1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/ceph/ceph_debug.h>
3
4 #include <linux/crc32c.h>
5 #include <linux/ctype.h>
6 #include <linux/highmem.h>
7 #include <linux/inet.h>
8 #include <linux/kthread.h>
9 #include <linux/net.h>
10 #include <linux/nsproxy.h>
11 #include <linux/sched/mm.h>
12 #include <linux/slab.h>
13 #include <linux/socket.h>
14 #include <linux/string.h>
15 #ifdef CONFIG_BLOCK
16 #include <linux/bio.h>
17 #endif /* CONFIG_BLOCK */
18 #include <linux/dns_resolver.h>
19 #include <net/tcp.h>
20
21 #include <linux/ceph/ceph_features.h>
22 #include <linux/ceph/libceph.h>
23 #include <linux/ceph/messenger.h>
24 #include <linux/ceph/decode.h>
25 #include <linux/ceph/pagelist.h>
26 #include <linux/export.h>
27
28 /*
29 * Ceph uses the messenger to exchange ceph_msg messages with other
30 * hosts in the system. The messenger provides ordered and reliable
31 * delivery. We tolerate TCP disconnects by reconnecting (with
32 * exponential backoff) in the case of a fault (disconnection, bad
33 * crc, protocol error). Acks allow sent messages to be discarded by
34 * the sender.
35 */
36
37 /*
38 * We track the state of the socket on a given connection using
39 * values defined below. The transition to a new socket state is
40 * handled by a function which verifies we aren't coming from an
41 * unexpected state.
42 *
43 * --------
44 * | NEW* | transient initial state
45 * --------
46 * | con_sock_state_init()
47 * v
48 * ----------
49 * | CLOSED | initialized, but no socket (and no
50 * ---------- TCP connection)
51 * ^ \
52 * | \ con_sock_state_connecting()
53 * | ----------------------
54 * | \
55 * + con_sock_state_closed() \
56 * |+--------------------------- \
57 * | \ \ \
58 * | ----------- \ \
59 * | | CLOSING | socket event; \ \
60 * | ----------- await close \ \
61 * | ^ \ |
62 * | | \ |
63 * | + con_sock_state_closing() \ |
64 * | / \ | |
65 * | / --------------- | |
66 * | / \ v v
67 * | / --------------
68 * | / -----------------| CONNECTING | socket created, TCP
69 * | | / -------------- connect initiated
70 * | | | con_sock_state_connected()
71 * | | v
72 * -------------
73 * | CONNECTED | TCP connection established
74 * -------------
75 *
76 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
77 */
78
79 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
80 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
81 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
82 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
83 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
84
85 /*
86 * connection states
87 */
88 #define CON_STATE_CLOSED 1 /* -> PREOPEN */
89 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */
90 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */
91 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */
92 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */
93 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */
94
95 /*
96 * ceph_connection flag bits
97 */
98 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop
99 * messages on errors */
100 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */
101 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */
102 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */
103 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */
104
con_flag_valid(unsigned long con_flag)105 static bool con_flag_valid(unsigned long con_flag)
106 {
107 switch (con_flag) {
108 case CON_FLAG_LOSSYTX:
109 case CON_FLAG_KEEPALIVE_PENDING:
110 case CON_FLAG_WRITE_PENDING:
111 case CON_FLAG_SOCK_CLOSED:
112 case CON_FLAG_BACKOFF:
113 return true;
114 default:
115 return false;
116 }
117 }
118
con_flag_clear(struct ceph_connection * con,unsigned long con_flag)119 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
120 {
121 BUG_ON(!con_flag_valid(con_flag));
122
123 clear_bit(con_flag, &con->flags);
124 }
125
con_flag_set(struct ceph_connection * con,unsigned long con_flag)126 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
127 {
128 BUG_ON(!con_flag_valid(con_flag));
129
130 set_bit(con_flag, &con->flags);
131 }
132
con_flag_test(struct ceph_connection * con,unsigned long con_flag)133 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
134 {
135 BUG_ON(!con_flag_valid(con_flag));
136
137 return test_bit(con_flag, &con->flags);
138 }
139
con_flag_test_and_clear(struct ceph_connection * con,unsigned long con_flag)140 static bool con_flag_test_and_clear(struct ceph_connection *con,
141 unsigned long con_flag)
142 {
143 BUG_ON(!con_flag_valid(con_flag));
144
145 return test_and_clear_bit(con_flag, &con->flags);
146 }
147
con_flag_test_and_set(struct ceph_connection * con,unsigned long con_flag)148 static bool con_flag_test_and_set(struct ceph_connection *con,
149 unsigned long con_flag)
150 {
151 BUG_ON(!con_flag_valid(con_flag));
152
153 return test_and_set_bit(con_flag, &con->flags);
154 }
155
156 /* Slab caches for frequently-allocated structures */
157
158 static struct kmem_cache *ceph_msg_cache;
159 static struct kmem_cache *ceph_msg_data_cache;
160
161 /* static tag bytes (protocol control messages) */
162 static char tag_msg = CEPH_MSGR_TAG_MSG;
163 static char tag_ack = CEPH_MSGR_TAG_ACK;
164 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
165 static char tag_keepalive2 = CEPH_MSGR_TAG_KEEPALIVE2;
166
167 #ifdef CONFIG_LOCKDEP
168 static struct lock_class_key socket_class;
169 #endif
170
171 static void queue_con(struct ceph_connection *con);
172 static void cancel_con(struct ceph_connection *con);
173 static void ceph_con_workfn(struct work_struct *);
174 static void con_fault(struct ceph_connection *con);
175
176 /*
177 * Nicely render a sockaddr as a string. An array of formatted
178 * strings is used, to approximate reentrancy.
179 */
180 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
181 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
182 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
183 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
184
185 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
186 static atomic_t addr_str_seq = ATOMIC_INIT(0);
187
188 static struct page *zero_page; /* used in certain error cases */
189
ceph_pr_addr(const struct sockaddr_storage * ss)190 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
191 {
192 int i;
193 char *s;
194 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
195 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
196
197 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
198 s = addr_str[i];
199
200 switch (ss->ss_family) {
201 case AF_INET:
202 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
203 ntohs(in4->sin_port));
204 break;
205
206 case AF_INET6:
207 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
208 ntohs(in6->sin6_port));
209 break;
210
211 default:
212 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
213 ss->ss_family);
214 }
215
216 return s;
217 }
218 EXPORT_SYMBOL(ceph_pr_addr);
219
encode_my_addr(struct ceph_messenger * msgr)220 static void encode_my_addr(struct ceph_messenger *msgr)
221 {
222 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
223 ceph_encode_addr(&msgr->my_enc_addr);
224 }
225
226 /*
227 * work queue for all reading and writing to/from the socket.
228 */
229 static struct workqueue_struct *ceph_msgr_wq;
230
ceph_msgr_slab_init(void)231 static int ceph_msgr_slab_init(void)
232 {
233 BUG_ON(ceph_msg_cache);
234 ceph_msg_cache = KMEM_CACHE(ceph_msg, 0);
235 if (!ceph_msg_cache)
236 return -ENOMEM;
237
238 BUG_ON(ceph_msg_data_cache);
239 ceph_msg_data_cache = KMEM_CACHE(ceph_msg_data, 0);
240 if (ceph_msg_data_cache)
241 return 0;
242
243 kmem_cache_destroy(ceph_msg_cache);
244 ceph_msg_cache = NULL;
245
246 return -ENOMEM;
247 }
248
ceph_msgr_slab_exit(void)249 static void ceph_msgr_slab_exit(void)
250 {
251 BUG_ON(!ceph_msg_data_cache);
252 kmem_cache_destroy(ceph_msg_data_cache);
253 ceph_msg_data_cache = NULL;
254
255 BUG_ON(!ceph_msg_cache);
256 kmem_cache_destroy(ceph_msg_cache);
257 ceph_msg_cache = NULL;
258 }
259
_ceph_msgr_exit(void)260 static void _ceph_msgr_exit(void)
261 {
262 if (ceph_msgr_wq) {
263 destroy_workqueue(ceph_msgr_wq);
264 ceph_msgr_wq = NULL;
265 }
266
267 BUG_ON(zero_page == NULL);
268 put_page(zero_page);
269 zero_page = NULL;
270
271 ceph_msgr_slab_exit();
272 }
273
ceph_msgr_init(void)274 int __init ceph_msgr_init(void)
275 {
276 if (ceph_msgr_slab_init())
277 return -ENOMEM;
278
279 BUG_ON(zero_page != NULL);
280 zero_page = ZERO_PAGE(0);
281 get_page(zero_page);
282
283 /*
284 * The number of active work items is limited by the number of
285 * connections, so leave @max_active at default.
286 */
287 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
288 if (ceph_msgr_wq)
289 return 0;
290
291 pr_err("msgr_init failed to create workqueue\n");
292 _ceph_msgr_exit();
293
294 return -ENOMEM;
295 }
296
ceph_msgr_exit(void)297 void ceph_msgr_exit(void)
298 {
299 BUG_ON(ceph_msgr_wq == NULL);
300
301 _ceph_msgr_exit();
302 }
303
ceph_msgr_flush(void)304 void ceph_msgr_flush(void)
305 {
306 flush_workqueue(ceph_msgr_wq);
307 }
308 EXPORT_SYMBOL(ceph_msgr_flush);
309
310 /* Connection socket state transition functions */
311
con_sock_state_init(struct ceph_connection * con)312 static void con_sock_state_init(struct ceph_connection *con)
313 {
314 int old_state;
315
316 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
317 if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
318 printk("%s: unexpected old state %d\n", __func__, old_state);
319 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
320 CON_SOCK_STATE_CLOSED);
321 }
322
con_sock_state_connecting(struct ceph_connection * con)323 static void con_sock_state_connecting(struct ceph_connection *con)
324 {
325 int old_state;
326
327 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
328 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
329 printk("%s: unexpected old state %d\n", __func__, old_state);
330 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
331 CON_SOCK_STATE_CONNECTING);
332 }
333
con_sock_state_connected(struct ceph_connection * con)334 static void con_sock_state_connected(struct ceph_connection *con)
335 {
336 int old_state;
337
338 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
339 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
340 printk("%s: unexpected old state %d\n", __func__, old_state);
341 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
342 CON_SOCK_STATE_CONNECTED);
343 }
344
con_sock_state_closing(struct ceph_connection * con)345 static void con_sock_state_closing(struct ceph_connection *con)
346 {
347 int old_state;
348
349 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
350 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
351 old_state != CON_SOCK_STATE_CONNECTED &&
352 old_state != CON_SOCK_STATE_CLOSING))
353 printk("%s: unexpected old state %d\n", __func__, old_state);
354 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
355 CON_SOCK_STATE_CLOSING);
356 }
357
con_sock_state_closed(struct ceph_connection * con)358 static void con_sock_state_closed(struct ceph_connection *con)
359 {
360 int old_state;
361
362 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
363 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
364 old_state != CON_SOCK_STATE_CLOSING &&
365 old_state != CON_SOCK_STATE_CONNECTING &&
366 old_state != CON_SOCK_STATE_CLOSED))
367 printk("%s: unexpected old state %d\n", __func__, old_state);
368 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
369 CON_SOCK_STATE_CLOSED);
370 }
371
372 /*
373 * socket callback functions
374 */
375
376 /* data available on socket, or listen socket received a connect */
ceph_sock_data_ready(struct sock * sk)377 static void ceph_sock_data_ready(struct sock *sk)
378 {
379 struct ceph_connection *con = sk->sk_user_data;
380 if (atomic_read(&con->msgr->stopping)) {
381 return;
382 }
383
384 if (sk->sk_state != TCP_CLOSE_WAIT) {
385 dout("%s on %p state = %lu, queueing work\n", __func__,
386 con, con->state);
387 queue_con(con);
388 }
389 }
390
391 /* socket has buffer space for writing */
ceph_sock_write_space(struct sock * sk)392 static void ceph_sock_write_space(struct sock *sk)
393 {
394 struct ceph_connection *con = sk->sk_user_data;
395
396 /* only queue to workqueue if there is data we want to write,
397 * and there is sufficient space in the socket buffer to accept
398 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
399 * doesn't get called again until try_write() fills the socket
400 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
401 * and net/core/stream.c:sk_stream_write_space().
402 */
403 if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
404 if (sk_stream_is_writeable(sk)) {
405 dout("%s %p queueing write work\n", __func__, con);
406 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
407 queue_con(con);
408 }
409 } else {
410 dout("%s %p nothing to write\n", __func__, con);
411 }
412 }
413
414 /* socket's state has changed */
ceph_sock_state_change(struct sock * sk)415 static void ceph_sock_state_change(struct sock *sk)
416 {
417 struct ceph_connection *con = sk->sk_user_data;
418
419 dout("%s %p state = %lu sk_state = %u\n", __func__,
420 con, con->state, sk->sk_state);
421
422 switch (sk->sk_state) {
423 case TCP_CLOSE:
424 dout("%s TCP_CLOSE\n", __func__);
425 /* fall through */
426 case TCP_CLOSE_WAIT:
427 dout("%s TCP_CLOSE_WAIT\n", __func__);
428 con_sock_state_closing(con);
429 con_flag_set(con, CON_FLAG_SOCK_CLOSED);
430 queue_con(con);
431 break;
432 case TCP_ESTABLISHED:
433 dout("%s TCP_ESTABLISHED\n", __func__);
434 con_sock_state_connected(con);
435 queue_con(con);
436 break;
437 default: /* Everything else is uninteresting */
438 break;
439 }
440 }
441
442 /*
443 * set up socket callbacks
444 */
set_sock_callbacks(struct socket * sock,struct ceph_connection * con)445 static void set_sock_callbacks(struct socket *sock,
446 struct ceph_connection *con)
447 {
448 struct sock *sk = sock->sk;
449 sk->sk_user_data = con;
450 sk->sk_data_ready = ceph_sock_data_ready;
451 sk->sk_write_space = ceph_sock_write_space;
452 sk->sk_state_change = ceph_sock_state_change;
453 }
454
455
456 /*
457 * socket helpers
458 */
459
460 /*
461 * initiate connection to a remote socket.
462 */
ceph_tcp_connect(struct ceph_connection * con)463 static int ceph_tcp_connect(struct ceph_connection *con)
464 {
465 struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
466 struct socket *sock;
467 unsigned int noio_flag;
468 int ret;
469
470 BUG_ON(con->sock);
471
472 /* sock_create_kern() allocates with GFP_KERNEL */
473 noio_flag = memalloc_noio_save();
474 ret = sock_create_kern(read_pnet(&con->msgr->net), paddr->ss_family,
475 SOCK_STREAM, IPPROTO_TCP, &sock);
476 memalloc_noio_restore(noio_flag);
477 if (ret)
478 return ret;
479 sock->sk->sk_allocation = GFP_NOFS;
480
481 #ifdef CONFIG_LOCKDEP
482 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
483 #endif
484
485 set_sock_callbacks(sock, con);
486
487 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
488
489 con_sock_state_connecting(con);
490 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
491 O_NONBLOCK);
492 if (ret == -EINPROGRESS) {
493 dout("connect %s EINPROGRESS sk_state = %u\n",
494 ceph_pr_addr(&con->peer_addr.in_addr),
495 sock->sk->sk_state);
496 } else if (ret < 0) {
497 pr_err("connect %s error %d\n",
498 ceph_pr_addr(&con->peer_addr.in_addr), ret);
499 sock_release(sock);
500 return ret;
501 }
502
503 if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY)) {
504 int optval = 1;
505
506 ret = kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY,
507 (char *)&optval, sizeof(optval));
508 if (ret)
509 pr_err("kernel_setsockopt(TCP_NODELAY) failed: %d",
510 ret);
511 }
512
513 con->sock = sock;
514 return 0;
515 }
516
517 /*
518 * If @buf is NULL, discard up to @len bytes.
519 */
ceph_tcp_recvmsg(struct socket * sock,void * buf,size_t len)520 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
521 {
522 struct kvec iov = {buf, len};
523 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
524 int r;
525
526 if (!buf)
527 msg.msg_flags |= MSG_TRUNC;
528
529 iov_iter_kvec(&msg.msg_iter, READ | ITER_KVEC, &iov, 1, len);
530 r = sock_recvmsg(sock, &msg, msg.msg_flags);
531 if (r == -EAGAIN)
532 r = 0;
533 return r;
534 }
535
ceph_tcp_recvpage(struct socket * sock,struct page * page,int page_offset,size_t length)536 static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
537 int page_offset, size_t length)
538 {
539 struct bio_vec bvec = {
540 .bv_page = page,
541 .bv_offset = page_offset,
542 .bv_len = length
543 };
544 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
545 int r;
546
547 BUG_ON(page_offset + length > PAGE_SIZE);
548 iov_iter_bvec(&msg.msg_iter, READ | ITER_BVEC, &bvec, 1, length);
549 r = sock_recvmsg(sock, &msg, msg.msg_flags);
550 if (r == -EAGAIN)
551 r = 0;
552 return r;
553 }
554
555 /*
556 * write something. @more is true if caller will be sending more data
557 * shortly.
558 */
ceph_tcp_sendmsg(struct socket * sock,struct kvec * iov,size_t kvlen,size_t len,int more)559 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
560 size_t kvlen, size_t len, int more)
561 {
562 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
563 int r;
564
565 if (more)
566 msg.msg_flags |= MSG_MORE;
567 else
568 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
569
570 r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
571 if (r == -EAGAIN)
572 r = 0;
573 return r;
574 }
575
__ceph_tcp_sendpage(struct socket * sock,struct page * page,int offset,size_t size,bool more)576 static int __ceph_tcp_sendpage(struct socket *sock, struct page *page,
577 int offset, size_t size, bool more)
578 {
579 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
580 int ret;
581
582 ret = kernel_sendpage(sock, page, offset, size, flags);
583 if (ret == -EAGAIN)
584 ret = 0;
585
586 return ret;
587 }
588
ceph_tcp_sendpage(struct socket * sock,struct page * page,int offset,size_t size,bool more)589 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
590 int offset, size_t size, bool more)
591 {
592 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
593 struct bio_vec bvec;
594 int ret;
595
596 /* sendpage cannot properly handle pages with page_count == 0,
597 * we need to fallback to sendmsg if that's the case */
598 if (page_count(page) >= 1)
599 return __ceph_tcp_sendpage(sock, page, offset, size, more);
600
601 bvec.bv_page = page;
602 bvec.bv_offset = offset;
603 bvec.bv_len = size;
604
605 if (more)
606 msg.msg_flags |= MSG_MORE;
607 else
608 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
609
610 iov_iter_bvec(&msg.msg_iter, WRITE | ITER_BVEC, &bvec, 1, size);
611 ret = sock_sendmsg(sock, &msg);
612 if (ret == -EAGAIN)
613 ret = 0;
614
615 return ret;
616 }
617
618 /*
619 * Shutdown/close the socket for the given connection.
620 */
con_close_socket(struct ceph_connection * con)621 static int con_close_socket(struct ceph_connection *con)
622 {
623 int rc = 0;
624
625 dout("con_close_socket on %p sock %p\n", con, con->sock);
626 if (con->sock) {
627 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
628 sock_release(con->sock);
629 con->sock = NULL;
630 }
631
632 /*
633 * Forcibly clear the SOCK_CLOSED flag. It gets set
634 * independent of the connection mutex, and we could have
635 * received a socket close event before we had the chance to
636 * shut the socket down.
637 */
638 con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
639
640 con_sock_state_closed(con);
641 return rc;
642 }
643
644 /*
645 * Reset a connection. Discard all incoming and outgoing messages
646 * and clear *_seq state.
647 */
ceph_msg_remove(struct ceph_msg * msg)648 static void ceph_msg_remove(struct ceph_msg *msg)
649 {
650 list_del_init(&msg->list_head);
651
652 ceph_msg_put(msg);
653 }
ceph_msg_remove_list(struct list_head * head)654 static void ceph_msg_remove_list(struct list_head *head)
655 {
656 while (!list_empty(head)) {
657 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
658 list_head);
659 ceph_msg_remove(msg);
660 }
661 }
662
reset_connection(struct ceph_connection * con)663 static void reset_connection(struct ceph_connection *con)
664 {
665 /* reset connection, out_queue, msg_ and connect_seq */
666 /* discard existing out_queue and msg_seq */
667 dout("reset_connection %p\n", con);
668 ceph_msg_remove_list(&con->out_queue);
669 ceph_msg_remove_list(&con->out_sent);
670
671 if (con->in_msg) {
672 BUG_ON(con->in_msg->con != con);
673 ceph_msg_put(con->in_msg);
674 con->in_msg = NULL;
675 }
676
677 con->connect_seq = 0;
678 con->out_seq = 0;
679 if (con->out_msg) {
680 BUG_ON(con->out_msg->con != con);
681 ceph_msg_put(con->out_msg);
682 con->out_msg = NULL;
683 }
684 con->in_seq = 0;
685 con->in_seq_acked = 0;
686
687 con->out_skip = 0;
688 }
689
690 /*
691 * mark a peer down. drop any open connections.
692 */
ceph_con_close(struct ceph_connection * con)693 void ceph_con_close(struct ceph_connection *con)
694 {
695 mutex_lock(&con->mutex);
696 dout("con_close %p peer %s\n", con,
697 ceph_pr_addr(&con->peer_addr.in_addr));
698 con->state = CON_STATE_CLOSED;
699
700 con_flag_clear(con, CON_FLAG_LOSSYTX); /* so we retry next connect */
701 con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
702 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
703 con_flag_clear(con, CON_FLAG_BACKOFF);
704
705 reset_connection(con);
706 con->peer_global_seq = 0;
707 cancel_con(con);
708 con_close_socket(con);
709 mutex_unlock(&con->mutex);
710 }
711 EXPORT_SYMBOL(ceph_con_close);
712
713 /*
714 * Reopen a closed connection, with a new peer address.
715 */
ceph_con_open(struct ceph_connection * con,__u8 entity_type,__u64 entity_num,struct ceph_entity_addr * addr)716 void ceph_con_open(struct ceph_connection *con,
717 __u8 entity_type, __u64 entity_num,
718 struct ceph_entity_addr *addr)
719 {
720 mutex_lock(&con->mutex);
721 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
722
723 WARN_ON(con->state != CON_STATE_CLOSED);
724 con->state = CON_STATE_PREOPEN;
725
726 con->peer_name.type = (__u8) entity_type;
727 con->peer_name.num = cpu_to_le64(entity_num);
728
729 memcpy(&con->peer_addr, addr, sizeof(*addr));
730 con->delay = 0; /* reset backoff memory */
731 mutex_unlock(&con->mutex);
732 queue_con(con);
733 }
734 EXPORT_SYMBOL(ceph_con_open);
735
736 /*
737 * return true if this connection ever successfully opened
738 */
ceph_con_opened(struct ceph_connection * con)739 bool ceph_con_opened(struct ceph_connection *con)
740 {
741 return con->connect_seq > 0;
742 }
743
744 /*
745 * initialize a new connection.
746 */
ceph_con_init(struct ceph_connection * con,void * private,const struct ceph_connection_operations * ops,struct ceph_messenger * msgr)747 void ceph_con_init(struct ceph_connection *con, void *private,
748 const struct ceph_connection_operations *ops,
749 struct ceph_messenger *msgr)
750 {
751 dout("con_init %p\n", con);
752 memset(con, 0, sizeof(*con));
753 con->private = private;
754 con->ops = ops;
755 con->msgr = msgr;
756
757 con_sock_state_init(con);
758
759 mutex_init(&con->mutex);
760 INIT_LIST_HEAD(&con->out_queue);
761 INIT_LIST_HEAD(&con->out_sent);
762 INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
763
764 con->state = CON_STATE_CLOSED;
765 }
766 EXPORT_SYMBOL(ceph_con_init);
767
768
769 /*
770 * We maintain a global counter to order connection attempts. Get
771 * a unique seq greater than @gt.
772 */
get_global_seq(struct ceph_messenger * msgr,u32 gt)773 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
774 {
775 u32 ret;
776
777 spin_lock(&msgr->global_seq_lock);
778 if (msgr->global_seq < gt)
779 msgr->global_seq = gt;
780 ret = ++msgr->global_seq;
781 spin_unlock(&msgr->global_seq_lock);
782 return ret;
783 }
784
con_out_kvec_reset(struct ceph_connection * con)785 static void con_out_kvec_reset(struct ceph_connection *con)
786 {
787 BUG_ON(con->out_skip);
788
789 con->out_kvec_left = 0;
790 con->out_kvec_bytes = 0;
791 con->out_kvec_cur = &con->out_kvec[0];
792 }
793
con_out_kvec_add(struct ceph_connection * con,size_t size,void * data)794 static void con_out_kvec_add(struct ceph_connection *con,
795 size_t size, void *data)
796 {
797 int index = con->out_kvec_left;
798
799 BUG_ON(con->out_skip);
800 BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
801
802 con->out_kvec[index].iov_len = size;
803 con->out_kvec[index].iov_base = data;
804 con->out_kvec_left++;
805 con->out_kvec_bytes += size;
806 }
807
808 /*
809 * Chop off a kvec from the end. Return residual number of bytes for
810 * that kvec, i.e. how many bytes would have been written if the kvec
811 * hadn't been nuked.
812 */
con_out_kvec_skip(struct ceph_connection * con)813 static int con_out_kvec_skip(struct ceph_connection *con)
814 {
815 int off = con->out_kvec_cur - con->out_kvec;
816 int skip = 0;
817
818 if (con->out_kvec_bytes > 0) {
819 skip = con->out_kvec[off + con->out_kvec_left - 1].iov_len;
820 BUG_ON(con->out_kvec_bytes < skip);
821 BUG_ON(!con->out_kvec_left);
822 con->out_kvec_bytes -= skip;
823 con->out_kvec_left--;
824 }
825
826 return skip;
827 }
828
829 #ifdef CONFIG_BLOCK
830
831 /*
832 * For a bio data item, a piece is whatever remains of the next
833 * entry in the current bio iovec, or the first entry in the next
834 * bio in the list.
835 */
ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor * cursor,size_t length)836 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
837 size_t length)
838 {
839 struct ceph_msg_data *data = cursor->data;
840 struct ceph_bio_iter *it = &cursor->bio_iter;
841
842 cursor->resid = min_t(size_t, length, data->bio_length);
843 *it = data->bio_pos;
844 if (cursor->resid < it->iter.bi_size)
845 it->iter.bi_size = cursor->resid;
846
847 BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
848 cursor->last_piece = cursor->resid == bio_iter_len(it->bio, it->iter);
849 }
850
ceph_msg_data_bio_next(struct ceph_msg_data_cursor * cursor,size_t * page_offset,size_t * length)851 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
852 size_t *page_offset,
853 size_t *length)
854 {
855 struct bio_vec bv = bio_iter_iovec(cursor->bio_iter.bio,
856 cursor->bio_iter.iter);
857
858 *page_offset = bv.bv_offset;
859 *length = bv.bv_len;
860 return bv.bv_page;
861 }
862
ceph_msg_data_bio_advance(struct ceph_msg_data_cursor * cursor,size_t bytes)863 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
864 size_t bytes)
865 {
866 struct ceph_bio_iter *it = &cursor->bio_iter;
867
868 BUG_ON(bytes > cursor->resid);
869 BUG_ON(bytes > bio_iter_len(it->bio, it->iter));
870 cursor->resid -= bytes;
871 bio_advance_iter(it->bio, &it->iter, bytes);
872
873 if (!cursor->resid) {
874 BUG_ON(!cursor->last_piece);
875 return false; /* no more data */
876 }
877
878 if (!bytes || (it->iter.bi_size && it->iter.bi_bvec_done))
879 return false; /* more bytes to process in this segment */
880
881 if (!it->iter.bi_size) {
882 it->bio = it->bio->bi_next;
883 it->iter = it->bio->bi_iter;
884 if (cursor->resid < it->iter.bi_size)
885 it->iter.bi_size = cursor->resid;
886 }
887
888 BUG_ON(cursor->last_piece);
889 BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
890 cursor->last_piece = cursor->resid == bio_iter_len(it->bio, it->iter);
891 return true;
892 }
893 #endif /* CONFIG_BLOCK */
894
ceph_msg_data_bvecs_cursor_init(struct ceph_msg_data_cursor * cursor,size_t length)895 static void ceph_msg_data_bvecs_cursor_init(struct ceph_msg_data_cursor *cursor,
896 size_t length)
897 {
898 struct ceph_msg_data *data = cursor->data;
899 struct bio_vec *bvecs = data->bvec_pos.bvecs;
900
901 cursor->resid = min_t(size_t, length, data->bvec_pos.iter.bi_size);
902 cursor->bvec_iter = data->bvec_pos.iter;
903 cursor->bvec_iter.bi_size = cursor->resid;
904
905 BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
906 cursor->last_piece =
907 cursor->resid == bvec_iter_len(bvecs, cursor->bvec_iter);
908 }
909
ceph_msg_data_bvecs_next(struct ceph_msg_data_cursor * cursor,size_t * page_offset,size_t * length)910 static struct page *ceph_msg_data_bvecs_next(struct ceph_msg_data_cursor *cursor,
911 size_t *page_offset,
912 size_t *length)
913 {
914 struct bio_vec bv = bvec_iter_bvec(cursor->data->bvec_pos.bvecs,
915 cursor->bvec_iter);
916
917 *page_offset = bv.bv_offset;
918 *length = bv.bv_len;
919 return bv.bv_page;
920 }
921
ceph_msg_data_bvecs_advance(struct ceph_msg_data_cursor * cursor,size_t bytes)922 static bool ceph_msg_data_bvecs_advance(struct ceph_msg_data_cursor *cursor,
923 size_t bytes)
924 {
925 struct bio_vec *bvecs = cursor->data->bvec_pos.bvecs;
926
927 BUG_ON(bytes > cursor->resid);
928 BUG_ON(bytes > bvec_iter_len(bvecs, cursor->bvec_iter));
929 cursor->resid -= bytes;
930 bvec_iter_advance(bvecs, &cursor->bvec_iter, bytes);
931
932 if (!cursor->resid) {
933 BUG_ON(!cursor->last_piece);
934 return false; /* no more data */
935 }
936
937 if (!bytes || cursor->bvec_iter.bi_bvec_done)
938 return false; /* more bytes to process in this segment */
939
940 BUG_ON(cursor->last_piece);
941 BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
942 cursor->last_piece =
943 cursor->resid == bvec_iter_len(bvecs, cursor->bvec_iter);
944 return true;
945 }
946
947 /*
948 * For a page array, a piece comes from the first page in the array
949 * that has not already been fully consumed.
950 */
ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor * cursor,size_t length)951 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
952 size_t length)
953 {
954 struct ceph_msg_data *data = cursor->data;
955 int page_count;
956
957 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
958
959 BUG_ON(!data->pages);
960 BUG_ON(!data->length);
961
962 cursor->resid = min(length, data->length);
963 page_count = calc_pages_for(data->alignment, (u64)data->length);
964 cursor->page_offset = data->alignment & ~PAGE_MASK;
965 cursor->page_index = 0;
966 BUG_ON(page_count > (int)USHRT_MAX);
967 cursor->page_count = (unsigned short)page_count;
968 BUG_ON(length > SIZE_MAX - cursor->page_offset);
969 cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
970 }
971
972 static struct page *
ceph_msg_data_pages_next(struct ceph_msg_data_cursor * cursor,size_t * page_offset,size_t * length)973 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
974 size_t *page_offset, size_t *length)
975 {
976 struct ceph_msg_data *data = cursor->data;
977
978 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
979
980 BUG_ON(cursor->page_index >= cursor->page_count);
981 BUG_ON(cursor->page_offset >= PAGE_SIZE);
982
983 *page_offset = cursor->page_offset;
984 if (cursor->last_piece)
985 *length = cursor->resid;
986 else
987 *length = PAGE_SIZE - *page_offset;
988
989 return data->pages[cursor->page_index];
990 }
991
ceph_msg_data_pages_advance(struct ceph_msg_data_cursor * cursor,size_t bytes)992 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
993 size_t bytes)
994 {
995 BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
996
997 BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
998
999 /* Advance the cursor page offset */
1000
1001 cursor->resid -= bytes;
1002 cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
1003 if (!bytes || cursor->page_offset)
1004 return false; /* more bytes to process in the current page */
1005
1006 if (!cursor->resid)
1007 return false; /* no more data */
1008
1009 /* Move on to the next page; offset is already at 0 */
1010
1011 BUG_ON(cursor->page_index >= cursor->page_count);
1012 cursor->page_index++;
1013 cursor->last_piece = cursor->resid <= PAGE_SIZE;
1014
1015 return true;
1016 }
1017
1018 /*
1019 * For a pagelist, a piece is whatever remains to be consumed in the
1020 * first page in the list, or the front of the next page.
1021 */
1022 static void
ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor * cursor,size_t length)1023 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
1024 size_t length)
1025 {
1026 struct ceph_msg_data *data = cursor->data;
1027 struct ceph_pagelist *pagelist;
1028 struct page *page;
1029
1030 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1031
1032 pagelist = data->pagelist;
1033 BUG_ON(!pagelist);
1034
1035 if (!length)
1036 return; /* pagelist can be assigned but empty */
1037
1038 BUG_ON(list_empty(&pagelist->head));
1039 page = list_first_entry(&pagelist->head, struct page, lru);
1040
1041 cursor->resid = min(length, pagelist->length);
1042 cursor->page = page;
1043 cursor->offset = 0;
1044 cursor->last_piece = cursor->resid <= PAGE_SIZE;
1045 }
1046
1047 static struct page *
ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor * cursor,size_t * page_offset,size_t * length)1048 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
1049 size_t *page_offset, size_t *length)
1050 {
1051 struct ceph_msg_data *data = cursor->data;
1052 struct ceph_pagelist *pagelist;
1053
1054 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1055
1056 pagelist = data->pagelist;
1057 BUG_ON(!pagelist);
1058
1059 BUG_ON(!cursor->page);
1060 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1061
1062 /* offset of first page in pagelist is always 0 */
1063 *page_offset = cursor->offset & ~PAGE_MASK;
1064 if (cursor->last_piece)
1065 *length = cursor->resid;
1066 else
1067 *length = PAGE_SIZE - *page_offset;
1068
1069 return cursor->page;
1070 }
1071
ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor * cursor,size_t bytes)1072 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
1073 size_t bytes)
1074 {
1075 struct ceph_msg_data *data = cursor->data;
1076 struct ceph_pagelist *pagelist;
1077
1078 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1079
1080 pagelist = data->pagelist;
1081 BUG_ON(!pagelist);
1082
1083 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1084 BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1085
1086 /* Advance the cursor offset */
1087
1088 cursor->resid -= bytes;
1089 cursor->offset += bytes;
1090 /* offset of first page in pagelist is always 0 */
1091 if (!bytes || cursor->offset & ~PAGE_MASK)
1092 return false; /* more bytes to process in the current page */
1093
1094 if (!cursor->resid)
1095 return false; /* no more data */
1096
1097 /* Move on to the next page */
1098
1099 BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1100 cursor->page = list_next_entry(cursor->page, lru);
1101 cursor->last_piece = cursor->resid <= PAGE_SIZE;
1102
1103 return true;
1104 }
1105
1106 /*
1107 * Message data is handled (sent or received) in pieces, where each
1108 * piece resides on a single page. The network layer might not
1109 * consume an entire piece at once. A data item's cursor keeps
1110 * track of which piece is next to process and how much remains to
1111 * be processed in that piece. It also tracks whether the current
1112 * piece is the last one in the data item.
1113 */
__ceph_msg_data_cursor_init(struct ceph_msg_data_cursor * cursor)1114 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1115 {
1116 size_t length = cursor->total_resid;
1117
1118 switch (cursor->data->type) {
1119 case CEPH_MSG_DATA_PAGELIST:
1120 ceph_msg_data_pagelist_cursor_init(cursor, length);
1121 break;
1122 case CEPH_MSG_DATA_PAGES:
1123 ceph_msg_data_pages_cursor_init(cursor, length);
1124 break;
1125 #ifdef CONFIG_BLOCK
1126 case CEPH_MSG_DATA_BIO:
1127 ceph_msg_data_bio_cursor_init(cursor, length);
1128 break;
1129 #endif /* CONFIG_BLOCK */
1130 case CEPH_MSG_DATA_BVECS:
1131 ceph_msg_data_bvecs_cursor_init(cursor, length);
1132 break;
1133 case CEPH_MSG_DATA_NONE:
1134 default:
1135 /* BUG(); */
1136 break;
1137 }
1138 cursor->need_crc = true;
1139 }
1140
ceph_msg_data_cursor_init(struct ceph_msg * msg,size_t length)1141 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1142 {
1143 struct ceph_msg_data_cursor *cursor = &msg->cursor;
1144 struct ceph_msg_data *data;
1145
1146 BUG_ON(!length);
1147 BUG_ON(length > msg->data_length);
1148 BUG_ON(list_empty(&msg->data));
1149
1150 cursor->data_head = &msg->data;
1151 cursor->total_resid = length;
1152 data = list_first_entry(&msg->data, struct ceph_msg_data, links);
1153 cursor->data = data;
1154
1155 __ceph_msg_data_cursor_init(cursor);
1156 }
1157
1158 /*
1159 * Return the page containing the next piece to process for a given
1160 * data item, and supply the page offset and length of that piece.
1161 * Indicate whether this is the last piece in this data item.
1162 */
ceph_msg_data_next(struct ceph_msg_data_cursor * cursor,size_t * page_offset,size_t * length,bool * last_piece)1163 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1164 size_t *page_offset, size_t *length,
1165 bool *last_piece)
1166 {
1167 struct page *page;
1168
1169 switch (cursor->data->type) {
1170 case CEPH_MSG_DATA_PAGELIST:
1171 page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1172 break;
1173 case CEPH_MSG_DATA_PAGES:
1174 page = ceph_msg_data_pages_next(cursor, page_offset, length);
1175 break;
1176 #ifdef CONFIG_BLOCK
1177 case CEPH_MSG_DATA_BIO:
1178 page = ceph_msg_data_bio_next(cursor, page_offset, length);
1179 break;
1180 #endif /* CONFIG_BLOCK */
1181 case CEPH_MSG_DATA_BVECS:
1182 page = ceph_msg_data_bvecs_next(cursor, page_offset, length);
1183 break;
1184 case CEPH_MSG_DATA_NONE:
1185 default:
1186 page = NULL;
1187 break;
1188 }
1189
1190 BUG_ON(!page);
1191 BUG_ON(*page_offset + *length > PAGE_SIZE);
1192 BUG_ON(!*length);
1193 BUG_ON(*length > cursor->resid);
1194 if (last_piece)
1195 *last_piece = cursor->last_piece;
1196
1197 return page;
1198 }
1199
1200 /*
1201 * Returns true if the result moves the cursor on to the next piece
1202 * of the data item.
1203 */
ceph_msg_data_advance(struct ceph_msg_data_cursor * cursor,size_t bytes)1204 static void ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1205 size_t bytes)
1206 {
1207 bool new_piece;
1208
1209 BUG_ON(bytes > cursor->resid);
1210 switch (cursor->data->type) {
1211 case CEPH_MSG_DATA_PAGELIST:
1212 new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1213 break;
1214 case CEPH_MSG_DATA_PAGES:
1215 new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1216 break;
1217 #ifdef CONFIG_BLOCK
1218 case CEPH_MSG_DATA_BIO:
1219 new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1220 break;
1221 #endif /* CONFIG_BLOCK */
1222 case CEPH_MSG_DATA_BVECS:
1223 new_piece = ceph_msg_data_bvecs_advance(cursor, bytes);
1224 break;
1225 case CEPH_MSG_DATA_NONE:
1226 default:
1227 BUG();
1228 break;
1229 }
1230 cursor->total_resid -= bytes;
1231
1232 if (!cursor->resid && cursor->total_resid) {
1233 WARN_ON(!cursor->last_piece);
1234 BUG_ON(list_is_last(&cursor->data->links, cursor->data_head));
1235 cursor->data = list_next_entry(cursor->data, links);
1236 __ceph_msg_data_cursor_init(cursor);
1237 new_piece = true;
1238 }
1239 cursor->need_crc = new_piece;
1240 }
1241
sizeof_footer(struct ceph_connection * con)1242 static size_t sizeof_footer(struct ceph_connection *con)
1243 {
1244 return (con->peer_features & CEPH_FEATURE_MSG_AUTH) ?
1245 sizeof(struct ceph_msg_footer) :
1246 sizeof(struct ceph_msg_footer_old);
1247 }
1248
prepare_message_data(struct ceph_msg * msg,u32 data_len)1249 static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1250 {
1251 BUG_ON(!msg);
1252 BUG_ON(!data_len);
1253
1254 /* Initialize data cursor */
1255
1256 ceph_msg_data_cursor_init(msg, (size_t)data_len);
1257 }
1258
1259 /*
1260 * Prepare footer for currently outgoing message, and finish things
1261 * off. Assumes out_kvec* are already valid.. we just add on to the end.
1262 */
prepare_write_message_footer(struct ceph_connection * con)1263 static void prepare_write_message_footer(struct ceph_connection *con)
1264 {
1265 struct ceph_msg *m = con->out_msg;
1266
1267 m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1268
1269 dout("prepare_write_message_footer %p\n", con);
1270 con_out_kvec_add(con, sizeof_footer(con), &m->footer);
1271 if (con->peer_features & CEPH_FEATURE_MSG_AUTH) {
1272 if (con->ops->sign_message)
1273 con->ops->sign_message(m);
1274 else
1275 m->footer.sig = 0;
1276 } else {
1277 m->old_footer.flags = m->footer.flags;
1278 }
1279 con->out_more = m->more_to_follow;
1280 con->out_msg_done = true;
1281 }
1282
1283 /*
1284 * Prepare headers for the next outgoing message.
1285 */
prepare_write_message(struct ceph_connection * con)1286 static void prepare_write_message(struct ceph_connection *con)
1287 {
1288 struct ceph_msg *m;
1289 u32 crc;
1290
1291 con_out_kvec_reset(con);
1292 con->out_msg_done = false;
1293
1294 /* Sneak an ack in there first? If we can get it into the same
1295 * TCP packet that's a good thing. */
1296 if (con->in_seq > con->in_seq_acked) {
1297 con->in_seq_acked = con->in_seq;
1298 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1299 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1300 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1301 &con->out_temp_ack);
1302 }
1303
1304 BUG_ON(list_empty(&con->out_queue));
1305 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1306 con->out_msg = m;
1307 BUG_ON(m->con != con);
1308
1309 /* put message on sent list */
1310 ceph_msg_get(m);
1311 list_move_tail(&m->list_head, &con->out_sent);
1312
1313 /*
1314 * only assign outgoing seq # if we haven't sent this message
1315 * yet. if it is requeued, resend with it's original seq.
1316 */
1317 if (m->needs_out_seq) {
1318 m->hdr.seq = cpu_to_le64(++con->out_seq);
1319 m->needs_out_seq = false;
1320
1321 if (con->ops->reencode_message)
1322 con->ops->reencode_message(m);
1323 }
1324
1325 dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1326 m, con->out_seq, le16_to_cpu(m->hdr.type),
1327 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1328 m->data_length);
1329 WARN_ON(m->front.iov_len != le32_to_cpu(m->hdr.front_len));
1330 WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1331
1332 /* tag + hdr + front + middle */
1333 con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1334 con_out_kvec_add(con, sizeof(con->out_hdr), &con->out_hdr);
1335 con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1336
1337 if (m->middle)
1338 con_out_kvec_add(con, m->middle->vec.iov_len,
1339 m->middle->vec.iov_base);
1340
1341 /* fill in hdr crc and finalize hdr */
1342 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1343 con->out_msg->hdr.crc = cpu_to_le32(crc);
1344 memcpy(&con->out_hdr, &con->out_msg->hdr, sizeof(con->out_hdr));
1345
1346 /* fill in front and middle crc, footer */
1347 crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1348 con->out_msg->footer.front_crc = cpu_to_le32(crc);
1349 if (m->middle) {
1350 crc = crc32c(0, m->middle->vec.iov_base,
1351 m->middle->vec.iov_len);
1352 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1353 } else
1354 con->out_msg->footer.middle_crc = 0;
1355 dout("%s front_crc %u middle_crc %u\n", __func__,
1356 le32_to_cpu(con->out_msg->footer.front_crc),
1357 le32_to_cpu(con->out_msg->footer.middle_crc));
1358 con->out_msg->footer.flags = 0;
1359
1360 /* is there a data payload? */
1361 con->out_msg->footer.data_crc = 0;
1362 if (m->data_length) {
1363 prepare_message_data(con->out_msg, m->data_length);
1364 con->out_more = 1; /* data + footer will follow */
1365 } else {
1366 /* no, queue up footer too and be done */
1367 prepare_write_message_footer(con);
1368 }
1369
1370 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1371 }
1372
1373 /*
1374 * Prepare an ack.
1375 */
prepare_write_ack(struct ceph_connection * con)1376 static void prepare_write_ack(struct ceph_connection *con)
1377 {
1378 dout("prepare_write_ack %p %llu -> %llu\n", con,
1379 con->in_seq_acked, con->in_seq);
1380 con->in_seq_acked = con->in_seq;
1381
1382 con_out_kvec_reset(con);
1383
1384 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1385
1386 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1387 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1388 &con->out_temp_ack);
1389
1390 con->out_more = 1; /* more will follow.. eventually.. */
1391 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1392 }
1393
1394 /*
1395 * Prepare to share the seq during handshake
1396 */
prepare_write_seq(struct ceph_connection * con)1397 static void prepare_write_seq(struct ceph_connection *con)
1398 {
1399 dout("prepare_write_seq %p %llu -> %llu\n", con,
1400 con->in_seq_acked, con->in_seq);
1401 con->in_seq_acked = con->in_seq;
1402
1403 con_out_kvec_reset(con);
1404
1405 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1406 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1407 &con->out_temp_ack);
1408
1409 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1410 }
1411
1412 /*
1413 * Prepare to write keepalive byte.
1414 */
prepare_write_keepalive(struct ceph_connection * con)1415 static void prepare_write_keepalive(struct ceph_connection *con)
1416 {
1417 dout("prepare_write_keepalive %p\n", con);
1418 con_out_kvec_reset(con);
1419 if (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2) {
1420 struct timespec64 now;
1421
1422 ktime_get_real_ts64(&now);
1423 con_out_kvec_add(con, sizeof(tag_keepalive2), &tag_keepalive2);
1424 ceph_encode_timespec64(&con->out_temp_keepalive2, &now);
1425 con_out_kvec_add(con, sizeof(con->out_temp_keepalive2),
1426 &con->out_temp_keepalive2);
1427 } else {
1428 con_out_kvec_add(con, sizeof(tag_keepalive), &tag_keepalive);
1429 }
1430 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1431 }
1432
1433 /*
1434 * Connection negotiation.
1435 */
1436
get_connect_authorizer(struct ceph_connection * con)1437 static int get_connect_authorizer(struct ceph_connection *con)
1438 {
1439 struct ceph_auth_handshake *auth;
1440 int auth_proto;
1441
1442 if (!con->ops->get_authorizer) {
1443 con->auth = NULL;
1444 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1445 con->out_connect.authorizer_len = 0;
1446 return 0;
1447 }
1448
1449 auth = con->ops->get_authorizer(con, &auth_proto, con->auth_retry);
1450 if (IS_ERR(auth))
1451 return PTR_ERR(auth);
1452
1453 con->auth = auth;
1454 con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1455 con->out_connect.authorizer_len = cpu_to_le32(auth->authorizer_buf_len);
1456 return 0;
1457 }
1458
1459 /*
1460 * We connected to a peer and are saying hello.
1461 */
prepare_write_banner(struct ceph_connection * con)1462 static void prepare_write_banner(struct ceph_connection *con)
1463 {
1464 con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1465 con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1466 &con->msgr->my_enc_addr);
1467
1468 con->out_more = 0;
1469 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1470 }
1471
__prepare_write_connect(struct ceph_connection * con)1472 static void __prepare_write_connect(struct ceph_connection *con)
1473 {
1474 con_out_kvec_add(con, sizeof(con->out_connect), &con->out_connect);
1475 if (con->auth)
1476 con_out_kvec_add(con, con->auth->authorizer_buf_len,
1477 con->auth->authorizer_buf);
1478
1479 con->out_more = 0;
1480 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1481 }
1482
prepare_write_connect(struct ceph_connection * con)1483 static int prepare_write_connect(struct ceph_connection *con)
1484 {
1485 unsigned int global_seq = get_global_seq(con->msgr, 0);
1486 int proto;
1487 int ret;
1488
1489 switch (con->peer_name.type) {
1490 case CEPH_ENTITY_TYPE_MON:
1491 proto = CEPH_MONC_PROTOCOL;
1492 break;
1493 case CEPH_ENTITY_TYPE_OSD:
1494 proto = CEPH_OSDC_PROTOCOL;
1495 break;
1496 case CEPH_ENTITY_TYPE_MDS:
1497 proto = CEPH_MDSC_PROTOCOL;
1498 break;
1499 default:
1500 BUG();
1501 }
1502
1503 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1504 con->connect_seq, global_seq, proto);
1505
1506 con->out_connect.features =
1507 cpu_to_le64(from_msgr(con->msgr)->supported_features);
1508 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1509 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1510 con->out_connect.global_seq = cpu_to_le32(global_seq);
1511 con->out_connect.protocol_version = cpu_to_le32(proto);
1512 con->out_connect.flags = 0;
1513
1514 ret = get_connect_authorizer(con);
1515 if (ret)
1516 return ret;
1517
1518 __prepare_write_connect(con);
1519 return 0;
1520 }
1521
1522 /*
1523 * write as much of pending kvecs to the socket as we can.
1524 * 1 -> done
1525 * 0 -> socket full, but more to do
1526 * <0 -> error
1527 */
write_partial_kvec(struct ceph_connection * con)1528 static int write_partial_kvec(struct ceph_connection *con)
1529 {
1530 int ret;
1531
1532 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1533 while (con->out_kvec_bytes > 0) {
1534 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1535 con->out_kvec_left, con->out_kvec_bytes,
1536 con->out_more);
1537 if (ret <= 0)
1538 goto out;
1539 con->out_kvec_bytes -= ret;
1540 if (con->out_kvec_bytes == 0)
1541 break; /* done */
1542
1543 /* account for full iov entries consumed */
1544 while (ret >= con->out_kvec_cur->iov_len) {
1545 BUG_ON(!con->out_kvec_left);
1546 ret -= con->out_kvec_cur->iov_len;
1547 con->out_kvec_cur++;
1548 con->out_kvec_left--;
1549 }
1550 /* and for a partially-consumed entry */
1551 if (ret) {
1552 con->out_kvec_cur->iov_len -= ret;
1553 con->out_kvec_cur->iov_base += ret;
1554 }
1555 }
1556 con->out_kvec_left = 0;
1557 ret = 1;
1558 out:
1559 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1560 con->out_kvec_bytes, con->out_kvec_left, ret);
1561 return ret; /* done! */
1562 }
1563
ceph_crc32c_page(u32 crc,struct page * page,unsigned int page_offset,unsigned int length)1564 static u32 ceph_crc32c_page(u32 crc, struct page *page,
1565 unsigned int page_offset,
1566 unsigned int length)
1567 {
1568 char *kaddr;
1569
1570 kaddr = kmap(page);
1571 BUG_ON(kaddr == NULL);
1572 crc = crc32c(crc, kaddr + page_offset, length);
1573 kunmap(page);
1574
1575 return crc;
1576 }
1577 /*
1578 * Write as much message data payload as we can. If we finish, queue
1579 * up the footer.
1580 * 1 -> done, footer is now queued in out_kvec[].
1581 * 0 -> socket full, but more to do
1582 * <0 -> error
1583 */
write_partial_message_data(struct ceph_connection * con)1584 static int write_partial_message_data(struct ceph_connection *con)
1585 {
1586 struct ceph_msg *msg = con->out_msg;
1587 struct ceph_msg_data_cursor *cursor = &msg->cursor;
1588 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
1589 u32 crc;
1590
1591 dout("%s %p msg %p\n", __func__, con, msg);
1592
1593 if (list_empty(&msg->data))
1594 return -EINVAL;
1595
1596 /*
1597 * Iterate through each page that contains data to be
1598 * written, and send as much as possible for each.
1599 *
1600 * If we are calculating the data crc (the default), we will
1601 * need to map the page. If we have no pages, they have
1602 * been revoked, so use the zero page.
1603 */
1604 crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1605 while (cursor->total_resid) {
1606 struct page *page;
1607 size_t page_offset;
1608 size_t length;
1609 bool last_piece;
1610 int ret;
1611
1612 if (!cursor->resid) {
1613 ceph_msg_data_advance(cursor, 0);
1614 continue;
1615 }
1616
1617 page = ceph_msg_data_next(cursor, &page_offset, &length,
1618 &last_piece);
1619 ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1620 length, !last_piece);
1621 if (ret <= 0) {
1622 if (do_datacrc)
1623 msg->footer.data_crc = cpu_to_le32(crc);
1624
1625 return ret;
1626 }
1627 if (do_datacrc && cursor->need_crc)
1628 crc = ceph_crc32c_page(crc, page, page_offset, length);
1629 ceph_msg_data_advance(cursor, (size_t)ret);
1630 }
1631
1632 dout("%s %p msg %p done\n", __func__, con, msg);
1633
1634 /* prepare and queue up footer, too */
1635 if (do_datacrc)
1636 msg->footer.data_crc = cpu_to_le32(crc);
1637 else
1638 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1639 con_out_kvec_reset(con);
1640 prepare_write_message_footer(con);
1641
1642 return 1; /* must return > 0 to indicate success */
1643 }
1644
1645 /*
1646 * write some zeros
1647 */
write_partial_skip(struct ceph_connection * con)1648 static int write_partial_skip(struct ceph_connection *con)
1649 {
1650 int ret;
1651
1652 dout("%s %p %d left\n", __func__, con, con->out_skip);
1653 while (con->out_skip > 0) {
1654 size_t size = min(con->out_skip, (int) PAGE_SIZE);
1655
1656 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1657 if (ret <= 0)
1658 goto out;
1659 con->out_skip -= ret;
1660 }
1661 ret = 1;
1662 out:
1663 return ret;
1664 }
1665
1666 /*
1667 * Prepare to read connection handshake, or an ack.
1668 */
prepare_read_banner(struct ceph_connection * con)1669 static void prepare_read_banner(struct ceph_connection *con)
1670 {
1671 dout("prepare_read_banner %p\n", con);
1672 con->in_base_pos = 0;
1673 }
1674
prepare_read_connect(struct ceph_connection * con)1675 static void prepare_read_connect(struct ceph_connection *con)
1676 {
1677 dout("prepare_read_connect %p\n", con);
1678 con->in_base_pos = 0;
1679 }
1680
prepare_read_ack(struct ceph_connection * con)1681 static void prepare_read_ack(struct ceph_connection *con)
1682 {
1683 dout("prepare_read_ack %p\n", con);
1684 con->in_base_pos = 0;
1685 }
1686
prepare_read_seq(struct ceph_connection * con)1687 static void prepare_read_seq(struct ceph_connection *con)
1688 {
1689 dout("prepare_read_seq %p\n", con);
1690 con->in_base_pos = 0;
1691 con->in_tag = CEPH_MSGR_TAG_SEQ;
1692 }
1693
prepare_read_tag(struct ceph_connection * con)1694 static void prepare_read_tag(struct ceph_connection *con)
1695 {
1696 dout("prepare_read_tag %p\n", con);
1697 con->in_base_pos = 0;
1698 con->in_tag = CEPH_MSGR_TAG_READY;
1699 }
1700
prepare_read_keepalive_ack(struct ceph_connection * con)1701 static void prepare_read_keepalive_ack(struct ceph_connection *con)
1702 {
1703 dout("prepare_read_keepalive_ack %p\n", con);
1704 con->in_base_pos = 0;
1705 }
1706
1707 /*
1708 * Prepare to read a message.
1709 */
prepare_read_message(struct ceph_connection * con)1710 static int prepare_read_message(struct ceph_connection *con)
1711 {
1712 dout("prepare_read_message %p\n", con);
1713 BUG_ON(con->in_msg != NULL);
1714 con->in_base_pos = 0;
1715 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1716 return 0;
1717 }
1718
1719
read_partial(struct ceph_connection * con,int end,int size,void * object)1720 static int read_partial(struct ceph_connection *con,
1721 int end, int size, void *object)
1722 {
1723 while (con->in_base_pos < end) {
1724 int left = end - con->in_base_pos;
1725 int have = size - left;
1726 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1727 if (ret <= 0)
1728 return ret;
1729 con->in_base_pos += ret;
1730 }
1731 return 1;
1732 }
1733
1734
1735 /*
1736 * Read all or part of the connect-side handshake on a new connection
1737 */
read_partial_banner(struct ceph_connection * con)1738 static int read_partial_banner(struct ceph_connection *con)
1739 {
1740 int size;
1741 int end;
1742 int ret;
1743
1744 dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1745
1746 /* peer's banner */
1747 size = strlen(CEPH_BANNER);
1748 end = size;
1749 ret = read_partial(con, end, size, con->in_banner);
1750 if (ret <= 0)
1751 goto out;
1752
1753 size = sizeof (con->actual_peer_addr);
1754 end += size;
1755 ret = read_partial(con, end, size, &con->actual_peer_addr);
1756 if (ret <= 0)
1757 goto out;
1758
1759 size = sizeof (con->peer_addr_for_me);
1760 end += size;
1761 ret = read_partial(con, end, size, &con->peer_addr_for_me);
1762 if (ret <= 0)
1763 goto out;
1764
1765 out:
1766 return ret;
1767 }
1768
read_partial_connect(struct ceph_connection * con)1769 static int read_partial_connect(struct ceph_connection *con)
1770 {
1771 int size;
1772 int end;
1773 int ret;
1774
1775 dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1776
1777 size = sizeof (con->in_reply);
1778 end = size;
1779 ret = read_partial(con, end, size, &con->in_reply);
1780 if (ret <= 0)
1781 goto out;
1782
1783 if (con->auth) {
1784 size = le32_to_cpu(con->in_reply.authorizer_len);
1785 if (size > con->auth->authorizer_reply_buf_len) {
1786 pr_err("authorizer reply too big: %d > %zu\n", size,
1787 con->auth->authorizer_reply_buf_len);
1788 ret = -EINVAL;
1789 goto out;
1790 }
1791
1792 end += size;
1793 ret = read_partial(con, end, size,
1794 con->auth->authorizer_reply_buf);
1795 if (ret <= 0)
1796 goto out;
1797 }
1798
1799 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1800 con, (int)con->in_reply.tag,
1801 le32_to_cpu(con->in_reply.connect_seq),
1802 le32_to_cpu(con->in_reply.global_seq));
1803 out:
1804 return ret;
1805 }
1806
1807 /*
1808 * Verify the hello banner looks okay.
1809 */
verify_hello(struct ceph_connection * con)1810 static int verify_hello(struct ceph_connection *con)
1811 {
1812 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1813 pr_err("connect to %s got bad banner\n",
1814 ceph_pr_addr(&con->peer_addr.in_addr));
1815 con->error_msg = "protocol error, bad banner";
1816 return -1;
1817 }
1818 return 0;
1819 }
1820
addr_is_blank(struct sockaddr_storage * ss)1821 static bool addr_is_blank(struct sockaddr_storage *ss)
1822 {
1823 struct in_addr *addr = &((struct sockaddr_in *)ss)->sin_addr;
1824 struct in6_addr *addr6 = &((struct sockaddr_in6 *)ss)->sin6_addr;
1825
1826 switch (ss->ss_family) {
1827 case AF_INET:
1828 return addr->s_addr == htonl(INADDR_ANY);
1829 case AF_INET6:
1830 return ipv6_addr_any(addr6);
1831 default:
1832 return true;
1833 }
1834 }
1835
addr_port(struct sockaddr_storage * ss)1836 static int addr_port(struct sockaddr_storage *ss)
1837 {
1838 switch (ss->ss_family) {
1839 case AF_INET:
1840 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1841 case AF_INET6:
1842 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1843 }
1844 return 0;
1845 }
1846
addr_set_port(struct sockaddr_storage * ss,int p)1847 static void addr_set_port(struct sockaddr_storage *ss, int p)
1848 {
1849 switch (ss->ss_family) {
1850 case AF_INET:
1851 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1852 break;
1853 case AF_INET6:
1854 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1855 break;
1856 }
1857 }
1858
1859 /*
1860 * Unlike other *_pton function semantics, zero indicates success.
1861 */
ceph_pton(const char * str,size_t len,struct sockaddr_storage * ss,char delim,const char ** ipend)1862 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1863 char delim, const char **ipend)
1864 {
1865 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1866 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1867
1868 memset(ss, 0, sizeof(*ss));
1869
1870 if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1871 ss->ss_family = AF_INET;
1872 return 0;
1873 }
1874
1875 if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1876 ss->ss_family = AF_INET6;
1877 return 0;
1878 }
1879
1880 return -EINVAL;
1881 }
1882
1883 /*
1884 * Extract hostname string and resolve using kernel DNS facility.
1885 */
1886 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
ceph_dns_resolve_name(const char * name,size_t namelen,struct sockaddr_storage * ss,char delim,const char ** ipend)1887 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1888 struct sockaddr_storage *ss, char delim, const char **ipend)
1889 {
1890 const char *end, *delim_p;
1891 char *colon_p, *ip_addr = NULL;
1892 int ip_len, ret;
1893
1894 /*
1895 * The end of the hostname occurs immediately preceding the delimiter or
1896 * the port marker (':') where the delimiter takes precedence.
1897 */
1898 delim_p = memchr(name, delim, namelen);
1899 colon_p = memchr(name, ':', namelen);
1900
1901 if (delim_p && colon_p)
1902 end = delim_p < colon_p ? delim_p : colon_p;
1903 else if (!delim_p && colon_p)
1904 end = colon_p;
1905 else {
1906 end = delim_p;
1907 if (!end) /* case: hostname:/ */
1908 end = name + namelen;
1909 }
1910
1911 if (end <= name)
1912 return -EINVAL;
1913
1914 /* do dns_resolve upcall */
1915 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1916 if (ip_len > 0)
1917 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1918 else
1919 ret = -ESRCH;
1920
1921 kfree(ip_addr);
1922
1923 *ipend = end;
1924
1925 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1926 ret, ret ? "failed" : ceph_pr_addr(ss));
1927
1928 return ret;
1929 }
1930 #else
ceph_dns_resolve_name(const char * name,size_t namelen,struct sockaddr_storage * ss,char delim,const char ** ipend)1931 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1932 struct sockaddr_storage *ss, char delim, const char **ipend)
1933 {
1934 return -EINVAL;
1935 }
1936 #endif
1937
1938 /*
1939 * Parse a server name (IP or hostname). If a valid IP address is not found
1940 * then try to extract a hostname to resolve using userspace DNS upcall.
1941 */
ceph_parse_server_name(const char * name,size_t namelen,struct sockaddr_storage * ss,char delim,const char ** ipend)1942 static int ceph_parse_server_name(const char *name, size_t namelen,
1943 struct sockaddr_storage *ss, char delim, const char **ipend)
1944 {
1945 int ret;
1946
1947 ret = ceph_pton(name, namelen, ss, delim, ipend);
1948 if (ret)
1949 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1950
1951 return ret;
1952 }
1953
1954 /*
1955 * Parse an ip[:port] list into an addr array. Use the default
1956 * monitor port if a port isn't specified.
1957 */
ceph_parse_ips(const char * c,const char * end,struct ceph_entity_addr * addr,int max_count,int * count)1958 int ceph_parse_ips(const char *c, const char *end,
1959 struct ceph_entity_addr *addr,
1960 int max_count, int *count)
1961 {
1962 int i, ret = -EINVAL;
1963 const char *p = c;
1964
1965 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1966 for (i = 0; i < max_count; i++) {
1967 const char *ipend;
1968 struct sockaddr_storage *ss = &addr[i].in_addr;
1969 int port;
1970 char delim = ',';
1971
1972 if (*p == '[') {
1973 delim = ']';
1974 p++;
1975 }
1976
1977 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1978 if (ret)
1979 goto bad;
1980 ret = -EINVAL;
1981
1982 p = ipend;
1983
1984 if (delim == ']') {
1985 if (*p != ']') {
1986 dout("missing matching ']'\n");
1987 goto bad;
1988 }
1989 p++;
1990 }
1991
1992 /* port? */
1993 if (p < end && *p == ':') {
1994 port = 0;
1995 p++;
1996 while (p < end && *p >= '0' && *p <= '9') {
1997 port = (port * 10) + (*p - '0');
1998 p++;
1999 }
2000 if (port == 0)
2001 port = CEPH_MON_PORT;
2002 else if (port > 65535)
2003 goto bad;
2004 } else {
2005 port = CEPH_MON_PORT;
2006 }
2007
2008 addr_set_port(ss, port);
2009
2010 dout("parse_ips got %s\n", ceph_pr_addr(ss));
2011
2012 if (p == end)
2013 break;
2014 if (*p != ',')
2015 goto bad;
2016 p++;
2017 }
2018
2019 if (p != end)
2020 goto bad;
2021
2022 if (count)
2023 *count = i + 1;
2024 return 0;
2025
2026 bad:
2027 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
2028 return ret;
2029 }
2030 EXPORT_SYMBOL(ceph_parse_ips);
2031
process_banner(struct ceph_connection * con)2032 static int process_banner(struct ceph_connection *con)
2033 {
2034 dout("process_banner on %p\n", con);
2035
2036 if (verify_hello(con) < 0)
2037 return -1;
2038
2039 ceph_decode_addr(&con->actual_peer_addr);
2040 ceph_decode_addr(&con->peer_addr_for_me);
2041
2042 /*
2043 * Make sure the other end is who we wanted. note that the other
2044 * end may not yet know their ip address, so if it's 0.0.0.0, give
2045 * them the benefit of the doubt.
2046 */
2047 if (memcmp(&con->peer_addr, &con->actual_peer_addr,
2048 sizeof(con->peer_addr)) != 0 &&
2049 !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
2050 con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
2051 pr_warn("wrong peer, want %s/%d, got %s/%d\n",
2052 ceph_pr_addr(&con->peer_addr.in_addr),
2053 (int)le32_to_cpu(con->peer_addr.nonce),
2054 ceph_pr_addr(&con->actual_peer_addr.in_addr),
2055 (int)le32_to_cpu(con->actual_peer_addr.nonce));
2056 con->error_msg = "wrong peer at address";
2057 return -1;
2058 }
2059
2060 /*
2061 * did we learn our address?
2062 */
2063 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
2064 int port = addr_port(&con->msgr->inst.addr.in_addr);
2065
2066 memcpy(&con->msgr->inst.addr.in_addr,
2067 &con->peer_addr_for_me.in_addr,
2068 sizeof(con->peer_addr_for_me.in_addr));
2069 addr_set_port(&con->msgr->inst.addr.in_addr, port);
2070 encode_my_addr(con->msgr);
2071 dout("process_banner learned my addr is %s\n",
2072 ceph_pr_addr(&con->msgr->inst.addr.in_addr));
2073 }
2074
2075 return 0;
2076 }
2077
process_connect(struct ceph_connection * con)2078 static int process_connect(struct ceph_connection *con)
2079 {
2080 u64 sup_feat = from_msgr(con->msgr)->supported_features;
2081 u64 req_feat = from_msgr(con->msgr)->required_features;
2082 u64 server_feat = le64_to_cpu(con->in_reply.features);
2083 int ret;
2084
2085 dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
2086
2087 if (con->auth) {
2088 /*
2089 * Any connection that defines ->get_authorizer()
2090 * should also define ->add_authorizer_challenge() and
2091 * ->verify_authorizer_reply().
2092 *
2093 * See get_connect_authorizer().
2094 */
2095 if (con->in_reply.tag == CEPH_MSGR_TAG_CHALLENGE_AUTHORIZER) {
2096 ret = con->ops->add_authorizer_challenge(
2097 con, con->auth->authorizer_reply_buf,
2098 le32_to_cpu(con->in_reply.authorizer_len));
2099 if (ret < 0)
2100 return ret;
2101
2102 con_out_kvec_reset(con);
2103 __prepare_write_connect(con);
2104 prepare_read_connect(con);
2105 return 0;
2106 }
2107
2108 ret = con->ops->verify_authorizer_reply(con);
2109 if (ret < 0) {
2110 con->error_msg = "bad authorize reply";
2111 return ret;
2112 }
2113 }
2114
2115 switch (con->in_reply.tag) {
2116 case CEPH_MSGR_TAG_FEATURES:
2117 pr_err("%s%lld %s feature set mismatch,"
2118 " my %llx < server's %llx, missing %llx\n",
2119 ENTITY_NAME(con->peer_name),
2120 ceph_pr_addr(&con->peer_addr.in_addr),
2121 sup_feat, server_feat, server_feat & ~sup_feat);
2122 con->error_msg = "missing required protocol features";
2123 reset_connection(con);
2124 return -1;
2125
2126 case CEPH_MSGR_TAG_BADPROTOVER:
2127 pr_err("%s%lld %s protocol version mismatch,"
2128 " my %d != server's %d\n",
2129 ENTITY_NAME(con->peer_name),
2130 ceph_pr_addr(&con->peer_addr.in_addr),
2131 le32_to_cpu(con->out_connect.protocol_version),
2132 le32_to_cpu(con->in_reply.protocol_version));
2133 con->error_msg = "protocol version mismatch";
2134 reset_connection(con);
2135 return -1;
2136
2137 case CEPH_MSGR_TAG_BADAUTHORIZER:
2138 con->auth_retry++;
2139 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
2140 con->auth_retry);
2141 if (con->auth_retry == 2) {
2142 con->error_msg = "connect authorization failure";
2143 return -1;
2144 }
2145 con_out_kvec_reset(con);
2146 ret = prepare_write_connect(con);
2147 if (ret < 0)
2148 return ret;
2149 prepare_read_connect(con);
2150 break;
2151
2152 case CEPH_MSGR_TAG_RESETSESSION:
2153 /*
2154 * If we connected with a large connect_seq but the peer
2155 * has no record of a session with us (no connection, or
2156 * connect_seq == 0), they will send RESETSESION to indicate
2157 * that they must have reset their session, and may have
2158 * dropped messages.
2159 */
2160 dout("process_connect got RESET peer seq %u\n",
2161 le32_to_cpu(con->in_reply.connect_seq));
2162 pr_err("%s%lld %s connection reset\n",
2163 ENTITY_NAME(con->peer_name),
2164 ceph_pr_addr(&con->peer_addr.in_addr));
2165 reset_connection(con);
2166 con_out_kvec_reset(con);
2167 ret = prepare_write_connect(con);
2168 if (ret < 0)
2169 return ret;
2170 prepare_read_connect(con);
2171
2172 /* Tell ceph about it. */
2173 mutex_unlock(&con->mutex);
2174 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2175 if (con->ops->peer_reset)
2176 con->ops->peer_reset(con);
2177 mutex_lock(&con->mutex);
2178 if (con->state != CON_STATE_NEGOTIATING)
2179 return -EAGAIN;
2180 break;
2181
2182 case CEPH_MSGR_TAG_RETRY_SESSION:
2183 /*
2184 * If we sent a smaller connect_seq than the peer has, try
2185 * again with a larger value.
2186 */
2187 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2188 le32_to_cpu(con->out_connect.connect_seq),
2189 le32_to_cpu(con->in_reply.connect_seq));
2190 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2191 con_out_kvec_reset(con);
2192 ret = prepare_write_connect(con);
2193 if (ret < 0)
2194 return ret;
2195 prepare_read_connect(con);
2196 break;
2197
2198 case CEPH_MSGR_TAG_RETRY_GLOBAL:
2199 /*
2200 * If we sent a smaller global_seq than the peer has, try
2201 * again with a larger value.
2202 */
2203 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2204 con->peer_global_seq,
2205 le32_to_cpu(con->in_reply.global_seq));
2206 get_global_seq(con->msgr,
2207 le32_to_cpu(con->in_reply.global_seq));
2208 con_out_kvec_reset(con);
2209 ret = prepare_write_connect(con);
2210 if (ret < 0)
2211 return ret;
2212 prepare_read_connect(con);
2213 break;
2214
2215 case CEPH_MSGR_TAG_SEQ:
2216 case CEPH_MSGR_TAG_READY:
2217 if (req_feat & ~server_feat) {
2218 pr_err("%s%lld %s protocol feature mismatch,"
2219 " my required %llx > server's %llx, need %llx\n",
2220 ENTITY_NAME(con->peer_name),
2221 ceph_pr_addr(&con->peer_addr.in_addr),
2222 req_feat, server_feat, req_feat & ~server_feat);
2223 con->error_msg = "missing required protocol features";
2224 reset_connection(con);
2225 return -1;
2226 }
2227
2228 WARN_ON(con->state != CON_STATE_NEGOTIATING);
2229 con->state = CON_STATE_OPEN;
2230 con->auth_retry = 0; /* we authenticated; clear flag */
2231 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2232 con->connect_seq++;
2233 con->peer_features = server_feat;
2234 dout("process_connect got READY gseq %d cseq %d (%d)\n",
2235 con->peer_global_seq,
2236 le32_to_cpu(con->in_reply.connect_seq),
2237 con->connect_seq);
2238 WARN_ON(con->connect_seq !=
2239 le32_to_cpu(con->in_reply.connect_seq));
2240
2241 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2242 con_flag_set(con, CON_FLAG_LOSSYTX);
2243
2244 con->delay = 0; /* reset backoff memory */
2245
2246 if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2247 prepare_write_seq(con);
2248 prepare_read_seq(con);
2249 } else {
2250 prepare_read_tag(con);
2251 }
2252 break;
2253
2254 case CEPH_MSGR_TAG_WAIT:
2255 /*
2256 * If there is a connection race (we are opening
2257 * connections to each other), one of us may just have
2258 * to WAIT. This shouldn't happen if we are the
2259 * client.
2260 */
2261 con->error_msg = "protocol error, got WAIT as client";
2262 return -1;
2263
2264 default:
2265 con->error_msg = "protocol error, garbage tag during connect";
2266 return -1;
2267 }
2268 return 0;
2269 }
2270
2271
2272 /*
2273 * read (part of) an ack
2274 */
read_partial_ack(struct ceph_connection * con)2275 static int read_partial_ack(struct ceph_connection *con)
2276 {
2277 int size = sizeof (con->in_temp_ack);
2278 int end = size;
2279
2280 return read_partial(con, end, size, &con->in_temp_ack);
2281 }
2282
2283 /*
2284 * We can finally discard anything that's been acked.
2285 */
process_ack(struct ceph_connection * con)2286 static void process_ack(struct ceph_connection *con)
2287 {
2288 struct ceph_msg *m;
2289 u64 ack = le64_to_cpu(con->in_temp_ack);
2290 u64 seq;
2291 bool reconnect = (con->in_tag == CEPH_MSGR_TAG_SEQ);
2292 struct list_head *list = reconnect ? &con->out_queue : &con->out_sent;
2293
2294 /*
2295 * In the reconnect case, con_fault() has requeued messages
2296 * in out_sent. We should cleanup old messages according to
2297 * the reconnect seq.
2298 */
2299 while (!list_empty(list)) {
2300 m = list_first_entry(list, struct ceph_msg, list_head);
2301 if (reconnect && m->needs_out_seq)
2302 break;
2303 seq = le64_to_cpu(m->hdr.seq);
2304 if (seq > ack)
2305 break;
2306 dout("got ack for seq %llu type %d at %p\n", seq,
2307 le16_to_cpu(m->hdr.type), m);
2308 m->ack_stamp = jiffies;
2309 ceph_msg_remove(m);
2310 }
2311
2312 prepare_read_tag(con);
2313 }
2314
2315
read_partial_message_section(struct ceph_connection * con,struct kvec * section,unsigned int sec_len,u32 * crc)2316 static int read_partial_message_section(struct ceph_connection *con,
2317 struct kvec *section,
2318 unsigned int sec_len, u32 *crc)
2319 {
2320 int ret, left;
2321
2322 BUG_ON(!section);
2323
2324 while (section->iov_len < sec_len) {
2325 BUG_ON(section->iov_base == NULL);
2326 left = sec_len - section->iov_len;
2327 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2328 section->iov_len, left);
2329 if (ret <= 0)
2330 return ret;
2331 section->iov_len += ret;
2332 }
2333 if (section->iov_len == sec_len)
2334 *crc = crc32c(0, section->iov_base, section->iov_len);
2335
2336 return 1;
2337 }
2338
read_partial_msg_data(struct ceph_connection * con)2339 static int read_partial_msg_data(struct ceph_connection *con)
2340 {
2341 struct ceph_msg *msg = con->in_msg;
2342 struct ceph_msg_data_cursor *cursor = &msg->cursor;
2343 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2344 struct page *page;
2345 size_t page_offset;
2346 size_t length;
2347 u32 crc = 0;
2348 int ret;
2349
2350 BUG_ON(!msg);
2351 if (list_empty(&msg->data))
2352 return -EIO;
2353
2354 if (do_datacrc)
2355 crc = con->in_data_crc;
2356 while (cursor->total_resid) {
2357 if (!cursor->resid) {
2358 ceph_msg_data_advance(cursor, 0);
2359 continue;
2360 }
2361
2362 page = ceph_msg_data_next(cursor, &page_offset, &length, NULL);
2363 ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2364 if (ret <= 0) {
2365 if (do_datacrc)
2366 con->in_data_crc = crc;
2367
2368 return ret;
2369 }
2370
2371 if (do_datacrc)
2372 crc = ceph_crc32c_page(crc, page, page_offset, ret);
2373 ceph_msg_data_advance(cursor, (size_t)ret);
2374 }
2375 if (do_datacrc)
2376 con->in_data_crc = crc;
2377
2378 return 1; /* must return > 0 to indicate success */
2379 }
2380
2381 /*
2382 * read (part of) a message.
2383 */
2384 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2385
read_partial_message(struct ceph_connection * con)2386 static int read_partial_message(struct ceph_connection *con)
2387 {
2388 struct ceph_msg *m = con->in_msg;
2389 int size;
2390 int end;
2391 int ret;
2392 unsigned int front_len, middle_len, data_len;
2393 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2394 bool need_sign = (con->peer_features & CEPH_FEATURE_MSG_AUTH);
2395 u64 seq;
2396 u32 crc;
2397
2398 dout("read_partial_message con %p msg %p\n", con, m);
2399
2400 /* header */
2401 size = sizeof (con->in_hdr);
2402 end = size;
2403 ret = read_partial(con, end, size, &con->in_hdr);
2404 if (ret <= 0)
2405 return ret;
2406
2407 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2408 if (cpu_to_le32(crc) != con->in_hdr.crc) {
2409 pr_err("read_partial_message bad hdr crc %u != expected %u\n",
2410 crc, con->in_hdr.crc);
2411 return -EBADMSG;
2412 }
2413
2414 front_len = le32_to_cpu(con->in_hdr.front_len);
2415 if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2416 return -EIO;
2417 middle_len = le32_to_cpu(con->in_hdr.middle_len);
2418 if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2419 return -EIO;
2420 data_len = le32_to_cpu(con->in_hdr.data_len);
2421 if (data_len > CEPH_MSG_MAX_DATA_LEN)
2422 return -EIO;
2423
2424 /* verify seq# */
2425 seq = le64_to_cpu(con->in_hdr.seq);
2426 if ((s64)seq - (s64)con->in_seq < 1) {
2427 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2428 ENTITY_NAME(con->peer_name),
2429 ceph_pr_addr(&con->peer_addr.in_addr),
2430 seq, con->in_seq + 1);
2431 con->in_base_pos = -front_len - middle_len - data_len -
2432 sizeof_footer(con);
2433 con->in_tag = CEPH_MSGR_TAG_READY;
2434 return 1;
2435 } else if ((s64)seq - (s64)con->in_seq > 1) {
2436 pr_err("read_partial_message bad seq %lld expected %lld\n",
2437 seq, con->in_seq + 1);
2438 con->error_msg = "bad message sequence # for incoming message";
2439 return -EBADE;
2440 }
2441
2442 /* allocate message? */
2443 if (!con->in_msg) {
2444 int skip = 0;
2445
2446 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2447 front_len, data_len);
2448 ret = ceph_con_in_msg_alloc(con, &skip);
2449 if (ret < 0)
2450 return ret;
2451
2452 BUG_ON(!con->in_msg ^ skip);
2453 if (skip) {
2454 /* skip this message */
2455 dout("alloc_msg said skip message\n");
2456 con->in_base_pos = -front_len - middle_len - data_len -
2457 sizeof_footer(con);
2458 con->in_tag = CEPH_MSGR_TAG_READY;
2459 con->in_seq++;
2460 return 1;
2461 }
2462
2463 BUG_ON(!con->in_msg);
2464 BUG_ON(con->in_msg->con != con);
2465 m = con->in_msg;
2466 m->front.iov_len = 0; /* haven't read it yet */
2467 if (m->middle)
2468 m->middle->vec.iov_len = 0;
2469
2470 /* prepare for data payload, if any */
2471
2472 if (data_len)
2473 prepare_message_data(con->in_msg, data_len);
2474 }
2475
2476 /* front */
2477 ret = read_partial_message_section(con, &m->front, front_len,
2478 &con->in_front_crc);
2479 if (ret <= 0)
2480 return ret;
2481
2482 /* middle */
2483 if (m->middle) {
2484 ret = read_partial_message_section(con, &m->middle->vec,
2485 middle_len,
2486 &con->in_middle_crc);
2487 if (ret <= 0)
2488 return ret;
2489 }
2490
2491 /* (page) data */
2492 if (data_len) {
2493 ret = read_partial_msg_data(con);
2494 if (ret <= 0)
2495 return ret;
2496 }
2497
2498 /* footer */
2499 size = sizeof_footer(con);
2500 end += size;
2501 ret = read_partial(con, end, size, &m->footer);
2502 if (ret <= 0)
2503 return ret;
2504
2505 if (!need_sign) {
2506 m->footer.flags = m->old_footer.flags;
2507 m->footer.sig = 0;
2508 }
2509
2510 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2511 m, front_len, m->footer.front_crc, middle_len,
2512 m->footer.middle_crc, data_len, m->footer.data_crc);
2513
2514 /* crc ok? */
2515 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2516 pr_err("read_partial_message %p front crc %u != exp. %u\n",
2517 m, con->in_front_crc, m->footer.front_crc);
2518 return -EBADMSG;
2519 }
2520 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2521 pr_err("read_partial_message %p middle crc %u != exp %u\n",
2522 m, con->in_middle_crc, m->footer.middle_crc);
2523 return -EBADMSG;
2524 }
2525 if (do_datacrc &&
2526 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2527 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2528 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2529 con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2530 return -EBADMSG;
2531 }
2532
2533 if (need_sign && con->ops->check_message_signature &&
2534 con->ops->check_message_signature(m)) {
2535 pr_err("read_partial_message %p signature check failed\n", m);
2536 return -EBADMSG;
2537 }
2538
2539 return 1; /* done! */
2540 }
2541
2542 /*
2543 * Process message. This happens in the worker thread. The callback should
2544 * be careful not to do anything that waits on other incoming messages or it
2545 * may deadlock.
2546 */
process_message(struct ceph_connection * con)2547 static void process_message(struct ceph_connection *con)
2548 {
2549 struct ceph_msg *msg = con->in_msg;
2550
2551 BUG_ON(con->in_msg->con != con);
2552 con->in_msg = NULL;
2553
2554 /* if first message, set peer_name */
2555 if (con->peer_name.type == 0)
2556 con->peer_name = msg->hdr.src;
2557
2558 con->in_seq++;
2559 mutex_unlock(&con->mutex);
2560
2561 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2562 msg, le64_to_cpu(msg->hdr.seq),
2563 ENTITY_NAME(msg->hdr.src),
2564 le16_to_cpu(msg->hdr.type),
2565 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2566 le32_to_cpu(msg->hdr.front_len),
2567 le32_to_cpu(msg->hdr.data_len),
2568 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2569 con->ops->dispatch(con, msg);
2570
2571 mutex_lock(&con->mutex);
2572 }
2573
read_keepalive_ack(struct ceph_connection * con)2574 static int read_keepalive_ack(struct ceph_connection *con)
2575 {
2576 struct ceph_timespec ceph_ts;
2577 size_t size = sizeof(ceph_ts);
2578 int ret = read_partial(con, size, size, &ceph_ts);
2579 if (ret <= 0)
2580 return ret;
2581 ceph_decode_timespec64(&con->last_keepalive_ack, &ceph_ts);
2582 prepare_read_tag(con);
2583 return 1;
2584 }
2585
2586 /*
2587 * Write something to the socket. Called in a worker thread when the
2588 * socket appears to be writeable and we have something ready to send.
2589 */
try_write(struct ceph_connection * con)2590 static int try_write(struct ceph_connection *con)
2591 {
2592 int ret = 1;
2593
2594 dout("try_write start %p state %lu\n", con, con->state);
2595 if (con->state != CON_STATE_PREOPEN &&
2596 con->state != CON_STATE_CONNECTING &&
2597 con->state != CON_STATE_NEGOTIATING &&
2598 con->state != CON_STATE_OPEN)
2599 return 0;
2600
2601 /* open the socket first? */
2602 if (con->state == CON_STATE_PREOPEN) {
2603 BUG_ON(con->sock);
2604 con->state = CON_STATE_CONNECTING;
2605
2606 con_out_kvec_reset(con);
2607 prepare_write_banner(con);
2608 prepare_read_banner(con);
2609
2610 BUG_ON(con->in_msg);
2611 con->in_tag = CEPH_MSGR_TAG_READY;
2612 dout("try_write initiating connect on %p new state %lu\n",
2613 con, con->state);
2614 ret = ceph_tcp_connect(con);
2615 if (ret < 0) {
2616 con->error_msg = "connect error";
2617 goto out;
2618 }
2619 }
2620
2621 more:
2622 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2623 BUG_ON(!con->sock);
2624
2625 /* kvec data queued? */
2626 if (con->out_kvec_left) {
2627 ret = write_partial_kvec(con);
2628 if (ret <= 0)
2629 goto out;
2630 }
2631 if (con->out_skip) {
2632 ret = write_partial_skip(con);
2633 if (ret <= 0)
2634 goto out;
2635 }
2636
2637 /* msg pages? */
2638 if (con->out_msg) {
2639 if (con->out_msg_done) {
2640 ceph_msg_put(con->out_msg);
2641 con->out_msg = NULL; /* we're done with this one */
2642 goto do_next;
2643 }
2644
2645 ret = write_partial_message_data(con);
2646 if (ret == 1)
2647 goto more; /* we need to send the footer, too! */
2648 if (ret == 0)
2649 goto out;
2650 if (ret < 0) {
2651 dout("try_write write_partial_message_data err %d\n",
2652 ret);
2653 goto out;
2654 }
2655 }
2656
2657 do_next:
2658 if (con->state == CON_STATE_OPEN) {
2659 if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2660 prepare_write_keepalive(con);
2661 goto more;
2662 }
2663 /* is anything else pending? */
2664 if (!list_empty(&con->out_queue)) {
2665 prepare_write_message(con);
2666 goto more;
2667 }
2668 if (con->in_seq > con->in_seq_acked) {
2669 prepare_write_ack(con);
2670 goto more;
2671 }
2672 }
2673
2674 /* Nothing to do! */
2675 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2676 dout("try_write nothing else to write.\n");
2677 ret = 0;
2678 out:
2679 dout("try_write done on %p ret %d\n", con, ret);
2680 return ret;
2681 }
2682
2683 /*
2684 * Read what we can from the socket.
2685 */
try_read(struct ceph_connection * con)2686 static int try_read(struct ceph_connection *con)
2687 {
2688 int ret = -1;
2689
2690 more:
2691 dout("try_read start on %p state %lu\n", con, con->state);
2692 if (con->state != CON_STATE_CONNECTING &&
2693 con->state != CON_STATE_NEGOTIATING &&
2694 con->state != CON_STATE_OPEN)
2695 return 0;
2696
2697 BUG_ON(!con->sock);
2698
2699 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2700 con->in_base_pos);
2701
2702 if (con->state == CON_STATE_CONNECTING) {
2703 dout("try_read connecting\n");
2704 ret = read_partial_banner(con);
2705 if (ret <= 0)
2706 goto out;
2707 ret = process_banner(con);
2708 if (ret < 0)
2709 goto out;
2710
2711 con->state = CON_STATE_NEGOTIATING;
2712
2713 /*
2714 * Received banner is good, exchange connection info.
2715 * Do not reset out_kvec, as sending our banner raced
2716 * with receiving peer banner after connect completed.
2717 */
2718 ret = prepare_write_connect(con);
2719 if (ret < 0)
2720 goto out;
2721 prepare_read_connect(con);
2722
2723 /* Send connection info before awaiting response */
2724 goto out;
2725 }
2726
2727 if (con->state == CON_STATE_NEGOTIATING) {
2728 dout("try_read negotiating\n");
2729 ret = read_partial_connect(con);
2730 if (ret <= 0)
2731 goto out;
2732 ret = process_connect(con);
2733 if (ret < 0)
2734 goto out;
2735 goto more;
2736 }
2737
2738 WARN_ON(con->state != CON_STATE_OPEN);
2739
2740 if (con->in_base_pos < 0) {
2741 /*
2742 * skipping + discarding content.
2743 */
2744 ret = ceph_tcp_recvmsg(con->sock, NULL, -con->in_base_pos);
2745 if (ret <= 0)
2746 goto out;
2747 dout("skipped %d / %d bytes\n", ret, -con->in_base_pos);
2748 con->in_base_pos += ret;
2749 if (con->in_base_pos)
2750 goto more;
2751 }
2752 if (con->in_tag == CEPH_MSGR_TAG_READY) {
2753 /*
2754 * what's next?
2755 */
2756 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2757 if (ret <= 0)
2758 goto out;
2759 dout("try_read got tag %d\n", (int)con->in_tag);
2760 switch (con->in_tag) {
2761 case CEPH_MSGR_TAG_MSG:
2762 prepare_read_message(con);
2763 break;
2764 case CEPH_MSGR_TAG_ACK:
2765 prepare_read_ack(con);
2766 break;
2767 case CEPH_MSGR_TAG_KEEPALIVE2_ACK:
2768 prepare_read_keepalive_ack(con);
2769 break;
2770 case CEPH_MSGR_TAG_CLOSE:
2771 con_close_socket(con);
2772 con->state = CON_STATE_CLOSED;
2773 goto out;
2774 default:
2775 goto bad_tag;
2776 }
2777 }
2778 if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2779 ret = read_partial_message(con);
2780 if (ret <= 0) {
2781 switch (ret) {
2782 case -EBADMSG:
2783 con->error_msg = "bad crc/signature";
2784 /* fall through */
2785 case -EBADE:
2786 ret = -EIO;
2787 break;
2788 case -EIO:
2789 con->error_msg = "io error";
2790 break;
2791 }
2792 goto out;
2793 }
2794 if (con->in_tag == CEPH_MSGR_TAG_READY)
2795 goto more;
2796 process_message(con);
2797 if (con->state == CON_STATE_OPEN)
2798 prepare_read_tag(con);
2799 goto more;
2800 }
2801 if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2802 con->in_tag == CEPH_MSGR_TAG_SEQ) {
2803 /*
2804 * the final handshake seq exchange is semantically
2805 * equivalent to an ACK
2806 */
2807 ret = read_partial_ack(con);
2808 if (ret <= 0)
2809 goto out;
2810 process_ack(con);
2811 goto more;
2812 }
2813 if (con->in_tag == CEPH_MSGR_TAG_KEEPALIVE2_ACK) {
2814 ret = read_keepalive_ack(con);
2815 if (ret <= 0)
2816 goto out;
2817 goto more;
2818 }
2819
2820 out:
2821 dout("try_read done on %p ret %d\n", con, ret);
2822 return ret;
2823
2824 bad_tag:
2825 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2826 con->error_msg = "protocol error, garbage tag";
2827 ret = -1;
2828 goto out;
2829 }
2830
2831
2832 /*
2833 * Atomically queue work on a connection after the specified delay.
2834 * Bump @con reference to avoid races with connection teardown.
2835 * Returns 0 if work was queued, or an error code otherwise.
2836 */
queue_con_delay(struct ceph_connection * con,unsigned long delay)2837 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2838 {
2839 if (!con->ops->get(con)) {
2840 dout("%s %p ref count 0\n", __func__, con);
2841 return -ENOENT;
2842 }
2843
2844 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2845 dout("%s %p - already queued\n", __func__, con);
2846 con->ops->put(con);
2847 return -EBUSY;
2848 }
2849
2850 dout("%s %p %lu\n", __func__, con, delay);
2851 return 0;
2852 }
2853
queue_con(struct ceph_connection * con)2854 static void queue_con(struct ceph_connection *con)
2855 {
2856 (void) queue_con_delay(con, 0);
2857 }
2858
cancel_con(struct ceph_connection * con)2859 static void cancel_con(struct ceph_connection *con)
2860 {
2861 if (cancel_delayed_work(&con->work)) {
2862 dout("%s %p\n", __func__, con);
2863 con->ops->put(con);
2864 }
2865 }
2866
con_sock_closed(struct ceph_connection * con)2867 static bool con_sock_closed(struct ceph_connection *con)
2868 {
2869 if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2870 return false;
2871
2872 #define CASE(x) \
2873 case CON_STATE_ ## x: \
2874 con->error_msg = "socket closed (con state " #x ")"; \
2875 break;
2876
2877 switch (con->state) {
2878 CASE(CLOSED);
2879 CASE(PREOPEN);
2880 CASE(CONNECTING);
2881 CASE(NEGOTIATING);
2882 CASE(OPEN);
2883 CASE(STANDBY);
2884 default:
2885 pr_warn("%s con %p unrecognized state %lu\n",
2886 __func__, con, con->state);
2887 con->error_msg = "unrecognized con state";
2888 BUG();
2889 break;
2890 }
2891 #undef CASE
2892
2893 return true;
2894 }
2895
con_backoff(struct ceph_connection * con)2896 static bool con_backoff(struct ceph_connection *con)
2897 {
2898 int ret;
2899
2900 if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2901 return false;
2902
2903 ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2904 if (ret) {
2905 dout("%s: con %p FAILED to back off %lu\n", __func__,
2906 con, con->delay);
2907 BUG_ON(ret == -ENOENT);
2908 con_flag_set(con, CON_FLAG_BACKOFF);
2909 }
2910
2911 return true;
2912 }
2913
2914 /* Finish fault handling; con->mutex must *not* be held here */
2915
con_fault_finish(struct ceph_connection * con)2916 static void con_fault_finish(struct ceph_connection *con)
2917 {
2918 dout("%s %p\n", __func__, con);
2919
2920 /*
2921 * in case we faulted due to authentication, invalidate our
2922 * current tickets so that we can get new ones.
2923 */
2924 if (con->auth_retry) {
2925 dout("auth_retry %d, invalidating\n", con->auth_retry);
2926 if (con->ops->invalidate_authorizer)
2927 con->ops->invalidate_authorizer(con);
2928 con->auth_retry = 0;
2929 }
2930
2931 if (con->ops->fault)
2932 con->ops->fault(con);
2933 }
2934
2935 /*
2936 * Do some work on a connection. Drop a connection ref when we're done.
2937 */
ceph_con_workfn(struct work_struct * work)2938 static void ceph_con_workfn(struct work_struct *work)
2939 {
2940 struct ceph_connection *con = container_of(work, struct ceph_connection,
2941 work.work);
2942 bool fault;
2943
2944 mutex_lock(&con->mutex);
2945 while (true) {
2946 int ret;
2947
2948 if ((fault = con_sock_closed(con))) {
2949 dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2950 break;
2951 }
2952 if (con_backoff(con)) {
2953 dout("%s: con %p BACKOFF\n", __func__, con);
2954 break;
2955 }
2956 if (con->state == CON_STATE_STANDBY) {
2957 dout("%s: con %p STANDBY\n", __func__, con);
2958 break;
2959 }
2960 if (con->state == CON_STATE_CLOSED) {
2961 dout("%s: con %p CLOSED\n", __func__, con);
2962 BUG_ON(con->sock);
2963 break;
2964 }
2965 if (con->state == CON_STATE_PREOPEN) {
2966 dout("%s: con %p PREOPEN\n", __func__, con);
2967 BUG_ON(con->sock);
2968 }
2969
2970 ret = try_read(con);
2971 if (ret < 0) {
2972 if (ret == -EAGAIN)
2973 continue;
2974 if (!con->error_msg)
2975 con->error_msg = "socket error on read";
2976 fault = true;
2977 break;
2978 }
2979
2980 ret = try_write(con);
2981 if (ret < 0) {
2982 if (ret == -EAGAIN)
2983 continue;
2984 if (!con->error_msg)
2985 con->error_msg = "socket error on write";
2986 fault = true;
2987 }
2988
2989 break; /* If we make it to here, we're done */
2990 }
2991 if (fault)
2992 con_fault(con);
2993 mutex_unlock(&con->mutex);
2994
2995 if (fault)
2996 con_fault_finish(con);
2997
2998 con->ops->put(con);
2999 }
3000
3001 /*
3002 * Generic error/fault handler. A retry mechanism is used with
3003 * exponential backoff
3004 */
con_fault(struct ceph_connection * con)3005 static void con_fault(struct ceph_connection *con)
3006 {
3007 dout("fault %p state %lu to peer %s\n",
3008 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
3009
3010 pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
3011 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
3012 con->error_msg = NULL;
3013
3014 WARN_ON(con->state != CON_STATE_CONNECTING &&
3015 con->state != CON_STATE_NEGOTIATING &&
3016 con->state != CON_STATE_OPEN);
3017
3018 con_close_socket(con);
3019
3020 if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
3021 dout("fault on LOSSYTX channel, marking CLOSED\n");
3022 con->state = CON_STATE_CLOSED;
3023 return;
3024 }
3025
3026 if (con->in_msg) {
3027 BUG_ON(con->in_msg->con != con);
3028 ceph_msg_put(con->in_msg);
3029 con->in_msg = NULL;
3030 }
3031
3032 /* Requeue anything that hasn't been acked */
3033 list_splice_init(&con->out_sent, &con->out_queue);
3034
3035 /* If there are no messages queued or keepalive pending, place
3036 * the connection in a STANDBY state */
3037 if (list_empty(&con->out_queue) &&
3038 !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
3039 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
3040 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
3041 con->state = CON_STATE_STANDBY;
3042 } else {
3043 /* retry after a delay. */
3044 con->state = CON_STATE_PREOPEN;
3045 if (con->delay == 0)
3046 con->delay = BASE_DELAY_INTERVAL;
3047 else if (con->delay < MAX_DELAY_INTERVAL)
3048 con->delay *= 2;
3049 con_flag_set(con, CON_FLAG_BACKOFF);
3050 queue_con(con);
3051 }
3052 }
3053
3054
3055
3056 /*
3057 * initialize a new messenger instance
3058 */
ceph_messenger_init(struct ceph_messenger * msgr,struct ceph_entity_addr * myaddr)3059 void ceph_messenger_init(struct ceph_messenger *msgr,
3060 struct ceph_entity_addr *myaddr)
3061 {
3062 spin_lock_init(&msgr->global_seq_lock);
3063
3064 if (myaddr)
3065 msgr->inst.addr = *myaddr;
3066
3067 /* select a random nonce */
3068 msgr->inst.addr.type = 0;
3069 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
3070 encode_my_addr(msgr);
3071
3072 atomic_set(&msgr->stopping, 0);
3073 write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
3074
3075 dout("%s %p\n", __func__, msgr);
3076 }
3077 EXPORT_SYMBOL(ceph_messenger_init);
3078
ceph_messenger_fini(struct ceph_messenger * msgr)3079 void ceph_messenger_fini(struct ceph_messenger *msgr)
3080 {
3081 put_net(read_pnet(&msgr->net));
3082 }
3083 EXPORT_SYMBOL(ceph_messenger_fini);
3084
msg_con_set(struct ceph_msg * msg,struct ceph_connection * con)3085 static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con)
3086 {
3087 if (msg->con)
3088 msg->con->ops->put(msg->con);
3089
3090 msg->con = con ? con->ops->get(con) : NULL;
3091 BUG_ON(msg->con != con);
3092 }
3093
clear_standby(struct ceph_connection * con)3094 static void clear_standby(struct ceph_connection *con)
3095 {
3096 /* come back from STANDBY? */
3097 if (con->state == CON_STATE_STANDBY) {
3098 dout("clear_standby %p and ++connect_seq\n", con);
3099 con->state = CON_STATE_PREOPEN;
3100 con->connect_seq++;
3101 WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
3102 WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
3103 }
3104 }
3105
3106 /*
3107 * Queue up an outgoing message on the given connection.
3108 */
ceph_con_send(struct ceph_connection * con,struct ceph_msg * msg)3109 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
3110 {
3111 /* set src+dst */
3112 msg->hdr.src = con->msgr->inst.name;
3113 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
3114 msg->needs_out_seq = true;
3115
3116 mutex_lock(&con->mutex);
3117
3118 if (con->state == CON_STATE_CLOSED) {
3119 dout("con_send %p closed, dropping %p\n", con, msg);
3120 ceph_msg_put(msg);
3121 mutex_unlock(&con->mutex);
3122 return;
3123 }
3124
3125 msg_con_set(msg, con);
3126
3127 BUG_ON(!list_empty(&msg->list_head));
3128 list_add_tail(&msg->list_head, &con->out_queue);
3129 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
3130 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
3131 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
3132 le32_to_cpu(msg->hdr.front_len),
3133 le32_to_cpu(msg->hdr.middle_len),
3134 le32_to_cpu(msg->hdr.data_len));
3135
3136 clear_standby(con);
3137 mutex_unlock(&con->mutex);
3138
3139 /* if there wasn't anything waiting to send before, queue
3140 * new work */
3141 if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3142 queue_con(con);
3143 }
3144 EXPORT_SYMBOL(ceph_con_send);
3145
3146 /*
3147 * Revoke a message that was previously queued for send
3148 */
ceph_msg_revoke(struct ceph_msg * msg)3149 void ceph_msg_revoke(struct ceph_msg *msg)
3150 {
3151 struct ceph_connection *con = msg->con;
3152
3153 if (!con) {
3154 dout("%s msg %p null con\n", __func__, msg);
3155 return; /* Message not in our possession */
3156 }
3157
3158 mutex_lock(&con->mutex);
3159 if (!list_empty(&msg->list_head)) {
3160 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
3161 list_del_init(&msg->list_head);
3162 msg->hdr.seq = 0;
3163
3164 ceph_msg_put(msg);
3165 }
3166 if (con->out_msg == msg) {
3167 BUG_ON(con->out_skip);
3168 /* footer */
3169 if (con->out_msg_done) {
3170 con->out_skip += con_out_kvec_skip(con);
3171 } else {
3172 BUG_ON(!msg->data_length);
3173 con->out_skip += sizeof_footer(con);
3174 }
3175 /* data, middle, front */
3176 if (msg->data_length)
3177 con->out_skip += msg->cursor.total_resid;
3178 if (msg->middle)
3179 con->out_skip += con_out_kvec_skip(con);
3180 con->out_skip += con_out_kvec_skip(con);
3181
3182 dout("%s %p msg %p - was sending, will write %d skip %d\n",
3183 __func__, con, msg, con->out_kvec_bytes, con->out_skip);
3184 msg->hdr.seq = 0;
3185 con->out_msg = NULL;
3186 ceph_msg_put(msg);
3187 }
3188
3189 mutex_unlock(&con->mutex);
3190 }
3191
3192 /*
3193 * Revoke a message that we may be reading data into
3194 */
ceph_msg_revoke_incoming(struct ceph_msg * msg)3195 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
3196 {
3197 struct ceph_connection *con = msg->con;
3198
3199 if (!con) {
3200 dout("%s msg %p null con\n", __func__, msg);
3201 return; /* Message not in our possession */
3202 }
3203
3204 mutex_lock(&con->mutex);
3205 if (con->in_msg == msg) {
3206 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
3207 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
3208 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
3209
3210 /* skip rest of message */
3211 dout("%s %p msg %p revoked\n", __func__, con, msg);
3212 con->in_base_pos = con->in_base_pos -
3213 sizeof(struct ceph_msg_header) -
3214 front_len -
3215 middle_len -
3216 data_len -
3217 sizeof(struct ceph_msg_footer);
3218 ceph_msg_put(con->in_msg);
3219 con->in_msg = NULL;
3220 con->in_tag = CEPH_MSGR_TAG_READY;
3221 con->in_seq++;
3222 } else {
3223 dout("%s %p in_msg %p msg %p no-op\n",
3224 __func__, con, con->in_msg, msg);
3225 }
3226 mutex_unlock(&con->mutex);
3227 }
3228
3229 /*
3230 * Queue a keepalive byte to ensure the tcp connection is alive.
3231 */
ceph_con_keepalive(struct ceph_connection * con)3232 void ceph_con_keepalive(struct ceph_connection *con)
3233 {
3234 dout("con_keepalive %p\n", con);
3235 mutex_lock(&con->mutex);
3236 clear_standby(con);
3237 mutex_unlock(&con->mutex);
3238 if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
3239 con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3240 queue_con(con);
3241 }
3242 EXPORT_SYMBOL(ceph_con_keepalive);
3243
ceph_con_keepalive_expired(struct ceph_connection * con,unsigned long interval)3244 bool ceph_con_keepalive_expired(struct ceph_connection *con,
3245 unsigned long interval)
3246 {
3247 if (interval > 0 &&
3248 (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
3249 struct timespec64 now;
3250 struct timespec64 ts;
3251 ktime_get_real_ts64(&now);
3252 jiffies_to_timespec64(interval, &ts);
3253 ts = timespec64_add(con->last_keepalive_ack, ts);
3254 return timespec64_compare(&now, &ts) >= 0;
3255 }
3256 return false;
3257 }
3258
ceph_msg_data_create(enum ceph_msg_data_type type)3259 static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type)
3260 {
3261 struct ceph_msg_data *data;
3262
3263 if (WARN_ON(!ceph_msg_data_type_valid(type)))
3264 return NULL;
3265
3266 data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS);
3267 if (!data)
3268 return NULL;
3269
3270 data->type = type;
3271 INIT_LIST_HEAD(&data->links);
3272
3273 return data;
3274 }
3275
ceph_msg_data_destroy(struct ceph_msg_data * data)3276 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3277 {
3278 if (!data)
3279 return;
3280
3281 WARN_ON(!list_empty(&data->links));
3282 if (data->type == CEPH_MSG_DATA_PAGELIST)
3283 ceph_pagelist_release(data->pagelist);
3284 kmem_cache_free(ceph_msg_data_cache, data);
3285 }
3286
ceph_msg_data_add_pages(struct ceph_msg * msg,struct page ** pages,size_t length,size_t alignment)3287 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3288 size_t length, size_t alignment)
3289 {
3290 struct ceph_msg_data *data;
3291
3292 BUG_ON(!pages);
3293 BUG_ON(!length);
3294
3295 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES);
3296 BUG_ON(!data);
3297 data->pages = pages;
3298 data->length = length;
3299 data->alignment = alignment & ~PAGE_MASK;
3300
3301 list_add_tail(&data->links, &msg->data);
3302 msg->data_length += length;
3303 }
3304 EXPORT_SYMBOL(ceph_msg_data_add_pages);
3305
ceph_msg_data_add_pagelist(struct ceph_msg * msg,struct ceph_pagelist * pagelist)3306 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3307 struct ceph_pagelist *pagelist)
3308 {
3309 struct ceph_msg_data *data;
3310
3311 BUG_ON(!pagelist);
3312 BUG_ON(!pagelist->length);
3313
3314 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST);
3315 BUG_ON(!data);
3316 data->pagelist = pagelist;
3317
3318 list_add_tail(&data->links, &msg->data);
3319 msg->data_length += pagelist->length;
3320 }
3321 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3322
3323 #ifdef CONFIG_BLOCK
ceph_msg_data_add_bio(struct ceph_msg * msg,struct ceph_bio_iter * bio_pos,u32 length)3324 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct ceph_bio_iter *bio_pos,
3325 u32 length)
3326 {
3327 struct ceph_msg_data *data;
3328
3329 data = ceph_msg_data_create(CEPH_MSG_DATA_BIO);
3330 BUG_ON(!data);
3331 data->bio_pos = *bio_pos;
3332 data->bio_length = length;
3333
3334 list_add_tail(&data->links, &msg->data);
3335 msg->data_length += length;
3336 }
3337 EXPORT_SYMBOL(ceph_msg_data_add_bio);
3338 #endif /* CONFIG_BLOCK */
3339
ceph_msg_data_add_bvecs(struct ceph_msg * msg,struct ceph_bvec_iter * bvec_pos)3340 void ceph_msg_data_add_bvecs(struct ceph_msg *msg,
3341 struct ceph_bvec_iter *bvec_pos)
3342 {
3343 struct ceph_msg_data *data;
3344
3345 data = ceph_msg_data_create(CEPH_MSG_DATA_BVECS);
3346 BUG_ON(!data);
3347 data->bvec_pos = *bvec_pos;
3348
3349 list_add_tail(&data->links, &msg->data);
3350 msg->data_length += bvec_pos->iter.bi_size;
3351 }
3352 EXPORT_SYMBOL(ceph_msg_data_add_bvecs);
3353
3354 /*
3355 * construct a new message with given type, size
3356 * the new msg has a ref count of 1.
3357 */
ceph_msg_new(int type,int front_len,gfp_t flags,bool can_fail)3358 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3359 bool can_fail)
3360 {
3361 struct ceph_msg *m;
3362
3363 m = kmem_cache_zalloc(ceph_msg_cache, flags);
3364 if (m == NULL)
3365 goto out;
3366
3367 m->hdr.type = cpu_to_le16(type);
3368 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3369 m->hdr.front_len = cpu_to_le32(front_len);
3370
3371 INIT_LIST_HEAD(&m->list_head);
3372 kref_init(&m->kref);
3373 INIT_LIST_HEAD(&m->data);
3374
3375 /* front */
3376 if (front_len) {
3377 m->front.iov_base = ceph_kvmalloc(front_len, flags);
3378 if (m->front.iov_base == NULL) {
3379 dout("ceph_msg_new can't allocate %d bytes\n",
3380 front_len);
3381 goto out2;
3382 }
3383 } else {
3384 m->front.iov_base = NULL;
3385 }
3386 m->front_alloc_len = m->front.iov_len = front_len;
3387
3388 dout("ceph_msg_new %p front %d\n", m, front_len);
3389 return m;
3390
3391 out2:
3392 ceph_msg_put(m);
3393 out:
3394 if (!can_fail) {
3395 pr_err("msg_new can't create type %d front %d\n", type,
3396 front_len);
3397 WARN_ON(1);
3398 } else {
3399 dout("msg_new can't create type %d front %d\n", type,
3400 front_len);
3401 }
3402 return NULL;
3403 }
3404 EXPORT_SYMBOL(ceph_msg_new);
3405
3406 /*
3407 * Allocate "middle" portion of a message, if it is needed and wasn't
3408 * allocated by alloc_msg. This allows us to read a small fixed-size
3409 * per-type header in the front and then gracefully fail (i.e.,
3410 * propagate the error to the caller based on info in the front) when
3411 * the middle is too large.
3412 */
ceph_alloc_middle(struct ceph_connection * con,struct ceph_msg * msg)3413 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3414 {
3415 int type = le16_to_cpu(msg->hdr.type);
3416 int middle_len = le32_to_cpu(msg->hdr.middle_len);
3417
3418 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3419 ceph_msg_type_name(type), middle_len);
3420 BUG_ON(!middle_len);
3421 BUG_ON(msg->middle);
3422
3423 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3424 if (!msg->middle)
3425 return -ENOMEM;
3426 return 0;
3427 }
3428
3429 /*
3430 * Allocate a message for receiving an incoming message on a
3431 * connection, and save the result in con->in_msg. Uses the
3432 * connection's private alloc_msg op if available.
3433 *
3434 * Returns 0 on success, or a negative error code.
3435 *
3436 * On success, if we set *skip = 1:
3437 * - the next message should be skipped and ignored.
3438 * - con->in_msg == NULL
3439 * or if we set *skip = 0:
3440 * - con->in_msg is non-null.
3441 * On error (ENOMEM, EAGAIN, ...),
3442 * - con->in_msg == NULL
3443 */
ceph_con_in_msg_alloc(struct ceph_connection * con,int * skip)3444 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3445 {
3446 struct ceph_msg_header *hdr = &con->in_hdr;
3447 int middle_len = le32_to_cpu(hdr->middle_len);
3448 struct ceph_msg *msg;
3449 int ret = 0;
3450
3451 BUG_ON(con->in_msg != NULL);
3452 BUG_ON(!con->ops->alloc_msg);
3453
3454 mutex_unlock(&con->mutex);
3455 msg = con->ops->alloc_msg(con, hdr, skip);
3456 mutex_lock(&con->mutex);
3457 if (con->state != CON_STATE_OPEN) {
3458 if (msg)
3459 ceph_msg_put(msg);
3460 return -EAGAIN;
3461 }
3462 if (msg) {
3463 BUG_ON(*skip);
3464 msg_con_set(msg, con);
3465 con->in_msg = msg;
3466 } else {
3467 /*
3468 * Null message pointer means either we should skip
3469 * this message or we couldn't allocate memory. The
3470 * former is not an error.
3471 */
3472 if (*skip)
3473 return 0;
3474
3475 con->error_msg = "error allocating memory for incoming message";
3476 return -ENOMEM;
3477 }
3478 memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3479
3480 if (middle_len && !con->in_msg->middle) {
3481 ret = ceph_alloc_middle(con, con->in_msg);
3482 if (ret < 0) {
3483 ceph_msg_put(con->in_msg);
3484 con->in_msg = NULL;
3485 }
3486 }
3487
3488 return ret;
3489 }
3490
3491
3492 /*
3493 * Free a generically kmalloc'd message.
3494 */
ceph_msg_free(struct ceph_msg * m)3495 static void ceph_msg_free(struct ceph_msg *m)
3496 {
3497 dout("%s %p\n", __func__, m);
3498 kvfree(m->front.iov_base);
3499 kmem_cache_free(ceph_msg_cache, m);
3500 }
3501
ceph_msg_release(struct kref * kref)3502 static void ceph_msg_release(struct kref *kref)
3503 {
3504 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3505 struct ceph_msg_data *data, *next;
3506
3507 dout("%s %p\n", __func__, m);
3508 WARN_ON(!list_empty(&m->list_head));
3509
3510 msg_con_set(m, NULL);
3511
3512 /* drop middle, data, if any */
3513 if (m->middle) {
3514 ceph_buffer_put(m->middle);
3515 m->middle = NULL;
3516 }
3517
3518 list_for_each_entry_safe(data, next, &m->data, links) {
3519 list_del_init(&data->links);
3520 ceph_msg_data_destroy(data);
3521 }
3522 m->data_length = 0;
3523
3524 if (m->pool)
3525 ceph_msgpool_put(m->pool, m);
3526 else
3527 ceph_msg_free(m);
3528 }
3529
ceph_msg_get(struct ceph_msg * msg)3530 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
3531 {
3532 dout("%s %p (was %d)\n", __func__, msg,
3533 kref_read(&msg->kref));
3534 kref_get(&msg->kref);
3535 return msg;
3536 }
3537 EXPORT_SYMBOL(ceph_msg_get);
3538
ceph_msg_put(struct ceph_msg * msg)3539 void ceph_msg_put(struct ceph_msg *msg)
3540 {
3541 dout("%s %p (was %d)\n", __func__, msg,
3542 kref_read(&msg->kref));
3543 kref_put(&msg->kref, ceph_msg_release);
3544 }
3545 EXPORT_SYMBOL(ceph_msg_put);
3546
ceph_msg_dump(struct ceph_msg * msg)3547 void ceph_msg_dump(struct ceph_msg *msg)
3548 {
3549 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3550 msg->front_alloc_len, msg->data_length);
3551 print_hex_dump(KERN_DEBUG, "header: ",
3552 DUMP_PREFIX_OFFSET, 16, 1,
3553 &msg->hdr, sizeof(msg->hdr), true);
3554 print_hex_dump(KERN_DEBUG, " front: ",
3555 DUMP_PREFIX_OFFSET, 16, 1,
3556 msg->front.iov_base, msg->front.iov_len, true);
3557 if (msg->middle)
3558 print_hex_dump(KERN_DEBUG, "middle: ",
3559 DUMP_PREFIX_OFFSET, 16, 1,
3560 msg->middle->vec.iov_base,
3561 msg->middle->vec.iov_len, true);
3562 print_hex_dump(KERN_DEBUG, "footer: ",
3563 DUMP_PREFIX_OFFSET, 16, 1,
3564 &msg->footer, sizeof(msg->footer), true);
3565 }
3566 EXPORT_SYMBOL(ceph_msg_dump);
3567