1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Wireless utility functions
4  *
5  * Copyright 2007-2009	Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright 2017	Intel Deutschland GmbH
8  * Copyright (C) 2018-2020 Intel Corporation
9  */
10 #include <linux/export.h>
11 #include <linux/bitops.h>
12 #include <linux/etherdevice.h>
13 #include <linux/slab.h>
14 #include <linux/ieee80211.h>
15 #include <net/cfg80211.h>
16 #include <net/ip.h>
17 #include <net/dsfield.h>
18 #include <linux/if_vlan.h>
19 #include <linux/mpls.h>
20 #include <linux/gcd.h>
21 #include <linux/bitfield.h>
22 #include <linux/nospec.h>
23 #include "core.h"
24 #include "rdev-ops.h"
25 
26 
27 struct ieee80211_rate *
ieee80211_get_response_rate(struct ieee80211_supported_band * sband,u32 basic_rates,int bitrate)28 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
29 			    u32 basic_rates, int bitrate)
30 {
31 	struct ieee80211_rate *result = &sband->bitrates[0];
32 	int i;
33 
34 	for (i = 0; i < sband->n_bitrates; i++) {
35 		if (!(basic_rates & BIT(i)))
36 			continue;
37 		if (sband->bitrates[i].bitrate > bitrate)
38 			continue;
39 		result = &sband->bitrates[i];
40 	}
41 
42 	return result;
43 }
44 EXPORT_SYMBOL(ieee80211_get_response_rate);
45 
ieee80211_mandatory_rates(struct ieee80211_supported_band * sband,enum nl80211_bss_scan_width scan_width)46 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
47 			      enum nl80211_bss_scan_width scan_width)
48 {
49 	struct ieee80211_rate *bitrates;
50 	u32 mandatory_rates = 0;
51 	enum ieee80211_rate_flags mandatory_flag;
52 	int i;
53 
54 	if (WARN_ON(!sband))
55 		return 1;
56 
57 	if (sband->band == NL80211_BAND_2GHZ) {
58 		if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
59 		    scan_width == NL80211_BSS_CHAN_WIDTH_10)
60 			mandatory_flag = IEEE80211_RATE_MANDATORY_G;
61 		else
62 			mandatory_flag = IEEE80211_RATE_MANDATORY_B;
63 	} else {
64 		mandatory_flag = IEEE80211_RATE_MANDATORY_A;
65 	}
66 
67 	bitrates = sband->bitrates;
68 	for (i = 0; i < sband->n_bitrates; i++)
69 		if (bitrates[i].flags & mandatory_flag)
70 			mandatory_rates |= BIT(i);
71 	return mandatory_rates;
72 }
73 EXPORT_SYMBOL(ieee80211_mandatory_rates);
74 
ieee80211_channel_to_freq_khz(int chan,enum nl80211_band band)75 u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band)
76 {
77 	/* see 802.11 17.3.8.3.2 and Annex J
78 	 * there are overlapping channel numbers in 5GHz and 2GHz bands */
79 	if (chan <= 0)
80 		return 0; /* not supported */
81 	switch (band) {
82 	case NL80211_BAND_2GHZ:
83 		if (chan == 14)
84 			return MHZ_TO_KHZ(2484);
85 		else if (chan < 14)
86 			return MHZ_TO_KHZ(2407 + chan * 5);
87 		break;
88 	case NL80211_BAND_5GHZ:
89 		if (chan >= 182 && chan <= 196)
90 			return MHZ_TO_KHZ(4000 + chan * 5);
91 		else
92 			return MHZ_TO_KHZ(5000 + chan * 5);
93 		break;
94 	case NL80211_BAND_6GHZ:
95 		/* see 802.11ax D6.1 27.3.23.2 */
96 		if (chan == 2)
97 			return MHZ_TO_KHZ(5935);
98 		if (chan <= 233)
99 			return MHZ_TO_KHZ(5950 + chan * 5);
100 		break;
101 	case NL80211_BAND_60GHZ:
102 		if (chan < 7)
103 			return MHZ_TO_KHZ(56160 + chan * 2160);
104 		break;
105 	case NL80211_BAND_S1GHZ:
106 		return 902000 + chan * 500;
107 	default:
108 		;
109 	}
110 	return 0; /* not supported */
111 }
112 EXPORT_SYMBOL(ieee80211_channel_to_freq_khz);
113 
114 enum nl80211_chan_width
ieee80211_s1g_channel_width(const struct ieee80211_channel * chan)115 ieee80211_s1g_channel_width(const struct ieee80211_channel *chan)
116 {
117 	if (WARN_ON(!chan || chan->band != NL80211_BAND_S1GHZ))
118 		return NL80211_CHAN_WIDTH_20_NOHT;
119 
120 	/*S1G defines a single allowed channel width per channel.
121 	 * Extract that width here.
122 	 */
123 	if (chan->flags & IEEE80211_CHAN_1MHZ)
124 		return NL80211_CHAN_WIDTH_1;
125 	else if (chan->flags & IEEE80211_CHAN_2MHZ)
126 		return NL80211_CHAN_WIDTH_2;
127 	else if (chan->flags & IEEE80211_CHAN_4MHZ)
128 		return NL80211_CHAN_WIDTH_4;
129 	else if (chan->flags & IEEE80211_CHAN_8MHZ)
130 		return NL80211_CHAN_WIDTH_8;
131 	else if (chan->flags & IEEE80211_CHAN_16MHZ)
132 		return NL80211_CHAN_WIDTH_16;
133 
134 	pr_err("unknown channel width for channel at %dKHz?\n",
135 	       ieee80211_channel_to_khz(chan));
136 
137 	return NL80211_CHAN_WIDTH_1;
138 }
139 EXPORT_SYMBOL(ieee80211_s1g_channel_width);
140 
ieee80211_freq_khz_to_channel(u32 freq)141 int ieee80211_freq_khz_to_channel(u32 freq)
142 {
143 	/* TODO: just handle MHz for now */
144 	freq = KHZ_TO_MHZ(freq);
145 
146 	/* see 802.11 17.3.8.3.2 and Annex J */
147 	if (freq == 2484)
148 		return 14;
149 	else if (freq < 2484)
150 		return (freq - 2407) / 5;
151 	else if (freq >= 4910 && freq <= 4980)
152 		return (freq - 4000) / 5;
153 	else if (freq < 5925)
154 		return (freq - 5000) / 5;
155 	else if (freq == 5935)
156 		return 2;
157 	else if (freq <= 45000) /* DMG band lower limit */
158 		/* see 802.11ax D6.1 27.3.22.2 */
159 		return (freq - 5950) / 5;
160 	else if (freq >= 58320 && freq <= 70200)
161 		return (freq - 56160) / 2160;
162 	else
163 		return 0;
164 }
165 EXPORT_SYMBOL(ieee80211_freq_khz_to_channel);
166 
ieee80211_get_channel_khz(struct wiphy * wiphy,u32 freq)167 struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy,
168 						    u32 freq)
169 {
170 	enum nl80211_band band;
171 	struct ieee80211_supported_band *sband;
172 	int i;
173 
174 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
175 		sband = wiphy->bands[band];
176 
177 		if (!sband)
178 			continue;
179 
180 		for (i = 0; i < sband->n_channels; i++) {
181 			struct ieee80211_channel *chan = &sband->channels[i];
182 
183 			if (ieee80211_channel_to_khz(chan) == freq)
184 				return chan;
185 		}
186 	}
187 
188 	return NULL;
189 }
190 EXPORT_SYMBOL(ieee80211_get_channel_khz);
191 
set_mandatory_flags_band(struct ieee80211_supported_band * sband)192 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
193 {
194 	int i, want;
195 
196 	switch (sband->band) {
197 	case NL80211_BAND_5GHZ:
198 	case NL80211_BAND_6GHZ:
199 		want = 3;
200 		for (i = 0; i < sband->n_bitrates; i++) {
201 			if (sband->bitrates[i].bitrate == 60 ||
202 			    sband->bitrates[i].bitrate == 120 ||
203 			    sband->bitrates[i].bitrate == 240) {
204 				sband->bitrates[i].flags |=
205 					IEEE80211_RATE_MANDATORY_A;
206 				want--;
207 			}
208 		}
209 		WARN_ON(want);
210 		break;
211 	case NL80211_BAND_2GHZ:
212 		want = 7;
213 		for (i = 0; i < sband->n_bitrates; i++) {
214 			switch (sband->bitrates[i].bitrate) {
215 			case 10:
216 			case 20:
217 			case 55:
218 			case 110:
219 				sband->bitrates[i].flags |=
220 					IEEE80211_RATE_MANDATORY_B |
221 					IEEE80211_RATE_MANDATORY_G;
222 				want--;
223 				break;
224 			case 60:
225 			case 120:
226 			case 240:
227 				sband->bitrates[i].flags |=
228 					IEEE80211_RATE_MANDATORY_G;
229 				want--;
230 				fallthrough;
231 			default:
232 				sband->bitrates[i].flags |=
233 					IEEE80211_RATE_ERP_G;
234 				break;
235 			}
236 		}
237 		WARN_ON(want != 0 && want != 3);
238 		break;
239 	case NL80211_BAND_60GHZ:
240 		/* check for mandatory HT MCS 1..4 */
241 		WARN_ON(!sband->ht_cap.ht_supported);
242 		WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
243 		break;
244 	case NL80211_BAND_S1GHZ:
245 		/* Figure 9-589bd: 3 means unsupported, so != 3 means at least
246 		 * mandatory is ok.
247 		 */
248 		WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3);
249 		break;
250 	case NUM_NL80211_BANDS:
251 	default:
252 		WARN_ON(1);
253 		break;
254 	}
255 }
256 
ieee80211_set_bitrate_flags(struct wiphy * wiphy)257 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
258 {
259 	enum nl80211_band band;
260 
261 	for (band = 0; band < NUM_NL80211_BANDS; band++)
262 		if (wiphy->bands[band])
263 			set_mandatory_flags_band(wiphy->bands[band]);
264 }
265 
cfg80211_supported_cipher_suite(struct wiphy * wiphy,u32 cipher)266 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
267 {
268 	int i;
269 	for (i = 0; i < wiphy->n_cipher_suites; i++)
270 		if (cipher == wiphy->cipher_suites[i])
271 			return true;
272 	return false;
273 }
274 
cfg80211_validate_key_settings(struct cfg80211_registered_device * rdev,struct key_params * params,int key_idx,bool pairwise,const u8 * mac_addr)275 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
276 				   struct key_params *params, int key_idx,
277 				   bool pairwise, const u8 *mac_addr)
278 {
279 	int max_key_idx = 5;
280 
281 	if (wiphy_ext_feature_isset(&rdev->wiphy,
282 				    NL80211_EXT_FEATURE_BEACON_PROTECTION) ||
283 	    wiphy_ext_feature_isset(&rdev->wiphy,
284 				    NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT))
285 		max_key_idx = 7;
286 	if (key_idx < 0 || key_idx > max_key_idx)
287 		return -EINVAL;
288 
289 	if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
290 		return -EINVAL;
291 
292 	if (pairwise && !mac_addr)
293 		return -EINVAL;
294 
295 	switch (params->cipher) {
296 	case WLAN_CIPHER_SUITE_TKIP:
297 		/* Extended Key ID can only be used with CCMP/GCMP ciphers */
298 		if ((pairwise && key_idx) ||
299 		    params->mode != NL80211_KEY_RX_TX)
300 			return -EINVAL;
301 		break;
302 	case WLAN_CIPHER_SUITE_CCMP:
303 	case WLAN_CIPHER_SUITE_CCMP_256:
304 	case WLAN_CIPHER_SUITE_GCMP:
305 	case WLAN_CIPHER_SUITE_GCMP_256:
306 		/* IEEE802.11-2016 allows only 0 and - when supporting
307 		 * Extended Key ID - 1 as index for pairwise keys.
308 		 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when
309 		 * the driver supports Extended Key ID.
310 		 * @NL80211_KEY_SET_TX can't be set when installing and
311 		 * validating a key.
312 		 */
313 		if ((params->mode == NL80211_KEY_NO_TX && !pairwise) ||
314 		    params->mode == NL80211_KEY_SET_TX)
315 			return -EINVAL;
316 		if (wiphy_ext_feature_isset(&rdev->wiphy,
317 					    NL80211_EXT_FEATURE_EXT_KEY_ID)) {
318 			if (pairwise && (key_idx < 0 || key_idx > 1))
319 				return -EINVAL;
320 		} else if (pairwise && key_idx) {
321 			return -EINVAL;
322 		}
323 		break;
324 	case WLAN_CIPHER_SUITE_AES_CMAC:
325 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
326 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
327 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
328 		/* Disallow BIP (group-only) cipher as pairwise cipher */
329 		if (pairwise)
330 			return -EINVAL;
331 		if (key_idx < 4)
332 			return -EINVAL;
333 		break;
334 	case WLAN_CIPHER_SUITE_WEP40:
335 	case WLAN_CIPHER_SUITE_WEP104:
336 		if (key_idx > 3)
337 			return -EINVAL;
338 	default:
339 		break;
340 	}
341 
342 	switch (params->cipher) {
343 	case WLAN_CIPHER_SUITE_WEP40:
344 		if (params->key_len != WLAN_KEY_LEN_WEP40)
345 			return -EINVAL;
346 		break;
347 	case WLAN_CIPHER_SUITE_TKIP:
348 		if (params->key_len != WLAN_KEY_LEN_TKIP)
349 			return -EINVAL;
350 		break;
351 	case WLAN_CIPHER_SUITE_CCMP:
352 		if (params->key_len != WLAN_KEY_LEN_CCMP)
353 			return -EINVAL;
354 		break;
355 	case WLAN_CIPHER_SUITE_CCMP_256:
356 		if (params->key_len != WLAN_KEY_LEN_CCMP_256)
357 			return -EINVAL;
358 		break;
359 	case WLAN_CIPHER_SUITE_GCMP:
360 		if (params->key_len != WLAN_KEY_LEN_GCMP)
361 			return -EINVAL;
362 		break;
363 	case WLAN_CIPHER_SUITE_GCMP_256:
364 		if (params->key_len != WLAN_KEY_LEN_GCMP_256)
365 			return -EINVAL;
366 		break;
367 	case WLAN_CIPHER_SUITE_WEP104:
368 		if (params->key_len != WLAN_KEY_LEN_WEP104)
369 			return -EINVAL;
370 		break;
371 	case WLAN_CIPHER_SUITE_AES_CMAC:
372 		if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
373 			return -EINVAL;
374 		break;
375 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
376 		if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
377 			return -EINVAL;
378 		break;
379 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
380 		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
381 			return -EINVAL;
382 		break;
383 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
384 		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
385 			return -EINVAL;
386 		break;
387 	default:
388 		/*
389 		 * We don't know anything about this algorithm,
390 		 * allow using it -- but the driver must check
391 		 * all parameters! We still check below whether
392 		 * or not the driver supports this algorithm,
393 		 * of course.
394 		 */
395 		break;
396 	}
397 
398 	if (params->seq) {
399 		switch (params->cipher) {
400 		case WLAN_CIPHER_SUITE_WEP40:
401 		case WLAN_CIPHER_SUITE_WEP104:
402 			/* These ciphers do not use key sequence */
403 			return -EINVAL;
404 		case WLAN_CIPHER_SUITE_TKIP:
405 		case WLAN_CIPHER_SUITE_CCMP:
406 		case WLAN_CIPHER_SUITE_CCMP_256:
407 		case WLAN_CIPHER_SUITE_GCMP:
408 		case WLAN_CIPHER_SUITE_GCMP_256:
409 		case WLAN_CIPHER_SUITE_AES_CMAC:
410 		case WLAN_CIPHER_SUITE_BIP_CMAC_256:
411 		case WLAN_CIPHER_SUITE_BIP_GMAC_128:
412 		case WLAN_CIPHER_SUITE_BIP_GMAC_256:
413 			if (params->seq_len != 6)
414 				return -EINVAL;
415 			break;
416 		}
417 	}
418 
419 	if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
420 		return -EINVAL;
421 
422 	return 0;
423 }
424 
ieee80211_hdrlen(__le16 fc)425 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
426 {
427 	unsigned int hdrlen = 24;
428 
429 	if (ieee80211_is_ext(fc)) {
430 		hdrlen = 4;
431 		goto out;
432 	}
433 
434 	if (ieee80211_is_data(fc)) {
435 		if (ieee80211_has_a4(fc))
436 			hdrlen = 30;
437 		if (ieee80211_is_data_qos(fc)) {
438 			hdrlen += IEEE80211_QOS_CTL_LEN;
439 			if (ieee80211_has_order(fc))
440 				hdrlen += IEEE80211_HT_CTL_LEN;
441 		}
442 		goto out;
443 	}
444 
445 	if (ieee80211_is_mgmt(fc)) {
446 		if (ieee80211_has_order(fc))
447 			hdrlen += IEEE80211_HT_CTL_LEN;
448 		goto out;
449 	}
450 
451 	if (ieee80211_is_ctl(fc)) {
452 		/*
453 		 * ACK and CTS are 10 bytes, all others 16. To see how
454 		 * to get this condition consider
455 		 *   subtype mask:   0b0000000011110000 (0x00F0)
456 		 *   ACK subtype:    0b0000000011010000 (0x00D0)
457 		 *   CTS subtype:    0b0000000011000000 (0x00C0)
458 		 *   bits that matter:         ^^^      (0x00E0)
459 		 *   value of those: 0b0000000011000000 (0x00C0)
460 		 */
461 		if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
462 			hdrlen = 10;
463 		else
464 			hdrlen = 16;
465 	}
466 out:
467 	return hdrlen;
468 }
469 EXPORT_SYMBOL(ieee80211_hdrlen);
470 
ieee80211_get_hdrlen_from_skb(const struct sk_buff * skb)471 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
472 {
473 	const struct ieee80211_hdr *hdr =
474 			(const struct ieee80211_hdr *)skb->data;
475 	unsigned int hdrlen;
476 
477 	if (unlikely(skb->len < 10))
478 		return 0;
479 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
480 	if (unlikely(hdrlen > skb->len))
481 		return 0;
482 	return hdrlen;
483 }
484 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
485 
__ieee80211_get_mesh_hdrlen(u8 flags)486 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
487 {
488 	int ae = flags & MESH_FLAGS_AE;
489 	/* 802.11-2012, 8.2.4.7.3 */
490 	switch (ae) {
491 	default:
492 	case 0:
493 		return 6;
494 	case MESH_FLAGS_AE_A4:
495 		return 12;
496 	case MESH_FLAGS_AE_A5_A6:
497 		return 18;
498 	}
499 }
500 
ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr * meshhdr)501 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
502 {
503 	return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
504 }
505 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
506 
ieee80211_data_to_8023_exthdr(struct sk_buff * skb,struct ethhdr * ehdr,const u8 * addr,enum nl80211_iftype iftype,u8 data_offset)507 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
508 				  const u8 *addr, enum nl80211_iftype iftype,
509 				  u8 data_offset)
510 {
511 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
512 	struct {
513 		u8 hdr[ETH_ALEN] __aligned(2);
514 		__be16 proto;
515 	} payload;
516 	struct ethhdr tmp;
517 	u16 hdrlen;
518 	u8 mesh_flags = 0;
519 
520 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
521 		return -1;
522 
523 	hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
524 	if (skb->len < hdrlen + 8)
525 		return -1;
526 
527 	/* convert IEEE 802.11 header + possible LLC headers into Ethernet
528 	 * header
529 	 * IEEE 802.11 address fields:
530 	 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
531 	 *   0     0   DA    SA    BSSID n/a
532 	 *   0     1   DA    BSSID SA    n/a
533 	 *   1     0   BSSID SA    DA    n/a
534 	 *   1     1   RA    TA    DA    SA
535 	 */
536 	memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
537 	memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
538 
539 	if (iftype == NL80211_IFTYPE_MESH_POINT)
540 		skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
541 
542 	mesh_flags &= MESH_FLAGS_AE;
543 
544 	switch (hdr->frame_control &
545 		cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
546 	case cpu_to_le16(IEEE80211_FCTL_TODS):
547 		if (unlikely(iftype != NL80211_IFTYPE_AP &&
548 			     iftype != NL80211_IFTYPE_AP_VLAN &&
549 			     iftype != NL80211_IFTYPE_P2P_GO))
550 			return -1;
551 		break;
552 	case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
553 		if (unlikely(iftype != NL80211_IFTYPE_WDS &&
554 			     iftype != NL80211_IFTYPE_MESH_POINT &&
555 			     iftype != NL80211_IFTYPE_AP_VLAN &&
556 			     iftype != NL80211_IFTYPE_STATION))
557 			return -1;
558 		if (iftype == NL80211_IFTYPE_MESH_POINT) {
559 			if (mesh_flags == MESH_FLAGS_AE_A4)
560 				return -1;
561 			if (mesh_flags == MESH_FLAGS_AE_A5_A6) {
562 				skb_copy_bits(skb, hdrlen +
563 					offsetof(struct ieee80211s_hdr, eaddr1),
564 					tmp.h_dest, 2 * ETH_ALEN);
565 			}
566 			hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
567 		}
568 		break;
569 	case cpu_to_le16(IEEE80211_FCTL_FROMDS):
570 		if ((iftype != NL80211_IFTYPE_STATION &&
571 		     iftype != NL80211_IFTYPE_P2P_CLIENT &&
572 		     iftype != NL80211_IFTYPE_MESH_POINT) ||
573 		    (is_multicast_ether_addr(tmp.h_dest) &&
574 		     ether_addr_equal(tmp.h_source, addr)))
575 			return -1;
576 		if (iftype == NL80211_IFTYPE_MESH_POINT) {
577 			if (mesh_flags == MESH_FLAGS_AE_A5_A6)
578 				return -1;
579 			if (mesh_flags == MESH_FLAGS_AE_A4)
580 				skb_copy_bits(skb, hdrlen +
581 					offsetof(struct ieee80211s_hdr, eaddr1),
582 					tmp.h_source, ETH_ALEN);
583 			hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
584 		}
585 		break;
586 	case cpu_to_le16(0):
587 		if (iftype != NL80211_IFTYPE_ADHOC &&
588 		    iftype != NL80211_IFTYPE_STATION &&
589 		    iftype != NL80211_IFTYPE_OCB)
590 				return -1;
591 		break;
592 	}
593 
594 	skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
595 	tmp.h_proto = payload.proto;
596 
597 	if (likely((ether_addr_equal(payload.hdr, rfc1042_header) &&
598 		    tmp.h_proto != htons(ETH_P_AARP) &&
599 		    tmp.h_proto != htons(ETH_P_IPX)) ||
600 		   ether_addr_equal(payload.hdr, bridge_tunnel_header)))
601 		/* remove RFC1042 or Bridge-Tunnel encapsulation and
602 		 * replace EtherType */
603 		hdrlen += ETH_ALEN + 2;
604 	else
605 		tmp.h_proto = htons(skb->len - hdrlen);
606 
607 	pskb_pull(skb, hdrlen);
608 
609 	if (!ehdr)
610 		ehdr = skb_push(skb, sizeof(struct ethhdr));
611 	memcpy(ehdr, &tmp, sizeof(tmp));
612 
613 	return 0;
614 }
615 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
616 
617 static void
__frame_add_frag(struct sk_buff * skb,struct page * page,void * ptr,int len,int size)618 __frame_add_frag(struct sk_buff *skb, struct page *page,
619 		 void *ptr, int len, int size)
620 {
621 	struct skb_shared_info *sh = skb_shinfo(skb);
622 	int page_offset;
623 
624 	get_page(page);
625 	page_offset = ptr - page_address(page);
626 	skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
627 }
628 
629 static void
__ieee80211_amsdu_copy_frag(struct sk_buff * skb,struct sk_buff * frame,int offset,int len)630 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
631 			    int offset, int len)
632 {
633 	struct skb_shared_info *sh = skb_shinfo(skb);
634 	const skb_frag_t *frag = &sh->frags[0];
635 	struct page *frag_page;
636 	void *frag_ptr;
637 	int frag_len, frag_size;
638 	int head_size = skb->len - skb->data_len;
639 	int cur_len;
640 
641 	frag_page = virt_to_head_page(skb->head);
642 	frag_ptr = skb->data;
643 	frag_size = head_size;
644 
645 	while (offset >= frag_size) {
646 		offset -= frag_size;
647 		frag_page = skb_frag_page(frag);
648 		frag_ptr = skb_frag_address(frag);
649 		frag_size = skb_frag_size(frag);
650 		frag++;
651 	}
652 
653 	frag_ptr += offset;
654 	frag_len = frag_size - offset;
655 
656 	cur_len = min(len, frag_len);
657 
658 	__frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
659 	len -= cur_len;
660 
661 	while (len > 0) {
662 		frag_len = skb_frag_size(frag);
663 		cur_len = min(len, frag_len);
664 		__frame_add_frag(frame, skb_frag_page(frag),
665 				 skb_frag_address(frag), cur_len, frag_len);
666 		len -= cur_len;
667 		frag++;
668 	}
669 }
670 
671 static struct sk_buff *
__ieee80211_amsdu_copy(struct sk_buff * skb,unsigned int hlen,int offset,int len,bool reuse_frag)672 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
673 		       int offset, int len, bool reuse_frag)
674 {
675 	struct sk_buff *frame;
676 	int cur_len = len;
677 
678 	if (skb->len - offset < len)
679 		return NULL;
680 
681 	/*
682 	 * When reusing framents, copy some data to the head to simplify
683 	 * ethernet header handling and speed up protocol header processing
684 	 * in the stack later.
685 	 */
686 	if (reuse_frag)
687 		cur_len = min_t(int, len, 32);
688 
689 	/*
690 	 * Allocate and reserve two bytes more for payload
691 	 * alignment since sizeof(struct ethhdr) is 14.
692 	 */
693 	frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
694 	if (!frame)
695 		return NULL;
696 
697 	skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
698 	skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
699 
700 	len -= cur_len;
701 	if (!len)
702 		return frame;
703 
704 	offset += cur_len;
705 	__ieee80211_amsdu_copy_frag(skb, frame, offset, len);
706 
707 	return frame;
708 }
709 
ieee80211_amsdu_to_8023s(struct sk_buff * skb,struct sk_buff_head * list,const u8 * addr,enum nl80211_iftype iftype,const unsigned int extra_headroom,const u8 * check_da,const u8 * check_sa)710 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
711 			      const u8 *addr, enum nl80211_iftype iftype,
712 			      const unsigned int extra_headroom,
713 			      const u8 *check_da, const u8 *check_sa)
714 {
715 	unsigned int hlen = ALIGN(extra_headroom, 4);
716 	struct sk_buff *frame = NULL;
717 	u16 ethertype;
718 	u8 *payload;
719 	int offset = 0, remaining;
720 	struct ethhdr eth;
721 	bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
722 	bool reuse_skb = false;
723 	bool last = false;
724 
725 	while (!last) {
726 		unsigned int subframe_len;
727 		int len;
728 		u8 padding;
729 
730 		skb_copy_bits(skb, offset, &eth, sizeof(eth));
731 		len = ntohs(eth.h_proto);
732 		subframe_len = sizeof(struct ethhdr) + len;
733 		padding = (4 - subframe_len) & 0x3;
734 
735 		/* the last MSDU has no padding */
736 		remaining = skb->len - offset;
737 		if (subframe_len > remaining)
738 			goto purge;
739 
740 		offset += sizeof(struct ethhdr);
741 		last = remaining <= subframe_len + padding;
742 
743 		/* FIXME: should we really accept multicast DA? */
744 		if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
745 		     !ether_addr_equal(check_da, eth.h_dest)) ||
746 		    (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
747 			offset += len + padding;
748 			continue;
749 		}
750 
751 		/* reuse skb for the last subframe */
752 		if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
753 			skb_pull(skb, offset);
754 			frame = skb;
755 			reuse_skb = true;
756 		} else {
757 			frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
758 						       reuse_frag);
759 			if (!frame)
760 				goto purge;
761 
762 			offset += len + padding;
763 		}
764 
765 		skb_reset_network_header(frame);
766 		frame->dev = skb->dev;
767 		frame->priority = skb->priority;
768 
769 		payload = frame->data;
770 		ethertype = (payload[6] << 8) | payload[7];
771 		if (likely((ether_addr_equal(payload, rfc1042_header) &&
772 			    ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
773 			   ether_addr_equal(payload, bridge_tunnel_header))) {
774 			eth.h_proto = htons(ethertype);
775 			skb_pull(frame, ETH_ALEN + 2);
776 		}
777 
778 		memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
779 		__skb_queue_tail(list, frame);
780 	}
781 
782 	if (!reuse_skb)
783 		dev_kfree_skb(skb);
784 
785 	return;
786 
787  purge:
788 	__skb_queue_purge(list);
789 	dev_kfree_skb(skb);
790 }
791 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
792 
793 /* Given a data frame determine the 802.1p/1d tag to use. */
cfg80211_classify8021d(struct sk_buff * skb,struct cfg80211_qos_map * qos_map)794 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
795 				    struct cfg80211_qos_map *qos_map)
796 {
797 	unsigned int dscp;
798 	unsigned char vlan_priority;
799 	unsigned int ret;
800 
801 	/* skb->priority values from 256->263 are magic values to
802 	 * directly indicate a specific 802.1d priority.  This is used
803 	 * to allow 802.1d priority to be passed directly in from VLAN
804 	 * tags, etc.
805 	 */
806 	if (skb->priority >= 256 && skb->priority <= 263) {
807 		ret = skb->priority - 256;
808 		goto out;
809 	}
810 
811 	if (skb_vlan_tag_present(skb)) {
812 		vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
813 			>> VLAN_PRIO_SHIFT;
814 		if (vlan_priority > 0) {
815 			ret = vlan_priority;
816 			goto out;
817 		}
818 	}
819 
820 	switch (skb->protocol) {
821 	case htons(ETH_P_IP):
822 		dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
823 		break;
824 	case htons(ETH_P_IPV6):
825 		dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
826 		break;
827 	case htons(ETH_P_MPLS_UC):
828 	case htons(ETH_P_MPLS_MC): {
829 		struct mpls_label mpls_tmp, *mpls;
830 
831 		mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
832 					  sizeof(*mpls), &mpls_tmp);
833 		if (!mpls)
834 			return 0;
835 
836 		ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
837 			>> MPLS_LS_TC_SHIFT;
838 		goto out;
839 	}
840 	case htons(ETH_P_80221):
841 		/* 802.21 is always network control traffic */
842 		return 7;
843 	default:
844 		return 0;
845 	}
846 
847 	if (qos_map) {
848 		unsigned int i, tmp_dscp = dscp >> 2;
849 
850 		for (i = 0; i < qos_map->num_des; i++) {
851 			if (tmp_dscp == qos_map->dscp_exception[i].dscp) {
852 				ret = qos_map->dscp_exception[i].up;
853 				goto out;
854 			}
855 		}
856 
857 		for (i = 0; i < 8; i++) {
858 			if (tmp_dscp >= qos_map->up[i].low &&
859 			    tmp_dscp <= qos_map->up[i].high) {
860 				ret = i;
861 				goto out;
862 			}
863 		}
864 	}
865 
866 	ret = dscp >> 5;
867 out:
868 	return array_index_nospec(ret, IEEE80211_NUM_TIDS);
869 }
870 EXPORT_SYMBOL(cfg80211_classify8021d);
871 
ieee80211_bss_get_elem(struct cfg80211_bss * bss,u8 id)872 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id)
873 {
874 	const struct cfg80211_bss_ies *ies;
875 
876 	ies = rcu_dereference(bss->ies);
877 	if (!ies)
878 		return NULL;
879 
880 	return cfg80211_find_elem(id, ies->data, ies->len);
881 }
882 EXPORT_SYMBOL(ieee80211_bss_get_elem);
883 
cfg80211_upload_connect_keys(struct wireless_dev * wdev)884 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
885 {
886 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
887 	struct net_device *dev = wdev->netdev;
888 	int i;
889 
890 	if (!wdev->connect_keys)
891 		return;
892 
893 	for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
894 		if (!wdev->connect_keys->params[i].cipher)
895 			continue;
896 		if (rdev_add_key(rdev, dev, i, false, NULL,
897 				 &wdev->connect_keys->params[i])) {
898 			netdev_err(dev, "failed to set key %d\n", i);
899 			continue;
900 		}
901 		if (wdev->connect_keys->def == i &&
902 		    rdev_set_default_key(rdev, dev, i, true, true)) {
903 			netdev_err(dev, "failed to set defkey %d\n", i);
904 			continue;
905 		}
906 	}
907 
908 	kfree_sensitive(wdev->connect_keys);
909 	wdev->connect_keys = NULL;
910 }
911 
cfg80211_process_wdev_events(struct wireless_dev * wdev)912 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
913 {
914 	struct cfg80211_event *ev;
915 	unsigned long flags;
916 
917 	spin_lock_irqsave(&wdev->event_lock, flags);
918 	while (!list_empty(&wdev->event_list)) {
919 		ev = list_first_entry(&wdev->event_list,
920 				      struct cfg80211_event, list);
921 		list_del(&ev->list);
922 		spin_unlock_irqrestore(&wdev->event_lock, flags);
923 
924 		wdev_lock(wdev);
925 		switch (ev->type) {
926 		case EVENT_CONNECT_RESULT:
927 			__cfg80211_connect_result(
928 				wdev->netdev,
929 				&ev->cr,
930 				ev->cr.status == WLAN_STATUS_SUCCESS);
931 			break;
932 		case EVENT_ROAMED:
933 			__cfg80211_roamed(wdev, &ev->rm);
934 			break;
935 		case EVENT_DISCONNECTED:
936 			__cfg80211_disconnected(wdev->netdev,
937 						ev->dc.ie, ev->dc.ie_len,
938 						ev->dc.reason,
939 						!ev->dc.locally_generated);
940 			break;
941 		case EVENT_IBSS_JOINED:
942 			__cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
943 					       ev->ij.channel);
944 			break;
945 		case EVENT_STOPPED:
946 			__cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
947 			break;
948 		case EVENT_PORT_AUTHORIZED:
949 			__cfg80211_port_authorized(wdev, ev->pa.bssid);
950 			break;
951 		}
952 		wdev_unlock(wdev);
953 
954 		kfree(ev);
955 
956 		spin_lock_irqsave(&wdev->event_lock, flags);
957 	}
958 	spin_unlock_irqrestore(&wdev->event_lock, flags);
959 }
960 
cfg80211_process_rdev_events(struct cfg80211_registered_device * rdev)961 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
962 {
963 	struct wireless_dev *wdev;
964 
965 	ASSERT_RTNL();
966 
967 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
968 		cfg80211_process_wdev_events(wdev);
969 }
970 
cfg80211_change_iface(struct cfg80211_registered_device * rdev,struct net_device * dev,enum nl80211_iftype ntype,struct vif_params * params)971 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
972 			  struct net_device *dev, enum nl80211_iftype ntype,
973 			  struct vif_params *params)
974 {
975 	int err;
976 	enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
977 
978 	ASSERT_RTNL();
979 
980 	/* don't support changing VLANs, you just re-create them */
981 	if (otype == NL80211_IFTYPE_AP_VLAN)
982 		return -EOPNOTSUPP;
983 
984 	/* cannot change into P2P device or NAN */
985 	if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
986 	    ntype == NL80211_IFTYPE_NAN)
987 		return -EOPNOTSUPP;
988 
989 	if (!rdev->ops->change_virtual_intf ||
990 	    !(rdev->wiphy.interface_modes & (1 << ntype)))
991 		return -EOPNOTSUPP;
992 
993 	/* if it's part of a bridge, reject changing type to station/ibss */
994 	if (netif_is_bridge_port(dev) &&
995 	    (ntype == NL80211_IFTYPE_ADHOC ||
996 	     ntype == NL80211_IFTYPE_STATION ||
997 	     ntype == NL80211_IFTYPE_P2P_CLIENT))
998 		return -EBUSY;
999 
1000 	if (ntype != otype) {
1001 		dev->ieee80211_ptr->use_4addr = false;
1002 		dev->ieee80211_ptr->mesh_id_up_len = 0;
1003 		wdev_lock(dev->ieee80211_ptr);
1004 		rdev_set_qos_map(rdev, dev, NULL);
1005 		wdev_unlock(dev->ieee80211_ptr);
1006 
1007 		switch (otype) {
1008 		case NL80211_IFTYPE_AP:
1009 			cfg80211_stop_ap(rdev, dev, true);
1010 			break;
1011 		case NL80211_IFTYPE_ADHOC:
1012 			cfg80211_leave_ibss(rdev, dev, false);
1013 			break;
1014 		case NL80211_IFTYPE_STATION:
1015 		case NL80211_IFTYPE_P2P_CLIENT:
1016 			wdev_lock(dev->ieee80211_ptr);
1017 			cfg80211_disconnect(rdev, dev,
1018 					    WLAN_REASON_DEAUTH_LEAVING, true);
1019 			wdev_unlock(dev->ieee80211_ptr);
1020 			break;
1021 		case NL80211_IFTYPE_MESH_POINT:
1022 			/* mesh should be handled? */
1023 			break;
1024 		default:
1025 			break;
1026 		}
1027 
1028 		cfg80211_process_rdev_events(rdev);
1029 		cfg80211_mlme_purge_registrations(dev->ieee80211_ptr);
1030 	}
1031 
1032 	err = rdev_change_virtual_intf(rdev, dev, ntype, params);
1033 
1034 	WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1035 
1036 	if (!err && params && params->use_4addr != -1)
1037 		dev->ieee80211_ptr->use_4addr = params->use_4addr;
1038 
1039 	if (!err) {
1040 		dev->priv_flags &= ~IFF_DONT_BRIDGE;
1041 		switch (ntype) {
1042 		case NL80211_IFTYPE_STATION:
1043 			if (dev->ieee80211_ptr->use_4addr)
1044 				break;
1045 			fallthrough;
1046 		case NL80211_IFTYPE_OCB:
1047 		case NL80211_IFTYPE_P2P_CLIENT:
1048 		case NL80211_IFTYPE_ADHOC:
1049 			dev->priv_flags |= IFF_DONT_BRIDGE;
1050 			break;
1051 		case NL80211_IFTYPE_P2P_GO:
1052 		case NL80211_IFTYPE_AP:
1053 		case NL80211_IFTYPE_AP_VLAN:
1054 		case NL80211_IFTYPE_WDS:
1055 		case NL80211_IFTYPE_MESH_POINT:
1056 			/* bridging OK */
1057 			break;
1058 		case NL80211_IFTYPE_MONITOR:
1059 			/* monitor can't bridge anyway */
1060 			break;
1061 		case NL80211_IFTYPE_UNSPECIFIED:
1062 		case NUM_NL80211_IFTYPES:
1063 			/* not happening */
1064 			break;
1065 		case NL80211_IFTYPE_P2P_DEVICE:
1066 		case NL80211_IFTYPE_NAN:
1067 			WARN_ON(1);
1068 			break;
1069 		}
1070 	}
1071 
1072 	if (!err && ntype != otype && netif_running(dev)) {
1073 		cfg80211_update_iface_num(rdev, ntype, 1);
1074 		cfg80211_update_iface_num(rdev, otype, -1);
1075 	}
1076 
1077 	return err;
1078 }
1079 
cfg80211_calculate_bitrate_ht(struct rate_info * rate)1080 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1081 {
1082 	int modulation, streams, bitrate;
1083 
1084 	/* the formula below does only work for MCS values smaller than 32 */
1085 	if (WARN_ON_ONCE(rate->mcs >= 32))
1086 		return 0;
1087 
1088 	modulation = rate->mcs & 7;
1089 	streams = (rate->mcs >> 3) + 1;
1090 
1091 	bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1092 
1093 	if (modulation < 4)
1094 		bitrate *= (modulation + 1);
1095 	else if (modulation == 4)
1096 		bitrate *= (modulation + 2);
1097 	else
1098 		bitrate *= (modulation + 3);
1099 
1100 	bitrate *= streams;
1101 
1102 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1103 		bitrate = (bitrate / 9) * 10;
1104 
1105 	/* do NOT round down here */
1106 	return (bitrate + 50000) / 100000;
1107 }
1108 
cfg80211_calculate_bitrate_dmg(struct rate_info * rate)1109 static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate)
1110 {
1111 	static const u32 __mcs2bitrate[] = {
1112 		/* control PHY */
1113 		[0] =   275,
1114 		/* SC PHY */
1115 		[1] =  3850,
1116 		[2] =  7700,
1117 		[3] =  9625,
1118 		[4] = 11550,
1119 		[5] = 12512, /* 1251.25 mbps */
1120 		[6] = 15400,
1121 		[7] = 19250,
1122 		[8] = 23100,
1123 		[9] = 25025,
1124 		[10] = 30800,
1125 		[11] = 38500,
1126 		[12] = 46200,
1127 		/* OFDM PHY */
1128 		[13] =  6930,
1129 		[14] =  8662, /* 866.25 mbps */
1130 		[15] = 13860,
1131 		[16] = 17325,
1132 		[17] = 20790,
1133 		[18] = 27720,
1134 		[19] = 34650,
1135 		[20] = 41580,
1136 		[21] = 45045,
1137 		[22] = 51975,
1138 		[23] = 62370,
1139 		[24] = 67568, /* 6756.75 mbps */
1140 		/* LP-SC PHY */
1141 		[25] =  6260,
1142 		[26] =  8340,
1143 		[27] = 11120,
1144 		[28] = 12510,
1145 		[29] = 16680,
1146 		[30] = 22240,
1147 		[31] = 25030,
1148 	};
1149 
1150 	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1151 		return 0;
1152 
1153 	return __mcs2bitrate[rate->mcs];
1154 }
1155 
cfg80211_calculate_bitrate_edmg(struct rate_info * rate)1156 static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate)
1157 {
1158 	static const u32 __mcs2bitrate[] = {
1159 		/* control PHY */
1160 		[0] =   275,
1161 		/* SC PHY */
1162 		[1] =  3850,
1163 		[2] =  7700,
1164 		[3] =  9625,
1165 		[4] = 11550,
1166 		[5] = 12512, /* 1251.25 mbps */
1167 		[6] = 13475,
1168 		[7] = 15400,
1169 		[8] = 19250,
1170 		[9] = 23100,
1171 		[10] = 25025,
1172 		[11] = 26950,
1173 		[12] = 30800,
1174 		[13] = 38500,
1175 		[14] = 46200,
1176 		[15] = 50050,
1177 		[16] = 53900,
1178 		[17] = 57750,
1179 		[18] = 69300,
1180 		[19] = 75075,
1181 		[20] = 80850,
1182 	};
1183 
1184 	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1185 		return 0;
1186 
1187 	return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch;
1188 }
1189 
cfg80211_calculate_bitrate_vht(struct rate_info * rate)1190 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1191 {
1192 	static const u32 base[4][10] = {
1193 		{   6500000,
1194 		   13000000,
1195 		   19500000,
1196 		   26000000,
1197 		   39000000,
1198 		   52000000,
1199 		   58500000,
1200 		   65000000,
1201 		   78000000,
1202 		/* not in the spec, but some devices use this: */
1203 		   86500000,
1204 		},
1205 		{  13500000,
1206 		   27000000,
1207 		   40500000,
1208 		   54000000,
1209 		   81000000,
1210 		  108000000,
1211 		  121500000,
1212 		  135000000,
1213 		  162000000,
1214 		  180000000,
1215 		},
1216 		{  29300000,
1217 		   58500000,
1218 		   87800000,
1219 		  117000000,
1220 		  175500000,
1221 		  234000000,
1222 		  263300000,
1223 		  292500000,
1224 		  351000000,
1225 		  390000000,
1226 		},
1227 		{  58500000,
1228 		  117000000,
1229 		  175500000,
1230 		  234000000,
1231 		  351000000,
1232 		  468000000,
1233 		  526500000,
1234 		  585000000,
1235 		  702000000,
1236 		  780000000,
1237 		},
1238 	};
1239 	u32 bitrate;
1240 	int idx;
1241 
1242 	if (rate->mcs > 9)
1243 		goto warn;
1244 
1245 	switch (rate->bw) {
1246 	case RATE_INFO_BW_160:
1247 		idx = 3;
1248 		break;
1249 	case RATE_INFO_BW_80:
1250 		idx = 2;
1251 		break;
1252 	case RATE_INFO_BW_40:
1253 		idx = 1;
1254 		break;
1255 	case RATE_INFO_BW_5:
1256 	case RATE_INFO_BW_10:
1257 	default:
1258 		goto warn;
1259 	case RATE_INFO_BW_20:
1260 		idx = 0;
1261 	}
1262 
1263 	bitrate = base[idx][rate->mcs];
1264 	bitrate *= rate->nss;
1265 
1266 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1267 		bitrate = (bitrate / 9) * 10;
1268 
1269 	/* do NOT round down here */
1270 	return (bitrate + 50000) / 100000;
1271  warn:
1272 	WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1273 		  rate->bw, rate->mcs, rate->nss);
1274 	return 0;
1275 }
1276 
cfg80211_calculate_bitrate_he(struct rate_info * rate)1277 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1278 {
1279 #define SCALE 2048
1280 	u16 mcs_divisors[12] = {
1281 		34133, /* 16.666666... */
1282 		17067, /*  8.333333... */
1283 		11378, /*  5.555555... */
1284 		 8533, /*  4.166666... */
1285 		 5689, /*  2.777777... */
1286 		 4267, /*  2.083333... */
1287 		 3923, /*  1.851851... */
1288 		 3413, /*  1.666666... */
1289 		 2844, /*  1.388888... */
1290 		 2560, /*  1.250000... */
1291 		 2276, /*  1.111111... */
1292 		 2048, /*  1.000000... */
1293 	};
1294 	u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1295 	u32 rates_969[3] =  { 480388888, 453700000, 408333333 };
1296 	u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
1297 	u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
1298 	u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
1299 	u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
1300 	u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
1301 	u64 tmp;
1302 	u32 result;
1303 
1304 	if (WARN_ON_ONCE(rate->mcs > 11))
1305 		return 0;
1306 
1307 	if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1308 		return 0;
1309 	if (WARN_ON_ONCE(rate->he_ru_alloc >
1310 			 NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1311 		return 0;
1312 	if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1313 		return 0;
1314 
1315 	if (rate->bw == RATE_INFO_BW_160)
1316 		result = rates_160M[rate->he_gi];
1317 	else if (rate->bw == RATE_INFO_BW_80 ||
1318 		 (rate->bw == RATE_INFO_BW_HE_RU &&
1319 		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1320 		result = rates_969[rate->he_gi];
1321 	else if (rate->bw == RATE_INFO_BW_40 ||
1322 		 (rate->bw == RATE_INFO_BW_HE_RU &&
1323 		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1324 		result = rates_484[rate->he_gi];
1325 	else if (rate->bw == RATE_INFO_BW_20 ||
1326 		 (rate->bw == RATE_INFO_BW_HE_RU &&
1327 		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1328 		result = rates_242[rate->he_gi];
1329 	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1330 		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1331 		result = rates_106[rate->he_gi];
1332 	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1333 		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1334 		result = rates_52[rate->he_gi];
1335 	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1336 		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1337 		result = rates_26[rate->he_gi];
1338 	else {
1339 		WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1340 		     rate->bw, rate->he_ru_alloc);
1341 		return 0;
1342 	}
1343 
1344 	/* now scale to the appropriate MCS */
1345 	tmp = result;
1346 	tmp *= SCALE;
1347 	do_div(tmp, mcs_divisors[rate->mcs]);
1348 	result = tmp;
1349 
1350 	/* and take NSS, DCM into account */
1351 	result = (result * rate->nss) / 8;
1352 	if (rate->he_dcm)
1353 		result /= 2;
1354 
1355 	return result / 10000;
1356 }
1357 
cfg80211_calculate_bitrate(struct rate_info * rate)1358 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1359 {
1360 	if (rate->flags & RATE_INFO_FLAGS_MCS)
1361 		return cfg80211_calculate_bitrate_ht(rate);
1362 	if (rate->flags & RATE_INFO_FLAGS_DMG)
1363 		return cfg80211_calculate_bitrate_dmg(rate);
1364 	if (rate->flags & RATE_INFO_FLAGS_EDMG)
1365 		return cfg80211_calculate_bitrate_edmg(rate);
1366 	if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1367 		return cfg80211_calculate_bitrate_vht(rate);
1368 	if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1369 		return cfg80211_calculate_bitrate_he(rate);
1370 
1371 	return rate->legacy;
1372 }
1373 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1374 
cfg80211_get_p2p_attr(const u8 * ies,unsigned int len,enum ieee80211_p2p_attr_id attr,u8 * buf,unsigned int bufsize)1375 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1376 			  enum ieee80211_p2p_attr_id attr,
1377 			  u8 *buf, unsigned int bufsize)
1378 {
1379 	u8 *out = buf;
1380 	u16 attr_remaining = 0;
1381 	bool desired_attr = false;
1382 	u16 desired_len = 0;
1383 
1384 	while (len > 0) {
1385 		unsigned int iedatalen;
1386 		unsigned int copy;
1387 		const u8 *iedata;
1388 
1389 		if (len < 2)
1390 			return -EILSEQ;
1391 		iedatalen = ies[1];
1392 		if (iedatalen + 2 > len)
1393 			return -EILSEQ;
1394 
1395 		if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1396 			goto cont;
1397 
1398 		if (iedatalen < 4)
1399 			goto cont;
1400 
1401 		iedata = ies + 2;
1402 
1403 		/* check WFA OUI, P2P subtype */
1404 		if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1405 		    iedata[2] != 0x9a || iedata[3] != 0x09)
1406 			goto cont;
1407 
1408 		iedatalen -= 4;
1409 		iedata += 4;
1410 
1411 		/* check attribute continuation into this IE */
1412 		copy = min_t(unsigned int, attr_remaining, iedatalen);
1413 		if (copy && desired_attr) {
1414 			desired_len += copy;
1415 			if (out) {
1416 				memcpy(out, iedata, min(bufsize, copy));
1417 				out += min(bufsize, copy);
1418 				bufsize -= min(bufsize, copy);
1419 			}
1420 
1421 
1422 			if (copy == attr_remaining)
1423 				return desired_len;
1424 		}
1425 
1426 		attr_remaining -= copy;
1427 		if (attr_remaining)
1428 			goto cont;
1429 
1430 		iedatalen -= copy;
1431 		iedata += copy;
1432 
1433 		while (iedatalen > 0) {
1434 			u16 attr_len;
1435 
1436 			/* P2P attribute ID & size must fit */
1437 			if (iedatalen < 3)
1438 				return -EILSEQ;
1439 			desired_attr = iedata[0] == attr;
1440 			attr_len = get_unaligned_le16(iedata + 1);
1441 			iedatalen -= 3;
1442 			iedata += 3;
1443 
1444 			copy = min_t(unsigned int, attr_len, iedatalen);
1445 
1446 			if (desired_attr) {
1447 				desired_len += copy;
1448 				if (out) {
1449 					memcpy(out, iedata, min(bufsize, copy));
1450 					out += min(bufsize, copy);
1451 					bufsize -= min(bufsize, copy);
1452 				}
1453 
1454 				if (copy == attr_len)
1455 					return desired_len;
1456 			}
1457 
1458 			iedata += copy;
1459 			iedatalen -= copy;
1460 			attr_remaining = attr_len - copy;
1461 		}
1462 
1463  cont:
1464 		len -= ies[1] + 2;
1465 		ies += ies[1] + 2;
1466 	}
1467 
1468 	if (attr_remaining && desired_attr)
1469 		return -EILSEQ;
1470 
1471 	return -ENOENT;
1472 }
1473 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1474 
ieee80211_id_in_list(const u8 * ids,int n_ids,u8 id,bool id_ext)1475 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1476 {
1477 	int i;
1478 
1479 	/* Make sure array values are legal */
1480 	if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1481 		return false;
1482 
1483 	i = 0;
1484 	while (i < n_ids) {
1485 		if (ids[i] == WLAN_EID_EXTENSION) {
1486 			if (id_ext && (ids[i + 1] == id))
1487 				return true;
1488 
1489 			i += 2;
1490 			continue;
1491 		}
1492 
1493 		if (ids[i] == id && !id_ext)
1494 			return true;
1495 
1496 		i++;
1497 	}
1498 	return false;
1499 }
1500 
skip_ie(const u8 * ies,size_t ielen,size_t pos)1501 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1502 {
1503 	/* we assume a validly formed IEs buffer */
1504 	u8 len = ies[pos + 1];
1505 
1506 	pos += 2 + len;
1507 
1508 	/* the IE itself must have 255 bytes for fragments to follow */
1509 	if (len < 255)
1510 		return pos;
1511 
1512 	while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1513 		len = ies[pos + 1];
1514 		pos += 2 + len;
1515 	}
1516 
1517 	return pos;
1518 }
1519 
ieee80211_ie_split_ric(const u8 * ies,size_t ielen,const u8 * ids,int n_ids,const u8 * after_ric,int n_after_ric,size_t offset)1520 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1521 			      const u8 *ids, int n_ids,
1522 			      const u8 *after_ric, int n_after_ric,
1523 			      size_t offset)
1524 {
1525 	size_t pos = offset;
1526 
1527 	while (pos < ielen) {
1528 		u8 ext = 0;
1529 
1530 		if (ies[pos] == WLAN_EID_EXTENSION)
1531 			ext = 2;
1532 		if ((pos + ext) >= ielen)
1533 			break;
1534 
1535 		if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1536 					  ies[pos] == WLAN_EID_EXTENSION))
1537 			break;
1538 
1539 		if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1540 			pos = skip_ie(ies, ielen, pos);
1541 
1542 			while (pos < ielen) {
1543 				if (ies[pos] == WLAN_EID_EXTENSION)
1544 					ext = 2;
1545 				else
1546 					ext = 0;
1547 
1548 				if ((pos + ext) >= ielen)
1549 					break;
1550 
1551 				if (!ieee80211_id_in_list(after_ric,
1552 							  n_after_ric,
1553 							  ies[pos + ext],
1554 							  ext == 2))
1555 					pos = skip_ie(ies, ielen, pos);
1556 				else
1557 					break;
1558 			}
1559 		} else {
1560 			pos = skip_ie(ies, ielen, pos);
1561 		}
1562 	}
1563 
1564 	return pos;
1565 }
1566 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1567 
ieee80211_operating_class_to_band(u8 operating_class,enum nl80211_band * band)1568 bool ieee80211_operating_class_to_band(u8 operating_class,
1569 				       enum nl80211_band *band)
1570 {
1571 	switch (operating_class) {
1572 	case 112:
1573 	case 115 ... 127:
1574 	case 128 ... 130:
1575 		*band = NL80211_BAND_5GHZ;
1576 		return true;
1577 	case 131 ... 135:
1578 		*band = NL80211_BAND_6GHZ;
1579 		return true;
1580 	case 81:
1581 	case 82:
1582 	case 83:
1583 	case 84:
1584 		*band = NL80211_BAND_2GHZ;
1585 		return true;
1586 	case 180:
1587 		*band = NL80211_BAND_60GHZ;
1588 		return true;
1589 	}
1590 
1591 	return false;
1592 }
1593 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1594 
ieee80211_chandef_to_operating_class(struct cfg80211_chan_def * chandef,u8 * op_class)1595 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1596 					  u8 *op_class)
1597 {
1598 	u8 vht_opclass;
1599 	u32 freq = chandef->center_freq1;
1600 
1601 	if (freq >= 2412 && freq <= 2472) {
1602 		if (chandef->width > NL80211_CHAN_WIDTH_40)
1603 			return false;
1604 
1605 		/* 2.407 GHz, channels 1..13 */
1606 		if (chandef->width == NL80211_CHAN_WIDTH_40) {
1607 			if (freq > chandef->chan->center_freq)
1608 				*op_class = 83; /* HT40+ */
1609 			else
1610 				*op_class = 84; /* HT40- */
1611 		} else {
1612 			*op_class = 81;
1613 		}
1614 
1615 		return true;
1616 	}
1617 
1618 	if (freq == 2484) {
1619 		/* channel 14 is only for IEEE 802.11b */
1620 		if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
1621 			return false;
1622 
1623 		*op_class = 82; /* channel 14 */
1624 		return true;
1625 	}
1626 
1627 	switch (chandef->width) {
1628 	case NL80211_CHAN_WIDTH_80:
1629 		vht_opclass = 128;
1630 		break;
1631 	case NL80211_CHAN_WIDTH_160:
1632 		vht_opclass = 129;
1633 		break;
1634 	case NL80211_CHAN_WIDTH_80P80:
1635 		vht_opclass = 130;
1636 		break;
1637 	case NL80211_CHAN_WIDTH_10:
1638 	case NL80211_CHAN_WIDTH_5:
1639 		return false; /* unsupported for now */
1640 	default:
1641 		vht_opclass = 0;
1642 		break;
1643 	}
1644 
1645 	/* 5 GHz, channels 36..48 */
1646 	if (freq >= 5180 && freq <= 5240) {
1647 		if (vht_opclass) {
1648 			*op_class = vht_opclass;
1649 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1650 			if (freq > chandef->chan->center_freq)
1651 				*op_class = 116;
1652 			else
1653 				*op_class = 117;
1654 		} else {
1655 			*op_class = 115;
1656 		}
1657 
1658 		return true;
1659 	}
1660 
1661 	/* 5 GHz, channels 52..64 */
1662 	if (freq >= 5260 && freq <= 5320) {
1663 		if (vht_opclass) {
1664 			*op_class = vht_opclass;
1665 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1666 			if (freq > chandef->chan->center_freq)
1667 				*op_class = 119;
1668 			else
1669 				*op_class = 120;
1670 		} else {
1671 			*op_class = 118;
1672 		}
1673 
1674 		return true;
1675 	}
1676 
1677 	/* 5 GHz, channels 100..144 */
1678 	if (freq >= 5500 && freq <= 5720) {
1679 		if (vht_opclass) {
1680 			*op_class = vht_opclass;
1681 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1682 			if (freq > chandef->chan->center_freq)
1683 				*op_class = 122;
1684 			else
1685 				*op_class = 123;
1686 		} else {
1687 			*op_class = 121;
1688 		}
1689 
1690 		return true;
1691 	}
1692 
1693 	/* 5 GHz, channels 149..169 */
1694 	if (freq >= 5745 && freq <= 5845) {
1695 		if (vht_opclass) {
1696 			*op_class = vht_opclass;
1697 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1698 			if (freq > chandef->chan->center_freq)
1699 				*op_class = 126;
1700 			else
1701 				*op_class = 127;
1702 		} else if (freq <= 5805) {
1703 			*op_class = 124;
1704 		} else {
1705 			*op_class = 125;
1706 		}
1707 
1708 		return true;
1709 	}
1710 
1711 	/* 56.16 GHz, channel 1..4 */
1712 	if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
1713 		if (chandef->width >= NL80211_CHAN_WIDTH_40)
1714 			return false;
1715 
1716 		*op_class = 180;
1717 		return true;
1718 	}
1719 
1720 	/* not supported yet */
1721 	return false;
1722 }
1723 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1724 
cfg80211_calculate_bi_data(struct wiphy * wiphy,u32 new_beacon_int,u32 * beacon_int_gcd,bool * beacon_int_different)1725 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1726 				       u32 *beacon_int_gcd,
1727 				       bool *beacon_int_different)
1728 {
1729 	struct wireless_dev *wdev;
1730 
1731 	*beacon_int_gcd = 0;
1732 	*beacon_int_different = false;
1733 
1734 	list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1735 		if (!wdev->beacon_interval)
1736 			continue;
1737 
1738 		if (!*beacon_int_gcd) {
1739 			*beacon_int_gcd = wdev->beacon_interval;
1740 			continue;
1741 		}
1742 
1743 		if (wdev->beacon_interval == *beacon_int_gcd)
1744 			continue;
1745 
1746 		*beacon_int_different = true;
1747 		*beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval);
1748 	}
1749 
1750 	if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1751 		if (*beacon_int_gcd)
1752 			*beacon_int_different = true;
1753 		*beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1754 	}
1755 }
1756 
cfg80211_validate_beacon_int(struct cfg80211_registered_device * rdev,enum nl80211_iftype iftype,u32 beacon_int)1757 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1758 				 enum nl80211_iftype iftype, u32 beacon_int)
1759 {
1760 	/*
1761 	 * This is just a basic pre-condition check; if interface combinations
1762 	 * are possible the driver must already be checking those with a call
1763 	 * to cfg80211_check_combinations(), in which case we'll validate more
1764 	 * through the cfg80211_calculate_bi_data() call and code in
1765 	 * cfg80211_iter_combinations().
1766 	 */
1767 
1768 	if (beacon_int < 10 || beacon_int > 10000)
1769 		return -EINVAL;
1770 
1771 	return 0;
1772 }
1773 
cfg80211_iter_combinations(struct wiphy * wiphy,struct iface_combination_params * params,void (* iter)(const struct ieee80211_iface_combination * c,void * data),void * data)1774 int cfg80211_iter_combinations(struct wiphy *wiphy,
1775 			       struct iface_combination_params *params,
1776 			       void (*iter)(const struct ieee80211_iface_combination *c,
1777 					    void *data),
1778 			       void *data)
1779 {
1780 	const struct ieee80211_regdomain *regdom;
1781 	enum nl80211_dfs_regions region = 0;
1782 	int i, j, iftype;
1783 	int num_interfaces = 0;
1784 	u32 used_iftypes = 0;
1785 	u32 beacon_int_gcd;
1786 	bool beacon_int_different;
1787 
1788 	/*
1789 	 * This is a bit strange, since the iteration used to rely only on
1790 	 * the data given by the driver, but here it now relies on context,
1791 	 * in form of the currently operating interfaces.
1792 	 * This is OK for all current users, and saves us from having to
1793 	 * push the GCD calculations into all the drivers.
1794 	 * In the future, this should probably rely more on data that's in
1795 	 * cfg80211 already - the only thing not would appear to be any new
1796 	 * interfaces (while being brought up) and channel/radar data.
1797 	 */
1798 	cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
1799 				   &beacon_int_gcd, &beacon_int_different);
1800 
1801 	if (params->radar_detect) {
1802 		rcu_read_lock();
1803 		regdom = rcu_dereference(cfg80211_regdomain);
1804 		if (regdom)
1805 			region = regdom->dfs_region;
1806 		rcu_read_unlock();
1807 	}
1808 
1809 	for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1810 		num_interfaces += params->iftype_num[iftype];
1811 		if (params->iftype_num[iftype] > 0 &&
1812 		    !cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1813 			used_iftypes |= BIT(iftype);
1814 	}
1815 
1816 	for (i = 0; i < wiphy->n_iface_combinations; i++) {
1817 		const struct ieee80211_iface_combination *c;
1818 		struct ieee80211_iface_limit *limits;
1819 		u32 all_iftypes = 0;
1820 
1821 		c = &wiphy->iface_combinations[i];
1822 
1823 		if (num_interfaces > c->max_interfaces)
1824 			continue;
1825 		if (params->num_different_channels > c->num_different_channels)
1826 			continue;
1827 
1828 		limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1829 				 GFP_KERNEL);
1830 		if (!limits)
1831 			return -ENOMEM;
1832 
1833 		for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1834 			if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1835 				continue;
1836 			for (j = 0; j < c->n_limits; j++) {
1837 				all_iftypes |= limits[j].types;
1838 				if (!(limits[j].types & BIT(iftype)))
1839 					continue;
1840 				if (limits[j].max < params->iftype_num[iftype])
1841 					goto cont;
1842 				limits[j].max -= params->iftype_num[iftype];
1843 			}
1844 		}
1845 
1846 		if (params->radar_detect !=
1847 			(c->radar_detect_widths & params->radar_detect))
1848 			goto cont;
1849 
1850 		if (params->radar_detect && c->radar_detect_regions &&
1851 		    !(c->radar_detect_regions & BIT(region)))
1852 			goto cont;
1853 
1854 		/* Finally check that all iftypes that we're currently
1855 		 * using are actually part of this combination. If they
1856 		 * aren't then we can't use this combination and have
1857 		 * to continue to the next.
1858 		 */
1859 		if ((all_iftypes & used_iftypes) != used_iftypes)
1860 			goto cont;
1861 
1862 		if (beacon_int_gcd) {
1863 			if (c->beacon_int_min_gcd &&
1864 			    beacon_int_gcd < c->beacon_int_min_gcd)
1865 				goto cont;
1866 			if (!c->beacon_int_min_gcd && beacon_int_different)
1867 				goto cont;
1868 		}
1869 
1870 		/* This combination covered all interface types and
1871 		 * supported the requested numbers, so we're good.
1872 		 */
1873 
1874 		(*iter)(c, data);
1875  cont:
1876 		kfree(limits);
1877 	}
1878 
1879 	return 0;
1880 }
1881 EXPORT_SYMBOL(cfg80211_iter_combinations);
1882 
1883 static void
cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination * c,void * data)1884 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1885 			  void *data)
1886 {
1887 	int *num = data;
1888 	(*num)++;
1889 }
1890 
cfg80211_check_combinations(struct wiphy * wiphy,struct iface_combination_params * params)1891 int cfg80211_check_combinations(struct wiphy *wiphy,
1892 				struct iface_combination_params *params)
1893 {
1894 	int err, num = 0;
1895 
1896 	err = cfg80211_iter_combinations(wiphy, params,
1897 					 cfg80211_iter_sum_ifcombs, &num);
1898 	if (err)
1899 		return err;
1900 	if (num == 0)
1901 		return -EBUSY;
1902 
1903 	return 0;
1904 }
1905 EXPORT_SYMBOL(cfg80211_check_combinations);
1906 
ieee80211_get_ratemask(struct ieee80211_supported_band * sband,const u8 * rates,unsigned int n_rates,u32 * mask)1907 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1908 			   const u8 *rates, unsigned int n_rates,
1909 			   u32 *mask)
1910 {
1911 	int i, j;
1912 
1913 	if (!sband)
1914 		return -EINVAL;
1915 
1916 	if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1917 		return -EINVAL;
1918 
1919 	*mask = 0;
1920 
1921 	for (i = 0; i < n_rates; i++) {
1922 		int rate = (rates[i] & 0x7f) * 5;
1923 		bool found = false;
1924 
1925 		for (j = 0; j < sband->n_bitrates; j++) {
1926 			if (sband->bitrates[j].bitrate == rate) {
1927 				found = true;
1928 				*mask |= BIT(j);
1929 				break;
1930 			}
1931 		}
1932 		if (!found)
1933 			return -EINVAL;
1934 	}
1935 
1936 	/*
1937 	 * mask must have at least one bit set here since we
1938 	 * didn't accept a 0-length rates array nor allowed
1939 	 * entries in the array that didn't exist
1940 	 */
1941 
1942 	return 0;
1943 }
1944 
ieee80211_get_num_supported_channels(struct wiphy * wiphy)1945 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1946 {
1947 	enum nl80211_band band;
1948 	unsigned int n_channels = 0;
1949 
1950 	for (band = 0; band < NUM_NL80211_BANDS; band++)
1951 		if (wiphy->bands[band])
1952 			n_channels += wiphy->bands[band]->n_channels;
1953 
1954 	return n_channels;
1955 }
1956 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1957 
cfg80211_get_station(struct net_device * dev,const u8 * mac_addr,struct station_info * sinfo)1958 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1959 			 struct station_info *sinfo)
1960 {
1961 	struct cfg80211_registered_device *rdev;
1962 	struct wireless_dev *wdev;
1963 
1964 	wdev = dev->ieee80211_ptr;
1965 	if (!wdev)
1966 		return -EOPNOTSUPP;
1967 
1968 	rdev = wiphy_to_rdev(wdev->wiphy);
1969 	if (!rdev->ops->get_station)
1970 		return -EOPNOTSUPP;
1971 
1972 	memset(sinfo, 0, sizeof(*sinfo));
1973 
1974 	return rdev_get_station(rdev, dev, mac_addr, sinfo);
1975 }
1976 EXPORT_SYMBOL(cfg80211_get_station);
1977 
cfg80211_free_nan_func(struct cfg80211_nan_func * f)1978 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
1979 {
1980 	int i;
1981 
1982 	if (!f)
1983 		return;
1984 
1985 	kfree(f->serv_spec_info);
1986 	kfree(f->srf_bf);
1987 	kfree(f->srf_macs);
1988 	for (i = 0; i < f->num_rx_filters; i++)
1989 		kfree(f->rx_filters[i].filter);
1990 
1991 	for (i = 0; i < f->num_tx_filters; i++)
1992 		kfree(f->tx_filters[i].filter);
1993 
1994 	kfree(f->rx_filters);
1995 	kfree(f->tx_filters);
1996 	kfree(f);
1997 }
1998 EXPORT_SYMBOL(cfg80211_free_nan_func);
1999 
cfg80211_does_bw_fit_range(const struct ieee80211_freq_range * freq_range,u32 center_freq_khz,u32 bw_khz)2000 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
2001 				u32 center_freq_khz, u32 bw_khz)
2002 {
2003 	u32 start_freq_khz, end_freq_khz;
2004 
2005 	start_freq_khz = center_freq_khz - (bw_khz / 2);
2006 	end_freq_khz = center_freq_khz + (bw_khz / 2);
2007 
2008 	if (start_freq_khz >= freq_range->start_freq_khz &&
2009 	    end_freq_khz <= freq_range->end_freq_khz)
2010 		return true;
2011 
2012 	return false;
2013 }
2014 
cfg80211_sinfo_alloc_tid_stats(struct station_info * sinfo,gfp_t gfp)2015 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
2016 {
2017 	sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
2018 				sizeof(*(sinfo->pertid)),
2019 				gfp);
2020 	if (!sinfo->pertid)
2021 		return -ENOMEM;
2022 
2023 	return 0;
2024 }
2025 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
2026 
2027 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
2028 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
2029 const unsigned char rfc1042_header[] __aligned(2) =
2030 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
2031 EXPORT_SYMBOL(rfc1042_header);
2032 
2033 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
2034 const unsigned char bridge_tunnel_header[] __aligned(2) =
2035 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
2036 EXPORT_SYMBOL(bridge_tunnel_header);
2037 
2038 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
2039 struct iapp_layer2_update {
2040 	u8 da[ETH_ALEN];	/* broadcast */
2041 	u8 sa[ETH_ALEN];	/* STA addr */
2042 	__be16 len;		/* 6 */
2043 	u8 dsap;		/* 0 */
2044 	u8 ssap;		/* 0 */
2045 	u8 control;
2046 	u8 xid_info[3];
2047 } __packed;
2048 
cfg80211_send_layer2_update(struct net_device * dev,const u8 * addr)2049 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
2050 {
2051 	struct iapp_layer2_update *msg;
2052 	struct sk_buff *skb;
2053 
2054 	/* Send Level 2 Update Frame to update forwarding tables in layer 2
2055 	 * bridge devices */
2056 
2057 	skb = dev_alloc_skb(sizeof(*msg));
2058 	if (!skb)
2059 		return;
2060 	msg = skb_put(skb, sizeof(*msg));
2061 
2062 	/* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
2063 	 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
2064 
2065 	eth_broadcast_addr(msg->da);
2066 	ether_addr_copy(msg->sa, addr);
2067 	msg->len = htons(6);
2068 	msg->dsap = 0;
2069 	msg->ssap = 0x01;	/* NULL LSAP, CR Bit: Response */
2070 	msg->control = 0xaf;	/* XID response lsb.1111F101.
2071 				 * F=0 (no poll command; unsolicited frame) */
2072 	msg->xid_info[0] = 0x81;	/* XID format identifier */
2073 	msg->xid_info[1] = 1;	/* LLC types/classes: Type 1 LLC */
2074 	msg->xid_info[2] = 0;	/* XID sender's receive window size (RW) */
2075 
2076 	skb->dev = dev;
2077 	skb->protocol = eth_type_trans(skb, dev);
2078 	memset(skb->cb, 0, sizeof(skb->cb));
2079 	netif_rx_ni(skb);
2080 }
2081 EXPORT_SYMBOL(cfg80211_send_layer2_update);
2082 
ieee80211_get_vht_max_nss(struct ieee80211_vht_cap * cap,enum ieee80211_vht_chanwidth bw,int mcs,bool ext_nss_bw_capable,unsigned int max_vht_nss)2083 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2084 			      enum ieee80211_vht_chanwidth bw,
2085 			      int mcs, bool ext_nss_bw_capable,
2086 			      unsigned int max_vht_nss)
2087 {
2088 	u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
2089 	int ext_nss_bw;
2090 	int supp_width;
2091 	int i, mcs_encoding;
2092 
2093 	if (map == 0xffff)
2094 		return 0;
2095 
2096 	if (WARN_ON(mcs > 9 || max_vht_nss > 8))
2097 		return 0;
2098 	if (mcs <= 7)
2099 		mcs_encoding = 0;
2100 	else if (mcs == 8)
2101 		mcs_encoding = 1;
2102 	else
2103 		mcs_encoding = 2;
2104 
2105 	if (!max_vht_nss) {
2106 		/* find max_vht_nss for the given MCS */
2107 		for (i = 7; i >= 0; i--) {
2108 			int supp = (map >> (2 * i)) & 3;
2109 
2110 			if (supp == 3)
2111 				continue;
2112 
2113 			if (supp >= mcs_encoding) {
2114 				max_vht_nss = i + 1;
2115 				break;
2116 			}
2117 		}
2118 	}
2119 
2120 	if (!(cap->supp_mcs.tx_mcs_map &
2121 			cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
2122 		return max_vht_nss;
2123 
2124 	ext_nss_bw = le32_get_bits(cap->vht_cap_info,
2125 				   IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
2126 	supp_width = le32_get_bits(cap->vht_cap_info,
2127 				   IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
2128 
2129 	/* if not capable, treat ext_nss_bw as 0 */
2130 	if (!ext_nss_bw_capable)
2131 		ext_nss_bw = 0;
2132 
2133 	/* This is invalid */
2134 	if (supp_width == 3)
2135 		return 0;
2136 
2137 	/* This is an invalid combination so pretend nothing is supported */
2138 	if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
2139 		return 0;
2140 
2141 	/*
2142 	 * Cover all the special cases according to IEEE 802.11-2016
2143 	 * Table 9-250. All other cases are either factor of 1 or not
2144 	 * valid/supported.
2145 	 */
2146 	switch (bw) {
2147 	case IEEE80211_VHT_CHANWIDTH_USE_HT:
2148 	case IEEE80211_VHT_CHANWIDTH_80MHZ:
2149 		if ((supp_width == 1 || supp_width == 2) &&
2150 		    ext_nss_bw == 3)
2151 			return 2 * max_vht_nss;
2152 		break;
2153 	case IEEE80211_VHT_CHANWIDTH_160MHZ:
2154 		if (supp_width == 0 &&
2155 		    (ext_nss_bw == 1 || ext_nss_bw == 2))
2156 			return max_vht_nss / 2;
2157 		if (supp_width == 0 &&
2158 		    ext_nss_bw == 3)
2159 			return (3 * max_vht_nss) / 4;
2160 		if (supp_width == 1 &&
2161 		    ext_nss_bw == 3)
2162 			return 2 * max_vht_nss;
2163 		break;
2164 	case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2165 		if (supp_width == 0 && ext_nss_bw == 1)
2166 			return 0; /* not possible */
2167 		if (supp_width == 0 &&
2168 		    ext_nss_bw == 2)
2169 			return max_vht_nss / 2;
2170 		if (supp_width == 0 &&
2171 		    ext_nss_bw == 3)
2172 			return (3 * max_vht_nss) / 4;
2173 		if (supp_width == 1 &&
2174 		    ext_nss_bw == 0)
2175 			return 0; /* not possible */
2176 		if (supp_width == 1 &&
2177 		    ext_nss_bw == 1)
2178 			return max_vht_nss / 2;
2179 		if (supp_width == 1 &&
2180 		    ext_nss_bw == 2)
2181 			return (3 * max_vht_nss) / 4;
2182 		break;
2183 	}
2184 
2185 	/* not covered or invalid combination received */
2186 	return max_vht_nss;
2187 }
2188 EXPORT_SYMBOL(ieee80211_get_vht_max_nss);
2189 
cfg80211_iftype_allowed(struct wiphy * wiphy,enum nl80211_iftype iftype,bool is_4addr,u8 check_swif)2190 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
2191 			     bool is_4addr, u8 check_swif)
2192 
2193 {
2194 	bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN;
2195 
2196 	switch (check_swif) {
2197 	case 0:
2198 		if (is_vlan && is_4addr)
2199 			return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2200 		return wiphy->interface_modes & BIT(iftype);
2201 	case 1:
2202 		if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan)
2203 			return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2204 		return wiphy->software_iftypes & BIT(iftype);
2205 	default:
2206 		break;
2207 	}
2208 
2209 	return false;
2210 }
2211 EXPORT_SYMBOL(cfg80211_iftype_allowed);
2212