1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Wireless utility functions
4 *
5 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2017 Intel Deutschland GmbH
8 * Copyright (C) 2018-2020 Intel Corporation
9 */
10 #include <linux/export.h>
11 #include <linux/bitops.h>
12 #include <linux/etherdevice.h>
13 #include <linux/slab.h>
14 #include <linux/ieee80211.h>
15 #include <net/cfg80211.h>
16 #include <net/ip.h>
17 #include <net/dsfield.h>
18 #include <linux/if_vlan.h>
19 #include <linux/mpls.h>
20 #include <linux/gcd.h>
21 #include <linux/bitfield.h>
22 #include <linux/nospec.h>
23 #include "core.h"
24 #include "rdev-ops.h"
25
26
27 const struct ieee80211_rate *
ieee80211_get_response_rate(struct ieee80211_supported_band * sband,u32 basic_rates,int bitrate)28 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
29 u32 basic_rates, int bitrate)
30 {
31 struct ieee80211_rate *result = &sband->bitrates[0];
32 int i;
33
34 for (i = 0; i < sband->n_bitrates; i++) {
35 if (!(basic_rates & BIT(i)))
36 continue;
37 if (sband->bitrates[i].bitrate > bitrate)
38 continue;
39 result = &sband->bitrates[i];
40 }
41
42 return result;
43 }
44 EXPORT_SYMBOL(ieee80211_get_response_rate);
45
ieee80211_mandatory_rates(struct ieee80211_supported_band * sband,enum nl80211_bss_scan_width scan_width)46 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
47 enum nl80211_bss_scan_width scan_width)
48 {
49 struct ieee80211_rate *bitrates;
50 u32 mandatory_rates = 0;
51 enum ieee80211_rate_flags mandatory_flag;
52 int i;
53
54 if (WARN_ON(!sband))
55 return 1;
56
57 if (sband->band == NL80211_BAND_2GHZ) {
58 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
59 scan_width == NL80211_BSS_CHAN_WIDTH_10)
60 mandatory_flag = IEEE80211_RATE_MANDATORY_G;
61 else
62 mandatory_flag = IEEE80211_RATE_MANDATORY_B;
63 } else {
64 mandatory_flag = IEEE80211_RATE_MANDATORY_A;
65 }
66
67 bitrates = sband->bitrates;
68 for (i = 0; i < sband->n_bitrates; i++)
69 if (bitrates[i].flags & mandatory_flag)
70 mandatory_rates |= BIT(i);
71 return mandatory_rates;
72 }
73 EXPORT_SYMBOL(ieee80211_mandatory_rates);
74
ieee80211_channel_to_freq_khz(int chan,enum nl80211_band band)75 u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band)
76 {
77 /* see 802.11 17.3.8.3.2 and Annex J
78 * there are overlapping channel numbers in 5GHz and 2GHz bands */
79 if (chan <= 0)
80 return 0; /* not supported */
81 switch (band) {
82 case NL80211_BAND_2GHZ:
83 if (chan == 14)
84 return MHZ_TO_KHZ(2484);
85 else if (chan < 14)
86 return MHZ_TO_KHZ(2407 + chan * 5);
87 break;
88 case NL80211_BAND_5GHZ:
89 if (chan >= 182 && chan <= 196)
90 return MHZ_TO_KHZ(4000 + chan * 5);
91 else
92 return MHZ_TO_KHZ(5000 + chan * 5);
93 break;
94 case NL80211_BAND_6GHZ:
95 /* see 802.11ax D6.1 27.3.23.2 */
96 if (chan == 2)
97 return MHZ_TO_KHZ(5935);
98 if (chan <= 233)
99 return MHZ_TO_KHZ(5950 + chan * 5);
100 break;
101 case NL80211_BAND_60GHZ:
102 if (chan < 7)
103 return MHZ_TO_KHZ(56160 + chan * 2160);
104 break;
105 case NL80211_BAND_S1GHZ:
106 return 902000 + chan * 500;
107 default:
108 ;
109 }
110 return 0; /* not supported */
111 }
112 EXPORT_SYMBOL(ieee80211_channel_to_freq_khz);
113
114 enum nl80211_chan_width
ieee80211_s1g_channel_width(const struct ieee80211_channel * chan)115 ieee80211_s1g_channel_width(const struct ieee80211_channel *chan)
116 {
117 if (WARN_ON(!chan || chan->band != NL80211_BAND_S1GHZ))
118 return NL80211_CHAN_WIDTH_20_NOHT;
119
120 /*S1G defines a single allowed channel width per channel.
121 * Extract that width here.
122 */
123 if (chan->flags & IEEE80211_CHAN_1MHZ)
124 return NL80211_CHAN_WIDTH_1;
125 else if (chan->flags & IEEE80211_CHAN_2MHZ)
126 return NL80211_CHAN_WIDTH_2;
127 else if (chan->flags & IEEE80211_CHAN_4MHZ)
128 return NL80211_CHAN_WIDTH_4;
129 else if (chan->flags & IEEE80211_CHAN_8MHZ)
130 return NL80211_CHAN_WIDTH_8;
131 else if (chan->flags & IEEE80211_CHAN_16MHZ)
132 return NL80211_CHAN_WIDTH_16;
133
134 pr_err("unknown channel width for channel at %dKHz?\n",
135 ieee80211_channel_to_khz(chan));
136
137 return NL80211_CHAN_WIDTH_1;
138 }
139 EXPORT_SYMBOL(ieee80211_s1g_channel_width);
140
ieee80211_freq_khz_to_channel(u32 freq)141 int ieee80211_freq_khz_to_channel(u32 freq)
142 {
143 /* TODO: just handle MHz for now */
144 freq = KHZ_TO_MHZ(freq);
145
146 /* see 802.11 17.3.8.3.2 and Annex J */
147 if (freq == 2484)
148 return 14;
149 else if (freq < 2484)
150 return (freq - 2407) / 5;
151 else if (freq >= 4910 && freq <= 4980)
152 return (freq - 4000) / 5;
153 else if (freq < 5925)
154 return (freq - 5000) / 5;
155 else if (freq == 5935)
156 return 2;
157 else if (freq <= 45000) /* DMG band lower limit */
158 /* see 802.11ax D6.1 27.3.22.2 */
159 return (freq - 5950) / 5;
160 else if (freq >= 58320 && freq <= 70200)
161 return (freq - 56160) / 2160;
162 else
163 return 0;
164 }
165 EXPORT_SYMBOL(ieee80211_freq_khz_to_channel);
166
ieee80211_get_channel_khz(struct wiphy * wiphy,u32 freq)167 struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy,
168 u32 freq)
169 {
170 enum nl80211_band band;
171 struct ieee80211_supported_band *sband;
172 int i;
173
174 for (band = 0; band < NUM_NL80211_BANDS; band++) {
175 sband = wiphy->bands[band];
176
177 if (!sband)
178 continue;
179
180 for (i = 0; i < sband->n_channels; i++) {
181 struct ieee80211_channel *chan = &sband->channels[i];
182
183 if (ieee80211_channel_to_khz(chan) == freq)
184 return chan;
185 }
186 }
187
188 return NULL;
189 }
190 EXPORT_SYMBOL(ieee80211_get_channel_khz);
191
set_mandatory_flags_band(struct ieee80211_supported_band * sband)192 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
193 {
194 int i, want;
195
196 switch (sband->band) {
197 case NL80211_BAND_5GHZ:
198 case NL80211_BAND_6GHZ:
199 want = 3;
200 for (i = 0; i < sband->n_bitrates; i++) {
201 if (sband->bitrates[i].bitrate == 60 ||
202 sband->bitrates[i].bitrate == 120 ||
203 sband->bitrates[i].bitrate == 240) {
204 sband->bitrates[i].flags |=
205 IEEE80211_RATE_MANDATORY_A;
206 want--;
207 }
208 }
209 WARN_ON(want);
210 break;
211 case NL80211_BAND_2GHZ:
212 want = 7;
213 for (i = 0; i < sband->n_bitrates; i++) {
214 switch (sband->bitrates[i].bitrate) {
215 case 10:
216 case 20:
217 case 55:
218 case 110:
219 sband->bitrates[i].flags |=
220 IEEE80211_RATE_MANDATORY_B |
221 IEEE80211_RATE_MANDATORY_G;
222 want--;
223 break;
224 case 60:
225 case 120:
226 case 240:
227 sband->bitrates[i].flags |=
228 IEEE80211_RATE_MANDATORY_G;
229 want--;
230 fallthrough;
231 default:
232 sband->bitrates[i].flags |=
233 IEEE80211_RATE_ERP_G;
234 break;
235 }
236 }
237 WARN_ON(want != 0 && want != 3);
238 break;
239 case NL80211_BAND_60GHZ:
240 /* check for mandatory HT MCS 1..4 */
241 WARN_ON(!sband->ht_cap.ht_supported);
242 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
243 break;
244 case NL80211_BAND_S1GHZ:
245 /* Figure 9-589bd: 3 means unsupported, so != 3 means at least
246 * mandatory is ok.
247 */
248 WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3);
249 break;
250 case NUM_NL80211_BANDS:
251 default:
252 WARN_ON(1);
253 break;
254 }
255 }
256
ieee80211_set_bitrate_flags(struct wiphy * wiphy)257 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
258 {
259 enum nl80211_band band;
260
261 for (band = 0; band < NUM_NL80211_BANDS; band++)
262 if (wiphy->bands[band])
263 set_mandatory_flags_band(wiphy->bands[band]);
264 }
265
cfg80211_supported_cipher_suite(struct wiphy * wiphy,u32 cipher)266 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
267 {
268 int i;
269 for (i = 0; i < wiphy->n_cipher_suites; i++)
270 if (cipher == wiphy->cipher_suites[i])
271 return true;
272 return false;
273 }
274
275 static bool
cfg80211_igtk_cipher_supported(struct cfg80211_registered_device * rdev)276 cfg80211_igtk_cipher_supported(struct cfg80211_registered_device *rdev)
277 {
278 struct wiphy *wiphy = &rdev->wiphy;
279 int i;
280
281 for (i = 0; i < wiphy->n_cipher_suites; i++) {
282 switch (wiphy->cipher_suites[i]) {
283 case WLAN_CIPHER_SUITE_AES_CMAC:
284 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
285 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
286 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
287 return true;
288 }
289 }
290
291 return false;
292 }
293
cfg80211_valid_key_idx(struct cfg80211_registered_device * rdev,int key_idx,bool pairwise)294 bool cfg80211_valid_key_idx(struct cfg80211_registered_device *rdev,
295 int key_idx, bool pairwise)
296 {
297 int max_key_idx;
298
299 if (pairwise)
300 max_key_idx = 3;
301 else if (wiphy_ext_feature_isset(&rdev->wiphy,
302 NL80211_EXT_FEATURE_BEACON_PROTECTION) ||
303 wiphy_ext_feature_isset(&rdev->wiphy,
304 NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT))
305 max_key_idx = 7;
306 else if (cfg80211_igtk_cipher_supported(rdev))
307 max_key_idx = 5;
308 else
309 max_key_idx = 3;
310
311 if (key_idx < 0 || key_idx > max_key_idx)
312 return false;
313
314 return true;
315 }
316
cfg80211_validate_key_settings(struct cfg80211_registered_device * rdev,struct key_params * params,int key_idx,bool pairwise,const u8 * mac_addr)317 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
318 struct key_params *params, int key_idx,
319 bool pairwise, const u8 *mac_addr)
320 {
321 if (!cfg80211_valid_key_idx(rdev, key_idx, pairwise))
322 return -EINVAL;
323
324 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
325 return -EINVAL;
326
327 if (pairwise && !mac_addr)
328 return -EINVAL;
329
330 switch (params->cipher) {
331 case WLAN_CIPHER_SUITE_TKIP:
332 /* Extended Key ID can only be used with CCMP/GCMP ciphers */
333 if ((pairwise && key_idx) ||
334 params->mode != NL80211_KEY_RX_TX)
335 return -EINVAL;
336 break;
337 case WLAN_CIPHER_SUITE_CCMP:
338 case WLAN_CIPHER_SUITE_CCMP_256:
339 case WLAN_CIPHER_SUITE_GCMP:
340 case WLAN_CIPHER_SUITE_GCMP_256:
341 /* IEEE802.11-2016 allows only 0 and - when supporting
342 * Extended Key ID - 1 as index for pairwise keys.
343 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when
344 * the driver supports Extended Key ID.
345 * @NL80211_KEY_SET_TX can't be set when installing and
346 * validating a key.
347 */
348 if ((params->mode == NL80211_KEY_NO_TX && !pairwise) ||
349 params->mode == NL80211_KEY_SET_TX)
350 return -EINVAL;
351 if (wiphy_ext_feature_isset(&rdev->wiphy,
352 NL80211_EXT_FEATURE_EXT_KEY_ID)) {
353 if (pairwise && (key_idx < 0 || key_idx > 1))
354 return -EINVAL;
355 } else if (pairwise && key_idx) {
356 return -EINVAL;
357 }
358 break;
359 case WLAN_CIPHER_SUITE_AES_CMAC:
360 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
361 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
362 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
363 /* Disallow BIP (group-only) cipher as pairwise cipher */
364 if (pairwise)
365 return -EINVAL;
366 if (key_idx < 4)
367 return -EINVAL;
368 break;
369 case WLAN_CIPHER_SUITE_WEP40:
370 case WLAN_CIPHER_SUITE_WEP104:
371 if (key_idx > 3)
372 return -EINVAL;
373 break;
374 default:
375 break;
376 }
377
378 switch (params->cipher) {
379 case WLAN_CIPHER_SUITE_WEP40:
380 if (params->key_len != WLAN_KEY_LEN_WEP40)
381 return -EINVAL;
382 break;
383 case WLAN_CIPHER_SUITE_TKIP:
384 if (params->key_len != WLAN_KEY_LEN_TKIP)
385 return -EINVAL;
386 break;
387 case WLAN_CIPHER_SUITE_CCMP:
388 if (params->key_len != WLAN_KEY_LEN_CCMP)
389 return -EINVAL;
390 break;
391 case WLAN_CIPHER_SUITE_CCMP_256:
392 if (params->key_len != WLAN_KEY_LEN_CCMP_256)
393 return -EINVAL;
394 break;
395 case WLAN_CIPHER_SUITE_GCMP:
396 if (params->key_len != WLAN_KEY_LEN_GCMP)
397 return -EINVAL;
398 break;
399 case WLAN_CIPHER_SUITE_GCMP_256:
400 if (params->key_len != WLAN_KEY_LEN_GCMP_256)
401 return -EINVAL;
402 break;
403 case WLAN_CIPHER_SUITE_WEP104:
404 if (params->key_len != WLAN_KEY_LEN_WEP104)
405 return -EINVAL;
406 break;
407 case WLAN_CIPHER_SUITE_AES_CMAC:
408 if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
409 return -EINVAL;
410 break;
411 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
412 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
413 return -EINVAL;
414 break;
415 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
416 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
417 return -EINVAL;
418 break;
419 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
420 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
421 return -EINVAL;
422 break;
423 default:
424 /*
425 * We don't know anything about this algorithm,
426 * allow using it -- but the driver must check
427 * all parameters! We still check below whether
428 * or not the driver supports this algorithm,
429 * of course.
430 */
431 break;
432 }
433
434 if (params->seq) {
435 switch (params->cipher) {
436 case WLAN_CIPHER_SUITE_WEP40:
437 case WLAN_CIPHER_SUITE_WEP104:
438 /* These ciphers do not use key sequence */
439 return -EINVAL;
440 case WLAN_CIPHER_SUITE_TKIP:
441 case WLAN_CIPHER_SUITE_CCMP:
442 case WLAN_CIPHER_SUITE_CCMP_256:
443 case WLAN_CIPHER_SUITE_GCMP:
444 case WLAN_CIPHER_SUITE_GCMP_256:
445 case WLAN_CIPHER_SUITE_AES_CMAC:
446 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
447 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
448 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
449 if (params->seq_len != 6)
450 return -EINVAL;
451 break;
452 }
453 }
454
455 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
456 return -EINVAL;
457
458 return 0;
459 }
460
ieee80211_hdrlen(__le16 fc)461 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
462 {
463 unsigned int hdrlen = 24;
464
465 if (ieee80211_is_ext(fc)) {
466 hdrlen = 4;
467 goto out;
468 }
469
470 if (ieee80211_is_data(fc)) {
471 if (ieee80211_has_a4(fc))
472 hdrlen = 30;
473 if (ieee80211_is_data_qos(fc)) {
474 hdrlen += IEEE80211_QOS_CTL_LEN;
475 if (ieee80211_has_order(fc))
476 hdrlen += IEEE80211_HT_CTL_LEN;
477 }
478 goto out;
479 }
480
481 if (ieee80211_is_mgmt(fc)) {
482 if (ieee80211_has_order(fc))
483 hdrlen += IEEE80211_HT_CTL_LEN;
484 goto out;
485 }
486
487 if (ieee80211_is_ctl(fc)) {
488 /*
489 * ACK and CTS are 10 bytes, all others 16. To see how
490 * to get this condition consider
491 * subtype mask: 0b0000000011110000 (0x00F0)
492 * ACK subtype: 0b0000000011010000 (0x00D0)
493 * CTS subtype: 0b0000000011000000 (0x00C0)
494 * bits that matter: ^^^ (0x00E0)
495 * value of those: 0b0000000011000000 (0x00C0)
496 */
497 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
498 hdrlen = 10;
499 else
500 hdrlen = 16;
501 }
502 out:
503 return hdrlen;
504 }
505 EXPORT_SYMBOL(ieee80211_hdrlen);
506
ieee80211_get_hdrlen_from_skb(const struct sk_buff * skb)507 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
508 {
509 const struct ieee80211_hdr *hdr =
510 (const struct ieee80211_hdr *)skb->data;
511 unsigned int hdrlen;
512
513 if (unlikely(skb->len < 10))
514 return 0;
515 hdrlen = ieee80211_hdrlen(hdr->frame_control);
516 if (unlikely(hdrlen > skb->len))
517 return 0;
518 return hdrlen;
519 }
520 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
521
__ieee80211_get_mesh_hdrlen(u8 flags)522 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
523 {
524 int ae = flags & MESH_FLAGS_AE;
525 /* 802.11-2012, 8.2.4.7.3 */
526 switch (ae) {
527 default:
528 case 0:
529 return 6;
530 case MESH_FLAGS_AE_A4:
531 return 12;
532 case MESH_FLAGS_AE_A5_A6:
533 return 18;
534 }
535 }
536
ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr * meshhdr)537 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
538 {
539 return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
540 }
541 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
542
ieee80211_data_to_8023_exthdr(struct sk_buff * skb,struct ethhdr * ehdr,const u8 * addr,enum nl80211_iftype iftype,u8 data_offset,bool is_amsdu)543 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
544 const u8 *addr, enum nl80211_iftype iftype,
545 u8 data_offset, bool is_amsdu)
546 {
547 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
548 struct {
549 u8 hdr[ETH_ALEN] __aligned(2);
550 __be16 proto;
551 } payload;
552 struct ethhdr tmp;
553 u16 hdrlen;
554 u8 mesh_flags = 0;
555
556 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
557 return -1;
558
559 hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
560 if (skb->len < hdrlen + 8)
561 return -1;
562
563 /* convert IEEE 802.11 header + possible LLC headers into Ethernet
564 * header
565 * IEEE 802.11 address fields:
566 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
567 * 0 0 DA SA BSSID n/a
568 * 0 1 DA BSSID SA n/a
569 * 1 0 BSSID SA DA n/a
570 * 1 1 RA TA DA SA
571 */
572 memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
573 memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
574
575 if (iftype == NL80211_IFTYPE_MESH_POINT)
576 skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
577
578 mesh_flags &= MESH_FLAGS_AE;
579
580 switch (hdr->frame_control &
581 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
582 case cpu_to_le16(IEEE80211_FCTL_TODS):
583 if (unlikely(iftype != NL80211_IFTYPE_AP &&
584 iftype != NL80211_IFTYPE_AP_VLAN &&
585 iftype != NL80211_IFTYPE_P2P_GO))
586 return -1;
587 break;
588 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
589 if (unlikely(iftype != NL80211_IFTYPE_MESH_POINT &&
590 iftype != NL80211_IFTYPE_AP_VLAN &&
591 iftype != NL80211_IFTYPE_STATION))
592 return -1;
593 if (iftype == NL80211_IFTYPE_MESH_POINT) {
594 if (mesh_flags == MESH_FLAGS_AE_A4)
595 return -1;
596 if (mesh_flags == MESH_FLAGS_AE_A5_A6) {
597 skb_copy_bits(skb, hdrlen +
598 offsetof(struct ieee80211s_hdr, eaddr1),
599 tmp.h_dest, 2 * ETH_ALEN);
600 }
601 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
602 }
603 break;
604 case cpu_to_le16(IEEE80211_FCTL_FROMDS):
605 if ((iftype != NL80211_IFTYPE_STATION &&
606 iftype != NL80211_IFTYPE_P2P_CLIENT &&
607 iftype != NL80211_IFTYPE_MESH_POINT) ||
608 (is_multicast_ether_addr(tmp.h_dest) &&
609 ether_addr_equal(tmp.h_source, addr)))
610 return -1;
611 if (iftype == NL80211_IFTYPE_MESH_POINT) {
612 if (mesh_flags == MESH_FLAGS_AE_A5_A6)
613 return -1;
614 if (mesh_flags == MESH_FLAGS_AE_A4)
615 skb_copy_bits(skb, hdrlen +
616 offsetof(struct ieee80211s_hdr, eaddr1),
617 tmp.h_source, ETH_ALEN);
618 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
619 }
620 break;
621 case cpu_to_le16(0):
622 if (iftype != NL80211_IFTYPE_ADHOC &&
623 iftype != NL80211_IFTYPE_STATION &&
624 iftype != NL80211_IFTYPE_OCB)
625 return -1;
626 break;
627 }
628
629 skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
630 tmp.h_proto = payload.proto;
631
632 if (likely((!is_amsdu && ether_addr_equal(payload.hdr, rfc1042_header) &&
633 tmp.h_proto != htons(ETH_P_AARP) &&
634 tmp.h_proto != htons(ETH_P_IPX)) ||
635 ether_addr_equal(payload.hdr, bridge_tunnel_header)))
636 /* remove RFC1042 or Bridge-Tunnel encapsulation and
637 * replace EtherType */
638 hdrlen += ETH_ALEN + 2;
639 else
640 tmp.h_proto = htons(skb->len - hdrlen);
641
642 pskb_pull(skb, hdrlen);
643
644 if (!ehdr)
645 ehdr = skb_push(skb, sizeof(struct ethhdr));
646 memcpy(ehdr, &tmp, sizeof(tmp));
647
648 return 0;
649 }
650 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
651
652 static void
__frame_add_frag(struct sk_buff * skb,struct page * page,void * ptr,int len,int size)653 __frame_add_frag(struct sk_buff *skb, struct page *page,
654 void *ptr, int len, int size)
655 {
656 struct skb_shared_info *sh = skb_shinfo(skb);
657 int page_offset;
658
659 get_page(page);
660 page_offset = ptr - page_address(page);
661 skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
662 }
663
664 static void
__ieee80211_amsdu_copy_frag(struct sk_buff * skb,struct sk_buff * frame,int offset,int len)665 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
666 int offset, int len)
667 {
668 struct skb_shared_info *sh = skb_shinfo(skb);
669 const skb_frag_t *frag = &sh->frags[0];
670 struct page *frag_page;
671 void *frag_ptr;
672 int frag_len, frag_size;
673 int head_size = skb->len - skb->data_len;
674 int cur_len;
675
676 frag_page = virt_to_head_page(skb->head);
677 frag_ptr = skb->data;
678 frag_size = head_size;
679
680 while (offset >= frag_size) {
681 offset -= frag_size;
682 frag_page = skb_frag_page(frag);
683 frag_ptr = skb_frag_address(frag);
684 frag_size = skb_frag_size(frag);
685 frag++;
686 }
687
688 frag_ptr += offset;
689 frag_len = frag_size - offset;
690
691 cur_len = min(len, frag_len);
692
693 __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
694 len -= cur_len;
695
696 while (len > 0) {
697 frag_len = skb_frag_size(frag);
698 cur_len = min(len, frag_len);
699 __frame_add_frag(frame, skb_frag_page(frag),
700 skb_frag_address(frag), cur_len, frag_len);
701 len -= cur_len;
702 frag++;
703 }
704 }
705
706 static struct sk_buff *
__ieee80211_amsdu_copy(struct sk_buff * skb,unsigned int hlen,int offset,int len,bool reuse_frag)707 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
708 int offset, int len, bool reuse_frag)
709 {
710 struct sk_buff *frame;
711 int cur_len = len;
712
713 if (skb->len - offset < len)
714 return NULL;
715
716 /*
717 * When reusing framents, copy some data to the head to simplify
718 * ethernet header handling and speed up protocol header processing
719 * in the stack later.
720 */
721 if (reuse_frag)
722 cur_len = min_t(int, len, 32);
723
724 /*
725 * Allocate and reserve two bytes more for payload
726 * alignment since sizeof(struct ethhdr) is 14.
727 */
728 frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
729 if (!frame)
730 return NULL;
731
732 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
733 skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
734
735 len -= cur_len;
736 if (!len)
737 return frame;
738
739 offset += cur_len;
740 __ieee80211_amsdu_copy_frag(skb, frame, offset, len);
741
742 return frame;
743 }
744
ieee80211_amsdu_to_8023s(struct sk_buff * skb,struct sk_buff_head * list,const u8 * addr,enum nl80211_iftype iftype,const unsigned int extra_headroom,const u8 * check_da,const u8 * check_sa)745 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
746 const u8 *addr, enum nl80211_iftype iftype,
747 const unsigned int extra_headroom,
748 const u8 *check_da, const u8 *check_sa)
749 {
750 unsigned int hlen = ALIGN(extra_headroom, 4);
751 struct sk_buff *frame = NULL;
752 u16 ethertype;
753 u8 *payload;
754 int offset = 0, remaining;
755 struct ethhdr eth;
756 bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
757 bool reuse_skb = false;
758 bool last = false;
759
760 while (!last) {
761 unsigned int subframe_len;
762 int len;
763 u8 padding;
764
765 skb_copy_bits(skb, offset, ð, sizeof(eth));
766 len = ntohs(eth.h_proto);
767 subframe_len = sizeof(struct ethhdr) + len;
768 padding = (4 - subframe_len) & 0x3;
769
770 /* the last MSDU has no padding */
771 remaining = skb->len - offset;
772 if (subframe_len > remaining)
773 goto purge;
774 /* mitigate A-MSDU aggregation injection attacks */
775 if (ether_addr_equal(eth.h_dest, rfc1042_header))
776 goto purge;
777
778 offset += sizeof(struct ethhdr);
779 last = remaining <= subframe_len + padding;
780
781 /* FIXME: should we really accept multicast DA? */
782 if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
783 !ether_addr_equal(check_da, eth.h_dest)) ||
784 (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
785 offset += len + padding;
786 continue;
787 }
788
789 /* reuse skb for the last subframe */
790 if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
791 skb_pull(skb, offset);
792 frame = skb;
793 reuse_skb = true;
794 } else {
795 frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
796 reuse_frag);
797 if (!frame)
798 goto purge;
799
800 offset += len + padding;
801 }
802
803 skb_reset_network_header(frame);
804 frame->dev = skb->dev;
805 frame->priority = skb->priority;
806
807 payload = frame->data;
808 ethertype = (payload[6] << 8) | payload[7];
809 if (likely((ether_addr_equal(payload, rfc1042_header) &&
810 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
811 ether_addr_equal(payload, bridge_tunnel_header))) {
812 eth.h_proto = htons(ethertype);
813 skb_pull(frame, ETH_ALEN + 2);
814 }
815
816 memcpy(skb_push(frame, sizeof(eth)), ð, sizeof(eth));
817 __skb_queue_tail(list, frame);
818 }
819
820 if (!reuse_skb)
821 dev_kfree_skb(skb);
822
823 return;
824
825 purge:
826 __skb_queue_purge(list);
827 dev_kfree_skb(skb);
828 }
829 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
830
831 /* Given a data frame determine the 802.1p/1d tag to use. */
cfg80211_classify8021d(struct sk_buff * skb,struct cfg80211_qos_map * qos_map)832 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
833 struct cfg80211_qos_map *qos_map)
834 {
835 unsigned int dscp;
836 unsigned char vlan_priority;
837 unsigned int ret;
838
839 /* skb->priority values from 256->263 are magic values to
840 * directly indicate a specific 802.1d priority. This is used
841 * to allow 802.1d priority to be passed directly in from VLAN
842 * tags, etc.
843 */
844 if (skb->priority >= 256 && skb->priority <= 263) {
845 ret = skb->priority - 256;
846 goto out;
847 }
848
849 if (skb_vlan_tag_present(skb)) {
850 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
851 >> VLAN_PRIO_SHIFT;
852 if (vlan_priority > 0) {
853 ret = vlan_priority;
854 goto out;
855 }
856 }
857
858 switch (skb->protocol) {
859 case htons(ETH_P_IP):
860 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
861 break;
862 case htons(ETH_P_IPV6):
863 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
864 break;
865 case htons(ETH_P_MPLS_UC):
866 case htons(ETH_P_MPLS_MC): {
867 struct mpls_label mpls_tmp, *mpls;
868
869 mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
870 sizeof(*mpls), &mpls_tmp);
871 if (!mpls)
872 return 0;
873
874 ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
875 >> MPLS_LS_TC_SHIFT;
876 goto out;
877 }
878 case htons(ETH_P_80221):
879 /* 802.21 is always network control traffic */
880 return 7;
881 default:
882 return 0;
883 }
884
885 if (qos_map) {
886 unsigned int i, tmp_dscp = dscp >> 2;
887
888 for (i = 0; i < qos_map->num_des; i++) {
889 if (tmp_dscp == qos_map->dscp_exception[i].dscp) {
890 ret = qos_map->dscp_exception[i].up;
891 goto out;
892 }
893 }
894
895 for (i = 0; i < 8; i++) {
896 if (tmp_dscp >= qos_map->up[i].low &&
897 tmp_dscp <= qos_map->up[i].high) {
898 ret = i;
899 goto out;
900 }
901 }
902 }
903
904 ret = dscp >> 5;
905 out:
906 return array_index_nospec(ret, IEEE80211_NUM_TIDS);
907 }
908 EXPORT_SYMBOL(cfg80211_classify8021d);
909
ieee80211_bss_get_elem(struct cfg80211_bss * bss,u8 id)910 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id)
911 {
912 const struct cfg80211_bss_ies *ies;
913
914 ies = rcu_dereference(bss->ies);
915 if (!ies)
916 return NULL;
917
918 return cfg80211_find_elem(id, ies->data, ies->len);
919 }
920 EXPORT_SYMBOL(ieee80211_bss_get_elem);
921
cfg80211_upload_connect_keys(struct wireless_dev * wdev)922 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
923 {
924 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
925 struct net_device *dev = wdev->netdev;
926 int i;
927
928 if (!wdev->connect_keys)
929 return;
930
931 for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
932 if (!wdev->connect_keys->params[i].cipher)
933 continue;
934 if (rdev_add_key(rdev, dev, i, false, NULL,
935 &wdev->connect_keys->params[i])) {
936 netdev_err(dev, "failed to set key %d\n", i);
937 continue;
938 }
939 if (wdev->connect_keys->def == i &&
940 rdev_set_default_key(rdev, dev, i, true, true)) {
941 netdev_err(dev, "failed to set defkey %d\n", i);
942 continue;
943 }
944 }
945
946 kfree_sensitive(wdev->connect_keys);
947 wdev->connect_keys = NULL;
948 }
949
cfg80211_process_wdev_events(struct wireless_dev * wdev)950 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
951 {
952 struct cfg80211_event *ev;
953 unsigned long flags;
954
955 spin_lock_irqsave(&wdev->event_lock, flags);
956 while (!list_empty(&wdev->event_list)) {
957 ev = list_first_entry(&wdev->event_list,
958 struct cfg80211_event, list);
959 list_del(&ev->list);
960 spin_unlock_irqrestore(&wdev->event_lock, flags);
961
962 wdev_lock(wdev);
963 switch (ev->type) {
964 case EVENT_CONNECT_RESULT:
965 __cfg80211_connect_result(
966 wdev->netdev,
967 &ev->cr,
968 ev->cr.status == WLAN_STATUS_SUCCESS);
969 break;
970 case EVENT_ROAMED:
971 __cfg80211_roamed(wdev, &ev->rm);
972 break;
973 case EVENT_DISCONNECTED:
974 __cfg80211_disconnected(wdev->netdev,
975 ev->dc.ie, ev->dc.ie_len,
976 ev->dc.reason,
977 !ev->dc.locally_generated);
978 break;
979 case EVENT_IBSS_JOINED:
980 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
981 ev->ij.channel);
982 break;
983 case EVENT_STOPPED:
984 __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
985 break;
986 case EVENT_PORT_AUTHORIZED:
987 __cfg80211_port_authorized(wdev, ev->pa.bssid);
988 break;
989 }
990 wdev_unlock(wdev);
991
992 kfree(ev);
993
994 spin_lock_irqsave(&wdev->event_lock, flags);
995 }
996 spin_unlock_irqrestore(&wdev->event_lock, flags);
997 }
998
cfg80211_process_rdev_events(struct cfg80211_registered_device * rdev)999 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
1000 {
1001 struct wireless_dev *wdev;
1002
1003 lockdep_assert_held(&rdev->wiphy.mtx);
1004
1005 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
1006 cfg80211_process_wdev_events(wdev);
1007 }
1008
cfg80211_change_iface(struct cfg80211_registered_device * rdev,struct net_device * dev,enum nl80211_iftype ntype,struct vif_params * params)1009 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
1010 struct net_device *dev, enum nl80211_iftype ntype,
1011 struct vif_params *params)
1012 {
1013 int err;
1014 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
1015
1016 lockdep_assert_held(&rdev->wiphy.mtx);
1017
1018 /* don't support changing VLANs, you just re-create them */
1019 if (otype == NL80211_IFTYPE_AP_VLAN)
1020 return -EOPNOTSUPP;
1021
1022 /* cannot change into P2P device or NAN */
1023 if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
1024 ntype == NL80211_IFTYPE_NAN)
1025 return -EOPNOTSUPP;
1026
1027 if (!rdev->ops->change_virtual_intf ||
1028 !(rdev->wiphy.interface_modes & (1 << ntype)))
1029 return -EOPNOTSUPP;
1030
1031 if (ntype != otype) {
1032 /* if it's part of a bridge, reject changing type to station/ibss */
1033 if (netif_is_bridge_port(dev) &&
1034 (ntype == NL80211_IFTYPE_ADHOC ||
1035 ntype == NL80211_IFTYPE_STATION ||
1036 ntype == NL80211_IFTYPE_P2P_CLIENT))
1037 return -EBUSY;
1038
1039 dev->ieee80211_ptr->use_4addr = false;
1040 dev->ieee80211_ptr->mesh_id_up_len = 0;
1041 wdev_lock(dev->ieee80211_ptr);
1042 rdev_set_qos_map(rdev, dev, NULL);
1043 wdev_unlock(dev->ieee80211_ptr);
1044
1045 switch (otype) {
1046 case NL80211_IFTYPE_AP:
1047 cfg80211_stop_ap(rdev, dev, true);
1048 break;
1049 case NL80211_IFTYPE_ADHOC:
1050 cfg80211_leave_ibss(rdev, dev, false);
1051 break;
1052 case NL80211_IFTYPE_STATION:
1053 case NL80211_IFTYPE_P2P_CLIENT:
1054 wdev_lock(dev->ieee80211_ptr);
1055 cfg80211_disconnect(rdev, dev,
1056 WLAN_REASON_DEAUTH_LEAVING, true);
1057 wdev_unlock(dev->ieee80211_ptr);
1058 break;
1059 case NL80211_IFTYPE_MESH_POINT:
1060 /* mesh should be handled? */
1061 break;
1062 case NL80211_IFTYPE_OCB:
1063 cfg80211_leave_ocb(rdev, dev);
1064 break;
1065 default:
1066 break;
1067 }
1068
1069 cfg80211_process_rdev_events(rdev);
1070 cfg80211_mlme_purge_registrations(dev->ieee80211_ptr);
1071 }
1072
1073 err = rdev_change_virtual_intf(rdev, dev, ntype, params);
1074
1075 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1076
1077 if (!err && params && params->use_4addr != -1)
1078 dev->ieee80211_ptr->use_4addr = params->use_4addr;
1079
1080 if (!err) {
1081 dev->priv_flags &= ~IFF_DONT_BRIDGE;
1082 switch (ntype) {
1083 case NL80211_IFTYPE_STATION:
1084 if (dev->ieee80211_ptr->use_4addr)
1085 break;
1086 fallthrough;
1087 case NL80211_IFTYPE_OCB:
1088 case NL80211_IFTYPE_P2P_CLIENT:
1089 case NL80211_IFTYPE_ADHOC:
1090 dev->priv_flags |= IFF_DONT_BRIDGE;
1091 break;
1092 case NL80211_IFTYPE_P2P_GO:
1093 case NL80211_IFTYPE_AP:
1094 case NL80211_IFTYPE_AP_VLAN:
1095 case NL80211_IFTYPE_MESH_POINT:
1096 /* bridging OK */
1097 break;
1098 case NL80211_IFTYPE_MONITOR:
1099 /* monitor can't bridge anyway */
1100 break;
1101 case NL80211_IFTYPE_UNSPECIFIED:
1102 case NUM_NL80211_IFTYPES:
1103 /* not happening */
1104 break;
1105 case NL80211_IFTYPE_P2P_DEVICE:
1106 case NL80211_IFTYPE_WDS:
1107 case NL80211_IFTYPE_NAN:
1108 WARN_ON(1);
1109 break;
1110 }
1111 }
1112
1113 if (!err && ntype != otype && netif_running(dev)) {
1114 cfg80211_update_iface_num(rdev, ntype, 1);
1115 cfg80211_update_iface_num(rdev, otype, -1);
1116 }
1117
1118 return err;
1119 }
1120
cfg80211_calculate_bitrate_ht(struct rate_info * rate)1121 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1122 {
1123 int modulation, streams, bitrate;
1124
1125 /* the formula below does only work for MCS values smaller than 32 */
1126 if (WARN_ON_ONCE(rate->mcs >= 32))
1127 return 0;
1128
1129 modulation = rate->mcs & 7;
1130 streams = (rate->mcs >> 3) + 1;
1131
1132 bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1133
1134 if (modulation < 4)
1135 bitrate *= (modulation + 1);
1136 else if (modulation == 4)
1137 bitrate *= (modulation + 2);
1138 else
1139 bitrate *= (modulation + 3);
1140
1141 bitrate *= streams;
1142
1143 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1144 bitrate = (bitrate / 9) * 10;
1145
1146 /* do NOT round down here */
1147 return (bitrate + 50000) / 100000;
1148 }
1149
cfg80211_calculate_bitrate_dmg(struct rate_info * rate)1150 static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate)
1151 {
1152 static const u32 __mcs2bitrate[] = {
1153 /* control PHY */
1154 [0] = 275,
1155 /* SC PHY */
1156 [1] = 3850,
1157 [2] = 7700,
1158 [3] = 9625,
1159 [4] = 11550,
1160 [5] = 12512, /* 1251.25 mbps */
1161 [6] = 15400,
1162 [7] = 19250,
1163 [8] = 23100,
1164 [9] = 25025,
1165 [10] = 30800,
1166 [11] = 38500,
1167 [12] = 46200,
1168 /* OFDM PHY */
1169 [13] = 6930,
1170 [14] = 8662, /* 866.25 mbps */
1171 [15] = 13860,
1172 [16] = 17325,
1173 [17] = 20790,
1174 [18] = 27720,
1175 [19] = 34650,
1176 [20] = 41580,
1177 [21] = 45045,
1178 [22] = 51975,
1179 [23] = 62370,
1180 [24] = 67568, /* 6756.75 mbps */
1181 /* LP-SC PHY */
1182 [25] = 6260,
1183 [26] = 8340,
1184 [27] = 11120,
1185 [28] = 12510,
1186 [29] = 16680,
1187 [30] = 22240,
1188 [31] = 25030,
1189 };
1190
1191 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1192 return 0;
1193
1194 return __mcs2bitrate[rate->mcs];
1195 }
1196
cfg80211_calculate_bitrate_extended_sc_dmg(struct rate_info * rate)1197 static u32 cfg80211_calculate_bitrate_extended_sc_dmg(struct rate_info *rate)
1198 {
1199 static const u32 __mcs2bitrate[] = {
1200 [6 - 6] = 26950, /* MCS 9.1 : 2695.0 mbps */
1201 [7 - 6] = 50050, /* MCS 12.1 */
1202 [8 - 6] = 53900,
1203 [9 - 6] = 57750,
1204 [10 - 6] = 63900,
1205 [11 - 6] = 75075,
1206 [12 - 6] = 80850,
1207 };
1208
1209 /* Extended SC MCS not defined for base MCS below 6 or above 12 */
1210 if (WARN_ON_ONCE(rate->mcs < 6 || rate->mcs > 12))
1211 return 0;
1212
1213 return __mcs2bitrate[rate->mcs - 6];
1214 }
1215
cfg80211_calculate_bitrate_edmg(struct rate_info * rate)1216 static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate)
1217 {
1218 static const u32 __mcs2bitrate[] = {
1219 /* control PHY */
1220 [0] = 275,
1221 /* SC PHY */
1222 [1] = 3850,
1223 [2] = 7700,
1224 [3] = 9625,
1225 [4] = 11550,
1226 [5] = 12512, /* 1251.25 mbps */
1227 [6] = 13475,
1228 [7] = 15400,
1229 [8] = 19250,
1230 [9] = 23100,
1231 [10] = 25025,
1232 [11] = 26950,
1233 [12] = 30800,
1234 [13] = 38500,
1235 [14] = 46200,
1236 [15] = 50050,
1237 [16] = 53900,
1238 [17] = 57750,
1239 [18] = 69300,
1240 [19] = 75075,
1241 [20] = 80850,
1242 };
1243
1244 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1245 return 0;
1246
1247 return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch;
1248 }
1249
cfg80211_calculate_bitrate_vht(struct rate_info * rate)1250 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1251 {
1252 static const u32 base[4][12] = {
1253 { 6500000,
1254 13000000,
1255 19500000,
1256 26000000,
1257 39000000,
1258 52000000,
1259 58500000,
1260 65000000,
1261 78000000,
1262 /* not in the spec, but some devices use this: */
1263 86700000,
1264 97500000,
1265 108300000,
1266 },
1267 { 13500000,
1268 27000000,
1269 40500000,
1270 54000000,
1271 81000000,
1272 108000000,
1273 121500000,
1274 135000000,
1275 162000000,
1276 180000000,
1277 202500000,
1278 225000000,
1279 },
1280 { 29300000,
1281 58500000,
1282 87800000,
1283 117000000,
1284 175500000,
1285 234000000,
1286 263300000,
1287 292500000,
1288 351000000,
1289 390000000,
1290 438800000,
1291 487500000,
1292 },
1293 { 58500000,
1294 117000000,
1295 175500000,
1296 234000000,
1297 351000000,
1298 468000000,
1299 526500000,
1300 585000000,
1301 702000000,
1302 780000000,
1303 877500000,
1304 975000000,
1305 },
1306 };
1307 u32 bitrate;
1308 int idx;
1309
1310 if (rate->mcs > 11)
1311 goto warn;
1312
1313 switch (rate->bw) {
1314 case RATE_INFO_BW_160:
1315 idx = 3;
1316 break;
1317 case RATE_INFO_BW_80:
1318 idx = 2;
1319 break;
1320 case RATE_INFO_BW_40:
1321 idx = 1;
1322 break;
1323 case RATE_INFO_BW_5:
1324 case RATE_INFO_BW_10:
1325 default:
1326 goto warn;
1327 case RATE_INFO_BW_20:
1328 idx = 0;
1329 }
1330
1331 bitrate = base[idx][rate->mcs];
1332 bitrate *= rate->nss;
1333
1334 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1335 bitrate = (bitrate / 9) * 10;
1336
1337 /* do NOT round down here */
1338 return (bitrate + 50000) / 100000;
1339 warn:
1340 WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1341 rate->bw, rate->mcs, rate->nss);
1342 return 0;
1343 }
1344
cfg80211_calculate_bitrate_he(struct rate_info * rate)1345 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1346 {
1347 #define SCALE 6144
1348 u32 mcs_divisors[14] = {
1349 102399, /* 16.666666... */
1350 51201, /* 8.333333... */
1351 34134, /* 5.555555... */
1352 25599, /* 4.166666... */
1353 17067, /* 2.777777... */
1354 12801, /* 2.083333... */
1355 11769, /* 1.851851... */
1356 10239, /* 1.666666... */
1357 8532, /* 1.388888... */
1358 7680, /* 1.250000... */
1359 6828, /* 1.111111... */
1360 6144, /* 1.000000... */
1361 5690, /* 0.926106... */
1362 5120, /* 0.833333... */
1363 };
1364 u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1365 u32 rates_969[3] = { 480388888, 453700000, 408333333 };
1366 u32 rates_484[3] = { 229411111, 216666666, 195000000 };
1367 u32 rates_242[3] = { 114711111, 108333333, 97500000 };
1368 u32 rates_106[3] = { 40000000, 37777777, 34000000 };
1369 u32 rates_52[3] = { 18820000, 17777777, 16000000 };
1370 u32 rates_26[3] = { 9411111, 8888888, 8000000 };
1371 u64 tmp;
1372 u32 result;
1373
1374 if (WARN_ON_ONCE(rate->mcs > 13))
1375 return 0;
1376
1377 if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1378 return 0;
1379 if (WARN_ON_ONCE(rate->he_ru_alloc >
1380 NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1381 return 0;
1382 if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1383 return 0;
1384
1385 if (rate->bw == RATE_INFO_BW_160)
1386 result = rates_160M[rate->he_gi];
1387 else if (rate->bw == RATE_INFO_BW_80 ||
1388 (rate->bw == RATE_INFO_BW_HE_RU &&
1389 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1390 result = rates_969[rate->he_gi];
1391 else if (rate->bw == RATE_INFO_BW_40 ||
1392 (rate->bw == RATE_INFO_BW_HE_RU &&
1393 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1394 result = rates_484[rate->he_gi];
1395 else if (rate->bw == RATE_INFO_BW_20 ||
1396 (rate->bw == RATE_INFO_BW_HE_RU &&
1397 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1398 result = rates_242[rate->he_gi];
1399 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1400 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1401 result = rates_106[rate->he_gi];
1402 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1403 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1404 result = rates_52[rate->he_gi];
1405 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1406 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1407 result = rates_26[rate->he_gi];
1408 else {
1409 WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1410 rate->bw, rate->he_ru_alloc);
1411 return 0;
1412 }
1413
1414 /* now scale to the appropriate MCS */
1415 tmp = result;
1416 tmp *= SCALE;
1417 do_div(tmp, mcs_divisors[rate->mcs]);
1418 result = tmp;
1419
1420 /* and take NSS, DCM into account */
1421 result = (result * rate->nss) / 8;
1422 if (rate->he_dcm)
1423 result /= 2;
1424
1425 return result / 10000;
1426 }
1427
cfg80211_calculate_bitrate(struct rate_info * rate)1428 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1429 {
1430 if (rate->flags & RATE_INFO_FLAGS_MCS)
1431 return cfg80211_calculate_bitrate_ht(rate);
1432 if (rate->flags & RATE_INFO_FLAGS_DMG)
1433 return cfg80211_calculate_bitrate_dmg(rate);
1434 if (rate->flags & RATE_INFO_FLAGS_EXTENDED_SC_DMG)
1435 return cfg80211_calculate_bitrate_extended_sc_dmg(rate);
1436 if (rate->flags & RATE_INFO_FLAGS_EDMG)
1437 return cfg80211_calculate_bitrate_edmg(rate);
1438 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1439 return cfg80211_calculate_bitrate_vht(rate);
1440 if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1441 return cfg80211_calculate_bitrate_he(rate);
1442
1443 return rate->legacy;
1444 }
1445 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1446
cfg80211_get_p2p_attr(const u8 * ies,unsigned int len,enum ieee80211_p2p_attr_id attr,u8 * buf,unsigned int bufsize)1447 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1448 enum ieee80211_p2p_attr_id attr,
1449 u8 *buf, unsigned int bufsize)
1450 {
1451 u8 *out = buf;
1452 u16 attr_remaining = 0;
1453 bool desired_attr = false;
1454 u16 desired_len = 0;
1455
1456 while (len > 0) {
1457 unsigned int iedatalen;
1458 unsigned int copy;
1459 const u8 *iedata;
1460
1461 if (len < 2)
1462 return -EILSEQ;
1463 iedatalen = ies[1];
1464 if (iedatalen + 2 > len)
1465 return -EILSEQ;
1466
1467 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1468 goto cont;
1469
1470 if (iedatalen < 4)
1471 goto cont;
1472
1473 iedata = ies + 2;
1474
1475 /* check WFA OUI, P2P subtype */
1476 if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1477 iedata[2] != 0x9a || iedata[3] != 0x09)
1478 goto cont;
1479
1480 iedatalen -= 4;
1481 iedata += 4;
1482
1483 /* check attribute continuation into this IE */
1484 copy = min_t(unsigned int, attr_remaining, iedatalen);
1485 if (copy && desired_attr) {
1486 desired_len += copy;
1487 if (out) {
1488 memcpy(out, iedata, min(bufsize, copy));
1489 out += min(bufsize, copy);
1490 bufsize -= min(bufsize, copy);
1491 }
1492
1493
1494 if (copy == attr_remaining)
1495 return desired_len;
1496 }
1497
1498 attr_remaining -= copy;
1499 if (attr_remaining)
1500 goto cont;
1501
1502 iedatalen -= copy;
1503 iedata += copy;
1504
1505 while (iedatalen > 0) {
1506 u16 attr_len;
1507
1508 /* P2P attribute ID & size must fit */
1509 if (iedatalen < 3)
1510 return -EILSEQ;
1511 desired_attr = iedata[0] == attr;
1512 attr_len = get_unaligned_le16(iedata + 1);
1513 iedatalen -= 3;
1514 iedata += 3;
1515
1516 copy = min_t(unsigned int, attr_len, iedatalen);
1517
1518 if (desired_attr) {
1519 desired_len += copy;
1520 if (out) {
1521 memcpy(out, iedata, min(bufsize, copy));
1522 out += min(bufsize, copy);
1523 bufsize -= min(bufsize, copy);
1524 }
1525
1526 if (copy == attr_len)
1527 return desired_len;
1528 }
1529
1530 iedata += copy;
1531 iedatalen -= copy;
1532 attr_remaining = attr_len - copy;
1533 }
1534
1535 cont:
1536 len -= ies[1] + 2;
1537 ies += ies[1] + 2;
1538 }
1539
1540 if (attr_remaining && desired_attr)
1541 return -EILSEQ;
1542
1543 return -ENOENT;
1544 }
1545 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1546
ieee80211_id_in_list(const u8 * ids,int n_ids,u8 id,bool id_ext)1547 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1548 {
1549 int i;
1550
1551 /* Make sure array values are legal */
1552 if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1553 return false;
1554
1555 i = 0;
1556 while (i < n_ids) {
1557 if (ids[i] == WLAN_EID_EXTENSION) {
1558 if (id_ext && (ids[i + 1] == id))
1559 return true;
1560
1561 i += 2;
1562 continue;
1563 }
1564
1565 if (ids[i] == id && !id_ext)
1566 return true;
1567
1568 i++;
1569 }
1570 return false;
1571 }
1572
skip_ie(const u8 * ies,size_t ielen,size_t pos)1573 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1574 {
1575 /* we assume a validly formed IEs buffer */
1576 u8 len = ies[pos + 1];
1577
1578 pos += 2 + len;
1579
1580 /* the IE itself must have 255 bytes for fragments to follow */
1581 if (len < 255)
1582 return pos;
1583
1584 while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1585 len = ies[pos + 1];
1586 pos += 2 + len;
1587 }
1588
1589 return pos;
1590 }
1591
ieee80211_ie_split_ric(const u8 * ies,size_t ielen,const u8 * ids,int n_ids,const u8 * after_ric,int n_after_ric,size_t offset)1592 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1593 const u8 *ids, int n_ids,
1594 const u8 *after_ric, int n_after_ric,
1595 size_t offset)
1596 {
1597 size_t pos = offset;
1598
1599 while (pos < ielen) {
1600 u8 ext = 0;
1601
1602 if (ies[pos] == WLAN_EID_EXTENSION)
1603 ext = 2;
1604 if ((pos + ext) >= ielen)
1605 break;
1606
1607 if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1608 ies[pos] == WLAN_EID_EXTENSION))
1609 break;
1610
1611 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1612 pos = skip_ie(ies, ielen, pos);
1613
1614 while (pos < ielen) {
1615 if (ies[pos] == WLAN_EID_EXTENSION)
1616 ext = 2;
1617 else
1618 ext = 0;
1619
1620 if ((pos + ext) >= ielen)
1621 break;
1622
1623 if (!ieee80211_id_in_list(after_ric,
1624 n_after_ric,
1625 ies[pos + ext],
1626 ext == 2))
1627 pos = skip_ie(ies, ielen, pos);
1628 else
1629 break;
1630 }
1631 } else {
1632 pos = skip_ie(ies, ielen, pos);
1633 }
1634 }
1635
1636 return pos;
1637 }
1638 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1639
ieee80211_operating_class_to_band(u8 operating_class,enum nl80211_band * band)1640 bool ieee80211_operating_class_to_band(u8 operating_class,
1641 enum nl80211_band *band)
1642 {
1643 switch (operating_class) {
1644 case 112:
1645 case 115 ... 127:
1646 case 128 ... 130:
1647 *band = NL80211_BAND_5GHZ;
1648 return true;
1649 case 131 ... 135:
1650 *band = NL80211_BAND_6GHZ;
1651 return true;
1652 case 81:
1653 case 82:
1654 case 83:
1655 case 84:
1656 *band = NL80211_BAND_2GHZ;
1657 return true;
1658 case 180:
1659 *band = NL80211_BAND_60GHZ;
1660 return true;
1661 }
1662
1663 return false;
1664 }
1665 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1666
ieee80211_chandef_to_operating_class(struct cfg80211_chan_def * chandef,u8 * op_class)1667 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1668 u8 *op_class)
1669 {
1670 u8 vht_opclass;
1671 u32 freq = chandef->center_freq1;
1672
1673 if (freq >= 2412 && freq <= 2472) {
1674 if (chandef->width > NL80211_CHAN_WIDTH_40)
1675 return false;
1676
1677 /* 2.407 GHz, channels 1..13 */
1678 if (chandef->width == NL80211_CHAN_WIDTH_40) {
1679 if (freq > chandef->chan->center_freq)
1680 *op_class = 83; /* HT40+ */
1681 else
1682 *op_class = 84; /* HT40- */
1683 } else {
1684 *op_class = 81;
1685 }
1686
1687 return true;
1688 }
1689
1690 if (freq == 2484) {
1691 /* channel 14 is only for IEEE 802.11b */
1692 if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
1693 return false;
1694
1695 *op_class = 82; /* channel 14 */
1696 return true;
1697 }
1698
1699 switch (chandef->width) {
1700 case NL80211_CHAN_WIDTH_80:
1701 vht_opclass = 128;
1702 break;
1703 case NL80211_CHAN_WIDTH_160:
1704 vht_opclass = 129;
1705 break;
1706 case NL80211_CHAN_WIDTH_80P80:
1707 vht_opclass = 130;
1708 break;
1709 case NL80211_CHAN_WIDTH_10:
1710 case NL80211_CHAN_WIDTH_5:
1711 return false; /* unsupported for now */
1712 default:
1713 vht_opclass = 0;
1714 break;
1715 }
1716
1717 /* 5 GHz, channels 36..48 */
1718 if (freq >= 5180 && freq <= 5240) {
1719 if (vht_opclass) {
1720 *op_class = vht_opclass;
1721 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1722 if (freq > chandef->chan->center_freq)
1723 *op_class = 116;
1724 else
1725 *op_class = 117;
1726 } else {
1727 *op_class = 115;
1728 }
1729
1730 return true;
1731 }
1732
1733 /* 5 GHz, channels 52..64 */
1734 if (freq >= 5260 && freq <= 5320) {
1735 if (vht_opclass) {
1736 *op_class = vht_opclass;
1737 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1738 if (freq > chandef->chan->center_freq)
1739 *op_class = 119;
1740 else
1741 *op_class = 120;
1742 } else {
1743 *op_class = 118;
1744 }
1745
1746 return true;
1747 }
1748
1749 /* 5 GHz, channels 100..144 */
1750 if (freq >= 5500 && freq <= 5720) {
1751 if (vht_opclass) {
1752 *op_class = vht_opclass;
1753 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1754 if (freq > chandef->chan->center_freq)
1755 *op_class = 122;
1756 else
1757 *op_class = 123;
1758 } else {
1759 *op_class = 121;
1760 }
1761
1762 return true;
1763 }
1764
1765 /* 5 GHz, channels 149..169 */
1766 if (freq >= 5745 && freq <= 5845) {
1767 if (vht_opclass) {
1768 *op_class = vht_opclass;
1769 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1770 if (freq > chandef->chan->center_freq)
1771 *op_class = 126;
1772 else
1773 *op_class = 127;
1774 } else if (freq <= 5805) {
1775 *op_class = 124;
1776 } else {
1777 *op_class = 125;
1778 }
1779
1780 return true;
1781 }
1782
1783 /* 56.16 GHz, channel 1..4 */
1784 if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
1785 if (chandef->width >= NL80211_CHAN_WIDTH_40)
1786 return false;
1787
1788 *op_class = 180;
1789 return true;
1790 }
1791
1792 /* not supported yet */
1793 return false;
1794 }
1795 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1796
cfg80211_calculate_bi_data(struct wiphy * wiphy,u32 new_beacon_int,u32 * beacon_int_gcd,bool * beacon_int_different)1797 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1798 u32 *beacon_int_gcd,
1799 bool *beacon_int_different)
1800 {
1801 struct wireless_dev *wdev;
1802
1803 *beacon_int_gcd = 0;
1804 *beacon_int_different = false;
1805
1806 list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1807 if (!wdev->beacon_interval)
1808 continue;
1809
1810 if (!*beacon_int_gcd) {
1811 *beacon_int_gcd = wdev->beacon_interval;
1812 continue;
1813 }
1814
1815 if (wdev->beacon_interval == *beacon_int_gcd)
1816 continue;
1817
1818 *beacon_int_different = true;
1819 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval);
1820 }
1821
1822 if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1823 if (*beacon_int_gcd)
1824 *beacon_int_different = true;
1825 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1826 }
1827 }
1828
cfg80211_validate_beacon_int(struct cfg80211_registered_device * rdev,enum nl80211_iftype iftype,u32 beacon_int)1829 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1830 enum nl80211_iftype iftype, u32 beacon_int)
1831 {
1832 /*
1833 * This is just a basic pre-condition check; if interface combinations
1834 * are possible the driver must already be checking those with a call
1835 * to cfg80211_check_combinations(), in which case we'll validate more
1836 * through the cfg80211_calculate_bi_data() call and code in
1837 * cfg80211_iter_combinations().
1838 */
1839
1840 if (beacon_int < 10 || beacon_int > 10000)
1841 return -EINVAL;
1842
1843 return 0;
1844 }
1845
cfg80211_iter_combinations(struct wiphy * wiphy,struct iface_combination_params * params,void (* iter)(const struct ieee80211_iface_combination * c,void * data),void * data)1846 int cfg80211_iter_combinations(struct wiphy *wiphy,
1847 struct iface_combination_params *params,
1848 void (*iter)(const struct ieee80211_iface_combination *c,
1849 void *data),
1850 void *data)
1851 {
1852 const struct ieee80211_regdomain *regdom;
1853 enum nl80211_dfs_regions region = 0;
1854 int i, j, iftype;
1855 int num_interfaces = 0;
1856 u32 used_iftypes = 0;
1857 u32 beacon_int_gcd;
1858 bool beacon_int_different;
1859
1860 /*
1861 * This is a bit strange, since the iteration used to rely only on
1862 * the data given by the driver, but here it now relies on context,
1863 * in form of the currently operating interfaces.
1864 * This is OK for all current users, and saves us from having to
1865 * push the GCD calculations into all the drivers.
1866 * In the future, this should probably rely more on data that's in
1867 * cfg80211 already - the only thing not would appear to be any new
1868 * interfaces (while being brought up) and channel/radar data.
1869 */
1870 cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
1871 &beacon_int_gcd, &beacon_int_different);
1872
1873 if (params->radar_detect) {
1874 rcu_read_lock();
1875 regdom = rcu_dereference(cfg80211_regdomain);
1876 if (regdom)
1877 region = regdom->dfs_region;
1878 rcu_read_unlock();
1879 }
1880
1881 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1882 num_interfaces += params->iftype_num[iftype];
1883 if (params->iftype_num[iftype] > 0 &&
1884 !cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1885 used_iftypes |= BIT(iftype);
1886 }
1887
1888 for (i = 0; i < wiphy->n_iface_combinations; i++) {
1889 const struct ieee80211_iface_combination *c;
1890 struct ieee80211_iface_limit *limits;
1891 u32 all_iftypes = 0;
1892
1893 c = &wiphy->iface_combinations[i];
1894
1895 if (num_interfaces > c->max_interfaces)
1896 continue;
1897 if (params->num_different_channels > c->num_different_channels)
1898 continue;
1899
1900 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1901 GFP_KERNEL);
1902 if (!limits)
1903 return -ENOMEM;
1904
1905 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1906 if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1907 continue;
1908 for (j = 0; j < c->n_limits; j++) {
1909 all_iftypes |= limits[j].types;
1910 if (!(limits[j].types & BIT(iftype)))
1911 continue;
1912 if (limits[j].max < params->iftype_num[iftype])
1913 goto cont;
1914 limits[j].max -= params->iftype_num[iftype];
1915 }
1916 }
1917
1918 if (params->radar_detect !=
1919 (c->radar_detect_widths & params->radar_detect))
1920 goto cont;
1921
1922 if (params->radar_detect && c->radar_detect_regions &&
1923 !(c->radar_detect_regions & BIT(region)))
1924 goto cont;
1925
1926 /* Finally check that all iftypes that we're currently
1927 * using are actually part of this combination. If they
1928 * aren't then we can't use this combination and have
1929 * to continue to the next.
1930 */
1931 if ((all_iftypes & used_iftypes) != used_iftypes)
1932 goto cont;
1933
1934 if (beacon_int_gcd) {
1935 if (c->beacon_int_min_gcd &&
1936 beacon_int_gcd < c->beacon_int_min_gcd)
1937 goto cont;
1938 if (!c->beacon_int_min_gcd && beacon_int_different)
1939 goto cont;
1940 }
1941
1942 /* This combination covered all interface types and
1943 * supported the requested numbers, so we're good.
1944 */
1945
1946 (*iter)(c, data);
1947 cont:
1948 kfree(limits);
1949 }
1950
1951 return 0;
1952 }
1953 EXPORT_SYMBOL(cfg80211_iter_combinations);
1954
1955 static void
cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination * c,void * data)1956 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1957 void *data)
1958 {
1959 int *num = data;
1960 (*num)++;
1961 }
1962
cfg80211_check_combinations(struct wiphy * wiphy,struct iface_combination_params * params)1963 int cfg80211_check_combinations(struct wiphy *wiphy,
1964 struct iface_combination_params *params)
1965 {
1966 int err, num = 0;
1967
1968 err = cfg80211_iter_combinations(wiphy, params,
1969 cfg80211_iter_sum_ifcombs, &num);
1970 if (err)
1971 return err;
1972 if (num == 0)
1973 return -EBUSY;
1974
1975 return 0;
1976 }
1977 EXPORT_SYMBOL(cfg80211_check_combinations);
1978
ieee80211_get_ratemask(struct ieee80211_supported_band * sband,const u8 * rates,unsigned int n_rates,u32 * mask)1979 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1980 const u8 *rates, unsigned int n_rates,
1981 u32 *mask)
1982 {
1983 int i, j;
1984
1985 if (!sband)
1986 return -EINVAL;
1987
1988 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1989 return -EINVAL;
1990
1991 *mask = 0;
1992
1993 for (i = 0; i < n_rates; i++) {
1994 int rate = (rates[i] & 0x7f) * 5;
1995 bool found = false;
1996
1997 for (j = 0; j < sband->n_bitrates; j++) {
1998 if (sband->bitrates[j].bitrate == rate) {
1999 found = true;
2000 *mask |= BIT(j);
2001 break;
2002 }
2003 }
2004 if (!found)
2005 return -EINVAL;
2006 }
2007
2008 /*
2009 * mask must have at least one bit set here since we
2010 * didn't accept a 0-length rates array nor allowed
2011 * entries in the array that didn't exist
2012 */
2013
2014 return 0;
2015 }
2016
ieee80211_get_num_supported_channels(struct wiphy * wiphy)2017 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
2018 {
2019 enum nl80211_band band;
2020 unsigned int n_channels = 0;
2021
2022 for (band = 0; band < NUM_NL80211_BANDS; band++)
2023 if (wiphy->bands[band])
2024 n_channels += wiphy->bands[band]->n_channels;
2025
2026 return n_channels;
2027 }
2028 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
2029
cfg80211_get_station(struct net_device * dev,const u8 * mac_addr,struct station_info * sinfo)2030 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
2031 struct station_info *sinfo)
2032 {
2033 struct cfg80211_registered_device *rdev;
2034 struct wireless_dev *wdev;
2035
2036 wdev = dev->ieee80211_ptr;
2037 if (!wdev)
2038 return -EOPNOTSUPP;
2039
2040 rdev = wiphy_to_rdev(wdev->wiphy);
2041 if (!rdev->ops->get_station)
2042 return -EOPNOTSUPP;
2043
2044 memset(sinfo, 0, sizeof(*sinfo));
2045
2046 return rdev_get_station(rdev, dev, mac_addr, sinfo);
2047 }
2048 EXPORT_SYMBOL(cfg80211_get_station);
2049
cfg80211_free_nan_func(struct cfg80211_nan_func * f)2050 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
2051 {
2052 int i;
2053
2054 if (!f)
2055 return;
2056
2057 kfree(f->serv_spec_info);
2058 kfree(f->srf_bf);
2059 kfree(f->srf_macs);
2060 for (i = 0; i < f->num_rx_filters; i++)
2061 kfree(f->rx_filters[i].filter);
2062
2063 for (i = 0; i < f->num_tx_filters; i++)
2064 kfree(f->tx_filters[i].filter);
2065
2066 kfree(f->rx_filters);
2067 kfree(f->tx_filters);
2068 kfree(f);
2069 }
2070 EXPORT_SYMBOL(cfg80211_free_nan_func);
2071
cfg80211_does_bw_fit_range(const struct ieee80211_freq_range * freq_range,u32 center_freq_khz,u32 bw_khz)2072 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
2073 u32 center_freq_khz, u32 bw_khz)
2074 {
2075 u32 start_freq_khz, end_freq_khz;
2076
2077 start_freq_khz = center_freq_khz - (bw_khz / 2);
2078 end_freq_khz = center_freq_khz + (bw_khz / 2);
2079
2080 if (start_freq_khz >= freq_range->start_freq_khz &&
2081 end_freq_khz <= freq_range->end_freq_khz)
2082 return true;
2083
2084 return false;
2085 }
2086
cfg80211_sinfo_alloc_tid_stats(struct station_info * sinfo,gfp_t gfp)2087 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
2088 {
2089 sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
2090 sizeof(*(sinfo->pertid)),
2091 gfp);
2092 if (!sinfo->pertid)
2093 return -ENOMEM;
2094
2095 return 0;
2096 }
2097 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
2098
2099 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
2100 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
2101 const unsigned char rfc1042_header[] __aligned(2) =
2102 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
2103 EXPORT_SYMBOL(rfc1042_header);
2104
2105 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
2106 const unsigned char bridge_tunnel_header[] __aligned(2) =
2107 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
2108 EXPORT_SYMBOL(bridge_tunnel_header);
2109
2110 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
2111 struct iapp_layer2_update {
2112 u8 da[ETH_ALEN]; /* broadcast */
2113 u8 sa[ETH_ALEN]; /* STA addr */
2114 __be16 len; /* 6 */
2115 u8 dsap; /* 0 */
2116 u8 ssap; /* 0 */
2117 u8 control;
2118 u8 xid_info[3];
2119 } __packed;
2120
cfg80211_send_layer2_update(struct net_device * dev,const u8 * addr)2121 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
2122 {
2123 struct iapp_layer2_update *msg;
2124 struct sk_buff *skb;
2125
2126 /* Send Level 2 Update Frame to update forwarding tables in layer 2
2127 * bridge devices */
2128
2129 skb = dev_alloc_skb(sizeof(*msg));
2130 if (!skb)
2131 return;
2132 msg = skb_put(skb, sizeof(*msg));
2133
2134 /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
2135 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
2136
2137 eth_broadcast_addr(msg->da);
2138 ether_addr_copy(msg->sa, addr);
2139 msg->len = htons(6);
2140 msg->dsap = 0;
2141 msg->ssap = 0x01; /* NULL LSAP, CR Bit: Response */
2142 msg->control = 0xaf; /* XID response lsb.1111F101.
2143 * F=0 (no poll command; unsolicited frame) */
2144 msg->xid_info[0] = 0x81; /* XID format identifier */
2145 msg->xid_info[1] = 1; /* LLC types/classes: Type 1 LLC */
2146 msg->xid_info[2] = 0; /* XID sender's receive window size (RW) */
2147
2148 skb->dev = dev;
2149 skb->protocol = eth_type_trans(skb, dev);
2150 memset(skb->cb, 0, sizeof(skb->cb));
2151 netif_rx_ni(skb);
2152 }
2153 EXPORT_SYMBOL(cfg80211_send_layer2_update);
2154
ieee80211_get_vht_max_nss(struct ieee80211_vht_cap * cap,enum ieee80211_vht_chanwidth bw,int mcs,bool ext_nss_bw_capable,unsigned int max_vht_nss)2155 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2156 enum ieee80211_vht_chanwidth bw,
2157 int mcs, bool ext_nss_bw_capable,
2158 unsigned int max_vht_nss)
2159 {
2160 u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
2161 int ext_nss_bw;
2162 int supp_width;
2163 int i, mcs_encoding;
2164
2165 if (map == 0xffff)
2166 return 0;
2167
2168 if (WARN_ON(mcs > 9 || max_vht_nss > 8))
2169 return 0;
2170 if (mcs <= 7)
2171 mcs_encoding = 0;
2172 else if (mcs == 8)
2173 mcs_encoding = 1;
2174 else
2175 mcs_encoding = 2;
2176
2177 if (!max_vht_nss) {
2178 /* find max_vht_nss for the given MCS */
2179 for (i = 7; i >= 0; i--) {
2180 int supp = (map >> (2 * i)) & 3;
2181
2182 if (supp == 3)
2183 continue;
2184
2185 if (supp >= mcs_encoding) {
2186 max_vht_nss = i + 1;
2187 break;
2188 }
2189 }
2190 }
2191
2192 if (!(cap->supp_mcs.tx_mcs_map &
2193 cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
2194 return max_vht_nss;
2195
2196 ext_nss_bw = le32_get_bits(cap->vht_cap_info,
2197 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
2198 supp_width = le32_get_bits(cap->vht_cap_info,
2199 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
2200
2201 /* if not capable, treat ext_nss_bw as 0 */
2202 if (!ext_nss_bw_capable)
2203 ext_nss_bw = 0;
2204
2205 /* This is invalid */
2206 if (supp_width == 3)
2207 return 0;
2208
2209 /* This is an invalid combination so pretend nothing is supported */
2210 if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
2211 return 0;
2212
2213 /*
2214 * Cover all the special cases according to IEEE 802.11-2016
2215 * Table 9-250. All other cases are either factor of 1 or not
2216 * valid/supported.
2217 */
2218 switch (bw) {
2219 case IEEE80211_VHT_CHANWIDTH_USE_HT:
2220 case IEEE80211_VHT_CHANWIDTH_80MHZ:
2221 if ((supp_width == 1 || supp_width == 2) &&
2222 ext_nss_bw == 3)
2223 return 2 * max_vht_nss;
2224 break;
2225 case IEEE80211_VHT_CHANWIDTH_160MHZ:
2226 if (supp_width == 0 &&
2227 (ext_nss_bw == 1 || ext_nss_bw == 2))
2228 return max_vht_nss / 2;
2229 if (supp_width == 0 &&
2230 ext_nss_bw == 3)
2231 return (3 * max_vht_nss) / 4;
2232 if (supp_width == 1 &&
2233 ext_nss_bw == 3)
2234 return 2 * max_vht_nss;
2235 break;
2236 case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2237 if (supp_width == 0 && ext_nss_bw == 1)
2238 return 0; /* not possible */
2239 if (supp_width == 0 &&
2240 ext_nss_bw == 2)
2241 return max_vht_nss / 2;
2242 if (supp_width == 0 &&
2243 ext_nss_bw == 3)
2244 return (3 * max_vht_nss) / 4;
2245 if (supp_width == 1 &&
2246 ext_nss_bw == 0)
2247 return 0; /* not possible */
2248 if (supp_width == 1 &&
2249 ext_nss_bw == 1)
2250 return max_vht_nss / 2;
2251 if (supp_width == 1 &&
2252 ext_nss_bw == 2)
2253 return (3 * max_vht_nss) / 4;
2254 break;
2255 }
2256
2257 /* not covered or invalid combination received */
2258 return max_vht_nss;
2259 }
2260 EXPORT_SYMBOL(ieee80211_get_vht_max_nss);
2261
cfg80211_iftype_allowed(struct wiphy * wiphy,enum nl80211_iftype iftype,bool is_4addr,u8 check_swif)2262 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
2263 bool is_4addr, u8 check_swif)
2264
2265 {
2266 bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN;
2267
2268 switch (check_swif) {
2269 case 0:
2270 if (is_vlan && is_4addr)
2271 return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2272 return wiphy->interface_modes & BIT(iftype);
2273 case 1:
2274 if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan)
2275 return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2276 return wiphy->software_iftypes & BIT(iftype);
2277 default:
2278 break;
2279 }
2280
2281 return false;
2282 }
2283 EXPORT_SYMBOL(cfg80211_iftype_allowed);
2284