1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * cec-adap.c - HDMI Consumer Electronics Control framework - CEC adapter
4  *
5  * Copyright 2016 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
6  */
7 
8 #include <linux/errno.h>
9 #include <linux/init.h>
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/kmod.h>
13 #include <linux/ktime.h>
14 #include <linux/slab.h>
15 #include <linux/mm.h>
16 #include <linux/string.h>
17 #include <linux/types.h>
18 
19 #include <drm/drm_connector.h>
20 #include <drm/drm_device.h>
21 #include <drm/drm_edid.h>
22 #include <drm/drm_file.h>
23 
24 #include "cec-priv.h"
25 
26 static void cec_fill_msg_report_features(struct cec_adapter *adap,
27 					 struct cec_msg *msg,
28 					 unsigned int la_idx);
29 
30 /*
31  * 400 ms is the time it takes for one 16 byte message to be
32  * transferred and 5 is the maximum number of retries. Add
33  * another 100 ms as a margin. So if the transmit doesn't
34  * finish before that time something is really wrong and we
35  * have to time out.
36  *
37  * This is a sign that something it really wrong and a warning
38  * will be issued.
39  */
40 #define CEC_XFER_TIMEOUT_MS (5 * 400 + 100)
41 
42 #define call_op(adap, op, arg...) \
43 	(adap->ops->op ? adap->ops->op(adap, ## arg) : 0)
44 
45 #define call_void_op(adap, op, arg...)			\
46 	do {						\
47 		if (adap->ops->op)			\
48 			adap->ops->op(adap, ## arg);	\
49 	} while (0)
50 
cec_log_addr2idx(const struct cec_adapter * adap,u8 log_addr)51 static int cec_log_addr2idx(const struct cec_adapter *adap, u8 log_addr)
52 {
53 	int i;
54 
55 	for (i = 0; i < adap->log_addrs.num_log_addrs; i++)
56 		if (adap->log_addrs.log_addr[i] == log_addr)
57 			return i;
58 	return -1;
59 }
60 
cec_log_addr2dev(const struct cec_adapter * adap,u8 log_addr)61 static unsigned int cec_log_addr2dev(const struct cec_adapter *adap, u8 log_addr)
62 {
63 	int i = cec_log_addr2idx(adap, log_addr);
64 
65 	return adap->log_addrs.primary_device_type[i < 0 ? 0 : i];
66 }
67 
cec_get_edid_phys_addr(const u8 * edid,unsigned int size,unsigned int * offset)68 u16 cec_get_edid_phys_addr(const u8 *edid, unsigned int size,
69 			   unsigned int *offset)
70 {
71 	unsigned int loc = cec_get_edid_spa_location(edid, size);
72 
73 	if (offset)
74 		*offset = loc;
75 	if (loc == 0)
76 		return CEC_PHYS_ADDR_INVALID;
77 	return (edid[loc] << 8) | edid[loc + 1];
78 }
79 EXPORT_SYMBOL_GPL(cec_get_edid_phys_addr);
80 
cec_fill_conn_info_from_drm(struct cec_connector_info * conn_info,const struct drm_connector * connector)81 void cec_fill_conn_info_from_drm(struct cec_connector_info *conn_info,
82 				 const struct drm_connector *connector)
83 {
84 	memset(conn_info, 0, sizeof(*conn_info));
85 	conn_info->type = CEC_CONNECTOR_TYPE_DRM;
86 	conn_info->drm.card_no = connector->dev->primary->index;
87 	conn_info->drm.connector_id = connector->base.id;
88 }
89 EXPORT_SYMBOL_GPL(cec_fill_conn_info_from_drm);
90 
91 /*
92  * Queue a new event for this filehandle. If ts == 0, then set it
93  * to the current time.
94  *
95  * We keep a queue of at most max_event events where max_event differs
96  * per event. If the queue becomes full, then drop the oldest event and
97  * keep track of how many events we've dropped.
98  */
cec_queue_event_fh(struct cec_fh * fh,const struct cec_event * new_ev,u64 ts)99 void cec_queue_event_fh(struct cec_fh *fh,
100 			const struct cec_event *new_ev, u64 ts)
101 {
102 	static const u16 max_events[CEC_NUM_EVENTS] = {
103 		1, 1, 800, 800, 8, 8, 8, 8
104 	};
105 	struct cec_event_entry *entry;
106 	unsigned int ev_idx = new_ev->event - 1;
107 
108 	if (WARN_ON(ev_idx >= ARRAY_SIZE(fh->events)))
109 		return;
110 
111 	if (ts == 0)
112 		ts = ktime_get_ns();
113 
114 	mutex_lock(&fh->lock);
115 	if (ev_idx < CEC_NUM_CORE_EVENTS)
116 		entry = &fh->core_events[ev_idx];
117 	else
118 		entry = kmalloc(sizeof(*entry), GFP_KERNEL);
119 	if (entry) {
120 		if (new_ev->event == CEC_EVENT_LOST_MSGS &&
121 		    fh->queued_events[ev_idx]) {
122 			entry->ev.lost_msgs.lost_msgs +=
123 				new_ev->lost_msgs.lost_msgs;
124 			goto unlock;
125 		}
126 		entry->ev = *new_ev;
127 		entry->ev.ts = ts;
128 
129 		if (fh->queued_events[ev_idx] < max_events[ev_idx]) {
130 			/* Add new msg at the end of the queue */
131 			list_add_tail(&entry->list, &fh->events[ev_idx]);
132 			fh->queued_events[ev_idx]++;
133 			fh->total_queued_events++;
134 			goto unlock;
135 		}
136 
137 		if (ev_idx >= CEC_NUM_CORE_EVENTS) {
138 			list_add_tail(&entry->list, &fh->events[ev_idx]);
139 			/* drop the oldest event */
140 			entry = list_first_entry(&fh->events[ev_idx],
141 						 struct cec_event_entry, list);
142 			list_del(&entry->list);
143 			kfree(entry);
144 		}
145 	}
146 	/* Mark that events were lost */
147 	entry = list_first_entry_or_null(&fh->events[ev_idx],
148 					 struct cec_event_entry, list);
149 	if (entry)
150 		entry->ev.flags |= CEC_EVENT_FL_DROPPED_EVENTS;
151 
152 unlock:
153 	mutex_unlock(&fh->lock);
154 	wake_up_interruptible(&fh->wait);
155 }
156 
157 /* Queue a new event for all open filehandles. */
cec_queue_event(struct cec_adapter * adap,const struct cec_event * ev)158 static void cec_queue_event(struct cec_adapter *adap,
159 			    const struct cec_event *ev)
160 {
161 	u64 ts = ktime_get_ns();
162 	struct cec_fh *fh;
163 
164 	mutex_lock(&adap->devnode.lock);
165 	list_for_each_entry(fh, &adap->devnode.fhs, list)
166 		cec_queue_event_fh(fh, ev, ts);
167 	mutex_unlock(&adap->devnode.lock);
168 }
169 
170 /* Notify userspace that the CEC pin changed state at the given time. */
cec_queue_pin_cec_event(struct cec_adapter * adap,bool is_high,bool dropped_events,ktime_t ts)171 void cec_queue_pin_cec_event(struct cec_adapter *adap, bool is_high,
172 			     bool dropped_events, ktime_t ts)
173 {
174 	struct cec_event ev = {
175 		.event = is_high ? CEC_EVENT_PIN_CEC_HIGH :
176 				   CEC_EVENT_PIN_CEC_LOW,
177 		.flags = dropped_events ? CEC_EVENT_FL_DROPPED_EVENTS : 0,
178 	};
179 	struct cec_fh *fh;
180 
181 	mutex_lock(&adap->devnode.lock);
182 	list_for_each_entry(fh, &adap->devnode.fhs, list)
183 		if (fh->mode_follower == CEC_MODE_MONITOR_PIN)
184 			cec_queue_event_fh(fh, &ev, ktime_to_ns(ts));
185 	mutex_unlock(&adap->devnode.lock);
186 }
187 EXPORT_SYMBOL_GPL(cec_queue_pin_cec_event);
188 
189 /* Notify userspace that the HPD pin changed state at the given time. */
cec_queue_pin_hpd_event(struct cec_adapter * adap,bool is_high,ktime_t ts)190 void cec_queue_pin_hpd_event(struct cec_adapter *adap, bool is_high, ktime_t ts)
191 {
192 	struct cec_event ev = {
193 		.event = is_high ? CEC_EVENT_PIN_HPD_HIGH :
194 				   CEC_EVENT_PIN_HPD_LOW,
195 	};
196 	struct cec_fh *fh;
197 
198 	mutex_lock(&adap->devnode.lock);
199 	list_for_each_entry(fh, &adap->devnode.fhs, list)
200 		cec_queue_event_fh(fh, &ev, ktime_to_ns(ts));
201 	mutex_unlock(&adap->devnode.lock);
202 }
203 EXPORT_SYMBOL_GPL(cec_queue_pin_hpd_event);
204 
205 /* Notify userspace that the 5V pin changed state at the given time. */
cec_queue_pin_5v_event(struct cec_adapter * adap,bool is_high,ktime_t ts)206 void cec_queue_pin_5v_event(struct cec_adapter *adap, bool is_high, ktime_t ts)
207 {
208 	struct cec_event ev = {
209 		.event = is_high ? CEC_EVENT_PIN_5V_HIGH :
210 				   CEC_EVENT_PIN_5V_LOW,
211 	};
212 	struct cec_fh *fh;
213 
214 	mutex_lock(&adap->devnode.lock);
215 	list_for_each_entry(fh, &adap->devnode.fhs, list)
216 		cec_queue_event_fh(fh, &ev, ktime_to_ns(ts));
217 	mutex_unlock(&adap->devnode.lock);
218 }
219 EXPORT_SYMBOL_GPL(cec_queue_pin_5v_event);
220 
221 /*
222  * Queue a new message for this filehandle.
223  *
224  * We keep a queue of at most CEC_MAX_MSG_RX_QUEUE_SZ messages. If the
225  * queue becomes full, then drop the oldest message and keep track
226  * of how many messages we've dropped.
227  */
cec_queue_msg_fh(struct cec_fh * fh,const struct cec_msg * msg)228 static void cec_queue_msg_fh(struct cec_fh *fh, const struct cec_msg *msg)
229 {
230 	static const struct cec_event ev_lost_msgs = {
231 		.event = CEC_EVENT_LOST_MSGS,
232 		.flags = 0,
233 		{
234 			.lost_msgs = { 1 },
235 		},
236 	};
237 	struct cec_msg_entry *entry;
238 
239 	mutex_lock(&fh->lock);
240 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
241 	if (entry) {
242 		entry->msg = *msg;
243 		/* Add new msg at the end of the queue */
244 		list_add_tail(&entry->list, &fh->msgs);
245 
246 		if (fh->queued_msgs < CEC_MAX_MSG_RX_QUEUE_SZ) {
247 			/* All is fine if there is enough room */
248 			fh->queued_msgs++;
249 			mutex_unlock(&fh->lock);
250 			wake_up_interruptible(&fh->wait);
251 			return;
252 		}
253 
254 		/*
255 		 * if the message queue is full, then drop the oldest one and
256 		 * send a lost message event.
257 		 */
258 		entry = list_first_entry(&fh->msgs, struct cec_msg_entry, list);
259 		list_del(&entry->list);
260 		kfree(entry);
261 	}
262 	mutex_unlock(&fh->lock);
263 
264 	/*
265 	 * We lost a message, either because kmalloc failed or the queue
266 	 * was full.
267 	 */
268 	cec_queue_event_fh(fh, &ev_lost_msgs, ktime_get_ns());
269 }
270 
271 /*
272  * Queue the message for those filehandles that are in monitor mode.
273  * If valid_la is true (this message is for us or was sent by us),
274  * then pass it on to any monitoring filehandle. If this message
275  * isn't for us or from us, then only give it to filehandles that
276  * are in MONITOR_ALL mode.
277  *
278  * This can only happen if the CEC_CAP_MONITOR_ALL capability is
279  * set and the CEC adapter was placed in 'monitor all' mode.
280  */
cec_queue_msg_monitor(struct cec_adapter * adap,const struct cec_msg * msg,bool valid_la)281 static void cec_queue_msg_monitor(struct cec_adapter *adap,
282 				  const struct cec_msg *msg,
283 				  bool valid_la)
284 {
285 	struct cec_fh *fh;
286 	u32 monitor_mode = valid_la ? CEC_MODE_MONITOR :
287 				      CEC_MODE_MONITOR_ALL;
288 
289 	mutex_lock(&adap->devnode.lock);
290 	list_for_each_entry(fh, &adap->devnode.fhs, list) {
291 		if (fh->mode_follower >= monitor_mode)
292 			cec_queue_msg_fh(fh, msg);
293 	}
294 	mutex_unlock(&adap->devnode.lock);
295 }
296 
297 /*
298  * Queue the message for follower filehandles.
299  */
cec_queue_msg_followers(struct cec_adapter * adap,const struct cec_msg * msg)300 static void cec_queue_msg_followers(struct cec_adapter *adap,
301 				    const struct cec_msg *msg)
302 {
303 	struct cec_fh *fh;
304 
305 	mutex_lock(&adap->devnode.lock);
306 	list_for_each_entry(fh, &adap->devnode.fhs, list) {
307 		if (fh->mode_follower == CEC_MODE_FOLLOWER)
308 			cec_queue_msg_fh(fh, msg);
309 	}
310 	mutex_unlock(&adap->devnode.lock);
311 }
312 
313 /* Notify userspace of an adapter state change. */
cec_post_state_event(struct cec_adapter * adap)314 static void cec_post_state_event(struct cec_adapter *adap)
315 {
316 	struct cec_event ev = {
317 		.event = CEC_EVENT_STATE_CHANGE,
318 	};
319 
320 	ev.state_change.phys_addr = adap->phys_addr;
321 	ev.state_change.log_addr_mask = adap->log_addrs.log_addr_mask;
322 	cec_queue_event(adap, &ev);
323 }
324 
325 /*
326  * A CEC transmit (and a possible wait for reply) completed.
327  * If this was in blocking mode, then complete it, otherwise
328  * queue the message for userspace to dequeue later.
329  *
330  * This function is called with adap->lock held.
331  */
cec_data_completed(struct cec_data * data)332 static void cec_data_completed(struct cec_data *data)
333 {
334 	/*
335 	 * Delete this transmit from the filehandle's xfer_list since
336 	 * we're done with it.
337 	 *
338 	 * Note that if the filehandle is closed before this transmit
339 	 * finished, then the release() function will set data->fh to NULL.
340 	 * Without that we would be referring to a closed filehandle.
341 	 */
342 	if (data->fh)
343 		list_del(&data->xfer_list);
344 
345 	if (data->blocking) {
346 		/*
347 		 * Someone is blocking so mark the message as completed
348 		 * and call complete.
349 		 */
350 		data->completed = true;
351 		complete(&data->c);
352 	} else {
353 		/*
354 		 * No blocking, so just queue the message if needed and
355 		 * free the memory.
356 		 */
357 		if (data->fh)
358 			cec_queue_msg_fh(data->fh, &data->msg);
359 		kfree(data);
360 	}
361 }
362 
363 /*
364  * A pending CEC transmit needs to be cancelled, either because the CEC
365  * adapter is disabled or the transmit takes an impossibly long time to
366  * finish.
367  *
368  * This function is called with adap->lock held.
369  */
cec_data_cancel(struct cec_data * data,u8 tx_status)370 static void cec_data_cancel(struct cec_data *data, u8 tx_status)
371 {
372 	/*
373 	 * It's either the current transmit, or it is a pending
374 	 * transmit. Take the appropriate action to clear it.
375 	 */
376 	if (data->adap->transmitting == data) {
377 		data->adap->transmitting = NULL;
378 	} else {
379 		list_del_init(&data->list);
380 		if (!(data->msg.tx_status & CEC_TX_STATUS_OK))
381 			data->adap->transmit_queue_sz--;
382 	}
383 
384 	if (data->msg.tx_status & CEC_TX_STATUS_OK) {
385 		data->msg.rx_ts = ktime_get_ns();
386 		data->msg.rx_status = CEC_RX_STATUS_ABORTED;
387 	} else {
388 		data->msg.tx_ts = ktime_get_ns();
389 		data->msg.tx_status |= tx_status |
390 				       CEC_TX_STATUS_MAX_RETRIES;
391 		data->msg.tx_error_cnt++;
392 		data->attempts = 0;
393 	}
394 
395 	/* Queue transmitted message for monitoring purposes */
396 	cec_queue_msg_monitor(data->adap, &data->msg, 1);
397 
398 	cec_data_completed(data);
399 }
400 
401 /*
402  * Flush all pending transmits and cancel any pending timeout work.
403  *
404  * This function is called with adap->lock held.
405  */
cec_flush(struct cec_adapter * adap)406 static void cec_flush(struct cec_adapter *adap)
407 {
408 	struct cec_data *data, *n;
409 
410 	/*
411 	 * If the adapter is disabled, or we're asked to stop,
412 	 * then cancel any pending transmits.
413 	 */
414 	while (!list_empty(&adap->transmit_queue)) {
415 		data = list_first_entry(&adap->transmit_queue,
416 					struct cec_data, list);
417 		cec_data_cancel(data, CEC_TX_STATUS_ABORTED);
418 	}
419 	if (adap->transmitting)
420 		cec_data_cancel(adap->transmitting, CEC_TX_STATUS_ABORTED);
421 
422 	/* Cancel the pending timeout work. */
423 	list_for_each_entry_safe(data, n, &adap->wait_queue, list) {
424 		if (cancel_delayed_work(&data->work))
425 			cec_data_cancel(data, CEC_TX_STATUS_OK);
426 		/*
427 		 * If cancel_delayed_work returned false, then
428 		 * the cec_wait_timeout function is running,
429 		 * which will call cec_data_completed. So no
430 		 * need to do anything special in that case.
431 		 */
432 	}
433 }
434 
435 /*
436  * Main CEC state machine
437  *
438  * Wait until the thread should be stopped, or we are not transmitting and
439  * a new transmit message is queued up, in which case we start transmitting
440  * that message. When the adapter finished transmitting the message it will
441  * call cec_transmit_done().
442  *
443  * If the adapter is disabled, then remove all queued messages instead.
444  *
445  * If the current transmit times out, then cancel that transmit.
446  */
cec_thread_func(void * _adap)447 int cec_thread_func(void *_adap)
448 {
449 	struct cec_adapter *adap = _adap;
450 
451 	for (;;) {
452 		unsigned int signal_free_time;
453 		struct cec_data *data;
454 		bool timeout = false;
455 		u8 attempts;
456 
457 		if (adap->transmitting) {
458 			int err;
459 
460 			/*
461 			 * We are transmitting a message, so add a timeout
462 			 * to prevent the state machine to get stuck waiting
463 			 * for this message to finalize and add a check to
464 			 * see if the adapter is disabled in which case the
465 			 * transmit should be canceled.
466 			 */
467 			err = wait_event_interruptible_timeout(adap->kthread_waitq,
468 				(adap->needs_hpd &&
469 				 (!adap->is_configured && !adap->is_configuring)) ||
470 				kthread_should_stop() ||
471 				(!adap->transmit_in_progress &&
472 				 !list_empty(&adap->transmit_queue)),
473 				msecs_to_jiffies(CEC_XFER_TIMEOUT_MS));
474 			timeout = err == 0;
475 		} else {
476 			/* Otherwise we just wait for something to happen. */
477 			wait_event_interruptible(adap->kthread_waitq,
478 				kthread_should_stop() ||
479 				(!adap->transmit_in_progress &&
480 				 !list_empty(&adap->transmit_queue)));
481 		}
482 
483 		mutex_lock(&adap->lock);
484 
485 		if ((adap->needs_hpd &&
486 		     (!adap->is_configured && !adap->is_configuring)) ||
487 		    kthread_should_stop()) {
488 			cec_flush(adap);
489 			goto unlock;
490 		}
491 
492 		if (adap->transmitting && timeout) {
493 			/*
494 			 * If we timeout, then log that. Normally this does
495 			 * not happen and it is an indication of a faulty CEC
496 			 * adapter driver, or the CEC bus is in some weird
497 			 * state. On rare occasions it can happen if there is
498 			 * so much traffic on the bus that the adapter was
499 			 * unable to transmit for CEC_XFER_TIMEOUT_MS (2.1s).
500 			 */
501 			pr_warn("cec-%s: message %*ph timed out\n", adap->name,
502 				adap->transmitting->msg.len,
503 				adap->transmitting->msg.msg);
504 			adap->transmit_in_progress = false;
505 			adap->tx_timeouts++;
506 			/* Just give up on this. */
507 			cec_data_cancel(adap->transmitting,
508 					CEC_TX_STATUS_TIMEOUT);
509 			goto unlock;
510 		}
511 
512 		/*
513 		 * If we are still transmitting, or there is nothing new to
514 		 * transmit, then just continue waiting.
515 		 */
516 		if (adap->transmit_in_progress || list_empty(&adap->transmit_queue))
517 			goto unlock;
518 
519 		/* Get a new message to transmit */
520 		data = list_first_entry(&adap->transmit_queue,
521 					struct cec_data, list);
522 		list_del_init(&data->list);
523 		adap->transmit_queue_sz--;
524 
525 		/* Make this the current transmitting message */
526 		adap->transmitting = data;
527 
528 		/*
529 		 * Suggested number of attempts as per the CEC 2.0 spec:
530 		 * 4 attempts is the default, except for 'secondary poll
531 		 * messages', i.e. poll messages not sent during the adapter
532 		 * configuration phase when it allocates logical addresses.
533 		 */
534 		if (data->msg.len == 1 && adap->is_configured)
535 			attempts = 2;
536 		else
537 			attempts = 4;
538 
539 		/* Set the suggested signal free time */
540 		if (data->attempts) {
541 			/* should be >= 3 data bit periods for a retry */
542 			signal_free_time = CEC_SIGNAL_FREE_TIME_RETRY;
543 		} else if (adap->last_initiator !=
544 			   cec_msg_initiator(&data->msg)) {
545 			/* should be >= 5 data bit periods for new initiator */
546 			signal_free_time = CEC_SIGNAL_FREE_TIME_NEW_INITIATOR;
547 			adap->last_initiator = cec_msg_initiator(&data->msg);
548 		} else {
549 			/*
550 			 * should be >= 7 data bit periods for sending another
551 			 * frame immediately after another.
552 			 */
553 			signal_free_time = CEC_SIGNAL_FREE_TIME_NEXT_XFER;
554 		}
555 		if (data->attempts == 0)
556 			data->attempts = attempts;
557 
558 		/* Tell the adapter to transmit, cancel on error */
559 		if (adap->ops->adap_transmit(adap, data->attempts,
560 					     signal_free_time, &data->msg))
561 			cec_data_cancel(data, CEC_TX_STATUS_ABORTED);
562 		else
563 			adap->transmit_in_progress = true;
564 
565 unlock:
566 		mutex_unlock(&adap->lock);
567 
568 		if (kthread_should_stop())
569 			break;
570 	}
571 	return 0;
572 }
573 
574 /*
575  * Called by the CEC adapter if a transmit finished.
576  */
cec_transmit_done_ts(struct cec_adapter * adap,u8 status,u8 arb_lost_cnt,u8 nack_cnt,u8 low_drive_cnt,u8 error_cnt,ktime_t ts)577 void cec_transmit_done_ts(struct cec_adapter *adap, u8 status,
578 			  u8 arb_lost_cnt, u8 nack_cnt, u8 low_drive_cnt,
579 			  u8 error_cnt, ktime_t ts)
580 {
581 	struct cec_data *data;
582 	struct cec_msg *msg;
583 	unsigned int attempts_made = arb_lost_cnt + nack_cnt +
584 				     low_drive_cnt + error_cnt;
585 
586 	dprintk(2, "%s: status 0x%02x\n", __func__, status);
587 	if (attempts_made < 1)
588 		attempts_made = 1;
589 
590 	mutex_lock(&adap->lock);
591 	data = adap->transmitting;
592 	if (!data) {
593 		/*
594 		 * This might happen if a transmit was issued and the cable is
595 		 * unplugged while the transmit is ongoing. Ignore this
596 		 * transmit in that case.
597 		 */
598 		if (!adap->transmit_in_progress)
599 			dprintk(1, "%s was called without an ongoing transmit!\n",
600 				__func__);
601 		adap->transmit_in_progress = false;
602 		goto wake_thread;
603 	}
604 	adap->transmit_in_progress = false;
605 
606 	msg = &data->msg;
607 
608 	/* Drivers must fill in the status! */
609 	WARN_ON(status == 0);
610 	msg->tx_ts = ktime_to_ns(ts);
611 	msg->tx_status |= status;
612 	msg->tx_arb_lost_cnt += arb_lost_cnt;
613 	msg->tx_nack_cnt += nack_cnt;
614 	msg->tx_low_drive_cnt += low_drive_cnt;
615 	msg->tx_error_cnt += error_cnt;
616 
617 	/* Mark that we're done with this transmit */
618 	adap->transmitting = NULL;
619 
620 	/*
621 	 * If there are still retry attempts left and there was an error and
622 	 * the hardware didn't signal that it retried itself (by setting
623 	 * CEC_TX_STATUS_MAX_RETRIES), then we will retry ourselves.
624 	 */
625 	if (data->attempts > attempts_made &&
626 	    !(status & (CEC_TX_STATUS_MAX_RETRIES | CEC_TX_STATUS_OK))) {
627 		/* Retry this message */
628 		data->attempts -= attempts_made;
629 		if (msg->timeout)
630 			dprintk(2, "retransmit: %*ph (attempts: %d, wait for 0x%02x)\n",
631 				msg->len, msg->msg, data->attempts, msg->reply);
632 		else
633 			dprintk(2, "retransmit: %*ph (attempts: %d)\n",
634 				msg->len, msg->msg, data->attempts);
635 		/* Add the message in front of the transmit queue */
636 		list_add(&data->list, &adap->transmit_queue);
637 		adap->transmit_queue_sz++;
638 		goto wake_thread;
639 	}
640 
641 	data->attempts = 0;
642 
643 	/* Always set CEC_TX_STATUS_MAX_RETRIES on error */
644 	if (!(status & CEC_TX_STATUS_OK))
645 		msg->tx_status |= CEC_TX_STATUS_MAX_RETRIES;
646 
647 	/* Queue transmitted message for monitoring purposes */
648 	cec_queue_msg_monitor(adap, msg, 1);
649 
650 	if ((status & CEC_TX_STATUS_OK) && adap->is_configured &&
651 	    msg->timeout) {
652 		/*
653 		 * Queue the message into the wait queue if we want to wait
654 		 * for a reply.
655 		 */
656 		list_add_tail(&data->list, &adap->wait_queue);
657 		schedule_delayed_work(&data->work,
658 				      msecs_to_jiffies(msg->timeout));
659 	} else {
660 		/* Otherwise we're done */
661 		cec_data_completed(data);
662 	}
663 
664 wake_thread:
665 	/*
666 	 * Wake up the main thread to see if another message is ready
667 	 * for transmitting or to retry the current message.
668 	 */
669 	wake_up_interruptible(&adap->kthread_waitq);
670 	mutex_unlock(&adap->lock);
671 }
672 EXPORT_SYMBOL_GPL(cec_transmit_done_ts);
673 
cec_transmit_attempt_done_ts(struct cec_adapter * adap,u8 status,ktime_t ts)674 void cec_transmit_attempt_done_ts(struct cec_adapter *adap,
675 				  u8 status, ktime_t ts)
676 {
677 	switch (status & ~CEC_TX_STATUS_MAX_RETRIES) {
678 	case CEC_TX_STATUS_OK:
679 		cec_transmit_done_ts(adap, status, 0, 0, 0, 0, ts);
680 		return;
681 	case CEC_TX_STATUS_ARB_LOST:
682 		cec_transmit_done_ts(adap, status, 1, 0, 0, 0, ts);
683 		return;
684 	case CEC_TX_STATUS_NACK:
685 		cec_transmit_done_ts(adap, status, 0, 1, 0, 0, ts);
686 		return;
687 	case CEC_TX_STATUS_LOW_DRIVE:
688 		cec_transmit_done_ts(adap, status, 0, 0, 1, 0, ts);
689 		return;
690 	case CEC_TX_STATUS_ERROR:
691 		cec_transmit_done_ts(adap, status, 0, 0, 0, 1, ts);
692 		return;
693 	default:
694 		/* Should never happen */
695 		WARN(1, "cec-%s: invalid status 0x%02x\n", adap->name, status);
696 		return;
697 	}
698 }
699 EXPORT_SYMBOL_GPL(cec_transmit_attempt_done_ts);
700 
701 /*
702  * Called when waiting for a reply times out.
703  */
cec_wait_timeout(struct work_struct * work)704 static void cec_wait_timeout(struct work_struct *work)
705 {
706 	struct cec_data *data = container_of(work, struct cec_data, work.work);
707 	struct cec_adapter *adap = data->adap;
708 
709 	mutex_lock(&adap->lock);
710 	/*
711 	 * Sanity check in case the timeout and the arrival of the message
712 	 * happened at the same time.
713 	 */
714 	if (list_empty(&data->list))
715 		goto unlock;
716 
717 	/* Mark the message as timed out */
718 	list_del_init(&data->list);
719 	data->msg.rx_ts = ktime_get_ns();
720 	data->msg.rx_status = CEC_RX_STATUS_TIMEOUT;
721 	cec_data_completed(data);
722 unlock:
723 	mutex_unlock(&adap->lock);
724 }
725 
726 /*
727  * Transmit a message. The fh argument may be NULL if the transmit is not
728  * associated with a specific filehandle.
729  *
730  * This function is called with adap->lock held.
731  */
cec_transmit_msg_fh(struct cec_adapter * adap,struct cec_msg * msg,struct cec_fh * fh,bool block)732 int cec_transmit_msg_fh(struct cec_adapter *adap, struct cec_msg *msg,
733 			struct cec_fh *fh, bool block)
734 {
735 	struct cec_data *data;
736 	bool is_raw = msg_is_raw(msg);
737 
738 	msg->rx_ts = 0;
739 	msg->tx_ts = 0;
740 	msg->rx_status = 0;
741 	msg->tx_status = 0;
742 	msg->tx_arb_lost_cnt = 0;
743 	msg->tx_nack_cnt = 0;
744 	msg->tx_low_drive_cnt = 0;
745 	msg->tx_error_cnt = 0;
746 	msg->sequence = 0;
747 
748 	if (msg->reply && msg->timeout == 0) {
749 		/* Make sure the timeout isn't 0. */
750 		msg->timeout = 1000;
751 	}
752 	msg->flags &= CEC_MSG_FL_REPLY_TO_FOLLOWERS | CEC_MSG_FL_RAW;
753 
754 	if (!msg->timeout)
755 		msg->flags &= ~CEC_MSG_FL_REPLY_TO_FOLLOWERS;
756 
757 	/* Sanity checks */
758 	if (msg->len == 0 || msg->len > CEC_MAX_MSG_SIZE) {
759 		dprintk(1, "%s: invalid length %d\n", __func__, msg->len);
760 		return -EINVAL;
761 	}
762 
763 	memset(msg->msg + msg->len, 0, sizeof(msg->msg) - msg->len);
764 
765 	if (msg->timeout)
766 		dprintk(2, "%s: %*ph (wait for 0x%02x%s)\n",
767 			__func__, msg->len, msg->msg, msg->reply,
768 			!block ? ", nb" : "");
769 	else
770 		dprintk(2, "%s: %*ph%s\n",
771 			__func__, msg->len, msg->msg, !block ? " (nb)" : "");
772 
773 	if (msg->timeout && msg->len == 1) {
774 		dprintk(1, "%s: can't reply to poll msg\n", __func__);
775 		return -EINVAL;
776 	}
777 
778 	if (is_raw) {
779 		if (!capable(CAP_SYS_RAWIO))
780 			return -EPERM;
781 	} else {
782 		/* A CDC-Only device can only send CDC messages */
783 		if ((adap->log_addrs.flags & CEC_LOG_ADDRS_FL_CDC_ONLY) &&
784 		    (msg->len == 1 || msg->msg[1] != CEC_MSG_CDC_MESSAGE)) {
785 			dprintk(1, "%s: not a CDC message\n", __func__);
786 			return -EINVAL;
787 		}
788 
789 		if (msg->len >= 4 && msg->msg[1] == CEC_MSG_CDC_MESSAGE) {
790 			msg->msg[2] = adap->phys_addr >> 8;
791 			msg->msg[3] = adap->phys_addr & 0xff;
792 		}
793 
794 		if (msg->len == 1) {
795 			if (cec_msg_destination(msg) == 0xf) {
796 				dprintk(1, "%s: invalid poll message\n",
797 					__func__);
798 				return -EINVAL;
799 			}
800 			if (cec_has_log_addr(adap, cec_msg_destination(msg))) {
801 				/*
802 				 * If the destination is a logical address our
803 				 * adapter has already claimed, then just NACK
804 				 * this. It depends on the hardware what it will
805 				 * do with a POLL to itself (some OK this), so
806 				 * it is just as easy to handle it here so the
807 				 * behavior will be consistent.
808 				 */
809 				msg->tx_ts = ktime_get_ns();
810 				msg->tx_status = CEC_TX_STATUS_NACK |
811 					CEC_TX_STATUS_MAX_RETRIES;
812 				msg->tx_nack_cnt = 1;
813 				msg->sequence = ++adap->sequence;
814 				if (!msg->sequence)
815 					msg->sequence = ++adap->sequence;
816 				return 0;
817 			}
818 		}
819 		if (msg->len > 1 && !cec_msg_is_broadcast(msg) &&
820 		    cec_has_log_addr(adap, cec_msg_destination(msg))) {
821 			dprintk(1, "%s: destination is the adapter itself\n",
822 				__func__);
823 			return -EINVAL;
824 		}
825 		if (msg->len > 1 && adap->is_configured &&
826 		    !cec_has_log_addr(adap, cec_msg_initiator(msg))) {
827 			dprintk(1, "%s: initiator has unknown logical address %d\n",
828 				__func__, cec_msg_initiator(msg));
829 			return -EINVAL;
830 		}
831 		/*
832 		 * Special case: allow Ping and IMAGE/TEXT_VIEW_ON to be
833 		 * transmitted to a TV, even if the adapter is unconfigured.
834 		 * This makes it possible to detect or wake up displays that
835 		 * pull down the HPD when in standby.
836 		 */
837 		if (!adap->is_configured && !adap->is_configuring &&
838 		    (msg->len > 2 ||
839 		     cec_msg_destination(msg) != CEC_LOG_ADDR_TV ||
840 		     (msg->len == 2 && msg->msg[1] != CEC_MSG_IMAGE_VIEW_ON &&
841 		      msg->msg[1] != CEC_MSG_TEXT_VIEW_ON))) {
842 			dprintk(1, "%s: adapter is unconfigured\n", __func__);
843 			return -ENONET;
844 		}
845 	}
846 
847 	if (!adap->is_configured && !adap->is_configuring) {
848 		if (adap->needs_hpd) {
849 			dprintk(1, "%s: adapter is unconfigured and needs HPD\n",
850 				__func__);
851 			return -ENONET;
852 		}
853 		if (msg->reply) {
854 			dprintk(1, "%s: invalid msg->reply\n", __func__);
855 			return -EINVAL;
856 		}
857 	}
858 
859 	if (adap->transmit_queue_sz >= CEC_MAX_MSG_TX_QUEUE_SZ) {
860 		dprintk(2, "%s: transmit queue full\n", __func__);
861 		return -EBUSY;
862 	}
863 
864 	data = kzalloc(sizeof(*data), GFP_KERNEL);
865 	if (!data)
866 		return -ENOMEM;
867 
868 	msg->sequence = ++adap->sequence;
869 	if (!msg->sequence)
870 		msg->sequence = ++adap->sequence;
871 
872 	data->msg = *msg;
873 	data->fh = fh;
874 	data->adap = adap;
875 	data->blocking = block;
876 
877 	init_completion(&data->c);
878 	INIT_DELAYED_WORK(&data->work, cec_wait_timeout);
879 
880 	if (fh)
881 		list_add_tail(&data->xfer_list, &fh->xfer_list);
882 
883 	list_add_tail(&data->list, &adap->transmit_queue);
884 	adap->transmit_queue_sz++;
885 	if (!adap->transmitting)
886 		wake_up_interruptible(&adap->kthread_waitq);
887 
888 	/* All done if we don't need to block waiting for completion */
889 	if (!block)
890 		return 0;
891 
892 	/*
893 	 * Release the lock and wait, retake the lock afterwards.
894 	 */
895 	mutex_unlock(&adap->lock);
896 	wait_for_completion_killable(&data->c);
897 	if (!data->completed)
898 		cancel_delayed_work_sync(&data->work);
899 	mutex_lock(&adap->lock);
900 
901 	/* Cancel the transmit if it was interrupted */
902 	if (!data->completed)
903 		cec_data_cancel(data, CEC_TX_STATUS_ABORTED);
904 
905 	/* The transmit completed (possibly with an error) */
906 	*msg = data->msg;
907 	kfree(data);
908 	return 0;
909 }
910 
911 /* Helper function to be used by drivers and this framework. */
cec_transmit_msg(struct cec_adapter * adap,struct cec_msg * msg,bool block)912 int cec_transmit_msg(struct cec_adapter *adap, struct cec_msg *msg,
913 		     bool block)
914 {
915 	int ret;
916 
917 	mutex_lock(&adap->lock);
918 	ret = cec_transmit_msg_fh(adap, msg, NULL, block);
919 	mutex_unlock(&adap->lock);
920 	return ret;
921 }
922 EXPORT_SYMBOL_GPL(cec_transmit_msg);
923 
924 /*
925  * I don't like forward references but without this the low-level
926  * cec_received_msg() function would come after a bunch of high-level
927  * CEC protocol handling functions. That was very confusing.
928  */
929 static int cec_receive_notify(struct cec_adapter *adap, struct cec_msg *msg,
930 			      bool is_reply);
931 
932 #define DIRECTED	0x80
933 #define BCAST1_4	0x40
934 #define BCAST2_0	0x20	/* broadcast only allowed for >= 2.0 */
935 #define BCAST		(BCAST1_4 | BCAST2_0)
936 #define BOTH		(BCAST | DIRECTED)
937 
938 /*
939  * Specify minimum length and whether the message is directed, broadcast
940  * or both. Messages that do not match the criteria are ignored as per
941  * the CEC specification.
942  */
943 static const u8 cec_msg_size[256] = {
944 	[CEC_MSG_ACTIVE_SOURCE] = 4 | BCAST,
945 	[CEC_MSG_IMAGE_VIEW_ON] = 2 | DIRECTED,
946 	[CEC_MSG_TEXT_VIEW_ON] = 2 | DIRECTED,
947 	[CEC_MSG_INACTIVE_SOURCE] = 4 | DIRECTED,
948 	[CEC_MSG_REQUEST_ACTIVE_SOURCE] = 2 | BCAST,
949 	[CEC_MSG_ROUTING_CHANGE] = 6 | BCAST,
950 	[CEC_MSG_ROUTING_INFORMATION] = 4 | BCAST,
951 	[CEC_MSG_SET_STREAM_PATH] = 4 | BCAST,
952 	[CEC_MSG_STANDBY] = 2 | BOTH,
953 	[CEC_MSG_RECORD_OFF] = 2 | DIRECTED,
954 	[CEC_MSG_RECORD_ON] = 3 | DIRECTED,
955 	[CEC_MSG_RECORD_STATUS] = 3 | DIRECTED,
956 	[CEC_MSG_RECORD_TV_SCREEN] = 2 | DIRECTED,
957 	[CEC_MSG_CLEAR_ANALOGUE_TIMER] = 13 | DIRECTED,
958 	[CEC_MSG_CLEAR_DIGITAL_TIMER] = 16 | DIRECTED,
959 	[CEC_MSG_CLEAR_EXT_TIMER] = 13 | DIRECTED,
960 	[CEC_MSG_SET_ANALOGUE_TIMER] = 13 | DIRECTED,
961 	[CEC_MSG_SET_DIGITAL_TIMER] = 16 | DIRECTED,
962 	[CEC_MSG_SET_EXT_TIMER] = 13 | DIRECTED,
963 	[CEC_MSG_SET_TIMER_PROGRAM_TITLE] = 2 | DIRECTED,
964 	[CEC_MSG_TIMER_CLEARED_STATUS] = 3 | DIRECTED,
965 	[CEC_MSG_TIMER_STATUS] = 3 | DIRECTED,
966 	[CEC_MSG_CEC_VERSION] = 3 | DIRECTED,
967 	[CEC_MSG_GET_CEC_VERSION] = 2 | DIRECTED,
968 	[CEC_MSG_GIVE_PHYSICAL_ADDR] = 2 | DIRECTED,
969 	[CEC_MSG_GET_MENU_LANGUAGE] = 2 | DIRECTED,
970 	[CEC_MSG_REPORT_PHYSICAL_ADDR] = 5 | BCAST,
971 	[CEC_MSG_SET_MENU_LANGUAGE] = 5 | BCAST,
972 	[CEC_MSG_REPORT_FEATURES] = 6 | BCAST,
973 	[CEC_MSG_GIVE_FEATURES] = 2 | DIRECTED,
974 	[CEC_MSG_DECK_CONTROL] = 3 | DIRECTED,
975 	[CEC_MSG_DECK_STATUS] = 3 | DIRECTED,
976 	[CEC_MSG_GIVE_DECK_STATUS] = 3 | DIRECTED,
977 	[CEC_MSG_PLAY] = 3 | DIRECTED,
978 	[CEC_MSG_GIVE_TUNER_DEVICE_STATUS] = 3 | DIRECTED,
979 	[CEC_MSG_SELECT_ANALOGUE_SERVICE] = 6 | DIRECTED,
980 	[CEC_MSG_SELECT_DIGITAL_SERVICE] = 9 | DIRECTED,
981 	[CEC_MSG_TUNER_DEVICE_STATUS] = 7 | DIRECTED,
982 	[CEC_MSG_TUNER_STEP_DECREMENT] = 2 | DIRECTED,
983 	[CEC_MSG_TUNER_STEP_INCREMENT] = 2 | DIRECTED,
984 	[CEC_MSG_DEVICE_VENDOR_ID] = 5 | BCAST,
985 	[CEC_MSG_GIVE_DEVICE_VENDOR_ID] = 2 | DIRECTED,
986 	[CEC_MSG_VENDOR_COMMAND] = 2 | DIRECTED,
987 	[CEC_MSG_VENDOR_COMMAND_WITH_ID] = 5 | BOTH,
988 	[CEC_MSG_VENDOR_REMOTE_BUTTON_DOWN] = 2 | BOTH,
989 	[CEC_MSG_VENDOR_REMOTE_BUTTON_UP] = 2 | BOTH,
990 	[CEC_MSG_SET_OSD_STRING] = 3 | DIRECTED,
991 	[CEC_MSG_GIVE_OSD_NAME] = 2 | DIRECTED,
992 	[CEC_MSG_SET_OSD_NAME] = 2 | DIRECTED,
993 	[CEC_MSG_MENU_REQUEST] = 3 | DIRECTED,
994 	[CEC_MSG_MENU_STATUS] = 3 | DIRECTED,
995 	[CEC_MSG_USER_CONTROL_PRESSED] = 3 | DIRECTED,
996 	[CEC_MSG_USER_CONTROL_RELEASED] = 2 | DIRECTED,
997 	[CEC_MSG_GIVE_DEVICE_POWER_STATUS] = 2 | DIRECTED,
998 	[CEC_MSG_REPORT_POWER_STATUS] = 3 | DIRECTED | BCAST2_0,
999 	[CEC_MSG_FEATURE_ABORT] = 4 | DIRECTED,
1000 	[CEC_MSG_ABORT] = 2 | DIRECTED,
1001 	[CEC_MSG_GIVE_AUDIO_STATUS] = 2 | DIRECTED,
1002 	[CEC_MSG_GIVE_SYSTEM_AUDIO_MODE_STATUS] = 2 | DIRECTED,
1003 	[CEC_MSG_REPORT_AUDIO_STATUS] = 3 | DIRECTED,
1004 	[CEC_MSG_REPORT_SHORT_AUDIO_DESCRIPTOR] = 2 | DIRECTED,
1005 	[CEC_MSG_REQUEST_SHORT_AUDIO_DESCRIPTOR] = 2 | DIRECTED,
1006 	[CEC_MSG_SET_SYSTEM_AUDIO_MODE] = 3 | BOTH,
1007 	[CEC_MSG_SYSTEM_AUDIO_MODE_REQUEST] = 2 | DIRECTED,
1008 	[CEC_MSG_SYSTEM_AUDIO_MODE_STATUS] = 3 | DIRECTED,
1009 	[CEC_MSG_SET_AUDIO_RATE] = 3 | DIRECTED,
1010 	[CEC_MSG_INITIATE_ARC] = 2 | DIRECTED,
1011 	[CEC_MSG_REPORT_ARC_INITIATED] = 2 | DIRECTED,
1012 	[CEC_MSG_REPORT_ARC_TERMINATED] = 2 | DIRECTED,
1013 	[CEC_MSG_REQUEST_ARC_INITIATION] = 2 | DIRECTED,
1014 	[CEC_MSG_REQUEST_ARC_TERMINATION] = 2 | DIRECTED,
1015 	[CEC_MSG_TERMINATE_ARC] = 2 | DIRECTED,
1016 	[CEC_MSG_REQUEST_CURRENT_LATENCY] = 4 | BCAST,
1017 	[CEC_MSG_REPORT_CURRENT_LATENCY] = 6 | BCAST,
1018 	[CEC_MSG_CDC_MESSAGE] = 2 | BCAST,
1019 };
1020 
1021 /* Called by the CEC adapter if a message is received */
cec_received_msg_ts(struct cec_adapter * adap,struct cec_msg * msg,ktime_t ts)1022 void cec_received_msg_ts(struct cec_adapter *adap,
1023 			 struct cec_msg *msg, ktime_t ts)
1024 {
1025 	struct cec_data *data;
1026 	u8 msg_init = cec_msg_initiator(msg);
1027 	u8 msg_dest = cec_msg_destination(msg);
1028 	u8 cmd = msg->msg[1];
1029 	bool is_reply = false;
1030 	bool valid_la = true;
1031 	u8 min_len = 0;
1032 
1033 	if (WARN_ON(!msg->len || msg->len > CEC_MAX_MSG_SIZE))
1034 		return;
1035 
1036 	/*
1037 	 * Some CEC adapters will receive the messages that they transmitted.
1038 	 * This test filters out those messages by checking if we are the
1039 	 * initiator, and just returning in that case.
1040 	 *
1041 	 * Note that this won't work if this is an Unregistered device.
1042 	 *
1043 	 * It is bad practice if the hardware receives the message that it
1044 	 * transmitted and luckily most CEC adapters behave correctly in this
1045 	 * respect.
1046 	 */
1047 	if (msg_init != CEC_LOG_ADDR_UNREGISTERED &&
1048 	    cec_has_log_addr(adap, msg_init))
1049 		return;
1050 
1051 	msg->rx_ts = ktime_to_ns(ts);
1052 	msg->rx_status = CEC_RX_STATUS_OK;
1053 	msg->sequence = msg->reply = msg->timeout = 0;
1054 	msg->tx_status = 0;
1055 	msg->tx_ts = 0;
1056 	msg->tx_arb_lost_cnt = 0;
1057 	msg->tx_nack_cnt = 0;
1058 	msg->tx_low_drive_cnt = 0;
1059 	msg->tx_error_cnt = 0;
1060 	msg->flags = 0;
1061 	memset(msg->msg + msg->len, 0, sizeof(msg->msg) - msg->len);
1062 
1063 	mutex_lock(&adap->lock);
1064 	dprintk(2, "%s: %*ph\n", __func__, msg->len, msg->msg);
1065 
1066 	adap->last_initiator = 0xff;
1067 
1068 	/* Check if this message was for us (directed or broadcast). */
1069 	if (!cec_msg_is_broadcast(msg))
1070 		valid_la = cec_has_log_addr(adap, msg_dest);
1071 
1072 	/*
1073 	 * Check if the length is not too short or if the message is a
1074 	 * broadcast message where a directed message was expected or
1075 	 * vice versa. If so, then the message has to be ignored (according
1076 	 * to section CEC 7.3 and CEC 12.2).
1077 	 */
1078 	if (valid_la && msg->len > 1 && cec_msg_size[cmd]) {
1079 		u8 dir_fl = cec_msg_size[cmd] & BOTH;
1080 
1081 		min_len = cec_msg_size[cmd] & 0x1f;
1082 		if (msg->len < min_len)
1083 			valid_la = false;
1084 		else if (!cec_msg_is_broadcast(msg) && !(dir_fl & DIRECTED))
1085 			valid_la = false;
1086 		else if (cec_msg_is_broadcast(msg) && !(dir_fl & BCAST1_4))
1087 			valid_la = false;
1088 		else if (cec_msg_is_broadcast(msg) &&
1089 			 adap->log_addrs.cec_version >= CEC_OP_CEC_VERSION_2_0 &&
1090 			 !(dir_fl & BCAST2_0))
1091 			valid_la = false;
1092 	}
1093 	if (valid_la && min_len) {
1094 		/* These messages have special length requirements */
1095 		switch (cmd) {
1096 		case CEC_MSG_TIMER_STATUS:
1097 			if (msg->msg[2] & 0x10) {
1098 				switch (msg->msg[2] & 0xf) {
1099 				case CEC_OP_PROG_INFO_NOT_ENOUGH_SPACE:
1100 				case CEC_OP_PROG_INFO_MIGHT_NOT_BE_ENOUGH_SPACE:
1101 					if (msg->len < 5)
1102 						valid_la = false;
1103 					break;
1104 				}
1105 			} else if ((msg->msg[2] & 0xf) == CEC_OP_PROG_ERROR_DUPLICATE) {
1106 				if (msg->len < 5)
1107 					valid_la = false;
1108 			}
1109 			break;
1110 		case CEC_MSG_RECORD_ON:
1111 			switch (msg->msg[2]) {
1112 			case CEC_OP_RECORD_SRC_OWN:
1113 				break;
1114 			case CEC_OP_RECORD_SRC_DIGITAL:
1115 				if (msg->len < 10)
1116 					valid_la = false;
1117 				break;
1118 			case CEC_OP_RECORD_SRC_ANALOG:
1119 				if (msg->len < 7)
1120 					valid_la = false;
1121 				break;
1122 			case CEC_OP_RECORD_SRC_EXT_PLUG:
1123 				if (msg->len < 4)
1124 					valid_la = false;
1125 				break;
1126 			case CEC_OP_RECORD_SRC_EXT_PHYS_ADDR:
1127 				if (msg->len < 5)
1128 					valid_la = false;
1129 				break;
1130 			}
1131 			break;
1132 		}
1133 	}
1134 
1135 	/* It's a valid message and not a poll or CDC message */
1136 	if (valid_la && msg->len > 1 && cmd != CEC_MSG_CDC_MESSAGE) {
1137 		bool abort = cmd == CEC_MSG_FEATURE_ABORT;
1138 
1139 		/* The aborted command is in msg[2] */
1140 		if (abort)
1141 			cmd = msg->msg[2];
1142 
1143 		/*
1144 		 * Walk over all transmitted messages that are waiting for a
1145 		 * reply.
1146 		 */
1147 		list_for_each_entry(data, &adap->wait_queue, list) {
1148 			struct cec_msg *dst = &data->msg;
1149 
1150 			/*
1151 			 * The *only* CEC message that has two possible replies
1152 			 * is CEC_MSG_INITIATE_ARC.
1153 			 * In this case allow either of the two replies.
1154 			 */
1155 			if (!abort && dst->msg[1] == CEC_MSG_INITIATE_ARC &&
1156 			    (cmd == CEC_MSG_REPORT_ARC_INITIATED ||
1157 			     cmd == CEC_MSG_REPORT_ARC_TERMINATED) &&
1158 			    (dst->reply == CEC_MSG_REPORT_ARC_INITIATED ||
1159 			     dst->reply == CEC_MSG_REPORT_ARC_TERMINATED))
1160 				dst->reply = cmd;
1161 
1162 			/* Does the command match? */
1163 			if ((abort && cmd != dst->msg[1]) ||
1164 			    (!abort && cmd != dst->reply))
1165 				continue;
1166 
1167 			/* Does the addressing match? */
1168 			if (msg_init != cec_msg_destination(dst) &&
1169 			    !cec_msg_is_broadcast(dst))
1170 				continue;
1171 
1172 			/* We got a reply */
1173 			memcpy(dst->msg, msg->msg, msg->len);
1174 			dst->len = msg->len;
1175 			dst->rx_ts = msg->rx_ts;
1176 			dst->rx_status = msg->rx_status;
1177 			if (abort)
1178 				dst->rx_status |= CEC_RX_STATUS_FEATURE_ABORT;
1179 			msg->flags = dst->flags;
1180 			/* Remove it from the wait_queue */
1181 			list_del_init(&data->list);
1182 
1183 			/* Cancel the pending timeout work */
1184 			if (!cancel_delayed_work(&data->work)) {
1185 				mutex_unlock(&adap->lock);
1186 				flush_scheduled_work();
1187 				mutex_lock(&adap->lock);
1188 			}
1189 			/*
1190 			 * Mark this as a reply, provided someone is still
1191 			 * waiting for the answer.
1192 			 */
1193 			if (data->fh)
1194 				is_reply = true;
1195 			cec_data_completed(data);
1196 			break;
1197 		}
1198 	}
1199 	mutex_unlock(&adap->lock);
1200 
1201 	/* Pass the message on to any monitoring filehandles */
1202 	cec_queue_msg_monitor(adap, msg, valid_la);
1203 
1204 	/* We're done if it is not for us or a poll message */
1205 	if (!valid_la || msg->len <= 1)
1206 		return;
1207 
1208 	if (adap->log_addrs.log_addr_mask == 0)
1209 		return;
1210 
1211 	/*
1212 	 * Process the message on the protocol level. If is_reply is true,
1213 	 * then cec_receive_notify() won't pass on the reply to the listener(s)
1214 	 * since that was already done by cec_data_completed() above.
1215 	 */
1216 	cec_receive_notify(adap, msg, is_reply);
1217 }
1218 EXPORT_SYMBOL_GPL(cec_received_msg_ts);
1219 
1220 /* Logical Address Handling */
1221 
1222 /*
1223  * Attempt to claim a specific logical address.
1224  *
1225  * This function is called with adap->lock held.
1226  */
cec_config_log_addr(struct cec_adapter * adap,unsigned int idx,unsigned int log_addr)1227 static int cec_config_log_addr(struct cec_adapter *adap,
1228 			       unsigned int idx,
1229 			       unsigned int log_addr)
1230 {
1231 	struct cec_log_addrs *las = &adap->log_addrs;
1232 	struct cec_msg msg = { };
1233 	const unsigned int max_retries = 2;
1234 	unsigned int i;
1235 	int err;
1236 
1237 	if (cec_has_log_addr(adap, log_addr))
1238 		return 0;
1239 
1240 	/* Send poll message */
1241 	msg.len = 1;
1242 	msg.msg[0] = (log_addr << 4) | log_addr;
1243 
1244 	for (i = 0; i < max_retries; i++) {
1245 		err = cec_transmit_msg_fh(adap, &msg, NULL, true);
1246 
1247 		/*
1248 		 * While trying to poll the physical address was reset
1249 		 * and the adapter was unconfigured, so bail out.
1250 		 */
1251 		if (!adap->is_configuring)
1252 			return -EINTR;
1253 
1254 		if (err)
1255 			return err;
1256 
1257 		/*
1258 		 * The message was aborted due to a disconnect or
1259 		 * unconfigure, just bail out.
1260 		 */
1261 		if (msg.tx_status & CEC_TX_STATUS_ABORTED)
1262 			return -EINTR;
1263 		if (msg.tx_status & CEC_TX_STATUS_OK)
1264 			return 0;
1265 		if (msg.tx_status & CEC_TX_STATUS_NACK)
1266 			break;
1267 		/*
1268 		 * Retry up to max_retries times if the message was neither
1269 		 * OKed or NACKed. This can happen due to e.g. a Lost
1270 		 * Arbitration condition.
1271 		 */
1272 	}
1273 
1274 	/*
1275 	 * If we are unable to get an OK or a NACK after max_retries attempts
1276 	 * (and note that each attempt already consists of four polls), then
1277 	 * then we assume that something is really weird and that it is not a
1278 	 * good idea to try and claim this logical address.
1279 	 */
1280 	if (i == max_retries)
1281 		return 0;
1282 
1283 	/*
1284 	 * Message not acknowledged, so this logical
1285 	 * address is free to use.
1286 	 */
1287 	err = adap->ops->adap_log_addr(adap, log_addr);
1288 	if (err)
1289 		return err;
1290 
1291 	las->log_addr[idx] = log_addr;
1292 	las->log_addr_mask |= 1 << log_addr;
1293 	adap->phys_addrs[log_addr] = adap->phys_addr;
1294 	return 1;
1295 }
1296 
1297 /*
1298  * Unconfigure the adapter: clear all logical addresses and send
1299  * the state changed event.
1300  *
1301  * This function is called with adap->lock held.
1302  */
cec_adap_unconfigure(struct cec_adapter * adap)1303 static void cec_adap_unconfigure(struct cec_adapter *adap)
1304 {
1305 	if (!adap->needs_hpd ||
1306 	    adap->phys_addr != CEC_PHYS_ADDR_INVALID)
1307 		WARN_ON(adap->ops->adap_log_addr(adap, CEC_LOG_ADDR_INVALID));
1308 	adap->log_addrs.log_addr_mask = 0;
1309 	adap->is_configuring = false;
1310 	adap->is_configured = false;
1311 	memset(adap->phys_addrs, 0xff, sizeof(adap->phys_addrs));
1312 	cec_flush(adap);
1313 	wake_up_interruptible(&adap->kthread_waitq);
1314 	cec_post_state_event(adap);
1315 }
1316 
1317 /*
1318  * Attempt to claim the required logical addresses.
1319  */
cec_config_thread_func(void * arg)1320 static int cec_config_thread_func(void *arg)
1321 {
1322 	/* The various LAs for each type of device */
1323 	static const u8 tv_log_addrs[] = {
1324 		CEC_LOG_ADDR_TV, CEC_LOG_ADDR_SPECIFIC,
1325 		CEC_LOG_ADDR_INVALID
1326 	};
1327 	static const u8 record_log_addrs[] = {
1328 		CEC_LOG_ADDR_RECORD_1, CEC_LOG_ADDR_RECORD_2,
1329 		CEC_LOG_ADDR_RECORD_3,
1330 		CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1331 		CEC_LOG_ADDR_INVALID
1332 	};
1333 	static const u8 tuner_log_addrs[] = {
1334 		CEC_LOG_ADDR_TUNER_1, CEC_LOG_ADDR_TUNER_2,
1335 		CEC_LOG_ADDR_TUNER_3, CEC_LOG_ADDR_TUNER_4,
1336 		CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1337 		CEC_LOG_ADDR_INVALID
1338 	};
1339 	static const u8 playback_log_addrs[] = {
1340 		CEC_LOG_ADDR_PLAYBACK_1, CEC_LOG_ADDR_PLAYBACK_2,
1341 		CEC_LOG_ADDR_PLAYBACK_3,
1342 		CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1343 		CEC_LOG_ADDR_INVALID
1344 	};
1345 	static const u8 audiosystem_log_addrs[] = {
1346 		CEC_LOG_ADDR_AUDIOSYSTEM,
1347 		CEC_LOG_ADDR_INVALID
1348 	};
1349 	static const u8 specific_use_log_addrs[] = {
1350 		CEC_LOG_ADDR_SPECIFIC,
1351 		CEC_LOG_ADDR_BACKUP_1, CEC_LOG_ADDR_BACKUP_2,
1352 		CEC_LOG_ADDR_INVALID
1353 	};
1354 	static const u8 *type2addrs[6] = {
1355 		[CEC_LOG_ADDR_TYPE_TV] = tv_log_addrs,
1356 		[CEC_LOG_ADDR_TYPE_RECORD] = record_log_addrs,
1357 		[CEC_LOG_ADDR_TYPE_TUNER] = tuner_log_addrs,
1358 		[CEC_LOG_ADDR_TYPE_PLAYBACK] = playback_log_addrs,
1359 		[CEC_LOG_ADDR_TYPE_AUDIOSYSTEM] = audiosystem_log_addrs,
1360 		[CEC_LOG_ADDR_TYPE_SPECIFIC] = specific_use_log_addrs,
1361 	};
1362 	static const u16 type2mask[] = {
1363 		[CEC_LOG_ADDR_TYPE_TV] = CEC_LOG_ADDR_MASK_TV,
1364 		[CEC_LOG_ADDR_TYPE_RECORD] = CEC_LOG_ADDR_MASK_RECORD,
1365 		[CEC_LOG_ADDR_TYPE_TUNER] = CEC_LOG_ADDR_MASK_TUNER,
1366 		[CEC_LOG_ADDR_TYPE_PLAYBACK] = CEC_LOG_ADDR_MASK_PLAYBACK,
1367 		[CEC_LOG_ADDR_TYPE_AUDIOSYSTEM] = CEC_LOG_ADDR_MASK_AUDIOSYSTEM,
1368 		[CEC_LOG_ADDR_TYPE_SPECIFIC] = CEC_LOG_ADDR_MASK_SPECIFIC,
1369 	};
1370 	struct cec_adapter *adap = arg;
1371 	struct cec_log_addrs *las = &adap->log_addrs;
1372 	int err;
1373 	int i, j;
1374 
1375 	mutex_lock(&adap->lock);
1376 	dprintk(1, "physical address: %x.%x.%x.%x, claim %d logical addresses\n",
1377 		cec_phys_addr_exp(adap->phys_addr), las->num_log_addrs);
1378 	las->log_addr_mask = 0;
1379 
1380 	if (las->log_addr_type[0] == CEC_LOG_ADDR_TYPE_UNREGISTERED)
1381 		goto configured;
1382 
1383 	for (i = 0; i < las->num_log_addrs; i++) {
1384 		unsigned int type = las->log_addr_type[i];
1385 		const u8 *la_list;
1386 		u8 last_la;
1387 
1388 		/*
1389 		 * The TV functionality can only map to physical address 0.
1390 		 * For any other address, try the Specific functionality
1391 		 * instead as per the spec.
1392 		 */
1393 		if (adap->phys_addr && type == CEC_LOG_ADDR_TYPE_TV)
1394 			type = CEC_LOG_ADDR_TYPE_SPECIFIC;
1395 
1396 		la_list = type2addrs[type];
1397 		last_la = las->log_addr[i];
1398 		las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1399 		if (last_la == CEC_LOG_ADDR_INVALID ||
1400 		    last_la == CEC_LOG_ADDR_UNREGISTERED ||
1401 		    !((1 << last_la) & type2mask[type]))
1402 			last_la = la_list[0];
1403 
1404 		err = cec_config_log_addr(adap, i, last_la);
1405 		if (err > 0) /* Reused last LA */
1406 			continue;
1407 
1408 		if (err < 0)
1409 			goto unconfigure;
1410 
1411 		for (j = 0; la_list[j] != CEC_LOG_ADDR_INVALID; j++) {
1412 			/* Tried this one already, skip it */
1413 			if (la_list[j] == last_la)
1414 				continue;
1415 			/* The backup addresses are CEC 2.0 specific */
1416 			if ((la_list[j] == CEC_LOG_ADDR_BACKUP_1 ||
1417 			     la_list[j] == CEC_LOG_ADDR_BACKUP_2) &&
1418 			    las->cec_version < CEC_OP_CEC_VERSION_2_0)
1419 				continue;
1420 
1421 			err = cec_config_log_addr(adap, i, la_list[j]);
1422 			if (err == 0) /* LA is in use */
1423 				continue;
1424 			if (err < 0)
1425 				goto unconfigure;
1426 			/* Done, claimed an LA */
1427 			break;
1428 		}
1429 
1430 		if (la_list[j] == CEC_LOG_ADDR_INVALID)
1431 			dprintk(1, "could not claim LA %d\n", i);
1432 	}
1433 
1434 	if (adap->log_addrs.log_addr_mask == 0 &&
1435 	    !(las->flags & CEC_LOG_ADDRS_FL_ALLOW_UNREG_FALLBACK))
1436 		goto unconfigure;
1437 
1438 configured:
1439 	if (adap->log_addrs.log_addr_mask == 0) {
1440 		/* Fall back to unregistered */
1441 		las->log_addr[0] = CEC_LOG_ADDR_UNREGISTERED;
1442 		las->log_addr_mask = 1 << las->log_addr[0];
1443 		for (i = 1; i < las->num_log_addrs; i++)
1444 			las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1445 	}
1446 	for (i = las->num_log_addrs; i < CEC_MAX_LOG_ADDRS; i++)
1447 		las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1448 	adap->is_configured = true;
1449 	adap->is_configuring = false;
1450 	cec_post_state_event(adap);
1451 
1452 	/*
1453 	 * Now post the Report Features and Report Physical Address broadcast
1454 	 * messages. Note that these are non-blocking transmits, meaning that
1455 	 * they are just queued up and once adap->lock is unlocked the main
1456 	 * thread will kick in and start transmitting these.
1457 	 *
1458 	 * If after this function is done (but before one or more of these
1459 	 * messages are actually transmitted) the CEC adapter is unconfigured,
1460 	 * then any remaining messages will be dropped by the main thread.
1461 	 */
1462 	for (i = 0; i < las->num_log_addrs; i++) {
1463 		struct cec_msg msg = {};
1464 
1465 		if (las->log_addr[i] == CEC_LOG_ADDR_INVALID ||
1466 		    (las->flags & CEC_LOG_ADDRS_FL_CDC_ONLY))
1467 			continue;
1468 
1469 		msg.msg[0] = (las->log_addr[i] << 4) | 0x0f;
1470 
1471 		/* Report Features must come first according to CEC 2.0 */
1472 		if (las->log_addr[i] != CEC_LOG_ADDR_UNREGISTERED &&
1473 		    adap->log_addrs.cec_version >= CEC_OP_CEC_VERSION_2_0) {
1474 			cec_fill_msg_report_features(adap, &msg, i);
1475 			cec_transmit_msg_fh(adap, &msg, NULL, false);
1476 		}
1477 
1478 		/* Report Physical Address */
1479 		cec_msg_report_physical_addr(&msg, adap->phys_addr,
1480 					     las->primary_device_type[i]);
1481 		dprintk(1, "config: la %d pa %x.%x.%x.%x\n",
1482 			las->log_addr[i],
1483 			cec_phys_addr_exp(adap->phys_addr));
1484 		cec_transmit_msg_fh(adap, &msg, NULL, false);
1485 
1486 		/* Report Vendor ID */
1487 		if (adap->log_addrs.vendor_id != CEC_VENDOR_ID_NONE) {
1488 			cec_msg_device_vendor_id(&msg,
1489 						 adap->log_addrs.vendor_id);
1490 			cec_transmit_msg_fh(adap, &msg, NULL, false);
1491 		}
1492 	}
1493 	adap->kthread_config = NULL;
1494 	complete(&adap->config_completion);
1495 	mutex_unlock(&adap->lock);
1496 	return 0;
1497 
1498 unconfigure:
1499 	for (i = 0; i < las->num_log_addrs; i++)
1500 		las->log_addr[i] = CEC_LOG_ADDR_INVALID;
1501 	cec_adap_unconfigure(adap);
1502 	adap->kthread_config = NULL;
1503 	mutex_unlock(&adap->lock);
1504 	complete(&adap->config_completion);
1505 	return 0;
1506 }
1507 
1508 /*
1509  * Called from either __cec_s_phys_addr or __cec_s_log_addrs to claim the
1510  * logical addresses.
1511  *
1512  * This function is called with adap->lock held.
1513  */
cec_claim_log_addrs(struct cec_adapter * adap,bool block)1514 static void cec_claim_log_addrs(struct cec_adapter *adap, bool block)
1515 {
1516 	if (WARN_ON(adap->is_configuring || adap->is_configured))
1517 		return;
1518 
1519 	init_completion(&adap->config_completion);
1520 
1521 	/* Ready to kick off the thread */
1522 	adap->is_configuring = true;
1523 	adap->kthread_config = kthread_run(cec_config_thread_func, adap,
1524 					   "ceccfg-%s", adap->name);
1525 	if (IS_ERR(adap->kthread_config)) {
1526 		adap->kthread_config = NULL;
1527 	} else if (block) {
1528 		mutex_unlock(&adap->lock);
1529 		wait_for_completion(&adap->config_completion);
1530 		mutex_lock(&adap->lock);
1531 	}
1532 }
1533 
1534 /* Set a new physical address and send an event notifying userspace of this.
1535  *
1536  * This function is called with adap->lock held.
1537  */
__cec_s_phys_addr(struct cec_adapter * adap,u16 phys_addr,bool block)1538 void __cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block)
1539 {
1540 	if (phys_addr == adap->phys_addr)
1541 		return;
1542 	if (phys_addr != CEC_PHYS_ADDR_INVALID && adap->devnode.unregistered)
1543 		return;
1544 
1545 	dprintk(1, "new physical address %x.%x.%x.%x\n",
1546 		cec_phys_addr_exp(phys_addr));
1547 	if (phys_addr == CEC_PHYS_ADDR_INVALID ||
1548 	    adap->phys_addr != CEC_PHYS_ADDR_INVALID) {
1549 		adap->phys_addr = CEC_PHYS_ADDR_INVALID;
1550 		cec_post_state_event(adap);
1551 		cec_adap_unconfigure(adap);
1552 		/* Disabling monitor all mode should always succeed */
1553 		if (adap->monitor_all_cnt)
1554 			WARN_ON(call_op(adap, adap_monitor_all_enable, false));
1555 		mutex_lock(&adap->devnode.lock);
1556 		if (adap->needs_hpd || list_empty(&adap->devnode.fhs)) {
1557 			WARN_ON(adap->ops->adap_enable(adap, false));
1558 			adap->transmit_in_progress = false;
1559 			wake_up_interruptible(&adap->kthread_waitq);
1560 		}
1561 		mutex_unlock(&adap->devnode.lock);
1562 		if (phys_addr == CEC_PHYS_ADDR_INVALID)
1563 			return;
1564 	}
1565 
1566 	mutex_lock(&adap->devnode.lock);
1567 	adap->last_initiator = 0xff;
1568 	adap->transmit_in_progress = false;
1569 
1570 	if ((adap->needs_hpd || list_empty(&adap->devnode.fhs)) &&
1571 	    adap->ops->adap_enable(adap, true)) {
1572 		mutex_unlock(&adap->devnode.lock);
1573 		return;
1574 	}
1575 
1576 	if (adap->monitor_all_cnt &&
1577 	    call_op(adap, adap_monitor_all_enable, true)) {
1578 		if (adap->needs_hpd || list_empty(&adap->devnode.fhs))
1579 			WARN_ON(adap->ops->adap_enable(adap, false));
1580 		mutex_unlock(&adap->devnode.lock);
1581 		return;
1582 	}
1583 	mutex_unlock(&adap->devnode.lock);
1584 
1585 	adap->phys_addr = phys_addr;
1586 	cec_post_state_event(adap);
1587 	if (adap->log_addrs.num_log_addrs)
1588 		cec_claim_log_addrs(adap, block);
1589 }
1590 
cec_s_phys_addr(struct cec_adapter * adap,u16 phys_addr,bool block)1591 void cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr, bool block)
1592 {
1593 	if (IS_ERR_OR_NULL(adap))
1594 		return;
1595 
1596 	mutex_lock(&adap->lock);
1597 	__cec_s_phys_addr(adap, phys_addr, block);
1598 	mutex_unlock(&adap->lock);
1599 }
1600 EXPORT_SYMBOL_GPL(cec_s_phys_addr);
1601 
cec_s_phys_addr_from_edid(struct cec_adapter * adap,const struct edid * edid)1602 void cec_s_phys_addr_from_edid(struct cec_adapter *adap,
1603 			       const struct edid *edid)
1604 {
1605 	u16 pa = CEC_PHYS_ADDR_INVALID;
1606 
1607 	if (edid && edid->extensions)
1608 		pa = cec_get_edid_phys_addr((const u8 *)edid,
1609 				EDID_LENGTH * (edid->extensions + 1), NULL);
1610 	cec_s_phys_addr(adap, pa, false);
1611 }
1612 EXPORT_SYMBOL_GPL(cec_s_phys_addr_from_edid);
1613 
cec_s_conn_info(struct cec_adapter * adap,const struct cec_connector_info * conn_info)1614 void cec_s_conn_info(struct cec_adapter *adap,
1615 		     const struct cec_connector_info *conn_info)
1616 {
1617 	if (IS_ERR_OR_NULL(adap))
1618 		return;
1619 
1620 	if (!(adap->capabilities & CEC_CAP_CONNECTOR_INFO))
1621 		return;
1622 
1623 	mutex_lock(&adap->lock);
1624 	if (conn_info)
1625 		adap->conn_info = *conn_info;
1626 	else
1627 		memset(&adap->conn_info, 0, sizeof(adap->conn_info));
1628 	cec_post_state_event(adap);
1629 	mutex_unlock(&adap->lock);
1630 }
1631 EXPORT_SYMBOL_GPL(cec_s_conn_info);
1632 
1633 /*
1634  * Called from either the ioctl or a driver to set the logical addresses.
1635  *
1636  * This function is called with adap->lock held.
1637  */
__cec_s_log_addrs(struct cec_adapter * adap,struct cec_log_addrs * log_addrs,bool block)1638 int __cec_s_log_addrs(struct cec_adapter *adap,
1639 		      struct cec_log_addrs *log_addrs, bool block)
1640 {
1641 	u16 type_mask = 0;
1642 	int i;
1643 
1644 	if (adap->devnode.unregistered)
1645 		return -ENODEV;
1646 
1647 	if (!log_addrs || log_addrs->num_log_addrs == 0) {
1648 		cec_adap_unconfigure(adap);
1649 		adap->log_addrs.num_log_addrs = 0;
1650 		for (i = 0; i < CEC_MAX_LOG_ADDRS; i++)
1651 			adap->log_addrs.log_addr[i] = CEC_LOG_ADDR_INVALID;
1652 		adap->log_addrs.osd_name[0] = '\0';
1653 		adap->log_addrs.vendor_id = CEC_VENDOR_ID_NONE;
1654 		adap->log_addrs.cec_version = CEC_OP_CEC_VERSION_2_0;
1655 		return 0;
1656 	}
1657 
1658 	if (log_addrs->flags & CEC_LOG_ADDRS_FL_CDC_ONLY) {
1659 		/*
1660 		 * Sanitize log_addrs fields if a CDC-Only device is
1661 		 * requested.
1662 		 */
1663 		log_addrs->num_log_addrs = 1;
1664 		log_addrs->osd_name[0] = '\0';
1665 		log_addrs->vendor_id = CEC_VENDOR_ID_NONE;
1666 		log_addrs->log_addr_type[0] = CEC_LOG_ADDR_TYPE_UNREGISTERED;
1667 		/*
1668 		 * This is just an internal convention since a CDC-Only device
1669 		 * doesn't have to be a switch. But switches already use
1670 		 * unregistered, so it makes some kind of sense to pick this
1671 		 * as the primary device. Since a CDC-Only device never sends
1672 		 * any 'normal' CEC messages this primary device type is never
1673 		 * sent over the CEC bus.
1674 		 */
1675 		log_addrs->primary_device_type[0] = CEC_OP_PRIM_DEVTYPE_SWITCH;
1676 		log_addrs->all_device_types[0] = 0;
1677 		log_addrs->features[0][0] = 0;
1678 		log_addrs->features[0][1] = 0;
1679 	}
1680 
1681 	/* Ensure the osd name is 0-terminated */
1682 	log_addrs->osd_name[sizeof(log_addrs->osd_name) - 1] = '\0';
1683 
1684 	/* Sanity checks */
1685 	if (log_addrs->num_log_addrs > adap->available_log_addrs) {
1686 		dprintk(1, "num_log_addrs > %d\n", adap->available_log_addrs);
1687 		return -EINVAL;
1688 	}
1689 
1690 	/*
1691 	 * Vendor ID is a 24 bit number, so check if the value is
1692 	 * within the correct range.
1693 	 */
1694 	if (log_addrs->vendor_id != CEC_VENDOR_ID_NONE &&
1695 	    (log_addrs->vendor_id & 0xff000000) != 0) {
1696 		dprintk(1, "invalid vendor ID\n");
1697 		return -EINVAL;
1698 	}
1699 
1700 	if (log_addrs->cec_version != CEC_OP_CEC_VERSION_1_4 &&
1701 	    log_addrs->cec_version != CEC_OP_CEC_VERSION_2_0) {
1702 		dprintk(1, "invalid CEC version\n");
1703 		return -EINVAL;
1704 	}
1705 
1706 	if (log_addrs->num_log_addrs > 1)
1707 		for (i = 0; i < log_addrs->num_log_addrs; i++)
1708 			if (log_addrs->log_addr_type[i] ==
1709 					CEC_LOG_ADDR_TYPE_UNREGISTERED) {
1710 				dprintk(1, "num_log_addrs > 1 can't be combined with unregistered LA\n");
1711 				return -EINVAL;
1712 			}
1713 
1714 	for (i = 0; i < log_addrs->num_log_addrs; i++) {
1715 		const u8 feature_sz = ARRAY_SIZE(log_addrs->features[0]);
1716 		u8 *features = log_addrs->features[i];
1717 		bool op_is_dev_features = false;
1718 		unsigned j;
1719 
1720 		log_addrs->log_addr[i] = CEC_LOG_ADDR_INVALID;
1721 		if (type_mask & (1 << log_addrs->log_addr_type[i])) {
1722 			dprintk(1, "duplicate logical address type\n");
1723 			return -EINVAL;
1724 		}
1725 		type_mask |= 1 << log_addrs->log_addr_type[i];
1726 		if ((type_mask & (1 << CEC_LOG_ADDR_TYPE_RECORD)) &&
1727 		    (type_mask & (1 << CEC_LOG_ADDR_TYPE_PLAYBACK))) {
1728 			/* Record already contains the playback functionality */
1729 			dprintk(1, "invalid record + playback combination\n");
1730 			return -EINVAL;
1731 		}
1732 		if (log_addrs->primary_device_type[i] >
1733 					CEC_OP_PRIM_DEVTYPE_PROCESSOR) {
1734 			dprintk(1, "unknown primary device type\n");
1735 			return -EINVAL;
1736 		}
1737 		if (log_addrs->primary_device_type[i] == 2) {
1738 			dprintk(1, "invalid primary device type\n");
1739 			return -EINVAL;
1740 		}
1741 		if (log_addrs->log_addr_type[i] > CEC_LOG_ADDR_TYPE_UNREGISTERED) {
1742 			dprintk(1, "unknown logical address type\n");
1743 			return -EINVAL;
1744 		}
1745 		for (j = 0; j < feature_sz; j++) {
1746 			if ((features[j] & 0x80) == 0) {
1747 				if (op_is_dev_features)
1748 					break;
1749 				op_is_dev_features = true;
1750 			}
1751 		}
1752 		if (!op_is_dev_features || j == feature_sz) {
1753 			dprintk(1, "malformed features\n");
1754 			return -EINVAL;
1755 		}
1756 		/* Zero unused part of the feature array */
1757 		memset(features + j + 1, 0, feature_sz - j - 1);
1758 	}
1759 
1760 	if (log_addrs->cec_version >= CEC_OP_CEC_VERSION_2_0) {
1761 		if (log_addrs->num_log_addrs > 2) {
1762 			dprintk(1, "CEC 2.0 allows no more than 2 logical addresses\n");
1763 			return -EINVAL;
1764 		}
1765 		if (log_addrs->num_log_addrs == 2) {
1766 			if (!(type_mask & ((1 << CEC_LOG_ADDR_TYPE_AUDIOSYSTEM) |
1767 					   (1 << CEC_LOG_ADDR_TYPE_TV)))) {
1768 				dprintk(1, "two LAs is only allowed for audiosystem and TV\n");
1769 				return -EINVAL;
1770 			}
1771 			if (!(type_mask & ((1 << CEC_LOG_ADDR_TYPE_PLAYBACK) |
1772 					   (1 << CEC_LOG_ADDR_TYPE_RECORD)))) {
1773 				dprintk(1, "an audiosystem/TV can only be combined with record or playback\n");
1774 				return -EINVAL;
1775 			}
1776 		}
1777 	}
1778 
1779 	/* Zero unused LAs */
1780 	for (i = log_addrs->num_log_addrs; i < CEC_MAX_LOG_ADDRS; i++) {
1781 		log_addrs->primary_device_type[i] = 0;
1782 		log_addrs->log_addr_type[i] = 0;
1783 		log_addrs->all_device_types[i] = 0;
1784 		memset(log_addrs->features[i], 0,
1785 		       sizeof(log_addrs->features[i]));
1786 	}
1787 
1788 	log_addrs->log_addr_mask = adap->log_addrs.log_addr_mask;
1789 	adap->log_addrs = *log_addrs;
1790 	if (adap->phys_addr != CEC_PHYS_ADDR_INVALID)
1791 		cec_claim_log_addrs(adap, block);
1792 	return 0;
1793 }
1794 
cec_s_log_addrs(struct cec_adapter * adap,struct cec_log_addrs * log_addrs,bool block)1795 int cec_s_log_addrs(struct cec_adapter *adap,
1796 		    struct cec_log_addrs *log_addrs, bool block)
1797 {
1798 	int err;
1799 
1800 	mutex_lock(&adap->lock);
1801 	err = __cec_s_log_addrs(adap, log_addrs, block);
1802 	mutex_unlock(&adap->lock);
1803 	return err;
1804 }
1805 EXPORT_SYMBOL_GPL(cec_s_log_addrs);
1806 
1807 /* High-level core CEC message handling */
1808 
1809 /* Fill in the Report Features message */
cec_fill_msg_report_features(struct cec_adapter * adap,struct cec_msg * msg,unsigned int la_idx)1810 static void cec_fill_msg_report_features(struct cec_adapter *adap,
1811 					 struct cec_msg *msg,
1812 					 unsigned int la_idx)
1813 {
1814 	const struct cec_log_addrs *las = &adap->log_addrs;
1815 	const u8 *features = las->features[la_idx];
1816 	bool op_is_dev_features = false;
1817 	unsigned int idx;
1818 
1819 	/* Report Features */
1820 	msg->msg[0] = (las->log_addr[la_idx] << 4) | 0x0f;
1821 	msg->len = 4;
1822 	msg->msg[1] = CEC_MSG_REPORT_FEATURES;
1823 	msg->msg[2] = adap->log_addrs.cec_version;
1824 	msg->msg[3] = las->all_device_types[la_idx];
1825 
1826 	/* Write RC Profiles first, then Device Features */
1827 	for (idx = 0; idx < ARRAY_SIZE(las->features[0]); idx++) {
1828 		msg->msg[msg->len++] = features[idx];
1829 		if ((features[idx] & CEC_OP_FEAT_EXT) == 0) {
1830 			if (op_is_dev_features)
1831 				break;
1832 			op_is_dev_features = true;
1833 		}
1834 	}
1835 }
1836 
1837 /* Transmit the Feature Abort message */
cec_feature_abort_reason(struct cec_adapter * adap,struct cec_msg * msg,u8 reason)1838 static int cec_feature_abort_reason(struct cec_adapter *adap,
1839 				    struct cec_msg *msg, u8 reason)
1840 {
1841 	struct cec_msg tx_msg = { };
1842 
1843 	/*
1844 	 * Don't reply with CEC_MSG_FEATURE_ABORT to a CEC_MSG_FEATURE_ABORT
1845 	 * message!
1846 	 */
1847 	if (msg->msg[1] == CEC_MSG_FEATURE_ABORT)
1848 		return 0;
1849 	/* Don't Feature Abort messages from 'Unregistered' */
1850 	if (cec_msg_initiator(msg) == CEC_LOG_ADDR_UNREGISTERED)
1851 		return 0;
1852 	cec_msg_set_reply_to(&tx_msg, msg);
1853 	cec_msg_feature_abort(&tx_msg, msg->msg[1], reason);
1854 	return cec_transmit_msg(adap, &tx_msg, false);
1855 }
1856 
cec_feature_abort(struct cec_adapter * adap,struct cec_msg * msg)1857 static int cec_feature_abort(struct cec_adapter *adap, struct cec_msg *msg)
1858 {
1859 	return cec_feature_abort_reason(adap, msg,
1860 					CEC_OP_ABORT_UNRECOGNIZED_OP);
1861 }
1862 
cec_feature_refused(struct cec_adapter * adap,struct cec_msg * msg)1863 static int cec_feature_refused(struct cec_adapter *adap, struct cec_msg *msg)
1864 {
1865 	return cec_feature_abort_reason(adap, msg,
1866 					CEC_OP_ABORT_REFUSED);
1867 }
1868 
1869 /*
1870  * Called when a CEC message is received. This function will do any
1871  * necessary core processing. The is_reply bool is true if this message
1872  * is a reply to an earlier transmit.
1873  *
1874  * The message is either a broadcast message or a valid directed message.
1875  */
cec_receive_notify(struct cec_adapter * adap,struct cec_msg * msg,bool is_reply)1876 static int cec_receive_notify(struct cec_adapter *adap, struct cec_msg *msg,
1877 			      bool is_reply)
1878 {
1879 	bool is_broadcast = cec_msg_is_broadcast(msg);
1880 	u8 dest_laddr = cec_msg_destination(msg);
1881 	u8 init_laddr = cec_msg_initiator(msg);
1882 	u8 devtype = cec_log_addr2dev(adap, dest_laddr);
1883 	int la_idx = cec_log_addr2idx(adap, dest_laddr);
1884 	bool from_unregistered = init_laddr == 0xf;
1885 	struct cec_msg tx_cec_msg = { };
1886 
1887 	dprintk(2, "%s: %*ph\n", __func__, msg->len, msg->msg);
1888 
1889 	/* If this is a CDC-Only device, then ignore any non-CDC messages */
1890 	if (cec_is_cdc_only(&adap->log_addrs) &&
1891 	    msg->msg[1] != CEC_MSG_CDC_MESSAGE)
1892 		return 0;
1893 
1894 	if (adap->ops->received) {
1895 		/* Allow drivers to process the message first */
1896 		if (adap->ops->received(adap, msg) != -ENOMSG)
1897 			return 0;
1898 	}
1899 
1900 	/*
1901 	 * REPORT_PHYSICAL_ADDR, CEC_MSG_USER_CONTROL_PRESSED and
1902 	 * CEC_MSG_USER_CONTROL_RELEASED messages always have to be
1903 	 * handled by the CEC core, even if the passthrough mode is on.
1904 	 * The others are just ignored if passthrough mode is on.
1905 	 */
1906 	switch (msg->msg[1]) {
1907 	case CEC_MSG_GET_CEC_VERSION:
1908 	case CEC_MSG_ABORT:
1909 	case CEC_MSG_GIVE_DEVICE_POWER_STATUS:
1910 	case CEC_MSG_GIVE_OSD_NAME:
1911 		/*
1912 		 * These messages reply with a directed message, so ignore if
1913 		 * the initiator is Unregistered.
1914 		 */
1915 		if (!adap->passthrough && from_unregistered)
1916 			return 0;
1917 		/* Fall through */
1918 	case CEC_MSG_GIVE_DEVICE_VENDOR_ID:
1919 	case CEC_MSG_GIVE_FEATURES:
1920 	case CEC_MSG_GIVE_PHYSICAL_ADDR:
1921 		/*
1922 		 * Skip processing these messages if the passthrough mode
1923 		 * is on.
1924 		 */
1925 		if (adap->passthrough)
1926 			goto skip_processing;
1927 		/* Ignore if addressing is wrong */
1928 		if (is_broadcast)
1929 			return 0;
1930 		break;
1931 
1932 	case CEC_MSG_USER_CONTROL_PRESSED:
1933 	case CEC_MSG_USER_CONTROL_RELEASED:
1934 		/* Wrong addressing mode: don't process */
1935 		if (is_broadcast || from_unregistered)
1936 			goto skip_processing;
1937 		break;
1938 
1939 	case CEC_MSG_REPORT_PHYSICAL_ADDR:
1940 		/*
1941 		 * This message is always processed, regardless of the
1942 		 * passthrough setting.
1943 		 *
1944 		 * Exception: don't process if wrong addressing mode.
1945 		 */
1946 		if (!is_broadcast)
1947 			goto skip_processing;
1948 		break;
1949 
1950 	default:
1951 		break;
1952 	}
1953 
1954 	cec_msg_set_reply_to(&tx_cec_msg, msg);
1955 
1956 	switch (msg->msg[1]) {
1957 	/* The following messages are processed but still passed through */
1958 	case CEC_MSG_REPORT_PHYSICAL_ADDR: {
1959 		u16 pa = (msg->msg[2] << 8) | msg->msg[3];
1960 
1961 		if (!from_unregistered)
1962 			adap->phys_addrs[init_laddr] = pa;
1963 		dprintk(1, "reported physical address %x.%x.%x.%x for logical address %d\n",
1964 			cec_phys_addr_exp(pa), init_laddr);
1965 		break;
1966 	}
1967 
1968 	case CEC_MSG_USER_CONTROL_PRESSED:
1969 		if (!(adap->capabilities & CEC_CAP_RC) ||
1970 		    !(adap->log_addrs.flags & CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU))
1971 			break;
1972 
1973 #ifdef CONFIG_MEDIA_CEC_RC
1974 		switch (msg->msg[2]) {
1975 		/*
1976 		 * Play function, this message can have variable length
1977 		 * depending on the specific play function that is used.
1978 		 */
1979 		case 0x60:
1980 			if (msg->len == 2)
1981 				rc_keydown(adap->rc, RC_PROTO_CEC,
1982 					   msg->msg[2], 0);
1983 			else
1984 				rc_keydown(adap->rc, RC_PROTO_CEC,
1985 					   msg->msg[2] << 8 | msg->msg[3], 0);
1986 			break;
1987 		/*
1988 		 * Other function messages that are not handled.
1989 		 * Currently the RC framework does not allow to supply an
1990 		 * additional parameter to a keypress. These "keys" contain
1991 		 * other information such as channel number, an input number
1992 		 * etc.
1993 		 * For the time being these messages are not processed by the
1994 		 * framework and are simply forwarded to the user space.
1995 		 */
1996 		case 0x56: case 0x57:
1997 		case 0x67: case 0x68: case 0x69: case 0x6a:
1998 			break;
1999 		default:
2000 			rc_keydown(adap->rc, RC_PROTO_CEC, msg->msg[2], 0);
2001 			break;
2002 		}
2003 #endif
2004 		break;
2005 
2006 	case CEC_MSG_USER_CONTROL_RELEASED:
2007 		if (!(adap->capabilities & CEC_CAP_RC) ||
2008 		    !(adap->log_addrs.flags & CEC_LOG_ADDRS_FL_ALLOW_RC_PASSTHRU))
2009 			break;
2010 #ifdef CONFIG_MEDIA_CEC_RC
2011 		rc_keyup(adap->rc);
2012 #endif
2013 		break;
2014 
2015 	/*
2016 	 * The remaining messages are only processed if the passthrough mode
2017 	 * is off.
2018 	 */
2019 	case CEC_MSG_GET_CEC_VERSION:
2020 		cec_msg_cec_version(&tx_cec_msg, adap->log_addrs.cec_version);
2021 		return cec_transmit_msg(adap, &tx_cec_msg, false);
2022 
2023 	case CEC_MSG_GIVE_PHYSICAL_ADDR:
2024 		/* Do nothing for CEC switches using addr 15 */
2025 		if (devtype == CEC_OP_PRIM_DEVTYPE_SWITCH && dest_laddr == 15)
2026 			return 0;
2027 		cec_msg_report_physical_addr(&tx_cec_msg, adap->phys_addr, devtype);
2028 		return cec_transmit_msg(adap, &tx_cec_msg, false);
2029 
2030 	case CEC_MSG_GIVE_DEVICE_VENDOR_ID:
2031 		if (adap->log_addrs.vendor_id == CEC_VENDOR_ID_NONE)
2032 			return cec_feature_abort(adap, msg);
2033 		cec_msg_device_vendor_id(&tx_cec_msg, adap->log_addrs.vendor_id);
2034 		return cec_transmit_msg(adap, &tx_cec_msg, false);
2035 
2036 	case CEC_MSG_ABORT:
2037 		/* Do nothing for CEC switches */
2038 		if (devtype == CEC_OP_PRIM_DEVTYPE_SWITCH)
2039 			return 0;
2040 		return cec_feature_refused(adap, msg);
2041 
2042 	case CEC_MSG_GIVE_OSD_NAME: {
2043 		if (adap->log_addrs.osd_name[0] == 0)
2044 			return cec_feature_abort(adap, msg);
2045 		cec_msg_set_osd_name(&tx_cec_msg, adap->log_addrs.osd_name);
2046 		return cec_transmit_msg(adap, &tx_cec_msg, false);
2047 	}
2048 
2049 	case CEC_MSG_GIVE_FEATURES:
2050 		if (adap->log_addrs.cec_version < CEC_OP_CEC_VERSION_2_0)
2051 			return cec_feature_abort(adap, msg);
2052 		cec_fill_msg_report_features(adap, &tx_cec_msg, la_idx);
2053 		return cec_transmit_msg(adap, &tx_cec_msg, false);
2054 
2055 	default:
2056 		/*
2057 		 * Unprocessed messages are aborted if userspace isn't doing
2058 		 * any processing either.
2059 		 */
2060 		if (!is_broadcast && !is_reply && !adap->follower_cnt &&
2061 		    !adap->cec_follower && msg->msg[1] != CEC_MSG_FEATURE_ABORT)
2062 			return cec_feature_abort(adap, msg);
2063 		break;
2064 	}
2065 
2066 skip_processing:
2067 	/* If this was a reply, then we're done, unless otherwise specified */
2068 	if (is_reply && !(msg->flags & CEC_MSG_FL_REPLY_TO_FOLLOWERS))
2069 		return 0;
2070 
2071 	/*
2072 	 * Send to the exclusive follower if there is one, otherwise send
2073 	 * to all followers.
2074 	 */
2075 	if (adap->cec_follower)
2076 		cec_queue_msg_fh(adap->cec_follower, msg);
2077 	else
2078 		cec_queue_msg_followers(adap, msg);
2079 	return 0;
2080 }
2081 
2082 /*
2083  * Helper functions to keep track of the 'monitor all' use count.
2084  *
2085  * These functions are called with adap->lock held.
2086  */
cec_monitor_all_cnt_inc(struct cec_adapter * adap)2087 int cec_monitor_all_cnt_inc(struct cec_adapter *adap)
2088 {
2089 	int ret = 0;
2090 
2091 	if (adap->monitor_all_cnt == 0)
2092 		ret = call_op(adap, adap_monitor_all_enable, 1);
2093 	if (ret == 0)
2094 		adap->monitor_all_cnt++;
2095 	return ret;
2096 }
2097 
cec_monitor_all_cnt_dec(struct cec_adapter * adap)2098 void cec_monitor_all_cnt_dec(struct cec_adapter *adap)
2099 {
2100 	adap->monitor_all_cnt--;
2101 	if (adap->monitor_all_cnt == 0)
2102 		WARN_ON(call_op(adap, adap_monitor_all_enable, 0));
2103 }
2104 
2105 /*
2106  * Helper functions to keep track of the 'monitor pin' use count.
2107  *
2108  * These functions are called with adap->lock held.
2109  */
cec_monitor_pin_cnt_inc(struct cec_adapter * adap)2110 int cec_monitor_pin_cnt_inc(struct cec_adapter *adap)
2111 {
2112 	int ret = 0;
2113 
2114 	if (adap->monitor_pin_cnt == 0)
2115 		ret = call_op(adap, adap_monitor_pin_enable, 1);
2116 	if (ret == 0)
2117 		adap->monitor_pin_cnt++;
2118 	return ret;
2119 }
2120 
cec_monitor_pin_cnt_dec(struct cec_adapter * adap)2121 void cec_monitor_pin_cnt_dec(struct cec_adapter *adap)
2122 {
2123 	adap->monitor_pin_cnt--;
2124 	if (adap->monitor_pin_cnt == 0)
2125 		WARN_ON(call_op(adap, adap_monitor_pin_enable, 0));
2126 }
2127 
2128 #ifdef CONFIG_DEBUG_FS
2129 /*
2130  * Log the current state of the CEC adapter.
2131  * Very useful for debugging.
2132  */
cec_adap_status(struct seq_file * file,void * priv)2133 int cec_adap_status(struct seq_file *file, void *priv)
2134 {
2135 	struct cec_adapter *adap = dev_get_drvdata(file->private);
2136 	struct cec_data *data;
2137 
2138 	mutex_lock(&adap->lock);
2139 	seq_printf(file, "configured: %d\n", adap->is_configured);
2140 	seq_printf(file, "configuring: %d\n", adap->is_configuring);
2141 	seq_printf(file, "phys_addr: %x.%x.%x.%x\n",
2142 		   cec_phys_addr_exp(adap->phys_addr));
2143 	seq_printf(file, "number of LAs: %d\n", adap->log_addrs.num_log_addrs);
2144 	seq_printf(file, "LA mask: 0x%04x\n", adap->log_addrs.log_addr_mask);
2145 	if (adap->cec_follower)
2146 		seq_printf(file, "has CEC follower%s\n",
2147 			   adap->passthrough ? " (in passthrough mode)" : "");
2148 	if (adap->cec_initiator)
2149 		seq_puts(file, "has CEC initiator\n");
2150 	if (adap->monitor_all_cnt)
2151 		seq_printf(file, "file handles in Monitor All mode: %u\n",
2152 			   adap->monitor_all_cnt);
2153 	if (adap->tx_timeouts) {
2154 		seq_printf(file, "transmit timeouts: %u\n",
2155 			   adap->tx_timeouts);
2156 		adap->tx_timeouts = 0;
2157 	}
2158 	data = adap->transmitting;
2159 	if (data)
2160 		seq_printf(file, "transmitting message: %*ph (reply: %02x, timeout: %ums)\n",
2161 			   data->msg.len, data->msg.msg, data->msg.reply,
2162 			   data->msg.timeout);
2163 	seq_printf(file, "pending transmits: %u\n", adap->transmit_queue_sz);
2164 	list_for_each_entry(data, &adap->transmit_queue, list) {
2165 		seq_printf(file, "queued tx message: %*ph (reply: %02x, timeout: %ums)\n",
2166 			   data->msg.len, data->msg.msg, data->msg.reply,
2167 			   data->msg.timeout);
2168 	}
2169 	list_for_each_entry(data, &adap->wait_queue, list) {
2170 		seq_printf(file, "message waiting for reply: %*ph (reply: %02x, timeout: %ums)\n",
2171 			   data->msg.len, data->msg.msg, data->msg.reply,
2172 			   data->msg.timeout);
2173 	}
2174 
2175 	call_void_op(adap, adap_status, file);
2176 	mutex_unlock(&adap->lock);
2177 	return 0;
2178 }
2179 #endif
2180