1 /*
2 * Common Flash Interface support:
3 * ST Advanced Architecture Command Set (ID 0x0020)
4 *
5 * (C) 2000 Red Hat. GPL'd
6 *
7 * 10/10/2000 Nicolas Pitre <nico@fluxnic.net>
8 * - completely revamped method functions so they are aware and
9 * independent of the flash geometry (buswidth, interleave, etc.)
10 * - scalability vs code size is completely set at compile-time
11 * (see include/linux/mtd/cfi.h for selection)
12 * - optimized write buffer method
13 * 06/21/2002 Joern Engel <joern@wh.fh-wedel.de> and others
14 * - modified Intel Command Set 0x0001 to support ST Advanced Architecture
15 * (command set 0x0020)
16 * - added a writev function
17 * 07/13/2005 Joern Engel <joern@wh.fh-wedel.de>
18 * - Plugged memory leak in cfi_staa_writev().
19 */
20
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/kernel.h>
24 #include <linux/sched.h>
25 #include <asm/io.h>
26 #include <asm/byteorder.h>
27
28 #include <linux/errno.h>
29 #include <linux/slab.h>
30 #include <linux/delay.h>
31 #include <linux/interrupt.h>
32 #include <linux/mtd/map.h>
33 #include <linux/mtd/cfi.h>
34 #include <linux/mtd/mtd.h>
35
36
37 static int cfi_staa_read(struct mtd_info *, loff_t, size_t, size_t *, u_char *);
38 static int cfi_staa_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
39 static int cfi_staa_writev(struct mtd_info *mtd, const struct kvec *vecs,
40 unsigned long count, loff_t to, size_t *retlen);
41 static int cfi_staa_erase_varsize(struct mtd_info *, struct erase_info *);
42 static void cfi_staa_sync (struct mtd_info *);
43 static int cfi_staa_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
44 static int cfi_staa_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
45 static int cfi_staa_suspend (struct mtd_info *);
46 static void cfi_staa_resume (struct mtd_info *);
47
48 static void cfi_staa_destroy(struct mtd_info *);
49
50 struct mtd_info *cfi_cmdset_0020(struct map_info *, int);
51
52 static struct mtd_info *cfi_staa_setup (struct map_info *);
53
54 static struct mtd_chip_driver cfi_staa_chipdrv = {
55 .probe = NULL, /* Not usable directly */
56 .destroy = cfi_staa_destroy,
57 .name = "cfi_cmdset_0020",
58 .module = THIS_MODULE
59 };
60
61 /* #define DEBUG_LOCK_BITS */
62 //#define DEBUG_CFI_FEATURES
63
64 #ifdef DEBUG_CFI_FEATURES
cfi_tell_features(struct cfi_pri_intelext * extp)65 static void cfi_tell_features(struct cfi_pri_intelext *extp)
66 {
67 int i;
68 printk(" Feature/Command Support: %4.4X\n", extp->FeatureSupport);
69 printk(" - Chip Erase: %s\n", extp->FeatureSupport&1?"supported":"unsupported");
70 printk(" - Suspend Erase: %s\n", extp->FeatureSupport&2?"supported":"unsupported");
71 printk(" - Suspend Program: %s\n", extp->FeatureSupport&4?"supported":"unsupported");
72 printk(" - Legacy Lock/Unlock: %s\n", extp->FeatureSupport&8?"supported":"unsupported");
73 printk(" - Queued Erase: %s\n", extp->FeatureSupport&16?"supported":"unsupported");
74 printk(" - Instant block lock: %s\n", extp->FeatureSupport&32?"supported":"unsupported");
75 printk(" - Protection Bits: %s\n", extp->FeatureSupport&64?"supported":"unsupported");
76 printk(" - Page-mode read: %s\n", extp->FeatureSupport&128?"supported":"unsupported");
77 printk(" - Synchronous read: %s\n", extp->FeatureSupport&256?"supported":"unsupported");
78 for (i=9; i<32; i++) {
79 if (extp->FeatureSupport & (1<<i))
80 printk(" - Unknown Bit %X: supported\n", i);
81 }
82
83 printk(" Supported functions after Suspend: %2.2X\n", extp->SuspendCmdSupport);
84 printk(" - Program after Erase Suspend: %s\n", extp->SuspendCmdSupport&1?"supported":"unsupported");
85 for (i=1; i<8; i++) {
86 if (extp->SuspendCmdSupport & (1<<i))
87 printk(" - Unknown Bit %X: supported\n", i);
88 }
89
90 printk(" Block Status Register Mask: %4.4X\n", extp->BlkStatusRegMask);
91 printk(" - Lock Bit Active: %s\n", extp->BlkStatusRegMask&1?"yes":"no");
92 printk(" - Valid Bit Active: %s\n", extp->BlkStatusRegMask&2?"yes":"no");
93 for (i=2; i<16; i++) {
94 if (extp->BlkStatusRegMask & (1<<i))
95 printk(" - Unknown Bit %X Active: yes\n",i);
96 }
97
98 printk(" Vcc Logic Supply Optimum Program/Erase Voltage: %d.%d V\n",
99 extp->VccOptimal >> 8, extp->VccOptimal & 0xf);
100 if (extp->VppOptimal)
101 printk(" Vpp Programming Supply Optimum Program/Erase Voltage: %d.%d V\n",
102 extp->VppOptimal >> 8, extp->VppOptimal & 0xf);
103 }
104 #endif
105
106 /* This routine is made available to other mtd code via
107 * inter_module_register. It must only be accessed through
108 * inter_module_get which will bump the use count of this module. The
109 * addresses passed back in cfi are valid as long as the use count of
110 * this module is non-zero, i.e. between inter_module_get and
111 * inter_module_put. Keith Owens <kaos@ocs.com.au> 29 Oct 2000.
112 */
cfi_cmdset_0020(struct map_info * map,int primary)113 struct mtd_info *cfi_cmdset_0020(struct map_info *map, int primary)
114 {
115 struct cfi_private *cfi = map->fldrv_priv;
116 int i;
117
118 if (cfi->cfi_mode) {
119 /*
120 * It's a real CFI chip, not one for which the probe
121 * routine faked a CFI structure. So we read the feature
122 * table from it.
123 */
124 __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
125 struct cfi_pri_intelext *extp;
126
127 extp = (struct cfi_pri_intelext*)cfi_read_pri(map, adr, sizeof(*extp), "ST Microelectronics");
128 if (!extp)
129 return NULL;
130
131 if (extp->MajorVersion != '1' ||
132 (extp->MinorVersion < '0' || extp->MinorVersion > '3')) {
133 printk(KERN_ERR " Unknown ST Microelectronics"
134 " Extended Query version %c.%c.\n",
135 extp->MajorVersion, extp->MinorVersion);
136 kfree(extp);
137 return NULL;
138 }
139
140 /* Do some byteswapping if necessary */
141 extp->FeatureSupport = cfi32_to_cpu(map, extp->FeatureSupport);
142 extp->BlkStatusRegMask = cfi32_to_cpu(map,
143 extp->BlkStatusRegMask);
144
145 #ifdef DEBUG_CFI_FEATURES
146 /* Tell the user about it in lots of lovely detail */
147 cfi_tell_features(extp);
148 #endif
149
150 /* Install our own private info structure */
151 cfi->cmdset_priv = extp;
152 }
153
154 for (i=0; i< cfi->numchips; i++) {
155 cfi->chips[i].word_write_time = 128;
156 cfi->chips[i].buffer_write_time = 128;
157 cfi->chips[i].erase_time = 1024;
158 cfi->chips[i].ref_point_counter = 0;
159 init_waitqueue_head(&(cfi->chips[i].wq));
160 }
161
162 return cfi_staa_setup(map);
163 }
164 EXPORT_SYMBOL_GPL(cfi_cmdset_0020);
165
cfi_staa_setup(struct map_info * map)166 static struct mtd_info *cfi_staa_setup(struct map_info *map)
167 {
168 struct cfi_private *cfi = map->fldrv_priv;
169 struct mtd_info *mtd;
170 unsigned long offset = 0;
171 int i,j;
172 unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
173
174 mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
175 //printk(KERN_DEBUG "number of CFI chips: %d\n", cfi->numchips);
176
177 if (!mtd) {
178 kfree(cfi->cmdset_priv);
179 return NULL;
180 }
181
182 mtd->priv = map;
183 mtd->type = MTD_NORFLASH;
184 mtd->size = devsize * cfi->numchips;
185
186 mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
187 mtd->eraseregions = kmalloc_array(mtd->numeraseregions,
188 sizeof(struct mtd_erase_region_info),
189 GFP_KERNEL);
190 if (!mtd->eraseregions) {
191 kfree(cfi->cmdset_priv);
192 kfree(mtd);
193 return NULL;
194 }
195
196 for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
197 unsigned long ernum, ersize;
198 ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
199 ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
200
201 if (mtd->erasesize < ersize) {
202 mtd->erasesize = ersize;
203 }
204 for (j=0; j<cfi->numchips; j++) {
205 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
206 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
207 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
208 }
209 offset += (ersize * ernum);
210 }
211
212 if (offset != devsize) {
213 /* Argh */
214 printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
215 kfree(mtd->eraseregions);
216 kfree(cfi->cmdset_priv);
217 kfree(mtd);
218 return NULL;
219 }
220
221 for (i=0; i<mtd->numeraseregions;i++){
222 printk(KERN_DEBUG "%d: offset=0x%llx,size=0x%x,blocks=%d\n",
223 i, (unsigned long long)mtd->eraseregions[i].offset,
224 mtd->eraseregions[i].erasesize,
225 mtd->eraseregions[i].numblocks);
226 }
227
228 /* Also select the correct geometry setup too */
229 mtd->_erase = cfi_staa_erase_varsize;
230 mtd->_read = cfi_staa_read;
231 mtd->_write = cfi_staa_write_buffers;
232 mtd->_writev = cfi_staa_writev;
233 mtd->_sync = cfi_staa_sync;
234 mtd->_lock = cfi_staa_lock;
235 mtd->_unlock = cfi_staa_unlock;
236 mtd->_suspend = cfi_staa_suspend;
237 mtd->_resume = cfi_staa_resume;
238 mtd->flags = MTD_CAP_NORFLASH & ~MTD_BIT_WRITEABLE;
239 mtd->writesize = 8; /* FIXME: Should be 0 for STMicro flashes w/out ECC */
240 mtd->writebufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
241 map->fldrv = &cfi_staa_chipdrv;
242 __module_get(THIS_MODULE);
243 mtd->name = map->name;
244 return mtd;
245 }
246
247
do_read_onechip(struct map_info * map,struct flchip * chip,loff_t adr,size_t len,u_char * buf)248 static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
249 {
250 map_word status, status_OK;
251 unsigned long timeo;
252 DECLARE_WAITQUEUE(wait, current);
253 int suspended = 0;
254 unsigned long cmd_addr;
255 struct cfi_private *cfi = map->fldrv_priv;
256
257 adr += chip->start;
258
259 /* Ensure cmd read/writes are aligned. */
260 cmd_addr = adr & ~(map_bankwidth(map)-1);
261
262 /* Let's determine this according to the interleave only once */
263 status_OK = CMD(0x80);
264
265 timeo = jiffies + HZ;
266 retry:
267 mutex_lock(&chip->mutex);
268
269 /* Check that the chip's ready to talk to us.
270 * If it's in FL_ERASING state, suspend it and make it talk now.
271 */
272 switch (chip->state) {
273 case FL_ERASING:
274 if (!(((struct cfi_pri_intelext *)cfi->cmdset_priv)->FeatureSupport & 2))
275 goto sleep; /* We don't support erase suspend */
276
277 map_write (map, CMD(0xb0), cmd_addr);
278 /* If the flash has finished erasing, then 'erase suspend'
279 * appears to make some (28F320) flash devices switch to
280 * 'read' mode. Make sure that we switch to 'read status'
281 * mode so we get the right data. --rmk
282 */
283 map_write(map, CMD(0x70), cmd_addr);
284 chip->oldstate = FL_ERASING;
285 chip->state = FL_ERASE_SUSPENDING;
286 // printk("Erase suspending at 0x%lx\n", cmd_addr);
287 for (;;) {
288 status = map_read(map, cmd_addr);
289 if (map_word_andequal(map, status, status_OK, status_OK))
290 break;
291
292 if (time_after(jiffies, timeo)) {
293 /* Urgh */
294 map_write(map, CMD(0xd0), cmd_addr);
295 /* make sure we're in 'read status' mode */
296 map_write(map, CMD(0x70), cmd_addr);
297 chip->state = FL_ERASING;
298 wake_up(&chip->wq);
299 mutex_unlock(&chip->mutex);
300 printk(KERN_ERR "Chip not ready after erase "
301 "suspended: status = 0x%lx\n", status.x[0]);
302 return -EIO;
303 }
304
305 mutex_unlock(&chip->mutex);
306 cfi_udelay(1);
307 mutex_lock(&chip->mutex);
308 }
309
310 suspended = 1;
311 map_write(map, CMD(0xff), cmd_addr);
312 chip->state = FL_READY;
313 break;
314
315 #if 0
316 case FL_WRITING:
317 /* Not quite yet */
318 #endif
319
320 case FL_READY:
321 break;
322
323 case FL_CFI_QUERY:
324 case FL_JEDEC_QUERY:
325 map_write(map, CMD(0x70), cmd_addr);
326 chip->state = FL_STATUS;
327 /* Fall through */
328
329 case FL_STATUS:
330 status = map_read(map, cmd_addr);
331 if (map_word_andequal(map, status, status_OK, status_OK)) {
332 map_write(map, CMD(0xff), cmd_addr);
333 chip->state = FL_READY;
334 break;
335 }
336
337 /* Urgh. Chip not yet ready to talk to us. */
338 if (time_after(jiffies, timeo)) {
339 mutex_unlock(&chip->mutex);
340 printk(KERN_ERR "waiting for chip to be ready timed out in read. WSM status = %lx\n", status.x[0]);
341 return -EIO;
342 }
343
344 /* Latency issues. Drop the lock, wait a while and retry */
345 mutex_unlock(&chip->mutex);
346 cfi_udelay(1);
347 goto retry;
348
349 default:
350 sleep:
351 /* Stick ourselves on a wait queue to be woken when
352 someone changes the status */
353 set_current_state(TASK_UNINTERRUPTIBLE);
354 add_wait_queue(&chip->wq, &wait);
355 mutex_unlock(&chip->mutex);
356 schedule();
357 remove_wait_queue(&chip->wq, &wait);
358 timeo = jiffies + HZ;
359 goto retry;
360 }
361
362 map_copy_from(map, buf, adr, len);
363
364 if (suspended) {
365 chip->state = chip->oldstate;
366 /* What if one interleaved chip has finished and the
367 other hasn't? The old code would leave the finished
368 one in READY mode. That's bad, and caused -EROFS
369 errors to be returned from do_erase_oneblock because
370 that's the only bit it checked for at the time.
371 As the state machine appears to explicitly allow
372 sending the 0x70 (Read Status) command to an erasing
373 chip and expecting it to be ignored, that's what we
374 do. */
375 map_write(map, CMD(0xd0), cmd_addr);
376 map_write(map, CMD(0x70), cmd_addr);
377 }
378
379 wake_up(&chip->wq);
380 mutex_unlock(&chip->mutex);
381 return 0;
382 }
383
cfi_staa_read(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)384 static int cfi_staa_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
385 {
386 struct map_info *map = mtd->priv;
387 struct cfi_private *cfi = map->fldrv_priv;
388 unsigned long ofs;
389 int chipnum;
390 int ret = 0;
391
392 /* ofs: offset within the first chip that the first read should start */
393 chipnum = (from >> cfi->chipshift);
394 ofs = from - (chipnum << cfi->chipshift);
395
396 while (len) {
397 unsigned long thislen;
398
399 if (chipnum >= cfi->numchips)
400 break;
401
402 if ((len + ofs -1) >> cfi->chipshift)
403 thislen = (1<<cfi->chipshift) - ofs;
404 else
405 thislen = len;
406
407 ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
408 if (ret)
409 break;
410
411 *retlen += thislen;
412 len -= thislen;
413 buf += thislen;
414
415 ofs = 0;
416 chipnum++;
417 }
418 return ret;
419 }
420
do_write_buffer(struct map_info * map,struct flchip * chip,unsigned long adr,const u_char * buf,int len)421 static int do_write_buffer(struct map_info *map, struct flchip *chip,
422 unsigned long adr, const u_char *buf, int len)
423 {
424 struct cfi_private *cfi = map->fldrv_priv;
425 map_word status, status_OK;
426 unsigned long cmd_adr, timeo;
427 DECLARE_WAITQUEUE(wait, current);
428 int wbufsize, z;
429
430 /* M58LW064A requires bus alignment for buffer wriets -- saw */
431 if (adr & (map_bankwidth(map)-1))
432 return -EINVAL;
433
434 wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
435 adr += chip->start;
436 cmd_adr = adr & ~(wbufsize-1);
437
438 /* Let's determine this according to the interleave only once */
439 status_OK = CMD(0x80);
440
441 timeo = jiffies + HZ;
442 retry:
443
444 #ifdef DEBUG_CFI_FEATURES
445 printk("%s: chip->state[%d]\n", __func__, chip->state);
446 #endif
447 mutex_lock(&chip->mutex);
448
449 /* Check that the chip's ready to talk to us.
450 * Later, we can actually think about interrupting it
451 * if it's in FL_ERASING state.
452 * Not just yet, though.
453 */
454 switch (chip->state) {
455 case FL_READY:
456 break;
457
458 case FL_CFI_QUERY:
459 case FL_JEDEC_QUERY:
460 map_write(map, CMD(0x70), cmd_adr);
461 chip->state = FL_STATUS;
462 #ifdef DEBUG_CFI_FEATURES
463 printk("%s: 1 status[%x]\n", __func__, map_read(map, cmd_adr));
464 #endif
465 /* Fall through */
466
467 case FL_STATUS:
468 status = map_read(map, cmd_adr);
469 if (map_word_andequal(map, status, status_OK, status_OK))
470 break;
471 /* Urgh. Chip not yet ready to talk to us. */
472 if (time_after(jiffies, timeo)) {
473 mutex_unlock(&chip->mutex);
474 printk(KERN_ERR "waiting for chip to be ready timed out in buffer write Xstatus = %lx, status = %lx\n",
475 status.x[0], map_read(map, cmd_adr).x[0]);
476 return -EIO;
477 }
478
479 /* Latency issues. Drop the lock, wait a while and retry */
480 mutex_unlock(&chip->mutex);
481 cfi_udelay(1);
482 goto retry;
483
484 default:
485 /* Stick ourselves on a wait queue to be woken when
486 someone changes the status */
487 set_current_state(TASK_UNINTERRUPTIBLE);
488 add_wait_queue(&chip->wq, &wait);
489 mutex_unlock(&chip->mutex);
490 schedule();
491 remove_wait_queue(&chip->wq, &wait);
492 timeo = jiffies + HZ;
493 goto retry;
494 }
495
496 ENABLE_VPP(map);
497 map_write(map, CMD(0xe8), cmd_adr);
498 chip->state = FL_WRITING_TO_BUFFER;
499
500 z = 0;
501 for (;;) {
502 status = map_read(map, cmd_adr);
503 if (map_word_andequal(map, status, status_OK, status_OK))
504 break;
505
506 mutex_unlock(&chip->mutex);
507 cfi_udelay(1);
508 mutex_lock(&chip->mutex);
509
510 if (++z > 100) {
511 /* Argh. Not ready for write to buffer */
512 DISABLE_VPP(map);
513 map_write(map, CMD(0x70), cmd_adr);
514 chip->state = FL_STATUS;
515 mutex_unlock(&chip->mutex);
516 printk(KERN_ERR "Chip not ready for buffer write. Xstatus = %lx\n", status.x[0]);
517 return -EIO;
518 }
519 }
520
521 /* Write length of data to come */
522 map_write(map, CMD(len/map_bankwidth(map)-1), cmd_adr );
523
524 /* Write data */
525 for (z = 0; z < len;
526 z += map_bankwidth(map), buf += map_bankwidth(map)) {
527 map_word d;
528 d = map_word_load(map, buf);
529 map_write(map, d, adr+z);
530 }
531 /* GO GO GO */
532 map_write(map, CMD(0xd0), cmd_adr);
533 chip->state = FL_WRITING;
534
535 mutex_unlock(&chip->mutex);
536 cfi_udelay(chip->buffer_write_time);
537 mutex_lock(&chip->mutex);
538
539 timeo = jiffies + (HZ/2);
540 z = 0;
541 for (;;) {
542 if (chip->state != FL_WRITING) {
543 /* Someone's suspended the write. Sleep */
544 set_current_state(TASK_UNINTERRUPTIBLE);
545 add_wait_queue(&chip->wq, &wait);
546 mutex_unlock(&chip->mutex);
547 schedule();
548 remove_wait_queue(&chip->wq, &wait);
549 timeo = jiffies + (HZ / 2); /* FIXME */
550 mutex_lock(&chip->mutex);
551 continue;
552 }
553
554 status = map_read(map, cmd_adr);
555 if (map_word_andequal(map, status, status_OK, status_OK))
556 break;
557
558 /* OK Still waiting */
559 if (time_after(jiffies, timeo)) {
560 /* clear status */
561 map_write(map, CMD(0x50), cmd_adr);
562 /* put back into read status register mode */
563 map_write(map, CMD(0x70), adr);
564 chip->state = FL_STATUS;
565 DISABLE_VPP(map);
566 mutex_unlock(&chip->mutex);
567 printk(KERN_ERR "waiting for chip to be ready timed out in bufwrite\n");
568 return -EIO;
569 }
570
571 /* Latency issues. Drop the lock, wait a while and retry */
572 mutex_unlock(&chip->mutex);
573 cfi_udelay(1);
574 z++;
575 mutex_lock(&chip->mutex);
576 }
577 if (!z) {
578 chip->buffer_write_time--;
579 if (!chip->buffer_write_time)
580 chip->buffer_write_time++;
581 }
582 if (z > 1)
583 chip->buffer_write_time++;
584
585 /* Done and happy. */
586 DISABLE_VPP(map);
587 chip->state = FL_STATUS;
588
589 /* check for errors: 'lock bit', 'VPP', 'dead cell'/'unerased cell' or 'incorrect cmd' -- saw */
590 if (map_word_bitsset(map, status, CMD(0x3a))) {
591 #ifdef DEBUG_CFI_FEATURES
592 printk("%s: 2 status[%lx]\n", __func__, status.x[0]);
593 #endif
594 /* clear status */
595 map_write(map, CMD(0x50), cmd_adr);
596 /* put back into read status register mode */
597 map_write(map, CMD(0x70), adr);
598 wake_up(&chip->wq);
599 mutex_unlock(&chip->mutex);
600 return map_word_bitsset(map, status, CMD(0x02)) ? -EROFS : -EIO;
601 }
602 wake_up(&chip->wq);
603 mutex_unlock(&chip->mutex);
604
605 return 0;
606 }
607
cfi_staa_write_buffers(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)608 static int cfi_staa_write_buffers (struct mtd_info *mtd, loff_t to,
609 size_t len, size_t *retlen, const u_char *buf)
610 {
611 struct map_info *map = mtd->priv;
612 struct cfi_private *cfi = map->fldrv_priv;
613 int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
614 int ret = 0;
615 int chipnum;
616 unsigned long ofs;
617
618 chipnum = to >> cfi->chipshift;
619 ofs = to - (chipnum << cfi->chipshift);
620
621 #ifdef DEBUG_CFI_FEATURES
622 printk("%s: map_bankwidth(map)[%x]\n", __func__, map_bankwidth(map));
623 printk("%s: chipnum[%x] wbufsize[%x]\n", __func__, chipnum, wbufsize);
624 printk("%s: ofs[%x] len[%x]\n", __func__, ofs, len);
625 #endif
626
627 /* Write buffer is worth it only if more than one word to write... */
628 while (len > 0) {
629 /* We must not cross write block boundaries */
630 int size = wbufsize - (ofs & (wbufsize-1));
631
632 if (size > len)
633 size = len;
634
635 ret = do_write_buffer(map, &cfi->chips[chipnum],
636 ofs, buf, size);
637 if (ret)
638 return ret;
639
640 ofs += size;
641 buf += size;
642 (*retlen) += size;
643 len -= size;
644
645 if (ofs >> cfi->chipshift) {
646 chipnum ++;
647 ofs = 0;
648 if (chipnum == cfi->numchips)
649 return 0;
650 }
651 }
652
653 return 0;
654 }
655
656 /*
657 * Writev for ECC-Flashes is a little more complicated. We need to maintain
658 * a small buffer for this.
659 * XXX: If the buffer size is not a multiple of 2, this will break
660 */
661 #define ECCBUF_SIZE (mtd->writesize)
662 #define ECCBUF_DIV(x) ((x) & ~(ECCBUF_SIZE - 1))
663 #define ECCBUF_MOD(x) ((x) & (ECCBUF_SIZE - 1))
664 static int
cfi_staa_writev(struct mtd_info * mtd,const struct kvec * vecs,unsigned long count,loff_t to,size_t * retlen)665 cfi_staa_writev(struct mtd_info *mtd, const struct kvec *vecs,
666 unsigned long count, loff_t to, size_t *retlen)
667 {
668 unsigned long i;
669 size_t totlen = 0, thislen;
670 int ret = 0;
671 size_t buflen = 0;
672 char *buffer;
673
674 if (!ECCBUF_SIZE) {
675 /* We should fall back to a general writev implementation.
676 * Until that is written, just break.
677 */
678 return -EIO;
679 }
680 buffer = kmalloc(ECCBUF_SIZE, GFP_KERNEL);
681 if (!buffer)
682 return -ENOMEM;
683
684 for (i=0; i<count; i++) {
685 size_t elem_len = vecs[i].iov_len;
686 void *elem_base = vecs[i].iov_base;
687 if (!elem_len) /* FIXME: Might be unnecessary. Check that */
688 continue;
689 if (buflen) { /* cut off head */
690 if (buflen + elem_len < ECCBUF_SIZE) { /* just accumulate */
691 memcpy(buffer+buflen, elem_base, elem_len);
692 buflen += elem_len;
693 continue;
694 }
695 memcpy(buffer+buflen, elem_base, ECCBUF_SIZE-buflen);
696 ret = mtd_write(mtd, to, ECCBUF_SIZE, &thislen,
697 buffer);
698 totlen += thislen;
699 if (ret || thislen != ECCBUF_SIZE)
700 goto write_error;
701 elem_len -= thislen-buflen;
702 elem_base += thislen-buflen;
703 to += ECCBUF_SIZE;
704 }
705 if (ECCBUF_DIV(elem_len)) { /* write clean aligned data */
706 ret = mtd_write(mtd, to, ECCBUF_DIV(elem_len),
707 &thislen, elem_base);
708 totlen += thislen;
709 if (ret || thislen != ECCBUF_DIV(elem_len))
710 goto write_error;
711 to += thislen;
712 }
713 buflen = ECCBUF_MOD(elem_len); /* cut off tail */
714 if (buflen) {
715 memset(buffer, 0xff, ECCBUF_SIZE);
716 memcpy(buffer, elem_base + thislen, buflen);
717 }
718 }
719 if (buflen) { /* flush last page, even if not full */
720 /* This is sometimes intended behaviour, really */
721 ret = mtd_write(mtd, to, buflen, &thislen, buffer);
722 totlen += thislen;
723 if (ret || thislen != ECCBUF_SIZE)
724 goto write_error;
725 }
726 write_error:
727 if (retlen)
728 *retlen = totlen;
729 kfree(buffer);
730 return ret;
731 }
732
733
do_erase_oneblock(struct map_info * map,struct flchip * chip,unsigned long adr)734 static inline int do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr)
735 {
736 struct cfi_private *cfi = map->fldrv_priv;
737 map_word status, status_OK;
738 unsigned long timeo;
739 int retries = 3;
740 DECLARE_WAITQUEUE(wait, current);
741 int ret = 0;
742
743 adr += chip->start;
744
745 /* Let's determine this according to the interleave only once */
746 status_OK = CMD(0x80);
747
748 timeo = jiffies + HZ;
749 retry:
750 mutex_lock(&chip->mutex);
751
752 /* Check that the chip's ready to talk to us. */
753 switch (chip->state) {
754 case FL_CFI_QUERY:
755 case FL_JEDEC_QUERY:
756 case FL_READY:
757 map_write(map, CMD(0x70), adr);
758 chip->state = FL_STATUS;
759 /* Fall through */
760
761 case FL_STATUS:
762 status = map_read(map, adr);
763 if (map_word_andequal(map, status, status_OK, status_OK))
764 break;
765
766 /* Urgh. Chip not yet ready to talk to us. */
767 if (time_after(jiffies, timeo)) {
768 mutex_unlock(&chip->mutex);
769 printk(KERN_ERR "waiting for chip to be ready timed out in erase\n");
770 return -EIO;
771 }
772
773 /* Latency issues. Drop the lock, wait a while and retry */
774 mutex_unlock(&chip->mutex);
775 cfi_udelay(1);
776 goto retry;
777
778 default:
779 /* Stick ourselves on a wait queue to be woken when
780 someone changes the status */
781 set_current_state(TASK_UNINTERRUPTIBLE);
782 add_wait_queue(&chip->wq, &wait);
783 mutex_unlock(&chip->mutex);
784 schedule();
785 remove_wait_queue(&chip->wq, &wait);
786 timeo = jiffies + HZ;
787 goto retry;
788 }
789
790 ENABLE_VPP(map);
791 /* Clear the status register first */
792 map_write(map, CMD(0x50), adr);
793
794 /* Now erase */
795 map_write(map, CMD(0x20), adr);
796 map_write(map, CMD(0xD0), adr);
797 chip->state = FL_ERASING;
798
799 mutex_unlock(&chip->mutex);
800 msleep(1000);
801 mutex_lock(&chip->mutex);
802
803 /* FIXME. Use a timer to check this, and return immediately. */
804 /* Once the state machine's known to be working I'll do that */
805
806 timeo = jiffies + (HZ*20);
807 for (;;) {
808 if (chip->state != FL_ERASING) {
809 /* Someone's suspended the erase. Sleep */
810 set_current_state(TASK_UNINTERRUPTIBLE);
811 add_wait_queue(&chip->wq, &wait);
812 mutex_unlock(&chip->mutex);
813 schedule();
814 remove_wait_queue(&chip->wq, &wait);
815 timeo = jiffies + (HZ*20); /* FIXME */
816 mutex_lock(&chip->mutex);
817 continue;
818 }
819
820 status = map_read(map, adr);
821 if (map_word_andequal(map, status, status_OK, status_OK))
822 break;
823
824 /* OK Still waiting */
825 if (time_after(jiffies, timeo)) {
826 map_write(map, CMD(0x70), adr);
827 chip->state = FL_STATUS;
828 printk(KERN_ERR "waiting for erase to complete timed out. Xstatus = %lx, status = %lx.\n", status.x[0], map_read(map, adr).x[0]);
829 DISABLE_VPP(map);
830 mutex_unlock(&chip->mutex);
831 return -EIO;
832 }
833
834 /* Latency issues. Drop the lock, wait a while and retry */
835 mutex_unlock(&chip->mutex);
836 cfi_udelay(1);
837 mutex_lock(&chip->mutex);
838 }
839
840 DISABLE_VPP(map);
841 ret = 0;
842
843 /* We've broken this before. It doesn't hurt to be safe */
844 map_write(map, CMD(0x70), adr);
845 chip->state = FL_STATUS;
846 status = map_read(map, adr);
847
848 /* check for lock bit */
849 if (map_word_bitsset(map, status, CMD(0x3a))) {
850 unsigned char chipstatus = status.x[0];
851 if (!map_word_equal(map, status, CMD(chipstatus))) {
852 int i, w;
853 for (w=0; w<map_words(map); w++) {
854 for (i = 0; i<cfi_interleave(cfi); i++) {
855 chipstatus |= status.x[w] >> (cfi->device_type * 8);
856 }
857 }
858 printk(KERN_WARNING "Status is not identical for all chips: 0x%lx. Merging to give 0x%02x\n",
859 status.x[0], chipstatus);
860 }
861 /* Reset the error bits */
862 map_write(map, CMD(0x50), adr);
863 map_write(map, CMD(0x70), adr);
864
865 if ((chipstatus & 0x30) == 0x30) {
866 printk(KERN_NOTICE "Chip reports improper command sequence: status 0x%x\n", chipstatus);
867 ret = -EIO;
868 } else if (chipstatus & 0x02) {
869 /* Protection bit set */
870 ret = -EROFS;
871 } else if (chipstatus & 0x8) {
872 /* Voltage */
873 printk(KERN_WARNING "Chip reports voltage low on erase: status 0x%x\n", chipstatus);
874 ret = -EIO;
875 } else if (chipstatus & 0x20) {
876 if (retries--) {
877 printk(KERN_DEBUG "Chip erase failed at 0x%08lx: status 0x%x. Retrying...\n", adr, chipstatus);
878 timeo = jiffies + HZ;
879 chip->state = FL_STATUS;
880 mutex_unlock(&chip->mutex);
881 goto retry;
882 }
883 printk(KERN_DEBUG "Chip erase failed at 0x%08lx: status 0x%x\n", adr, chipstatus);
884 ret = -EIO;
885 }
886 }
887
888 wake_up(&chip->wq);
889 mutex_unlock(&chip->mutex);
890 return ret;
891 }
892
cfi_staa_erase_varsize(struct mtd_info * mtd,struct erase_info * instr)893 static int cfi_staa_erase_varsize(struct mtd_info *mtd,
894 struct erase_info *instr)
895 { struct map_info *map = mtd->priv;
896 struct cfi_private *cfi = map->fldrv_priv;
897 unsigned long adr, len;
898 int chipnum, ret = 0;
899 int i, first;
900 struct mtd_erase_region_info *regions = mtd->eraseregions;
901
902 /* Check that both start and end of the requested erase are
903 * aligned with the erasesize at the appropriate addresses.
904 */
905
906 i = 0;
907
908 /* Skip all erase regions which are ended before the start of
909 the requested erase. Actually, to save on the calculations,
910 we skip to the first erase region which starts after the
911 start of the requested erase, and then go back one.
912 */
913
914 while (i < mtd->numeraseregions && instr->addr >= regions[i].offset)
915 i++;
916 i--;
917
918 /* OK, now i is pointing at the erase region in which this
919 erase request starts. Check the start of the requested
920 erase range is aligned with the erase size which is in
921 effect here.
922 */
923
924 if (instr->addr & (regions[i].erasesize-1))
925 return -EINVAL;
926
927 /* Remember the erase region we start on */
928 first = i;
929
930 /* Next, check that the end of the requested erase is aligned
931 * with the erase region at that address.
932 */
933
934 while (i<mtd->numeraseregions && (instr->addr + instr->len) >= regions[i].offset)
935 i++;
936
937 /* As before, drop back one to point at the region in which
938 the address actually falls
939 */
940 i--;
941
942 if ((instr->addr + instr->len) & (regions[i].erasesize-1))
943 return -EINVAL;
944
945 chipnum = instr->addr >> cfi->chipshift;
946 adr = instr->addr - (chipnum << cfi->chipshift);
947 len = instr->len;
948
949 i=first;
950
951 while(len) {
952 ret = do_erase_oneblock(map, &cfi->chips[chipnum], adr);
953
954 if (ret)
955 return ret;
956
957 adr += regions[i].erasesize;
958 len -= regions[i].erasesize;
959
960 if (adr % (1<< cfi->chipshift) == (((unsigned long)regions[i].offset + (regions[i].erasesize * regions[i].numblocks)) %( 1<< cfi->chipshift)))
961 i++;
962
963 if (adr >> cfi->chipshift) {
964 adr = 0;
965 chipnum++;
966
967 if (chipnum >= cfi->numchips)
968 break;
969 }
970 }
971
972 return 0;
973 }
974
cfi_staa_sync(struct mtd_info * mtd)975 static void cfi_staa_sync (struct mtd_info *mtd)
976 {
977 struct map_info *map = mtd->priv;
978 struct cfi_private *cfi = map->fldrv_priv;
979 int i;
980 struct flchip *chip;
981 int ret = 0;
982 DECLARE_WAITQUEUE(wait, current);
983
984 for (i=0; !ret && i<cfi->numchips; i++) {
985 chip = &cfi->chips[i];
986
987 retry:
988 mutex_lock(&chip->mutex);
989
990 switch(chip->state) {
991 case FL_READY:
992 case FL_STATUS:
993 case FL_CFI_QUERY:
994 case FL_JEDEC_QUERY:
995 chip->oldstate = chip->state;
996 chip->state = FL_SYNCING;
997 /* No need to wake_up() on this state change -
998 * as the whole point is that nobody can do anything
999 * with the chip now anyway.
1000 */
1001 /* Fall through */
1002 case FL_SYNCING:
1003 mutex_unlock(&chip->mutex);
1004 break;
1005
1006 default:
1007 /* Not an idle state */
1008 set_current_state(TASK_UNINTERRUPTIBLE);
1009 add_wait_queue(&chip->wq, &wait);
1010
1011 mutex_unlock(&chip->mutex);
1012 schedule();
1013 remove_wait_queue(&chip->wq, &wait);
1014
1015 goto retry;
1016 }
1017 }
1018
1019 /* Unlock the chips again */
1020
1021 for (i--; i >=0; i--) {
1022 chip = &cfi->chips[i];
1023
1024 mutex_lock(&chip->mutex);
1025
1026 if (chip->state == FL_SYNCING) {
1027 chip->state = chip->oldstate;
1028 wake_up(&chip->wq);
1029 }
1030 mutex_unlock(&chip->mutex);
1031 }
1032 }
1033
do_lock_oneblock(struct map_info * map,struct flchip * chip,unsigned long adr)1034 static inline int do_lock_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr)
1035 {
1036 struct cfi_private *cfi = map->fldrv_priv;
1037 map_word status, status_OK;
1038 unsigned long timeo = jiffies + HZ;
1039 DECLARE_WAITQUEUE(wait, current);
1040
1041 adr += chip->start;
1042
1043 /* Let's determine this according to the interleave only once */
1044 status_OK = CMD(0x80);
1045
1046 timeo = jiffies + HZ;
1047 retry:
1048 mutex_lock(&chip->mutex);
1049
1050 /* Check that the chip's ready to talk to us. */
1051 switch (chip->state) {
1052 case FL_CFI_QUERY:
1053 case FL_JEDEC_QUERY:
1054 case FL_READY:
1055 map_write(map, CMD(0x70), adr);
1056 chip->state = FL_STATUS;
1057 /* Fall through */
1058
1059 case FL_STATUS:
1060 status = map_read(map, adr);
1061 if (map_word_andequal(map, status, status_OK, status_OK))
1062 break;
1063
1064 /* Urgh. Chip not yet ready to talk to us. */
1065 if (time_after(jiffies, timeo)) {
1066 mutex_unlock(&chip->mutex);
1067 printk(KERN_ERR "waiting for chip to be ready timed out in lock\n");
1068 return -EIO;
1069 }
1070
1071 /* Latency issues. Drop the lock, wait a while and retry */
1072 mutex_unlock(&chip->mutex);
1073 cfi_udelay(1);
1074 goto retry;
1075
1076 default:
1077 /* Stick ourselves on a wait queue to be woken when
1078 someone changes the status */
1079 set_current_state(TASK_UNINTERRUPTIBLE);
1080 add_wait_queue(&chip->wq, &wait);
1081 mutex_unlock(&chip->mutex);
1082 schedule();
1083 remove_wait_queue(&chip->wq, &wait);
1084 timeo = jiffies + HZ;
1085 goto retry;
1086 }
1087
1088 ENABLE_VPP(map);
1089 map_write(map, CMD(0x60), adr);
1090 map_write(map, CMD(0x01), adr);
1091 chip->state = FL_LOCKING;
1092
1093 mutex_unlock(&chip->mutex);
1094 msleep(1000);
1095 mutex_lock(&chip->mutex);
1096
1097 /* FIXME. Use a timer to check this, and return immediately. */
1098 /* Once the state machine's known to be working I'll do that */
1099
1100 timeo = jiffies + (HZ*2);
1101 for (;;) {
1102
1103 status = map_read(map, adr);
1104 if (map_word_andequal(map, status, status_OK, status_OK))
1105 break;
1106
1107 /* OK Still waiting */
1108 if (time_after(jiffies, timeo)) {
1109 map_write(map, CMD(0x70), adr);
1110 chip->state = FL_STATUS;
1111 printk(KERN_ERR "waiting for lock to complete timed out. Xstatus = %lx, status = %lx.\n", status.x[0], map_read(map, adr).x[0]);
1112 DISABLE_VPP(map);
1113 mutex_unlock(&chip->mutex);
1114 return -EIO;
1115 }
1116
1117 /* Latency issues. Drop the lock, wait a while and retry */
1118 mutex_unlock(&chip->mutex);
1119 cfi_udelay(1);
1120 mutex_lock(&chip->mutex);
1121 }
1122
1123 /* Done and happy. */
1124 chip->state = FL_STATUS;
1125 DISABLE_VPP(map);
1126 wake_up(&chip->wq);
1127 mutex_unlock(&chip->mutex);
1128 return 0;
1129 }
cfi_staa_lock(struct mtd_info * mtd,loff_t ofs,uint64_t len)1130 static int cfi_staa_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1131 {
1132 struct map_info *map = mtd->priv;
1133 struct cfi_private *cfi = map->fldrv_priv;
1134 unsigned long adr;
1135 int chipnum, ret = 0;
1136 #ifdef DEBUG_LOCK_BITS
1137 int ofs_factor = cfi->interleave * cfi->device_type;
1138 #endif
1139
1140 if (ofs & (mtd->erasesize - 1))
1141 return -EINVAL;
1142
1143 if (len & (mtd->erasesize -1))
1144 return -EINVAL;
1145
1146 chipnum = ofs >> cfi->chipshift;
1147 adr = ofs - (chipnum << cfi->chipshift);
1148
1149 while(len) {
1150
1151 #ifdef DEBUG_LOCK_BITS
1152 cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL);
1153 printk("before lock: block status register is %x\n",cfi_read_query(map, adr+(2*ofs_factor)));
1154 cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL);
1155 #endif
1156
1157 ret = do_lock_oneblock(map, &cfi->chips[chipnum], adr);
1158
1159 #ifdef DEBUG_LOCK_BITS
1160 cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL);
1161 printk("after lock: block status register is %x\n",cfi_read_query(map, adr+(2*ofs_factor)));
1162 cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL);
1163 #endif
1164
1165 if (ret)
1166 return ret;
1167
1168 adr += mtd->erasesize;
1169 len -= mtd->erasesize;
1170
1171 if (adr >> cfi->chipshift) {
1172 adr = 0;
1173 chipnum++;
1174
1175 if (chipnum >= cfi->numchips)
1176 break;
1177 }
1178 }
1179 return 0;
1180 }
do_unlock_oneblock(struct map_info * map,struct flchip * chip,unsigned long adr)1181 static inline int do_unlock_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr)
1182 {
1183 struct cfi_private *cfi = map->fldrv_priv;
1184 map_word status, status_OK;
1185 unsigned long timeo = jiffies + HZ;
1186 DECLARE_WAITQUEUE(wait, current);
1187
1188 adr += chip->start;
1189
1190 /* Let's determine this according to the interleave only once */
1191 status_OK = CMD(0x80);
1192
1193 timeo = jiffies + HZ;
1194 retry:
1195 mutex_lock(&chip->mutex);
1196
1197 /* Check that the chip's ready to talk to us. */
1198 switch (chip->state) {
1199 case FL_CFI_QUERY:
1200 case FL_JEDEC_QUERY:
1201 case FL_READY:
1202 map_write(map, CMD(0x70), adr);
1203 chip->state = FL_STATUS;
1204 /* Fall through */
1205
1206 case FL_STATUS:
1207 status = map_read(map, adr);
1208 if (map_word_andequal(map, status, status_OK, status_OK))
1209 break;
1210
1211 /* Urgh. Chip not yet ready to talk to us. */
1212 if (time_after(jiffies, timeo)) {
1213 mutex_unlock(&chip->mutex);
1214 printk(KERN_ERR "waiting for chip to be ready timed out in unlock\n");
1215 return -EIO;
1216 }
1217
1218 /* Latency issues. Drop the lock, wait a while and retry */
1219 mutex_unlock(&chip->mutex);
1220 cfi_udelay(1);
1221 goto retry;
1222
1223 default:
1224 /* Stick ourselves on a wait queue to be woken when
1225 someone changes the status */
1226 set_current_state(TASK_UNINTERRUPTIBLE);
1227 add_wait_queue(&chip->wq, &wait);
1228 mutex_unlock(&chip->mutex);
1229 schedule();
1230 remove_wait_queue(&chip->wq, &wait);
1231 timeo = jiffies + HZ;
1232 goto retry;
1233 }
1234
1235 ENABLE_VPP(map);
1236 map_write(map, CMD(0x60), adr);
1237 map_write(map, CMD(0xD0), adr);
1238 chip->state = FL_UNLOCKING;
1239
1240 mutex_unlock(&chip->mutex);
1241 msleep(1000);
1242 mutex_lock(&chip->mutex);
1243
1244 /* FIXME. Use a timer to check this, and return immediately. */
1245 /* Once the state machine's known to be working I'll do that */
1246
1247 timeo = jiffies + (HZ*2);
1248 for (;;) {
1249
1250 status = map_read(map, adr);
1251 if (map_word_andequal(map, status, status_OK, status_OK))
1252 break;
1253
1254 /* OK Still waiting */
1255 if (time_after(jiffies, timeo)) {
1256 map_write(map, CMD(0x70), adr);
1257 chip->state = FL_STATUS;
1258 printk(KERN_ERR "waiting for unlock to complete timed out. Xstatus = %lx, status = %lx.\n", status.x[0], map_read(map, adr).x[0]);
1259 DISABLE_VPP(map);
1260 mutex_unlock(&chip->mutex);
1261 return -EIO;
1262 }
1263
1264 /* Latency issues. Drop the unlock, wait a while and retry */
1265 mutex_unlock(&chip->mutex);
1266 cfi_udelay(1);
1267 mutex_lock(&chip->mutex);
1268 }
1269
1270 /* Done and happy. */
1271 chip->state = FL_STATUS;
1272 DISABLE_VPP(map);
1273 wake_up(&chip->wq);
1274 mutex_unlock(&chip->mutex);
1275 return 0;
1276 }
cfi_staa_unlock(struct mtd_info * mtd,loff_t ofs,uint64_t len)1277 static int cfi_staa_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1278 {
1279 struct map_info *map = mtd->priv;
1280 struct cfi_private *cfi = map->fldrv_priv;
1281 unsigned long adr;
1282 int chipnum, ret = 0;
1283 #ifdef DEBUG_LOCK_BITS
1284 int ofs_factor = cfi->interleave * cfi->device_type;
1285 #endif
1286
1287 chipnum = ofs >> cfi->chipshift;
1288 adr = ofs - (chipnum << cfi->chipshift);
1289
1290 #ifdef DEBUG_LOCK_BITS
1291 {
1292 unsigned long temp_adr = adr;
1293 unsigned long temp_len = len;
1294
1295 cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL);
1296 while (temp_len) {
1297 printk("before unlock %x: block status register is %x\n",temp_adr,cfi_read_query(map, temp_adr+(2*ofs_factor)));
1298 temp_adr += mtd->erasesize;
1299 temp_len -= mtd->erasesize;
1300 }
1301 cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL);
1302 }
1303 #endif
1304
1305 ret = do_unlock_oneblock(map, &cfi->chips[chipnum], adr);
1306
1307 #ifdef DEBUG_LOCK_BITS
1308 cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL);
1309 printk("after unlock: block status register is %x\n",cfi_read_query(map, adr+(2*ofs_factor)));
1310 cfi_send_gen_cmd(0xff, 0x55, 0, map, cfi, cfi->device_type, NULL);
1311 #endif
1312
1313 return ret;
1314 }
1315
cfi_staa_suspend(struct mtd_info * mtd)1316 static int cfi_staa_suspend(struct mtd_info *mtd)
1317 {
1318 struct map_info *map = mtd->priv;
1319 struct cfi_private *cfi = map->fldrv_priv;
1320 int i;
1321 struct flchip *chip;
1322 int ret = 0;
1323
1324 for (i=0; !ret && i<cfi->numchips; i++) {
1325 chip = &cfi->chips[i];
1326
1327 mutex_lock(&chip->mutex);
1328
1329 switch(chip->state) {
1330 case FL_READY:
1331 case FL_STATUS:
1332 case FL_CFI_QUERY:
1333 case FL_JEDEC_QUERY:
1334 chip->oldstate = chip->state;
1335 chip->state = FL_PM_SUSPENDED;
1336 /* No need to wake_up() on this state change -
1337 * as the whole point is that nobody can do anything
1338 * with the chip now anyway.
1339 */
1340 case FL_PM_SUSPENDED:
1341 break;
1342
1343 default:
1344 ret = -EAGAIN;
1345 break;
1346 }
1347 mutex_unlock(&chip->mutex);
1348 }
1349
1350 /* Unlock the chips again */
1351
1352 if (ret) {
1353 for (i--; i >=0; i--) {
1354 chip = &cfi->chips[i];
1355
1356 mutex_lock(&chip->mutex);
1357
1358 if (chip->state == FL_PM_SUSPENDED) {
1359 /* No need to force it into a known state here,
1360 because we're returning failure, and it didn't
1361 get power cycled */
1362 chip->state = chip->oldstate;
1363 wake_up(&chip->wq);
1364 }
1365 mutex_unlock(&chip->mutex);
1366 }
1367 }
1368
1369 return ret;
1370 }
1371
cfi_staa_resume(struct mtd_info * mtd)1372 static void cfi_staa_resume(struct mtd_info *mtd)
1373 {
1374 struct map_info *map = mtd->priv;
1375 struct cfi_private *cfi = map->fldrv_priv;
1376 int i;
1377 struct flchip *chip;
1378
1379 for (i=0; i<cfi->numchips; i++) {
1380
1381 chip = &cfi->chips[i];
1382
1383 mutex_lock(&chip->mutex);
1384
1385 /* Go to known state. Chip may have been power cycled */
1386 if (chip->state == FL_PM_SUSPENDED) {
1387 map_write(map, CMD(0xFF), 0);
1388 chip->state = FL_READY;
1389 wake_up(&chip->wq);
1390 }
1391
1392 mutex_unlock(&chip->mutex);
1393 }
1394 }
1395
cfi_staa_destroy(struct mtd_info * mtd)1396 static void cfi_staa_destroy(struct mtd_info *mtd)
1397 {
1398 struct map_info *map = mtd->priv;
1399 struct cfi_private *cfi = map->fldrv_priv;
1400 kfree(cfi->cmdset_priv);
1401 kfree(cfi);
1402 }
1403
1404 MODULE_LICENSE("GPL");
1405