration, visit @root */
4255 	if (!pos)
4256 		return root;
4257 
4258 	/* visit the first child if exists */
4259 	next = css_next_child(NULL, pos);
4260 	if (next)
4261 		return next;
4262 
4263 	/* no child, visit my or the closest ancestor's next sibling */
4264 	while (pos != root) {
4265 		next = css_next_child(pos, pos->parent);
4266 		if (next)
4267 			return next;
4268 		pos = pos->parent;
4269 	}
4270 
4271 	return NULL;
4272 }
4273 EXPORT_SYMBOL_GPL(css_next_descendant_pre);
4274 
4275 /**
4276  * css_rightmost_descendant - return the rightmost descendant of a css
4277  * @pos: css of interest
4278  *
4279  * Return the rightmost descendant of @pos.  If there's no descendant, @pos
4280  * is returned.  This can be used during pre-order traversal to skip
4281  * subtree of @pos.
4282  *
4283  * While this function requires cgroup_mutex or RCU read locking, it
4284  * doesn't require the whole traversal to be contained in a single critical
4285  * section.  This function will return the correct rightmost descendant as
4286  * long as @pos is accessible.
4287  */
4288 struct cgroup_subsys_state *
css_rightmost_descendant(struct cgroup_subsys_state * pos)4289 css_rightmost_descendant(struct cgroup_subsys_state *pos)
4290 {
4291 	struct cgroup_subsys_state *last, *tmp;
4292 
4293 	cgroup_assert_mutex_or_rcu_locked();
4294 
4295 	do {
4296 		last = pos;
4297 		/* ->prev isn't RCU safe, walk ->next till the end */
4298 		pos = NULL;
4299 		css_for_each_child(tmp, last)
4300 			pos = tmp;
4301 	} while (pos);
4302 
4303 	return last;
4304 }
4305 
4306 static struct cgroup_subsys_state *
css_leftmost_descendant(struct cgroup_subsys_state * pos)4307 css_leftmost_descendant(struct cgroup_subsys_state *pos)
4308 {
4309 	struct cgroup_subsys_state *last;
4310 
4311 	do {
4312 		last = pos;
4313 		pos = css_next_child(NULL, pos);
4314 	} while (pos);
4315 
4316 	return last;
4317 }
4318 
4319 /**
4320  * css_next_descendant_post - find the next descendant for post-order walk
4321  * @pos: the current position (%NULL to initiate traversal)
4322  * @root: css whose descendants to walk
4323  *
4324  * To be used by css_for_each_descendant_post().  Find the next descendant
4325  * to visit for post-order traversal of @root's descendants.  @root is
4326  * included in the iteration and the last node to be visited.
4327  *
4328  * While this function requires cgroup_mutex or RCU read locking, it
4329  * doesn't require the whole traversal to be contained in a single critical
4330  * section.  This function will return the correct next descendant as long
4331  * as both @pos and @cgroup are accessible and @pos is a descendant of
4332  * @cgroup.
4333  *
4334  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4335  * css which finished ->css_online() is guaranteed to be visible in the
4336  * future iterations and will stay visible until the last reference is put.
4337  * A css which hasn't finished ->css_online() or already finished
4338  * ->css_offline() may show up during traversal.  It's each subsystem's
4339  * responsibility to synchronize against on/offlining.
4340  */
4341 struct cgroup_subsys_state *
css_next_descendant_post(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * root)4342 css_next_descendant_post(struct cgroup_subsys_state *pos,
4343 			 struct cgroup_subsys_state *root)
4344 {
4345 	struct cgroup_subsys_state *next;
4346 
4347 	cgroup_assert_mutex_or_rcu_locked();
4348 
4349 	/* if first iteration, visit leftmost descendant which may be @root */
4350 	if (!pos)
4351 		return css_leftmost_descendant(root);
4352 
4353 	/* if we visited @root, we're done */
4354 	if (pos == root)
4355 		return NULL;
4356 
4357 	/* if there's an unvisited sibling, visit its leftmost descendant */
4358 	next = css_next_child(pos, pos->parent);
4359 	if (next)
4360 		return css_leftmost_descendant(next);
4361 
4362 	/* no sibling left, visit parent */
4363 	return pos->parent;
4364 }
4365 
4366 /**
4367  * css_has_online_children - does a css have online children
4368  * @css: the target css
4369  *
4370  * Returns %true if @css has any online children; otherwise, %false.  This
4371  * function can be called from any context but the caller is responsible
4372  * for synchronizing against on/offlining as necessary.
4373  */
css_has_online_children(struct cgroup_subsys_state * css)4374 bool css_has_online_children(struct cgroup_subsys_state *css)
4375 {
4376 	struct cgroup_subsys_state *child;
4377 	bool ret = false;
4378 
4379 	rcu_read_lock();
4380 	css_for_each_child(child, css) {
4381 		if (child->flags & CSS_ONLINE) {
4382 			ret = true;
4383 			break;
4384 		}
4385 	}
4386 	rcu_read_unlock();
4387 	return ret;
4388 }
4389 
css_task_iter_next_css_set(struct css_task_iter * it)4390 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4391 {
4392 	struct list_head *l;
4393 	struct cgrp_cset_link *link;
4394 	struct css_set *cset;
4395 
4396 	lockdep_assert_held(&css_set_lock);
4397 
4398 	/* find the next threaded cset */
4399 	if (it->tcset_pos) {
4400 		l = it->tcset_pos->next;
4401 
4402 		if (l != it->tcset_head) {
4403 			it->tcset_pos = l;
4404 			return container_of(l, struct css_set,
4405 					    threaded_csets_node);
4406 		}
4407 
4408 		it->tcset_pos = NULL;
4409 	}
4410 
4411 	/* find the next cset */
4412 	l = it->cset_pos;
4413 	l = l->next;
4414 	if (l == it->cset_head) {
4415 		it->cset_pos = NULL;
4416 		return NULL;
4417 	}
4418 
4419 	if (it->ss) {
4420 		cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4421 	} else {
4422 		link = list_entry(l, struct cgrp_cset_link, cset_link);
4423 		cset = link->cset;
4424 	}
4425 
4426 	it->cset_pos = l;
4427 
4428 	/* initialize threaded css_set walking */
4429 	if (it->flags & CSS_TASK_ITER_THREADED) {
4430 		if (it->cur_dcset)
4431 			put_css_set_locked(it->cur_dcset);
4432 		it->cur_dcset = cset;
4433 		get_css_set(cset);
4434 
4435 		it->tcset_head = &cset->threaded_csets;
4436 		it->tcset_pos = &cset->threaded_csets;
4437 	}
4438 
4439 	return cset;
4440 }
4441 
4442 /**
4443  * css_task_iter_advance_css_set - advance a task itererator to the next css_set
4444  * @it: the iterator to advance
4445  *
4446  * Advance @it to the next css_set to walk.
4447  */
css_task_iter_advance_css_set(struct css_task_iter * it)4448 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4449 {
4450 	struct css_set *cset;
4451 
4452 	lockdep_assert_held(&css_set_lock);
4453 
4454 	/* Advance to the next non-empty css_set */
4455 	do {
4456 		cset = css_task_iter_next_css_set(it);
4457 		if (!cset) {
4458 			it->task_pos = NULL;
4459 			return;
4460 		}
4461 	} while (!css_set_populated(cset) && list_empty(&cset->dying_tasks));
4462 
4463 	if (!list_empty(&cset->tasks))
4464 		it->task_pos = cset->tasks.next;
4465 	else if (!list_empty(&cset->mg_tasks))
4466 		it->task_pos = cset->mg_tasks.next;
4467 	else
4468 		it->task_pos = cset->dying_tasks.next;
4469 
4470 	it->tasks_head = &cset->tasks;
4471 	it->mg_tasks_head = &cset->mg_tasks;
4472 	it->dying_tasks_head = &cset->dying_tasks;
4473 
4474 	/*
4475 	 * We don't keep css_sets locked across iteration steps and thus
4476 	 * need to take steps to ensure that iteration can be resumed after
4477 	 * the lock is re-acquired.  Iteration is performed at two levels -
4478 	 * css_sets and tasks in them.
4479 	 *
4480 	 * Once created, a css_set never leaves its cgroup lists, so a
4481 	 * pinned css_set is guaranteed to stay put and we can resume
4482 	 * iteration afterwards.
4483 	 *
4484 	 * Tasks may leave @cset across iteration steps.  This is resolved
4485 	 * by registering each iterator with the css_set currently being
4486 	 * walked and making css_set_move_task() advance iterators whose
4487 	 * next task is leaving.
4488 	 */
4489 	if (it->cur_cset) {
4490 		list_del(&it->iters_node);
4491 		put_css_set_locked(it->cur_cset);
4492 	}
4493 	get_css_set(cset);
4494 	it->cur_cset = cset;
4495 	list_add(&it->iters_node, &cset->task_iters);
4496 }
4497 
css_task_iter_skip(struct css_task_iter * it,struct task_struct * task)4498 static void css_task_iter_skip(struct css_task_iter *it,
4499 			       struct task_struct *task)
4500 {
4501 	lockdep_assert_held(&css_set_lock);
4502 
4503 	if (it->task_pos == &task->cg_list) {
4504 		it->task_pos = it->task_pos->next;
4505 		it->flags |= CSS_TASK_ITER_SKIPPED;
4506 	}
4507 }
4508 
css_task_iter_advance(struct css_task_iter * it)4509 static void css_task_iter_advance(struct css_task_iter *it)
4510 {
4511 	struct task_struct *task;
4512 
4513 	lockdep_assert_held(&css_set_lock);
4514 repeat:
4515 	if (it->task_pos) {
4516 		/*
4517 		 * Advance iterator to find next entry.  cset->tasks is
4518 		 * consumed first and then ->mg_tasks.  After ->mg_tasks,
4519 		 * we move onto the next cset.
4520 		 */
4521 		if (it->flags & CSS_TASK_ITER_SKIPPED)
4522 			it->flags &= ~CSS_TASK_ITER_SKIPPED;
4523 		else
4524 			it->task_pos = it->task_pos->next;
4525 
4526 		if (it->task_pos == it->tasks_head)
4527 			it->task_pos = it->mg_tasks_head->next;
4528 		if (it->task_pos == it->mg_tasks_head)
4529 			it->task_pos = it->dying_tasks_head->next;
4530 		if (it->task_pos == it->dying_tasks_head)
4531 			css_task_iter_advance_css_set(it);
4532 	} else {
4533 		/* called from start, proceed to the first cset */
4534 		css_task_iter_advance_css_set(it);
4535 	}
4536 
4537 	if (!it->task_pos)
4538 		return;
4539 
4540 	task = list_entry(it->task_pos, struct task_struct, cg_list);
4541 
4542 	if (it->flags & CSS_TASK_ITER_PROCS) {
4543 		/* if PROCS, skip over tasks which aren't group leaders */
4544 		if (!thread_group_leader(task))
4545 			goto repeat;
4546 
4547 		/* and dying leaders w/o live member threads */
4548 		if (!atomic_read(&task->signal->live))
4549 			goto repeat;
4550 	} else {
4551 		/* skip all dying ones */
4552 		if (task->flags & PF_EXITING)
4553 			goto repeat;
4554 	}
4555 }
4556 
4557 /**
4558  * css_task_iter_start - initiate task iteration
4559  * @css: the css to walk tasks of
4560  * @flags: CSS_TASK_ITER_* flags
4561  * @it: the task iterator to use
4562  *
4563  * Initiate iteration through the tasks of @css.  The caller can call
4564  * css_task_iter_next() to walk through the tasks until the function
4565  * returns NULL.  On completion of iteration, css_task_iter_end() must be
4566  * called.
4567  */
css_task_iter_start(struct cgroup_subsys_state * css,unsigned int flags,struct css_task_iter * it)4568 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4569 			 struct css_task_iter *it)
4570 {
4571 	/* no one should try to iterate before mounting cgroups */
4572 	WARN_ON_ONCE(!use_task_css_set_links);
4573 
4574 	memset(it, 0, sizeof(*it));
4575 
4576 	spin_lock_irq(&css_set_lock);
4577 
4578 	it->ss = css->ss;
4579 	it->flags = flags;
4580 
4581 	if (it->ss)
4582 		it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4583 	else
4584 		it->cset_pos = &css->cgroup->cset_links;
4585 
4586 	it->cset_head = it->cset_pos;
4587 
4588 	css_task_iter_advance(it);
4589 
4590 	spin_unlock_irq(&css_set_lock);
4591 }
4592 
4593 /**
4594  * css_task_iter_next - return the next task for the iterator
4595  * @it: the task iterator being iterated
4596  *
4597  * The "next" function for task iteration.  @it should have been
4598  * initialized via css_task_iter_start().  Returns NULL when the iteration
4599  * reaches the end.
4600  */
css_task_iter_next(struct css_task_iter * it)4601 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4602 {
4603 	if (it->cur_task) {
4604 		put_task_struct(it->cur_task);
4605 		it->cur_task = NULL;
4606 	}
4607 
4608 	spin_lock_irq(&css_set_lock);
4609 
4610 	/* @it may be half-advanced by skips, finish advancing */
4611 	if (it->flags & CSS_TASK_ITER_SKIPPED)
4612 		css_task_iter_advance(it);
4613 
4614 	if (it->task_pos) {
4615 		it->cur_task = list_entry(it->task_pos, struct task_struct,
4616 					  cg_list);
4617 		get_task_struct(it->cur_task);
4618 		css_task_iter_advance(it);
4619 	}
4620 
4621 	spin_unlock_irq(&css_set_lock);
4622 
4623 	return it->cur_task;
4624 }
4625 
4626 /**
4627  * css_task_iter_end - finish task iteration
4628  * @it: the task iterator to finish
4629  *
4630  * Finish task iteration started by css_task_iter_start().
4631  */
css_task_iter_end(struct css_task_iter * it)4632 void css_task_iter_end(struct css_task_iter *it)
4633 {
4634 	if (it->cur_cset) {
4635 		spin_lock_irq(&css_set_lock);
4636 		list_del(&it->iters_node);
4637 		put_css_set_locked(it->cur_cset);
4638 		spin_unlock_irq(&css_set_lock);
4639 	}
4640 
4641 	if (it->cur_dcset)
4642 		put_css_set(it->cur_dcset);
4643 
4644 	if (it->cur_task)
4645 		put_task_struct(it->cur_task);
4646 }
4647 
cgroup_procs_release(struct kernfs_open_file * of)4648 static void cgroup_procs_release(struct kernfs_open_file *of)
4649 {
4650 	if (of->priv) {
4651 		css_task_iter_end(of->priv);
4652 		kfree(of->priv);
4653 	}
4654 }
4655 
cgroup_procs_next(struct seq_file * s,void * v,loff_t * pos)4656 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
4657 {
4658 	struct kernfs_open_file *of = s->private;
4659 	struct css_task_iter *it = of->priv;
4660 
4661 	return css_task_iter_next(it);
4662 }
4663 
__cgroup_procs_start(struct seq_file * s,loff_t * pos,unsigned int iter_flags)4664 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
4665 				  unsigned int iter_flags)
4666 {
4667 	struct kernfs_open_file *of = s->private;
4668 	struct cgroup *cgrp = seq_css(s)->cgroup;
4669 	struct css_task_iter *it = of->priv;
4670 
4671 	/*
4672 	 * When a seq_file is seeked, it's always traversed sequentially
4673 	 * from position 0, so we can simply keep iterating on !0 *pos.
4674 	 */
4675 	if (!it) {
4676 		if (WARN_ON_ONCE((*pos)++))
4677 			return ERR_PTR(-EINVAL);
4678 
4679 		it = kzalloc(sizeof(*it), GFP_KERNEL);
4680 		if (!it)
4681 			return ERR_PTR(-ENOMEM);
4682 		of->priv = it;
4683 		css_task_iter_start(&cgrp->self, iter_flags, it);
4684 	} else if (!(*pos)++) {
4685 		css_task_iter_end(it);
4686 		css_task_iter_start(&cgrp->self, iter_flags, it);
4687 	}
4688 
4689 	return cgroup_procs_next(s, NULL, NULL);
4690 }
4691 
cgroup_procs_start(struct seq_file * s,loff_t * pos)4692 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
4693 {
4694 	struct cgroup *cgrp = seq_css(s)->cgroup;
4695 
4696 	/*
4697 	 * All processes of a threaded subtree belong to the domain cgroup
4698 	 * of the subtree.  Only threads can be distributed across the
4699 	 * subtree.  Reject reads on cgroup.procs in the subtree proper.
4700 	 * They're always empty anyway.
4701 	 */
4702 	if (cgroup_is_threaded(cgrp))
4703 		return ERR_PTR(-EOPNOTSUPP);
4704 
4705 	return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
4706 					    CSS_TASK_ITER_THREADED);
4707 }
4708 
cgroup_procs_show(struct seq_file * s,void * v)4709 static int cgroup_procs_show(struct seq_file *s, void *v)
4710 {
4711 	seq_printf(s, "%d\n", task_pid_vnr(v));
4712 	return 0;
4713 }
4714 
cgroup_procs_write_permission(struct cgroup * src_cgrp,struct cgroup * dst_cgrp,struct super_block * sb)4715 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
4716 					 struct cgroup *dst_cgrp,
4717 					 struct super_block *sb)
4718 {
4719 	struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
4720 	struct cgroup *com_cgrp = src_cgrp;
4721 	struct inode *inode;
4722 	int ret;
4723 
4724 	lockdep_assert_held(&cgroup_mutex);
4725 
4726 	/* find the common ancestor */
4727 	while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
4728 		com_cgrp = cgroup_parent(com_cgrp);
4729 
4730 	/* %current should be authorized to migrate to the common ancestor */
4731 	inode = kernfs_get_inode(sb, com_cgrp->procs_file.kn);
4732 	if (!inode)
4733 		return -ENOMEM;
4734 
4735 	ret = inode_permission(inode, MAY_WRITE);
4736 	iput(inode);
4737 	if (ret)
4738 		return ret;
4739 
4740 	/*
4741 	 * If namespaces are delegation boundaries, %current must be able
4742 	 * to see both source and destination cgroups from its namespace.
4743 	 */
4744 	if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
4745 	    (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
4746 	     !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
4747 		return -ENOENT;
4748 
4749 	return 0;
4750 }
4751 
cgroup_procs_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4752 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
4753 				  char *buf, size_t nbytes, loff_t off)
4754 {
4755 	struct cgroup *src_cgrp, *dst_cgrp;
4756 	struct task_struct *task;
4757 	ssize_t ret;
4758 
4759 	dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4760 	if (!dst_cgrp)
4761 		return -ENODEV;
4762 
4763 	task = cgroup_procs_write_start(buf, true);
4764 	ret = PTR_ERR_OR_ZERO(task);
4765 	if (ret)
4766 		goto out_unlock;
4767 
4768 	/* find the source cgroup */
4769 	spin_lock_irq(&css_set_lock);
4770 	src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4771 	spin_unlock_irq(&css_set_lock);
4772 
4773 	ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp,
4774 					    of->file->f_path.dentry->d_sb);
4775 	if (ret)
4776 		goto out_finish;
4777 
4778 	ret = cgroup_attach_task(dst_cgrp, task, true);
4779 
4780 out_finish:
4781 	cgroup_procs_write_finish(task);
4782 out_unlock:
4783 	cgroup_kn_unlock(of->kn);
4784 
4785 	return ret ?: nbytes;
4786 }
4787 
cgroup_threads_start(struct seq_file * s,loff_t * pos)4788 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
4789 {
4790 	return __cgroup_procs_start(s, pos, 0);
4791 }
4792 
cgroup_threads_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4793 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
4794 				    char *buf, size_t nbytes, loff_t off)
4795 {
4796 	struct cgroup *src_cgrp, *dst_cgrp;
4797 	struct task_struct *task;
4798 	ssize_t ret;
4799 
4800 	buf = strstrip(buf);
4801 
4802 	dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4803 	if (!dst_cgrp)
4804 		return -ENODEV;
4805 
4806 	task = cgroup_procs_write_start(buf, false);
4807 	ret = PTR_ERR_OR_ZERO(task);
4808 	if (ret)
4809 		goto out_unlock;
4810 
4811 	/* find the source cgroup */
4812 	spin_lock_irq(&css_set_lock);
4813 	src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4814 	spin_unlock_irq(&css_set_lock);
4815 
4816 	/* thread migrations follow the cgroup.procs delegation rule */
4817 	ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp,
4818 					    of->file->f_path.dentry->d_sb);
4819 	if (ret)
4820 		goto out_finish;
4821 
4822 	/* and must be contained in the same domain */
4823 	ret = -EOPNOTSUPP;
4824 	if (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp)
4825 		goto out_finish;
4826 
4827 	ret = cgroup_attach_task(dst_cgrp, task, false);
4828 
4829 out_finish:
4830 	cgroup_procs_write_finish(task);
4831 out_unlock:
4832 	cgroup_kn_unlock(of->kn);
4833 
4834 	return ret ?: nbytes;
4835 }
4836 
4837 /* cgroup core interface files for the default hierarchy */
4838 static struct cftype cgroup_base_files[] = {
4839 	{
4840 		.name = "cgroup.type",
4841 		.flags = CFTYPE_NOT_ON_ROOT,
4842 		.seq_show = cgroup_type_show,
4843 		.write = cgroup_type_write,
4844 	},
4845 	{
4846 		.name = "cgroup.procs",
4847 		.flags = CFTYPE_NS_DELEGATABLE,
4848 		.file_offset = offsetof(struct cgroup, procs_file),
4849 		.release = cgroup_procs_release,
4850 		.seq_start = cgroup_procs_start,
4851 		.seq_next = cgroup_procs_next,
4852 		.seq_show = cgroup_procs_show,
4853 		.write = cgroup_procs_write,
4854 	},
4855 	{
4856 		.name = "cgroup.threads",
4857 		.flags = CFTYPE_NS_DELEGATABLE,
4858 		.release = cgroup_procs_release,
4859 		.seq_start = cgroup_threads_start,
4860 		.seq_next = cgroup_procs_next,
4861 		.seq_show = cgroup_procs_show,
4862 		.write = cgroup_threads_write,
4863 	},
4864 	{
4865 		.name = "cgroup.controllers",
4866 		.seq_show = cgroup_controllers_show,
4867 	},
4868 	{
4869 		.name = "cgroup.subtree_control",
4870 		.flags = CFTYPE_NS_DELEGATABLE,
4871 		.seq_show = cgroup_subtree_control_show,
4872 		.write = cgroup_subtree_control_write,
4873 	},
4874 	{
4875 		.name = "cgroup.events",
4876 		.flags = CFTYPE_NOT_ON_ROOT,
4877 		.file_offset = offsetof(struct cgroup, events_file),
4878 		.seq_show = cgroup_events_show,
4879 	},
4880 	{
4881 		.name = "cgroup.max.descendants",
4882 		.seq_show = cgroup_max_descendants_show,
4883 		.write = cgroup_max_descendants_write,
4884 	},
4885 	{
4886 		.name = "cgroup.max.depth",
4887 		.seq_show = cgroup_max_depth_show,
4888 		.write = cgroup_max_depth_write,
4889 	},
4890 	{
4891 		.name = "cgroup.stat",
4892 		.seq_show = cgroup_stat_show,
4893 	},
4894 	{
4895 		.name = "cgroup.freeze",
4896 		.flags = CFTYPE_NOT_ON_ROOT,
4897 		.seq_show = cgroup_freeze_show,
4898 		.write = cgroup_freeze_write,
4899 	},
4900 	{
4901 		.name = "cpu.stat",
4902 		.flags = CFTYPE_NOT_ON_ROOT,
4903 		.seq_show = cpu_stat_show,
4904 	},
4905 #ifdef CONFIG_PSI
4906 	{
4907 		.name = "io.pressure",
4908 		.seq_show = cgroup_io_pressure_show,
4909 		.write = cgroup_io_pressure_write,
4910 		.poll = cgroup_pressure_poll,
4911 		.release = cgroup_pressure_release,
4912 	},
4913 	{
4914 		.name = "memory.pressure",
4915 		.seq_show = cgroup_memory_pressure_show,
4916 		.write = cgroup_memory_pressure_write,
4917 		.poll = cgroup_pressure_poll,
4918 		.release = cgroup_pressure_release,
4919 	},
4920 	{
4921 		.name = "cpu.pressure",
4922 		.seq_show = cgroup_cpu_pressure_show,
4923 		.write = cgroup_cpu_pressure_write,
4924 		.poll = cgroup_pressure_poll,
4925 		.release = cgroup_pressure_release,
4926 	},
4927 #endif /* CONFIG_PSI */
4928 	{ }	/* terminate */
4929 };
4930 
4931 /*
4932  * css destruction is four-stage process.
4933  *
4934  * 1. Destruction starts.  Killing of the percpu_ref is initiated.
4935  *    Implemented in kill_css().
4936  *
4937  * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4938  *    and thus css_tryget_online() is guaranteed to fail, the css can be
4939  *    offlined by invoking offline_css().  After offlining, the base ref is
4940  *    put.  Implemented in css_killed_work_fn().
4941  *
4942  * 3. When the percpu_ref reaches zero, the only possible remaining
4943  *    accessors are inside RCU read sections.  css_release() schedules the
4944  *    RCU callback.
4945  *
4946  * 4. After the grace period, the css can be freed.  Implemented in
4947  *    css_free_work_fn().
4948  *
4949  * It is actually hairier because both step 2 and 4 require process context
4950  * and thus involve punting to css->destroy_work adding two additional
4951  * steps to the already complex sequence.
4952  */
css_free_rwork_fn(struct work_struct * work)4953 static void css_free_rwork_fn(struct work_struct *work)
4954 {
4955 	struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
4956 				struct cgroup_subsys_state, destroy_rwork);
4957 	struct cgroup_subsys *ss = css->ss;
4958 	struct cgroup *cgrp = css->cgroup;
4959 
4960 	percpu_ref_exit(&css->refcnt);
4961 
4962 	if (ss) {
4963 		/* css free path */
4964 		struct cgroup_subsys_state *parent = css->parent;
4965 		int id = css->id;
4966 
4967 		ss->css_free(css);
4968 		cgroup_idr_remove(&ss->css_idr, id);
4969 		cgroup_put(cgrp);
4970 
4971 		if (parent)
4972 			css_put(parent);
4973 	} else {
4974 		/* cgroup free path */
4975 		atomic_dec(&cgrp->root->nr_cgrps);
4976 		cgroup1_pidlist_destroy_all(cgrp);
4977 		cancel_work_sync(&cgrp->release_agent_work);
4978 
4979 		if (cgroup_parent(cgrp)) {
4980 			/*
4981 			 * We get a ref to the parent, and put the ref when
4982 			 * this cgroup is being freed, so it's guaranteed
4983 			 * that the parent won't be destroyed before its
4984 			 * children.
4985 			 */
4986 			cgroup_put(cgroup_parent(cgrp));
4987 			kernfs_put(cgrp->kn);
4988 			psi_cgroup_free(cgrp);
4989 			if (cgroup_on_dfl(cgrp))
4990 				cgroup_rstat_exit(cgrp);
4991 			kfree(cgrp);
4992 		} else {
4993 			/*
4994 			 * This is root cgroup's refcnt reaching zero,
4995 			 * which indicates that the root should be
4996 			 * released.
4997 			 */
4998 			cgroup_destroy_root(cgrp->root);
4999 		}
5000 	}
5001 }
5002 
css_release_work_fn(struct work_struct * work)5003 static void css_release_work_fn(struct work_struct *work)
5004 {
5005 	struct cgroup_subsys_state *css =
5006 		container_of(work, struct cgroup_subsys_state, destroy_work);
5007 	struct cgroup_subsys *ss = css->ss;
5008 	struct cgroup *cgrp = css->cgroup;
5009 
5010 	mutex_lock(&cgroup_mutex);
5011 
5012 	css->flags |= CSS_RELEASED;
5013 	list_del_rcu(&css->sibling);
5014 
5015 	if (ss) {
5016 		/* css release path */
5017 		if (!list_empty(&css->rstat_css_node)) {
5018 			cgroup_rstat_flush(cgrp);
5019 			list_del_rcu(&css->rstat_css_node);
5020 		}
5021 
5022 		cgroup_idr_replace(&ss->css_idr, NULL, css->id);
5023 		if (ss->css_released)
5024 			ss->css_released(css);
5025 	} else {
5026 		struct cgroup *tcgrp;
5027 
5028 		/* cgroup release path */
5029 		TRACE_CGROUP_PATH(release, cgrp);
5030 
5031 		if (cgroup_on_dfl(cgrp))
5032 			cgroup_rstat_flush(cgrp);
5033 
5034 		spin_lock_irq(&css_set_lock);
5035 		for (tcgrp = cgroup_parent(cgrp); tcgrp;
5036 		     tcgrp = cgroup_parent(tcgrp))
5037 			tcgrp->nr_dying_descendants--;
5038 		spin_unlock_irq(&css_set_lock);
5039 
5040 		cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
5041 		cgrp->id = -1;
5042 
5043 		/*
5044 		 * There are two control paths which try to determine
5045 		 * cgroup from dentry without going through kernfs -
5046 		 * cgroupstats_build() and css_tryget_online_from_dir().
5047 		 * Those are supported by RCU protecting clearing of
5048 		 * cgrp->kn->priv backpointer.
5049 		 */
5050 		if (cgrp->kn)
5051 			RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5052 					 NULL);
5053 	}
5054 
5055 	mutex_unlock(&cgroup_mutex);
5056 
5057 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5058 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5059 }
5060 
css_release(struct percpu_ref * ref)5061 static void css_release(struct percpu_ref *ref)
5062 {
5063 	struct cgroup_subsys_state *css =
5064 		container_of(ref, struct cgroup_subsys_state, refcnt);
5065 
5066 	INIT_WORK(&css->destroy_work, css_release_work_fn);
5067 	queue_work(cgroup_destroy_wq, &css->destroy_work);
5068 }
5069 
init_and_link_css(struct cgroup_subsys_state * css,struct cgroup_subsys * ss,struct cgroup * cgrp)5070 static void init_and_link_css(struct cgroup_subsys_state *css,
5071 			      struct cgroup_subsys *ss, struct cgroup *cgrp)
5072 {
5073 	lockdep_assert_held(&cgroup_mutex);
5074 
5075 	cgroup_get_live(cgrp);
5076 
5077 	memset(css, 0, sizeof(*css));
5078 	css->cgroup = cgrp;
5079 	css->ss = ss;
5080 	css->id = -1;
5081 	INIT_LIST_HEAD(&css->sibling);
5082 	INIT_LIST_HEAD(&css->children);
5083 	INIT_LIST_HEAD(&css->rstat_css_node);
5084 	css->serial_nr = css_serial_nr_next++;
5085 	atomic_set(&css->online_cnt, 0);
5086 
5087 	if (cgroup_parent(cgrp)) {
5088 		css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5089 		css_get(css->parent);
5090 	}
5091 
5092 	if (cgroup_on_dfl(cgrp) && ss->css_rstat_flush)
5093 		list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
5094 
5095 	BUG_ON(cgroup_css(cgrp, ss));
5096 }
5097 
5098 /* invoke ->css_online() on a new CSS and mark it online if successful */
online_css(struct cgroup_subsys_state * css)5099 static int online_css(struct cgroup_subsys_state *css)
5100 {
5101 	struct cgroup_subsys *ss = css->ss;
5102 	int ret = 0;
5103 
5104 	lockdep_assert_held(&cgroup_mutex);
5105 
5106 	if (ss->css_online)
5107 		ret = ss->css_online(css);
5108 	if (!ret) {
5109 		css->flags |= CSS_ONLINE;
5110 		rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5111 
5112 		atomic_inc(&css->online_cnt);
5113 		if (css->parent)
5114 			atomic_inc(&css->parent->online_cnt);
5115 	}
5116 	return ret;
5117 }
5118 
5119 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
offline_css(struct cgroup_subsys_state * css)5120 static void offline_css(struct cgroup_subsys_state *css)
5121 {
5122 	struct cgroup_subsys *ss = css->ss;
5123 
5124 	lockdep_assert_held(&cgroup_mutex);
5125 
5126 	if (!(css->flags & CSS_ONLINE))
5127 		return;
5128 
5129 	if (ss->css_offline)
5130 		ss->css_offline(css);
5131 
5132 	css->flags &= ~CSS_ONLINE;
5133 	RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5134 
5135 	wake_up_all(&css->cgroup->offline_waitq);
5136 }
5137 
5138 /**
5139  * css_create - create a cgroup_subsys_state
5140  * @cgrp: the cgroup new css will be associated with
5141  * @ss: the subsys of new css
5142  *
5143  * Create a new css associated with @cgrp - @ss pair.  On success, the new
5144  * css is online and installed in @cgrp.  This function doesn't create the
5145  * interface files.  Returns 0 on success, -errno on failure.
5146  */
css_create(struct cgroup * cgrp,struct cgroup_subsys * ss)5147 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5148 					      struct cgroup_subsys *ss)
5149 {
5150 	struct cgroup *parent = cgroup_parent(cgrp);
5151 	struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5152 	struct cgroup_subsys_state *css;
5153 	int err;
5154 
5155 	lockdep_assert_held(&cgroup_mutex);
5156 
5157 	css = ss->css_alloc(parent_css);
5158 	if (!css)
5159 		css = ERR_PTR(-ENOMEM);
5160 	if (IS_ERR(css))
5161 		return css;
5162 
5163 	init_and_link_css(css, ss, cgrp);
5164 
5165 	err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5166 	if (err)
5167 		goto err_free_css;
5168 
5169 	err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5170 	if (err < 0)
5171 		goto err_free_css;
5172 	css->id = err;
5173 
5174 	/* @css is ready to be brought online now, make it visible */
5175 	list_add_tail_rcu(&css->sibling, &parent_css->children);
5176 	cgroup_idr_replace(&ss->css_idr, css, css->id);
5177 
5178 	err = online_css(css);
5179 	if (err)
5180 		goto err_list_del;
5181 
5182 	if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
5183 	    cgroup_parent(parent)) {
5184 		pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
5185 			current->comm, current->pid, ss->name);
5186 		if (!strcmp(ss->name, "memory"))
5187 			pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
5188 		ss->warned_broken_hierarchy = true;
5189 	}
5190 
5191 	return css;
5192 
5193 err_list_del:
5194 	list_del_rcu(&css->sibling);
5195 err_free_css:
5196 	list_del_rcu(&css->rstat_css_node);
5197 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5198 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5199 	return ERR_PTR(err);
5200 }
5201 
5202 /*
5203  * The returned cgroup is fully initialized including its control mask, but
5204  * it isn't associated with its kernfs_node and doesn't have the control
5205  * mask applied.
5206  */
cgroup_create(struct cgroup * parent)5207 static struct cgroup *cgroup_create(struct cgroup *parent)
5208 {
5209 	struct cgroup_root *root = parent->root;
5210 	struct cgroup *cgrp, *tcgrp;
5211 	int level = parent->level + 1;
5212 	int ret;
5213 
5214 	/* allocate the cgroup and its ID, 0 is reserved for the root */
5215 	cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)),
5216 		       GFP_KERNEL);
5217 	if (!cgrp)
5218 		return ERR_PTR(-ENOMEM);
5219 
5220 	ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5221 	if (ret)
5222 		goto out_free_cgrp;
5223 
5224 	if (cgroup_on_dfl(parent)) {
5225 		ret = cgroup_rstat_init(cgrp);
5226 		if (ret)
5227 			goto out_cancel_ref;
5228 	}
5229 
5230 	/*
5231 	 * Temporarily set the pointer to NULL, so idr_find() won't return
5232 	 * a half-baked cgroup.
5233 	 */
5234 	cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
5235 	if (cgrp->id < 0) {
5236 		ret = -ENOMEM;
5237 		goto out_stat_exit;
5238 	}
5239 
5240 	init_cgroup_housekeeping(cgrp);
5241 
5242 	cgrp->self.parent = &parent->self;
5243 	cgrp->root = root;
5244 	cgrp->level = level;
5245 
5246 	ret = psi_cgroup_alloc(cgrp);
5247 	if (ret)
5248 		goto out_idr_free;
5249 
5250 	ret = cgroup_bpf_inherit(cgrp);
5251 	if (ret)
5252 		goto out_psi_free;
5253 
5254 	/*
5255 	 * New cgroup inherits effective freeze counter, and
5256 	 * if the parent has to be frozen, the child has too.
5257 	 */
5258 	cgrp->freezer.e_freeze = parent->freezer.e_freeze;
5259 	if (cgrp->freezer.e_freeze) {
5260 		/*
5261 		 * Set the CGRP_FREEZE flag, so when a process will be
5262 		 * attached to the child cgroup, it will become frozen.
5263 		 * At this point the new cgroup is unpopulated, so we can
5264 		 * consider it frozen immediately.
5265 		 */
5266 		set_bit(CGRP_FREEZE, &cgrp->flags);
5267 		set_bit(CGRP_FROZEN, &cgrp->flags);
5268 	}
5269 
5270 	spin_lock_irq(&css_set_lock);
5271 	for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5272 		cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
5273 
5274 		if (tcgrp != cgrp) {
5275 			tcgrp->nr_descendants++;
5276 
5277 			/*
5278 			 * If the new cgroup is frozen, all ancestor cgroups
5279 			 * get a new frozen descendant, but their state can't
5280 			 * change because of this.
5281 			 */
5282 			if (cgrp->freezer.e_freeze)
5283 				tcgrp->freezer.nr_frozen_descendants++;
5284 		}
5285 	}
5286 	spin_unlock_irq(&css_set_lock);
5287 
5288 	if (notify_on_release(parent))
5289 		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5290 
5291 	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5292 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5293 
5294 	cgrp->self.serial_nr = css_serial_nr_next++;
5295 
5296 	/* allocation complete, commit to creation */
5297 	list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5298 	atomic_inc(&root->nr_cgrps);
5299 	cgroup_get_live(parent);
5300 
5301 	/*
5302 	 * @cgrp is now fully operational.  If something fails after this
5303 	 * point, it'll be released via the normal destruction path.
5304 	 */
5305 	cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
5306 
5307 	/*
5308 	 * On the default hierarchy, a child doesn't automatically inherit
5309 	 * subtree_control from the parent.  Each is configured manually.
5310 	 */
5311 	if (!cgroup_on_dfl(cgrp))
5312 		cgrp->subtree_control = cgroup_control(cgrp);
5313 
5314 	cgroup_propagate_control(cgrp);
5315 
5316 	return cgrp;
5317 
5318 out_psi_free:
5319 	psi_cgroup_free(cgrp);
5320 out_idr_free:
5321 	cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
5322 out_stat_exit:
5323 	if (cgroup_on_dfl(parent))
5324 		cgroup_rstat_exit(cgrp);
5325 out_cancel_ref:
5326 	percpu_ref_exit(&cgrp->self.refcnt);
5327 out_free_cgrp:
5328 	kfree(cgrp);
5329 	return ERR_PTR(ret);
5330 }
5331 
cgroup_check_hierarchy_limits(struct cgroup * parent)5332 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
5333 {
5334 	struct cgroup *cgroup;
5335 	int ret = false;
5336 	int level = 1;
5337 
5338 	lockdep_assert_held(&cgroup_mutex);
5339 
5340 	for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
5341 		if (cgroup->nr_descendants >= cgroup->max_descendants)
5342 			goto fail;
5343 
5344 		if (level > cgroup->max_depth)
5345 			goto fail;
5346 
5347 		level++;
5348 	}
5349 
5350 	ret = true;
5351 fail:
5352 	return ret;
5353 }
5354 
cgroup_mkdir(struct kernfs_node * parent_kn,const char * name,umode_t mode)5355 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
5356 {
5357 	struct cgroup *parent, *cgrp;
5358 	struct kernfs_node *kn;
5359 	int ret;
5360 
5361 	/* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5362 	if (strchr(name, '\n'))
5363 		return -EINVAL;
5364 
5365 	parent = cgroup_kn_lock_live(parent_kn, false);
5366 	if (!parent)
5367 		return -ENODEV;
5368 
5369 	if (!cgroup_check_hierarchy_limits(parent)) {
5370 		ret = -EAGAIN;
5371 		goto out_unlock;
5372 	}
5373 
5374 	cgrp = cgroup_create(parent);
5375 	if (IS_ERR(cgrp)) {
5376 		ret = PTR_ERR(cgrp);
5377 		goto out_unlock;
5378 	}
5379 
5380 	/* create the directory */
5381 	kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5382 	if (IS_ERR(kn)) {
5383 		ret = PTR_ERR(kn);
5384 		goto out_destroy;
5385 	}
5386 	cgrp->kn = kn;
5387 
5388 	/*
5389 	 * This extra ref will be put in cgroup_free_fn() and guarantees
5390 	 * that @cgrp->kn is always accessible.
5391 	 */
5392 	kernfs_get(kn);
5393 
5394 	ret = cgroup_kn_set_ugid(kn);
5395 	if (ret)
5396 		goto out_destroy;
5397 
5398 	ret = css_populate_dir(&cgrp->self);
5399 	if (ret)
5400 		goto out_destroy;
5401 
5402 	ret = cgroup_apply_control_enable(cgrp);
5403 	if (ret)
5404 		goto out_destroy;
5405 
5406 	TRACE_CGROUP_PATH(mkdir, cgrp);
5407 
5408 	/* let's create and online css's */
5409 	kernfs_activate(kn);
5410 
5411 	ret = 0;
5412 	goto out_unlock;
5413 
5414 out_destroy:
5415 	cgroup_destroy_locked(cgrp);
5416 out_unlock:
5417 	cgroup_kn_unlock(parent_kn);
5418 	return ret;
5419 }
5420 
5421 /*
5422  * This is called when the refcnt of a css is confirmed to be killed.
5423  * css_tryget_online() is now guaranteed to fail.  Tell the subsystem to
5424  * initate destruction and put the css ref from kill_css().
5425  */
css_killed_work_fn(struct work_struct * work)5426 static void css_killed_work_fn(struct work_struct *work)
5427 {
5428 	struct cgroup_subsys_state *css =
5429 		container_of(work, struct cgroup_subsys_state, destroy_work);
5430 
5431 	mutex_lock(&cgroup_mutex);
5432 
5433 	do {
5434 		offline_css(css);
5435 		css_put(css);
5436 		/* @css can't go away while we're holding cgroup_mutex */
5437 		css = css->parent;
5438 	} while (css && atomic_dec_and_test(&css->online_cnt));
5439 
5440 	mutex_unlock(&cgroup_mutex);
5441 }
5442 
5443 /* css kill confirmation processing requires process context, bounce */
css_killed_ref_fn(struct percpu_ref * ref)5444 static void css_killed_ref_fn(struct percpu_ref *ref)
5445 {
5446 	struct cgroup_subsys_state *css =
5447 		container_of(ref, struct cgroup_subsys_state, refcnt);
5448 
5449 	if (atomic_dec_and_test(&css->online_cnt)) {
5450 		INIT_WORK(&css->destroy_work, css_killed_work_fn);
5451 		queue_work(cgroup_destroy_wq, &css->destroy_work);
5452 	}
5453 }
5454 
5455 /**
5456  * kill_css - destroy a css
5457  * @css: css to destroy
5458  *
5459  * This function initiates destruction of @css by removing cgroup interface
5460  * files and putting its base reference.  ->css_offline() will be invoked
5461  * asynchronously once css_tryget_online() is guaranteed to fail and when
5462  * the reference count reaches zero, @css will be released.
5463  */
kill_css(struct cgroup_subsys_state * css)5464 static void kill_css(struct cgroup_subsys_state *css)
5465 {
5466 	lockdep_assert_held(&cgroup_mutex);
5467 
5468 	if (css->flags & CSS_DYING)
5469 		return;
5470 
5471 	css->flags |= CSS_DYING;
5472 
5473 	/*
5474 	 * This must happen before css is disassociated with its cgroup.
5475 	 * See seq_css() for details.
5476 	 */
5477 	css_clear_dir(css);
5478 
5479 	/*
5480 	 * Killing would put the base ref, but we need to keep it alive
5481 	 * until after ->css_offline().
5482 	 */
5483 	css_get(css);
5484 
5485 	/*
5486 	 * cgroup core guarantees that, by the time ->css_offline() is
5487 	 * invoked, no new css reference will be given out via
5488 	 * css_tryget_online().  We can't simply call percpu_ref_kill() and
5489 	 * proceed to offlining css's because percpu_ref_kill() doesn't
5490 	 * guarantee that the ref is seen as killed on all CPUs on return.
5491 	 *
5492 	 * Use percpu_ref_kill_and_confirm() to get notifications as each
5493 	 * css is confirmed to be seen as killed on all CPUs.
5494 	 */
5495 	percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5496 }
5497 
5498 /**
5499  * cgroup_destroy_locked - the first stage of cgroup destruction
5500  * @cgrp: cgroup to be destroyed
5501  *
5502  * css's make use of percpu refcnts whose killing latency shouldn't be
5503  * exposed to userland and are RCU protected.  Also, cgroup core needs to
5504  * guarantee that css_tryget_online() won't succeed by the time
5505  * ->css_offline() is invoked.  To satisfy all the requirements,
5506  * destruction is implemented in the following two steps.
5507  *
5508  * s1. Verify @cgrp can be destroyed and mark it dying.  Remove all
5509  *     userland visible parts and start killing the percpu refcnts of
5510  *     css's.  Set up so that the next stage will be kicked off once all
5511  *     the percpu refcnts are confirmed to be killed.
5512  *
5513  * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5514  *     rest of destruction.  Once all cgroup references are gone, the
5515  *     cgroup is RCU-freed.
5516  *
5517  * This function implements s1.  After this step, @cgrp is gone as far as
5518  * the userland is concerned and a new cgroup with the same name may be
5519  * created.  As cgroup doesn't care about the names internally, this
5520  * doesn't cause any problem.
5521  */
cgroup_destroy_locked(struct cgroup * cgrp)5522 static int cgroup_destroy_locked(struct cgroup *cgrp)
5523 	__releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5524 {
5525 	struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5526 	struct cgroup_subsys_state *css;
5527 	struct cgrp_cset_link *link;
5528 	int ssid;
5529 
5530 	lockdep_assert_held(&cgroup_mutex);
5531 
5532 	/*
5533 	 * Only migration can raise populated from zero and we're already
5534 	 * holding cgroup_mutex.
5535 	 */
5536 	if (cgroup_is_populated(cgrp))
5537 		return -EBUSY;
5538 
5539 	/*
5540 	 * Make sure there's no live children.  We can't test emptiness of
5541 	 * ->self.children as dead children linger on it while being
5542 	 * drained; otherwise, "rmdir parent/child parent" may fail.
5543 	 */
5544 	if (css_has_online_children(&cgrp->self))
5545 		return -EBUSY;
5546 
5547 	/*
5548 	 * Mark @cgrp and the associated csets dead.  The former prevents
5549 	 * further task migration and child creation by disabling
5550 	 * cgroup_lock_live_group().  The latter makes the csets ignored by
5551 	 * the migration path.
5552 	 */
5553 	cgrp->self.flags &= ~CSS_ONLINE;
5554 
5555 	spin_lock_irq(&css_set_lock);
5556 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
5557 		link->cset->dead = true;
5558 	spin_unlock_irq(&css_set_lock);
5559 
5560 	/* initiate massacre of all css's */
5561 	for_each_css(css, ssid, cgrp)
5562 		kill_css(css);
5563 
5564 	/* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5565 	css_clear_dir(&cgrp->self);
5566 	kernfs_remove(cgrp->kn);
5567 
5568 	if (parent && cgroup_is_threaded(cgrp))
5569 		parent->nr_threaded_children--;
5570 
5571 	spin_lock_irq(&css_set_lock);
5572 	for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5573 		tcgrp->nr_descendants--;
5574 		tcgrp->nr_dying_descendants++;
5575 		/*
5576 		 * If the dying cgroup is frozen, decrease frozen descendants
5577 		 * counters of ancestor cgroups.
5578 		 */
5579 		if (test_bit(CGRP_FROZEN, &cgrp->flags))
5580 			tcgrp->freezer.nr_frozen_descendants--;
5581 	}
5582 	spin_unlock_irq(&css_set_lock);
5583 
5584 	cgroup1_check_for_release(parent);
5585 
5586 	cgroup_bpf_offline(cgrp);
5587 
5588 	/* put the base reference */
5589 	percpu_ref_kill(&cgrp->self.refcnt);
5590 
5591 	return 0;
5592 };
5593 
cgroup_rmdir(struct kernfs_node * kn)5594 int cgroup_rmdir(struct kernfs_node *kn)
5595 {
5596 	struct cgroup *cgrp;
5597 	int ret = 0;
5598 
5599 	cgrp = cgroup_kn_lock_live(kn, false);
5600 	if (!cgrp)
5601 		return 0;
5602 
5603 	ret = cgroup_destroy_locked(cgrp);
5604 	if (!ret)
5605 		TRACE_CGROUP_PATH(rmdir, cgrp);
5606 
5607 	cgroup_kn_unlock(kn);
5608 	return ret;
5609 }
5610 
5611 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5612 	.show_options		= cgroup_show_options,
5613 	.mkdir			= cgroup_mkdir,
5614 	.rmdir			= cgroup_rmdir,
5615 	.show_path		= cgroup_show_path,
5616 };
5617 
cgroup_init_subsys(struct cgroup_subsys * ss,bool early)5618 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5619 {
5620 	struct cgroup_subsys_state *css;
5621 
5622 	pr_debug("Initializing cgroup subsys %s\n", ss->name);
5623 
5624 	mutex_lock(&cgroup_mutex);
5625 
5626 	idr_init(&ss->css_idr);
5627 	INIT_LIST_HEAD(&ss->cfts);
5628 
5629 	/* Create the root cgroup state for this subsystem */
5630 	ss->root = &cgrp_dfl_root;
5631 	css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5632 	/* We don't handle early failures gracefully */
5633 	BUG_ON(IS_ERR(css));
5634 	init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5635 
5636 	/*
5637 	 * Root csses are never destroyed and we can't initialize
5638 	 * percpu_ref during early init.  Disable refcnting.
5639 	 */
5640 	css->flags |= CSS_NO_REF;
5641 
5642 	if (early) {
5643 		/* allocation can't be done safely during early init */
5644 		css->id = 1;
5645 	} else {
5646 		css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5647 		BUG_ON(css->id < 0);
5648 	}
5649 
5650 	/* Update the init_css_set to contain a subsys
5651 	 * pointer to this state - since the subsystem is
5652 	 * newly registered, all tasks and hence the
5653 	 * init_css_set is in the subsystem's root cgroup. */
5654 	init_css_set.subsys[ss->id] = css;
5655 
5656 	have_fork_callback |= (bool)ss->fork << ss->id;
5657 	have_exit_callback |= (bool)ss->exit << ss->id;
5658 	have_release_callback |= (bool)ss->release << ss->id;
5659 	have_canfork_callback |= (bool)ss->can_fork << ss->id;
5660 
5661 	/* At system boot, before all subsystems have been
5662 	 * registered, no tasks have been forked, so we don't
5663 	 * need to invoke fork callbacks here. */
5664 	BUG_ON(!list_empty(&init_task.tasks));
5665 
5666 	BUG_ON(online_css(css));
5667 
5668 	mutex_unlock(&cgroup_mutex);
5669 }
5670 
5671 /**
5672  * cgroup_init_early - cgroup initialization at system boot
5673  *
5674  * Initialize cgroups at system boot, and initialize any
5675  * subsystems that request early init.
5676  */
cgroup_init_early(void)5677 int __init cgroup_init_early(void)
5678 {
5679 	static struct cgroup_fs_context __initdata ctx;
5680 	struct cgroup_subsys *ss;
5681 	int i;
5682 
5683 	ctx.root = &cgrp_dfl_root;
5684 	init_cgroup_root(&ctx);
5685 	cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5686 
5687 	RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5688 
5689 	for_each_subsys(ss, i) {
5690 		WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5691 		     "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5692 		     i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5693 		     ss->id, ss->name);
5694 		WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5695 		     "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5696 
5697 		ss->id = i;
5698 		ss->name = cgroup_subsys_name[i];
5699 		if (!ss->legacy_name)
5700 			ss->legacy_name = cgroup_subsys_name[i];
5701 
5702 		if (ss->early_init)
5703 			cgroup_init_subsys(ss, true);
5704 	}
5705 	return 0;
5706 }
5707 
5708 static u16 cgroup_disable_mask __initdata;
5709 
5710 /**
5711  * cgroup_init - cgroup initialization
5712  *
5713  * Register cgroup filesystem and /proc file, and initialize
5714  * any subsystems that didn't request early init.
5715  */
cgroup_init(void)5716 int __init cgroup_init(void)
5717 {
5718 	struct cgroup_subsys *ss;
5719 	int ssid;
5720 
5721 	BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5722 	BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
5723 	BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
5724 
5725 	cgroup_rstat_boot();
5726 
5727 	/*
5728 	 * The latency of the synchronize_rcu() is too high for cgroups,
5729 	 * avoid it at the cost of forcing all readers into the slow path.
5730 	 */
5731 	rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
5732 
5733 	get_user_ns(init_cgroup_ns.user_ns);
5734 
5735 	mutex_lock(&cgroup_mutex);
5736 
5737 	/*
5738 	 * Add init_css_set to the hash table so that dfl_root can link to
5739 	 * it during init.
5740 	 */
5741 	hash_add(css_set_table, &init_css_set.hlist,
5742 		 css_set_hash(init_css_set.subsys));
5743 
5744 	BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5745 
5746 	mutex_unlock(&cgroup_mutex);
5747 
5748 	for_each_subsys(ss, ssid) {
5749 		if (ss->early_init) {
5750 			struct cgroup_subsys_state *css =
5751 				init_css_set.subsys[ss->id];
5752 
5753 			css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5754 						   GFP_KERNEL);
5755 			BUG_ON(css->id < 0);
5756 		} else {
5757 			cgroup_init_subsys(ss, false);
5758 		}
5759 
5760 		list_add_tail(&init_css_set.e_cset_node[ssid],
5761 			      &cgrp_dfl_root.cgrp.e_csets[ssid]);
5762 
5763 		/*
5764 		 * Setting dfl_root subsys_mask needs to consider the
5765 		 * disabled flag and cftype registration needs kmalloc,
5766 		 * both of which aren't available during early_init.
5767 		 */
5768 		if (cgroup_disable_mask & (1 << ssid)) {
5769 			static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5770 			printk(KERN_INFO "Disabling %s control group subsystem\n",
5771 			       ss->name);
5772 			continue;
5773 		}
5774 
5775 		if (cgroup1_ssid_disabled(ssid))
5776 			printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5777 			       ss->name);
5778 
5779 		cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5780 
5781 		/* implicit controllers must be threaded too */
5782 		WARN_ON(ss->implicit_on_dfl && !ss->threaded);
5783 
5784 		if (ss->implicit_on_dfl)
5785 			cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5786 		else if (!ss->dfl_cftypes)
5787 			cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5788 
5789 		if (ss->threaded)
5790 			cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
5791 
5792 		if (ss->dfl_cftypes == ss->legacy_cftypes) {
5793 			WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5794 		} else {
5795 			WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5796 			WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5797 		}
5798 
5799 		if (ss->bind)
5800 			ss->bind(init_css_set.subsys[ssid]);
5801 
5802 		mutex_lock(&cgroup_mutex);
5803 		css_populate_dir(init_css_set.subsys[ssid]);
5804 		mutex_unlock(&cgroup_mutex);
5805 	}
5806 
5807 	/* init_css_set.subsys[] has been updated, re-hash */
5808 	hash_del(&init_css_set.hlist);
5809 	hash_add(css_set_table, &init_css_set.hlist,
5810 		 css_set_hash(init_css_set.subsys));
5811 
5812 	WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5813 	WARN_ON(register_filesystem(&cgroup_fs_type));
5814 	WARN_ON(register_filesystem(&cgroup2_fs_type));
5815 	WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
5816 #ifdef CONFIG_CPUSETS
5817 	WARN_ON(register_filesystem(&cpuset_fs_type));
5818 #endif
5819 
5820 	return 0;
5821 }
5822 
cgroup_wq_init(void)5823 static int __init cgroup_wq_init(void)
5824 {
5825 	/*
5826 	 * There isn't much point in executing destruction path in
5827 	 * parallel.  Good chunk is serialized with cgroup_mutex anyway.
5828 	 * Use 1 for @max_active.
5829 	 *
5830 	 * We would prefer to do this in cgroup_init() above, but that
5831 	 * is called before init_workqueues(): so leave this until after.
5832 	 */
5833 	cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5834 	BUG_ON(!cgroup_destroy_wq);
5835 	return 0;
5836 }
5837 core_initcall(cgroup_wq_init);
5838 
cgroup_path_from_kernfs_id(const union kernfs_node_id * id,char * buf,size_t buflen)5839 void cgroup_path_from_kernfs_id(const union kernfs_node_id *id,
5840 					char *buf, size_t buflen)
5841 {
5842 	struct kernfs_node *kn;
5843 
5844 	kn = kernfs_get_node_by_id(cgrp_dfl_root.kf_root, id);
5845 	if (!kn)
5846 		return;
5847 	kernfs_path(kn, buf, buflen);
5848 	kernfs_put(kn);
5849 }
5850 
5851 /*
5852  * proc_cgroup_show()
5853  *  - Print task's cgroup paths into seq_file, one line for each hierarchy
5854  *  - Used for /proc/<pid>/cgroup.
5855  */
proc_cgroup_show(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * tsk)5856 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5857 		     struct pid *pid, struct task_struct *tsk)
5858 {
5859 	char *buf;
5860 	int retval;
5861 	struct cgroup_root *root;
5862 
5863 	retval = -ENOMEM;
5864 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
5865 	if (!buf)
5866 		goto out;
5867 
5868 	mutex_lock(&cgroup_mutex);
5869 	spin_lock_irq(&css_set_lock);
5870 
5871 	for_each_root(root) {
5872 		struct cgroup_subsys *ss;
5873 		struct cgroup *cgrp;
5874 		int ssid, count = 0;
5875 
5876 		if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
5877 			continue;
5878 
5879 		seq_printf(m, "%d:", root->hierarchy_id);
5880 		if (root != &cgrp_dfl_root)
5881 			for_each_subsys(ss, ssid)
5882 				if (root->subsys_mask & (1 << ssid))
5883 					seq_printf(m, "%s%s", count++ ? "," : "",
5884 						   ss->legacy_name);
5885 		if (strlen(root->name))
5886 			seq_printf(m, "%sname=%s", count ? "," : "",
5887 				   root->name);
5888 		seq_putc(m, ':');
5889 
5890 		cgrp = task_cgroup_from_root(tsk, root);
5891 
5892 		/*
5893 		 * On traditional hierarchies, all zombie tasks show up as
5894 		 * belonging to the root cgroup.  On the default hierarchy,
5895 		 * while a zombie doesn't show up in "cgroup.procs" and
5896 		 * thus can't be migrated, its /proc/PID/cgroup keeps
5897 		 * reporting the cgroup it belonged to before exiting.  If
5898 		 * the cgroup is removed before the zombie is reaped,
5899 		 * " (deleted)" is appended to the cgroup path.
5900 		 */
5901 		if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5902 			retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
5903 						current->nsproxy->cgroup_ns);
5904 			if (retval >= PATH_MAX)
5905 				retval = -ENAMETOOLONG;
5906 			if (retval < 0)
5907 				goto out_unlock;
5908 
5909 			seq_puts(m, buf);
5910 		} else {
5911 			seq_puts(m, "/");
5912 		}
5913 
5914 		if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5915 			seq_puts(m, " (deleted)\n");
5916 		else
5917 			seq_putc(m, '\n');
5918 	}
5919 
5920 	retval = 0;
5921 out_unlock:
5922 	spin_unlock_irq(&css_set_lock);
5923 	mutex_unlock(&cgroup_mutex);
5924 	kfree(buf);
5925 out:
5926 	return retval;
5927 }
5928 
5929 /**
5930  * cgroup_fork - initialize cgroup related fields during copy_process()
5931  * @child: pointer to task_struct of forking parent process.
5932  *
5933  * A task is associated with the init_css_set until cgroup_post_fork()
5934  * attaches it to the parent's css_set.  Empty cg_list indicates that
5935  * @child isn't holding reference to its css_set.
5936  */
cgroup_fork(struct task_struct * child)5937 void cgroup_fork(struct task_struct *child)
5938 {
5939 	RCU_INIT_POINTER(child->cgroups, &init_css_set);
5940 	INIT_LIST_HEAD(&child->cg_list);
5941 }
5942 
5943 /**
5944  * cgroup_can_fork - called on a new task before the process is exposed
5945  * @child: the task in question.
5946  *
5947  * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5948  * returns an error, the fork aborts with that error code. This allows for
5949  * a cgroup subsystem to conditionally allow or deny new forks.
5950  */
cgroup_can_fork(struct task_struct * child)5951 int cgroup_can_fork(struct task_struct *child)
5952 {
5953 	struct cgroup_subsys *ss;
5954 	int i, j, ret;
5955 
5956 	do_each_subsys_mask(ss, i, have_canfork_callback) {
5957 		ret = ss->can_fork(child);
5958 		if (ret)
5959 			goto out_revert;
5960 	} while_each_subsys_mask();
5961 
5962 	return 0;
5963 
5964 out_revert:
5965 	for_each_subsys(ss, j) {
5966 		if (j >= i)
5967 			break;
5968 		if (ss->cancel_fork)
5969 			ss->cancel_fork(child);
5970 	}
5971 
5972 	return ret;
5973 }
5974 
5975 /**
5976  * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5977  * @child: the task in question
5978  *
5979  * This calls the cancel_fork() callbacks if a fork failed *after*
5980  * cgroup_can_fork() succeded.
5981  */
cgroup_cancel_fork(struct task_struct * child)5982 void cgroup_cancel_fork(struct task_struct *child)
5983 {
5984 	struct cgroup_subsys *ss;
5985 	int i;
5986 
5987 	for_each_subsys(ss, i)
5988 		if (ss->cancel_fork)
5989 			ss->cancel_fork(child);
5990 }
5991 
5992 /**
5993  * cgroup_post_fork - called on a new task after adding it to the task list
5994  * @child: the task in question
5995  *
5996  * Adds the task to the list running through its css_set if necessary and
5997  * call the subsystem fork() callbacks.  Has to be after the task is
5998  * visible on the task list in case we race with the first call to
5999  * cgroup_task_iter_start() - to guarantee that the new task ends up on its
6000  * list.
6001  */
cgroup_post_fork(struct task_struct * child)6002 void cgroup_post_fork(struct task_struct *child)
6003 {
6004 	struct cgroup_subsys *ss;
6005 	int i;
6006 
6007 	/*
6008 	 * This may race against cgroup_enable_task_cg_lists().  As that
6009 	 * function sets use_task_css_set_links before grabbing
6010 	 * tasklist_lock and we just went through tasklist_lock to add
6011 	 * @child, it's guaranteed that either we see the set
6012 	 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
6013 	 * @child during its iteration.
6014 	 *
6015 	 * If we won the race, @child is associated with %current's
6016 	 * css_set.  Grabbing css_set_lock guarantees both that the
6017 	 * association is stable, and, on completion of the parent's
6018 	 * migration, @child is visible in the source of migration or
6019 	 * already in the destination cgroup.  This guarantee is necessary
6020 	 * when implementing operations which need to migrate all tasks of
6021 	 * a cgroup to another.
6022 	 *
6023 	 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
6024 	 * will remain in init_css_set.  This is safe because all tasks are
6025 	 * in the init_css_set before cg_links is enabled and there's no
6026 	 * operation which transfers all tasks out of init_css_set.
6027 	 */
6028 	if (use_task_css_set_links) {
6029 		struct css_set *cset;
6030 
6031 		spin_lock_irq(&css_set_lock);
6032 		cset = task_css_set(current);
6033 		if (list_empty(&child->cg_list)) {
6034 			get_css_set(cset);
6035 			cset->nr_tasks++;
6036 			css_set_move_task(child, NULL, cset, false);
6037 		}
6038 
6039 		/*
6040 		 * If the cgroup has to be frozen, the new task has too.
6041 		 * Let's set the JOBCTL_TRAP_FREEZE jobctl bit to get
6042 		 * the task into the frozen state.
6043 		 */
6044 		if (unlikely(cgroup_task_freeze(child))) {
6045 			spin_lock(&child->sighand->siglock);
6046 			WARN_ON_ONCE(child->frozen);
6047 			child->jobctl |= JOBCTL_TRAP_FREEZE;
6048 			spin_unlock(&child->sighand->siglock);
6049 
6050 			/*
6051 			 * Calling cgroup_update_frozen() isn't required here,
6052 			 * because it will be called anyway a bit later
6053 			 * from do_freezer_trap(). So we avoid cgroup's
6054 			 * transient switch from the frozen state and back.
6055 			 */
6056 		}
6057 
6058 		spin_unlock_irq(&css_set_lock);
6059 	}
6060 
6061 	/*
6062 	 * Call ss->fork().  This must happen after @child is linked on
6063 	 * css_set; otherwise, @child might change state between ->fork()
6064 	 * and addition to css_set.
6065 	 */
6066 	do_each_subsys_mask(ss, i, have_fork_callback) {
6067 		ss->fork(child);
6068 	} while_each_subsys_mask();
6069 }
6070 
6071 /**
6072  * cgroup_exit - detach cgroup from exiting task
6073  * @tsk: pointer to task_struct of exiting process
6074  *
6075  * Description: Detach cgroup from @tsk and release it.
6076  *
6077  * Note that cgroups marked notify_on_release force every task in
6078  * them to take the global cgroup_mutex mutex when exiting.
6079  * This could impact scaling on very large systems.  Be reluctant to
6080  * use notify_on_release cgroups where very high task exit scaling
6081  * is required on large systems.
6082  *
6083  * We set the exiting tasks cgroup to the root cgroup (top_cgroup).  We
6084  * call cgroup_exit() while the task is still competent to handle
6085  * notify_on_release(), then leave the task attached to the root cgroup in
6086  * each hierarchy for the remainder of its exit.  No need to bother with
6087  * init_css_set refcnting.  init_css_set never goes away and we can't race
6088  * with migration path - PF_EXITING is visible to migration path.
6089  */
cgroup_exit(struct task_struct * tsk)6090 void cgroup_exit(struct task_struct *tsk)
6091 {
6092 	struct cgroup_subsys *ss;
6093 	struct css_set *cset;
6094 	int i;
6095 
6096 	/*
6097 	 * Unlink from @tsk from its css_set.  As migration path can't race
6098 	 * with us, we can check css_set and cg_list without synchronization.
6099 	 */
6100 	cset = task_css_set(tsk);
6101 
6102 	if (!list_empty(&tsk->cg_list)) {
6103 		spin_lock_irq(&css_set_lock);
6104 		css_set_move_task(tsk, cset, NULL, false);
6105 		list_add_tail(&tsk->cg_list, &cset->dying_tasks);
6106 		cset->nr_tasks--;
6107 
6108 		WARN_ON_ONCE(cgroup_task_frozen(tsk));
6109 		if (unlikely(cgroup_task_freeze(tsk)))
6110 			cgroup_update_frozen(task_dfl_cgroup(tsk));
6111 
6112 		spin_unlock_irq(&css_set_lock);
6113 	} else {
6114 		get_css_set(cset);
6115 	}
6116 
6117 	/* see cgroup_post_fork() for details */
6118 	do_each_subsys_mask(ss, i, have_exit_callback) {
6119 		ss->exit(tsk);
6120 	} while_each_subsys_mask();
6121 }
6122 
cgroup_release(struct task_struct * task)6123 void cgroup_release(struct task_struct *task)
6124 {
6125 	struct cgroup_subsys *ss;
6126 	int ssid;
6127 
6128 	do_each_subsys_mask(ss, ssid, have_release_callback) {
6129 		ss->release(task);
6130 	} while_each_subsys_mask();
6131 
6132 	if (use_task_css_set_links) {
6133 		spin_lock_irq(&css_set_lock);
6134 		css_set_skip_task_iters(task_css_set(task), task);
6135 		list_del_init(&task->cg_list);
6136 		spin_unlock_irq(&css_set_lock);
6137 	}
6138 }
6139 
cgroup_free(struct task_struct * task)6140 void cgroup_free(struct task_struct *task)
6141 {
6142 	struct css_set *cset = task_css_set(task);
6143 	put_css_set(cset);
6144 }
6145 
cgroup_disable(char * str)6146 static int __init cgroup_disable(char *str)
6147 {
6148 	struct cgroup_subsys *ss;
6149 	char *token;
6150 	int i;
6151 
6152 	while ((token = strsep(&str, ",")) != NULL) {
6153 		if (!*token)
6154 			continue;
6155 
6156 		for_each_subsys(ss, i) {
6157 			if (strcmp(token, ss->name) &&
6158 			    strcmp(token, ss->legacy_name))
6159 				continue;
6160 			cgroup_disable_mask |= 1 << i;
6161 		}
6162 	}
6163 	return 1;
6164 }
6165 __setup("cgroup_disable=", cgroup_disable);
6166 
enable_debug_cgroup(void)6167 void __init __weak enable_debug_cgroup(void) { }
6168 
enable_cgroup_debug(char * str)6169 static int __init enable_cgroup_debug(char *str)
6170 {
6171 	cgroup_debug = true;
6172 	enable_debug_cgroup();
6173 	return 1;
6174 }
6175 __setup("cgroup_debug", enable_cgroup_debug);
6176 
6177 /**
6178  * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6179  * @dentry: directory dentry of interest
6180  * @ss: subsystem of interest
6181  *
6182  * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6183  * to get the corresponding css and return it.  If such css doesn't exist
6184  * or can't be pinned, an ERR_PTR value is returned.
6185  */
css_tryget_online_from_dir(struct dentry * dentry,struct cgroup_subsys * ss)6186 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6187 						       struct cgroup_subsys *ss)
6188 {
6189 	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6190 	struct file_system_type *s_type = dentry->d_sb->s_type;
6191 	struct cgroup_subsys_state *css = NULL;
6192 	struct cgroup *cgrp;
6193 
6194 	/* is @dentry a cgroup dir? */
6195 	if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6196 	    !kn || kernfs_type(kn) != KERNFS_DIR)
6197 		return ERR_PTR(-EBADF);
6198 
6199 	rcu_read_lock();
6200 
6201 	/*
6202 	 * This path doesn't originate from kernfs and @kn could already
6203 	 * have been or be removed at any point.  @kn->priv is RCU
6204 	 * protected for this access.  See css_release_work_fn() for details.
6205 	 */
6206 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6207 	if (cgrp)
6208 		css = cgroup_css(cgrp, ss);
6209 
6210 	if (!css || !css_tryget_online(css))
6211 		css = ERR_PTR(-ENOENT);
6212 
6213 	rcu_read_unlock();
6214 	return css;
6215 }
6216 
6217 /**
6218  * css_from_id - lookup css by id
6219  * @id: the cgroup id
6220  * @ss: cgroup subsys to be looked into
6221  *
6222  * Returns the css if there's valid one with @id, otherwise returns NULL.
6223  * Should be called under rcu_read_lock().
6224  */
css_from_id(int id,struct cgroup_subsys * ss)6225 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6226 {
6227 	WARN_ON_ONCE(!rcu_read_lock_held());
6228 	return idr_find(&ss->css_idr, id);
6229 }
6230 
6231 /**
6232  * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6233  * @path: path on the default hierarchy
6234  *
6235  * Find the cgroup at @path on the default hierarchy, increment its
6236  * reference count and return it.  Returns pointer to the found cgroup on
6237  * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
6238  * if @path points to a non-directory.
6239  */
cgroup_get_from_path(const char * path)6240 struct cgroup *cgroup_get_from_path(const char *path)
6241 {
6242 	struct kernfs_node *kn;
6243 	struct cgroup *cgrp;
6244 
6245 	mutex_lock(&cgroup_mutex);
6246 
6247 	kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
6248 	if (kn) {
6249 		if (kernfs_type(kn) == KERNFS_DIR) {
6250 			cgrp = kn->priv;
6251 			cgroup_get_live(cgrp);
6252 		} else {
6253 			cgrp = ERR_PTR(-ENOTDIR);
6254 		}
6255 		kernfs_put(kn);
6256 	} else {
6257 		cgrp = ERR_PTR(-ENOENT);
6258 	}
6259 
6260 	mutex_unlock(&cgroup_mutex);
6261 	return cgrp;
6262 }
6263 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6264 
6265 /**
6266  * cgroup_get_from_fd - get a cgroup pointer from a fd
6267  * @fd: fd obtained by open(cgroup2_dir)
6268  *
6269  * Find the cgroup from a fd which should be obtained
6270  * by opening a cgroup directory.  Returns a pointer to the
6271  * cgroup on success. ERR_PTR is returned if the cgroup
6272  * cannot be found.
6273  */
cgroup_get_from_fd(int fd)6274 struct cgroup *cgroup_get_from_fd(int fd)
6275 {
6276 	struct cgroup_subsys_state *css;
6277 	struct cgroup *cgrp;
6278 	struct file *f;
6279 
6280 	f = fget_raw(fd);
6281 	if (!f)
6282 		return ERR_PTR(-EBADF);
6283 
6284 	css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
6285 	fput(f);
6286 	if (IS_ERR(css))
6287 		return ERR_CAST(css);
6288 
6289 	cgrp = css->cgroup;
6290 	if (!cgroup_on_dfl(cgrp)) {
6291 		cgroup_put(cgrp);
6292 		return ERR_PTR(-EBADF);
6293 	}
6294 
6295 	return cgrp;
6296 }
6297 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
6298 
power_of_ten(int power)6299 static u64 power_of_ten(int power)
6300 {
6301 	u64 v = 1;
6302 	while (power--)
6303 		v *= 10;
6304 	return v;
6305 }
6306 
6307 /**
6308  * cgroup_parse_float - parse a floating number
6309  * @input: input string
6310  * @dec_shift: number of decimal digits to shift
6311  * @v: output
6312  *
6313  * Parse a decimal floating point number in @input and store the result in
6314  * @v with decimal point right shifted @dec_shift times.  For example, if
6315  * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345.
6316  * Returns 0 on success, -errno otherwise.
6317  *
6318  * There's nothing cgroup specific about this function except that it's
6319  * currently the only user.
6320  */
cgroup_parse_float(const char * input,unsigned dec_shift,s64 * v)6321 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v)
6322 {
6323 	s64 whole, frac = 0;
6324 	int fstart = 0, fend = 0, flen;
6325 
6326 	if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend))
6327 		return -EINVAL;
6328 	if (frac < 0)
6329 		return -EINVAL;
6330 
6331 	flen = fend > fstart ? fend - fstart : 0;
6332 	if (flen < dec_shift)
6333 		frac *= power_of_ten(dec_shift - flen);
6334 	else
6335 		frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift));
6336 
6337 	*v = whole * power_of_ten(dec_shift) + frac;
6338 	return 0;
6339 }
6340 
6341 /*
6342  * sock->sk_cgrp_data handling.  For more info, see sock_cgroup_data
6343  * definition in cgroup-defs.h.
6344  */
6345 #ifdef CONFIG_SOCK_CGROUP_DATA
6346 
6347 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
6348 
6349 DEFINE_SPINLOCK(cgroup_sk_update_lock);
6350 static bool cgroup_sk_alloc_disabled __read_mostly;
6351 
cgroup_sk_alloc_disable(void)6352 void cgroup_sk_alloc_disable(void)
6353 {
6354 	if (cgroup_sk_alloc_disabled)
6355 		return;
6356 	pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
6357 	cgroup_sk_alloc_disabled = true;
6358 }
6359 
6360 #else
6361 
6362 #define cgroup_sk_alloc_disabled	false
6363 
6364 #endif
6365 
cgroup_sk_alloc(struct sock_cgroup_data * skcd)6366 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6367 {
6368 	if (cgroup_sk_alloc_disabled)
6369 		return;
6370 
6371 	/* Socket clone path */
6372 	if (skcd->val) {
6373 		/*
6374 		 * We might be cloning a socket which is left in an empty
6375 		 * cgroup and the cgroup might have already been rmdir'd.
6376 		 * Don't use cgroup_get_live().
6377 		 */
6378 		cgroup_get(sock_cgroup_ptr(skcd));
6379 		cgroup_bpf_get(sock_cgroup_ptr(skcd));
6380 		return;
6381 	}
6382 
6383 	rcu_read_lock();
6384 
6385 	while (true) {
6386 		struct css_set *cset;
6387 
6388 		cset = task_css_set(current);
6389 		if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6390 			skcd->val = (unsigned long)cset->dfl_cgrp;
6391 			cgroup_bpf_get(cset->dfl_cgrp);
6392 			break;
6393 		}
6394 		cpu_relax();
6395 	}
6396 
6397 	rcu_read_unlock();
6398 }
6399 
cgroup_sk_free(struct sock_cgroup_data * skcd)6400 void cgroup_sk_free(struct sock_cgroup_data *skcd)
6401 {
6402 	struct cgroup *cgrp = sock_cgroup_ptr(skcd);
6403 
6404 	cgroup_bpf_put(cgrp);
6405 	cgroup_put(cgrp);
6406 }
6407 
6408 #endif	/* CONFIG_SOCK_CGROUP_DATA */
6409 
6410 #ifdef CONFIG_CGROUP_BPF
cgroup_bpf_attach(struct cgroup * cgrp,struct bpf_prog * prog,enum bpf_attach_type type,u32 flags)6411 int cgroup_bpf_attach(struct cgroup *cgrp, struct bpf_prog *prog,
6412 		      enum bpf_attach_type type, u32 flags)
6413 {
6414 	int ret;
6415 
6416 	mutex_lock(&cgroup_mutex);
6417 	ret = __cgroup_bpf_attach(cgrp, prog, type, flags);
6418 	mutex_unlock(&cgroup_mutex);
6419 	return ret;
6420 }
cgroup_bpf_detach(struct cgroup * cgrp,struct bpf_prog * prog,enum bpf_attach_type type,u32 flags)6421 int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
6422 		      enum bpf_attach_type type, u32 flags)
6423 {
6424 	int ret;
6425 
6426 	mutex_lock(&cgroup_mutex);
6427 	ret = __cgroup_bpf_detach(cgrp, prog, type);
6428 	mutex_unlock(&cgroup_mutex);
6429 	return ret;
6430 }
cgroup_bpf_query(struct cgroup * cgrp,const union bpf_attr * attr,union bpf_attr __user * uattr)6431 int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
6432 		     union bpf_attr __user *uattr)
6433 {
6434 	int ret;
6435 
6436 	mutex_lock(&cgroup_mutex);
6437 	ret = __cgroup_bpf_query(cgrp, attr, uattr);
6438 	mutex_unlock(&cgroup_mutex);
6439 	return ret;
6440 }
6441 #endif /* CONFIG_CGROUP_BPF */
6442 
6443 #ifdef CONFIG_SYSFS
show_delegatable_files(struct cftype * files,char * buf,ssize_t size,const char * prefix)6444 static ssize_t show_delegatable_files(struct cftype *files, char *buf,
6445 				      ssize_t size, const char *prefix)
6446 {
6447 	struct cftype *cft;
6448 	ssize_t ret = 0;
6449 
6450 	for (cft = files; cft && cft->name[0] != '\0'; cft++) {
6451 		if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
6452 			continue;
6453 
6454 		if (prefix)
6455 			ret += snprintf(buf + ret, size - ret, "%s.", prefix);
6456 
6457 		ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
6458 
6459 		if (WARN_ON(ret >= size))
6460 			break;
6461 	}
6462 
6463 	return ret;
6464 }
6465 
delegate_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)6466 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
6467 			      char *buf)
6468 {
6469 	struct cgroup_subsys *ss;
6470 	int ssid;
6471 	ssize_t ret = 0;
6472 
6473 	ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret,
6474 				     NULL);
6475 
6476 	for_each_subsys(ss, ssid)
6477 		ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
6478 					      PAGE_SIZE - ret,
6479 					      cgroup_subsys_name[ssid]);
6480 
6481 	return ret;
6482 }
6483 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
6484 
features_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)6485 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
6486 			     char *buf)
6487 {
6488 	return snprintf(buf, PAGE_SIZE, "nsdelegate\nmemory_localevents\n");
6489 }
6490 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
6491 
6492 static struct attribute *cgroup_sysfs_attrs[] = {
6493 	&cgroup_delegate_attr.attr,
6494 	&cgroup_features_attr.attr,
6495 	NULL,
6496 };
6497 
6498 static const struct attribute_group cgroup_sysfs_attr_group = {
6499 	.attrs = cgroup_sysfs_attrs,
6500 	.name = "cgroup",
6501 };
6502 
cgroup_sysfs_init(void)6503 static int __init cgroup_sysfs_init(void)
6504 {
6505 	return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
6506 }
6507 subsys_initcall(cgroup_sysfs_init);
6508 
6509 #endif /* CONFIG_SYSFS */
6510