1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Cadence CDNSP DRD Driver.
4 *
5 * Copyright (C) 2020 Cadence.
6 *
7 * Author: Pawel Laszczak <pawell@cadence.com>
8 *
9 * Code based on Linux XHCI driver.
10 * Origin: Copyright (C) 2008 Intel Corp
11 */
12
13 /*
14 * Ring initialization rules:
15 * 1. Each segment is initialized to zero, except for link TRBs.
16 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or
17 * Consumer Cycle State (CCS), depending on ring function.
18 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
19 *
20 * Ring behavior rules:
21 * 1. A ring is empty if enqueue == dequeue. This means there will always be at
22 * least one free TRB in the ring. This is useful if you want to turn that
23 * into a link TRB and expand the ring.
24 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
25 * link TRB, then load the pointer with the address in the link TRB. If the
26 * link TRB had its toggle bit set, you may need to update the ring cycle
27 * state (see cycle bit rules). You may have to do this multiple times
28 * until you reach a non-link TRB.
29 * 3. A ring is full if enqueue++ (for the definition of increment above)
30 * equals the dequeue pointer.
31 *
32 * Cycle bit rules:
33 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit
34 * in a link TRB, it must toggle the ring cycle state.
35 * 2. When a producer increments an enqueue pointer and encounters a toggle bit
36 * in a link TRB, it must toggle the ring cycle state.
37 *
38 * Producer rules:
39 * 1. Check if ring is full before you enqueue.
40 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
41 * Update enqueue pointer between each write (which may update the ring
42 * cycle state).
43 * 3. Notify consumer. If SW is producer, it rings the doorbell for command
44 * and endpoint rings. If controller is the producer for the event ring,
45 * and it generates an interrupt according to interrupt modulation rules.
46 *
47 * Consumer rules:
48 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state,
49 * the TRB is owned by the consumer.
50 * 2. Update dequeue pointer (which may update the ring cycle state) and
51 * continue processing TRBs until you reach a TRB which is not owned by you.
52 * 3. Notify the producer. SW is the consumer for the event ring, and it
53 * updates event ring dequeue pointer. Controller is the consumer for the
54 * command and endpoint rings; it generates events on the event ring
55 * for these.
56 */
57
58 #include <linux/scatterlist.h>
59 #include <linux/dma-mapping.h>
60 #include <linux/delay.h>
61 #include <linux/slab.h>
62 #include <linux/irq.h>
63
64 #include "cdnsp-trace.h"
65 #include "cdnsp-gadget.h"
66
67 /*
68 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
69 * address of the TRB.
70 */
cdnsp_trb_virt_to_dma(struct cdnsp_segment * seg,union cdnsp_trb * trb)71 dma_addr_t cdnsp_trb_virt_to_dma(struct cdnsp_segment *seg,
72 union cdnsp_trb *trb)
73 {
74 unsigned long segment_offset = trb - seg->trbs;
75
76 if (trb < seg->trbs || segment_offset >= TRBS_PER_SEGMENT)
77 return 0;
78
79 return seg->dma + (segment_offset * sizeof(*trb));
80 }
81
cdnsp_trb_is_noop(union cdnsp_trb * trb)82 static bool cdnsp_trb_is_noop(union cdnsp_trb *trb)
83 {
84 return TRB_TYPE_NOOP_LE32(trb->generic.field[3]);
85 }
86
cdnsp_trb_is_link(union cdnsp_trb * trb)87 static bool cdnsp_trb_is_link(union cdnsp_trb *trb)
88 {
89 return TRB_TYPE_LINK_LE32(trb->link.control);
90 }
91
cdnsp_last_trb_on_seg(struct cdnsp_segment * seg,union cdnsp_trb * trb)92 bool cdnsp_last_trb_on_seg(struct cdnsp_segment *seg, union cdnsp_trb *trb)
93 {
94 return trb == &seg->trbs[TRBS_PER_SEGMENT - 1];
95 }
96
cdnsp_last_trb_on_ring(struct cdnsp_ring * ring,struct cdnsp_segment * seg,union cdnsp_trb * trb)97 bool cdnsp_last_trb_on_ring(struct cdnsp_ring *ring,
98 struct cdnsp_segment *seg,
99 union cdnsp_trb *trb)
100 {
101 return cdnsp_last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg);
102 }
103
cdnsp_link_trb_toggles_cycle(union cdnsp_trb * trb)104 static bool cdnsp_link_trb_toggles_cycle(union cdnsp_trb *trb)
105 {
106 return le32_to_cpu(trb->link.control) & LINK_TOGGLE;
107 }
108
cdnsp_trb_to_noop(union cdnsp_trb * trb,u32 noop_type)109 static void cdnsp_trb_to_noop(union cdnsp_trb *trb, u32 noop_type)
110 {
111 if (cdnsp_trb_is_link(trb)) {
112 /* Unchain chained link TRBs. */
113 trb->link.control &= cpu_to_le32(~TRB_CHAIN);
114 } else {
115 trb->generic.field[0] = 0;
116 trb->generic.field[1] = 0;
117 trb->generic.field[2] = 0;
118 /* Preserve only the cycle bit of this TRB. */
119 trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE);
120 trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type));
121 }
122 }
123
124 /*
125 * Updates trb to point to the next TRB in the ring, and updates seg if the next
126 * TRB is in a new segment. This does not skip over link TRBs, and it does not
127 * effect the ring dequeue or enqueue pointers.
128 */
cdnsp_next_trb(struct cdnsp_device * pdev,struct cdnsp_ring * ring,struct cdnsp_segment ** seg,union cdnsp_trb ** trb)129 static void cdnsp_next_trb(struct cdnsp_device *pdev,
130 struct cdnsp_ring *ring,
131 struct cdnsp_segment **seg,
132 union cdnsp_trb **trb)
133 {
134 if (cdnsp_trb_is_link(*trb)) {
135 *seg = (*seg)->next;
136 *trb = ((*seg)->trbs);
137 } else {
138 (*trb)++;
139 }
140 }
141
142 /*
143 * See Cycle bit rules. SW is the consumer for the event ring only.
144 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
145 */
cdnsp_inc_deq(struct cdnsp_device * pdev,struct cdnsp_ring * ring)146 void cdnsp_inc_deq(struct cdnsp_device *pdev, struct cdnsp_ring *ring)
147 {
148 /* event ring doesn't have link trbs, check for last trb. */
149 if (ring->type == TYPE_EVENT) {
150 if (!cdnsp_last_trb_on_seg(ring->deq_seg, ring->dequeue)) {
151 ring->dequeue++;
152 goto out;
153 }
154
155 if (cdnsp_last_trb_on_ring(ring, ring->deq_seg, ring->dequeue))
156 ring->cycle_state ^= 1;
157
158 ring->deq_seg = ring->deq_seg->next;
159 ring->dequeue = ring->deq_seg->trbs;
160 goto out;
161 }
162
163 /* All other rings have link trbs. */
164 if (!cdnsp_trb_is_link(ring->dequeue)) {
165 ring->dequeue++;
166 ring->num_trbs_free++;
167 }
168 while (cdnsp_trb_is_link(ring->dequeue)) {
169 ring->deq_seg = ring->deq_seg->next;
170 ring->dequeue = ring->deq_seg->trbs;
171 }
172 out:
173 trace_cdnsp_inc_deq(ring);
174 }
175
176 /*
177 * See Cycle bit rules. SW is the consumer for the event ring only.
178 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
179 *
180 * If we've just enqueued a TRB that is in the middle of a TD (meaning the
181 * chain bit is set), then set the chain bit in all the following link TRBs.
182 * If we've enqueued the last TRB in a TD, make sure the following link TRBs
183 * have their chain bit cleared (so that each Link TRB is a separate TD).
184 *
185 * @more_trbs_coming: Will you enqueue more TRBs before ringing the doorbell.
186 */
cdnsp_inc_enq(struct cdnsp_device * pdev,struct cdnsp_ring * ring,bool more_trbs_coming)187 static void cdnsp_inc_enq(struct cdnsp_device *pdev,
188 struct cdnsp_ring *ring,
189 bool more_trbs_coming)
190 {
191 union cdnsp_trb *next;
192 u32 chain;
193
194 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN;
195
196 /* If this is not event ring, there is one less usable TRB. */
197 if (!cdnsp_trb_is_link(ring->enqueue))
198 ring->num_trbs_free--;
199 next = ++(ring->enqueue);
200
201 /* Update the dequeue pointer further if that was a link TRB */
202 while (cdnsp_trb_is_link(next)) {
203 /*
204 * If the caller doesn't plan on enqueuing more TDs before
205 * ringing the doorbell, then we don't want to give the link TRB
206 * to the hardware just yet. We'll give the link TRB back in
207 * cdnsp_prepare_ring() just before we enqueue the TD at the
208 * top of the ring.
209 */
210 if (!chain && !more_trbs_coming)
211 break;
212
213 next->link.control &= cpu_to_le32(~TRB_CHAIN);
214 next->link.control |= cpu_to_le32(chain);
215
216 /* Give this link TRB to the hardware */
217 wmb();
218 next->link.control ^= cpu_to_le32(TRB_CYCLE);
219
220 /* Toggle the cycle bit after the last ring segment. */
221 if (cdnsp_link_trb_toggles_cycle(next))
222 ring->cycle_state ^= 1;
223
224 ring->enq_seg = ring->enq_seg->next;
225 ring->enqueue = ring->enq_seg->trbs;
226 next = ring->enqueue;
227 }
228
229 trace_cdnsp_inc_enq(ring);
230 }
231
232 /*
233 * Check to see if there's room to enqueue num_trbs on the ring and make sure
234 * enqueue pointer will not advance into dequeue segment.
235 */
cdnsp_room_on_ring(struct cdnsp_device * pdev,struct cdnsp_ring * ring,unsigned int num_trbs)236 static bool cdnsp_room_on_ring(struct cdnsp_device *pdev,
237 struct cdnsp_ring *ring,
238 unsigned int num_trbs)
239 {
240 int num_trbs_in_deq_seg;
241
242 if (ring->num_trbs_free < num_trbs)
243 return false;
244
245 if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) {
246 num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs;
247
248 if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg)
249 return false;
250 }
251
252 return true;
253 }
254
255 /*
256 * Workaround for L1: controller has issue with resuming from L1 after
257 * setting doorbell for endpoint during L1 state. This function forces
258 * resume signal in such case.
259 */
cdnsp_force_l0_go(struct cdnsp_device * pdev)260 static void cdnsp_force_l0_go(struct cdnsp_device *pdev)
261 {
262 if (pdev->active_port == &pdev->usb2_port && pdev->gadget.lpm_capable)
263 cdnsp_set_link_state(pdev, &pdev->active_port->regs->portsc, XDEV_U0);
264 }
265
266 /* Ring the doorbell after placing a command on the ring. */
cdnsp_ring_cmd_db(struct cdnsp_device * pdev)267 void cdnsp_ring_cmd_db(struct cdnsp_device *pdev)
268 {
269 writel(DB_VALUE_CMD, &pdev->dba->cmd_db);
270 }
271
272 /*
273 * Ring the doorbell after placing a transfer on the ring.
274 * Returns true if doorbell was set, otherwise false.
275 */
cdnsp_ring_ep_doorbell(struct cdnsp_device * pdev,struct cdnsp_ep * pep,unsigned int stream_id)276 static bool cdnsp_ring_ep_doorbell(struct cdnsp_device *pdev,
277 struct cdnsp_ep *pep,
278 unsigned int stream_id)
279 {
280 __le32 __iomem *reg_addr = &pdev->dba->ep_db;
281 unsigned int ep_state = pep->ep_state;
282 unsigned int db_value;
283
284 /*
285 * Don't ring the doorbell for this endpoint if endpoint is halted or
286 * disabled.
287 */
288 if (ep_state & EP_HALTED || !(ep_state & EP_ENABLED))
289 return false;
290
291 /* For stream capable endpoints driver can ring doorbell only twice. */
292 if (pep->ep_state & EP_HAS_STREAMS) {
293 if (pep->stream_info.drbls_count >= 2)
294 return false;
295
296 pep->stream_info.drbls_count++;
297 }
298
299 pep->ep_state &= ~EP_STOPPED;
300
301 if (pep->idx == 0 && pdev->ep0_stage == CDNSP_DATA_STAGE &&
302 !pdev->ep0_expect_in)
303 db_value = DB_VALUE_EP0_OUT(pep->idx, stream_id);
304 else
305 db_value = DB_VALUE(pep->idx, stream_id);
306
307 trace_cdnsp_tr_drbl(pep, stream_id);
308
309 writel(db_value, reg_addr);
310
311 cdnsp_force_l0_go(pdev);
312
313 /* Doorbell was set. */
314 return true;
315 }
316
317 /*
318 * Get the right ring for the given pep and stream_id.
319 * If the endpoint supports streams, boundary check the USB request's stream ID.
320 * If the endpoint doesn't support streams, return the singular endpoint ring.
321 */
cdnsp_get_transfer_ring(struct cdnsp_device * pdev,struct cdnsp_ep * pep,unsigned int stream_id)322 static struct cdnsp_ring *cdnsp_get_transfer_ring(struct cdnsp_device *pdev,
323 struct cdnsp_ep *pep,
324 unsigned int stream_id)
325 {
326 if (!(pep->ep_state & EP_HAS_STREAMS))
327 return pep->ring;
328
329 if (stream_id == 0 || stream_id >= pep->stream_info.num_streams) {
330 dev_err(pdev->dev, "ERR: %s ring doesn't exist for SID: %d.\n",
331 pep->name, stream_id);
332 return NULL;
333 }
334
335 return pep->stream_info.stream_rings[stream_id];
336 }
337
338 static struct cdnsp_ring *
cdnsp_request_to_transfer_ring(struct cdnsp_device * pdev,struct cdnsp_request * preq)339 cdnsp_request_to_transfer_ring(struct cdnsp_device *pdev,
340 struct cdnsp_request *preq)
341 {
342 return cdnsp_get_transfer_ring(pdev, preq->pep,
343 preq->request.stream_id);
344 }
345
346 /* Ring the doorbell for any rings with pending requests. */
cdnsp_ring_doorbell_for_active_rings(struct cdnsp_device * pdev,struct cdnsp_ep * pep)347 void cdnsp_ring_doorbell_for_active_rings(struct cdnsp_device *pdev,
348 struct cdnsp_ep *pep)
349 {
350 struct cdnsp_stream_info *stream_info;
351 unsigned int stream_id;
352 int ret;
353
354 if (pep->ep_state & EP_DIS_IN_RROGRESS)
355 return;
356
357 /* A ring has pending Request if its TD list is not empty. */
358 if (!(pep->ep_state & EP_HAS_STREAMS) && pep->number) {
359 if (pep->ring && !list_empty(&pep->ring->td_list))
360 cdnsp_ring_ep_doorbell(pdev, pep, 0);
361 return;
362 }
363
364 stream_info = &pep->stream_info;
365
366 for (stream_id = 1; stream_id < stream_info->num_streams; stream_id++) {
367 struct cdnsp_td *td, *td_temp;
368 struct cdnsp_ring *ep_ring;
369
370 if (stream_info->drbls_count >= 2)
371 return;
372
373 ep_ring = cdnsp_get_transfer_ring(pdev, pep, stream_id);
374 if (!ep_ring)
375 continue;
376
377 if (!ep_ring->stream_active || ep_ring->stream_rejected)
378 continue;
379
380 list_for_each_entry_safe(td, td_temp, &ep_ring->td_list,
381 td_list) {
382 if (td->drbl)
383 continue;
384
385 ret = cdnsp_ring_ep_doorbell(pdev, pep, stream_id);
386 if (ret)
387 td->drbl = 1;
388 }
389 }
390 }
391
392 /*
393 * Get the hw dequeue pointer controller stopped on, either directly from the
394 * endpoint context, or if streams are in use from the stream context.
395 * The returned hw_dequeue contains the lowest four bits with cycle state
396 * and possible stream context type.
397 */
cdnsp_get_hw_deq(struct cdnsp_device * pdev,unsigned int ep_index,unsigned int stream_id)398 static u64 cdnsp_get_hw_deq(struct cdnsp_device *pdev,
399 unsigned int ep_index,
400 unsigned int stream_id)
401 {
402 struct cdnsp_stream_ctx *st_ctx;
403 struct cdnsp_ep *pep;
404
405 pep = &pdev->eps[stream_id];
406
407 if (pep->ep_state & EP_HAS_STREAMS) {
408 st_ctx = &pep->stream_info.stream_ctx_array[stream_id];
409 return le64_to_cpu(st_ctx->stream_ring);
410 }
411
412 return le64_to_cpu(pep->out_ctx->deq);
413 }
414
415 /*
416 * Move the controller endpoint ring dequeue pointer past cur_td.
417 * Record the new state of the controller endpoint ring dequeue segment,
418 * dequeue pointer, and new consumer cycle state in state.
419 * Update internal representation of the ring's dequeue pointer.
420 *
421 * We do this in three jumps:
422 * - First we update our new ring state to be the same as when the
423 * controller stopped.
424 * - Then we traverse the ring to find the segment that contains
425 * the last TRB in the TD. We toggle the controller new cycle state
426 * when we pass any link TRBs with the toggle cycle bit set.
427 * - Finally we move the dequeue state one TRB further, toggling the cycle bit
428 * if we've moved it past a link TRB with the toggle cycle bit set.
429 */
cdnsp_find_new_dequeue_state(struct cdnsp_device * pdev,struct cdnsp_ep * pep,unsigned int stream_id,struct cdnsp_td * cur_td,struct cdnsp_dequeue_state * state)430 static void cdnsp_find_new_dequeue_state(struct cdnsp_device *pdev,
431 struct cdnsp_ep *pep,
432 unsigned int stream_id,
433 struct cdnsp_td *cur_td,
434 struct cdnsp_dequeue_state *state)
435 {
436 bool td_last_trb_found = false;
437 struct cdnsp_segment *new_seg;
438 struct cdnsp_ring *ep_ring;
439 union cdnsp_trb *new_deq;
440 bool cycle_found = false;
441 u64 hw_dequeue;
442
443 ep_ring = cdnsp_get_transfer_ring(pdev, pep, stream_id);
444 if (!ep_ring)
445 return;
446
447 /*
448 * Dig out the cycle state saved by the controller during the
449 * stop endpoint command.
450 */
451 hw_dequeue = cdnsp_get_hw_deq(pdev, pep->idx, stream_id);
452 new_seg = ep_ring->deq_seg;
453 new_deq = ep_ring->dequeue;
454 state->new_cycle_state = hw_dequeue & 0x1;
455 state->stream_id = stream_id;
456
457 /*
458 * We want to find the pointer, segment and cycle state of the new trb
459 * (the one after current TD's last_trb). We know the cycle state at
460 * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are
461 * found.
462 */
463 do {
464 if (!cycle_found && cdnsp_trb_virt_to_dma(new_seg, new_deq)
465 == (dma_addr_t)(hw_dequeue & ~0xf)) {
466 cycle_found = true;
467
468 if (td_last_trb_found)
469 break;
470 }
471
472 if (new_deq == cur_td->last_trb)
473 td_last_trb_found = true;
474
475 if (cycle_found && cdnsp_trb_is_link(new_deq) &&
476 cdnsp_link_trb_toggles_cycle(new_deq))
477 state->new_cycle_state ^= 0x1;
478
479 cdnsp_next_trb(pdev, ep_ring, &new_seg, &new_deq);
480
481 /* Search wrapped around, bail out. */
482 if (new_deq == pep->ring->dequeue) {
483 dev_err(pdev->dev,
484 "Error: Failed finding new dequeue state\n");
485 state->new_deq_seg = NULL;
486 state->new_deq_ptr = NULL;
487 return;
488 }
489
490 } while (!cycle_found || !td_last_trb_found);
491
492 state->new_deq_seg = new_seg;
493 state->new_deq_ptr = new_deq;
494
495 trace_cdnsp_new_deq_state(state);
496 }
497
498 /*
499 * flip_cycle means flip the cycle bit of all but the first and last TRB.
500 * (The last TRB actually points to the ring enqueue pointer, which is not part
501 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring.
502 */
cdnsp_td_to_noop(struct cdnsp_device * pdev,struct cdnsp_ring * ep_ring,struct cdnsp_td * td,bool flip_cycle)503 static void cdnsp_td_to_noop(struct cdnsp_device *pdev,
504 struct cdnsp_ring *ep_ring,
505 struct cdnsp_td *td,
506 bool flip_cycle)
507 {
508 struct cdnsp_segment *seg = td->start_seg;
509 union cdnsp_trb *trb = td->first_trb;
510
511 while (1) {
512 cdnsp_trb_to_noop(trb, TRB_TR_NOOP);
513
514 /* flip cycle if asked to */
515 if (flip_cycle && trb != td->first_trb && trb != td->last_trb)
516 trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE);
517
518 if (trb == td->last_trb)
519 break;
520
521 cdnsp_next_trb(pdev, ep_ring, &seg, &trb);
522 }
523 }
524
525 /*
526 * This TD is defined by the TRBs starting at start_trb in start_seg and ending
527 * at end_trb, which may be in another segment. If the suspect DMA address is a
528 * TRB in this TD, this function returns that TRB's segment. Otherwise it
529 * returns 0.
530 */
cdnsp_trb_in_td(struct cdnsp_device * pdev,struct cdnsp_segment * start_seg,union cdnsp_trb * start_trb,union cdnsp_trb * end_trb,dma_addr_t suspect_dma)531 static struct cdnsp_segment *cdnsp_trb_in_td(struct cdnsp_device *pdev,
532 struct cdnsp_segment *start_seg,
533 union cdnsp_trb *start_trb,
534 union cdnsp_trb *end_trb,
535 dma_addr_t suspect_dma)
536 {
537 struct cdnsp_segment *cur_seg;
538 union cdnsp_trb *temp_trb;
539 dma_addr_t end_seg_dma;
540 dma_addr_t end_trb_dma;
541 dma_addr_t start_dma;
542
543 start_dma = cdnsp_trb_virt_to_dma(start_seg, start_trb);
544 cur_seg = start_seg;
545
546 do {
547 if (start_dma == 0)
548 return NULL;
549
550 temp_trb = &cur_seg->trbs[TRBS_PER_SEGMENT - 1];
551 /* We may get an event for a Link TRB in the middle of a TD */
552 end_seg_dma = cdnsp_trb_virt_to_dma(cur_seg, temp_trb);
553 /* If the end TRB isn't in this segment, this is set to 0 */
554 end_trb_dma = cdnsp_trb_virt_to_dma(cur_seg, end_trb);
555
556 trace_cdnsp_looking_trb_in_td(suspect_dma, start_dma,
557 end_trb_dma, cur_seg->dma,
558 end_seg_dma);
559
560 if (end_trb_dma > 0) {
561 /*
562 * The end TRB is in this segment, so suspect should
563 * be here
564 */
565 if (start_dma <= end_trb_dma) {
566 if (suspect_dma >= start_dma &&
567 suspect_dma <= end_trb_dma) {
568 return cur_seg;
569 }
570 } else {
571 /*
572 * Case for one segment with a
573 * TD wrapped around to the top
574 */
575 if ((suspect_dma >= start_dma &&
576 suspect_dma <= end_seg_dma) ||
577 (suspect_dma >= cur_seg->dma &&
578 suspect_dma <= end_trb_dma)) {
579 return cur_seg;
580 }
581 }
582
583 return NULL;
584 }
585
586 /* Might still be somewhere in this segment */
587 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
588 return cur_seg;
589
590 cur_seg = cur_seg->next;
591 start_dma = cdnsp_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
592 } while (cur_seg != start_seg);
593
594 return NULL;
595 }
596
cdnsp_unmap_td_bounce_buffer(struct cdnsp_device * pdev,struct cdnsp_ring * ring,struct cdnsp_td * td)597 static void cdnsp_unmap_td_bounce_buffer(struct cdnsp_device *pdev,
598 struct cdnsp_ring *ring,
599 struct cdnsp_td *td)
600 {
601 struct cdnsp_segment *seg = td->bounce_seg;
602 struct cdnsp_request *preq;
603 size_t len;
604
605 if (!seg)
606 return;
607
608 preq = td->preq;
609
610 trace_cdnsp_bounce_unmap(td->preq, seg->bounce_len, seg->bounce_offs,
611 seg->bounce_dma, 0);
612
613 if (!preq->direction) {
614 dma_unmap_single(pdev->dev, seg->bounce_dma,
615 ring->bounce_buf_len, DMA_TO_DEVICE);
616 return;
617 }
618
619 dma_unmap_single(pdev->dev, seg->bounce_dma, ring->bounce_buf_len,
620 DMA_FROM_DEVICE);
621
622 /* For in transfers we need to copy the data from bounce to sg */
623 len = sg_pcopy_from_buffer(preq->request.sg, preq->request.num_sgs,
624 seg->bounce_buf, seg->bounce_len,
625 seg->bounce_offs);
626 if (len != seg->bounce_len)
627 dev_warn(pdev->dev, "WARN Wrong bounce buffer read length: %zu != %d\n",
628 len, seg->bounce_len);
629
630 seg->bounce_len = 0;
631 seg->bounce_offs = 0;
632 }
633
cdnsp_cmd_set_deq(struct cdnsp_device * pdev,struct cdnsp_ep * pep,struct cdnsp_dequeue_state * deq_state)634 static int cdnsp_cmd_set_deq(struct cdnsp_device *pdev,
635 struct cdnsp_ep *pep,
636 struct cdnsp_dequeue_state *deq_state)
637 {
638 struct cdnsp_ring *ep_ring;
639 int ret;
640
641 if (!deq_state->new_deq_ptr || !deq_state->new_deq_seg) {
642 cdnsp_ring_doorbell_for_active_rings(pdev, pep);
643 return 0;
644 }
645
646 cdnsp_queue_new_dequeue_state(pdev, pep, deq_state);
647 cdnsp_ring_cmd_db(pdev);
648 ret = cdnsp_wait_for_cmd_compl(pdev);
649
650 trace_cdnsp_handle_cmd_set_deq(cdnsp_get_slot_ctx(&pdev->out_ctx));
651 trace_cdnsp_handle_cmd_set_deq_ep(pep->out_ctx);
652
653 /*
654 * Update the ring's dequeue segment and dequeue pointer
655 * to reflect the new position.
656 */
657 ep_ring = cdnsp_get_transfer_ring(pdev, pep, deq_state->stream_id);
658
659 if (cdnsp_trb_is_link(ep_ring->dequeue)) {
660 ep_ring->deq_seg = ep_ring->deq_seg->next;
661 ep_ring->dequeue = ep_ring->deq_seg->trbs;
662 }
663
664 while (ep_ring->dequeue != deq_state->new_deq_ptr) {
665 ep_ring->num_trbs_free++;
666 ep_ring->dequeue++;
667
668 if (cdnsp_trb_is_link(ep_ring->dequeue)) {
669 if (ep_ring->dequeue == deq_state->new_deq_ptr)
670 break;
671
672 ep_ring->deq_seg = ep_ring->deq_seg->next;
673 ep_ring->dequeue = ep_ring->deq_seg->trbs;
674 }
675 }
676
677 /*
678 * Probably there was TIMEOUT during handling Set Dequeue Pointer
679 * command. It's critical error and controller will be stopped.
680 */
681 if (ret)
682 return -ESHUTDOWN;
683
684 /* Restart any rings with pending requests */
685 cdnsp_ring_doorbell_for_active_rings(pdev, pep);
686
687 return 0;
688 }
689
cdnsp_remove_request(struct cdnsp_device * pdev,struct cdnsp_request * preq,struct cdnsp_ep * pep)690 int cdnsp_remove_request(struct cdnsp_device *pdev,
691 struct cdnsp_request *preq,
692 struct cdnsp_ep *pep)
693 {
694 struct cdnsp_dequeue_state deq_state;
695 struct cdnsp_td *cur_td = NULL;
696 struct cdnsp_ring *ep_ring;
697 struct cdnsp_segment *seg;
698 int status = -ECONNRESET;
699 int ret = 0;
700 u64 hw_deq;
701
702 memset(&deq_state, 0, sizeof(deq_state));
703
704 trace_cdnsp_remove_request(pep->out_ctx);
705 trace_cdnsp_remove_request_td(preq);
706
707 cur_td = &preq->td;
708 ep_ring = cdnsp_request_to_transfer_ring(pdev, preq);
709
710 /*
711 * If we stopped on the TD we need to cancel, then we have to
712 * move the controller endpoint ring dequeue pointer past
713 * this TD.
714 */
715 hw_deq = cdnsp_get_hw_deq(pdev, pep->idx, preq->request.stream_id);
716 hw_deq &= ~0xf;
717
718 seg = cdnsp_trb_in_td(pdev, cur_td->start_seg, cur_td->first_trb,
719 cur_td->last_trb, hw_deq);
720
721 if (seg && (pep->ep_state & EP_ENABLED))
722 cdnsp_find_new_dequeue_state(pdev, pep, preq->request.stream_id,
723 cur_td, &deq_state);
724 else
725 cdnsp_td_to_noop(pdev, ep_ring, cur_td, false);
726
727 /*
728 * The event handler won't see a completion for this TD anymore,
729 * so remove it from the endpoint ring's TD list.
730 */
731 list_del_init(&cur_td->td_list);
732 ep_ring->num_tds--;
733 pep->stream_info.td_count--;
734
735 /*
736 * During disconnecting all endpoint will be disabled so we don't
737 * have to worry about updating dequeue pointer.
738 */
739 if (pdev->cdnsp_state & CDNSP_STATE_DISCONNECT_PENDING) {
740 status = -ESHUTDOWN;
741 ret = cdnsp_cmd_set_deq(pdev, pep, &deq_state);
742 }
743
744 cdnsp_unmap_td_bounce_buffer(pdev, ep_ring, cur_td);
745 cdnsp_gadget_giveback(pep, cur_td->preq, status);
746
747 return ret;
748 }
749
cdnsp_update_port_id(struct cdnsp_device * pdev,u32 port_id)750 static int cdnsp_update_port_id(struct cdnsp_device *pdev, u32 port_id)
751 {
752 struct cdnsp_port *port = pdev->active_port;
753 u8 old_port = 0;
754
755 if (port && port->port_num == port_id)
756 return 0;
757
758 if (port)
759 old_port = port->port_num;
760
761 if (port_id == pdev->usb2_port.port_num) {
762 port = &pdev->usb2_port;
763 } else if (port_id == pdev->usb3_port.port_num) {
764 port = &pdev->usb3_port;
765 } else {
766 dev_err(pdev->dev, "Port event with invalid port ID %d\n",
767 port_id);
768 return -EINVAL;
769 }
770
771 if (port_id != old_port) {
772 cdnsp_disable_slot(pdev);
773 pdev->active_port = port;
774 cdnsp_enable_slot(pdev);
775 }
776
777 if (port_id == pdev->usb2_port.port_num)
778 cdnsp_set_usb2_hardware_lpm(pdev, NULL, 1);
779 else
780 writel(PORT_U1_TIMEOUT(1) | PORT_U2_TIMEOUT(1),
781 &pdev->usb3_port.regs->portpmsc);
782
783 return 0;
784 }
785
cdnsp_handle_port_status(struct cdnsp_device * pdev,union cdnsp_trb * event)786 static void cdnsp_handle_port_status(struct cdnsp_device *pdev,
787 union cdnsp_trb *event)
788 {
789 struct cdnsp_port_regs __iomem *port_regs;
790 u32 portsc, cmd_regs;
791 bool port2 = false;
792 u32 link_state;
793 u32 port_id;
794
795 /* Port status change events always have a successful completion code */
796 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS)
797 dev_err(pdev->dev, "ERR: incorrect PSC event\n");
798
799 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0]));
800
801 if (cdnsp_update_port_id(pdev, port_id))
802 goto cleanup;
803
804 port_regs = pdev->active_port->regs;
805
806 if (port_id == pdev->usb2_port.port_num)
807 port2 = true;
808
809 new_event:
810 portsc = readl(&port_regs->portsc);
811 writel(cdnsp_port_state_to_neutral(portsc) |
812 (portsc & PORT_CHANGE_BITS), &port_regs->portsc);
813
814 trace_cdnsp_handle_port_status(pdev->active_port->port_num, portsc);
815
816 pdev->gadget.speed = cdnsp_port_speed(portsc);
817 link_state = portsc & PORT_PLS_MASK;
818
819 /* Port Link State change detected. */
820 if ((portsc & PORT_PLC)) {
821 if (!(pdev->cdnsp_state & CDNSP_WAKEUP_PENDING) &&
822 link_state == XDEV_RESUME) {
823 cmd_regs = readl(&pdev->op_regs->command);
824 if (!(cmd_regs & CMD_R_S))
825 goto cleanup;
826
827 if (DEV_SUPERSPEED_ANY(portsc)) {
828 cdnsp_set_link_state(pdev, &port_regs->portsc,
829 XDEV_U0);
830
831 cdnsp_resume_gadget(pdev);
832 }
833 }
834
835 if ((pdev->cdnsp_state & CDNSP_WAKEUP_PENDING) &&
836 link_state == XDEV_U0) {
837 pdev->cdnsp_state &= ~CDNSP_WAKEUP_PENDING;
838
839 cdnsp_force_header_wakeup(pdev, 1);
840 cdnsp_ring_cmd_db(pdev);
841 cdnsp_wait_for_cmd_compl(pdev);
842 }
843
844 if (link_state == XDEV_U0 && pdev->link_state == XDEV_U3 &&
845 !DEV_SUPERSPEED_ANY(portsc))
846 cdnsp_resume_gadget(pdev);
847
848 if (link_state == XDEV_U3 && pdev->link_state != XDEV_U3)
849 cdnsp_suspend_gadget(pdev);
850
851 pdev->link_state = link_state;
852 }
853
854 if (portsc & PORT_CSC) {
855 /* Detach device. */
856 if (pdev->gadget.connected && !(portsc & PORT_CONNECT))
857 cdnsp_disconnect_gadget(pdev);
858
859 /* Attach device. */
860 if (portsc & PORT_CONNECT) {
861 if (!port2)
862 cdnsp_irq_reset(pdev);
863
864 usb_gadget_set_state(&pdev->gadget, USB_STATE_ATTACHED);
865 }
866 }
867
868 /* Port reset. */
869 if ((portsc & (PORT_RC | PORT_WRC)) && (portsc & PORT_CONNECT)) {
870 cdnsp_irq_reset(pdev);
871 pdev->u1_allowed = 0;
872 pdev->u2_allowed = 0;
873 pdev->may_wakeup = 0;
874 }
875
876 if (portsc & PORT_CEC)
877 dev_err(pdev->dev, "Port Over Current detected\n");
878
879 if (portsc & PORT_CEC)
880 dev_err(pdev->dev, "Port Configure Error detected\n");
881
882 if (readl(&port_regs->portsc) & PORT_CHANGE_BITS)
883 goto new_event;
884
885 cleanup:
886 cdnsp_inc_deq(pdev, pdev->event_ring);
887 }
888
cdnsp_td_cleanup(struct cdnsp_device * pdev,struct cdnsp_td * td,struct cdnsp_ring * ep_ring,int * status)889 static void cdnsp_td_cleanup(struct cdnsp_device *pdev,
890 struct cdnsp_td *td,
891 struct cdnsp_ring *ep_ring,
892 int *status)
893 {
894 struct cdnsp_request *preq = td->preq;
895
896 /* if a bounce buffer was used to align this td then unmap it */
897 cdnsp_unmap_td_bounce_buffer(pdev, ep_ring, td);
898
899 /*
900 * If the controller said we transferred more data than the buffer
901 * length, Play it safe and say we didn't transfer anything.
902 */
903 if (preq->request.actual > preq->request.length) {
904 preq->request.actual = 0;
905 *status = 0;
906 }
907
908 list_del_init(&td->td_list);
909 ep_ring->num_tds--;
910 preq->pep->stream_info.td_count--;
911
912 cdnsp_gadget_giveback(preq->pep, preq, *status);
913 }
914
cdnsp_finish_td(struct cdnsp_device * pdev,struct cdnsp_td * td,struct cdnsp_transfer_event * event,struct cdnsp_ep * ep,int * status)915 static void cdnsp_finish_td(struct cdnsp_device *pdev,
916 struct cdnsp_td *td,
917 struct cdnsp_transfer_event *event,
918 struct cdnsp_ep *ep,
919 int *status)
920 {
921 struct cdnsp_ring *ep_ring;
922 u32 trb_comp_code;
923
924 ep_ring = cdnsp_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
925 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
926
927 if (trb_comp_code == COMP_STOPPED_LENGTH_INVALID ||
928 trb_comp_code == COMP_STOPPED ||
929 trb_comp_code == COMP_STOPPED_SHORT_PACKET) {
930 /*
931 * The Endpoint Stop Command completion will take care of any
932 * stopped TDs. A stopped TD may be restarted, so don't update
933 * the ring dequeue pointer or take this TD off any lists yet.
934 */
935 return;
936 }
937
938 /* Update ring dequeue pointer */
939 while (ep_ring->dequeue != td->last_trb)
940 cdnsp_inc_deq(pdev, ep_ring);
941
942 cdnsp_inc_deq(pdev, ep_ring);
943
944 cdnsp_td_cleanup(pdev, td, ep_ring, status);
945 }
946
947 /* sum trb lengths from ring dequeue up to stop_trb, _excluding_ stop_trb */
cdnsp_sum_trb_lengths(struct cdnsp_device * pdev,struct cdnsp_ring * ring,union cdnsp_trb * stop_trb)948 static int cdnsp_sum_trb_lengths(struct cdnsp_device *pdev,
949 struct cdnsp_ring *ring,
950 union cdnsp_trb *stop_trb)
951 {
952 struct cdnsp_segment *seg = ring->deq_seg;
953 union cdnsp_trb *trb = ring->dequeue;
954 u32 sum;
955
956 for (sum = 0; trb != stop_trb; cdnsp_next_trb(pdev, ring, &seg, &trb)) {
957 if (!cdnsp_trb_is_noop(trb) && !cdnsp_trb_is_link(trb))
958 sum += TRB_LEN(le32_to_cpu(trb->generic.field[2]));
959 }
960 return sum;
961 }
962
cdnsp_giveback_first_trb(struct cdnsp_device * pdev,struct cdnsp_ep * pep,unsigned int stream_id,int start_cycle,struct cdnsp_generic_trb * start_trb)963 static int cdnsp_giveback_first_trb(struct cdnsp_device *pdev,
964 struct cdnsp_ep *pep,
965 unsigned int stream_id,
966 int start_cycle,
967 struct cdnsp_generic_trb *start_trb)
968 {
969 /*
970 * Pass all the TRBs to the hardware at once and make sure this write
971 * isn't reordered.
972 */
973 wmb();
974
975 if (start_cycle)
976 start_trb->field[3] |= cpu_to_le32(start_cycle);
977 else
978 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE);
979
980 if ((pep->ep_state & EP_HAS_STREAMS) &&
981 !pep->stream_info.first_prime_det) {
982 trace_cdnsp_wait_for_prime(pep, stream_id);
983 return 0;
984 }
985
986 return cdnsp_ring_ep_doorbell(pdev, pep, stream_id);
987 }
988
989 /*
990 * Process control tds, update USB request status and actual_length.
991 */
cdnsp_process_ctrl_td(struct cdnsp_device * pdev,struct cdnsp_td * td,union cdnsp_trb * event_trb,struct cdnsp_transfer_event * event,struct cdnsp_ep * pep,int * status)992 static void cdnsp_process_ctrl_td(struct cdnsp_device *pdev,
993 struct cdnsp_td *td,
994 union cdnsp_trb *event_trb,
995 struct cdnsp_transfer_event *event,
996 struct cdnsp_ep *pep,
997 int *status)
998 {
999 struct cdnsp_ring *ep_ring;
1000 u32 remaining;
1001 u32 trb_type;
1002
1003 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event_trb->generic.field[3]));
1004 ep_ring = cdnsp_dma_to_transfer_ring(pep, le64_to_cpu(event->buffer));
1005 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
1006
1007 /*
1008 * if on data stage then update the actual_length of the USB
1009 * request and flag it as set, so it won't be overwritten in the event
1010 * for the last TRB.
1011 */
1012 if (trb_type == TRB_DATA) {
1013 td->request_length_set = true;
1014 td->preq->request.actual = td->preq->request.length - remaining;
1015 }
1016
1017 /* at status stage */
1018 if (!td->request_length_set)
1019 td->preq->request.actual = td->preq->request.length;
1020
1021 if (pdev->ep0_stage == CDNSP_DATA_STAGE && pep->number == 0 &&
1022 pdev->three_stage_setup) {
1023 td = list_entry(ep_ring->td_list.next, struct cdnsp_td,
1024 td_list);
1025 pdev->ep0_stage = CDNSP_STATUS_STAGE;
1026
1027 cdnsp_giveback_first_trb(pdev, pep, 0, ep_ring->cycle_state,
1028 &td->last_trb->generic);
1029 return;
1030 }
1031
1032 *status = 0;
1033
1034 cdnsp_finish_td(pdev, td, event, pep, status);
1035 }
1036
1037 /*
1038 * Process isochronous tds, update usb request status and actual_length.
1039 */
cdnsp_process_isoc_td(struct cdnsp_device * pdev,struct cdnsp_td * td,union cdnsp_trb * ep_trb,struct cdnsp_transfer_event * event,struct cdnsp_ep * pep,int status)1040 static void cdnsp_process_isoc_td(struct cdnsp_device *pdev,
1041 struct cdnsp_td *td,
1042 union cdnsp_trb *ep_trb,
1043 struct cdnsp_transfer_event *event,
1044 struct cdnsp_ep *pep,
1045 int status)
1046 {
1047 struct cdnsp_request *preq = td->preq;
1048 u32 remaining, requested, ep_trb_len;
1049 bool sum_trbs_for_length = false;
1050 struct cdnsp_ring *ep_ring;
1051 u32 trb_comp_code;
1052 u32 td_length;
1053
1054 ep_ring = cdnsp_dma_to_transfer_ring(pep, le64_to_cpu(event->buffer));
1055 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1056 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
1057 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2]));
1058
1059 requested = preq->request.length;
1060
1061 /* handle completion code */
1062 switch (trb_comp_code) {
1063 case COMP_SUCCESS:
1064 preq->request.status = 0;
1065 break;
1066 case COMP_SHORT_PACKET:
1067 preq->request.status = 0;
1068 sum_trbs_for_length = true;
1069 break;
1070 case COMP_ISOCH_BUFFER_OVERRUN:
1071 case COMP_BABBLE_DETECTED_ERROR:
1072 preq->request.status = -EOVERFLOW;
1073 break;
1074 case COMP_STOPPED:
1075 sum_trbs_for_length = true;
1076 break;
1077 case COMP_STOPPED_SHORT_PACKET:
1078 /* field normally containing residue now contains transferred */
1079 preq->request.status = 0;
1080 requested = remaining;
1081 break;
1082 case COMP_STOPPED_LENGTH_INVALID:
1083 requested = 0;
1084 remaining = 0;
1085 break;
1086 default:
1087 sum_trbs_for_length = true;
1088 preq->request.status = -1;
1089 break;
1090 }
1091
1092 if (sum_trbs_for_length) {
1093 td_length = cdnsp_sum_trb_lengths(pdev, ep_ring, ep_trb);
1094 td_length += ep_trb_len - remaining;
1095 } else {
1096 td_length = requested;
1097 }
1098
1099 td->preq->request.actual += td_length;
1100
1101 cdnsp_finish_td(pdev, td, event, pep, &status);
1102 }
1103
cdnsp_skip_isoc_td(struct cdnsp_device * pdev,struct cdnsp_td * td,struct cdnsp_transfer_event * event,struct cdnsp_ep * pep,int status)1104 static void cdnsp_skip_isoc_td(struct cdnsp_device *pdev,
1105 struct cdnsp_td *td,
1106 struct cdnsp_transfer_event *event,
1107 struct cdnsp_ep *pep,
1108 int status)
1109 {
1110 struct cdnsp_ring *ep_ring;
1111
1112 ep_ring = cdnsp_dma_to_transfer_ring(pep, le64_to_cpu(event->buffer));
1113 td->preq->request.status = -EXDEV;
1114 td->preq->request.actual = 0;
1115
1116 /* Update ring dequeue pointer */
1117 while (ep_ring->dequeue != td->last_trb)
1118 cdnsp_inc_deq(pdev, ep_ring);
1119
1120 cdnsp_inc_deq(pdev, ep_ring);
1121
1122 cdnsp_td_cleanup(pdev, td, ep_ring, &status);
1123 }
1124
1125 /*
1126 * Process bulk and interrupt tds, update usb request status and actual_length.
1127 */
cdnsp_process_bulk_intr_td(struct cdnsp_device * pdev,struct cdnsp_td * td,union cdnsp_trb * ep_trb,struct cdnsp_transfer_event * event,struct cdnsp_ep * ep,int * status)1128 static void cdnsp_process_bulk_intr_td(struct cdnsp_device *pdev,
1129 struct cdnsp_td *td,
1130 union cdnsp_trb *ep_trb,
1131 struct cdnsp_transfer_event *event,
1132 struct cdnsp_ep *ep,
1133 int *status)
1134 {
1135 u32 remaining, requested, ep_trb_len;
1136 struct cdnsp_ring *ep_ring;
1137 u32 trb_comp_code;
1138
1139 ep_ring = cdnsp_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1140 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1141 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
1142 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2]));
1143 requested = td->preq->request.length;
1144
1145 switch (trb_comp_code) {
1146 case COMP_SUCCESS:
1147 case COMP_SHORT_PACKET:
1148 *status = 0;
1149 break;
1150 case COMP_STOPPED_SHORT_PACKET:
1151 td->preq->request.actual = remaining;
1152 goto finish_td;
1153 case COMP_STOPPED_LENGTH_INVALID:
1154 /* Stopped on ep trb with invalid length, exclude it. */
1155 ep_trb_len = 0;
1156 remaining = 0;
1157 break;
1158 }
1159
1160 if (ep_trb == td->last_trb)
1161 ep_trb_len = requested - remaining;
1162 else
1163 ep_trb_len = cdnsp_sum_trb_lengths(pdev, ep_ring, ep_trb) +
1164 ep_trb_len - remaining;
1165 td->preq->request.actual = ep_trb_len;
1166
1167 finish_td:
1168 ep->stream_info.drbls_count--;
1169
1170 cdnsp_finish_td(pdev, td, event, ep, status);
1171 }
1172
cdnsp_handle_tx_nrdy(struct cdnsp_device * pdev,struct cdnsp_transfer_event * event)1173 static void cdnsp_handle_tx_nrdy(struct cdnsp_device *pdev,
1174 struct cdnsp_transfer_event *event)
1175 {
1176 struct cdnsp_generic_trb *generic;
1177 struct cdnsp_ring *ep_ring;
1178 struct cdnsp_ep *pep;
1179 int cur_stream;
1180 int ep_index;
1181 int host_sid;
1182 int dev_sid;
1183
1184 generic = (struct cdnsp_generic_trb *)event;
1185 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1186 dev_sid = TRB_TO_DEV_STREAM(le32_to_cpu(generic->field[0]));
1187 host_sid = TRB_TO_HOST_STREAM(le32_to_cpu(generic->field[2]));
1188
1189 pep = &pdev->eps[ep_index];
1190
1191 if (!(pep->ep_state & EP_HAS_STREAMS))
1192 return;
1193
1194 if (host_sid == STREAM_PRIME_ACK) {
1195 pep->stream_info.first_prime_det = 1;
1196 for (cur_stream = 1; cur_stream < pep->stream_info.num_streams;
1197 cur_stream++) {
1198 ep_ring = pep->stream_info.stream_rings[cur_stream];
1199 ep_ring->stream_active = 1;
1200 ep_ring->stream_rejected = 0;
1201 }
1202 }
1203
1204 if (host_sid == STREAM_REJECTED) {
1205 struct cdnsp_td *td, *td_temp;
1206
1207 pep->stream_info.drbls_count--;
1208 ep_ring = pep->stream_info.stream_rings[dev_sid];
1209 ep_ring->stream_active = 0;
1210 ep_ring->stream_rejected = 1;
1211
1212 list_for_each_entry_safe(td, td_temp, &ep_ring->td_list,
1213 td_list) {
1214 td->drbl = 0;
1215 }
1216 }
1217
1218 cdnsp_ring_doorbell_for_active_rings(pdev, pep);
1219 }
1220
1221 /*
1222 * If this function returns an error condition, it means it got a Transfer
1223 * event with a corrupted TRB DMA address or endpoint is disabled.
1224 */
cdnsp_handle_tx_event(struct cdnsp_device * pdev,struct cdnsp_transfer_event * event)1225 static int cdnsp_handle_tx_event(struct cdnsp_device *pdev,
1226 struct cdnsp_transfer_event *event)
1227 {
1228 const struct usb_endpoint_descriptor *desc;
1229 bool handling_skipped_tds = false;
1230 struct cdnsp_segment *ep_seg;
1231 struct cdnsp_ring *ep_ring;
1232 int status = -EINPROGRESS;
1233 union cdnsp_trb *ep_trb;
1234 dma_addr_t ep_trb_dma;
1235 struct cdnsp_ep *pep;
1236 struct cdnsp_td *td;
1237 u32 trb_comp_code;
1238 int invalidate;
1239 int ep_index;
1240
1241 invalidate = le32_to_cpu(event->flags) & TRB_EVENT_INVALIDATE;
1242 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1243 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1244 ep_trb_dma = le64_to_cpu(event->buffer);
1245
1246 pep = &pdev->eps[ep_index];
1247 ep_ring = cdnsp_dma_to_transfer_ring(pep, le64_to_cpu(event->buffer));
1248
1249 /*
1250 * If device is disconnect then all requests will be dequeued
1251 * by upper layers as part of disconnect sequence.
1252 * We don't want handle such event to avoid racing.
1253 */
1254 if (invalidate || !pdev->gadget.connected)
1255 goto cleanup;
1256
1257 if (GET_EP_CTX_STATE(pep->out_ctx) == EP_STATE_DISABLED) {
1258 trace_cdnsp_ep_disabled(pep->out_ctx);
1259 goto err_out;
1260 }
1261
1262 /* Some transfer events don't always point to a trb*/
1263 if (!ep_ring) {
1264 switch (trb_comp_code) {
1265 case COMP_INVALID_STREAM_TYPE_ERROR:
1266 case COMP_INVALID_STREAM_ID_ERROR:
1267 case COMP_RING_UNDERRUN:
1268 case COMP_RING_OVERRUN:
1269 goto cleanup;
1270 default:
1271 dev_err(pdev->dev, "ERROR: %s event for unknown ring\n",
1272 pep->name);
1273 goto err_out;
1274 }
1275 }
1276
1277 /* Look for some error cases that need special treatment. */
1278 switch (trb_comp_code) {
1279 case COMP_BABBLE_DETECTED_ERROR:
1280 status = -EOVERFLOW;
1281 break;
1282 case COMP_RING_UNDERRUN:
1283 case COMP_RING_OVERRUN:
1284 /*
1285 * When the Isoch ring is empty, the controller will generate
1286 * a Ring Overrun Event for IN Isoch endpoint or Ring
1287 * Underrun Event for OUT Isoch endpoint.
1288 */
1289 goto cleanup;
1290 case COMP_MISSED_SERVICE_ERROR:
1291 /*
1292 * When encounter missed service error, one or more isoc tds
1293 * may be missed by controller.
1294 * Set skip flag of the ep_ring; Complete the missed tds as
1295 * short transfer when process the ep_ring next time.
1296 */
1297 pep->skip = true;
1298 break;
1299 }
1300
1301 do {
1302 /*
1303 * This TRB should be in the TD at the head of this ring's TD
1304 * list.
1305 */
1306 if (list_empty(&ep_ring->td_list)) {
1307 /*
1308 * Don't print warnings if it's due to a stopped
1309 * endpoint generating an extra completion event, or
1310 * a event for the last TRB of a short TD we already
1311 * got a short event for.
1312 * The short TD is already removed from the TD list.
1313 */
1314 if (!(trb_comp_code == COMP_STOPPED ||
1315 trb_comp_code == COMP_STOPPED_LENGTH_INVALID ||
1316 ep_ring->last_td_was_short))
1317 trace_cdnsp_trb_without_td(ep_ring,
1318 (struct cdnsp_generic_trb *)event);
1319
1320 if (pep->skip) {
1321 pep->skip = false;
1322 trace_cdnsp_ep_list_empty_with_skip(pep, 0);
1323 }
1324
1325 goto cleanup;
1326 }
1327
1328 td = list_entry(ep_ring->td_list.next, struct cdnsp_td,
1329 td_list);
1330
1331 /* Is this a TRB in the currently executing TD? */
1332 ep_seg = cdnsp_trb_in_td(pdev, ep_ring->deq_seg,
1333 ep_ring->dequeue, td->last_trb,
1334 ep_trb_dma);
1335
1336 desc = td->preq->pep->endpoint.desc;
1337
1338 if (ep_seg) {
1339 ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma)
1340 / sizeof(*ep_trb)];
1341
1342 trace_cdnsp_handle_transfer(ep_ring,
1343 (struct cdnsp_generic_trb *)ep_trb);
1344
1345 if (pep->skip && usb_endpoint_xfer_isoc(desc) &&
1346 td->last_trb != ep_trb)
1347 return -EAGAIN;
1348 }
1349
1350 /*
1351 * Skip the Force Stopped Event. The event_trb(ep_trb_dma)
1352 * of FSE is not in the current TD pointed by ep_ring->dequeue
1353 * because that the hardware dequeue pointer still at the
1354 * previous TRB of the current TD. The previous TRB maybe a
1355 * Link TD or the last TRB of the previous TD. The command
1356 * completion handle will take care the rest.
1357 */
1358 if (!ep_seg && (trb_comp_code == COMP_STOPPED ||
1359 trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) {
1360 pep->skip = false;
1361 goto cleanup;
1362 }
1363
1364 if (!ep_seg) {
1365 if (!pep->skip || !usb_endpoint_xfer_isoc(desc)) {
1366 /* Something is busted, give up! */
1367 dev_err(pdev->dev,
1368 "ERROR Transfer event TRB DMA ptr not "
1369 "part of current TD ep_index %d "
1370 "comp_code %u\n", ep_index,
1371 trb_comp_code);
1372 return -EINVAL;
1373 }
1374
1375 cdnsp_skip_isoc_td(pdev, td, event, pep, status);
1376 goto cleanup;
1377 }
1378
1379 if (trb_comp_code == COMP_SHORT_PACKET)
1380 ep_ring->last_td_was_short = true;
1381 else
1382 ep_ring->last_td_was_short = false;
1383
1384 if (pep->skip) {
1385 pep->skip = false;
1386 cdnsp_skip_isoc_td(pdev, td, event, pep, status);
1387 goto cleanup;
1388 }
1389
1390 if (cdnsp_trb_is_noop(ep_trb))
1391 goto cleanup;
1392
1393 if (usb_endpoint_xfer_control(desc))
1394 cdnsp_process_ctrl_td(pdev, td, ep_trb, event, pep,
1395 &status);
1396 else if (usb_endpoint_xfer_isoc(desc))
1397 cdnsp_process_isoc_td(pdev, td, ep_trb, event, pep,
1398 status);
1399 else
1400 cdnsp_process_bulk_intr_td(pdev, td, ep_trb, event, pep,
1401 &status);
1402 cleanup:
1403 handling_skipped_tds = pep->skip;
1404
1405 /*
1406 * Do not update event ring dequeue pointer if we're in a loop
1407 * processing missed tds.
1408 */
1409 if (!handling_skipped_tds)
1410 cdnsp_inc_deq(pdev, pdev->event_ring);
1411
1412 /*
1413 * If ep->skip is set, it means there are missed tds on the
1414 * endpoint ring need to take care of.
1415 * Process them as short transfer until reach the td pointed by
1416 * the event.
1417 */
1418 } while (handling_skipped_tds);
1419 return 0;
1420
1421 err_out:
1422 dev_err(pdev->dev, "@%016llx %08x %08x %08x %08x\n",
1423 (unsigned long long)
1424 cdnsp_trb_virt_to_dma(pdev->event_ring->deq_seg,
1425 pdev->event_ring->dequeue),
1426 lower_32_bits(le64_to_cpu(event->buffer)),
1427 upper_32_bits(le64_to_cpu(event->buffer)),
1428 le32_to_cpu(event->transfer_len),
1429 le32_to_cpu(event->flags));
1430 return -EINVAL;
1431 }
1432
1433 /*
1434 * This function handles all events on the event ring.
1435 * Returns true for "possibly more events to process" (caller should call
1436 * again), otherwise false if done.
1437 */
cdnsp_handle_event(struct cdnsp_device * pdev)1438 static bool cdnsp_handle_event(struct cdnsp_device *pdev)
1439 {
1440 unsigned int comp_code;
1441 union cdnsp_trb *event;
1442 bool update_ptrs = true;
1443 u32 cycle_bit;
1444 int ret = 0;
1445 u32 flags;
1446
1447 event = pdev->event_ring->dequeue;
1448 flags = le32_to_cpu(event->event_cmd.flags);
1449 cycle_bit = (flags & TRB_CYCLE);
1450
1451 /* Does the controller or driver own the TRB? */
1452 if (cycle_bit != pdev->event_ring->cycle_state)
1453 return false;
1454
1455 trace_cdnsp_handle_event(pdev->event_ring, &event->generic);
1456
1457 /*
1458 * Barrier between reading the TRB_CYCLE (valid) flag above and any
1459 * reads of the event's flags/data below.
1460 */
1461 rmb();
1462
1463 switch (flags & TRB_TYPE_BITMASK) {
1464 case TRB_TYPE(TRB_COMPLETION):
1465 /*
1466 * Command can't be handled in interrupt context so just
1467 * increment command ring dequeue pointer.
1468 */
1469 cdnsp_inc_deq(pdev, pdev->cmd_ring);
1470 break;
1471 case TRB_TYPE(TRB_PORT_STATUS):
1472 cdnsp_handle_port_status(pdev, event);
1473 update_ptrs = false;
1474 break;
1475 case TRB_TYPE(TRB_TRANSFER):
1476 ret = cdnsp_handle_tx_event(pdev, &event->trans_event);
1477 if (ret >= 0)
1478 update_ptrs = false;
1479 break;
1480 case TRB_TYPE(TRB_SETUP):
1481 pdev->ep0_stage = CDNSP_SETUP_STAGE;
1482 pdev->setup_id = TRB_SETUPID_TO_TYPE(flags);
1483 pdev->setup_speed = TRB_SETUP_SPEEDID(flags);
1484 pdev->setup = *((struct usb_ctrlrequest *)
1485 &event->trans_event.buffer);
1486
1487 cdnsp_setup_analyze(pdev);
1488 break;
1489 case TRB_TYPE(TRB_ENDPOINT_NRDY):
1490 cdnsp_handle_tx_nrdy(pdev, &event->trans_event);
1491 break;
1492 case TRB_TYPE(TRB_HC_EVENT): {
1493 comp_code = GET_COMP_CODE(le32_to_cpu(event->generic.field[2]));
1494
1495 switch (comp_code) {
1496 case COMP_EVENT_RING_FULL_ERROR:
1497 dev_err(pdev->dev, "Event Ring Full\n");
1498 break;
1499 default:
1500 dev_err(pdev->dev, "Controller error code 0x%02x\n",
1501 comp_code);
1502 }
1503
1504 break;
1505 }
1506 case TRB_TYPE(TRB_MFINDEX_WRAP):
1507 case TRB_TYPE(TRB_DRB_OVERFLOW):
1508 break;
1509 default:
1510 dev_warn(pdev->dev, "ERROR unknown event type %ld\n",
1511 TRB_FIELD_TO_TYPE(flags));
1512 }
1513
1514 if (update_ptrs)
1515 /* Update SW event ring dequeue pointer. */
1516 cdnsp_inc_deq(pdev, pdev->event_ring);
1517
1518 /*
1519 * Caller will call us again to check if there are more items
1520 * on the event ring.
1521 */
1522 return true;
1523 }
1524
cdnsp_thread_irq_handler(int irq,void * data)1525 irqreturn_t cdnsp_thread_irq_handler(int irq, void *data)
1526 {
1527 struct cdnsp_device *pdev = (struct cdnsp_device *)data;
1528 union cdnsp_trb *event_ring_deq;
1529 unsigned long flags;
1530 int counter = 0;
1531
1532 spin_lock_irqsave(&pdev->lock, flags);
1533
1534 if (pdev->cdnsp_state & (CDNSP_STATE_HALTED | CDNSP_STATE_DYING)) {
1535 /*
1536 * While removing or stopping driver there may still be deferred
1537 * not handled interrupt which should not be treated as error.
1538 * Driver should simply ignore it.
1539 */
1540 if (pdev->gadget_driver)
1541 cdnsp_died(pdev);
1542
1543 spin_unlock_irqrestore(&pdev->lock, flags);
1544 return IRQ_HANDLED;
1545 }
1546
1547 event_ring_deq = pdev->event_ring->dequeue;
1548
1549 while (cdnsp_handle_event(pdev)) {
1550 if (++counter >= TRBS_PER_EV_DEQ_UPDATE) {
1551 cdnsp_update_erst_dequeue(pdev, event_ring_deq, 0);
1552 event_ring_deq = pdev->event_ring->dequeue;
1553 counter = 0;
1554 }
1555 }
1556
1557 cdnsp_update_erst_dequeue(pdev, event_ring_deq, 1);
1558
1559 spin_unlock_irqrestore(&pdev->lock, flags);
1560
1561 return IRQ_HANDLED;
1562 }
1563
cdnsp_irq_handler(int irq,void * priv)1564 irqreturn_t cdnsp_irq_handler(int irq, void *priv)
1565 {
1566 struct cdnsp_device *pdev = (struct cdnsp_device *)priv;
1567 u32 irq_pending;
1568 u32 status;
1569
1570 status = readl(&pdev->op_regs->status);
1571
1572 if (status == ~(u32)0) {
1573 cdnsp_died(pdev);
1574 return IRQ_HANDLED;
1575 }
1576
1577 if (!(status & STS_EINT))
1578 return IRQ_NONE;
1579
1580 writel(status | STS_EINT, &pdev->op_regs->status);
1581 irq_pending = readl(&pdev->ir_set->irq_pending);
1582 irq_pending |= IMAN_IP;
1583 writel(irq_pending, &pdev->ir_set->irq_pending);
1584
1585 if (status & STS_FATAL) {
1586 cdnsp_died(pdev);
1587 return IRQ_HANDLED;
1588 }
1589
1590 return IRQ_WAKE_THREAD;
1591 }
1592
1593 /*
1594 * Generic function for queuing a TRB on a ring.
1595 * The caller must have checked to make sure there's room on the ring.
1596 *
1597 * @more_trbs_coming: Will you enqueue more TRBs before setting doorbell?
1598 */
cdnsp_queue_trb(struct cdnsp_device * pdev,struct cdnsp_ring * ring,bool more_trbs_coming,u32 field1,u32 field2,u32 field3,u32 field4)1599 static void cdnsp_queue_trb(struct cdnsp_device *pdev, struct cdnsp_ring *ring,
1600 bool more_trbs_coming, u32 field1, u32 field2,
1601 u32 field3, u32 field4)
1602 {
1603 struct cdnsp_generic_trb *trb;
1604
1605 trb = &ring->enqueue->generic;
1606
1607 trb->field[0] = cpu_to_le32(field1);
1608 trb->field[1] = cpu_to_le32(field2);
1609 trb->field[2] = cpu_to_le32(field3);
1610 trb->field[3] = cpu_to_le32(field4);
1611
1612 trace_cdnsp_queue_trb(ring, trb);
1613 cdnsp_inc_enq(pdev, ring, more_trbs_coming);
1614 }
1615
1616 /*
1617 * Does various checks on the endpoint ring, and makes it ready to
1618 * queue num_trbs.
1619 */
cdnsp_prepare_ring(struct cdnsp_device * pdev,struct cdnsp_ring * ep_ring,u32 ep_state,unsigned int num_trbs,gfp_t mem_flags)1620 static int cdnsp_prepare_ring(struct cdnsp_device *pdev,
1621 struct cdnsp_ring *ep_ring,
1622 u32 ep_state, unsigned
1623 int num_trbs,
1624 gfp_t mem_flags)
1625 {
1626 unsigned int num_trbs_needed;
1627
1628 /* Make sure the endpoint has been added to controller schedule. */
1629 switch (ep_state) {
1630 case EP_STATE_STOPPED:
1631 case EP_STATE_RUNNING:
1632 case EP_STATE_HALTED:
1633 break;
1634 default:
1635 dev_err(pdev->dev, "ERROR: incorrect endpoint state\n");
1636 return -EINVAL;
1637 }
1638
1639 while (1) {
1640 if (cdnsp_room_on_ring(pdev, ep_ring, num_trbs))
1641 break;
1642
1643 trace_cdnsp_no_room_on_ring("try ring expansion");
1644
1645 num_trbs_needed = num_trbs - ep_ring->num_trbs_free;
1646 if (cdnsp_ring_expansion(pdev, ep_ring, num_trbs_needed,
1647 mem_flags)) {
1648 dev_err(pdev->dev, "Ring expansion failed\n");
1649 return -ENOMEM;
1650 }
1651 }
1652
1653 while (cdnsp_trb_is_link(ep_ring->enqueue)) {
1654 ep_ring->enqueue->link.control |= cpu_to_le32(TRB_CHAIN);
1655 /* The cycle bit must be set as the last operation. */
1656 wmb();
1657 ep_ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE);
1658
1659 /* Toggle the cycle bit after the last ring segment. */
1660 if (cdnsp_link_trb_toggles_cycle(ep_ring->enqueue))
1661 ep_ring->cycle_state ^= 1;
1662 ep_ring->enq_seg = ep_ring->enq_seg->next;
1663 ep_ring->enqueue = ep_ring->enq_seg->trbs;
1664 }
1665 return 0;
1666 }
1667
cdnsp_prepare_transfer(struct cdnsp_device * pdev,struct cdnsp_request * preq,unsigned int num_trbs)1668 static int cdnsp_prepare_transfer(struct cdnsp_device *pdev,
1669 struct cdnsp_request *preq,
1670 unsigned int num_trbs)
1671 {
1672 struct cdnsp_ring *ep_ring;
1673 int ret;
1674
1675 ep_ring = cdnsp_get_transfer_ring(pdev, preq->pep,
1676 preq->request.stream_id);
1677 if (!ep_ring)
1678 return -EINVAL;
1679
1680 ret = cdnsp_prepare_ring(pdev, ep_ring,
1681 GET_EP_CTX_STATE(preq->pep->out_ctx),
1682 num_trbs, GFP_ATOMIC);
1683 if (ret)
1684 return ret;
1685
1686 INIT_LIST_HEAD(&preq->td.td_list);
1687 preq->td.preq = preq;
1688
1689 /* Add this TD to the tail of the endpoint ring's TD list. */
1690 list_add_tail(&preq->td.td_list, &ep_ring->td_list);
1691 ep_ring->num_tds++;
1692 preq->pep->stream_info.td_count++;
1693
1694 preq->td.start_seg = ep_ring->enq_seg;
1695 preq->td.first_trb = ep_ring->enqueue;
1696
1697 return 0;
1698 }
1699
cdnsp_count_trbs(u64 addr,u64 len)1700 static unsigned int cdnsp_count_trbs(u64 addr, u64 len)
1701 {
1702 unsigned int num_trbs;
1703
1704 num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)),
1705 TRB_MAX_BUFF_SIZE);
1706 if (num_trbs == 0)
1707 num_trbs++;
1708
1709 return num_trbs;
1710 }
1711
count_trbs_needed(struct cdnsp_request * preq)1712 static unsigned int count_trbs_needed(struct cdnsp_request *preq)
1713 {
1714 return cdnsp_count_trbs(preq->request.dma, preq->request.length);
1715 }
1716
count_sg_trbs_needed(struct cdnsp_request * preq)1717 static unsigned int count_sg_trbs_needed(struct cdnsp_request *preq)
1718 {
1719 unsigned int i, len, full_len, num_trbs = 0;
1720 struct scatterlist *sg;
1721
1722 full_len = preq->request.length;
1723
1724 for_each_sg(preq->request.sg, sg, preq->request.num_sgs, i) {
1725 len = sg_dma_len(sg);
1726 num_trbs += cdnsp_count_trbs(sg_dma_address(sg), len);
1727 len = min(len, full_len);
1728 full_len -= len;
1729 if (full_len == 0)
1730 break;
1731 }
1732
1733 return num_trbs;
1734 }
1735
cdnsp_check_trb_math(struct cdnsp_request * preq,int running_total)1736 static void cdnsp_check_trb_math(struct cdnsp_request *preq, int running_total)
1737 {
1738 if (running_total != preq->request.length)
1739 dev_err(preq->pep->pdev->dev,
1740 "%s - Miscalculated tx length, "
1741 "queued %#x, asked for %#x (%d)\n",
1742 preq->pep->name, running_total,
1743 preq->request.length, preq->request.actual);
1744 }
1745
1746 /*
1747 * TD size is the number of max packet sized packets remaining in the TD
1748 * (*not* including this TRB).
1749 *
1750 * Total TD packet count = total_packet_count =
1751 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize)
1752 *
1753 * Packets transferred up to and including this TRB = packets_transferred =
1754 * rounddown(total bytes transferred including this TRB / wMaxPacketSize)
1755 *
1756 * TD size = total_packet_count - packets_transferred
1757 *
1758 * It must fit in bits 21:17, so it can't be bigger than 31.
1759 * This is taken care of in the TRB_TD_SIZE() macro
1760 *
1761 * The last TRB in a TD must have the TD size set to zero.
1762 */
cdnsp_td_remainder(struct cdnsp_device * pdev,int transferred,int trb_buff_len,unsigned int td_total_len,struct cdnsp_request * preq,bool more_trbs_coming,bool zlp)1763 static u32 cdnsp_td_remainder(struct cdnsp_device *pdev,
1764 int transferred,
1765 int trb_buff_len,
1766 unsigned int td_total_len,
1767 struct cdnsp_request *preq,
1768 bool more_trbs_coming,
1769 bool zlp)
1770 {
1771 u32 maxp, total_packet_count;
1772
1773 /* Before ZLP driver needs set TD_SIZE = 1. */
1774 if (zlp)
1775 return 1;
1776
1777 /* One TRB with a zero-length data packet. */
1778 if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) ||
1779 trb_buff_len == td_total_len)
1780 return 0;
1781
1782 maxp = usb_endpoint_maxp(preq->pep->endpoint.desc);
1783 total_packet_count = DIV_ROUND_UP(td_total_len, maxp);
1784
1785 /* Queuing functions don't count the current TRB into transferred. */
1786 return (total_packet_count - ((transferred + trb_buff_len) / maxp));
1787 }
1788
cdnsp_align_td(struct cdnsp_device * pdev,struct cdnsp_request * preq,u32 enqd_len,u32 * trb_buff_len,struct cdnsp_segment * seg)1789 static int cdnsp_align_td(struct cdnsp_device *pdev,
1790 struct cdnsp_request *preq, u32 enqd_len,
1791 u32 *trb_buff_len, struct cdnsp_segment *seg)
1792 {
1793 struct device *dev = pdev->dev;
1794 unsigned int unalign;
1795 unsigned int max_pkt;
1796 u32 new_buff_len;
1797
1798 max_pkt = usb_endpoint_maxp(preq->pep->endpoint.desc);
1799 unalign = (enqd_len + *trb_buff_len) % max_pkt;
1800
1801 /* We got lucky, last normal TRB data on segment is packet aligned. */
1802 if (unalign == 0)
1803 return 0;
1804
1805 /* Is the last nornal TRB alignable by splitting it. */
1806 if (*trb_buff_len > unalign) {
1807 *trb_buff_len -= unalign;
1808 trace_cdnsp_bounce_align_td_split(preq, *trb_buff_len,
1809 enqd_len, 0, unalign);
1810 return 0;
1811 }
1812
1813 /*
1814 * We want enqd_len + trb_buff_len to sum up to a number aligned to
1815 * number which is divisible by the endpoint's wMaxPacketSize. IOW:
1816 * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0.
1817 */
1818 new_buff_len = max_pkt - (enqd_len % max_pkt);
1819
1820 if (new_buff_len > (preq->request.length - enqd_len))
1821 new_buff_len = (preq->request.length - enqd_len);
1822
1823 /* Create a max max_pkt sized bounce buffer pointed to by last trb. */
1824 if (preq->direction) {
1825 sg_pcopy_to_buffer(preq->request.sg,
1826 preq->request.num_mapped_sgs,
1827 seg->bounce_buf, new_buff_len, enqd_len);
1828 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf,
1829 max_pkt, DMA_TO_DEVICE);
1830 } else {
1831 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf,
1832 max_pkt, DMA_FROM_DEVICE);
1833 }
1834
1835 if (dma_mapping_error(dev, seg->bounce_dma)) {
1836 /* Try without aligning.*/
1837 dev_warn(pdev->dev,
1838 "Failed mapping bounce buffer, not aligning\n");
1839 return 0;
1840 }
1841
1842 *trb_buff_len = new_buff_len;
1843 seg->bounce_len = new_buff_len;
1844 seg->bounce_offs = enqd_len;
1845
1846 trace_cdnsp_bounce_map(preq, new_buff_len, enqd_len, seg->bounce_dma,
1847 unalign);
1848
1849 /*
1850 * Bounce buffer successful aligned and seg->bounce_dma will be used
1851 * in transfer TRB as new transfer buffer address.
1852 */
1853 return 1;
1854 }
1855
cdnsp_queue_bulk_tx(struct cdnsp_device * pdev,struct cdnsp_request * preq)1856 int cdnsp_queue_bulk_tx(struct cdnsp_device *pdev, struct cdnsp_request *preq)
1857 {
1858 unsigned int enqd_len, block_len, trb_buff_len, full_len;
1859 unsigned int start_cycle, num_sgs = 0;
1860 struct cdnsp_generic_trb *start_trb;
1861 u32 field, length_field, remainder;
1862 struct scatterlist *sg = NULL;
1863 bool more_trbs_coming = true;
1864 bool need_zero_pkt = false;
1865 bool zero_len_trb = false;
1866 struct cdnsp_ring *ring;
1867 bool first_trb = true;
1868 unsigned int num_trbs;
1869 struct cdnsp_ep *pep;
1870 u64 addr, send_addr;
1871 int sent_len, ret;
1872
1873 ring = cdnsp_request_to_transfer_ring(pdev, preq);
1874 if (!ring)
1875 return -EINVAL;
1876
1877 full_len = preq->request.length;
1878
1879 if (preq->request.num_sgs) {
1880 num_sgs = preq->request.num_sgs;
1881 sg = preq->request.sg;
1882 addr = (u64)sg_dma_address(sg);
1883 block_len = sg_dma_len(sg);
1884 num_trbs = count_sg_trbs_needed(preq);
1885 } else {
1886 num_trbs = count_trbs_needed(preq);
1887 addr = (u64)preq->request.dma;
1888 block_len = full_len;
1889 }
1890
1891 pep = preq->pep;
1892
1893 /* Deal with request.zero - need one more td/trb. */
1894 if (preq->request.zero && preq->request.length &&
1895 IS_ALIGNED(full_len, usb_endpoint_maxp(pep->endpoint.desc))) {
1896 need_zero_pkt = true;
1897 num_trbs++;
1898 }
1899
1900 ret = cdnsp_prepare_transfer(pdev, preq, num_trbs);
1901 if (ret)
1902 return ret;
1903
1904 /*
1905 * Don't give the first TRB to the hardware (by toggling the cycle bit)
1906 * until we've finished creating all the other TRBs. The ring's cycle
1907 * state may change as we enqueue the other TRBs, so save it too.
1908 */
1909 start_trb = &ring->enqueue->generic;
1910 start_cycle = ring->cycle_state;
1911 send_addr = addr;
1912
1913 /* Queue the TRBs, even if they are zero-length */
1914 for (enqd_len = 0; zero_len_trb || first_trb || enqd_len < full_len;
1915 enqd_len += trb_buff_len) {
1916 field = TRB_TYPE(TRB_NORMAL);
1917
1918 /* TRB buffer should not cross 64KB boundaries */
1919 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr);
1920 trb_buff_len = min(trb_buff_len, block_len);
1921 if (enqd_len + trb_buff_len > full_len)
1922 trb_buff_len = full_len - enqd_len;
1923
1924 /* Don't change the cycle bit of the first TRB until later */
1925 if (first_trb) {
1926 first_trb = false;
1927 if (start_cycle == 0)
1928 field |= TRB_CYCLE;
1929 } else {
1930 field |= ring->cycle_state;
1931 }
1932
1933 /*
1934 * Chain all the TRBs together; clear the chain bit in the last
1935 * TRB to indicate it's the last TRB in the chain.
1936 */
1937 if (enqd_len + trb_buff_len < full_len || need_zero_pkt) {
1938 field |= TRB_CHAIN;
1939 if (cdnsp_trb_is_link(ring->enqueue + 1)) {
1940 if (cdnsp_align_td(pdev, preq, enqd_len,
1941 &trb_buff_len,
1942 ring->enq_seg)) {
1943 send_addr = ring->enq_seg->bounce_dma;
1944 /* Assuming TD won't span 2 segs */
1945 preq->td.bounce_seg = ring->enq_seg;
1946 }
1947 }
1948 }
1949
1950 if (enqd_len + trb_buff_len >= full_len) {
1951 if (need_zero_pkt && !zero_len_trb) {
1952 zero_len_trb = true;
1953 } else {
1954 zero_len_trb = false;
1955 field &= ~TRB_CHAIN;
1956 field |= TRB_IOC;
1957 more_trbs_coming = false;
1958 need_zero_pkt = false;
1959 preq->td.last_trb = ring->enqueue;
1960 }
1961 }
1962
1963 /* Only set interrupt on short packet for OUT endpoints. */
1964 if (!preq->direction)
1965 field |= TRB_ISP;
1966
1967 /* Set the TRB length, TD size, and interrupter fields. */
1968 remainder = cdnsp_td_remainder(pdev, enqd_len, trb_buff_len,
1969 full_len, preq,
1970 more_trbs_coming,
1971 zero_len_trb);
1972
1973 length_field = TRB_LEN(trb_buff_len) | TRB_TD_SIZE(remainder) |
1974 TRB_INTR_TARGET(0);
1975
1976 cdnsp_queue_trb(pdev, ring, more_trbs_coming,
1977 lower_32_bits(send_addr),
1978 upper_32_bits(send_addr),
1979 length_field,
1980 field);
1981
1982 addr += trb_buff_len;
1983 sent_len = trb_buff_len;
1984 while (sg && sent_len >= block_len) {
1985 /* New sg entry */
1986 --num_sgs;
1987 sent_len -= block_len;
1988 if (num_sgs != 0) {
1989 sg = sg_next(sg);
1990 block_len = sg_dma_len(sg);
1991 addr = (u64)sg_dma_address(sg);
1992 addr += sent_len;
1993 }
1994 }
1995 block_len -= sent_len;
1996 send_addr = addr;
1997 }
1998
1999 cdnsp_check_trb_math(preq, enqd_len);
2000 ret = cdnsp_giveback_first_trb(pdev, pep, preq->request.stream_id,
2001 start_cycle, start_trb);
2002
2003 if (ret)
2004 preq->td.drbl = 1;
2005
2006 return 0;
2007 }
2008
cdnsp_queue_ctrl_tx(struct cdnsp_device * pdev,struct cdnsp_request * preq)2009 int cdnsp_queue_ctrl_tx(struct cdnsp_device *pdev, struct cdnsp_request *preq)
2010 {
2011 u32 field, length_field, zlp = 0;
2012 struct cdnsp_ep *pep = preq->pep;
2013 struct cdnsp_ring *ep_ring;
2014 int num_trbs;
2015 u32 maxp;
2016 int ret;
2017
2018 ep_ring = cdnsp_request_to_transfer_ring(pdev, preq);
2019 if (!ep_ring)
2020 return -EINVAL;
2021
2022 /* 1 TRB for data, 1 for status */
2023 num_trbs = (pdev->three_stage_setup) ? 2 : 1;
2024
2025 maxp = usb_endpoint_maxp(pep->endpoint.desc);
2026
2027 if (preq->request.zero && preq->request.length &&
2028 (preq->request.length % maxp == 0)) {
2029 num_trbs++;
2030 zlp = 1;
2031 }
2032
2033 ret = cdnsp_prepare_transfer(pdev, preq, num_trbs);
2034 if (ret)
2035 return ret;
2036
2037 /* If there's data, queue data TRBs */
2038 if (preq->request.length > 0) {
2039 field = TRB_TYPE(TRB_DATA);
2040
2041 if (zlp)
2042 field |= TRB_CHAIN;
2043 else
2044 field |= TRB_IOC | (pdev->ep0_expect_in ? 0 : TRB_ISP);
2045
2046 if (pdev->ep0_expect_in)
2047 field |= TRB_DIR_IN;
2048
2049 length_field = TRB_LEN(preq->request.length) |
2050 TRB_TD_SIZE(zlp) | TRB_INTR_TARGET(0);
2051
2052 cdnsp_queue_trb(pdev, ep_ring, true,
2053 lower_32_bits(preq->request.dma),
2054 upper_32_bits(preq->request.dma), length_field,
2055 field | ep_ring->cycle_state |
2056 TRB_SETUPID(pdev->setup_id) |
2057 pdev->setup_speed);
2058
2059 if (zlp) {
2060 field = TRB_TYPE(TRB_NORMAL) | TRB_IOC;
2061
2062 if (!pdev->ep0_expect_in)
2063 field = TRB_ISP;
2064
2065 cdnsp_queue_trb(pdev, ep_ring, true,
2066 lower_32_bits(preq->request.dma),
2067 upper_32_bits(preq->request.dma), 0,
2068 field | ep_ring->cycle_state |
2069 TRB_SETUPID(pdev->setup_id) |
2070 pdev->setup_speed);
2071 }
2072
2073 pdev->ep0_stage = CDNSP_DATA_STAGE;
2074 }
2075
2076 /* Save the DMA address of the last TRB in the TD. */
2077 preq->td.last_trb = ep_ring->enqueue;
2078
2079 /* Queue status TRB. */
2080 if (preq->request.length == 0)
2081 field = ep_ring->cycle_state;
2082 else
2083 field = (ep_ring->cycle_state ^ 1);
2084
2085 if (preq->request.length > 0 && pdev->ep0_expect_in)
2086 field |= TRB_DIR_IN;
2087
2088 if (pep->ep_state & EP0_HALTED_STATUS) {
2089 pep->ep_state &= ~EP0_HALTED_STATUS;
2090 field |= TRB_SETUPSTAT(TRB_SETUPSTAT_STALL);
2091 } else {
2092 field |= TRB_SETUPSTAT(TRB_SETUPSTAT_ACK);
2093 }
2094
2095 cdnsp_queue_trb(pdev, ep_ring, false, 0, 0, TRB_INTR_TARGET(0),
2096 field | TRB_IOC | TRB_SETUPID(pdev->setup_id) |
2097 TRB_TYPE(TRB_STATUS) | pdev->setup_speed);
2098
2099 cdnsp_ring_ep_doorbell(pdev, pep, preq->request.stream_id);
2100
2101 return 0;
2102 }
2103
cdnsp_cmd_stop_ep(struct cdnsp_device * pdev,struct cdnsp_ep * pep)2104 int cdnsp_cmd_stop_ep(struct cdnsp_device *pdev, struct cdnsp_ep *pep)
2105 {
2106 u32 ep_state = GET_EP_CTX_STATE(pep->out_ctx);
2107 int ret = 0;
2108
2109 if (ep_state == EP_STATE_STOPPED || ep_state == EP_STATE_DISABLED ||
2110 ep_state == EP_STATE_HALTED) {
2111 trace_cdnsp_ep_stopped_or_disabled(pep->out_ctx);
2112 goto ep_stopped;
2113 }
2114
2115 cdnsp_queue_stop_endpoint(pdev, pep->idx);
2116 cdnsp_ring_cmd_db(pdev);
2117 ret = cdnsp_wait_for_cmd_compl(pdev);
2118
2119 trace_cdnsp_handle_cmd_stop_ep(pep->out_ctx);
2120
2121 ep_stopped:
2122 pep->ep_state |= EP_STOPPED;
2123 return ret;
2124 }
2125
cdnsp_cmd_flush_ep(struct cdnsp_device * pdev,struct cdnsp_ep * pep)2126 int cdnsp_cmd_flush_ep(struct cdnsp_device *pdev, struct cdnsp_ep *pep)
2127 {
2128 int ret;
2129
2130 cdnsp_queue_flush_endpoint(pdev, pep->idx);
2131 cdnsp_ring_cmd_db(pdev);
2132 ret = cdnsp_wait_for_cmd_compl(pdev);
2133
2134 trace_cdnsp_handle_cmd_flush_ep(pep->out_ctx);
2135
2136 return ret;
2137 }
2138
2139 /*
2140 * The transfer burst count field of the isochronous TRB defines the number of
2141 * bursts that are required to move all packets in this TD. Only SuperSpeed
2142 * devices can burst up to bMaxBurst number of packets per service interval.
2143 * This field is zero based, meaning a value of zero in the field means one
2144 * burst. Basically, for everything but SuperSpeed devices, this field will be
2145 * zero.
2146 */
cdnsp_get_burst_count(struct cdnsp_device * pdev,struct cdnsp_request * preq,unsigned int total_packet_count)2147 static unsigned int cdnsp_get_burst_count(struct cdnsp_device *pdev,
2148 struct cdnsp_request *preq,
2149 unsigned int total_packet_count)
2150 {
2151 unsigned int max_burst;
2152
2153 if (pdev->gadget.speed < USB_SPEED_SUPER)
2154 return 0;
2155
2156 max_burst = preq->pep->endpoint.comp_desc->bMaxBurst;
2157 return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1;
2158 }
2159
2160 /*
2161 * Returns the number of packets in the last "burst" of packets. This field is
2162 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so
2163 * the last burst packet count is equal to the total number of packets in the
2164 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst
2165 * must contain (bMaxBurst + 1) number of packets, but the last burst can
2166 * contain 1 to (bMaxBurst + 1) packets.
2167 */
2168 static unsigned int
cdnsp_get_last_burst_packet_count(struct cdnsp_device * pdev,struct cdnsp_request * preq,unsigned int total_packet_count)2169 cdnsp_get_last_burst_packet_count(struct cdnsp_device *pdev,
2170 struct cdnsp_request *preq,
2171 unsigned int total_packet_count)
2172 {
2173 unsigned int max_burst;
2174 unsigned int residue;
2175
2176 if (pdev->gadget.speed >= USB_SPEED_SUPER) {
2177 /* bMaxBurst is zero based: 0 means 1 packet per burst. */
2178 max_burst = preq->pep->endpoint.comp_desc->bMaxBurst;
2179 residue = total_packet_count % (max_burst + 1);
2180
2181 /*
2182 * If residue is zero, the last burst contains (max_burst + 1)
2183 * number of packets, but the TLBPC field is zero-based.
2184 */
2185 if (residue == 0)
2186 return max_burst;
2187
2188 return residue - 1;
2189 }
2190 if (total_packet_count == 0)
2191 return 0;
2192
2193 return total_packet_count - 1;
2194 }
2195
2196 /* Queue function isoc transfer */
cdnsp_queue_isoc_tx(struct cdnsp_device * pdev,struct cdnsp_request * preq)2197 int cdnsp_queue_isoc_tx(struct cdnsp_device *pdev,
2198 struct cdnsp_request *preq)
2199 {
2200 unsigned int trb_buff_len, td_len, td_remain_len, block_len;
2201 unsigned int burst_count, last_burst_pkt;
2202 unsigned int total_pkt_count, max_pkt;
2203 struct cdnsp_generic_trb *start_trb;
2204 struct scatterlist *sg = NULL;
2205 bool more_trbs_coming = true;
2206 struct cdnsp_ring *ep_ring;
2207 unsigned int num_sgs = 0;
2208 int running_total = 0;
2209 u32 field, length_field;
2210 u64 addr, send_addr;
2211 int start_cycle;
2212 int trbs_per_td;
2213 int i, sent_len, ret;
2214
2215 ep_ring = preq->pep->ring;
2216
2217 td_len = preq->request.length;
2218
2219 if (preq->request.num_sgs) {
2220 num_sgs = preq->request.num_sgs;
2221 sg = preq->request.sg;
2222 addr = (u64)sg_dma_address(sg);
2223 block_len = sg_dma_len(sg);
2224 trbs_per_td = count_sg_trbs_needed(preq);
2225 } else {
2226 addr = (u64)preq->request.dma;
2227 block_len = td_len;
2228 trbs_per_td = count_trbs_needed(preq);
2229 }
2230
2231 ret = cdnsp_prepare_transfer(pdev, preq, trbs_per_td);
2232 if (ret)
2233 return ret;
2234
2235 start_trb = &ep_ring->enqueue->generic;
2236 start_cycle = ep_ring->cycle_state;
2237 td_remain_len = td_len;
2238 send_addr = addr;
2239
2240 max_pkt = usb_endpoint_maxp(preq->pep->endpoint.desc);
2241 total_pkt_count = DIV_ROUND_UP(td_len, max_pkt);
2242
2243 /* A zero-length transfer still involves at least one packet. */
2244 if (total_pkt_count == 0)
2245 total_pkt_count++;
2246
2247 burst_count = cdnsp_get_burst_count(pdev, preq, total_pkt_count);
2248 last_burst_pkt = cdnsp_get_last_burst_packet_count(pdev, preq,
2249 total_pkt_count);
2250
2251 /*
2252 * Set isoc specific data for the first TRB in a TD.
2253 * Prevent HW from getting the TRBs by keeping the cycle state
2254 * inverted in the first TDs isoc TRB.
2255 */
2256 field = TRB_TYPE(TRB_ISOC) | TRB_TLBPC(last_burst_pkt) |
2257 TRB_SIA | TRB_TBC(burst_count);
2258
2259 if (!start_cycle)
2260 field |= TRB_CYCLE;
2261
2262 /* Fill the rest of the TRB fields, and remaining normal TRBs. */
2263 for (i = 0; i < trbs_per_td; i++) {
2264 u32 remainder;
2265
2266 /* Calculate TRB length. */
2267 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr);
2268 trb_buff_len = min(trb_buff_len, block_len);
2269 if (trb_buff_len > td_remain_len)
2270 trb_buff_len = td_remain_len;
2271
2272 /* Set the TRB length, TD size, & interrupter fields. */
2273 remainder = cdnsp_td_remainder(pdev, running_total,
2274 trb_buff_len, td_len, preq,
2275 more_trbs_coming, 0);
2276
2277 length_field = TRB_LEN(trb_buff_len) | TRB_TD_SIZE(remainder) |
2278 TRB_INTR_TARGET(0);
2279
2280 /* Only first TRB is isoc, overwrite otherwise. */
2281 if (i) {
2282 field = TRB_TYPE(TRB_NORMAL) | ep_ring->cycle_state;
2283 length_field |= TRB_TD_SIZE(remainder);
2284 } else {
2285 length_field |= TRB_TD_SIZE_TBC(burst_count);
2286 }
2287
2288 /* Only set interrupt on short packet for OUT EPs. */
2289 if (usb_endpoint_dir_out(preq->pep->endpoint.desc))
2290 field |= TRB_ISP;
2291
2292 /* Set the chain bit for all except the last TRB. */
2293 if (i < trbs_per_td - 1) {
2294 more_trbs_coming = true;
2295 field |= TRB_CHAIN;
2296 } else {
2297 more_trbs_coming = false;
2298 preq->td.last_trb = ep_ring->enqueue;
2299 field |= TRB_IOC;
2300 }
2301
2302 cdnsp_queue_trb(pdev, ep_ring, more_trbs_coming,
2303 lower_32_bits(send_addr), upper_32_bits(send_addr),
2304 length_field, field);
2305
2306 running_total += trb_buff_len;
2307 addr += trb_buff_len;
2308 td_remain_len -= trb_buff_len;
2309
2310 sent_len = trb_buff_len;
2311 while (sg && sent_len >= block_len) {
2312 /* New sg entry */
2313 --num_sgs;
2314 sent_len -= block_len;
2315 if (num_sgs != 0) {
2316 sg = sg_next(sg);
2317 block_len = sg_dma_len(sg);
2318 addr = (u64)sg_dma_address(sg);
2319 addr += sent_len;
2320 }
2321 }
2322 block_len -= sent_len;
2323 send_addr = addr;
2324 }
2325
2326 /* Check TD length */
2327 if (running_total != td_len) {
2328 dev_err(pdev->dev, "ISOC TD length unmatch\n");
2329 ret = -EINVAL;
2330 goto cleanup;
2331 }
2332
2333 cdnsp_giveback_first_trb(pdev, preq->pep, preq->request.stream_id,
2334 start_cycle, start_trb);
2335
2336 return 0;
2337
2338 cleanup:
2339 /* Clean up a partially enqueued isoc transfer. */
2340 list_del_init(&preq->td.td_list);
2341 ep_ring->num_tds--;
2342
2343 /*
2344 * Use the first TD as a temporary variable to turn the TDs we've
2345 * queued into No-ops with a software-owned cycle bit.
2346 * That way the hardware won't accidentally start executing bogus TDs
2347 * when we partially overwrite them.
2348 * td->first_trb and td->start_seg are already set.
2349 */
2350 preq->td.last_trb = ep_ring->enqueue;
2351 /* Every TRB except the first & last will have its cycle bit flipped. */
2352 cdnsp_td_to_noop(pdev, ep_ring, &preq->td, true);
2353
2354 /* Reset the ring enqueue back to the first TRB and its cycle bit. */
2355 ep_ring->enqueue = preq->td.first_trb;
2356 ep_ring->enq_seg = preq->td.start_seg;
2357 ep_ring->cycle_state = start_cycle;
2358 return ret;
2359 }
2360
2361 /**** Command Ring Operations ****/
2362 /*
2363 * Generic function for queuing a command TRB on the command ring.
2364 * Driver queue only one command to ring in the moment.
2365 */
cdnsp_queue_command(struct cdnsp_device * pdev,u32 field1,u32 field2,u32 field3,u32 field4)2366 static void cdnsp_queue_command(struct cdnsp_device *pdev,
2367 u32 field1,
2368 u32 field2,
2369 u32 field3,
2370 u32 field4)
2371 {
2372 cdnsp_prepare_ring(pdev, pdev->cmd_ring, EP_STATE_RUNNING, 1,
2373 GFP_ATOMIC);
2374
2375 pdev->cmd.command_trb = pdev->cmd_ring->enqueue;
2376
2377 cdnsp_queue_trb(pdev, pdev->cmd_ring, false, field1, field2,
2378 field3, field4 | pdev->cmd_ring->cycle_state);
2379 }
2380
2381 /* Queue a slot enable or disable request on the command ring */
cdnsp_queue_slot_control(struct cdnsp_device * pdev,u32 trb_type)2382 void cdnsp_queue_slot_control(struct cdnsp_device *pdev, u32 trb_type)
2383 {
2384 cdnsp_queue_command(pdev, 0, 0, 0, TRB_TYPE(trb_type) |
2385 SLOT_ID_FOR_TRB(pdev->slot_id));
2386 }
2387
2388 /* Queue an address device command TRB */
cdnsp_queue_address_device(struct cdnsp_device * pdev,dma_addr_t in_ctx_ptr,enum cdnsp_setup_dev setup)2389 void cdnsp_queue_address_device(struct cdnsp_device *pdev,
2390 dma_addr_t in_ctx_ptr,
2391 enum cdnsp_setup_dev setup)
2392 {
2393 cdnsp_queue_command(pdev, lower_32_bits(in_ctx_ptr),
2394 upper_32_bits(in_ctx_ptr), 0,
2395 TRB_TYPE(TRB_ADDR_DEV) |
2396 SLOT_ID_FOR_TRB(pdev->slot_id) |
2397 (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0));
2398 }
2399
2400 /* Queue a reset device command TRB */
cdnsp_queue_reset_device(struct cdnsp_device * pdev)2401 void cdnsp_queue_reset_device(struct cdnsp_device *pdev)
2402 {
2403 cdnsp_queue_command(pdev, 0, 0, 0, TRB_TYPE(TRB_RESET_DEV) |
2404 SLOT_ID_FOR_TRB(pdev->slot_id));
2405 }
2406
2407 /* Queue a configure endpoint command TRB */
cdnsp_queue_configure_endpoint(struct cdnsp_device * pdev,dma_addr_t in_ctx_ptr)2408 void cdnsp_queue_configure_endpoint(struct cdnsp_device *pdev,
2409 dma_addr_t in_ctx_ptr)
2410 {
2411 cdnsp_queue_command(pdev, lower_32_bits(in_ctx_ptr),
2412 upper_32_bits(in_ctx_ptr), 0,
2413 TRB_TYPE(TRB_CONFIG_EP) |
2414 SLOT_ID_FOR_TRB(pdev->slot_id));
2415 }
2416
2417 /*
2418 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
2419 * activity on an endpoint that is about to be suspended.
2420 */
cdnsp_queue_stop_endpoint(struct cdnsp_device * pdev,unsigned int ep_index)2421 void cdnsp_queue_stop_endpoint(struct cdnsp_device *pdev, unsigned int ep_index)
2422 {
2423 cdnsp_queue_command(pdev, 0, 0, 0, SLOT_ID_FOR_TRB(pdev->slot_id) |
2424 EP_ID_FOR_TRB(ep_index) | TRB_TYPE(TRB_STOP_RING));
2425 }
2426
2427 /* Set Transfer Ring Dequeue Pointer command. */
cdnsp_queue_new_dequeue_state(struct cdnsp_device * pdev,struct cdnsp_ep * pep,struct cdnsp_dequeue_state * deq_state)2428 void cdnsp_queue_new_dequeue_state(struct cdnsp_device *pdev,
2429 struct cdnsp_ep *pep,
2430 struct cdnsp_dequeue_state *deq_state)
2431 {
2432 u32 trb_stream_id = STREAM_ID_FOR_TRB(deq_state->stream_id);
2433 u32 trb_slot_id = SLOT_ID_FOR_TRB(pdev->slot_id);
2434 u32 type = TRB_TYPE(TRB_SET_DEQ);
2435 u32 trb_sct = 0;
2436 dma_addr_t addr;
2437
2438 addr = cdnsp_trb_virt_to_dma(deq_state->new_deq_seg,
2439 deq_state->new_deq_ptr);
2440
2441 if (deq_state->stream_id)
2442 trb_sct = SCT_FOR_TRB(SCT_PRI_TR);
2443
2444 cdnsp_queue_command(pdev, lower_32_bits(addr) | trb_sct |
2445 deq_state->new_cycle_state, upper_32_bits(addr),
2446 trb_stream_id, trb_slot_id |
2447 EP_ID_FOR_TRB(pep->idx) | type);
2448 }
2449
cdnsp_queue_reset_ep(struct cdnsp_device * pdev,unsigned int ep_index)2450 void cdnsp_queue_reset_ep(struct cdnsp_device *pdev, unsigned int ep_index)
2451 {
2452 return cdnsp_queue_command(pdev, 0, 0, 0,
2453 SLOT_ID_FOR_TRB(pdev->slot_id) |
2454 EP_ID_FOR_TRB(ep_index) |
2455 TRB_TYPE(TRB_RESET_EP));
2456 }
2457
2458 /*
2459 * Queue a halt endpoint request on the command ring.
2460 */
cdnsp_queue_halt_endpoint(struct cdnsp_device * pdev,unsigned int ep_index)2461 void cdnsp_queue_halt_endpoint(struct cdnsp_device *pdev, unsigned int ep_index)
2462 {
2463 cdnsp_queue_command(pdev, 0, 0, 0, TRB_TYPE(TRB_HALT_ENDPOINT) |
2464 SLOT_ID_FOR_TRB(pdev->slot_id) |
2465 EP_ID_FOR_TRB(ep_index));
2466 }
2467
2468 /*
2469 * Queue a flush endpoint request on the command ring.
2470 */
cdnsp_queue_flush_endpoint(struct cdnsp_device * pdev,unsigned int ep_index)2471 void cdnsp_queue_flush_endpoint(struct cdnsp_device *pdev,
2472 unsigned int ep_index)
2473 {
2474 cdnsp_queue_command(pdev, 0, 0, 0, TRB_TYPE(TRB_FLUSH_ENDPOINT) |
2475 SLOT_ID_FOR_TRB(pdev->slot_id) |
2476 EP_ID_FOR_TRB(ep_index));
2477 }
2478
cdnsp_force_header_wakeup(struct cdnsp_device * pdev,int intf_num)2479 void cdnsp_force_header_wakeup(struct cdnsp_device *pdev, int intf_num)
2480 {
2481 u32 lo, mid;
2482
2483 lo = TRB_FH_TO_PACKET_TYPE(TRB_FH_TR_PACKET) |
2484 TRB_FH_TO_DEVICE_ADDRESS(pdev->device_address);
2485 mid = TRB_FH_TR_PACKET_DEV_NOT |
2486 TRB_FH_TO_NOT_TYPE(TRB_FH_TR_PACKET_FUNCTION_WAKE) |
2487 TRB_FH_TO_INTERFACE(intf_num);
2488
2489 cdnsp_queue_command(pdev, lo, mid, 0,
2490 TRB_TYPE(TRB_FORCE_HEADER) | SET_PORT_ID(2));
2491 }
2492