1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * cfg80211 scan result handling
4 *
5 * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2016 Intel Deutschland GmbH
8 * Copyright (C) 2018-2020 Intel Corporation
9 */
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/netdevice.h>
14 #include <linux/wireless.h>
15 #include <linux/nl80211.h>
16 #include <linux/etherdevice.h>
17 #include <linux/crc32.h>
18 #include <linux/bitfield.h>
19 #include <net/arp.h>
20 #include <net/cfg80211.h>
21 #include <net/cfg80211-wext.h>
22 #include <net/iw_handler.h>
23 #include "core.h"
24 #include "nl80211.h"
25 #include "wext-compat.h"
26 #include "rdev-ops.h"
27
28 /**
29 * DOC: BSS tree/list structure
30 *
31 * At the top level, the BSS list is kept in both a list in each
32 * registered device (@bss_list) as well as an RB-tree for faster
33 * lookup. In the RB-tree, entries can be looked up using their
34 * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
35 * for other BSSes.
36 *
37 * Due to the possibility of hidden SSIDs, there's a second level
38 * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
39 * The hidden_list connects all BSSes belonging to a single AP
40 * that has a hidden SSID, and connects beacon and probe response
41 * entries. For a probe response entry for a hidden SSID, the
42 * hidden_beacon_bss pointer points to the BSS struct holding the
43 * beacon's information.
44 *
45 * Reference counting is done for all these references except for
46 * the hidden_list, so that a beacon BSS struct that is otherwise
47 * not referenced has one reference for being on the bss_list and
48 * one for each probe response entry that points to it using the
49 * hidden_beacon_bss pointer. When a BSS struct that has such a
50 * pointer is get/put, the refcount update is also propagated to
51 * the referenced struct, this ensure that it cannot get removed
52 * while somebody is using the probe response version.
53 *
54 * Note that the hidden_beacon_bss pointer never changes, due to
55 * the reference counting. Therefore, no locking is needed for
56 * it.
57 *
58 * Also note that the hidden_beacon_bss pointer is only relevant
59 * if the driver uses something other than the IEs, e.g. private
60 * data stored in the BSS struct, since the beacon IEs are
61 * also linked into the probe response struct.
62 */
63
64 /*
65 * Limit the number of BSS entries stored in mac80211. Each one is
66 * a bit over 4k at most, so this limits to roughly 4-5M of memory.
67 * If somebody wants to really attack this though, they'd likely
68 * use small beacons, and only one type of frame, limiting each of
69 * the entries to a much smaller size (in order to generate more
70 * entries in total, so overhead is bigger.)
71 */
72 static int bss_entries_limit = 1000;
73 module_param(bss_entries_limit, int, 0644);
74 MODULE_PARM_DESC(bss_entries_limit,
75 "limit to number of scan BSS entries (per wiphy, default 1000)");
76
77 #define IEEE80211_SCAN_RESULT_EXPIRE (30 * HZ)
78
79 /**
80 * struct cfg80211_colocated_ap - colocated AP information
81 *
82 * @list: linked list to all colocated aPS
83 * @bssid: BSSID of the reported AP
84 * @ssid: SSID of the reported AP
85 * @ssid_len: length of the ssid
86 * @center_freq: frequency the reported AP is on
87 * @unsolicited_probe: the reported AP is part of an ESS, where all the APs
88 * that operate in the same channel as the reported AP and that might be
89 * detected by a STA receiving this frame, are transmitting unsolicited
90 * Probe Response frames every 20 TUs
91 * @oct_recommended: OCT is recommended to exchange MMPDUs with the reported AP
92 * @same_ssid: the reported AP has the same SSID as the reporting AP
93 * @multi_bss: the reported AP is part of a multiple BSSID set
94 * @transmitted_bssid: the reported AP is the transmitting BSSID
95 * @colocated_ess: all the APs that share the same ESS as the reported AP are
96 * colocated and can be discovered via legacy bands.
97 * @short_ssid_valid: short_ssid is valid and can be used
98 * @short_ssid: the short SSID for this SSID
99 */
100 struct cfg80211_colocated_ap {
101 struct list_head list;
102 u8 bssid[ETH_ALEN];
103 u8 ssid[IEEE80211_MAX_SSID_LEN];
104 size_t ssid_len;
105 u32 short_ssid;
106 u32 center_freq;
107 u8 unsolicited_probe:1,
108 oct_recommended:1,
109 same_ssid:1,
110 multi_bss:1,
111 transmitted_bssid:1,
112 colocated_ess:1,
113 short_ssid_valid:1;
114 };
115
bss_free(struct cfg80211_internal_bss * bss)116 static void bss_free(struct cfg80211_internal_bss *bss)
117 {
118 struct cfg80211_bss_ies *ies;
119
120 if (WARN_ON(atomic_read(&bss->hold)))
121 return;
122
123 ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
124 if (ies && !bss->pub.hidden_beacon_bss)
125 kfree_rcu(ies, rcu_head);
126 ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
127 if (ies)
128 kfree_rcu(ies, rcu_head);
129
130 /*
131 * This happens when the module is removed, it doesn't
132 * really matter any more save for completeness
133 */
134 if (!list_empty(&bss->hidden_list))
135 list_del(&bss->hidden_list);
136
137 kfree(bss);
138 }
139
bss_ref_get(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)140 static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
141 struct cfg80211_internal_bss *bss)
142 {
143 lockdep_assert_held(&rdev->bss_lock);
144
145 bss->refcount++;
146 if (bss->pub.hidden_beacon_bss) {
147 bss = container_of(bss->pub.hidden_beacon_bss,
148 struct cfg80211_internal_bss,
149 pub);
150 bss->refcount++;
151 }
152 if (bss->pub.transmitted_bss) {
153 bss = container_of(bss->pub.transmitted_bss,
154 struct cfg80211_internal_bss,
155 pub);
156 bss->refcount++;
157 }
158 }
159
bss_ref_put(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)160 static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
161 struct cfg80211_internal_bss *bss)
162 {
163 lockdep_assert_held(&rdev->bss_lock);
164
165 if (bss->pub.hidden_beacon_bss) {
166 struct cfg80211_internal_bss *hbss;
167 hbss = container_of(bss->pub.hidden_beacon_bss,
168 struct cfg80211_internal_bss,
169 pub);
170 hbss->refcount--;
171 if (hbss->refcount == 0)
172 bss_free(hbss);
173 }
174
175 if (bss->pub.transmitted_bss) {
176 struct cfg80211_internal_bss *tbss;
177
178 tbss = container_of(bss->pub.transmitted_bss,
179 struct cfg80211_internal_bss,
180 pub);
181 tbss->refcount--;
182 if (tbss->refcount == 0)
183 bss_free(tbss);
184 }
185
186 bss->refcount--;
187 if (bss->refcount == 0)
188 bss_free(bss);
189 }
190
__cfg80211_unlink_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)191 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
192 struct cfg80211_internal_bss *bss)
193 {
194 lockdep_assert_held(&rdev->bss_lock);
195
196 if (!list_empty(&bss->hidden_list)) {
197 /*
198 * don't remove the beacon entry if it has
199 * probe responses associated with it
200 */
201 if (!bss->pub.hidden_beacon_bss)
202 return false;
203 /*
204 * if it's a probe response entry break its
205 * link to the other entries in the group
206 */
207 list_del_init(&bss->hidden_list);
208 }
209
210 list_del_init(&bss->list);
211 list_del_init(&bss->pub.nontrans_list);
212 rb_erase(&bss->rbn, &rdev->bss_tree);
213 rdev->bss_entries--;
214 WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
215 "rdev bss entries[%d]/list[empty:%d] corruption\n",
216 rdev->bss_entries, list_empty(&rdev->bss_list));
217 bss_ref_put(rdev, bss);
218 return true;
219 }
220
cfg80211_is_element_inherited(const struct element * elem,const struct element * non_inherit_elem)221 bool cfg80211_is_element_inherited(const struct element *elem,
222 const struct element *non_inherit_elem)
223 {
224 u8 id_len, ext_id_len, i, loop_len, id;
225 const u8 *list;
226
227 if (elem->id == WLAN_EID_MULTIPLE_BSSID)
228 return false;
229
230 if (!non_inherit_elem || non_inherit_elem->datalen < 2)
231 return true;
232
233 /*
234 * non inheritance element format is:
235 * ext ID (56) | IDs list len | list | extension IDs list len | list
236 * Both lists are optional. Both lengths are mandatory.
237 * This means valid length is:
238 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
239 */
240 id_len = non_inherit_elem->data[1];
241 if (non_inherit_elem->datalen < 3 + id_len)
242 return true;
243
244 ext_id_len = non_inherit_elem->data[2 + id_len];
245 if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
246 return true;
247
248 if (elem->id == WLAN_EID_EXTENSION) {
249 if (!ext_id_len)
250 return true;
251 loop_len = ext_id_len;
252 list = &non_inherit_elem->data[3 + id_len];
253 id = elem->data[0];
254 } else {
255 if (!id_len)
256 return true;
257 loop_len = id_len;
258 list = &non_inherit_elem->data[2];
259 id = elem->id;
260 }
261
262 for (i = 0; i < loop_len; i++) {
263 if (list[i] == id)
264 return false;
265 }
266
267 return true;
268 }
269 EXPORT_SYMBOL(cfg80211_is_element_inherited);
270
cfg80211_gen_new_ie(const u8 * ie,size_t ielen,const u8 * subelement,size_t subie_len,u8 * new_ie,gfp_t gfp)271 static size_t cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
272 const u8 *subelement, size_t subie_len,
273 u8 *new_ie, gfp_t gfp)
274 {
275 u8 *pos, *tmp;
276 const u8 *tmp_old, *tmp_new;
277 const struct element *non_inherit_elem;
278 u8 *sub_copy;
279
280 /* copy subelement as we need to change its content to
281 * mark an ie after it is processed.
282 */
283 sub_copy = kmemdup(subelement, subie_len, gfp);
284 if (!sub_copy)
285 return 0;
286
287 pos = &new_ie[0];
288
289 /* set new ssid */
290 tmp_new = cfg80211_find_ie(WLAN_EID_SSID, sub_copy, subie_len);
291 if (tmp_new) {
292 memcpy(pos, tmp_new, tmp_new[1] + 2);
293 pos += (tmp_new[1] + 2);
294 }
295
296 /* get non inheritance list if exists */
297 non_inherit_elem =
298 cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
299 sub_copy, subie_len);
300
301 /* go through IEs in ie (skip SSID) and subelement,
302 * merge them into new_ie
303 */
304 tmp_old = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
305 tmp_old = (tmp_old) ? tmp_old + tmp_old[1] + 2 : ie;
306
307 while (tmp_old + tmp_old[1] + 2 - ie <= ielen) {
308 if (tmp_old[0] == 0) {
309 tmp_old++;
310 continue;
311 }
312
313 if (tmp_old[0] == WLAN_EID_EXTENSION)
314 tmp = (u8 *)cfg80211_find_ext_ie(tmp_old[2], sub_copy,
315 subie_len);
316 else
317 tmp = (u8 *)cfg80211_find_ie(tmp_old[0], sub_copy,
318 subie_len);
319
320 if (!tmp) {
321 const struct element *old_elem = (void *)tmp_old;
322
323 /* ie in old ie but not in subelement */
324 if (cfg80211_is_element_inherited(old_elem,
325 non_inherit_elem)) {
326 memcpy(pos, tmp_old, tmp_old[1] + 2);
327 pos += tmp_old[1] + 2;
328 }
329 } else {
330 /* ie in transmitting ie also in subelement,
331 * copy from subelement and flag the ie in subelement
332 * as copied (by setting eid field to WLAN_EID_SSID,
333 * which is skipped anyway).
334 * For vendor ie, compare OUI + type + subType to
335 * determine if they are the same ie.
336 */
337 if (tmp_old[0] == WLAN_EID_VENDOR_SPECIFIC) {
338 if (!memcmp(tmp_old + 2, tmp + 2, 5)) {
339 /* same vendor ie, copy from
340 * subelement
341 */
342 memcpy(pos, tmp, tmp[1] + 2);
343 pos += tmp[1] + 2;
344 tmp[0] = WLAN_EID_SSID;
345 } else {
346 memcpy(pos, tmp_old, tmp_old[1] + 2);
347 pos += tmp_old[1] + 2;
348 }
349 } else {
350 /* copy ie from subelement into new ie */
351 memcpy(pos, tmp, tmp[1] + 2);
352 pos += tmp[1] + 2;
353 tmp[0] = WLAN_EID_SSID;
354 }
355 }
356
357 if (tmp_old + tmp_old[1] + 2 - ie == ielen)
358 break;
359
360 tmp_old += tmp_old[1] + 2;
361 }
362
363 /* go through subelement again to check if there is any ie not
364 * copied to new ie, skip ssid, capability, bssid-index ie
365 */
366 tmp_new = sub_copy;
367 while (tmp_new + tmp_new[1] + 2 - sub_copy <= subie_len) {
368 if (!(tmp_new[0] == WLAN_EID_NON_TX_BSSID_CAP ||
369 tmp_new[0] == WLAN_EID_SSID)) {
370 memcpy(pos, tmp_new, tmp_new[1] + 2);
371 pos += tmp_new[1] + 2;
372 }
373 if (tmp_new + tmp_new[1] + 2 - sub_copy == subie_len)
374 break;
375 tmp_new += tmp_new[1] + 2;
376 }
377
378 kfree(sub_copy);
379 return pos - new_ie;
380 }
381
is_bss(struct cfg80211_bss * a,const u8 * bssid,const u8 * ssid,size_t ssid_len)382 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
383 const u8 *ssid, size_t ssid_len)
384 {
385 const struct cfg80211_bss_ies *ies;
386 const u8 *ssidie;
387
388 if (bssid && !ether_addr_equal(a->bssid, bssid))
389 return false;
390
391 if (!ssid)
392 return true;
393
394 ies = rcu_access_pointer(a->ies);
395 if (!ies)
396 return false;
397 ssidie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
398 if (!ssidie)
399 return false;
400 if (ssidie[1] != ssid_len)
401 return false;
402 return memcmp(ssidie + 2, ssid, ssid_len) == 0;
403 }
404
405 static int
cfg80211_add_nontrans_list(struct cfg80211_bss * trans_bss,struct cfg80211_bss * nontrans_bss)406 cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
407 struct cfg80211_bss *nontrans_bss)
408 {
409 const u8 *ssid;
410 size_t ssid_len;
411 struct cfg80211_bss *bss = NULL;
412
413 rcu_read_lock();
414 ssid = ieee80211_bss_get_ie(nontrans_bss, WLAN_EID_SSID);
415 if (!ssid) {
416 rcu_read_unlock();
417 return -EINVAL;
418 }
419 ssid_len = ssid[1];
420 ssid = ssid + 2;
421 rcu_read_unlock();
422
423 /* check if nontrans_bss is in the list */
424 list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
425 if (is_bss(bss, nontrans_bss->bssid, ssid, ssid_len))
426 return 0;
427 }
428
429 /* add to the list */
430 list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
431 return 0;
432 }
433
__cfg80211_bss_expire(struct cfg80211_registered_device * rdev,unsigned long expire_time)434 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
435 unsigned long expire_time)
436 {
437 struct cfg80211_internal_bss *bss, *tmp;
438 bool expired = false;
439
440 lockdep_assert_held(&rdev->bss_lock);
441
442 list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
443 if (atomic_read(&bss->hold))
444 continue;
445 if (!time_after(expire_time, bss->ts))
446 continue;
447
448 if (__cfg80211_unlink_bss(rdev, bss))
449 expired = true;
450 }
451
452 if (expired)
453 rdev->bss_generation++;
454 }
455
cfg80211_bss_expire_oldest(struct cfg80211_registered_device * rdev)456 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
457 {
458 struct cfg80211_internal_bss *bss, *oldest = NULL;
459 bool ret;
460
461 lockdep_assert_held(&rdev->bss_lock);
462
463 list_for_each_entry(bss, &rdev->bss_list, list) {
464 if (atomic_read(&bss->hold))
465 continue;
466
467 if (!list_empty(&bss->hidden_list) &&
468 !bss->pub.hidden_beacon_bss)
469 continue;
470
471 if (oldest && time_before(oldest->ts, bss->ts))
472 continue;
473 oldest = bss;
474 }
475
476 if (WARN_ON(!oldest))
477 return false;
478
479 /*
480 * The callers make sure to increase rdev->bss_generation if anything
481 * gets removed (and a new entry added), so there's no need to also do
482 * it here.
483 */
484
485 ret = __cfg80211_unlink_bss(rdev, oldest);
486 WARN_ON(!ret);
487 return ret;
488 }
489
cfg80211_parse_bss_param(u8 data,struct cfg80211_colocated_ap * coloc_ap)490 static u8 cfg80211_parse_bss_param(u8 data,
491 struct cfg80211_colocated_ap *coloc_ap)
492 {
493 coloc_ap->oct_recommended =
494 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED);
495 coloc_ap->same_ssid =
496 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID);
497 coloc_ap->multi_bss =
498 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID);
499 coloc_ap->transmitted_bssid =
500 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID);
501 coloc_ap->unsolicited_probe =
502 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE);
503 coloc_ap->colocated_ess =
504 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS);
505
506 return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP);
507 }
508
cfg80211_calc_short_ssid(const struct cfg80211_bss_ies * ies,const struct element ** elem,u32 * s_ssid)509 static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies,
510 const struct element **elem, u32 *s_ssid)
511 {
512
513 *elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
514 if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN)
515 return -EINVAL;
516
517 *s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen);
518 return 0;
519 }
520
cfg80211_free_coloc_ap_list(struct list_head * coloc_ap_list)521 static void cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list)
522 {
523 struct cfg80211_colocated_ap *ap, *tmp_ap;
524
525 list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) {
526 list_del(&ap->list);
527 kfree(ap);
528 }
529 }
530
cfg80211_parse_ap_info(struct cfg80211_colocated_ap * entry,const u8 * pos,u8 length,const struct element * ssid_elem,int s_ssid_tmp)531 static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry,
532 const u8 *pos, u8 length,
533 const struct element *ssid_elem,
534 int s_ssid_tmp)
535 {
536 /* skip the TBTT offset */
537 pos++;
538
539 memcpy(entry->bssid, pos, ETH_ALEN);
540 pos += ETH_ALEN;
541
542 if (length == IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM) {
543 memcpy(&entry->short_ssid, pos,
544 sizeof(entry->short_ssid));
545 entry->short_ssid_valid = true;
546 pos += 4;
547 }
548
549 /* skip non colocated APs */
550 if (!cfg80211_parse_bss_param(*pos, entry))
551 return -EINVAL;
552 pos++;
553
554 if (length == IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM) {
555 /*
556 * no information about the short ssid. Consider the entry valid
557 * for now. It would later be dropped in case there are explicit
558 * SSIDs that need to be matched
559 */
560 if (!entry->same_ssid)
561 return 0;
562 }
563
564 if (entry->same_ssid) {
565 entry->short_ssid = s_ssid_tmp;
566 entry->short_ssid_valid = true;
567
568 /*
569 * This is safe because we validate datalen in
570 * cfg80211_parse_colocated_ap(), before calling this
571 * function.
572 */
573 memcpy(&entry->ssid, &ssid_elem->data,
574 ssid_elem->datalen);
575 entry->ssid_len = ssid_elem->datalen;
576 }
577 return 0;
578 }
579
cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies * ies,struct list_head * list)580 static int cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies,
581 struct list_head *list)
582 {
583 struct ieee80211_neighbor_ap_info *ap_info;
584 const struct element *elem, *ssid_elem;
585 const u8 *pos, *end;
586 u32 s_ssid_tmp;
587 int n_coloc = 0, ret;
588 LIST_HEAD(ap_list);
589
590 elem = cfg80211_find_elem(WLAN_EID_REDUCED_NEIGHBOR_REPORT, ies->data,
591 ies->len);
592 if (!elem || elem->datalen > IEEE80211_MAX_SSID_LEN)
593 return 0;
594
595 pos = elem->data;
596 end = pos + elem->datalen;
597
598 ret = cfg80211_calc_short_ssid(ies, &ssid_elem, &s_ssid_tmp);
599 if (ret)
600 return ret;
601
602 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */
603 while (pos + sizeof(*ap_info) <= end) {
604 enum nl80211_band band;
605 int freq;
606 u8 length, i, count;
607
608 ap_info = (void *)pos;
609 count = u8_get_bits(ap_info->tbtt_info_hdr,
610 IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1;
611 length = ap_info->tbtt_info_len;
612
613 pos += sizeof(*ap_info);
614
615 if (!ieee80211_operating_class_to_band(ap_info->op_class,
616 &band))
617 break;
618
619 freq = ieee80211_channel_to_frequency(ap_info->channel, band);
620
621 if (end - pos < count * ap_info->tbtt_info_len)
622 break;
623
624 /*
625 * TBTT info must include bss param + BSSID +
626 * (short SSID or same_ssid bit to be set).
627 * ignore other options, and move to the
628 * next AP info
629 */
630 if (band != NL80211_BAND_6GHZ ||
631 (length != IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM &&
632 length < IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM)) {
633 pos += count * ap_info->tbtt_info_len;
634 continue;
635 }
636
637 for (i = 0; i < count; i++) {
638 struct cfg80211_colocated_ap *entry;
639
640 entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
641 GFP_ATOMIC);
642
643 if (!entry)
644 break;
645
646 entry->center_freq = freq;
647
648 if (!cfg80211_parse_ap_info(entry, pos, length,
649 ssid_elem, s_ssid_tmp)) {
650 n_coloc++;
651 list_add_tail(&entry->list, &ap_list);
652 } else {
653 kfree(entry);
654 }
655
656 pos += ap_info->tbtt_info_len;
657 }
658 }
659
660 if (pos != end) {
661 cfg80211_free_coloc_ap_list(&ap_list);
662 return 0;
663 }
664
665 list_splice_tail(&ap_list, list);
666 return n_coloc;
667 }
668
cfg80211_scan_req_add_chan(struct cfg80211_scan_request * request,struct ieee80211_channel * chan,bool add_to_6ghz)669 static void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request,
670 struct ieee80211_channel *chan,
671 bool add_to_6ghz)
672 {
673 int i;
674 u32 n_channels = request->n_channels;
675 struct cfg80211_scan_6ghz_params *params =
676 &request->scan_6ghz_params[request->n_6ghz_params];
677
678 for (i = 0; i < n_channels; i++) {
679 if (request->channels[i] == chan) {
680 if (add_to_6ghz)
681 params->channel_idx = i;
682 return;
683 }
684 }
685
686 request->channels[n_channels] = chan;
687 if (add_to_6ghz)
688 request->scan_6ghz_params[request->n_6ghz_params].channel_idx =
689 n_channels;
690
691 request->n_channels++;
692 }
693
cfg80211_find_ssid_match(struct cfg80211_colocated_ap * ap,struct cfg80211_scan_request * request)694 static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap,
695 struct cfg80211_scan_request *request)
696 {
697 u8 i;
698 u32 s_ssid;
699
700 for (i = 0; i < request->n_ssids; i++) {
701 /* wildcard ssid in the scan request */
702 if (!request->ssids[i].ssid_len)
703 return true;
704
705 if (ap->ssid_len &&
706 ap->ssid_len == request->ssids[i].ssid_len) {
707 if (!memcmp(request->ssids[i].ssid, ap->ssid,
708 ap->ssid_len))
709 return true;
710 } else if (ap->short_ssid_valid) {
711 s_ssid = ~crc32_le(~0, request->ssids[i].ssid,
712 request->ssids[i].ssid_len);
713
714 if (ap->short_ssid == s_ssid)
715 return true;
716 }
717 }
718
719 return false;
720 }
721
cfg80211_scan_6ghz(struct cfg80211_registered_device * rdev)722 static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev)
723 {
724 u8 i;
725 struct cfg80211_colocated_ap *ap;
726 int n_channels, count = 0, err;
727 struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req;
728 LIST_HEAD(coloc_ap_list);
729 bool need_scan_psc;
730 const struct ieee80211_sband_iftype_data *iftd;
731
732 rdev_req->scan_6ghz = true;
733
734 if (!rdev->wiphy.bands[NL80211_BAND_6GHZ])
735 return -EOPNOTSUPP;
736
737 iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ],
738 rdev_req->wdev->iftype);
739 if (!iftd || !iftd->he_cap.has_he)
740 return -EOPNOTSUPP;
741
742 n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels;
743
744 if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) {
745 struct cfg80211_internal_bss *intbss;
746
747 spin_lock_bh(&rdev->bss_lock);
748 list_for_each_entry(intbss, &rdev->bss_list, list) {
749 struct cfg80211_bss *res = &intbss->pub;
750 const struct cfg80211_bss_ies *ies;
751
752 ies = rcu_access_pointer(res->ies);
753 count += cfg80211_parse_colocated_ap(ies,
754 &coloc_ap_list);
755 }
756 spin_unlock_bh(&rdev->bss_lock);
757 }
758
759 request = kzalloc(struct_size(request, channels, n_channels) +
760 sizeof(*request->scan_6ghz_params) * count,
761 GFP_KERNEL);
762 if (!request) {
763 cfg80211_free_coloc_ap_list(&coloc_ap_list);
764 return -ENOMEM;
765 }
766
767 *request = *rdev_req;
768 request->n_channels = 0;
769 request->scan_6ghz_params =
770 (void *)&request->channels[n_channels];
771
772 /*
773 * PSC channels should not be scanned if all the reported co-located APs
774 * are indicating that all APs in the same ESS are co-located
775 */
776 if (count) {
777 need_scan_psc = false;
778
779 list_for_each_entry(ap, &coloc_ap_list, list) {
780 if (!ap->colocated_ess) {
781 need_scan_psc = true;
782 break;
783 }
784 }
785 } else {
786 need_scan_psc = true;
787 }
788
789 /*
790 * add to the scan request the channels that need to be scanned
791 * regardless of the collocated APs (PSC channels or all channels
792 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set)
793 */
794 for (i = 0; i < rdev_req->n_channels; i++) {
795 if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ &&
796 ((need_scan_psc &&
797 cfg80211_channel_is_psc(rdev_req->channels[i])) ||
798 !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) {
799 cfg80211_scan_req_add_chan(request,
800 rdev_req->channels[i],
801 false);
802 }
803 }
804
805 if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))
806 goto skip;
807
808 list_for_each_entry(ap, &coloc_ap_list, list) {
809 bool found = false;
810 struct cfg80211_scan_6ghz_params *scan_6ghz_params =
811 &request->scan_6ghz_params[request->n_6ghz_params];
812 struct ieee80211_channel *chan =
813 ieee80211_get_channel(&rdev->wiphy, ap->center_freq);
814
815 if (!chan || chan->flags & IEEE80211_CHAN_DISABLED)
816 continue;
817
818 for (i = 0; i < rdev_req->n_channels; i++) {
819 if (rdev_req->channels[i] == chan)
820 found = true;
821 }
822
823 if (!found)
824 continue;
825
826 if (request->n_ssids > 0 &&
827 !cfg80211_find_ssid_match(ap, request))
828 continue;
829
830 cfg80211_scan_req_add_chan(request, chan, true);
831 memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN);
832 scan_6ghz_params->short_ssid = ap->short_ssid;
833 scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid;
834 scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe;
835
836 /*
837 * If a PSC channel is added to the scan and 'need_scan_psc' is
838 * set to false, then all the APs that the scan logic is
839 * interested with on the channel are collocated and thus there
840 * is no need to perform the initial PSC channel listen.
841 */
842 if (cfg80211_channel_is_psc(chan) && !need_scan_psc)
843 scan_6ghz_params->psc_no_listen = true;
844
845 request->n_6ghz_params++;
846 }
847
848 skip:
849 cfg80211_free_coloc_ap_list(&coloc_ap_list);
850
851 if (request->n_channels) {
852 struct cfg80211_scan_request *old = rdev->int_scan_req;
853
854 rdev->int_scan_req = request;
855
856 /*
857 * If this scan follows a previous scan, save the scan start
858 * info from the first part of the scan
859 */
860 if (old)
861 rdev->int_scan_req->info = old->info;
862
863 err = rdev_scan(rdev, request);
864 if (err) {
865 rdev->int_scan_req = old;
866 kfree(request);
867 } else {
868 kfree(old);
869 }
870
871 return err;
872 }
873
874 kfree(request);
875 return -EINVAL;
876 }
877
cfg80211_scan(struct cfg80211_registered_device * rdev)878 int cfg80211_scan(struct cfg80211_registered_device *rdev)
879 {
880 struct cfg80211_scan_request *request;
881 struct cfg80211_scan_request *rdev_req = rdev->scan_req;
882 u32 n_channels = 0, idx, i;
883
884 if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ))
885 return rdev_scan(rdev, rdev_req);
886
887 for (i = 0; i < rdev_req->n_channels; i++) {
888 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
889 n_channels++;
890 }
891
892 if (!n_channels)
893 return cfg80211_scan_6ghz(rdev);
894
895 request = kzalloc(struct_size(request, channels, n_channels),
896 GFP_KERNEL);
897 if (!request)
898 return -ENOMEM;
899
900 *request = *rdev_req;
901 request->n_channels = n_channels;
902
903 for (i = idx = 0; i < rdev_req->n_channels; i++) {
904 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
905 request->channels[idx++] = rdev_req->channels[i];
906 }
907
908 rdev_req->scan_6ghz = false;
909 rdev->int_scan_req = request;
910 return rdev_scan(rdev, request);
911 }
912
___cfg80211_scan_done(struct cfg80211_registered_device * rdev,bool send_message)913 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
914 bool send_message)
915 {
916 struct cfg80211_scan_request *request, *rdev_req;
917 struct wireless_dev *wdev;
918 struct sk_buff *msg;
919 #ifdef CONFIG_CFG80211_WEXT
920 union iwreq_data wrqu;
921 #endif
922
923 ASSERT_RTNL();
924
925 if (rdev->scan_msg) {
926 nl80211_send_scan_msg(rdev, rdev->scan_msg);
927 rdev->scan_msg = NULL;
928 return;
929 }
930
931 rdev_req = rdev->scan_req;
932 if (!rdev_req)
933 return;
934
935 wdev = rdev_req->wdev;
936 request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req;
937
938 if (wdev_running(wdev) &&
939 (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) &&
940 !rdev_req->scan_6ghz && !request->info.aborted &&
941 !cfg80211_scan_6ghz(rdev))
942 return;
943
944 /*
945 * This must be before sending the other events!
946 * Otherwise, wpa_supplicant gets completely confused with
947 * wext events.
948 */
949 if (wdev->netdev)
950 cfg80211_sme_scan_done(wdev->netdev);
951
952 if (!request->info.aborted &&
953 request->flags & NL80211_SCAN_FLAG_FLUSH) {
954 /* flush entries from previous scans */
955 spin_lock_bh(&rdev->bss_lock);
956 __cfg80211_bss_expire(rdev, request->scan_start);
957 spin_unlock_bh(&rdev->bss_lock);
958 }
959
960 msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
961
962 #ifdef CONFIG_CFG80211_WEXT
963 if (wdev->netdev && !request->info.aborted) {
964 memset(&wrqu, 0, sizeof(wrqu));
965
966 wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
967 }
968 #endif
969
970 if (wdev->netdev)
971 dev_put(wdev->netdev);
972
973 kfree(rdev->int_scan_req);
974 rdev->int_scan_req = NULL;
975
976 kfree(rdev->scan_req);
977 rdev->scan_req = NULL;
978
979 if (!send_message)
980 rdev->scan_msg = msg;
981 else
982 nl80211_send_scan_msg(rdev, msg);
983 }
984
__cfg80211_scan_done(struct work_struct * wk)985 void __cfg80211_scan_done(struct work_struct *wk)
986 {
987 struct cfg80211_registered_device *rdev;
988
989 rdev = container_of(wk, struct cfg80211_registered_device,
990 scan_done_wk);
991
992 rtnl_lock();
993 ___cfg80211_scan_done(rdev, true);
994 rtnl_unlock();
995 }
996
cfg80211_scan_done(struct cfg80211_scan_request * request,struct cfg80211_scan_info * info)997 void cfg80211_scan_done(struct cfg80211_scan_request *request,
998 struct cfg80211_scan_info *info)
999 {
1000 struct cfg80211_scan_info old_info = request->info;
1001
1002 trace_cfg80211_scan_done(request, info);
1003 WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req &&
1004 request != wiphy_to_rdev(request->wiphy)->int_scan_req);
1005
1006 request->info = *info;
1007
1008 /*
1009 * In case the scan is split, the scan_start_tsf and tsf_bssid should
1010 * be of the first part. In such a case old_info.scan_start_tsf should
1011 * be non zero.
1012 */
1013 if (request->scan_6ghz && old_info.scan_start_tsf) {
1014 request->info.scan_start_tsf = old_info.scan_start_tsf;
1015 memcpy(request->info.tsf_bssid, old_info.tsf_bssid,
1016 sizeof(request->info.tsf_bssid));
1017 }
1018
1019 request->notified = true;
1020 queue_work(cfg80211_wq, &wiphy_to_rdev(request->wiphy)->scan_done_wk);
1021 }
1022 EXPORT_SYMBOL(cfg80211_scan_done);
1023
cfg80211_add_sched_scan_req(struct cfg80211_registered_device * rdev,struct cfg80211_sched_scan_request * req)1024 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
1025 struct cfg80211_sched_scan_request *req)
1026 {
1027 ASSERT_RTNL();
1028
1029 list_add_rcu(&req->list, &rdev->sched_scan_req_list);
1030 }
1031
cfg80211_del_sched_scan_req(struct cfg80211_registered_device * rdev,struct cfg80211_sched_scan_request * req)1032 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
1033 struct cfg80211_sched_scan_request *req)
1034 {
1035 ASSERT_RTNL();
1036
1037 list_del_rcu(&req->list);
1038 kfree_rcu(req, rcu_head);
1039 }
1040
1041 static struct cfg80211_sched_scan_request *
cfg80211_find_sched_scan_req(struct cfg80211_registered_device * rdev,u64 reqid)1042 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
1043 {
1044 struct cfg80211_sched_scan_request *pos;
1045
1046 list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
1047 lockdep_rtnl_is_held()) {
1048 if (pos->reqid == reqid)
1049 return pos;
1050 }
1051 return NULL;
1052 }
1053
1054 /*
1055 * Determines if a scheduled scan request can be handled. When a legacy
1056 * scheduled scan is running no other scheduled scan is allowed regardless
1057 * whether the request is for legacy or multi-support scan. When a multi-support
1058 * scheduled scan is running a request for legacy scan is not allowed. In this
1059 * case a request for multi-support scan can be handled if resources are
1060 * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
1061 */
cfg80211_sched_scan_req_possible(struct cfg80211_registered_device * rdev,bool want_multi)1062 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
1063 bool want_multi)
1064 {
1065 struct cfg80211_sched_scan_request *pos;
1066 int i = 0;
1067
1068 list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
1069 /* request id zero means legacy in progress */
1070 if (!i && !pos->reqid)
1071 return -EINPROGRESS;
1072 i++;
1073 }
1074
1075 if (i) {
1076 /* no legacy allowed when multi request(s) are active */
1077 if (!want_multi)
1078 return -EINPROGRESS;
1079
1080 /* resource limit reached */
1081 if (i == rdev->wiphy.max_sched_scan_reqs)
1082 return -ENOSPC;
1083 }
1084 return 0;
1085 }
1086
cfg80211_sched_scan_results_wk(struct work_struct * work)1087 void cfg80211_sched_scan_results_wk(struct work_struct *work)
1088 {
1089 struct cfg80211_registered_device *rdev;
1090 struct cfg80211_sched_scan_request *req, *tmp;
1091
1092 rdev = container_of(work, struct cfg80211_registered_device,
1093 sched_scan_res_wk);
1094
1095 rtnl_lock();
1096 list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
1097 if (req->report_results) {
1098 req->report_results = false;
1099 if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
1100 /* flush entries from previous scans */
1101 spin_lock_bh(&rdev->bss_lock);
1102 __cfg80211_bss_expire(rdev, req->scan_start);
1103 spin_unlock_bh(&rdev->bss_lock);
1104 req->scan_start = jiffies;
1105 }
1106 nl80211_send_sched_scan(req,
1107 NL80211_CMD_SCHED_SCAN_RESULTS);
1108 }
1109 }
1110 rtnl_unlock();
1111 }
1112
cfg80211_sched_scan_results(struct wiphy * wiphy,u64 reqid)1113 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
1114 {
1115 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1116 struct cfg80211_sched_scan_request *request;
1117
1118 trace_cfg80211_sched_scan_results(wiphy, reqid);
1119 /* ignore if we're not scanning */
1120
1121 rcu_read_lock();
1122 request = cfg80211_find_sched_scan_req(rdev, reqid);
1123 if (request) {
1124 request->report_results = true;
1125 queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
1126 }
1127 rcu_read_unlock();
1128 }
1129 EXPORT_SYMBOL(cfg80211_sched_scan_results);
1130
cfg80211_sched_scan_stopped_rtnl(struct wiphy * wiphy,u64 reqid)1131 void cfg80211_sched_scan_stopped_rtnl(struct wiphy *wiphy, u64 reqid)
1132 {
1133 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1134
1135 ASSERT_RTNL();
1136
1137 trace_cfg80211_sched_scan_stopped(wiphy, reqid);
1138
1139 __cfg80211_stop_sched_scan(rdev, reqid, true);
1140 }
1141 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_rtnl);
1142
cfg80211_sched_scan_stopped(struct wiphy * wiphy,u64 reqid)1143 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
1144 {
1145 rtnl_lock();
1146 cfg80211_sched_scan_stopped_rtnl(wiphy, reqid);
1147 rtnl_unlock();
1148 }
1149 EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
1150
cfg80211_stop_sched_scan_req(struct cfg80211_registered_device * rdev,struct cfg80211_sched_scan_request * req,bool driver_initiated)1151 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
1152 struct cfg80211_sched_scan_request *req,
1153 bool driver_initiated)
1154 {
1155 ASSERT_RTNL();
1156
1157 if (!driver_initiated) {
1158 int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
1159 if (err)
1160 return err;
1161 }
1162
1163 nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
1164
1165 cfg80211_del_sched_scan_req(rdev, req);
1166
1167 return 0;
1168 }
1169
__cfg80211_stop_sched_scan(struct cfg80211_registered_device * rdev,u64 reqid,bool driver_initiated)1170 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
1171 u64 reqid, bool driver_initiated)
1172 {
1173 struct cfg80211_sched_scan_request *sched_scan_req;
1174
1175 ASSERT_RTNL();
1176
1177 sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
1178 if (!sched_scan_req)
1179 return -ENOENT;
1180
1181 return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
1182 driver_initiated);
1183 }
1184
cfg80211_bss_age(struct cfg80211_registered_device * rdev,unsigned long age_secs)1185 void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
1186 unsigned long age_secs)
1187 {
1188 struct cfg80211_internal_bss *bss;
1189 unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
1190
1191 spin_lock_bh(&rdev->bss_lock);
1192 list_for_each_entry(bss, &rdev->bss_list, list)
1193 bss->ts -= age_jiffies;
1194 spin_unlock_bh(&rdev->bss_lock);
1195 }
1196
cfg80211_bss_expire(struct cfg80211_registered_device * rdev)1197 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
1198 {
1199 __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
1200 }
1201
cfg80211_bss_flush(struct wiphy * wiphy)1202 void cfg80211_bss_flush(struct wiphy *wiphy)
1203 {
1204 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1205
1206 spin_lock_bh(&rdev->bss_lock);
1207 __cfg80211_bss_expire(rdev, jiffies);
1208 spin_unlock_bh(&rdev->bss_lock);
1209 }
1210 EXPORT_SYMBOL(cfg80211_bss_flush);
1211
1212 const struct element *
cfg80211_find_elem_match(u8 eid,const u8 * ies,unsigned int len,const u8 * match,unsigned int match_len,unsigned int match_offset)1213 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
1214 const u8 *match, unsigned int match_len,
1215 unsigned int match_offset)
1216 {
1217 const struct element *elem;
1218
1219 for_each_element_id(elem, eid, ies, len) {
1220 if (elem->datalen >= match_offset + match_len &&
1221 !memcmp(elem->data + match_offset, match, match_len))
1222 return elem;
1223 }
1224
1225 return NULL;
1226 }
1227 EXPORT_SYMBOL(cfg80211_find_elem_match);
1228
cfg80211_find_vendor_elem(unsigned int oui,int oui_type,const u8 * ies,unsigned int len)1229 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
1230 const u8 *ies,
1231 unsigned int len)
1232 {
1233 const struct element *elem;
1234 u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
1235 int match_len = (oui_type < 0) ? 3 : sizeof(match);
1236
1237 if (WARN_ON(oui_type > 0xff))
1238 return NULL;
1239
1240 elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
1241 match, match_len, 0);
1242
1243 if (!elem || elem->datalen < 4)
1244 return NULL;
1245
1246 return elem;
1247 }
1248 EXPORT_SYMBOL(cfg80211_find_vendor_elem);
1249
1250 /**
1251 * enum bss_compare_mode - BSS compare mode
1252 * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
1253 * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
1254 * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
1255 */
1256 enum bss_compare_mode {
1257 BSS_CMP_REGULAR,
1258 BSS_CMP_HIDE_ZLEN,
1259 BSS_CMP_HIDE_NUL,
1260 };
1261
cmp_bss(struct cfg80211_bss * a,struct cfg80211_bss * b,enum bss_compare_mode mode)1262 static int cmp_bss(struct cfg80211_bss *a,
1263 struct cfg80211_bss *b,
1264 enum bss_compare_mode mode)
1265 {
1266 const struct cfg80211_bss_ies *a_ies, *b_ies;
1267 const u8 *ie1 = NULL;
1268 const u8 *ie2 = NULL;
1269 int i, r;
1270
1271 if (a->channel != b->channel)
1272 return b->channel->center_freq - a->channel->center_freq;
1273
1274 a_ies = rcu_access_pointer(a->ies);
1275 if (!a_ies)
1276 return -1;
1277 b_ies = rcu_access_pointer(b->ies);
1278 if (!b_ies)
1279 return 1;
1280
1281 if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
1282 ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1283 a_ies->data, a_ies->len);
1284 if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
1285 ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1286 b_ies->data, b_ies->len);
1287 if (ie1 && ie2) {
1288 int mesh_id_cmp;
1289
1290 if (ie1[1] == ie2[1])
1291 mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1292 else
1293 mesh_id_cmp = ie2[1] - ie1[1];
1294
1295 ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1296 a_ies->data, a_ies->len);
1297 ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1298 b_ies->data, b_ies->len);
1299 if (ie1 && ie2) {
1300 if (mesh_id_cmp)
1301 return mesh_id_cmp;
1302 if (ie1[1] != ie2[1])
1303 return ie2[1] - ie1[1];
1304 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1305 }
1306 }
1307
1308 r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
1309 if (r)
1310 return r;
1311
1312 ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
1313 ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
1314
1315 if (!ie1 && !ie2)
1316 return 0;
1317
1318 /*
1319 * Note that with "hide_ssid", the function returns a match if
1320 * the already-present BSS ("b") is a hidden SSID beacon for
1321 * the new BSS ("a").
1322 */
1323
1324 /* sort missing IE before (left of) present IE */
1325 if (!ie1)
1326 return -1;
1327 if (!ie2)
1328 return 1;
1329
1330 switch (mode) {
1331 case BSS_CMP_HIDE_ZLEN:
1332 /*
1333 * In ZLEN mode we assume the BSS entry we're
1334 * looking for has a zero-length SSID. So if
1335 * the one we're looking at right now has that,
1336 * return 0. Otherwise, return the difference
1337 * in length, but since we're looking for the
1338 * 0-length it's really equivalent to returning
1339 * the length of the one we're looking at.
1340 *
1341 * No content comparison is needed as we assume
1342 * the content length is zero.
1343 */
1344 return ie2[1];
1345 case BSS_CMP_REGULAR:
1346 default:
1347 /* sort by length first, then by contents */
1348 if (ie1[1] != ie2[1])
1349 return ie2[1] - ie1[1];
1350 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1351 case BSS_CMP_HIDE_NUL:
1352 if (ie1[1] != ie2[1])
1353 return ie2[1] - ie1[1];
1354 /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
1355 for (i = 0; i < ie2[1]; i++)
1356 if (ie2[i + 2])
1357 return -1;
1358 return 0;
1359 }
1360 }
1361
cfg80211_bss_type_match(u16 capability,enum nl80211_band band,enum ieee80211_bss_type bss_type)1362 static bool cfg80211_bss_type_match(u16 capability,
1363 enum nl80211_band band,
1364 enum ieee80211_bss_type bss_type)
1365 {
1366 bool ret = true;
1367 u16 mask, val;
1368
1369 if (bss_type == IEEE80211_BSS_TYPE_ANY)
1370 return ret;
1371
1372 if (band == NL80211_BAND_60GHZ) {
1373 mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
1374 switch (bss_type) {
1375 case IEEE80211_BSS_TYPE_ESS:
1376 val = WLAN_CAPABILITY_DMG_TYPE_AP;
1377 break;
1378 case IEEE80211_BSS_TYPE_PBSS:
1379 val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
1380 break;
1381 case IEEE80211_BSS_TYPE_IBSS:
1382 val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
1383 break;
1384 default:
1385 return false;
1386 }
1387 } else {
1388 mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
1389 switch (bss_type) {
1390 case IEEE80211_BSS_TYPE_ESS:
1391 val = WLAN_CAPABILITY_ESS;
1392 break;
1393 case IEEE80211_BSS_TYPE_IBSS:
1394 val = WLAN_CAPABILITY_IBSS;
1395 break;
1396 case IEEE80211_BSS_TYPE_MBSS:
1397 val = 0;
1398 break;
1399 default:
1400 return false;
1401 }
1402 }
1403
1404 ret = ((capability & mask) == val);
1405 return ret;
1406 }
1407
1408 /* Returned bss is reference counted and must be cleaned up appropriately. */
cfg80211_get_bss(struct wiphy * wiphy,struct ieee80211_channel * channel,const u8 * bssid,const u8 * ssid,size_t ssid_len,enum ieee80211_bss_type bss_type,enum ieee80211_privacy privacy)1409 struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy,
1410 struct ieee80211_channel *channel,
1411 const u8 *bssid,
1412 const u8 *ssid, size_t ssid_len,
1413 enum ieee80211_bss_type bss_type,
1414 enum ieee80211_privacy privacy)
1415 {
1416 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1417 struct cfg80211_internal_bss *bss, *res = NULL;
1418 unsigned long now = jiffies;
1419 int bss_privacy;
1420
1421 trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
1422 privacy);
1423
1424 spin_lock_bh(&rdev->bss_lock);
1425
1426 list_for_each_entry(bss, &rdev->bss_list, list) {
1427 if (!cfg80211_bss_type_match(bss->pub.capability,
1428 bss->pub.channel->band, bss_type))
1429 continue;
1430
1431 bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
1432 if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
1433 (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
1434 continue;
1435 if (channel && bss->pub.channel != channel)
1436 continue;
1437 if (!is_valid_ether_addr(bss->pub.bssid))
1438 continue;
1439 /* Don't get expired BSS structs */
1440 if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
1441 !atomic_read(&bss->hold))
1442 continue;
1443 if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
1444 res = bss;
1445 bss_ref_get(rdev, res);
1446 break;
1447 }
1448 }
1449
1450 spin_unlock_bh(&rdev->bss_lock);
1451 if (!res)
1452 return NULL;
1453 trace_cfg80211_return_bss(&res->pub);
1454 return &res->pub;
1455 }
1456 EXPORT_SYMBOL(cfg80211_get_bss);
1457
rb_insert_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)1458 static void rb_insert_bss(struct cfg80211_registered_device *rdev,
1459 struct cfg80211_internal_bss *bss)
1460 {
1461 struct rb_node **p = &rdev->bss_tree.rb_node;
1462 struct rb_node *parent = NULL;
1463 struct cfg80211_internal_bss *tbss;
1464 int cmp;
1465
1466 while (*p) {
1467 parent = *p;
1468 tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
1469
1470 cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
1471
1472 if (WARN_ON(!cmp)) {
1473 /* will sort of leak this BSS */
1474 return;
1475 }
1476
1477 if (cmp < 0)
1478 p = &(*p)->rb_left;
1479 else
1480 p = &(*p)->rb_right;
1481 }
1482
1483 rb_link_node(&bss->rbn, parent, p);
1484 rb_insert_color(&bss->rbn, &rdev->bss_tree);
1485 }
1486
1487 static struct cfg80211_internal_bss *
rb_find_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * res,enum bss_compare_mode mode)1488 rb_find_bss(struct cfg80211_registered_device *rdev,
1489 struct cfg80211_internal_bss *res,
1490 enum bss_compare_mode mode)
1491 {
1492 struct rb_node *n = rdev->bss_tree.rb_node;
1493 struct cfg80211_internal_bss *bss;
1494 int r;
1495
1496 while (n) {
1497 bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1498 r = cmp_bss(&res->pub, &bss->pub, mode);
1499
1500 if (r == 0)
1501 return bss;
1502 else if (r < 0)
1503 n = n->rb_left;
1504 else
1505 n = n->rb_right;
1506 }
1507
1508 return NULL;
1509 }
1510
cfg80211_combine_bsses(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * new)1511 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1512 struct cfg80211_internal_bss *new)
1513 {
1514 const struct cfg80211_bss_ies *ies;
1515 struct cfg80211_internal_bss *bss;
1516 const u8 *ie;
1517 int i, ssidlen;
1518 u8 fold = 0;
1519 u32 n_entries = 0;
1520
1521 ies = rcu_access_pointer(new->pub.beacon_ies);
1522 if (WARN_ON(!ies))
1523 return false;
1524
1525 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1526 if (!ie) {
1527 /* nothing to do */
1528 return true;
1529 }
1530
1531 ssidlen = ie[1];
1532 for (i = 0; i < ssidlen; i++)
1533 fold |= ie[2 + i];
1534
1535 if (fold) {
1536 /* not a hidden SSID */
1537 return true;
1538 }
1539
1540 /* This is the bad part ... */
1541
1542 list_for_each_entry(bss, &rdev->bss_list, list) {
1543 /*
1544 * we're iterating all the entries anyway, so take the
1545 * opportunity to validate the list length accounting
1546 */
1547 n_entries++;
1548
1549 if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
1550 continue;
1551 if (bss->pub.channel != new->pub.channel)
1552 continue;
1553 if (bss->pub.scan_width != new->pub.scan_width)
1554 continue;
1555 if (rcu_access_pointer(bss->pub.beacon_ies))
1556 continue;
1557 ies = rcu_access_pointer(bss->pub.ies);
1558 if (!ies)
1559 continue;
1560 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1561 if (!ie)
1562 continue;
1563 if (ssidlen && ie[1] != ssidlen)
1564 continue;
1565 if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1566 continue;
1567 if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1568 list_del(&bss->hidden_list);
1569 /* combine them */
1570 list_add(&bss->hidden_list, &new->hidden_list);
1571 bss->pub.hidden_beacon_bss = &new->pub;
1572 new->refcount += bss->refcount;
1573 rcu_assign_pointer(bss->pub.beacon_ies,
1574 new->pub.beacon_ies);
1575 }
1576
1577 WARN_ONCE(n_entries != rdev->bss_entries,
1578 "rdev bss entries[%d]/list[len:%d] corruption\n",
1579 rdev->bss_entries, n_entries);
1580
1581 return true;
1582 }
1583
1584 struct cfg80211_non_tx_bss {
1585 struct cfg80211_bss *tx_bss;
1586 u8 max_bssid_indicator;
1587 u8 bssid_index;
1588 };
1589
1590 static bool
cfg80211_update_known_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * known,struct cfg80211_internal_bss * new,bool signal_valid)1591 cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1592 struct cfg80211_internal_bss *known,
1593 struct cfg80211_internal_bss *new,
1594 bool signal_valid)
1595 {
1596 lockdep_assert_held(&rdev->bss_lock);
1597
1598 /* Update IEs */
1599 if (rcu_access_pointer(new->pub.proberesp_ies)) {
1600 const struct cfg80211_bss_ies *old;
1601
1602 old = rcu_access_pointer(known->pub.proberesp_ies);
1603
1604 rcu_assign_pointer(known->pub.proberesp_ies,
1605 new->pub.proberesp_ies);
1606 /* Override possible earlier Beacon frame IEs */
1607 rcu_assign_pointer(known->pub.ies,
1608 new->pub.proberesp_ies);
1609 if (old)
1610 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1611 } else if (rcu_access_pointer(new->pub.beacon_ies)) {
1612 const struct cfg80211_bss_ies *old;
1613 struct cfg80211_internal_bss *bss;
1614
1615 if (known->pub.hidden_beacon_bss &&
1616 !list_empty(&known->hidden_list)) {
1617 const struct cfg80211_bss_ies *f;
1618
1619 /* The known BSS struct is one of the probe
1620 * response members of a group, but we're
1621 * receiving a beacon (beacon_ies in the new
1622 * bss is used). This can only mean that the
1623 * AP changed its beacon from not having an
1624 * SSID to showing it, which is confusing so
1625 * drop this information.
1626 */
1627
1628 f = rcu_access_pointer(new->pub.beacon_ies);
1629 kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1630 return false;
1631 }
1632
1633 old = rcu_access_pointer(known->pub.beacon_ies);
1634
1635 rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1636
1637 /* Override IEs if they were from a beacon before */
1638 if (old == rcu_access_pointer(known->pub.ies))
1639 rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1640
1641 /* Assign beacon IEs to all sub entries */
1642 list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1643 const struct cfg80211_bss_ies *ies;
1644
1645 ies = rcu_access_pointer(bss->pub.beacon_ies);
1646 WARN_ON(ies != old);
1647
1648 rcu_assign_pointer(bss->pub.beacon_ies,
1649 new->pub.beacon_ies);
1650 }
1651
1652 if (old)
1653 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1654 }
1655
1656 known->pub.beacon_interval = new->pub.beacon_interval;
1657
1658 /* don't update the signal if beacon was heard on
1659 * adjacent channel.
1660 */
1661 if (signal_valid)
1662 known->pub.signal = new->pub.signal;
1663 known->pub.capability = new->pub.capability;
1664 known->ts = new->ts;
1665 known->ts_boottime = new->ts_boottime;
1666 known->parent_tsf = new->parent_tsf;
1667 known->pub.chains = new->pub.chains;
1668 memcpy(known->pub.chain_signal, new->pub.chain_signal,
1669 IEEE80211_MAX_CHAINS);
1670 ether_addr_copy(known->parent_bssid, new->parent_bssid);
1671 known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1672 known->pub.bssid_index = new->pub.bssid_index;
1673
1674 return true;
1675 }
1676
1677 /* Returned bss is reference counted and must be cleaned up appropriately. */
1678 struct cfg80211_internal_bss *
cfg80211_bss_update(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * tmp,bool signal_valid,unsigned long ts)1679 cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1680 struct cfg80211_internal_bss *tmp,
1681 bool signal_valid, unsigned long ts)
1682 {
1683 struct cfg80211_internal_bss *found = NULL;
1684
1685 if (WARN_ON(!tmp->pub.channel))
1686 return NULL;
1687
1688 tmp->ts = ts;
1689
1690 spin_lock_bh(&rdev->bss_lock);
1691
1692 if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) {
1693 spin_unlock_bh(&rdev->bss_lock);
1694 return NULL;
1695 }
1696
1697 found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1698
1699 if (found) {
1700 if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
1701 goto drop;
1702 } else {
1703 struct cfg80211_internal_bss *new;
1704 struct cfg80211_internal_bss *hidden;
1705 struct cfg80211_bss_ies *ies;
1706
1707 /*
1708 * create a copy -- the "res" variable that is passed in
1709 * is allocated on the stack since it's not needed in the
1710 * more common case of an update
1711 */
1712 new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
1713 GFP_ATOMIC);
1714 if (!new) {
1715 ies = (void *)rcu_dereference(tmp->pub.beacon_ies);
1716 if (ies)
1717 kfree_rcu(ies, rcu_head);
1718 ies = (void *)rcu_dereference(tmp->pub.proberesp_ies);
1719 if (ies)
1720 kfree_rcu(ies, rcu_head);
1721 goto drop;
1722 }
1723 memcpy(new, tmp, sizeof(*new));
1724 new->refcount = 1;
1725 INIT_LIST_HEAD(&new->hidden_list);
1726 INIT_LIST_HEAD(&new->pub.nontrans_list);
1727
1728 if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1729 hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1730 if (!hidden)
1731 hidden = rb_find_bss(rdev, tmp,
1732 BSS_CMP_HIDE_NUL);
1733 if (hidden) {
1734 new->pub.hidden_beacon_bss = &hidden->pub;
1735 list_add(&new->hidden_list,
1736 &hidden->hidden_list);
1737 hidden->refcount++;
1738 rcu_assign_pointer(new->pub.beacon_ies,
1739 hidden->pub.beacon_ies);
1740 }
1741 } else {
1742 /*
1743 * Ok so we found a beacon, and don't have an entry. If
1744 * it's a beacon with hidden SSID, we might be in for an
1745 * expensive search for any probe responses that should
1746 * be grouped with this beacon for updates ...
1747 */
1748 if (!cfg80211_combine_bsses(rdev, new)) {
1749 kfree(new);
1750 goto drop;
1751 }
1752 }
1753
1754 if (rdev->bss_entries >= bss_entries_limit &&
1755 !cfg80211_bss_expire_oldest(rdev)) {
1756 kfree(new);
1757 goto drop;
1758 }
1759
1760 /* This must be before the call to bss_ref_get */
1761 if (tmp->pub.transmitted_bss) {
1762 struct cfg80211_internal_bss *pbss =
1763 container_of(tmp->pub.transmitted_bss,
1764 struct cfg80211_internal_bss,
1765 pub);
1766
1767 new->pub.transmitted_bss = tmp->pub.transmitted_bss;
1768 bss_ref_get(rdev, pbss);
1769 }
1770
1771 list_add_tail(&new->list, &rdev->bss_list);
1772 rdev->bss_entries++;
1773 rb_insert_bss(rdev, new);
1774 found = new;
1775 }
1776
1777 rdev->bss_generation++;
1778 bss_ref_get(rdev, found);
1779 spin_unlock_bh(&rdev->bss_lock);
1780
1781 return found;
1782 drop:
1783 spin_unlock_bh(&rdev->bss_lock);
1784 return NULL;
1785 }
1786
1787 /*
1788 * Update RX channel information based on the available frame payload
1789 * information. This is mainly for the 2.4 GHz band where frames can be received
1790 * from neighboring channels and the Beacon frames use the DSSS Parameter Set
1791 * element to indicate the current (transmitting) channel, but this might also
1792 * be needed on other bands if RX frequency does not match with the actual
1793 * operating channel of a BSS.
1794 */
1795 static struct ieee80211_channel *
cfg80211_get_bss_channel(struct wiphy * wiphy,const u8 * ie,size_t ielen,struct ieee80211_channel * channel,enum nl80211_bss_scan_width scan_width)1796 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
1797 struct ieee80211_channel *channel,
1798 enum nl80211_bss_scan_width scan_width)
1799 {
1800 const u8 *tmp;
1801 u32 freq;
1802 int channel_number = -1;
1803 struct ieee80211_channel *alt_channel;
1804
1805 if (channel->band == NL80211_BAND_S1GHZ) {
1806 tmp = cfg80211_find_ie(WLAN_EID_S1G_OPERATION, ie, ielen);
1807 if (tmp && tmp[1] >= sizeof(struct ieee80211_s1g_oper_ie)) {
1808 struct ieee80211_s1g_oper_ie *s1gop = (void *)(tmp + 2);
1809
1810 channel_number = s1gop->primary_ch;
1811 }
1812 } else {
1813 tmp = cfg80211_find_ie(WLAN_EID_DS_PARAMS, ie, ielen);
1814 if (tmp && tmp[1] == 1) {
1815 channel_number = tmp[2];
1816 } else {
1817 tmp = cfg80211_find_ie(WLAN_EID_HT_OPERATION, ie, ielen);
1818 if (tmp && tmp[1] >= sizeof(struct ieee80211_ht_operation)) {
1819 struct ieee80211_ht_operation *htop = (void *)(tmp + 2);
1820
1821 channel_number = htop->primary_chan;
1822 }
1823 }
1824 }
1825
1826 if (channel_number < 0) {
1827 /* No channel information in frame payload */
1828 return channel;
1829 }
1830
1831 freq = ieee80211_channel_to_freq_khz(channel_number, channel->band);
1832 alt_channel = ieee80211_get_channel_khz(wiphy, freq);
1833 if (!alt_channel) {
1834 if (channel->band == NL80211_BAND_2GHZ) {
1835 /*
1836 * Better not allow unexpected channels when that could
1837 * be going beyond the 1-11 range (e.g., discovering
1838 * BSS on channel 12 when radio is configured for
1839 * channel 11.
1840 */
1841 return NULL;
1842 }
1843
1844 /* No match for the payload channel number - ignore it */
1845 return channel;
1846 }
1847
1848 if (scan_width == NL80211_BSS_CHAN_WIDTH_10 ||
1849 scan_width == NL80211_BSS_CHAN_WIDTH_5) {
1850 /*
1851 * Ignore channel number in 5 and 10 MHz channels where there
1852 * may not be an n:1 or 1:n mapping between frequencies and
1853 * channel numbers.
1854 */
1855 return channel;
1856 }
1857
1858 /*
1859 * Use the channel determined through the payload channel number
1860 * instead of the RX channel reported by the driver.
1861 */
1862 if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
1863 return NULL;
1864 return alt_channel;
1865 }
1866
1867 /* Returned bss is reference counted and must be cleaned up appropriately. */
1868 static struct cfg80211_bss *
cfg80211_inform_single_bss_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,enum cfg80211_bss_frame_type ftype,const u8 * bssid,u64 tsf,u16 capability,u16 beacon_interval,const u8 * ie,size_t ielen,struct cfg80211_non_tx_bss * non_tx_data,gfp_t gfp)1869 cfg80211_inform_single_bss_data(struct wiphy *wiphy,
1870 struct cfg80211_inform_bss *data,
1871 enum cfg80211_bss_frame_type ftype,
1872 const u8 *bssid, u64 tsf, u16 capability,
1873 u16 beacon_interval, const u8 *ie, size_t ielen,
1874 struct cfg80211_non_tx_bss *non_tx_data,
1875 gfp_t gfp)
1876 {
1877 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1878 struct cfg80211_bss_ies *ies;
1879 struct ieee80211_channel *channel;
1880 struct cfg80211_internal_bss tmp = {}, *res;
1881 int bss_type;
1882 bool signal_valid;
1883 unsigned long ts;
1884
1885 if (WARN_ON(!wiphy))
1886 return NULL;
1887
1888 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
1889 (data->signal < 0 || data->signal > 100)))
1890 return NULL;
1891
1892 channel = cfg80211_get_bss_channel(wiphy, ie, ielen, data->chan,
1893 data->scan_width);
1894 if (!channel)
1895 return NULL;
1896
1897 memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
1898 tmp.pub.channel = channel;
1899 tmp.pub.scan_width = data->scan_width;
1900 tmp.pub.signal = data->signal;
1901 tmp.pub.beacon_interval = beacon_interval;
1902 tmp.pub.capability = capability;
1903 tmp.ts_boottime = data->boottime_ns;
1904 if (non_tx_data) {
1905 tmp.pub.transmitted_bss = non_tx_data->tx_bss;
1906 ts = bss_from_pub(non_tx_data->tx_bss)->ts;
1907 tmp.pub.bssid_index = non_tx_data->bssid_index;
1908 tmp.pub.max_bssid_indicator = non_tx_data->max_bssid_indicator;
1909 } else {
1910 ts = jiffies;
1911 }
1912
1913 /*
1914 * If we do not know here whether the IEs are from a Beacon or Probe
1915 * Response frame, we need to pick one of the options and only use it
1916 * with the driver that does not provide the full Beacon/Probe Response
1917 * frame. Use Beacon frame pointer to avoid indicating that this should
1918 * override the IEs pointer should we have received an earlier
1919 * indication of Probe Response data.
1920 */
1921 ies = kzalloc(sizeof(*ies) + ielen, gfp);
1922 if (!ies)
1923 return NULL;
1924 ies->len = ielen;
1925 ies->tsf = tsf;
1926 ies->from_beacon = false;
1927 memcpy(ies->data, ie, ielen);
1928
1929 switch (ftype) {
1930 case CFG80211_BSS_FTYPE_BEACON:
1931 ies->from_beacon = true;
1932 fallthrough;
1933 case CFG80211_BSS_FTYPE_UNKNOWN:
1934 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
1935 break;
1936 case CFG80211_BSS_FTYPE_PRESP:
1937 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
1938 break;
1939 }
1940 rcu_assign_pointer(tmp.pub.ies, ies);
1941
1942 signal_valid = data->chan == channel;
1943 res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid, ts);
1944 if (!res)
1945 return NULL;
1946
1947 if (channel->band == NL80211_BAND_60GHZ) {
1948 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
1949 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
1950 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
1951 regulatory_hint_found_beacon(wiphy, channel, gfp);
1952 } else {
1953 if (res->pub.capability & WLAN_CAPABILITY_ESS)
1954 regulatory_hint_found_beacon(wiphy, channel, gfp);
1955 }
1956
1957 if (non_tx_data) {
1958 /* this is a nontransmitting bss, we need to add it to
1959 * transmitting bss' list if it is not there
1960 */
1961 if (cfg80211_add_nontrans_list(non_tx_data->tx_bss,
1962 &res->pub)) {
1963 if (__cfg80211_unlink_bss(rdev, res))
1964 rdev->bss_generation++;
1965 }
1966 }
1967
1968 trace_cfg80211_return_bss(&res->pub);
1969 /* cfg80211_bss_update gives us a referenced result */
1970 return &res->pub;
1971 }
1972
1973 static const struct element
cfg80211_get_profile_continuation(const u8 * ie,size_t ielen,const struct element * mbssid_elem,const struct element * sub_elem)1974 *cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
1975 const struct element *mbssid_elem,
1976 const struct element *sub_elem)
1977 {
1978 const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
1979 const struct element *next_mbssid;
1980 const struct element *next_sub;
1981
1982 next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
1983 mbssid_end,
1984 ielen - (mbssid_end - ie));
1985
1986 /*
1987 * If it is not the last subelement in current MBSSID IE or there isn't
1988 * a next MBSSID IE - profile is complete.
1989 */
1990 if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
1991 !next_mbssid)
1992 return NULL;
1993
1994 /* For any length error, just return NULL */
1995
1996 if (next_mbssid->datalen < 4)
1997 return NULL;
1998
1999 next_sub = (void *)&next_mbssid->data[1];
2000
2001 if (next_mbssid->data + next_mbssid->datalen <
2002 next_sub->data + next_sub->datalen)
2003 return NULL;
2004
2005 if (next_sub->id != 0 || next_sub->datalen < 2)
2006 return NULL;
2007
2008 /*
2009 * Check if the first element in the next sub element is a start
2010 * of a new profile
2011 */
2012 return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
2013 NULL : next_mbssid;
2014 }
2015
cfg80211_merge_profile(const u8 * ie,size_t ielen,const struct element * mbssid_elem,const struct element * sub_elem,u8 * merged_ie,size_t max_copy_len)2016 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
2017 const struct element *mbssid_elem,
2018 const struct element *sub_elem,
2019 u8 *merged_ie, size_t max_copy_len)
2020 {
2021 size_t copied_len = sub_elem->datalen;
2022 const struct element *next_mbssid;
2023
2024 if (sub_elem->datalen > max_copy_len)
2025 return 0;
2026
2027 memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
2028
2029 while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
2030 mbssid_elem,
2031 sub_elem))) {
2032 const struct element *next_sub = (void *)&next_mbssid->data[1];
2033
2034 if (copied_len + next_sub->datalen > max_copy_len)
2035 break;
2036 memcpy(merged_ie + copied_len, next_sub->data,
2037 next_sub->datalen);
2038 copied_len += next_sub->datalen;
2039 }
2040
2041 return copied_len;
2042 }
2043 EXPORT_SYMBOL(cfg80211_merge_profile);
2044
cfg80211_parse_mbssid_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,enum cfg80211_bss_frame_type ftype,const u8 * bssid,u64 tsf,u16 beacon_interval,const u8 * ie,size_t ielen,struct cfg80211_non_tx_bss * non_tx_data,gfp_t gfp)2045 static void cfg80211_parse_mbssid_data(struct wiphy *wiphy,
2046 struct cfg80211_inform_bss *data,
2047 enum cfg80211_bss_frame_type ftype,
2048 const u8 *bssid, u64 tsf,
2049 u16 beacon_interval, const u8 *ie,
2050 size_t ielen,
2051 struct cfg80211_non_tx_bss *non_tx_data,
2052 gfp_t gfp)
2053 {
2054 const u8 *mbssid_index_ie;
2055 const struct element *elem, *sub;
2056 size_t new_ie_len;
2057 u8 new_bssid[ETH_ALEN];
2058 u8 *new_ie, *profile;
2059 u64 seen_indices = 0;
2060 u16 capability;
2061 struct cfg80211_bss *bss;
2062
2063 if (!non_tx_data)
2064 return;
2065 if (!cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
2066 return;
2067 if (!wiphy->support_mbssid)
2068 return;
2069 if (wiphy->support_only_he_mbssid &&
2070 !cfg80211_find_ext_ie(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
2071 return;
2072
2073 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2074 if (!new_ie)
2075 return;
2076
2077 profile = kmalloc(ielen, gfp);
2078 if (!profile)
2079 goto out;
2080
2081 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, ie, ielen) {
2082 if (elem->datalen < 4)
2083 continue;
2084 for_each_element(sub, elem->data + 1, elem->datalen - 1) {
2085 u8 profile_len;
2086
2087 if (sub->id != 0 || sub->datalen < 4) {
2088 /* not a valid BSS profile */
2089 continue;
2090 }
2091
2092 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
2093 sub->data[1] != 2) {
2094 /* The first element within the Nontransmitted
2095 * BSSID Profile is not the Nontransmitted
2096 * BSSID Capability element.
2097 */
2098 continue;
2099 }
2100
2101 memset(profile, 0, ielen);
2102 profile_len = cfg80211_merge_profile(ie, ielen,
2103 elem,
2104 sub,
2105 profile,
2106 ielen);
2107
2108 /* found a Nontransmitted BSSID Profile */
2109 mbssid_index_ie = cfg80211_find_ie
2110 (WLAN_EID_MULTI_BSSID_IDX,
2111 profile, profile_len);
2112 if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
2113 mbssid_index_ie[2] == 0 ||
2114 mbssid_index_ie[2] > 46) {
2115 /* No valid Multiple BSSID-Index element */
2116 continue;
2117 }
2118
2119 if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
2120 /* We don't support legacy split of a profile */
2121 net_dbg_ratelimited("Partial info for BSSID index %d\n",
2122 mbssid_index_ie[2]);
2123
2124 seen_indices |= BIT_ULL(mbssid_index_ie[2]);
2125
2126 non_tx_data->bssid_index = mbssid_index_ie[2];
2127 non_tx_data->max_bssid_indicator = elem->data[0];
2128
2129 cfg80211_gen_new_bssid(bssid,
2130 non_tx_data->max_bssid_indicator,
2131 non_tx_data->bssid_index,
2132 new_bssid);
2133 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2134 new_ie_len = cfg80211_gen_new_ie(ie, ielen,
2135 profile,
2136 profile_len, new_ie,
2137 gfp);
2138 if (!new_ie_len)
2139 continue;
2140
2141 capability = get_unaligned_le16(profile + 2);
2142 bss = cfg80211_inform_single_bss_data(wiphy, data,
2143 ftype,
2144 new_bssid, tsf,
2145 capability,
2146 beacon_interval,
2147 new_ie,
2148 new_ie_len,
2149 non_tx_data,
2150 gfp);
2151 if (!bss)
2152 break;
2153 cfg80211_put_bss(wiphy, bss);
2154 }
2155 }
2156
2157 out:
2158 kfree(new_ie);
2159 kfree(profile);
2160 }
2161
2162 struct cfg80211_bss *
cfg80211_inform_bss_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,enum cfg80211_bss_frame_type ftype,const u8 * bssid,u64 tsf,u16 capability,u16 beacon_interval,const u8 * ie,size_t ielen,gfp_t gfp)2163 cfg80211_inform_bss_data(struct wiphy *wiphy,
2164 struct cfg80211_inform_bss *data,
2165 enum cfg80211_bss_frame_type ftype,
2166 const u8 *bssid, u64 tsf, u16 capability,
2167 u16 beacon_interval, const u8 *ie, size_t ielen,
2168 gfp_t gfp)
2169 {
2170 struct cfg80211_bss *res;
2171 struct cfg80211_non_tx_bss non_tx_data;
2172
2173 res = cfg80211_inform_single_bss_data(wiphy, data, ftype, bssid, tsf,
2174 capability, beacon_interval, ie,
2175 ielen, NULL, gfp);
2176 if (!res)
2177 return NULL;
2178 non_tx_data.tx_bss = res;
2179 cfg80211_parse_mbssid_data(wiphy, data, ftype, bssid, tsf,
2180 beacon_interval, ie, ielen, &non_tx_data,
2181 gfp);
2182 return res;
2183 }
2184 EXPORT_SYMBOL(cfg80211_inform_bss_data);
2185
2186 static void
cfg80211_parse_mbssid_frame_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,struct ieee80211_mgmt * mgmt,size_t len,struct cfg80211_non_tx_bss * non_tx_data,gfp_t gfp)2187 cfg80211_parse_mbssid_frame_data(struct wiphy *wiphy,
2188 struct cfg80211_inform_bss *data,
2189 struct ieee80211_mgmt *mgmt, size_t len,
2190 struct cfg80211_non_tx_bss *non_tx_data,
2191 gfp_t gfp)
2192 {
2193 enum cfg80211_bss_frame_type ftype;
2194 const u8 *ie = mgmt->u.probe_resp.variable;
2195 size_t ielen = len - offsetof(struct ieee80211_mgmt,
2196 u.probe_resp.variable);
2197
2198 ftype = ieee80211_is_beacon(mgmt->frame_control) ?
2199 CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP;
2200
2201 cfg80211_parse_mbssid_data(wiphy, data, ftype, mgmt->bssid,
2202 le64_to_cpu(mgmt->u.probe_resp.timestamp),
2203 le16_to_cpu(mgmt->u.probe_resp.beacon_int),
2204 ie, ielen, non_tx_data, gfp);
2205 }
2206
2207 static void
cfg80211_update_notlisted_nontrans(struct wiphy * wiphy,struct cfg80211_bss * nontrans_bss,struct ieee80211_mgmt * mgmt,size_t len)2208 cfg80211_update_notlisted_nontrans(struct wiphy *wiphy,
2209 struct cfg80211_bss *nontrans_bss,
2210 struct ieee80211_mgmt *mgmt, size_t len)
2211 {
2212 u8 *ie, *new_ie, *pos;
2213 const u8 *nontrans_ssid, *trans_ssid, *mbssid;
2214 size_t ielen = len - offsetof(struct ieee80211_mgmt,
2215 u.probe_resp.variable);
2216 size_t new_ie_len;
2217 struct cfg80211_bss_ies *new_ies;
2218 const struct cfg80211_bss_ies *old;
2219 u8 cpy_len;
2220
2221 lockdep_assert_held(&wiphy_to_rdev(wiphy)->bss_lock);
2222
2223 ie = mgmt->u.probe_resp.variable;
2224
2225 new_ie_len = ielen;
2226 trans_ssid = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
2227 if (!trans_ssid)
2228 return;
2229 new_ie_len -= trans_ssid[1];
2230 mbssid = cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen);
2231 /*
2232 * It's not valid to have the MBSSID element before SSID
2233 * ignore if that happens - the code below assumes it is
2234 * after (while copying things inbetween).
2235 */
2236 if (!mbssid || mbssid < trans_ssid)
2237 return;
2238 new_ie_len -= mbssid[1];
2239
2240 nontrans_ssid = ieee80211_bss_get_ie(nontrans_bss, WLAN_EID_SSID);
2241 if (!nontrans_ssid)
2242 return;
2243
2244 new_ie_len += nontrans_ssid[1];
2245
2246 /* generate new ie for nontrans BSS
2247 * 1. replace SSID with nontrans BSS' SSID
2248 * 2. skip MBSSID IE
2249 */
2250 new_ie = kzalloc(new_ie_len, GFP_ATOMIC);
2251 if (!new_ie)
2252 return;
2253
2254 new_ies = kzalloc(sizeof(*new_ies) + new_ie_len, GFP_ATOMIC);
2255 if (!new_ies)
2256 goto out_free;
2257
2258 pos = new_ie;
2259
2260 /* copy the nontransmitted SSID */
2261 cpy_len = nontrans_ssid[1] + 2;
2262 memcpy(pos, nontrans_ssid, cpy_len);
2263 pos += cpy_len;
2264 /* copy the IEs between SSID and MBSSID */
2265 cpy_len = trans_ssid[1] + 2;
2266 memcpy(pos, (trans_ssid + cpy_len), (mbssid - (trans_ssid + cpy_len)));
2267 pos += (mbssid - (trans_ssid + cpy_len));
2268 /* copy the IEs after MBSSID */
2269 cpy_len = mbssid[1] + 2;
2270 memcpy(pos, mbssid + cpy_len, ((ie + ielen) - (mbssid + cpy_len)));
2271
2272 /* update ie */
2273 new_ies->len = new_ie_len;
2274 new_ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2275 new_ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control);
2276 memcpy(new_ies->data, new_ie, new_ie_len);
2277 if (ieee80211_is_probe_resp(mgmt->frame_control)) {
2278 old = rcu_access_pointer(nontrans_bss->proberesp_ies);
2279 rcu_assign_pointer(nontrans_bss->proberesp_ies, new_ies);
2280 rcu_assign_pointer(nontrans_bss->ies, new_ies);
2281 if (old)
2282 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
2283 } else {
2284 old = rcu_access_pointer(nontrans_bss->beacon_ies);
2285 rcu_assign_pointer(nontrans_bss->beacon_ies, new_ies);
2286 rcu_assign_pointer(nontrans_bss->ies, new_ies);
2287 if (old)
2288 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
2289 }
2290
2291 out_free:
2292 kfree(new_ie);
2293 }
2294
2295 /* cfg80211_inform_bss_width_frame helper */
2296 static struct cfg80211_bss *
cfg80211_inform_single_bss_frame_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,struct ieee80211_mgmt * mgmt,size_t len,gfp_t gfp)2297 cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy,
2298 struct cfg80211_inform_bss *data,
2299 struct ieee80211_mgmt *mgmt, size_t len,
2300 gfp_t gfp)
2301 {
2302 struct cfg80211_internal_bss tmp = {}, *res;
2303 struct cfg80211_bss_ies *ies;
2304 struct ieee80211_channel *channel;
2305 bool signal_valid;
2306 struct ieee80211_ext *ext = NULL;
2307 u8 *bssid, *variable;
2308 u16 capability, beacon_int;
2309 size_t ielen, min_hdr_len = offsetof(struct ieee80211_mgmt,
2310 u.probe_resp.variable);
2311 int bss_type;
2312
2313 BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
2314 offsetof(struct ieee80211_mgmt, u.beacon.variable));
2315
2316 trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
2317
2318 if (WARN_ON(!mgmt))
2319 return NULL;
2320
2321 if (WARN_ON(!wiphy))
2322 return NULL;
2323
2324 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2325 (data->signal < 0 || data->signal > 100)))
2326 return NULL;
2327
2328 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) {
2329 ext = (void *) mgmt;
2330 min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon);
2331 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2332 min_hdr_len = offsetof(struct ieee80211_ext,
2333 u.s1g_short_beacon.variable);
2334 }
2335
2336 if (WARN_ON(len < min_hdr_len))
2337 return NULL;
2338
2339 ielen = len - min_hdr_len;
2340 variable = mgmt->u.probe_resp.variable;
2341 if (ext) {
2342 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2343 variable = ext->u.s1g_short_beacon.variable;
2344 else
2345 variable = ext->u.s1g_beacon.variable;
2346 }
2347
2348 channel = cfg80211_get_bss_channel(wiphy, variable,
2349 ielen, data->chan, data->scan_width);
2350 if (!channel)
2351 return NULL;
2352
2353 if (ext) {
2354 struct ieee80211_s1g_bcn_compat_ie *compat;
2355 u8 *ie;
2356
2357 ie = (void *)cfg80211_find_ie(WLAN_EID_S1G_BCN_COMPAT,
2358 variable, ielen);
2359 if (!ie)
2360 return NULL;
2361 compat = (void *)(ie + 2);
2362 bssid = ext->u.s1g_beacon.sa;
2363 capability = le16_to_cpu(compat->compat_info);
2364 beacon_int = le16_to_cpu(compat->beacon_int);
2365 } else {
2366 bssid = mgmt->bssid;
2367 beacon_int = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
2368 capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
2369 }
2370
2371 ies = kzalloc(sizeof(*ies) + ielen, gfp);
2372 if (!ies)
2373 return NULL;
2374 ies->len = ielen;
2375 ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2376 ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control) ||
2377 ieee80211_is_s1g_beacon(mgmt->frame_control);
2378 memcpy(ies->data, variable, ielen);
2379
2380 if (ieee80211_is_probe_resp(mgmt->frame_control))
2381 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2382 else
2383 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2384 rcu_assign_pointer(tmp.pub.ies, ies);
2385
2386 memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
2387 tmp.pub.beacon_interval = beacon_int;
2388 tmp.pub.capability = capability;
2389 tmp.pub.channel = channel;
2390 tmp.pub.scan_width = data->scan_width;
2391 tmp.pub.signal = data->signal;
2392 tmp.ts_boottime = data->boottime_ns;
2393 tmp.parent_tsf = data->parent_tsf;
2394 tmp.pub.chains = data->chains;
2395 memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS);
2396 ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
2397
2398 signal_valid = data->chan == channel;
2399 res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid,
2400 jiffies);
2401 if (!res)
2402 return NULL;
2403
2404 if (channel->band == NL80211_BAND_60GHZ) {
2405 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
2406 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2407 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2408 regulatory_hint_found_beacon(wiphy, channel, gfp);
2409 } else {
2410 if (res->pub.capability & WLAN_CAPABILITY_ESS)
2411 regulatory_hint_found_beacon(wiphy, channel, gfp);
2412 }
2413
2414 trace_cfg80211_return_bss(&res->pub);
2415 /* cfg80211_bss_update gives us a referenced result */
2416 return &res->pub;
2417 }
2418
2419 struct cfg80211_bss *
cfg80211_inform_bss_frame_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,struct ieee80211_mgmt * mgmt,size_t len,gfp_t gfp)2420 cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
2421 struct cfg80211_inform_bss *data,
2422 struct ieee80211_mgmt *mgmt, size_t len,
2423 gfp_t gfp)
2424 {
2425 struct cfg80211_bss *res, *tmp_bss;
2426 const u8 *ie = mgmt->u.probe_resp.variable;
2427 const struct cfg80211_bss_ies *ies1, *ies2;
2428 size_t ielen = len - offsetof(struct ieee80211_mgmt,
2429 u.probe_resp.variable);
2430 struct cfg80211_non_tx_bss non_tx_data;
2431
2432 res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt,
2433 len, gfp);
2434 if (!res || !wiphy->support_mbssid ||
2435 !cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
2436 return res;
2437 if (wiphy->support_only_he_mbssid &&
2438 !cfg80211_find_ext_ie(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
2439 return res;
2440
2441 non_tx_data.tx_bss = res;
2442 /* process each non-transmitting bss */
2443 cfg80211_parse_mbssid_frame_data(wiphy, data, mgmt, len,
2444 &non_tx_data, gfp);
2445
2446 spin_lock_bh(&wiphy_to_rdev(wiphy)->bss_lock);
2447
2448 /* check if the res has other nontransmitting bss which is not
2449 * in MBSSID IE
2450 */
2451 ies1 = rcu_access_pointer(res->ies);
2452
2453 /* go through nontrans_list, if the timestamp of the BSS is
2454 * earlier than the timestamp of the transmitting BSS then
2455 * update it
2456 */
2457 list_for_each_entry(tmp_bss, &res->nontrans_list,
2458 nontrans_list) {
2459 ies2 = rcu_access_pointer(tmp_bss->ies);
2460 if (ies2->tsf < ies1->tsf)
2461 cfg80211_update_notlisted_nontrans(wiphy, tmp_bss,
2462 mgmt, len);
2463 }
2464 spin_unlock_bh(&wiphy_to_rdev(wiphy)->bss_lock);
2465
2466 return res;
2467 }
2468 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
2469
cfg80211_ref_bss(struct wiphy * wiphy,struct cfg80211_bss * pub)2470 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2471 {
2472 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2473 struct cfg80211_internal_bss *bss;
2474
2475 if (!pub)
2476 return;
2477
2478 bss = container_of(pub, struct cfg80211_internal_bss, pub);
2479
2480 spin_lock_bh(&rdev->bss_lock);
2481 bss_ref_get(rdev, bss);
2482 spin_unlock_bh(&rdev->bss_lock);
2483 }
2484 EXPORT_SYMBOL(cfg80211_ref_bss);
2485
cfg80211_put_bss(struct wiphy * wiphy,struct cfg80211_bss * pub)2486 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2487 {
2488 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2489 struct cfg80211_internal_bss *bss;
2490
2491 if (!pub)
2492 return;
2493
2494 bss = container_of(pub, struct cfg80211_internal_bss, pub);
2495
2496 spin_lock_bh(&rdev->bss_lock);
2497 bss_ref_put(rdev, bss);
2498 spin_unlock_bh(&rdev->bss_lock);
2499 }
2500 EXPORT_SYMBOL(cfg80211_put_bss);
2501
cfg80211_unlink_bss(struct wiphy * wiphy,struct cfg80211_bss * pub)2502 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2503 {
2504 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2505 struct cfg80211_internal_bss *bss, *tmp1;
2506 struct cfg80211_bss *nontrans_bss, *tmp;
2507
2508 if (WARN_ON(!pub))
2509 return;
2510
2511 bss = container_of(pub, struct cfg80211_internal_bss, pub);
2512
2513 spin_lock_bh(&rdev->bss_lock);
2514 if (list_empty(&bss->list))
2515 goto out;
2516
2517 list_for_each_entry_safe(nontrans_bss, tmp,
2518 &pub->nontrans_list,
2519 nontrans_list) {
2520 tmp1 = container_of(nontrans_bss,
2521 struct cfg80211_internal_bss, pub);
2522 if (__cfg80211_unlink_bss(rdev, tmp1))
2523 rdev->bss_generation++;
2524 }
2525
2526 if (__cfg80211_unlink_bss(rdev, bss))
2527 rdev->bss_generation++;
2528 out:
2529 spin_unlock_bh(&rdev->bss_lock);
2530 }
2531 EXPORT_SYMBOL(cfg80211_unlink_bss);
2532
cfg80211_bss_iter(struct wiphy * wiphy,struct cfg80211_chan_def * chandef,void (* iter)(struct wiphy * wiphy,struct cfg80211_bss * bss,void * data),void * iter_data)2533 void cfg80211_bss_iter(struct wiphy *wiphy,
2534 struct cfg80211_chan_def *chandef,
2535 void (*iter)(struct wiphy *wiphy,
2536 struct cfg80211_bss *bss,
2537 void *data),
2538 void *iter_data)
2539 {
2540 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2541 struct cfg80211_internal_bss *bss;
2542
2543 spin_lock_bh(&rdev->bss_lock);
2544
2545 list_for_each_entry(bss, &rdev->bss_list, list) {
2546 if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel))
2547 iter(wiphy, &bss->pub, iter_data);
2548 }
2549
2550 spin_unlock_bh(&rdev->bss_lock);
2551 }
2552 EXPORT_SYMBOL(cfg80211_bss_iter);
2553
cfg80211_update_assoc_bss_entry(struct wireless_dev * wdev,struct ieee80211_channel * chan)2554 void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
2555 struct ieee80211_channel *chan)
2556 {
2557 struct wiphy *wiphy = wdev->wiphy;
2558 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2559 struct cfg80211_internal_bss *cbss = wdev->current_bss;
2560 struct cfg80211_internal_bss *new = NULL;
2561 struct cfg80211_internal_bss *bss;
2562 struct cfg80211_bss *nontrans_bss;
2563 struct cfg80211_bss *tmp;
2564
2565 spin_lock_bh(&rdev->bss_lock);
2566
2567 /*
2568 * Some APs use CSA also for bandwidth changes, i.e., without actually
2569 * changing the control channel, so no need to update in such a case.
2570 */
2571 if (cbss->pub.channel == chan)
2572 goto done;
2573
2574 /* use transmitting bss */
2575 if (cbss->pub.transmitted_bss)
2576 cbss = container_of(cbss->pub.transmitted_bss,
2577 struct cfg80211_internal_bss,
2578 pub);
2579
2580 cbss->pub.channel = chan;
2581
2582 list_for_each_entry(bss, &rdev->bss_list, list) {
2583 if (!cfg80211_bss_type_match(bss->pub.capability,
2584 bss->pub.channel->band,
2585 wdev->conn_bss_type))
2586 continue;
2587
2588 if (bss == cbss)
2589 continue;
2590
2591 if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
2592 new = bss;
2593 break;
2594 }
2595 }
2596
2597 if (new) {
2598 /* to save time, update IEs for transmitting bss only */
2599 if (cfg80211_update_known_bss(rdev, cbss, new, false)) {
2600 new->pub.proberesp_ies = NULL;
2601 new->pub.beacon_ies = NULL;
2602 }
2603
2604 list_for_each_entry_safe(nontrans_bss, tmp,
2605 &new->pub.nontrans_list,
2606 nontrans_list) {
2607 bss = container_of(nontrans_bss,
2608 struct cfg80211_internal_bss, pub);
2609 if (__cfg80211_unlink_bss(rdev, bss))
2610 rdev->bss_generation++;
2611 }
2612
2613 WARN_ON(atomic_read(&new->hold));
2614 if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
2615 rdev->bss_generation++;
2616 }
2617
2618 rb_erase(&cbss->rbn, &rdev->bss_tree);
2619 rb_insert_bss(rdev, cbss);
2620 rdev->bss_generation++;
2621
2622 list_for_each_entry_safe(nontrans_bss, tmp,
2623 &cbss->pub.nontrans_list,
2624 nontrans_list) {
2625 bss = container_of(nontrans_bss,
2626 struct cfg80211_internal_bss, pub);
2627 bss->pub.channel = chan;
2628 rb_erase(&bss->rbn, &rdev->bss_tree);
2629 rb_insert_bss(rdev, bss);
2630 rdev->bss_generation++;
2631 }
2632
2633 done:
2634 spin_unlock_bh(&rdev->bss_lock);
2635 }
2636
2637 #ifdef CONFIG_CFG80211_WEXT
2638 static struct cfg80211_registered_device *
cfg80211_get_dev_from_ifindex(struct net * net,int ifindex)2639 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
2640 {
2641 struct cfg80211_registered_device *rdev;
2642 struct net_device *dev;
2643
2644 ASSERT_RTNL();
2645
2646 dev = dev_get_by_index(net, ifindex);
2647 if (!dev)
2648 return ERR_PTR(-ENODEV);
2649 if (dev->ieee80211_ptr)
2650 rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
2651 else
2652 rdev = ERR_PTR(-ENODEV);
2653 dev_put(dev);
2654 return rdev;
2655 }
2656
cfg80211_wext_siwscan(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)2657 int cfg80211_wext_siwscan(struct net_device *dev,
2658 struct iw_request_info *info,
2659 union iwreq_data *wrqu, char *extra)
2660 {
2661 struct cfg80211_registered_device *rdev;
2662 struct wiphy *wiphy;
2663 struct iw_scan_req *wreq = NULL;
2664 struct cfg80211_scan_request *creq = NULL;
2665 int i, err, n_channels = 0;
2666 enum nl80211_band band;
2667
2668 if (!netif_running(dev))
2669 return -ENETDOWN;
2670
2671 if (wrqu->data.length == sizeof(struct iw_scan_req))
2672 wreq = (struct iw_scan_req *)extra;
2673
2674 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
2675
2676 if (IS_ERR(rdev))
2677 return PTR_ERR(rdev);
2678
2679 if (rdev->scan_req || rdev->scan_msg) {
2680 err = -EBUSY;
2681 goto out;
2682 }
2683
2684 wiphy = &rdev->wiphy;
2685
2686 /* Determine number of channels, needed to allocate creq */
2687 if (wreq && wreq->num_channels)
2688 n_channels = wreq->num_channels;
2689 else
2690 n_channels = ieee80211_get_num_supported_channels(wiphy);
2691
2692 creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
2693 n_channels * sizeof(void *),
2694 GFP_ATOMIC);
2695 if (!creq) {
2696 err = -ENOMEM;
2697 goto out;
2698 }
2699
2700 creq->wiphy = wiphy;
2701 creq->wdev = dev->ieee80211_ptr;
2702 /* SSIDs come after channels */
2703 creq->ssids = (void *)&creq->channels[n_channels];
2704 creq->n_channels = n_channels;
2705 creq->n_ssids = 1;
2706 creq->scan_start = jiffies;
2707
2708 /* translate "Scan on frequencies" request */
2709 i = 0;
2710 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2711 int j;
2712
2713 if (!wiphy->bands[band])
2714 continue;
2715
2716 for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
2717 /* ignore disabled channels */
2718 if (wiphy->bands[band]->channels[j].flags &
2719 IEEE80211_CHAN_DISABLED)
2720 continue;
2721
2722 /* If we have a wireless request structure and the
2723 * wireless request specifies frequencies, then search
2724 * for the matching hardware channel.
2725 */
2726 if (wreq && wreq->num_channels) {
2727 int k;
2728 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
2729 for (k = 0; k < wreq->num_channels; k++) {
2730 struct iw_freq *freq =
2731 &wreq->channel_list[k];
2732 int wext_freq =
2733 cfg80211_wext_freq(freq);
2734
2735 if (wext_freq == wiphy_freq)
2736 goto wext_freq_found;
2737 }
2738 goto wext_freq_not_found;
2739 }
2740
2741 wext_freq_found:
2742 creq->channels[i] = &wiphy->bands[band]->channels[j];
2743 i++;
2744 wext_freq_not_found: ;
2745 }
2746 }
2747 /* No channels found? */
2748 if (!i) {
2749 err = -EINVAL;
2750 goto out;
2751 }
2752
2753 /* Set real number of channels specified in creq->channels[] */
2754 creq->n_channels = i;
2755
2756 /* translate "Scan for SSID" request */
2757 if (wreq) {
2758 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
2759 if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
2760 err = -EINVAL;
2761 goto out;
2762 }
2763 memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
2764 creq->ssids[0].ssid_len = wreq->essid_len;
2765 }
2766 if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE)
2767 creq->n_ssids = 0;
2768 }
2769
2770 for (i = 0; i < NUM_NL80211_BANDS; i++)
2771 if (wiphy->bands[i])
2772 creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
2773
2774 eth_broadcast_addr(creq->bssid);
2775
2776 rdev->scan_req = creq;
2777 err = rdev_scan(rdev, creq);
2778 if (err) {
2779 rdev->scan_req = NULL;
2780 /* creq will be freed below */
2781 } else {
2782 nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
2783 /* creq now owned by driver */
2784 creq = NULL;
2785 dev_hold(dev);
2786 }
2787 out:
2788 kfree(creq);
2789 return err;
2790 }
2791 EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
2792
ieee80211_scan_add_ies(struct iw_request_info * info,const struct cfg80211_bss_ies * ies,char * current_ev,char * end_buf)2793 static char *ieee80211_scan_add_ies(struct iw_request_info *info,
2794 const struct cfg80211_bss_ies *ies,
2795 char *current_ev, char *end_buf)
2796 {
2797 const u8 *pos, *end, *next;
2798 struct iw_event iwe;
2799
2800 if (!ies)
2801 return current_ev;
2802
2803 /*
2804 * If needed, fragment the IEs buffer (at IE boundaries) into short
2805 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
2806 */
2807 pos = ies->data;
2808 end = pos + ies->len;
2809
2810 while (end - pos > IW_GENERIC_IE_MAX) {
2811 next = pos + 2 + pos[1];
2812 while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
2813 next = next + 2 + next[1];
2814
2815 memset(&iwe, 0, sizeof(iwe));
2816 iwe.cmd = IWEVGENIE;
2817 iwe.u.data.length = next - pos;
2818 current_ev = iwe_stream_add_point_check(info, current_ev,
2819 end_buf, &iwe,
2820 (void *)pos);
2821 if (IS_ERR(current_ev))
2822 return current_ev;
2823 pos = next;
2824 }
2825
2826 if (end > pos) {
2827 memset(&iwe, 0, sizeof(iwe));
2828 iwe.cmd = IWEVGENIE;
2829 iwe.u.data.length = end - pos;
2830 current_ev = iwe_stream_add_point_check(info, current_ev,
2831 end_buf, &iwe,
2832 (void *)pos);
2833 if (IS_ERR(current_ev))
2834 return current_ev;
2835 }
2836
2837 return current_ev;
2838 }
2839
2840 static char *
ieee80211_bss(struct wiphy * wiphy,struct iw_request_info * info,struct cfg80211_internal_bss * bss,char * current_ev,char * end_buf)2841 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
2842 struct cfg80211_internal_bss *bss, char *current_ev,
2843 char *end_buf)
2844 {
2845 const struct cfg80211_bss_ies *ies;
2846 struct iw_event iwe;
2847 const u8 *ie;
2848 u8 buf[50];
2849 u8 *cfg, *p, *tmp;
2850 int rem, i, sig;
2851 bool ismesh = false;
2852
2853 memset(&iwe, 0, sizeof(iwe));
2854 iwe.cmd = SIOCGIWAP;
2855 iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
2856 memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
2857 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2858 IW_EV_ADDR_LEN);
2859 if (IS_ERR(current_ev))
2860 return current_ev;
2861
2862 memset(&iwe, 0, sizeof(iwe));
2863 iwe.cmd = SIOCGIWFREQ;
2864 iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
2865 iwe.u.freq.e = 0;
2866 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2867 IW_EV_FREQ_LEN);
2868 if (IS_ERR(current_ev))
2869 return current_ev;
2870
2871 memset(&iwe, 0, sizeof(iwe));
2872 iwe.cmd = SIOCGIWFREQ;
2873 iwe.u.freq.m = bss->pub.channel->center_freq;
2874 iwe.u.freq.e = 6;
2875 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2876 IW_EV_FREQ_LEN);
2877 if (IS_ERR(current_ev))
2878 return current_ev;
2879
2880 if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
2881 memset(&iwe, 0, sizeof(iwe));
2882 iwe.cmd = IWEVQUAL;
2883 iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
2884 IW_QUAL_NOISE_INVALID |
2885 IW_QUAL_QUAL_UPDATED;
2886 switch (wiphy->signal_type) {
2887 case CFG80211_SIGNAL_TYPE_MBM:
2888 sig = bss->pub.signal / 100;
2889 iwe.u.qual.level = sig;
2890 iwe.u.qual.updated |= IW_QUAL_DBM;
2891 if (sig < -110) /* rather bad */
2892 sig = -110;
2893 else if (sig > -40) /* perfect */
2894 sig = -40;
2895 /* will give a range of 0 .. 70 */
2896 iwe.u.qual.qual = sig + 110;
2897 break;
2898 case CFG80211_SIGNAL_TYPE_UNSPEC:
2899 iwe.u.qual.level = bss->pub.signal;
2900 /* will give range 0 .. 100 */
2901 iwe.u.qual.qual = bss->pub.signal;
2902 break;
2903 default:
2904 /* not reached */
2905 break;
2906 }
2907 current_ev = iwe_stream_add_event_check(info, current_ev,
2908 end_buf, &iwe,
2909 IW_EV_QUAL_LEN);
2910 if (IS_ERR(current_ev))
2911 return current_ev;
2912 }
2913
2914 memset(&iwe, 0, sizeof(iwe));
2915 iwe.cmd = SIOCGIWENCODE;
2916 if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
2917 iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
2918 else
2919 iwe.u.data.flags = IW_ENCODE_DISABLED;
2920 iwe.u.data.length = 0;
2921 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
2922 &iwe, "");
2923 if (IS_ERR(current_ev))
2924 return current_ev;
2925
2926 rcu_read_lock();
2927 ies = rcu_dereference(bss->pub.ies);
2928 rem = ies->len;
2929 ie = ies->data;
2930
2931 while (rem >= 2) {
2932 /* invalid data */
2933 if (ie[1] > rem - 2)
2934 break;
2935
2936 switch (ie[0]) {
2937 case WLAN_EID_SSID:
2938 memset(&iwe, 0, sizeof(iwe));
2939 iwe.cmd = SIOCGIWESSID;
2940 iwe.u.data.length = ie[1];
2941 iwe.u.data.flags = 1;
2942 current_ev = iwe_stream_add_point_check(info,
2943 current_ev,
2944 end_buf, &iwe,
2945 (u8 *)ie + 2);
2946 if (IS_ERR(current_ev))
2947 goto unlock;
2948 break;
2949 case WLAN_EID_MESH_ID:
2950 memset(&iwe, 0, sizeof(iwe));
2951 iwe.cmd = SIOCGIWESSID;
2952 iwe.u.data.length = ie[1];
2953 iwe.u.data.flags = 1;
2954 current_ev = iwe_stream_add_point_check(info,
2955 current_ev,
2956 end_buf, &iwe,
2957 (u8 *)ie + 2);
2958 if (IS_ERR(current_ev))
2959 goto unlock;
2960 break;
2961 case WLAN_EID_MESH_CONFIG:
2962 ismesh = true;
2963 if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
2964 break;
2965 cfg = (u8 *)ie + 2;
2966 memset(&iwe, 0, sizeof(iwe));
2967 iwe.cmd = IWEVCUSTOM;
2968 sprintf(buf, "Mesh Network Path Selection Protocol ID: "
2969 "0x%02X", cfg[0]);
2970 iwe.u.data.length = strlen(buf);
2971 current_ev = iwe_stream_add_point_check(info,
2972 current_ev,
2973 end_buf,
2974 &iwe, buf);
2975 if (IS_ERR(current_ev))
2976 goto unlock;
2977 sprintf(buf, "Path Selection Metric ID: 0x%02X",
2978 cfg[1]);
2979 iwe.u.data.length = strlen(buf);
2980 current_ev = iwe_stream_add_point_check(info,
2981 current_ev,
2982 end_buf,
2983 &iwe, buf);
2984 if (IS_ERR(current_ev))
2985 goto unlock;
2986 sprintf(buf, "Congestion Control Mode ID: 0x%02X",
2987 cfg[2]);
2988 iwe.u.data.length = strlen(buf);
2989 current_ev = iwe_stream_add_point_check(info,
2990 current_ev,
2991 end_buf,
2992 &iwe, buf);
2993 if (IS_ERR(current_ev))
2994 goto unlock;
2995 sprintf(buf, "Synchronization ID: 0x%02X", cfg[3]);
2996 iwe.u.data.length = strlen(buf);
2997 current_ev = iwe_stream_add_point_check(info,
2998 current_ev,
2999 end_buf,
3000 &iwe, buf);
3001 if (IS_ERR(current_ev))
3002 goto unlock;
3003 sprintf(buf, "Authentication ID: 0x%02X", cfg[4]);
3004 iwe.u.data.length = strlen(buf);
3005 current_ev = iwe_stream_add_point_check(info,
3006 current_ev,
3007 end_buf,
3008 &iwe, buf);
3009 if (IS_ERR(current_ev))
3010 goto unlock;
3011 sprintf(buf, "Formation Info: 0x%02X", cfg[5]);
3012 iwe.u.data.length = strlen(buf);
3013 current_ev = iwe_stream_add_point_check(info,
3014 current_ev,
3015 end_buf,
3016 &iwe, buf);
3017 if (IS_ERR(current_ev))
3018 goto unlock;
3019 sprintf(buf, "Capabilities: 0x%02X", cfg[6]);
3020 iwe.u.data.length = strlen(buf);
3021 current_ev = iwe_stream_add_point_check(info,
3022 current_ev,
3023 end_buf,
3024 &iwe, buf);
3025 if (IS_ERR(current_ev))
3026 goto unlock;
3027 break;
3028 case WLAN_EID_SUPP_RATES:
3029 case WLAN_EID_EXT_SUPP_RATES:
3030 /* display all supported rates in readable format */
3031 p = current_ev + iwe_stream_lcp_len(info);
3032
3033 memset(&iwe, 0, sizeof(iwe));
3034 iwe.cmd = SIOCGIWRATE;
3035 /* Those two flags are ignored... */
3036 iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
3037
3038 for (i = 0; i < ie[1]; i++) {
3039 iwe.u.bitrate.value =
3040 ((ie[i + 2] & 0x7f) * 500000);
3041 tmp = p;
3042 p = iwe_stream_add_value(info, current_ev, p,
3043 end_buf, &iwe,
3044 IW_EV_PARAM_LEN);
3045 if (p == tmp) {
3046 current_ev = ERR_PTR(-E2BIG);
3047 goto unlock;
3048 }
3049 }
3050 current_ev = p;
3051 break;
3052 }
3053 rem -= ie[1] + 2;
3054 ie += ie[1] + 2;
3055 }
3056
3057 if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
3058 ismesh) {
3059 memset(&iwe, 0, sizeof(iwe));
3060 iwe.cmd = SIOCGIWMODE;
3061 if (ismesh)
3062 iwe.u.mode = IW_MODE_MESH;
3063 else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
3064 iwe.u.mode = IW_MODE_MASTER;
3065 else
3066 iwe.u.mode = IW_MODE_ADHOC;
3067 current_ev = iwe_stream_add_event_check(info, current_ev,
3068 end_buf, &iwe,
3069 IW_EV_UINT_LEN);
3070 if (IS_ERR(current_ev))
3071 goto unlock;
3072 }
3073
3074 memset(&iwe, 0, sizeof(iwe));
3075 iwe.cmd = IWEVCUSTOM;
3076 sprintf(buf, "tsf=%016llx", (unsigned long long)(ies->tsf));
3077 iwe.u.data.length = strlen(buf);
3078 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3079 &iwe, buf);
3080 if (IS_ERR(current_ev))
3081 goto unlock;
3082 memset(&iwe, 0, sizeof(iwe));
3083 iwe.cmd = IWEVCUSTOM;
3084 sprintf(buf, " Last beacon: %ums ago",
3085 elapsed_jiffies_msecs(bss->ts));
3086 iwe.u.data.length = strlen(buf);
3087 current_ev = iwe_stream_add_point_check(info, current_ev,
3088 end_buf, &iwe, buf);
3089 if (IS_ERR(current_ev))
3090 goto unlock;
3091
3092 current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
3093
3094 unlock:
3095 rcu_read_unlock();
3096 return current_ev;
3097 }
3098
3099
ieee80211_scan_results(struct cfg80211_registered_device * rdev,struct iw_request_info * info,char * buf,size_t len)3100 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
3101 struct iw_request_info *info,
3102 char *buf, size_t len)
3103 {
3104 char *current_ev = buf;
3105 char *end_buf = buf + len;
3106 struct cfg80211_internal_bss *bss;
3107 int err = 0;
3108
3109 spin_lock_bh(&rdev->bss_lock);
3110 cfg80211_bss_expire(rdev);
3111
3112 list_for_each_entry(bss, &rdev->bss_list, list) {
3113 if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
3114 err = -E2BIG;
3115 break;
3116 }
3117 current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
3118 current_ev, end_buf);
3119 if (IS_ERR(current_ev)) {
3120 err = PTR_ERR(current_ev);
3121 break;
3122 }
3123 }
3124 spin_unlock_bh(&rdev->bss_lock);
3125
3126 if (err)
3127 return err;
3128 return current_ev - buf;
3129 }
3130
3131
cfg80211_wext_giwscan(struct net_device * dev,struct iw_request_info * info,struct iw_point * data,char * extra)3132 int cfg80211_wext_giwscan(struct net_device *dev,
3133 struct iw_request_info *info,
3134 struct iw_point *data, char *extra)
3135 {
3136 struct cfg80211_registered_device *rdev;
3137 int res;
3138
3139 if (!netif_running(dev))
3140 return -ENETDOWN;
3141
3142 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3143
3144 if (IS_ERR(rdev))
3145 return PTR_ERR(rdev);
3146
3147 if (rdev->scan_req || rdev->scan_msg)
3148 return -EAGAIN;
3149
3150 res = ieee80211_scan_results(rdev, info, extra, data->length);
3151 data->length = 0;
3152 if (res >= 0) {
3153 data->length = res;
3154 res = 0;
3155 }
3156
3157 return res;
3158 }
3159 EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
3160 #endif
3161