1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * cec-adap.c - HDMI Consumer Electronics Control framework - CEC adapter
4  *
5  * Copyright 2016 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
6  */
7 
8 #include <linux/errno.h>
9 #include <linux/init.h>
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/kmod.h>
13 #include <linux/ktime.h>
14 #include <linux/slab.h>
15 #include <linux/mm.h>
16 #include <linux/string.h>
17 #include <linux/types.h>
18 
19 #include <drm/drm_edid.h>
20 
21 #include "cec-priv.h"
22 
23 static void cec_fill_msg_report_features(struct cec_adapter *adap,
24 					 struct cec_msg *msg,
25 					 unsigned int la_idx);
26 
27 /*
28  * 400 ms is the time it takes for one 16 byte message to be
29  * transferred and 5 is the maximum number of retries. Add
30  * another 100 ms as a margin. So if the transmit doesn't
31  * finish before that time something is really wrong and we
32  * have to time out.
33  *
34  * This is a sign that something it really wrong and a warning
35  * will be issued.
36  */
37 #define CEC_XFER_TIMEOUT_MS (5 * 400 + 100)
38 
39 #define call_op(adap, op, arg...) \
40 	(adap->ops->op ? adap->ops->op(adap, ## arg) : 0)
41 
42 #define call_void_op(adap, op, arg...)			\
43 	do {						\
44 		if (adap->ops->op)			\
45 			adap->ops->op(adap, ## arg);	\
46 	} while (0)
47 
cec_log_addr2idx(const struct cec_adapter * adap,u8 log_addr)48 static int cec_log_addr2idx(const struct cec_adapter *adap, u8 log_addr)
49 {
50 	int i;
51 
52 	for (i = 0; i < adap->log_addrs.num_log_addrs; i++)
53 		if (adap->log_addrs.log_addr[i] == log_addr)
54 			return i;
55 	return -1;
56 }
57 
cec_log_addr2dev(const struct cec_adapter * adap,u8 log_addr)58 static unsigned int cec_log_addr2dev(const struct cec_adapter *adap, u8 log_addr)
59 {
60 	int i = cec_log_addr2idx(adap, log_addr);
61 
62 	return adap->log_addrs.primary_device_type[i < 0 ? 0 : i];
63 }
64 
65 /*
66  * Queue a new event for this filehandle. If ts == 0, then set it
67  * to the current time.
68  *
69  * We keep a queue of at most max_event events where max_event differs
70  * per event. If the queue becomes full, then drop the oldest event and
71  * keep track of how many events we've dropped.
72  */
cec_queue_event_fh(struct cec_fh * fh,const struct cec_event * new_ev,u64 ts)73 void cec_queue_event_fh(struct cec_fh *fh,
74 			const struct cec_event *new_ev, u64 ts)
75 {
76 	static const u16 max_events[CEC_NUM_EVENTS] = {
77 		1, 1, 800, 800, 8, 8, 8, 8
78 	};
79 	struct cec_event_entry *entry;
80 	unsigned int ev_idx = new_ev->event - 1;
81 
82 	if (WARN_ON(ev_idx >= ARRAY_SIZE(fh->events)))
83 		return;
84 
85 	if (ts == 0)
86 		ts = ktime_get_ns();
87 
88 	mutex_lock(&fh->lock);
89 	if (ev_idx < CEC_NUM_CORE_EVENTS)
90 		entry = &fh->core_events[ev_idx];
91 	else
92 		entry = kmalloc(sizeof(*entry), GFP_KERNEL);
93 	if (entry) {
94 		if (new_ev->event == CEC_EVENT_LOST_MSGS &&
95 		    fh->queued_events[ev_idx]) {
96 			entry->ev.lost_msgs.lost_msgs +=
97 				new_ev->lost_msgs.lost_msgs;
98 			goto unlock;
99 		}
100 		entry->ev = *new_ev;
101 		entry->ev.ts = ts;
102 
103 		if (fh->queued_events[ev_idx] < max_events[ev_idx]) {
104 			/* Add new msg at the end of the queue */
105 			list_add_tail(&entry->list, &fh->events[ev_idx]);
106 			fh->queued_events[ev_idx]++;
107 			fh->total_queued_events++;
108 			goto unlock;
109 		}
110 
111 		if (ev_idx >= CEC_NUM_CORE_EVENTS) {
112 			list_add_tail(&entry->list, &fh->events[ev_idx]);
113 			/* drop the oldest event */
114 			entry = list_first_entry(&fh->events[ev_idx],
115 						 struct cec_event_entry, list);
116 			list_del(&entry->list);
117 			kfree(entry);
118 		}
119 	}
120 	/* Mark that events were lost */
121 	entry = list_first_entry_or_null(&fh->events[ev_idx],
122 					 struct cec_event_entry, list);
123 	if (entry)
124 		entry->ev.flags |= CEC_EVENT_FL_DROPPED_EVENTS;
125 
126 unlock:
127 	mutex_unlock(&fh->lock);
128 	wake_up_interruptible(&fh->wait);
129 }
130 
131 /* Queue a new event for all open filehandles. */
cec_queue_event(struct cec_adapter * adap,const struct cec_event * ev)132 static void cec_queue_event(struct cec_adapter *adap,
133 			    const struct cec_event *ev)
134 {
135 	u64 ts = ktime_get_ns();
136 	struct cec_fh *fh;
137 
138 	mutex_lock(&adap->devnode.lock);
139 	list_for_each_entry(fh, &adap->devnode.fhs, list)
140 		cec_queue_event_fh(fh, ev, ts);
141 	mutex_unlock(&adap->devnode.lock);
142 }
143 
144 /* Notify userspace that the CEC pin changed state at the given time. */
cec_queue_pin_cec_event(struct cec_adapter * adap,bool is_high,bool dropped_events,ktime_t ts)145 void cec_queue_pin_cec_event(struct cec_adapter *adap, bool is_high,
146 			     bool dropped_events, ktime_t ts)
147 {
148 	struct cec_event ev = {
149 		.event = is_high ? CEC_EVENT_PIN_CEC_HIGH :
150 				   CEC_EVENT_PIN_CEC_LOW,
151 		.flags = dropped_events ? CEC_EVENT_FL_DROPPED_EVENTS : 0,
152 	};
153 	struct cec_fh *fh;
154 
155 	mutex_lock(&adap->devnode.lock);
156 	list_for_each_entry(fh, &adap->devnode.fhs, list)
157 		if (fh->mode_follower == CEC_MODE_MONITOR_PIN)
158 			cec_queue_event_fh(fh, &ev, ktime_to_ns(ts));
159 	mutex_unlock(&adap->devnode.lock);
160 }
161 EXPORT_SYMBOL_GPL(cec_queue_pin_cec_event);
162 
163 /* Notify userspace that the HPD pin changed state at the given time. */
cec_queue_pin_hpd_event(struct cec_adapter * adap,bool is_high,ktime_t ts)164 void cec_queue_pin_hpd_event(struct cec_adapter *adap, bool is_high, ktime_t ts)
165 {
166 	struct cec_event ev = {
167 		.event = is_high ? CEC_EVENT_PIN_HPD_HIGH :
168 				   CEC_EVENT_PIN_HPD_LOW,
169 	};
170 	struct cec_fh *fh;
171 
172 	mutex_lock(&adap->devnode.lock);
173 	list_for_each_entry(fh, &adap->devnode.fhs, list)
174 		cec_queue_event_fh(fh, &ev, ktime_to_ns(ts));
175 	mutex_unlock(&adap->devnode.lock);
176 }
177 EXPORT_SYMBOL_GPL(cec_queue_pin_hpd_event);
178 
179 /* Notify userspace that the 5V pin changed state at the given time. */
cec_queue_pin_5v_event(struct cec_adapter * adap,bool is_high,ktime_t ts)180 void cec_queue_pin_5v_event(struct cec_adapter *adap, bool is_high, ktime_t ts)
181 {
182 	struct cec_event ev = {
183 		.event = is_high ? CEC_EVENT_PIN_5V_HIGH :
184 				   CEC_EVENT_PIN_5V_LOW,
185 	};
186 	struct cec_fh *fh;
187 
188 	mutex_lock(&adap->devnode.lock);
189 	list_for_each_entry(fh, &adap->devnode.fhs, list)
190 		cec_queue_event_fh(fh, &ev, ktime_to_ns(ts));
191 	mutex_unlock(&adap->devnode.lock);
192 }
193 EXPORT_SYMBOL_GPL(cec_queue_pin_5v_event);
194 
195 /*
196  * Queue a new message for this filehandle.
197  *
198  * We keep a queue of at most CEC_MAX_MSG_RX_QUEUE_SZ messages. If the
199  * queue becomes full, then drop the oldest message and keep track
200  * of how many messages we've dropped.
201  */
cec_queue_msg_fh(struct cec_fh * fh,const struct cec_msg * msg)202 static void cec_queue_msg_fh(struct cec_fh *fh, const struct cec_msg *msg)
203 {
204 	static const struct cec_event ev_lost_msgs = {
205 		.event = CEC_EVENT_LOST_MSGS,
206 		.flags = 0,
207 		{
208 			.lost_msgs = { 1 },
209 		},
210 	};
211 	struct cec_msg_entry *entry;
212 
213 	mutex_lock(&fh->lock);
214 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
215 	if (entry) {
216 		entry->msg = *msg;
217 		/* Add new msg at the end of the queue */
218 		list_add_tail(&entry->list, &fh->msgs);
219 
220 		if (fh->queued_msgs < CEC_MAX_MSG_RX_QUEUE_SZ) {
221 			/* All is fine if there is enough room */
222 			fh->queued_msgs++;
223 			mutex_unlock(&fh->lock);
224 			wake_up_interruptible(&fh->wait);
225 			return;
226 		}
227 
228 		/*
229 		 * if the message queue is full, then drop the oldest one and
230 		 * send a lost message event.
231 		 */
232 		entry = list_first_entry(&fh->msgs, struct cec_msg_entry, list);
233 		list_del(&entry->list);
234 		kfree(entry);
235 	}
236 	mutex_unlock(&fh->lock);
237 
238 	/*
239 	 * We lost a message, either because kmalloc failed or the queue
240 	 * was full.
241 	 */
242 	cec_queue_event_fh(fh, &ev_lost_msgs, ktime_get_ns());
243 }
244 
245 /*
246  * Queue the message for those filehandles that are in monitor mode.
247  * If valid_la is true (this message is for us or was sent by us),
248  * then pass it on to any monitoring filehandle. If this message
249  * isn't for us or from us, then only give it to filehandles that
250  * are in MONITOR_ALL mode.
251  *
252  * This can only happen if the CEC_CAP_MONITOR_ALL capability is
253  * set and the CEC adapter was placed in 'monitor all' mode.
254  */
cec_queue_msg_monitor(struct cec_adapter * adap,const struct cec_msg * msg,bool valid_la)255 static void cec_queue_msg_monitor(struct cec_adapter *adap,
256 				  const struct cec_msg *msg,
257 				  bool valid_la)
258 {
259 	struct cec_fh *fh;
260 	u32 monitor_mode = valid_la ? CEC_MODE_MONITOR :
261 				      CEC_MODE_MONITOR_ALL;
262 
263 	mutex_lock(&adap->devnode.lock);
264 	list_for_each_entry(fh, &adap->devnode.fhs, list) {
265 		if (fh->mode_follower >= monitor_mode)
266 			cec_queue_msg_fh(fh, msg);
267 	}
268 	mutex_unlock(&adap->devnode.lock);
269 }
270 
271 /*
272  * Queue the message for follower filehandles.
273  */
cec_queue_msg_followers(struct cec_adapter * adap,const struct cec_msg * msg)274 static void cec_queue_msg_followers(struct cec_adapter *adap,
275 				    const struct cec_msg *msg)
276 {
277 	struct cec_fh *fh;
278 
279 	mutex_lock(&adap->devnode.lock);
280 	list_for_each_entry(fh, &adap->devnode.fhs, list) {
281 		if (fh->mode_follower == CEC_MODE_FOLLOWER)
282 			cec_queue_msg_fh(fh, msg);
283 	}
284 	mutex_unlock(&adap->devnode.lock);
285 }
286 
287 /* Notify userspace of an adapter state change. */
cec_post_state_event(struct cec_adapter * adap)288 static void cec_post_state_event(struct cec_adapter *adap)
289 {
290 	struct cec_event ev = {
291 		.event = CEC_EVENT_STATE_CHANGE,
292 	};
293 
294 	ev.state_change.phys_addr = adap->phys_addr;
295 	ev.state_change.log_addr_mask = adap->log_addrs.log_addr_mask;
296 	cec_queue_event(adap, &ev);
297 }
298 
299 /*
300  * A CEC transmit (and a possible wait for reply) completed.
301  * If this was in blocking mode, then complete it, otherwise
302  * queue the message for userspace to dequeue later.
303  *
304  * This function is called with adap->lock held.
305  */
cec_data_completed(struct cec_data * data)306 static void cec_data_completed(struct cec_data *data)
307 {
308 	/*
309 	 * Delete this transmit from the filehandle's xfer_list since
310 	 * we're done with it.
311 	 *
312 	 * Note that if the filehandle is closed before this transmit
313 	 * finished, then the release() function will set data->fh to NULL.
314 	 * Without that we would be referring to a closed filehandle.
315 	 */
316 	if (data->fh)
317 		list_del(&data->xfer_list);
318 
319 	if (data->blocking) {
320 		/*
321 		 * Someone is blocking so mark the message as completed
322 		 * and call complete.
323 		 */
324 		data->completed = true;
325 		complete(&data->c);
326 	} else {
327 		/*
328 		 * No blocking, so just queue the message if needed and
329 		 * free the memory.
330 		 */
331 		if (data->fh)
332 			cec_queue_msg_fh(data->fh, &data->msg);
333 		kfree(data);
334 	}
335 }
336 
337 /*
338  * A pending CEC transmit needs to be cancelled, either because the CEC
339  * adapter is disabled or the transmit takes an impossibly long time to
340  * finish.
341  *
342  * This function is called with adap->lock held.
343  */
cec_data_cancel(struct cec_data * data)344 static void cec_data_cancel(struct cec_data *data)
345 {
346 	/*
347 	 * It's either the current transmit, or it is a pending
348 	 * transmit. Take the appropriate action to clear it.
349 	 */
350 	if (data->adap->transmitting == data) {
351 		data->adap->transmitting = NULL;
352 	} else {
353 		list_del_init(&data->list);
354 		if (!(data->msg.tx_status & CEC_TX_STATUS_OK))
355 			data->adap->transmit_queue_sz--;
356 	}
357 
358 	if (data->msg.tx_status & CEC_TX_STATUS_OK) {
359 		/* Mark the canceled RX as a timeout */
360 		data->msg.rx_ts = ktime_get_ns();
361 		data->msg.rx_status = CEC_RX_STATUS_TIMEOUT;
362 	} else {
363 		/* Mark the canceled TX as an error */
364 		data->msg.tx_ts = ktime_get_ns();
365 		data->msg.tx_status |= CEC_TX_STATUS_ERROR |
366 				       CEC_TX_STATUS_MAX_RETRIES;
367 		data->msg.tx_error_cnt++;
368 		data->attempts = 0;
369 	}
370 
371 	/* Queue transmitted message for monitoring purposes */
372 	cec_queue_msg_monitor(data->adap, &data->msg, 1);
373 
374 	cec_data_completed(data);
375 }
376 
377 /*
378  * Flush all pending transmits and cancel any pending timeout work.
379  *
380  * This function is called with adap->lock held.
381  */
cec_flush(struct cec_adapter * adap)382 static void cec_flush(struct cec_adapter *adap)
383 {
384 	struct cec_data *data, *n;
385 
386 	/*
387 	 * If the adapter is disabled, or we're asked to stop,
388 	 * then cancel any pending transmits.
389 	 */
390 	while (!list_empty(&adap->transmit_queue)) {
391 		data = list_first_entry(&adap->transmit_queue,
392 					struct cec_data, list);
393 		cec_data_cancel(data);
394 	}
395 	if (adap->transmitting)
396 		cec_data_cancel(adap->transmitting);
397 
398 	/* Cancel the pending timeout work. */
399 	list_for_each_entry_safe(data, n, &adap->wait_queue, list) {
400 		if (cancel_delayed_work(&data->work))
401 			cec_data_cancel(data);
402 		/*
403 		 * If cancel_delayed_work returned false, then
404 		 * the cec_wait_timeout function is running,
405 		 * which will call cec_data_completed. So no
406 		 * need to do anything special in that case.
407 		 */
408 	}
409 }
410 
411 /*
412  * Main CEC state machine
413  *
414  * Wait until the thread should be stopped, or we are not transmitting and
415  * a new transmit message is queued up, in which case we start transmitting
416  * that message. When the adapter finished transmitting the message it will
417  * call cec_transmit_done().
418  *
419  * If the adapter is disabled, then remove all queued messages instead.
420  *
421  * If the current transmit times out, then cancel that transmit.
422  */
cec_thread_func(void * _adap)423 int cec_thread_func(void *_adap)
424 {
425 	struct cec_adapter *adap = _adap;
426 
427 	for (;;) {
428 		unsigned int signal_free_time;
429 		struct cec_data *data;
430 		bool timeout = false;
431 		u8 attempts;
432 
433 		if (adap->transmitting) {
434 			int err;
435 
436 			/*
437 			 * We are transmitting a message, so add a timeout
438 			 * to prevent the state machine to get stuck waiting
439 			 * for this message to finalize and add a check to
440 			 * see if the adapter is disabled in which case the
441 			 * transmit should be canceled.
442 			 */
443 			err = wait_event_interruptible_timeout(adap->kthread_waitq,
444 				(adap->needs_hpd &&
445 				 (!adap->is_configured && !adap->is_configuring)) ||
446 				kthread_should_stop() ||
447 				(!adap->transmitting &&
448 				 !list_empty(&adap->transmit_queue)),
449 				msecs_to_jiffies(CEC_XFER_TIMEOUT_MS));
450 			timeout = err == 0;
451 		} else {
452 			/* Otherwise we just wait for something to happen. */
453 			wait_event_interruptible(adap->kthread_waitq,
454 				kthread_should_stop() ||
455 				(!adap->transmitting &&
456 				 !list_empty(&adap->transmit_queue)));
457 		}
458 
459 		mutex_lock(&adap->lock);
460 
461 		if ((adap->needs_hpd &&
462 		     (!adap->is_configured && !adap->is_configuring)) ||
463 		    kthread_should_stop()) {
464 			cec_flush(adap);
465 			goto unlock;
466 		}
467 
468 		if (adap->transmitting && timeout) {
469 			/*
470 			 * If we timeout, then log that. Normally this does
471 			 * not happen and it is an indication of a faulty CEC
472 			 * adapter driver, or the CEC bus is in some weird
473 			 * state. On rare occasions it can happen if there is
474 			 * so much traffic on the bus that the adapter was
475 			 * unable to transmit for CEC_XFER_TIMEOUT_MS (2.1s).
476 			 */
477 			dprintk(1, "%s: message %*ph timed out\n", __func__,
478 				adap->transmitting->msg.len,
479 				adap->transmitting->msg.msg);
480 			adap->tx_timeouts++;
481 			/* Just give up on this. */
482 			cec_data_cancel(adap->transmitting);
483 			goto unlock;
484 		}
485 
486 		/*
487 		 * If we are still transmitting, or there is nothing new to
488 		 * transmit, then just continue waiting.
489 		 */
490 		if (adap->transmitting || list_empty(&adap->transmit_queue))
491 			goto unlock;
492 
493 		/* Get a new message to transmit */
494 		data = list_first_entry(&adap->transmit_queue,
495 					struct cec_data, list);
496 		list_del_init(&data->list);
497 		adap->transmit_queue_sz--;
498 
499 		/* Make this the current transmitting message */
500 		adap->transmitting = data;
501 
502 		/*
503 		 * Suggested number of attempts as per the CEC 2.0 spec:
504 		 * 4 attempts is the default, except for 'secondary poll
505 		 * messages', i.e. poll messages not sent during the adapter
506 		 * configuration phase when it allocates logical addresses.
507 		 */
508 		if (data->msg.len == 1 && adap->is_configured)
509 			attempts = 2;
510 		else
511 			attempts = 4;
512 
513 		/* Set the suggested signal free time */
514 		if (data->attempts) {
515 			/* should be >= 3 data bit periods for a retry */
516 			signal_free_time = CEC_SIGNAL_FREE_TIME_RETRY;
517 		} else if (data->new_initiator) {
518 			/* should be >= 5 data bit periods for new initiator */
519 			signal_free_time = CEC_SIGNAL_FREE_TIME_NEW_INITIATOR;
520 		} else {
521 			/*
522 			 * should be >= 7 data bit periods for sending another
523 			 * frame immediately after another.
524 			 */
525 			signal_free_time = CEC_SIGNAL_FREE_TIME_NEXT_XFER;
526 		}
527 		if (data->attempts == 0)
528 			data->attempts = attempts;
529 
530 		/* Tell the adapter to transmit, cancel on error */
531 		if (adap->ops->adap_transmit(adap, data->attempts,
532 					     signal_free_time, &data->msg))
533 			cec_data_cancel(data);
534 
535 unlock:
536 		mutex_unlock(&adap->lock);
537 
538 		if (kthread_should_stop())
539 			break;
540 	}
541 	return 0;
542 }
543 
544 /*
545  * Called by the CEC adapter if a transmit finished.
546  */
cec_transmit_done_ts(struct cec_adapter * adap,u8 status,u8 arb_lost_cnt,u8 nack_cnt,u8 low_drive_cnt,u8 error_cnt,ktime_t ts)547 void cec_transmit_done_ts(struct cec_adapter *adap, u8 status,
548 			  u8 arb_lost_cnt, u8 nack_cnt, u8 low_drive_cnt,
549 			  u8 error_cnt, ktime_t ts)
550 {
551 	struct cec_data *data;
552 	struct cec_msg *msg;
553 	unsigned int attempts_made = arb_lost_cnt + nack_cnt +
554 				     low_drive_cnt + error_cnt;
555 
556 	dprintk(2, "%s: status 0x%02x\n", __func__, status);
557 	if (attempts_made < 1)
558 		attempts_made = 1;
559 
560 	mutex_lock(&adap->lock);
561 	data = adap->transmitting;
562 	if (!data) {
563 		/*
564 		 * This can happen if a transmit was issued and the cable is
565 		 * unplugged while the transmit is ongoing. Ignore this
566 		 * transmit in that case.
567 		 */
568 		dprintk(1, "%s was called without an ongoing transmit!\n",
569 			__func__);
570 		goto unlock;
571 	}
572 
573 	msg = &data->msg;
574 
575 	/* Drivers must fill in the status! */
576 	WARN_ON(status == 0);
577 	msg->tx_ts = ktime_to_ns(ts);
578 	msg->tx_status |= status;
579 	msg->tx_arb_lost_cnt += arb_lost_cnt;
580 	msg->tx_nack_cnt += nack_cnt;
581 	msg->tx_low_drive_cnt += low_drive_cnt;
582 	msg->tx_error_cnt += error_cnt;
583 
584 	/* Mark that we're done with this transmit */
585 	adap->transmitting = NULL;
586 
587 	/*
588 	 * If there are still retry attempts left and there was an error and
589 	 * the hardware didn't signal that it retried itself (by setting
590 	 * CEC_TX_STATUS_MAX_RETRIES), then we will retry ourselves.
591 	 */
592 	if (data->attempts > attempts_made &&
593 	    !(status & (CEC_TX_STATUS_MAX_RETRIES | CEC_TX_STATUS_OK))) {
594 		/* Retry this message */
595 		data->attempts -= attempts_made;
596 		if (msg->timeout)
597 			dprintk(2, "retransmit: %*ph (attempts: %d, wait for 0x%02x)\n",
598 				msg->len, msg->msg, data->attempts, msg->reply);
599 		else
600 			dprintk(2, "retransmit: %*ph (attempts: %d)\n",
601 				msg->len, msg->msg, data->attempts);
602 		/* Add the message in front of the transmit queue */
603 		list_add(&data->list, &adap->transmit_queue);
604 		adap->transmit_queue_sz++;
605 		goto wake_thread;
606 	}
607 
608 	data->attempts = 0;
609 
610 	/* Always set CEC_TX_STATUS_MAX_RETRIES on error */
611 	if (!(status & CEC_TX_STATUS_OK))
612 		msg->tx_status |= CEC_TX_STATUS_MAX_RETRIES;
613 
614 	/* Queue transmitted message for monitoring purposes */
615 	cec_queue_msg_monitor(adap, msg, 1);
616 
617 	if ((status & CEC_TX_STATUS_OK) && adap->is_configured &&
618 	    msg->timeout) {
619 		/*
620 		 * Queue the message into the wait queue if we want to wait
621 		 * for a reply.
622 		 */
623 		list_add_tail(&data->list, &adap->wait_queue);
624 		schedule_delayed_work(&data->work,
625 				      msecs_to_jiffies(msg->timeout));
626 	} else {
627 		/* Otherwise we're done */
628 		cec_data_completed(data);
629 	}
630 
631 wake_thread:
632 	/*
633 	 * Wake up the main thread to see if another message is ready
634 	 * for transmitting or to retry the current message.
635 	 */
636 	wake_up_interruptible(&adap->kthread_waitq);
637 unlock:
638 	mutex_unlock(&adap->lock);
639 }
640 EXPORT_SYMBOL_GPL(cec_transmit_done_ts);
641 
cec_transmit_attempt_done_ts(struct cec_adapter * adap,u8 status,ktime_t ts)642 void cec_transmit_attempt_done_ts(struct cec_adapter *adap,
643 				  u8 status, ktime_t ts)
644 {
645 	switch (status & ~CEC_TX_STATUS_MAX_RETRIES) {
646 	case CEC_TX_STATUS_OK:
647 		cec_transmit_done_ts(adap, status, 0, 0, 0, 0, ts);
648 		return;
649 	case CEC_TX_STATUS_ARB_LOST:
650 		cec_transmit_done_ts(adap, status, 1, 0, 0, 0, ts);
651 		return;
652 	case CEC_TX_STATUS_NACK:
653 		cec_transmit_done_ts(adap, status, 0, 1, 0, 0, ts);
654 		return;
655 	case CEC_TX_STATUS_LOW_DRIVE:
656 		cec_transmit_done_ts(adap, status, 0, 0, 1, 0, ts);
657 		return;
658 	case CEC_TX_STATUS_ERROR:
659 		cec_transmit_done_ts(adap, status, 0, 0, 0, 1, ts);
660 		return;
661 	default:
662 		/* Should never happen */
663 		WARN(1, "cec-%s: invalid status 0x%02x\n", adap->name, status);
664 		return;
665 	}
666 }
667 EXPORT_SYMBOL_GPL(cec_transmit_attempt_done_ts);
668 
669 /*
670  * Called when waiting for a reply times out.
671  */
cec_wait_timeout(struct work_struct * work)672 static void cec_wait_timeout(struct work_struct *work)
673 {
674 	struct cec_data *data = container_of(work, struct cec_data, work.work);
675 	struct cec_adapter *adap = data->adap;
676 
677 	mutex_lock(&adap->lock);
678 	/*
679 	 * Sanity check in case the timeout and the arrival of the message
680 	 * happened at the same time.
681 	 */
682 	if (list_empty(&data->list))
683 		goto unlock;
684 
685 	/* Mark the message as timed out */
686 	list_del_init(&data->list);
687 	data->msg.rx_ts = ktime_get_ns();
688 	data->msg.rx_status = CEC_RX_STATUS_TIMEOUT;
689 	cec_data_completed(data);
690 unlock:
691 	mutex_unlock(&adap->lock);
692 }
693 
694 /*
695  * Transmit a message. The fh argument may be NULL if the transmit is not
696  * associated with a specific filehandle.
697  *
698  * This function is called with adap->lock held.
699  */
cec_transmit_msg_fh(struct cec_adapter * adap,struct cec_msg * msg,struct cec_fh * fh,bool block)700 int cec_transmit_msg_fh(struct cec_adapter *adap, struct cec_msg *msg,
701 			struct cec_fh *fh, bool block)
702 {
703 	struct cec_data *data;
704 	u8 last_initiator = 0xff;
705 	unsigned int timeout;
706 	int res = 0;
707 
708 	msg->rx_ts = 0;
709 	msg->tx_ts = 0;
710 	msg->rx_status = 0;
711 	msg->tx_status = 0;
712 	msg->tx_arb_lost_cnt = 0;
713 	msg->tx_nack_cnt = 0;
714 	msg->tx_low_drive_cnt = 0;
715 	msg->tx_error_cnt = 0;
716 	msg->sequence = 0;
717 
718 	if (msg->reply && msg->timeout == 0) {
719 		/* Make sure the timeout isn't 0. */
720 		msg->timeout = 1000;
721 	}
722 	if (msg->timeout)
723 		msg->flags &= CEC_MSG_FL_REPLY_TO_FOLLOWERS;
724 	else
725 		msg->flags = 0;
726 
727 	if (msg->len > 1 && msg->msg[1] == CEC_MSG_CDC_MESSAGE) {
728 		msg->msg[2] = adap->phys_addr >> 8;
729 		msg->msg[3] = adap->phys_addr & 0xff;
730 	}
731 
732 	/* Sanity checks */
733 	if (msg->len == 0 || msg->len > CEC_MAX_MSG_SIZE) {
734 		dprintk(1, "%s: invalid length %d\n", __func__, msg->len);
735 		return -EINVAL;
736 	}
737 
738 	memset(msg->msg + msg->len, 0, sizeof(msg->msg) - msg->len);
739 
740 	if (msg->timeout)
741 		dprintk(2, "%s: %*ph (wait for 0x%02x%s)\n",
742 			__func__, msg->len, msg->msg, msg->reply,
743 			!block ? ", nb" : "");
744 	else
745 		dprintk(2, "%s: %*ph%s\n",
746 			__func__, msg->len, msg->msg, !block ? " (nb)" : "");
747 
748 	if (msg->timeout && msg->len == 1) {
749 		dprintk(1, "%s: can't reply to poll msg\n", __func__);
750 		return -EINVAL;
751 	}
752 	if (msg->len == 1) {
753 		if (cec_msg_destination(msg) == 0xf) {
754 			dprintk(1, "%s: invalid poll message\n", __func__);
755 			return -EINVAL;
756 		}
757 		if (cec_has_log_addr(adap, cec_msg_destination(msg))) {
758 			/*
759 			 * If the destination is a logical address our adapter
760 			 * has already claimed, then just NACK this.
761 			 * It depends on the hardware what it will do with a
762 			 * POLL to itself (some OK this), so it is just as
763 			 * easy to handle it here so the behavior will be
764 			 * consistent.
765 			 */
766 			msg->tx_ts = ktime_get_ns();
767 			msg->tx_status = CEC_TX_STATUS_NACK |
768 					 CEC_TX_STATUS_MAX_RETRIES;
769 			msg->tx_nack_cnt = 1;
770 			msg->sequence = ++adap->sequence;
771 			if (!msg->sequence)
772 				msg->sequence = ++adap->sequence;
773 			return 0;
774 		}
775 	}
776 	if (msg->len > 1 && !cec_msg_is_broadcast(msg) &&
777 	    cec_has_log_addr(adap, cec_msg_destination(msg))) {
778 		dprintk(1, "%s: destination is the adapter itself\n", __func__);
779 		return -EINVAL;
780 	}
781 	if (msg->len > 1 && adap->is_configured &&
782 	    !cec_has_log_addr(adap, cec_msg_initiator(msg))) {
783 		dprintk(1, "%s: initiator has unknown logical address %d\n",
784 			__func__, cec_msg_initiator(msg));
785 		return -EINVAL;
786 	}
787 	if (!adap->is_configured && !adap->is_configuring) {
788 		if (adap->needs_hpd || msg->msg[0] != 0xf0) {
789 			dprintk(1, "%s: adapter is unconfigured\n", __func__);
790 			return -ENONET;
791 		}
792 		if (msg->reply) {
793 			dprintk(1, "%s: invalid msg->reply\n", __func__);
794 			return -EINVAL;
795 		}
796 	}
797 
798 	if (adap->transmit_queue_sz >= CEC_MAX_MSG_TX_QUEUE_SZ) {
799 		dprintk(1, "%s: transmit queue full\n", __func__);
800 		return -EBUSY;
801 	}
802 
803 	data = kzalloc(sizeof(*data), GFP_KERNEL);
804 	if (!data)
805 		return -ENOMEM;
806 
807 	msg->sequence = ++adap->sequence;
808 	if (!msg->sequence)
809 		msg->sequence = ++adap->sequence;
810 
811 	data->msg = *msg;
812 	data->fh = fh;
813 	data->adap = adap;
814 	data->blocking = block;
815 
816 	/*
817 	 * Determine if this message follows a message from the same
818 	 * initiator. Needed to determine the free signal time later on.
819 	 */
820 	if (msg->len > 1) {
821 		if (!(list_empty(&adap->transmit_queue))) {
822 			const struct cec_data *last;
823 
824 			last = list_last_entry(&adap->transmit_queue,
825 					       const struct cec_data, list);
826 			last_initiator = cec_msg_initiator(&last->msg);
827 		} else if (adap->transmitting) {
828 			last_initiator =
829 				cec_msg_initiator(&adap->transmitting->msg);
830 		}
831 	}
832 	data->new_initiator = last_initiator != cec_msg_initiator(msg);
833 	init_completion(&data->c);
834 	INIT_DELAYED_WORK(&data->work, cec_wait_timeout);
835 
836 	if (fh)
837 		list_add_tail(&data->xfer_list, &fh->xfer_list);
838 
839 	list_add_tail(&data->list, &adap->transmit_queue);
840 	adap->transmit_queue_sz++;
841 	if (!adap->transmitting)
842 		wake_up_interruptible(&adap->kthread_waitq);
843 
844 	/* All done if we don't need to block waiting for completion */
845 	if (!block)
846 		return 0;
847 
848 	/*
849 	 * If we don't get a completion before this time something is really
850 	 * wrong and we time out.
851 	 */
852 	timeout = CEC_XFER_TIMEOUT_MS;
853 	/* Add the requested timeout if we have to wait for a reply as well */
854 	if (msg->timeout)
855 		timeout += msg->timeout;
856 
857 	/*
858 	 * Release the lock and wait, retake the lock afterwards.
859 	 */
860 	mutex_unlock(&adap->lock);
861 	res = wait_for_completion_killable_timeout(&data->c,
862 						   msecs_to_jiffies(timeout));
863 	mutex_lock(&adap->lock);
864 
865 	if (data->completed) {
866 		/* The transmit completed (possibly with an error) */
867 		*msg = data->msg;
868 		kfree(data);
869 		return 0;
870 	}
871 	/*
872 	 * The wait for completion timed out or was interrupted, so mark this
873 	 * as non-blocking and disconnect from the filehandle since it is
874 	 * still 'in flight'. When it finally completes it will just drop the
875 	 * result silently.
876 	 */
877 	data->blocking = false;
878 	if (data->fh)
879 		list_del(&data->xfer_list);
880 	data->fh = NULL;
881 
882 	if (res == 0) { /* timed out */
883 		/* Check if the reply or the transmit failed */
884 		if (msg->timeout && (msg->tx_status & CEC_TX_STATUS_OK))
885 			msg->rx_status = CEC_RX_STATUS_TIMEOUT;
886 		else
887 			msg->tx_status = CEC_TX_STATUS_MAX_RETRIES;
888 	}
889 	return res > 0 ? 0 : res;
890 }
891 
892 /* Helper function to be used by drivers and this framework. */
cec_transmit_msg(struct cec_adapter * adap,struct cec_msg * msg,bool block)893 int cec_transmit_msg(struct cec_adapter *adap, struct cec_msg *msg,
894 		     bool block)
895 {
896 	int ret;
897 
898 	mutex_lock(&adap->lock);
899 	ret = cec_transmit_msg_fh(adap, msg, NULL, block);
900 	mutex_unlock(&adap->lock);
901 	return ret;
902 }
903 EXPORT_SYMBOL_GPL(cec_transmit_msg);
904 
905 /*
906  * I don't like forward references but without this the low-level
907  * cec_received_msg() function would come after a bunch of high-level
908  * CEC protocol handling functions. That was very confusing.
909  */
910 static int cec_receive_notify(struct cec_adapter *adap, struct cec_msg *msg,
911 			      bool is_reply);
912 
913 #define DIRECTED	0x80
914 #define BCAST1_4	0x40
915 #define BCAST2_0	0x20	/* broadcast only allowed for >= 2.0 */
916 #define BCAST		(BCAST1_4 | BCAST2_0)
917 #define BOTH		(BCAST | DIRECTED)
918 
919 /*
920  * Specify minimum length and whether the message is directed, broadcast
921  * or both. Messages that do not match the criteria are ignored as per
922  * the CEC specification.
923  */
924 static const u8 cec_msg_size[256] = {
925 	[CEC_MSG_ACTIVE_SOURCE] = 4 | BCAST,
926 	[CEC_MSG_IMAGE_VIEW_ON] = 2 | DIRECTED,
927 	[CEC_MSG_TEXT_VIEW_ON] = 2 | DIRECTED,
928 	[CEC_MSG_INACTIVE_SOURCE] = 4 | DIRECTED,
929 	[CEC_MSG_REQUEST_ACTIVE_SOURCE] = 2 | BCAST,
930 	[CEC_MSG_ROUTING_CHANGE] = 6 | BCAST,
931 	[CEC_MSG_ROUTING_INFORMATION] = 4 | BCAST,
932 	[CEC_MSG_SET_STREAM_PATH] = 4 | BCAST,
933 	[CEC_MSG_STANDBY] = 2 | BOTH,
934 	[CEC_MSG_RECORD_OFF] = 2 | DIRECTED,
935 	[CEC_MSG_RECORD_ON] = 3 | DIRECTED,
936 	[CEC_MSG_RECORD_STATUS] = 3 | DIRECTED,
937 	[CEC_MSG_RECORD_TV_SCREEN] = 2 | DIRECTED,
938 	[CEC_MSG_CLEAR_ANALOGUE_TIMER] = 13 | DIRECTED,
939 	[CEC_MSG_CLEAR_DIGITAL_TIMER] = 16 | DIRECTED,
940 	[CEC_MSG_CLEAR_EXT_TIMER] = 13 | DIRECTED,
941 	[CEC_MSG_SET_ANALOGUE_TIMER] = 13 | DIRECTED,
942 	[CEC_MSG_SET_DIGITAL_TIMER] = 16 | DIRECTED,
943 	[CEC_MSG_SET_EXT_TIMER] = 13 | DIRECTED,
944 	[CEC_MSG_SET_TIMER_PROGRAM_TITLE] = 2 | DIRECTED,
945 	[CEC_MSG_TIMER_CLEARED_STATUS] = 3 | DIRECTED,
946 	[CEC_MSG_TIMER_STATUS] = 3 | DIRECTED,
947 	[CEC_MSG_CEC_VERSION] = 3 | DIRECTED,
948 	[CEC_MSG_GET_CEC_VERSION] = 2 | DIRECTED,
949 	[CEC_MSG_GIVE_PHYSICAL_ADDR] = 2 | DIRECTED,
950 	[CEC_MSG_GET_MENU_LANGUAGE] = 2 | DIRECTED,
951 	[CEC_MSG_REPORT_PHYSICAL_ADDR] = 5 | BCAST,
952 	[CEC_MSG_SET_MENU_LANGUAGE] = 5 | BCAST,
953 	[CEC_MSG_REPORT_FEATURES] = 6 | BCAST,
954 	[CEC_MSG_GIVE_FEATURES] = 2 | DIRECTED,
955 	[CEC_MSG_DECK_CONTROL] = 3 | DIRECTED,
956 	[CEC_MSG_DECK_STATUS] = 3 | DIRECTED,
957 	[CEC_MSG_GIVE_DECK_STATUS] = 3 | DIRECTED,
958 	[CEC_MSG_PLAY] = 3 | DIRECTED,
959 	[CEC_MSG_GIVE_TUNER_DEVICE_STATUS] = 3 | DIRECTED,
960 	[CEC_MSG_SELECT_ANALOGUE_SERVICE] = 6 | DIRECTED,
961 	[CEC_MSG_SELECT_DIGITAL_SERVICE] = 9 | DIRECTED,
962 	[CEC_MSG_TUNER_DEVICE_STATUS] = 7 | DIRECTED,
963 	[CEC_MSG_TUNER_STEP_DECREMENT] = 2 | DIRECTED,
964 	[CEC_MSG_TUNER_STEP_INCREMENT] = 2 | DIRECTED,
965 	[CEC_MSG_DEVICE_VENDOR_ID] = 5 | BCAST,
966 	[CEC_MSG_GIVE_DEVICE_VENDOR_ID] = 2 | DIRECTED,
967 	[CEC_MSG_VENDOR_COMMAND] = 2 | DIRECTED,
968 	[CEC_MSG_VENDOR_COMMAND_WITH_ID] = 5 | BOTH,
969 	[CEC_MSG_VENDOR_REMOTE_BUTTON_DOWN] = 2 | BOTH,
970 	[CEC_MSG_VENDOR_REMOTE_BUTTON_UP] = 2 | BOTH,
971 	[CEC_MSG_SET_OSD_STRING] = 3 | DIRECTED,
972 	[CEC_MSG_GIVE_OSD_NAME] = 2 | DIRECTED,
973 	[CEC_MSG_SET_OSD_NAME] = 2 | DIRECTED,
974 	[CEC_MSG_MENU_REQUEST] = 3 | DIRECTED,
975 	[CEC_MSG_MENU_STATUS] = 3 | DIRECTED,
976 	[CEC_MSG_USER_CONTROL_PRESSED] = 3 | DIRECTED,
977 	[CEC_MSG_USER_CONTROL_RELEASED] = 2 | DIRECTED,
978 	[CEC_MSG_GIVE_DEVICE_POWER_STATUS] = 2 | DIRECTED,
979 	[CEC_MSG_REPORT_POWER_STATUS] = 3 | DIRECTED | BCAST2_0,
980 	[CEC_MSG_FEATURE_ABORT] = 4 | DIRECTED,
981 	[CEC_MSG_ABORT] = 2 | DIRECTED,
982 	[CEC_MSG_GIVE_AUDIO_STATUS] = 2 | DIRECTED,
983 	[CEC_MSG_GIVE_SYSTEM_AUDIO_MODE_STATUS] = 2 | DIRECTED,
984 	[CEC_MSG_REPORT_AUDIO_STATUS] = 3 | DIRECTED,
985 	[CEC_MSG_REPORT_SHORT_AUDIO_DESCRIPTOR] = 2 | DIRECTED,
986 	[CEC_MSG_REQUEST_SHORT_AUDIO_DESCRIPTOR] = 2 | DIRECTED,
987 	[CEC_MSG_SET_SYSTEM_AUDIO_MODE] = 3 | BOTH,
988 	[CEC_MSG_SYSTEM_AUDIO_MODE_REQUEST] = 2 | DIRECTED,
989 	[CEC_MSG_SYSTEM_AUDIO_MODE_STATUS] = 3 | DIRECTED,
990 	[CEC_MSG_SET_AUDIO_RATE] = 3 | DIRECTED,
991 	[CEC_MSG_INITIATE_ARC] = 2 | DIRECTED,
992 	[CEC_MSG_REPORT_ARC_INITIATED] = 2 | DIRECTED,
993 	[CEC_MSG_REPORT_ARC_TERMINATED] = 2 | DIRECTED,
994 	[CEC_MSG_REQUEST_ARC_INITIATION] = 2 | DIRECTED,
995 	[CEC_MSG_REQUEST_ARC_TERMINATION] = 2 | DIRECTED,
996 	[CEC_MSG_TERMINATE_ARC] = 2 | DIRECTED,
997 	[CEC_MSG_REQUEST_CURRENT_LATENCY] = 4 | BCAST,
998 	[CEC_MSG_REPORT_CURRENT_LATENCY] = 6 | BCAST,
999 	[CEC_MSG_CDC_MESSAGE] = 2 | BCAST,
1000 };
1001 
1002 /* Called by the CEC adapter if a message is received */
cec_received_msg_ts(struct cec_adapter * adap,struct cec_msg * msg,ktime_t ts)1003 void cec_received_msg_ts(struct cec_adapter *adap,
1004 			 struct cec_msg *msg, ktime_t ts)
1005 {
1006 	struct cec_data *data;
1007 	u8 msg_init = cec_msg_initiator(msg);
1008 	u8 msg_dest = cec_msg_destination(msg);
1009 	u8 cmd = msg->msg[1];
1010 	bool is_reply = false;
1011 	bool valid_la = true;
1012 	u8 min_len = 0;
1013 
1014 	if (WARN_ON(!msg->len || msg->len > CEC_MAX_MSG_SIZE))
1015 		return;
1016 
1017 	/*
1018 	 * Some CEC adapters will receive the messages that they transmitted.
1019 	 * This test filters out those messages by checking if we are the
1020 	 * initiator, and just returning in that case.
1021 	 *
1022 	 * Note that this won't work if this is an Unregistered device.
1023 	 *
1024 	 * It is bad practice if the hardware receives the message that it
1025 	 * transmitted and luckily most CEC adapters behave correctly in this
1026 	 * respect.
1027 	 */
1028 	if (msg_init != CEC_LOG_ADDR_UNREGISTERED &&
1029 	    cec_has_log_addr(adap, msg_init))
1030 		return;
1031 
1032 	msg->rx_ts = ktime_to_ns(ts);
1033 	msg->rx_status = CEC_RX_STATUS_OK;
1034 	msg->sequence = msg->reply = msg->timeout = 0;
1035 	msg->tx_status = 0;
1036 	msg->tx_ts = 0;
1037 	msg->tx_arb_lost_cnt = 0;
1038 	msg->tx_nack_cnt = 0;
1039 	msg->tx_low_drive_cnt = 0;
1040 	msg->tx_error_cnt = 0;
1041 	msg->flags = 0;
1042 	memset(msg->msg + msg->len, 0, sizeof(msg->msg) - msg->len);
1043 
1044 	mutex_lock(&adap->lock);
1045 	dprintk(2, "%s: %*ph\n", __func__, msg->len, msg->msg);
1046 
1047 	/* Check if this message was for us (directed or broadcast). */
1048 	if (!cec_msg_is_broadcast(msg))
1049 		valid_la = cec_has_log_addr(adap, msg_dest);
1050 
1051 	/*
1052 	 * Check if the length is not too short or if the message is a
1053 	 * broadcast message where a directed message was expected or
1054 	 * vice versa. If so, then the message has to be ignored (according
1055 	 * to section CEC 7.3 and CEC 12.2).
1056 	 */
1057 	if (valid_la && msg->len > 1 && cec_msg_size[cmd]) {
1058 		u8 dir_fl = cec_msg_size[cmd] & BOTH;
1059 
1060 		min_len = cec_msg_size[cmd] & 0x1f;
1061 		if (msg->len < min_len)
1062 			valid_la = false;
1063 		else if (!cec_msg_is_broadcast(msg) && !(dir_fl & DIRECTED))
1064 			valid_la = false;
1065 		else if (cec_msg_is_broadcast(msg) && !(dir_fl & BCAST1_4))
1066 			valid_la = false;
1067 		else if (cec_msg_is_broadcast(msg) &&
1068 			 adap->log_addrs.cec_version >= CEC_OP_CEC_VERSION_2_0 &&
1069 			 !(dir_fl & BCAST2_0))
1070 			valid_la = false;
1071 	}
1072 	if (valid_la && min_len) {
1073 		/* These messages have special length requirements */
1074 		switch (cmd) {
1075 		case CEC_MSG_TIMER_STATUS:
1076 			if (msg->msg[2] & 0x10) {
1077 				switch (msg->msg[2] & 0xf) {
1078 				case CEC_OP_PROG_INFO_NOT_ENOUGH_SPACE:
1079 				case CEC_OP_PROG_INFO_MIGHT_NOT_BE_ENOUGH_SPACE:
1080 					if (msg->len < 5)
1081 						valid_la = false;
1082 					break;
1083 				}
1084 			} else if ((msg->msg[2] & 0xf) == CEC_OP_PROG_ERROR_DUPLICATE) {
1085 				if (msg->len < 5)
1086 					valid_la = false;
1087 			}
1088 			break;
1089 		case CEC_MSG_RECORD_ON:
1090 			switch (msg->msg[2]) {
1091 			case CEC_OP_RECORD_SRC_OWN:
1092 				break;
1093 			case CEC_OP_RECORD_SRC_DIGITAL:
1094 				if (msg->len < 10)
1095 					valid_la = false;
1096 				break;
1097 			case CEC_OP_RECORD_SRC_ANALOG:
1098 				if (msg->len < 7)
1099 					valid_la = false;
1100 				break;
1101 			case CEC_OP_RECORD_SRC_EXT_PLUG:
1102 				if (msg->len < 4)
1103 					valid_la = false;
1104 				break;
1105 			case CEC_OP_RECORD_SRC_EXT_PHYS_ADDR:
1106 				if (msg->len < 5)
1107 					valid_la = false;
1108 				break;
1109 			}
1110 			break;
1111 		}
1112 	}
1113 
1114 	/* It's a valid message and not a poll or CDC message */
1115 	if (valid_la && msg->len > 1 && cmd != CEC_MSG_CDC_MESSAGE) {
1116 		bool abort = cmd == CEC_MSG_FEATURE_ABORT;
1117 
1118 		/* The aborted command is in msg[2] */
1119 		if (abort)
1120 			cmd = msg->msg[2];
1121 
1122 		/*
1123 		 * Walk over all transmitted messages that are waiting for a
1124 		 * reply.
1125 		 */
1126 		list_for_each_entry(data, &adap->wait_queue, list) {
1127 			struct cec_msg *dst = &data->msg;
1128 
1129 			/*
1130 			 * The *only* CEC message that has two possible replies
1131 			 * is CEC_MSG_INITIATE_ARC.
1132 			 * In this case allow either of the two replies.
1133 			 */
1134 			if (!abort && dst->msg[1] == CEC_MSG_INITIATE_ARC &&
1135 			    (cmd == CEC_MSG_REPORT_ARC_INITIATED ||
1136 			     cmd == CEC_MSG_REPORT_ARC_TERMINATED) &&
1137 			    (dst->reply == CEC_MSG_REPORT_ARC_INITIATED ||
1138 			     dst->reply == CEC_MSG_REPORT_ARC_TERMINATED))
1139 				dst->reply = cmd;
1140 
1141 			/* Does the command match? */
1142 			if ((abort && cmd != dst->msg[1]) ||
1143 			    (!abort && cmd != dst->reply))
1144 				continue;
1145 
1146 			/* Does the addressing match? */
1147 			if (msg_init != cec_msg_destination(dst) &&
1148 			    !cec_msg_is_broadcast(dst))
1149 				continue;
1150 
1151 			/* We got a reply */
1152 			memcpy(dst->msg, msg->msg, msg->len);
1153 			dst->len = msg->len;
1154 			dst->rx_ts = msg->rx_ts;
1155 			dst->rx_status = msg->rx_status;
1156 			if (abort)
1157 				dst->rx_status |= CEC_RX_STATUS_FEATURE_ABORT;
1158 			msg->flags = dst->flags;
1159 			/* Remove it from the wait_queue */
1160 			list_del_init(&data->list);
1161 
1162 			/* Cancel the pending timeout work */
1163 			if (!cancel_delayed_work(&data->work)) {
1164 				mutex_unlock(&adap->lock);
1165 				flush_scheduled_work();
1166 				mutex_lock(&adap->lock);
1167 			}
1168 			/*
1169 			 * Mark this as a reply, provided someone is still
1170 			 * waiting for the answer.
1171 			 */
1172 			if (data->fh)
1173 				is_reply = true;
1174 			cec_data_completed(data);
1175 			break;
1176 		}
1177 	}
1178 	mutex_unlock(&adap->lock);
1179 
1180 	/* Pass the message on to any monitoring filehandles */
1181 	cec_queue_msg_monitor(adap, msg, valid_la);
1182 
1183 	/* We're done if it is not for us or a poll message */
1184 	if (!valid_la || msg->len <= 1)
1185 		return;
1186 
1187 	if (adap->log_addrs.log_addr_mask == 0)
1188 		return;
1189 
1190 	/*
1191 	 * Process the message on the protocol level. If is_reply is true,
1192 	 * then cec_receive_notify() won't pass on the reply to the listener(s)
1193 	 * since that was already done by cec_data_completed() above.
1194 	 */
1195 	cec_receive_notify(adap, msg, is_reply);
1196 }
1197 EXPORT_SYMBOL_GPL(cec_received_msg_ts);
1198 
1199 /* Logical Address Handling */
1200 
1201 /*
1202  * Attempt to claim a specific logical address.
1203  *
1204  * This function is called with adap->lock held.
1205  */
cec_config_log_addr(struct cec_adapter * adap,unsigned int idx,unsigned int log_addr)1206 static int cec_config_log_addr(struct cec_adapter *adap,
1207 			       unsigned int idx,
1208 			       unsigned int log_addr)
1209 {
1210 	struct cec_log_addrs *las = &adap->log_addrs;
1211 	struct cec_msg msg = { };
1212 	int err;
1213 
1214 	if (cec_has_log_addr(adap, log_addr))
1215 		return 0;
1216 
1217 	/* Send poll message */
1218 	msg.len = 1;
1219 	msg.msg[0] = (log_addr << 4) | log_addr;
1220 	err = cec_transmit_msg_fh(adap, &msg, NULL, true);
1221 
1222 	/*
1223 	 * While trying to poll the physical address was reset
1224 	 * and the adapter was unconfigured, so bail out.
1225 	 */
1226 	if (!adap->is_configuring)
1227 		return -EINTR;
1228 
1229 	if (err)
1230 		return err;
1231 
1232 	if (msg.tx_status & CEC_TX_STATUS_OK)
1233 		return 0;
1234 
1235 	/*
1236 	 * Message not acknowledged, so this logical
1237 	 * address is free to use.
1238 	 */
1239 	err = adap->ops->adap_log_addr(adap, log_addr);
1240 	if (err)
1241 		return err;
1242 
1243 	las->log_addr[idx] = log_addr;
1244 	las->log_addr_mask |= 1 << log_addr;
1245 	adap->phys_addrs[log_addr] = adap->phys_addr;
1246 	return 1;
1247 }
1248 
1249 /*
1250  * Unconfigure the adapter: clear all logical addresses and send
1251  * the state changed event.
1252  *
1253  * This function is called with adap->lock held.
1254  */
cec_adap_unconfigure(struct cec_adapter * adap)1255 static void cec_adap_unconfigure(struct cec_adapter *adap)
1256 {
1257 	if (!adap->needs_hpd ||
1258 	    adap->phys_addr != CEC_PHYS_ADDR_INVALID)
1259 		WARN_ON(adap->ops->adap_log_addr(adap, CEC_LOG_ADDR_INVALID));
1260 	adap->log_addrs.log_addr_mask = 0;
1261 	adap->is_configuring = false;
1262 	adap->is_configured = false;
1263 	memset(adap->phys_addrs, 0xff, sizeof(adap->phys_addrs));
1264 	cec_flush(adap);
1265 	wake_up_interruptible(&adap->kthread_waitq);
1266 	cec_post_state_event(adap);
1267 }
1268 
1269 /*
1270  * Attempt to claim the required logical addresses.
1271  */
cec_config_thread_func(void * arg)1272 static int cec_config_thread_func(void *arg)
1273 {
1274 	/* The various LAs for each type of device */
1275 	static const u8 tv_log_addrs[] = {
1276 		CEC_LOG_ADDR_TV, CEC_LOG_ADDR_SPECIFIC,
1277 		CEC_LOG_ADDR_INVALID
1278 	};
1279 	static const u8 record_log_addrs[] = {
1280 		CEC_LOG_ADDR_RECORD_1, CEC_LOG_ADDR_RECORD_2,
1281 		CEC_LOG_ADDR_RECORD_3,
1282 		CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1283 		CEC_LOG_ADDR_INVALID
1284 	};
1285 	static const u8 tuner_log_addrs[] = {
1286 		CEC_LOG_ADDR_TUNER_1, CEC_LOG_ADDR_TUNER_2,
1287 		CEC_LOG_ADDR_TUNER_3, CEC_LOG_ADDR_TUNER_4,
1288 		CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1289 		CEC_LOG_ADDR_INVALID
1290 	};
1291 	static const u8 playback_log_addrs[] = {
1292 		CEC_LOG_ADDR_PLAYBACK_1, CEC_LOG_ADDR_PLAYBACK_2,
1293 		CEC_LOG_ADDR_PLAYBACK_3,
1294 		CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1295 		CEC_LOG_ADDR_INVALID
1296 	};
1297 	static const u8 audiosystem_log_addrs[] = {
1298 		CEC_LOG_ADDR_AUDIOSYSTEM,
1299 		CEC_LOG_ADDR_INVALID
1300 	};
1301 	static const u8 specific_use_log_addrs[] = {
1302 		CEC_LOG_ADDR_SPECIFIC,
1303 		CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1304 		CEC_LOG_ADDR_INVALID
1305 	};
1306 	static const u8 *type2addrs[6] = {
1307 		[CEC_LOG_ADDR_TYPE_TV] = tv_log_addrs,
1308 		[CEC_LOG_ADDR_TYPE_RECORD] = record_log_addrs,
1309 		[CEC_LOG_ADDR_TYPE_TUNER] = tuner_log_addrs,
1310 		[CEC_LOG_ADDR_TYPE_PLAYBACK] = playback_log_addrs,
1311 		[CEC_LOG_ADDR_TYPE_AUDIOSYSTEM] = audiosystem_log_addrs,
1312 		[CEC_LOG_ADDR_TYPE_SPECIFIC] = specific_use_log_addrs,
1313 	};
1314 	static const u16 type2mask[] = {
1315 		[CEC_LOG_ADDR_TYPE_TV] = CEC_LOG_ADDR_MASK_TV,
1316 		[CEC_LOG_ADDR_TYPE_RECORD] = CEC_LOG_ADDR_MASK_RECORD,
1317 		[CEC_LOG_ADDR_TYPE_TUNER] = CEC_LOG_ADDR_MASK_TUNER,
1318 		[CEC_LOG_ADDR_TYPE_PLAYBACK] = CEC_LOG_ADDR_MASK_PLAYBACK,
1319 		[CEC_LOG_ADDR_TYPE_AUDIOSYSTEM] = CEC_LOG_ADDR_MASK_AUDIOSYSTEM,
1320 		[CEC_LOG_ADDR_TYPE_SPECIFIC] = CEC_LOG_ADDR_MASK_SPECIFIC,
1321 	};
1322 	struct cec_adapter *adap = arg;
1323 	struct cec_log_addrs *las = &adap->log_addrs;
1324 	int err;
1325 	int i, j;
1326 
1327 	mutex_lock(&adap->lock);
1328 	dprintk(1, "physical address: %x.%x.%x.%x, claim %d logical addresses\n",
1329 		cec_phys_addr_exp(adap->phys_addr), las->num_log_addrs);
1330 	las->log_addr_mask = 0;
1331 
1332 	if (las->log_addr_type[0] == CEC_LOG_ADDR_TYPE_UNREGISTERED)
1333 		goto configured;
1334 
1335 	for (i = 0; i < las->num_log_addrs; i++) {
1336 		unsigned int type = las->log_addr_type[i];
1337 		const u8 *la_list;
1338 		u8 last_la;
1339 
1340 		/*
1341 		 * The TV functionality can only map to physical address 0.
1342 		 * For any other address, try the Specific functionality
1343 		 * instead as per the spec.
1344 		 */
1345 		if (adap->phys_addr && type == CEC_LOG_ADDR_TYPE_TV)
1346 			type = CEC_LOG_ADDR_TYPE_SPECIFIC;
1347 
1348 		la_list = type2addrs[type];
1349 		last_la = las->log_addr[i];
1350 		las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1351 		if (last_la == CEC_LOG_ADDR_INVALID ||
1352 		    last_la == CEC_LOG_ADDR_UNREGISTERED ||
1353 		    !((1 << last_la) & type2mask[type]))
1354 			last_la = la_list[0];
1355 
1356 		err = cec_config_log_addr(adap, i, last_la);
1357 		if (err > 0) /* Reused last LA */
1358 			continue;
1359 
1360 		if (err < 0)
1361 			goto unconfigure;
1362 
1363 		for (j = 0; la_list[j] != CEC_LOG_ADDR_INVALID; j++) {
1364 			/* Tried this one already, skip it */
1365 			if (la_list[j] == last_la)
1366 				continue;
1367 			/* The backup addresses are CEC 2.0 specific */
1368 			if ((la_list[j] == CEC_LOG_ADDR_BACKUP_1 ||
1369 			     la_list[j] == CEC_LOG_ADDR_BACKUP_2) &&
1370 			    las->cec_version < CEC_OP_CEC_VERSION_2_0)
1371 				continue;
1372 
1373 			err = cec_config_log_addr(adap, i, la_list[j]);
1374 			if (err == 0) /* LA is in use */
1375 				continue;
1376 			if (err < 0)
1377 				goto unconfigure;
1378 			/* Done, claimed an LA */
1379 			break;
1380 		}
1381 
1382 		if (la_list[j] == CEC_LOG_ADDR_INVALID)
1383 			dprintk(1, "could not claim LA %d\n", i);
1384 	}
1385 
1386 	if (adap->log_addrs.log_addr_mask == 0 &&
1387 	    !(las->flags & CEC_LOG_ADDRS_FL_ALLOW_UNREG_FALLBACK))
1388 		goto unconfigure;
1389 
1390 configured:
1391 	if (adap->log_addrs.log_addr_mask == 0) {
1392 		/* Fall back to unregistered */
1393 		las->log_addr[0] = CEC_LOG_ADDR_UNREGISTERED;
1394 		las->log_addr_mask = 1 << las->log_addr[0];
1395 		for (i = 1; i < las->num_log_addrs; i++)
1396 			las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1397 	}
1398 	for (i = las->num_log_addrs; i < CEC_MAX_LOG_ADDRS; i++)
1399 		las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1400 	adap->is_configured = true;
1401 	adap->is_configuring = false;
1402 	cec_post_state_event(adap);
1403 
1404 	/*
1405 	 * Now post the Report Features and Report Physical Address broadcast
1406 	 * messages. Note that these are non-blocking transmits, meaning that
1407 	 * they are just queued up and once adap->lock is unlocked the main
1408 	 * thread will kick in and start transmitting these.
1409 	 *
1410 	 * If after this function is done (but before one or more of these
1411 	 * messages are actually transmitted) the CEC adapter is unconfigured,
1412 	 * then any remaining messages will be dropped by the main thread.
1413 	 */
1414 	for (i = 0; i < las->num_log_addrs; i++) {
1415 		struct cec_msg msg = {};
1416 
1417 		if (las->log_addr[i] == CEC_LOG_ADDR_INVALID ||
1418 		    (las->flags & CEC_LOG_ADDRS_FL_CDC_ONLY))
1419 			continue;
1420 
1421 		msg.msg[0] = (las->log_addr[i] << 4) | 0x0f;
1422 
1423 		/* Report Features must come first according to CEC 2.0 */
1424 		if (las->log_addr[i] != CEC_LOG_ADDR_UNREGISTERED &&
1425 		    adap->log_addrs.cec_version >= CEC_OP_CEC_VERSION_2_0) {
1426 			cec_fill_msg_report_features(adap, &msg, i);
1427 			cec_transmit_msg_fh(adap, &msg, NULL, false);
1428 		}
1429 
1430 		/* Report Physical Address */
1431 		cec_msg_report_physical_addr(&msg, adap->phys_addr,
1432 					     las->primary_device_type[i]);
1433 		dprintk(1, "config: la %d pa %x.%x.%x.%x\n",
1434 			las->log_addr[i],
1435 			cec_phys_addr_exp(adap->phys_addr));
1436 		cec_transmit_msg_fh(adap, &msg, NULL, false);
1437 	}
1438 	adap->kthread_config = NULL;
1439 	complete(&adap->config_completion);
1440 	mutex_unlock(&adap->lock);
1441 	return 0;
1442 
1443 unconfigure:
1444 	for (i = 0; i < las->num_log_addrs; i++)
1445 		las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1446 	cec_adap_unconfigure(adap);
1447 	adap->kthread_config = NULL;
1448 	mutex_unlock(&adap->lock);
1449 	complete(&adap->config_completion);
1450 	return 0;
1451 }
1452 
1453 /*
1454  * Called from either __cec_s_phys_addr or __cec_s_log_addrs to claim the
1455  * logical addresses.
1456  *
1457  * This function is called with adap->lock held.
1458  */
cec_claim_log_addrs(struct cec_adapter * adap,bool block)1459 static void cec_claim_log_addrs(struct cec_adapter *adap, bool block)
1460 {
1461 	if (WARN_ON(adap->is_configuring || adap->is_configured))
1462 		return;
1463 
1464 	init_completion(&adap->config_completion);
1465 
1466 	/* Ready to kick off the thread */
1467 	adap->is_configuring = true;
1468 	adap->kthread_config = kthread_run(cec_config_thread_func, adap,
1469 					   "ceccfg-%s", adap->name);
1470 	if (IS_ERR(adap->kthread_config)) {
1471 		adap->kthread_config = NULL;
1472 	} else if (block) {
1473 		mutex_unlock(&adap->lock);
1474 		wait_for_completion(&adap->config_completion);
1475 		mutex_lock(&adap->lock);
1476 	}
1477 }
1478 
1479 /* Set a new physical address and send an event notifying userspace of this.
1480  *
1481  * This function is called with adap->lock held.
1482  */
__cec_s_phys_addr(struct cec_adapter * adap,u16 phys_addr,bool block)1483 void __cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block)
1484 {
1485 	if (phys_addr == adap->phys_addr)
1486 		return;
1487 	if (phys_addr != CEC_PHYS_ADDR_INVALID && adap->devnode.unregistered)
1488 		return;
1489 
1490 	dprintk(1, "new physical address %x.%x.%x.%x\n",
1491 		cec_phys_addr_exp(phys_addr));
1492 	if (phys_addr == CEC_PHYS_ADDR_INVALID ||
1493 	    adap->phys_addr != CEC_PHYS_ADDR_INVALID) {
1494 		adap->phys_addr = CEC_PHYS_ADDR_INVALID;
1495 		cec_post_state_event(adap);
1496 		cec_adap_unconfigure(adap);
1497 		/* Disabling monitor all mode should always succeed */
1498 		if (adap->monitor_all_cnt)
1499 			WARN_ON(call_op(adap, adap_monitor_all_enable, false));
1500 		mutex_lock(&adap->devnode.lock);
1501 		if (adap->needs_hpd || list_empty(&adap->devnode.fhs))
1502 			WARN_ON(adap->ops->adap_enable(adap, false));
1503 		mutex_unlock(&adap->devnode.lock);
1504 		if (phys_addr == CEC_PHYS_ADDR_INVALID)
1505 			return;
1506 	}
1507 
1508 	mutex_lock(&adap->devnode.lock);
1509 	if ((adap->needs_hpd || list_empty(&adap->devnode.fhs)) &&
1510 	    adap->ops->adap_enable(adap, true)) {
1511 		mutex_unlock(&adap->devnode.lock);
1512 		return;
1513 	}
1514 
1515 	if (adap->monitor_all_cnt &&
1516 	    call_op(adap, adap_monitor_all_enable, true)) {
1517 		if (adap->needs_hpd || list_empty(&adap->devnode.fhs))
1518 			WARN_ON(adap->ops->adap_enable(adap, false));
1519 		mutex_unlock(&adap->devnode.lock);
1520 		return;
1521 	}
1522 	mutex_unlock(&adap->devnode.lock);
1523 
1524 	adap->phys_addr = phys_addr;
1525 	cec_post_state_event(adap);
1526 	if (adap->log_addrs.num_log_addrs)
1527 		cec_claim_log_addrs(adap, block);
1528 }
1529 
cec_s_phys_addr(struct cec_adapter * adap,u16 phys_addr,bool block)1530 void cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block)
1531 {
1532 	if (IS_ERR_OR_NULL(adap))
1533 		return;
1534 
1535 	mutex_lock(&adap->lock);
1536 	__cec_s_phys_addr(adap, phys_addr, block);
1537 	mutex_unlock(&adap->lock);
1538 }
1539 EXPORT_SYMBOL_GPL(cec_s_phys_addr);
1540 
cec_s_phys_addr_from_edid(struct cec_adapter * adap,const struct edid * edid)1541 void cec_s_phys_addr_from_edid(struct cec_adapter *adap,
1542 			       const struct edid *edid)
1543 {
1544 	u16 pa = CEC_PHYS_ADDR_INVALID;
1545 
1546 	if (edid && edid->extensions)
1547 		pa = cec_get_edid_phys_addr((const u8 *)edid,
1548 				EDID_LENGTH * (edid->extensions + 1), NULL);
1549 	cec_s_phys_addr(adap, pa, false);
1550 }
1551 EXPORT_SYMBOL_GPL(cec_s_phys_addr_from_edid);
1552 
1553 /*
1554  * Called from either the ioctl or a driver to set the logical addresses.
1555  *
1556  * This function is called with adap->lock held.
1557  */
__cec_s_log_addrs(struct cec_adapter * adap,struct cec_log_addrs * log_addrs,bool block)1558 int __cec_s_log_addrs(struct cec_adapter *adap,
1559 		      struct cec_log_addrs *log_addrs, bool block)
1560 {
1561 	u16 type_mask = 0;
1562 	int i;
1563 
1564 	if (adap->devnode.unregistered)
1565 		return -ENODEV;
1566 
1567 	if (!log_addrs || log_addrs->num_log_addrs == 0) {
1568 		cec_adap_unconfigure(adap);
1569 		adap->log_addrs.num_log_addrs = 0;
1570 		for (i = 0; i < CEC_MAX_LOG_ADDRS; i++)
1571 			adap->log_addrs.log_addr[i] = CEC_LOG_ADDR_INVALID;
1572 		adap->log_addrs.osd_name[0] = '\0';
1573 		adap->log_addrs.vendor_id = CEC_VENDOR_ID_NONE;
1574 		adap->log_addrs.cec_version = CEC_OP_CEC_VERSION_2_0;
1575 		return 0;
1576 	}
1577 
1578 	if (log_addrs->flags & CEC_LOG_ADDRS_FL_CDC_ONLY) {
1579 		/*
1580 		 * Sanitize log_addrs fields if a CDC-Only device is
1581 		 * requested.
1582 		 */
1583 		log_addrs->num_log_addrs = 1;
1584 		log_addrs->osd_name[0] = '\0';
1585 		log_addrs->vendor_id = CEC_VENDOR_ID_NONE;
1586 		log_addrs->log_addr_type[0] = CEC_LOG_ADDR_TYPE_UNREGISTERED;
1587 		/*
1588 		 * This is just an internal convention since a CDC-Only device
1589 		 * doesn't have to be a switch. But switches already use
1590 		 * unregistered, so it makes some kind of sense to pick this
1591 		 * as the primary device. Since a CDC-Only device never sends
1592 		 * any 'normal' CEC messages this primary device type is never
1593 		 * sent over the CEC bus.
1594 		 */
1595 		log_addrs->primary_device_type[0] = CEC_OP_PRIM_DEVTYPE_SWITCH;
1596 		log_addrs->all_device_types[0] = 0;
1597 		log_addrs->features[0][0] = 0;
1598 		log_addrs->features[0][1] = 0;
1599 	}
1600 
1601 	/* Ensure the osd name is 0-terminated */
1602 	log_addrs->osd_name[sizeof(log_addrs->osd_name) - 1] = '\0';
1603 
1604 	/* Sanity checks */
1605 	if (log_addrs->num_log_addrs > adap->available_log_addrs) {
1606 		dprintk(1, "num_log_addrs > %d\n", adap->available_log_addrs);
1607 		return -EINVAL;
1608 	}
1609 
1610 	/*
1611 	 * Vendor ID is a 24 bit number, so check if the value is
1612 	 * within the correct range.
1613 	 */
1614 	if (log_addrs->vendor_id != CEC_VENDOR_ID_NONE &&
1615 	    (log_addrs->vendor_id & 0xff000000) != 0) {
1616 		dprintk(1, "invalid vendor ID\n");
1617 		return -EINVAL;
1618 	}
1619 
1620 	if (log_addrs->cec_version != CEC_OP_CEC_VERSION_1_4 &&
1621 	    log_addrs->cec_version != CEC_OP_CEC_VERSION_2_0) {
1622 		dprintk(1, "invalid CEC version\n");
1623 		return -EINVAL;
1624 	}
1625 
1626 	if (log_addrs->num_log_addrs > 1)
1627 		for (i = 0; i < log_addrs->num_log_addrs; i++)
1628 			if (log_addrs->log_addr_type[i] ==
1629 					CEC_LOG_ADDR_TYPE_UNREGISTERED) {
1630 				dprintk(1, "num_log_addrs > 1 can't be combined with unregistered LA\n");
1631 				return -EINVAL;
1632 			}
1633 
1634 	for (i = 0; i < log_addrs->num_log_addrs; i++) {
1635 		const u8 feature_sz = ARRAY_SIZE(log_addrs->features[0]);
1636 		u8 *features = log_addrs->features[i];
1637 		bool op_is_dev_features = false;
1638 		unsigned j;
1639 
1640 		log_addrs->log_addr[i] = CEC_LOG_ADDR_INVALID;
1641 		if (type_mask & (1 << log_addrs->log_addr_type[i])) {
1642 			dprintk(1, "duplicate logical address type\n");
1643 			return -EINVAL;
1644 		}
1645 		type_mask |= 1 << log_addrs->log_addr_type[i];
1646 		if ((type_mask & (1 << CEC_LOG_ADDR_TYPE_RECORD)) &&
1647 		    (type_mask & (1 << CEC_LOG_ADDR_TYPE_PLAYBACK))) {
1648 			/* Record already contains the playback functionality */
1649 			dprintk(1, "invalid record + playback combination\n");
1650 			return -EINVAL;
1651 		}
1652 		if (log_addrs->primary_device_type[i] >
1653 					CEC_OP_PRIM_DEVTYPE_PROCESSOR) {
1654 			dprintk(1, "unknown primary device type\n");
1655 			return -EINVAL;
1656 		}
1657 		if (log_addrs->primary_device_type[i] == 2) {
1658 			dprintk(1, "invalid primary device type\n");
1659 			return -EINVAL;
1660 		}
1661 		if (log_addrs->log_addr_type[i] > CEC_LOG_ADDR_TYPE_UNREGISTERED) {
1662 			dprintk(1, "unknown logical address type\n");
1663 			return -EINVAL;
1664 		}
1665 		for (j = 0; j < feature_sz; j++) {
1666 			if ((features[j] & 0x80) == 0) {
1667 				if (op_is_dev_features)
1668 					break;
1669 				op_is_dev_features = true;
1670 			}
1671 		}
1672 		if (!op_is_dev_features || j == feature_sz) {
1673 			dprintk(1, "malformed features\n");
1674 			return -EINVAL;
1675 		}
1676 		/* Zero unused part of the feature array */
1677 		memset(features + j + 1, 0, feature_sz - j - 1);
1678 	}
1679 
1680 	if (log_addrs->cec_version >= CEC_OP_CEC_VERSION_2_0) {
1681 		if (log_addrs->num_log_addrs > 2) {
1682 			dprintk(1, "CEC 2.0 allows no more than 2 logical addresses\n");
1683 			return -EINVAL;
1684 		}
1685 		if (log_addrs->num_log_addrs == 2) {
1686 			if (!(type_mask & ((1 << CEC_LOG_ADDR_TYPE_AUDIOSYSTEM) |
1687 					   (1 << CEC_LOG_ADDR_TYPE_TV)))) {
1688 				dprintk(1, "two LAs is only allowed for audiosystem and TV\n");
1689 				return -EINVAL;
1690 			}
1691 			if (!(type_mask & ((1 << CEC_LOG_ADDR_TYPE_PLAYBACK) |
1692 					   (1 << CEC_LOG_ADDR_TYPE_RECORD)))) {
1693 				dprintk(1, "an audiosystem/TV can only be combined with record or playback\n");
1694 				return -EINVAL;
1695 			}
1696 		}
1697 	}
1698 
1699 	/* Zero unused LAs */
1700 	for (i = log_addrs->num_log_addrs; i < CEC_MAX_LOG_ADDRS; i++) {
1701 		log_addrs->primary_device_type[i] = 0;
1702 		log_addrs->log_addr_type[i] = 0;
1703 		log_addrs->all_device_types[i] = 0;
1704 		memset(log_addrs->features[i], 0,
1705 		       sizeof(log_addrs->features[i]));
1706 	}
1707 
1708 	log_addrs->log_addr_mask = adap->log_addrs.log_addr_mask;
1709 	adap->log_addrs = *log_addrs;
1710 	if (adap->phys_addr != CEC_PHYS_ADDR_INVALID)
1711 		cec_claim_log_addrs(adap, block);
1712 	return 0;
1713 }
1714 
cec_s_log_addrs(struct cec_adapter * adap,struct cec_log_addrs * log_addrs,bool block)1715 int cec_s_log_addrs(struct cec_adapter *adap,
1716 		    struct cec_log_addrs *log_addrs, bool block)
1717 {
1718 	int err;
1719 
1720 	mutex_lock(&adap->lock);
1721 	err = __cec_s_log_addrs(adap, log_addrs, block);
1722 	mutex_unlock(&adap->lock);
1723 	return err;
1724 }
1725 EXPORT_SYMBOL_GPL(cec_s_log_addrs);
1726 
1727 /* High-level core CEC message handling */
1728 
1729 /* Fill in the Report Features message */
cec_fill_msg_report_features(struct cec_adapter * adap,struct cec_msg * msg,unsigned int la_idx)1730 static void cec_fill_msg_report_features(struct cec_adapter *adap,
1731 					 struct cec_msg *msg,
1732 					 unsigned int la_idx)
1733 {
1734 	const struct cec_log_addrs *las = &adap->log_addrs;
1735 	const u8 *features = las->features[la_idx];
1736 	bool op_is_dev_features = false;
1737 	unsigned int idx;
1738 
1739 	/* Report Features */
1740 	msg->msg[0] = (las->log_addr[la_idx] << 4) | 0x0f;
1741 	msg->len = 4;
1742 	msg->msg[1] = CEC_MSG_REPORT_FEATURES;
1743 	msg->msg[2] = adap->log_addrs.cec_version;
1744 	msg->msg[3] = las->all_device_types[la_idx];
1745 
1746 	/* Write RC Profiles first, then Device Features */
1747 	for (idx = 0; idx < ARRAY_SIZE(las->features[0]); idx++) {
1748 		msg->msg[msg->len++] = features[idx];
1749 		if ((features[idx] & CEC_OP_FEAT_EXT) == 0) {
1750 			if (op_is_dev_features)
1751 				break;
1752 			op_is_dev_features = true;
1753 		}
1754 	}
1755 }
1756 
1757 /* Transmit the Feature Abort message */
cec_feature_abort_reason(struct cec_adapter * adap,struct cec_msg * msg,u8 reason)1758 static int cec_feature_abort_reason(struct cec_adapter *adap,
1759 				    struct cec_msg *msg, u8 reason)
1760 {
1761 	struct cec_msg tx_msg = { };
1762 
1763 	/*
1764 	 * Don't reply with CEC_MSG_FEATURE_ABORT to a CEC_MSG_FEATURE_ABORT
1765 	 * message!
1766 	 */
1767 	if (msg->msg[1] == CEC_MSG_FEATURE_ABORT)
1768 		return 0;
1769 	/* Don't Feature Abort messages from 'Unregistered' */
1770 	if (cec_msg_initiator(msg) == CEC_LOG_ADDR_UNREGISTERED)
1771 		return 0;
1772 	cec_msg_set_reply_to(&tx_msg, msg);
1773 	cec_msg_feature_abort(&tx_msg, msg->msg[1], reason);
1774 	return cec_transmit_msg(adap, &tx_msg, false);
1775 }
1776 
cec_feature_abort(struct cec_adapter * adap,struct cec_msg * msg)1777 static int cec_feature_abort(struct cec_adapter *adap, struct cec_msg *msg)
1778 {
1779 	return cec_feature_abort_reason(adap, msg,
1780 					CEC_OP_ABORT_UNRECOGNIZED_OP);
1781 }
1782 
cec_feature_refused(struct cec_adapter * adap,struct cec_msg * msg)1783 static int cec_feature_refused(struct cec_adapter *adap, struct cec_msg *msg)
1784 {
1785 	return cec_feature_abort_reason(adap, msg,
1786 					CEC_OP_ABORT_REFUSED);
1787 }
1788 
1789 /*
1790  * Called when a CEC message is received. This function will do any
1791  * necessary core processing. The is_reply bool is true if this message
1792  * is a reply to an earlier transmit.
1793  *
1794  * The message is either a broadcast message or a valid directed message.
1795  */
cec_receive_notify(struct cec_adapter * adap,struct cec_msg * msg,bool is_reply)1796 static int cec_receive_notify(struct cec_adapter *adap, struct cec_msg *msg,
1797 			      bool is_reply)
1798 {
1799 	bool is_broadcast = cec_msg_is_broadcast(msg);
1800 	u8 dest_laddr = cec_msg_destination(msg);
1801 	u8 init_laddr = cec_msg_initiator(msg);
1802 	u8 devtype = cec_log_addr2dev(adap, dest_laddr);
1803 	int la_idx = cec_log_addr2idx(adap, dest_laddr);
1804 	bool from_unregistered = init_laddr == 0xf;
1805 	struct cec_msg tx_cec_msg = { };
1806 
1807 	dprintk(2, "%s: %*ph\n", __func__, msg->len, msg->msg);
1808 
1809 	/* If this is a CDC-Only device, then ignore any non-CDC messages */
1810 	if (cec_is_cdc_only(&adap->log_addrs) &&
1811 	    msg->msg[1] != CEC_MSG_CDC_MESSAGE)
1812 		return 0;
1813 
1814 	if (adap->ops->received) {
1815 		/* Allow drivers to process the message first */
1816 		if (adap->ops->received(adap, msg) != -ENOMSG)
1817 			return 0;
1818 	}
1819 
1820 	/*
1821 	 * REPORT_PHYSICAL_ADDR, CEC_MSG_USER_CONTROL_PRESSED and
1822 	 * CEC_MSG_USER_CONTROL_RELEASED messages always have to be
1823 	 * handled by the CEC core, even if the passthrough mode is on.
1824 	 * The others are just ignored if passthrough mode is on.
1825 	 */
1826 	switch (msg->msg[1]) {
1827 	case CEC_MSG_GET_CEC_VERSION:
1828 	case CEC_MSG_ABORT:
1829 	case CEC_MSG_GIVE_DEVICE_POWER_STATUS:
1830 	case CEC_MSG_GIVE_OSD_NAME:
1831 		/*
1832 		 * These messages reply with a directed message, so ignore if
1833 		 * the initiator is Unregistered.
1834 		 */
1835 		if (!adap->passthrough && from_unregistered)
1836 			return 0;
1837 		/* Fall through */
1838 	case CEC_MSG_GIVE_DEVICE_VENDOR_ID:
1839 	case CEC_MSG_GIVE_FEATURES:
1840 	case CEC_MSG_GIVE_PHYSICAL_ADDR:
1841 		/*
1842 		 * Skip processing these messages if the passthrough mode
1843 		 * is on.
1844 		 */
1845 		if (adap->passthrough)
1846 			goto skip_processing;
1847 		/* Ignore if addressing is wrong */
1848 		if (is_broadcast)
1849 			return 0;
1850 		break;
1851 
1852 	case CEC_MSG_USER_CONTROL_PRESSED:
1853 	case CEC_MSG_USER_CONTROL_RELEASED:
1854 		/* Wrong addressing mode: don't process */
1855 		if (is_broadcast || from_unregistered)
1856 			goto skip_processing;
1857 		break;
1858 
1859 	case CEC_MSG_REPORT_PHYSICAL_ADDR:
1860 		/*
1861 		 * This message is always processed, regardless of the
1862 		 * passthrough setting.
1863 		 *
1864 		 * Exception: don't process if wrong addressing mode.
1865 		 */
1866 		if (!is_broadcast)
1867 			goto skip_processing;
1868 		break;
1869 
1870 	default:
1871 		break;
1872 	}
1873 
1874 	cec_msg_set_reply_to(&tx_cec_msg, msg);
1875 
1876 	switch (msg->msg[1]) {
1877 	/* The following messages are processed but still passed through */
1878 	case CEC_MSG_REPORT_PHYSICAL_ADDR: {
1879 		u16 pa = (msg->msg[2] << 8) | msg->msg[3];
1880 
1881 		if (!from_unregistered)
1882 			adap->phys_addrs[init_laddr] = pa;
1883 		dprintk(1, "reported physical address %x.%x.%x.%x for logical address %d\n",
1884 			cec_phys_addr_exp(pa), init_laddr);
1885 		break;
1886 	}
1887 
1888 	case CEC_MSG_USER_CONTROL_PRESSED:
1889 		if (!(adap->capabilities & CEC_CAP_RC) ||
1890 		    !(adap->log_addrs.flags & CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU))
1891 			break;
1892 
1893 #ifdef CONFIG_MEDIA_CEC_RC
1894 		switch (msg->msg[2]) {
1895 		/*
1896 		 * Play function, this message can have variable length
1897 		 * depending on the specific play function that is used.
1898 		 */
1899 		case 0x60:
1900 			if (msg->len == 2)
1901 				rc_keydown(adap->rc, RC_PROTO_CEC,
1902 					   msg->msg[2], 0);
1903 			else
1904 				rc_keydown(adap->rc, RC_PROTO_CEC,
1905 					   msg->msg[2] << 8 | msg->msg[3], 0);
1906 			break;
1907 		/*
1908 		 * Other function messages that are not handled.
1909 		 * Currently the RC framework does not allow to supply an
1910 		 * additional parameter to a keypress. These "keys" contain
1911 		 * other information such as channel number, an input number
1912 		 * etc.
1913 		 * For the time being these messages are not processed by the
1914 		 * framework and are simply forwarded to the user space.
1915 		 */
1916 		case 0x56: case 0x57:
1917 		case 0x67: case 0x68: case 0x69: case 0x6a:
1918 			break;
1919 		default:
1920 			rc_keydown(adap->rc, RC_PROTO_CEC, msg->msg[2], 0);
1921 			break;
1922 		}
1923 #endif
1924 		break;
1925 
1926 	case CEC_MSG_USER_CONTROL_RELEASED:
1927 		if (!(adap->capabilities & CEC_CAP_RC) ||
1928 		    !(adap->log_addrs.flags & CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU))
1929 			break;
1930 #ifdef CONFIG_MEDIA_CEC_RC
1931 		rc_keyup(adap->rc);
1932 #endif
1933 		break;
1934 
1935 	/*
1936 	 * The remaining messages are only processed if the passthrough mode
1937 	 * is off.
1938 	 */
1939 	case CEC_MSG_GET_CEC_VERSION:
1940 		cec_msg_cec_version(&tx_cec_msg, adap->log_addrs.cec_version);
1941 		return cec_transmit_msg(adap, &tx_cec_msg, false);
1942 
1943 	case CEC_MSG_GIVE_PHYSICAL_ADDR:
1944 		/* Do nothing for CEC switches using addr 15 */
1945 		if (devtype == CEC_OP_PRIM_DEVTYPE_SWITCH && dest_laddr == 15)
1946 			return 0;
1947 		cec_msg_report_physical_addr(&tx_cec_msg, adap->phys_addr, devtype);
1948 		return cec_transmit_msg(adap, &tx_cec_msg, false);
1949 
1950 	case CEC_MSG_GIVE_DEVICE_VENDOR_ID:
1951 		if (adap->log_addrs.vendor_id == CEC_VENDOR_ID_NONE)
1952 			return cec_feature_abort(adap, msg);
1953 		cec_msg_device_vendor_id(&tx_cec_msg, adap->log_addrs.vendor_id);
1954 		return cec_transmit_msg(adap, &tx_cec_msg, false);
1955 
1956 	case CEC_MSG_ABORT:
1957 		/* Do nothing for CEC switches */
1958 		if (devtype == CEC_OP_PRIM_DEVTYPE_SWITCH)
1959 			return 0;
1960 		return cec_feature_refused(adap, msg);
1961 
1962 	case CEC_MSG_GIVE_OSD_NAME: {
1963 		if (adap->log_addrs.osd_name[0] == 0)
1964 			return cec_feature_abort(adap, msg);
1965 		cec_msg_set_osd_name(&tx_cec_msg, adap->log_addrs.osd_name);
1966 		return cec_transmit_msg(adap, &tx_cec_msg, false);
1967 	}
1968 
1969 	case CEC_MSG_GIVE_FEATURES:
1970 		if (adap->log_addrs.cec_version < CEC_OP_CEC_VERSION_2_0)
1971 			return cec_feature_abort(adap, msg);
1972 		cec_fill_msg_report_features(adap, &tx_cec_msg, la_idx);
1973 		return cec_transmit_msg(adap, &tx_cec_msg, false);
1974 
1975 	default:
1976 		/*
1977 		 * Unprocessed messages are aborted if userspace isn't doing
1978 		 * any processing either.
1979 		 */
1980 		if (!is_broadcast && !is_reply && !adap->follower_cnt &&
1981 		    !adap->cec_follower && msg->msg[1] != CEC_MSG_FEATURE_ABORT)
1982 			return cec_feature_abort(adap, msg);
1983 		break;
1984 	}
1985 
1986 skip_processing:
1987 	/* If this was a reply, then we're done, unless otherwise specified */
1988 	if (is_reply && !(msg->flags & CEC_MSG_FL_REPLY_TO_FOLLOWERS))
1989 		return 0;
1990 
1991 	/*
1992 	 * Send to the exclusive follower if there is one, otherwise send
1993 	 * to all followers.
1994 	 */
1995 	if (adap->cec_follower)
1996 		cec_queue_msg_fh(adap->cec_follower, msg);
1997 	else
1998 		cec_queue_msg_followers(adap, msg);
1999 	return 0;
2000 }
2001 
2002 /*
2003  * Helper functions to keep track of the 'monitor all' use count.
2004  *
2005  * These functions are called with adap->lock held.
2006  */
cec_monitor_all_cnt_inc(struct cec_adapter * adap)2007 int cec_monitor_all_cnt_inc(struct cec_adapter *adap)
2008 {
2009 	int ret = 0;
2010 
2011 	if (adap->monitor_all_cnt == 0)
2012 		ret = call_op(adap, adap_monitor_all_enable, 1);
2013 	if (ret == 0)
2014 		adap->monitor_all_cnt++;
2015 	return ret;
2016 }
2017 
cec_monitor_all_cnt_dec(struct cec_adapter * adap)2018 void cec_monitor_all_cnt_dec(struct cec_adapter *adap)
2019 {
2020 	adap->monitor_all_cnt--;
2021 	if (adap->monitor_all_cnt == 0)
2022 		WARN_ON(call_op(adap, adap_monitor_all_enable, 0));
2023 }
2024 
2025 /*
2026  * Helper functions to keep track of the 'monitor pin' use count.
2027  *
2028  * These functions are called with adap->lock held.
2029  */
cec_monitor_pin_cnt_inc(struct cec_adapter * adap)2030 int cec_monitor_pin_cnt_inc(struct cec_adapter *adap)
2031 {
2032 	int ret = 0;
2033 
2034 	if (adap->monitor_pin_cnt == 0)
2035 		ret = call_op(adap, adap_monitor_pin_enable, 1);
2036 	if (ret == 0)
2037 		adap->monitor_pin_cnt++;
2038 	return ret;
2039 }
2040 
cec_monitor_pin_cnt_dec(struct cec_adapter * adap)2041 void cec_monitor_pin_cnt_dec(struct cec_adapter *adap)
2042 {
2043 	adap->monitor_pin_cnt--;
2044 	if (adap->monitor_pin_cnt == 0)
2045 		WARN_ON(call_op(adap, adap_monitor_pin_enable, 0));
2046 }
2047 
2048 #ifdef CONFIG_DEBUG_FS
2049 /*
2050  * Log the current state of the CEC adapter.
2051  * Very useful for debugging.
2052  */
cec_adap_status(struct seq_file * file,void * priv)2053 int cec_adap_status(struct seq_file *file, void *priv)
2054 {
2055 	struct cec_adapter *adap = dev_get_drvdata(file->private);
2056 	struct cec_data *data;
2057 
2058 	mutex_lock(&adap->lock);
2059 	seq_printf(file, "configured: %d\n", adap->is_configured);
2060 	seq_printf(file, "configuring: %d\n", adap->is_configuring);
2061 	seq_printf(file, "phys_addr: %x.%x.%x.%x\n",
2062 		   cec_phys_addr_exp(adap->phys_addr));
2063 	seq_printf(file, "number of LAs: %d\n", adap->log_addrs.num_log_addrs);
2064 	seq_printf(file, "LA mask: 0x%04x\n", adap->log_addrs.log_addr_mask);
2065 	if (adap->cec_follower)
2066 		seq_printf(file, "has CEC follower%s\n",
2067 			   adap->passthrough ? " (in passthrough mode)" : "");
2068 	if (adap->cec_initiator)
2069 		seq_puts(file, "has CEC initiator\n");
2070 	if (adap->monitor_all_cnt)
2071 		seq_printf(file, "file handles in Monitor All mode: %u\n",
2072 			   adap->monitor_all_cnt);
2073 	if (adap->tx_timeouts) {
2074 		seq_printf(file, "transmit timeouts: %u\n",
2075 			   adap->tx_timeouts);
2076 		adap->tx_timeouts = 0;
2077 	}
2078 	data = adap->transmitting;
2079 	if (data)
2080 		seq_printf(file, "transmitting message: %*ph (reply: %02x, timeout: %ums)\n",
2081 			   data->msg.len, data->msg.msg, data->msg.reply,
2082 			   data->msg.timeout);
2083 	seq_printf(file, "pending transmits: %u\n", adap->transmit_queue_sz);
2084 	list_for_each_entry(data, &adap->transmit_queue, list) {
2085 		seq_printf(file, "queued tx message: %*ph (reply: %02x, timeout: %ums)\n",
2086 			   data->msg.len, data->msg.msg, data->msg.reply,
2087 			   data->msg.timeout);
2088 	}
2089 	list_for_each_entry(data, &adap->wait_queue, list) {
2090 		seq_printf(file, "message waiting for reply: %*ph (reply: %02x, timeout: %ums)\n",
2091 			   data->msg.len, data->msg.msg, data->msg.reply,
2092 			   data->msg.timeout);
2093 	}
2094 
2095 	call_void_op(adap, adap_status, file);
2096 	mutex_unlock(&adap->lock);
2097 	return 0;
2098 }
2099 #endif
2100