1 /*
2  * Copyright(c) 2015 - 2018 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 
48 /*
49  * This file contains all of the code that is specific to the HFI chip
50  */
51 
52 #include <linux/pci.h>
53 #include <linux/delay.h>
54 #include <linux/interrupt.h>
55 #include <linux/module.h>
56 
57 #include "hfi.h"
58 #include "trace.h"
59 #include "mad.h"
60 #include "pio.h"
61 #include "sdma.h"
62 #include "eprom.h"
63 #include "efivar.h"
64 #include "platform.h"
65 #include "aspm.h"
66 #include "affinity.h"
67 #include "debugfs.h"
68 #include "fault.h"
69 
70 #define NUM_IB_PORTS 1
71 
72 uint kdeth_qp;
73 module_param_named(kdeth_qp, kdeth_qp, uint, S_IRUGO);
74 MODULE_PARM_DESC(kdeth_qp, "Set the KDETH queue pair prefix");
75 
76 uint num_vls = HFI1_MAX_VLS_SUPPORTED;
77 module_param(num_vls, uint, S_IRUGO);
78 MODULE_PARM_DESC(num_vls, "Set number of Virtual Lanes to use (1-8)");
79 
80 /*
81  * Default time to aggregate two 10K packets from the idle state
82  * (timer not running). The timer starts at the end of the first packet,
83  * so only the time for one 10K packet and header plus a bit extra is needed.
84  * 10 * 1024 + 64 header byte = 10304 byte
85  * 10304 byte / 12.5 GB/s = 824.32ns
86  */
87 uint rcv_intr_timeout = (824 + 16); /* 16 is for coalescing interrupt */
88 module_param(rcv_intr_timeout, uint, S_IRUGO);
89 MODULE_PARM_DESC(rcv_intr_timeout, "Receive interrupt mitigation timeout in ns");
90 
91 uint rcv_intr_count = 16; /* same as qib */
92 module_param(rcv_intr_count, uint, S_IRUGO);
93 MODULE_PARM_DESC(rcv_intr_count, "Receive interrupt mitigation count");
94 
95 ushort link_crc_mask = SUPPORTED_CRCS;
96 module_param(link_crc_mask, ushort, S_IRUGO);
97 MODULE_PARM_DESC(link_crc_mask, "CRCs to use on the link");
98 
99 uint loopback;
100 module_param_named(loopback, loopback, uint, S_IRUGO);
101 MODULE_PARM_DESC(loopback, "Put into loopback mode (1 = serdes, 3 = external cable");
102 
103 /* Other driver tunables */
104 uint rcv_intr_dynamic = 1; /* enable dynamic mode for rcv int mitigation*/
105 static ushort crc_14b_sideband = 1;
106 static uint use_flr = 1;
107 uint quick_linkup; /* skip LNI */
108 
109 struct flag_table {
110 	u64 flag;	/* the flag */
111 	char *str;	/* description string */
112 	u16 extra;	/* extra information */
113 	u16 unused0;
114 	u32 unused1;
115 };
116 
117 /* str must be a string constant */
118 #define FLAG_ENTRY(str, extra, flag) {flag, str, extra}
119 #define FLAG_ENTRY0(str, flag) {flag, str, 0}
120 
121 /* Send Error Consequences */
122 #define SEC_WRITE_DROPPED	0x1
123 #define SEC_PACKET_DROPPED	0x2
124 #define SEC_SC_HALTED		0x4	/* per-context only */
125 #define SEC_SPC_FREEZE		0x8	/* per-HFI only */
126 
127 #define DEFAULT_KRCVQS		  2
128 #define MIN_KERNEL_KCTXTS         2
129 #define FIRST_KERNEL_KCTXT        1
130 
131 /*
132  * RSM instance allocation
133  *   0 - Verbs
134  *   1 - User Fecn Handling
135  *   2 - Vnic
136  */
137 #define RSM_INS_VERBS             0
138 #define RSM_INS_FECN              1
139 #define RSM_INS_VNIC              2
140 
141 /* Bit offset into the GUID which carries HFI id information */
142 #define GUID_HFI_INDEX_SHIFT     39
143 
144 /* extract the emulation revision */
145 #define emulator_rev(dd) ((dd)->irev >> 8)
146 /* parallel and serial emulation versions are 3 and 4 respectively */
147 #define is_emulator_p(dd) ((((dd)->irev) & 0xf) == 3)
148 #define is_emulator_s(dd) ((((dd)->irev) & 0xf) == 4)
149 
150 /* RSM fields for Verbs */
151 /* packet type */
152 #define IB_PACKET_TYPE         2ull
153 #define QW_SHIFT               6ull
154 /* QPN[7..1] */
155 #define QPN_WIDTH              7ull
156 
157 /* LRH.BTH: QW 0, OFFSET 48 - for match */
158 #define LRH_BTH_QW             0ull
159 #define LRH_BTH_BIT_OFFSET     48ull
160 #define LRH_BTH_OFFSET(off)    ((LRH_BTH_QW << QW_SHIFT) | (off))
161 #define LRH_BTH_MATCH_OFFSET   LRH_BTH_OFFSET(LRH_BTH_BIT_OFFSET)
162 #define LRH_BTH_SELECT
163 #define LRH_BTH_MASK           3ull
164 #define LRH_BTH_VALUE          2ull
165 
166 /* LRH.SC[3..0] QW 0, OFFSET 56 - for match */
167 #define LRH_SC_QW              0ull
168 #define LRH_SC_BIT_OFFSET      56ull
169 #define LRH_SC_OFFSET(off)     ((LRH_SC_QW << QW_SHIFT) | (off))
170 #define LRH_SC_MATCH_OFFSET    LRH_SC_OFFSET(LRH_SC_BIT_OFFSET)
171 #define LRH_SC_MASK            128ull
172 #define LRH_SC_VALUE           0ull
173 
174 /* SC[n..0] QW 0, OFFSET 60 - for select */
175 #define LRH_SC_SELECT_OFFSET  ((LRH_SC_QW << QW_SHIFT) | (60ull))
176 
177 /* QPN[m+n:1] QW 1, OFFSET 1 */
178 #define QPN_SELECT_OFFSET      ((1ull << QW_SHIFT) | (1ull))
179 
180 /* RSM fields for Vnic */
181 /* L2_TYPE: QW 0, OFFSET 61 - for match */
182 #define L2_TYPE_QW             0ull
183 #define L2_TYPE_BIT_OFFSET     61ull
184 #define L2_TYPE_OFFSET(off)    ((L2_TYPE_QW << QW_SHIFT) | (off))
185 #define L2_TYPE_MATCH_OFFSET   L2_TYPE_OFFSET(L2_TYPE_BIT_OFFSET)
186 #define L2_TYPE_MASK           3ull
187 #define L2_16B_VALUE           2ull
188 
189 /* L4_TYPE QW 1, OFFSET 0 - for match */
190 #define L4_TYPE_QW              1ull
191 #define L4_TYPE_BIT_OFFSET      0ull
192 #define L4_TYPE_OFFSET(off)     ((L4_TYPE_QW << QW_SHIFT) | (off))
193 #define L4_TYPE_MATCH_OFFSET    L4_TYPE_OFFSET(L4_TYPE_BIT_OFFSET)
194 #define L4_16B_TYPE_MASK        0xFFull
195 #define L4_16B_ETH_VALUE        0x78ull
196 
197 /* 16B VESWID - for select */
198 #define L4_16B_HDR_VESWID_OFFSET  ((2 << QW_SHIFT) | (16ull))
199 /* 16B ENTROPY - for select */
200 #define L2_16B_ENTROPY_OFFSET     ((1 << QW_SHIFT) | (32ull))
201 
202 /* defines to build power on SC2VL table */
203 #define SC2VL_VAL( \
204 	num, \
205 	sc0, sc0val, \
206 	sc1, sc1val, \
207 	sc2, sc2val, \
208 	sc3, sc3val, \
209 	sc4, sc4val, \
210 	sc5, sc5val, \
211 	sc6, sc6val, \
212 	sc7, sc7val) \
213 ( \
214 	((u64)(sc0val) << SEND_SC2VLT##num##_SC##sc0##_SHIFT) | \
215 	((u64)(sc1val) << SEND_SC2VLT##num##_SC##sc1##_SHIFT) | \
216 	((u64)(sc2val) << SEND_SC2VLT##num##_SC##sc2##_SHIFT) | \
217 	((u64)(sc3val) << SEND_SC2VLT##num##_SC##sc3##_SHIFT) | \
218 	((u64)(sc4val) << SEND_SC2VLT##num##_SC##sc4##_SHIFT) | \
219 	((u64)(sc5val) << SEND_SC2VLT##num##_SC##sc5##_SHIFT) | \
220 	((u64)(sc6val) << SEND_SC2VLT##num##_SC##sc6##_SHIFT) | \
221 	((u64)(sc7val) << SEND_SC2VLT##num##_SC##sc7##_SHIFT)   \
222 )
223 
224 #define DC_SC_VL_VAL( \
225 	range, \
226 	e0, e0val, \
227 	e1, e1val, \
228 	e2, e2val, \
229 	e3, e3val, \
230 	e4, e4val, \
231 	e5, e5val, \
232 	e6, e6val, \
233 	e7, e7val, \
234 	e8, e8val, \
235 	e9, e9val, \
236 	e10, e10val, \
237 	e11, e11val, \
238 	e12, e12val, \
239 	e13, e13val, \
240 	e14, e14val, \
241 	e15, e15val) \
242 ( \
243 	((u64)(e0val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e0##_SHIFT) | \
244 	((u64)(e1val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e1##_SHIFT) | \
245 	((u64)(e2val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e2##_SHIFT) | \
246 	((u64)(e3val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e3##_SHIFT) | \
247 	((u64)(e4val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e4##_SHIFT) | \
248 	((u64)(e5val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e5##_SHIFT) | \
249 	((u64)(e6val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e6##_SHIFT) | \
250 	((u64)(e7val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e7##_SHIFT) | \
251 	((u64)(e8val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e8##_SHIFT) | \
252 	((u64)(e9val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e9##_SHIFT) | \
253 	((u64)(e10val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e10##_SHIFT) | \
254 	((u64)(e11val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e11##_SHIFT) | \
255 	((u64)(e12val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e12##_SHIFT) | \
256 	((u64)(e13val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e13##_SHIFT) | \
257 	((u64)(e14val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e14##_SHIFT) | \
258 	((u64)(e15val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e15##_SHIFT) \
259 )
260 
261 /* all CceStatus sub-block freeze bits */
262 #define ALL_FROZE (CCE_STATUS_SDMA_FROZE_SMASK \
263 			| CCE_STATUS_RXE_FROZE_SMASK \
264 			| CCE_STATUS_TXE_FROZE_SMASK \
265 			| CCE_STATUS_TXE_PIO_FROZE_SMASK)
266 /* all CceStatus sub-block TXE pause bits */
267 #define ALL_TXE_PAUSE (CCE_STATUS_TXE_PIO_PAUSED_SMASK \
268 			| CCE_STATUS_TXE_PAUSED_SMASK \
269 			| CCE_STATUS_SDMA_PAUSED_SMASK)
270 /* all CceStatus sub-block RXE pause bits */
271 #define ALL_RXE_PAUSE CCE_STATUS_RXE_PAUSED_SMASK
272 
273 #define CNTR_MAX 0xFFFFFFFFFFFFFFFFULL
274 #define CNTR_32BIT_MAX 0x00000000FFFFFFFF
275 
276 /*
277  * CCE Error flags.
278  */
279 static struct flag_table cce_err_status_flags[] = {
280 /* 0*/	FLAG_ENTRY0("CceCsrParityErr",
281 		CCE_ERR_STATUS_CCE_CSR_PARITY_ERR_SMASK),
282 /* 1*/	FLAG_ENTRY0("CceCsrReadBadAddrErr",
283 		CCE_ERR_STATUS_CCE_CSR_READ_BAD_ADDR_ERR_SMASK),
284 /* 2*/	FLAG_ENTRY0("CceCsrWriteBadAddrErr",
285 		CCE_ERR_STATUS_CCE_CSR_WRITE_BAD_ADDR_ERR_SMASK),
286 /* 3*/	FLAG_ENTRY0("CceTrgtAsyncFifoParityErr",
287 		CCE_ERR_STATUS_CCE_TRGT_ASYNC_FIFO_PARITY_ERR_SMASK),
288 /* 4*/	FLAG_ENTRY0("CceTrgtAccessErr",
289 		CCE_ERR_STATUS_CCE_TRGT_ACCESS_ERR_SMASK),
290 /* 5*/	FLAG_ENTRY0("CceRspdDataParityErr",
291 		CCE_ERR_STATUS_CCE_RSPD_DATA_PARITY_ERR_SMASK),
292 /* 6*/	FLAG_ENTRY0("CceCli0AsyncFifoParityErr",
293 		CCE_ERR_STATUS_CCE_CLI0_ASYNC_FIFO_PARITY_ERR_SMASK),
294 /* 7*/	FLAG_ENTRY0("CceCsrCfgBusParityErr",
295 		CCE_ERR_STATUS_CCE_CSR_CFG_BUS_PARITY_ERR_SMASK),
296 /* 8*/	FLAG_ENTRY0("CceCli2AsyncFifoParityErr",
297 		CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK),
298 /* 9*/	FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
299 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR_SMASK),
300 /*10*/	FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
301 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR_SMASK),
302 /*11*/	FLAG_ENTRY0("CceCli1AsyncFifoRxdmaParityError",
303 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERROR_SMASK),
304 /*12*/	FLAG_ENTRY0("CceCli1AsyncFifoDbgParityError",
305 		CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERROR_SMASK),
306 /*13*/	FLAG_ENTRY0("PcicRetryMemCorErr",
307 		CCE_ERR_STATUS_PCIC_RETRY_MEM_COR_ERR_SMASK),
308 /*14*/	FLAG_ENTRY0("PcicRetryMemCorErr",
309 		CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_COR_ERR_SMASK),
310 /*15*/	FLAG_ENTRY0("PcicPostHdQCorErr",
311 		CCE_ERR_STATUS_PCIC_POST_HD_QCOR_ERR_SMASK),
312 /*16*/	FLAG_ENTRY0("PcicPostHdQCorErr",
313 		CCE_ERR_STATUS_PCIC_POST_DAT_QCOR_ERR_SMASK),
314 /*17*/	FLAG_ENTRY0("PcicPostHdQCorErr",
315 		CCE_ERR_STATUS_PCIC_CPL_HD_QCOR_ERR_SMASK),
316 /*18*/	FLAG_ENTRY0("PcicCplDatQCorErr",
317 		CCE_ERR_STATUS_PCIC_CPL_DAT_QCOR_ERR_SMASK),
318 /*19*/	FLAG_ENTRY0("PcicNPostHQParityErr",
319 		CCE_ERR_STATUS_PCIC_NPOST_HQ_PARITY_ERR_SMASK),
320 /*20*/	FLAG_ENTRY0("PcicNPostDatQParityErr",
321 		CCE_ERR_STATUS_PCIC_NPOST_DAT_QPARITY_ERR_SMASK),
322 /*21*/	FLAG_ENTRY0("PcicRetryMemUncErr",
323 		CCE_ERR_STATUS_PCIC_RETRY_MEM_UNC_ERR_SMASK),
324 /*22*/	FLAG_ENTRY0("PcicRetrySotMemUncErr",
325 		CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_UNC_ERR_SMASK),
326 /*23*/	FLAG_ENTRY0("PcicPostHdQUncErr",
327 		CCE_ERR_STATUS_PCIC_POST_HD_QUNC_ERR_SMASK),
328 /*24*/	FLAG_ENTRY0("PcicPostDatQUncErr",
329 		CCE_ERR_STATUS_PCIC_POST_DAT_QUNC_ERR_SMASK),
330 /*25*/	FLAG_ENTRY0("PcicCplHdQUncErr",
331 		CCE_ERR_STATUS_PCIC_CPL_HD_QUNC_ERR_SMASK),
332 /*26*/	FLAG_ENTRY0("PcicCplDatQUncErr",
333 		CCE_ERR_STATUS_PCIC_CPL_DAT_QUNC_ERR_SMASK),
334 /*27*/	FLAG_ENTRY0("PcicTransmitFrontParityErr",
335 		CCE_ERR_STATUS_PCIC_TRANSMIT_FRONT_PARITY_ERR_SMASK),
336 /*28*/	FLAG_ENTRY0("PcicTransmitBackParityErr",
337 		CCE_ERR_STATUS_PCIC_TRANSMIT_BACK_PARITY_ERR_SMASK),
338 /*29*/	FLAG_ENTRY0("PcicReceiveParityErr",
339 		CCE_ERR_STATUS_PCIC_RECEIVE_PARITY_ERR_SMASK),
340 /*30*/	FLAG_ENTRY0("CceTrgtCplTimeoutErr",
341 		CCE_ERR_STATUS_CCE_TRGT_CPL_TIMEOUT_ERR_SMASK),
342 /*31*/	FLAG_ENTRY0("LATriggered",
343 		CCE_ERR_STATUS_LA_TRIGGERED_SMASK),
344 /*32*/	FLAG_ENTRY0("CceSegReadBadAddrErr",
345 		CCE_ERR_STATUS_CCE_SEG_READ_BAD_ADDR_ERR_SMASK),
346 /*33*/	FLAG_ENTRY0("CceSegWriteBadAddrErr",
347 		CCE_ERR_STATUS_CCE_SEG_WRITE_BAD_ADDR_ERR_SMASK),
348 /*34*/	FLAG_ENTRY0("CceRcplAsyncFifoParityErr",
349 		CCE_ERR_STATUS_CCE_RCPL_ASYNC_FIFO_PARITY_ERR_SMASK),
350 /*35*/	FLAG_ENTRY0("CceRxdmaConvFifoParityErr",
351 		CCE_ERR_STATUS_CCE_RXDMA_CONV_FIFO_PARITY_ERR_SMASK),
352 /*36*/	FLAG_ENTRY0("CceMsixTableCorErr",
353 		CCE_ERR_STATUS_CCE_MSIX_TABLE_COR_ERR_SMASK),
354 /*37*/	FLAG_ENTRY0("CceMsixTableUncErr",
355 		CCE_ERR_STATUS_CCE_MSIX_TABLE_UNC_ERR_SMASK),
356 /*38*/	FLAG_ENTRY0("CceIntMapCorErr",
357 		CCE_ERR_STATUS_CCE_INT_MAP_COR_ERR_SMASK),
358 /*39*/	FLAG_ENTRY0("CceIntMapUncErr",
359 		CCE_ERR_STATUS_CCE_INT_MAP_UNC_ERR_SMASK),
360 /*40*/	FLAG_ENTRY0("CceMsixCsrParityErr",
361 		CCE_ERR_STATUS_CCE_MSIX_CSR_PARITY_ERR_SMASK),
362 /*41-63 reserved*/
363 };
364 
365 /*
366  * Misc Error flags
367  */
368 #define MES(text) MISC_ERR_STATUS_MISC_##text##_ERR_SMASK
369 static struct flag_table misc_err_status_flags[] = {
370 /* 0*/	FLAG_ENTRY0("CSR_PARITY", MES(CSR_PARITY)),
371 /* 1*/	FLAG_ENTRY0("CSR_READ_BAD_ADDR", MES(CSR_READ_BAD_ADDR)),
372 /* 2*/	FLAG_ENTRY0("CSR_WRITE_BAD_ADDR", MES(CSR_WRITE_BAD_ADDR)),
373 /* 3*/	FLAG_ENTRY0("SBUS_WRITE_FAILED", MES(SBUS_WRITE_FAILED)),
374 /* 4*/	FLAG_ENTRY0("KEY_MISMATCH", MES(KEY_MISMATCH)),
375 /* 5*/	FLAG_ENTRY0("FW_AUTH_FAILED", MES(FW_AUTH_FAILED)),
376 /* 6*/	FLAG_ENTRY0("EFUSE_CSR_PARITY", MES(EFUSE_CSR_PARITY)),
377 /* 7*/	FLAG_ENTRY0("EFUSE_READ_BAD_ADDR", MES(EFUSE_READ_BAD_ADDR)),
378 /* 8*/	FLAG_ENTRY0("EFUSE_WRITE", MES(EFUSE_WRITE)),
379 /* 9*/	FLAG_ENTRY0("EFUSE_DONE_PARITY", MES(EFUSE_DONE_PARITY)),
380 /*10*/	FLAG_ENTRY0("INVALID_EEP_CMD", MES(INVALID_EEP_CMD)),
381 /*11*/	FLAG_ENTRY0("MBIST_FAIL", MES(MBIST_FAIL)),
382 /*12*/	FLAG_ENTRY0("PLL_LOCK_FAIL", MES(PLL_LOCK_FAIL))
383 };
384 
385 /*
386  * TXE PIO Error flags and consequences
387  */
388 static struct flag_table pio_err_status_flags[] = {
389 /* 0*/	FLAG_ENTRY("PioWriteBadCtxt",
390 	SEC_WRITE_DROPPED,
391 	SEND_PIO_ERR_STATUS_PIO_WRITE_BAD_CTXT_ERR_SMASK),
392 /* 1*/	FLAG_ENTRY("PioWriteAddrParity",
393 	SEC_SPC_FREEZE,
394 	SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK),
395 /* 2*/	FLAG_ENTRY("PioCsrParity",
396 	SEC_SPC_FREEZE,
397 	SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK),
398 /* 3*/	FLAG_ENTRY("PioSbMemFifo0",
399 	SEC_SPC_FREEZE,
400 	SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK),
401 /* 4*/	FLAG_ENTRY("PioSbMemFifo1",
402 	SEC_SPC_FREEZE,
403 	SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK),
404 /* 5*/	FLAG_ENTRY("PioPccFifoParity",
405 	SEC_SPC_FREEZE,
406 	SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK),
407 /* 6*/	FLAG_ENTRY("PioPecFifoParity",
408 	SEC_SPC_FREEZE,
409 	SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK),
410 /* 7*/	FLAG_ENTRY("PioSbrdctlCrrelParity",
411 	SEC_SPC_FREEZE,
412 	SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK),
413 /* 8*/	FLAG_ENTRY("PioSbrdctrlCrrelFifoParity",
414 	SEC_SPC_FREEZE,
415 	SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK),
416 /* 9*/	FLAG_ENTRY("PioPktEvictFifoParityErr",
417 	SEC_SPC_FREEZE,
418 	SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK),
419 /*10*/	FLAG_ENTRY("PioSmPktResetParity",
420 	SEC_SPC_FREEZE,
421 	SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK),
422 /*11*/	FLAG_ENTRY("PioVlLenMemBank0Unc",
423 	SEC_SPC_FREEZE,
424 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK),
425 /*12*/	FLAG_ENTRY("PioVlLenMemBank1Unc",
426 	SEC_SPC_FREEZE,
427 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK),
428 /*13*/	FLAG_ENTRY("PioVlLenMemBank0Cor",
429 	0,
430 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_COR_ERR_SMASK),
431 /*14*/	FLAG_ENTRY("PioVlLenMemBank1Cor",
432 	0,
433 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_COR_ERR_SMASK),
434 /*15*/	FLAG_ENTRY("PioCreditRetFifoParity",
435 	SEC_SPC_FREEZE,
436 	SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK),
437 /*16*/	FLAG_ENTRY("PioPpmcPblFifo",
438 	SEC_SPC_FREEZE,
439 	SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK),
440 /*17*/	FLAG_ENTRY("PioInitSmIn",
441 	0,
442 	SEND_PIO_ERR_STATUS_PIO_INIT_SM_IN_ERR_SMASK),
443 /*18*/	FLAG_ENTRY("PioPktEvictSmOrArbSm",
444 	SEC_SPC_FREEZE,
445 	SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK),
446 /*19*/	FLAG_ENTRY("PioHostAddrMemUnc",
447 	SEC_SPC_FREEZE,
448 	SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK),
449 /*20*/	FLAG_ENTRY("PioHostAddrMemCor",
450 	0,
451 	SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_COR_ERR_SMASK),
452 /*21*/	FLAG_ENTRY("PioWriteDataParity",
453 	SEC_SPC_FREEZE,
454 	SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK),
455 /*22*/	FLAG_ENTRY("PioStateMachine",
456 	SEC_SPC_FREEZE,
457 	SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK),
458 /*23*/	FLAG_ENTRY("PioWriteQwValidParity",
459 	SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
460 	SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK),
461 /*24*/	FLAG_ENTRY("PioBlockQwCountParity",
462 	SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
463 	SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK),
464 /*25*/	FLAG_ENTRY("PioVlfVlLenParity",
465 	SEC_SPC_FREEZE,
466 	SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK),
467 /*26*/	FLAG_ENTRY("PioVlfSopParity",
468 	SEC_SPC_FREEZE,
469 	SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK),
470 /*27*/	FLAG_ENTRY("PioVlFifoParity",
471 	SEC_SPC_FREEZE,
472 	SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK),
473 /*28*/	FLAG_ENTRY("PioPpmcBqcMemParity",
474 	SEC_SPC_FREEZE,
475 	SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK),
476 /*29*/	FLAG_ENTRY("PioPpmcSopLen",
477 	SEC_SPC_FREEZE,
478 	SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK),
479 /*30-31 reserved*/
480 /*32*/	FLAG_ENTRY("PioCurrentFreeCntParity",
481 	SEC_SPC_FREEZE,
482 	SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK),
483 /*33*/	FLAG_ENTRY("PioLastReturnedCntParity",
484 	SEC_SPC_FREEZE,
485 	SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK),
486 /*34*/	FLAG_ENTRY("PioPccSopHeadParity",
487 	SEC_SPC_FREEZE,
488 	SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK),
489 /*35*/	FLAG_ENTRY("PioPecSopHeadParityErr",
490 	SEC_SPC_FREEZE,
491 	SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK),
492 /*36-63 reserved*/
493 };
494 
495 /* TXE PIO errors that cause an SPC freeze */
496 #define ALL_PIO_FREEZE_ERR \
497 	(SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK \
498 	| SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK \
499 	| SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK \
500 	| SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK \
501 	| SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK \
502 	| SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK \
503 	| SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK \
504 	| SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK \
505 	| SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK \
506 	| SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK \
507 	| SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK \
508 	| SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK \
509 	| SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK \
510 	| SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK \
511 	| SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK \
512 	| SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK \
513 	| SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK \
514 	| SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK \
515 	| SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK \
516 	| SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK \
517 	| SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK \
518 	| SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK \
519 	| SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK \
520 	| SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK \
521 	| SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK \
522 	| SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK \
523 	| SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK \
524 	| SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK \
525 	| SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK)
526 
527 /*
528  * TXE SDMA Error flags
529  */
530 static struct flag_table sdma_err_status_flags[] = {
531 /* 0*/	FLAG_ENTRY0("SDmaRpyTagErr",
532 		SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK),
533 /* 1*/	FLAG_ENTRY0("SDmaCsrParityErr",
534 		SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK),
535 /* 2*/	FLAG_ENTRY0("SDmaPcieReqTrackingUncErr",
536 		SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK),
537 /* 3*/	FLAG_ENTRY0("SDmaPcieReqTrackingCorErr",
538 		SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_COR_ERR_SMASK),
539 /*04-63 reserved*/
540 };
541 
542 /* TXE SDMA errors that cause an SPC freeze */
543 #define ALL_SDMA_FREEZE_ERR  \
544 		(SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK \
545 		| SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK \
546 		| SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK)
547 
548 /* SendEgressErrInfo bits that correspond to a PortXmitDiscard counter */
549 #define PORT_DISCARD_EGRESS_ERRS \
550 	(SEND_EGRESS_ERR_INFO_TOO_LONG_IB_PACKET_ERR_SMASK \
551 	| SEND_EGRESS_ERR_INFO_VL_MAPPING_ERR_SMASK \
552 	| SEND_EGRESS_ERR_INFO_VL_ERR_SMASK)
553 
554 /*
555  * TXE Egress Error flags
556  */
557 #define SEES(text) SEND_EGRESS_ERR_STATUS_##text##_ERR_SMASK
558 static struct flag_table egress_err_status_flags[] = {
559 /* 0*/	FLAG_ENTRY0("TxPktIntegrityMemCorErr", SEES(TX_PKT_INTEGRITY_MEM_COR)),
560 /* 1*/	FLAG_ENTRY0("TxPktIntegrityMemUncErr", SEES(TX_PKT_INTEGRITY_MEM_UNC)),
561 /* 2 reserved */
562 /* 3*/	FLAG_ENTRY0("TxEgressFifoUnderrunOrParityErr",
563 		SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY)),
564 /* 4*/	FLAG_ENTRY0("TxLinkdownErr", SEES(TX_LINKDOWN)),
565 /* 5*/	FLAG_ENTRY0("TxIncorrectLinkStateErr", SEES(TX_INCORRECT_LINK_STATE)),
566 /* 6 reserved */
567 /* 7*/	FLAG_ENTRY0("TxPioLaunchIntfParityErr",
568 		SEES(TX_PIO_LAUNCH_INTF_PARITY)),
569 /* 8*/	FLAG_ENTRY0("TxSdmaLaunchIntfParityErr",
570 		SEES(TX_SDMA_LAUNCH_INTF_PARITY)),
571 /* 9-10 reserved */
572 /*11*/	FLAG_ENTRY0("TxSbrdCtlStateMachineParityErr",
573 		SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY)),
574 /*12*/	FLAG_ENTRY0("TxIllegalVLErr", SEES(TX_ILLEGAL_VL)),
575 /*13*/	FLAG_ENTRY0("TxLaunchCsrParityErr", SEES(TX_LAUNCH_CSR_PARITY)),
576 /*14*/	FLAG_ENTRY0("TxSbrdCtlCsrParityErr", SEES(TX_SBRD_CTL_CSR_PARITY)),
577 /*15*/	FLAG_ENTRY0("TxConfigParityErr", SEES(TX_CONFIG_PARITY)),
578 /*16*/	FLAG_ENTRY0("TxSdma0DisallowedPacketErr",
579 		SEES(TX_SDMA0_DISALLOWED_PACKET)),
580 /*17*/	FLAG_ENTRY0("TxSdma1DisallowedPacketErr",
581 		SEES(TX_SDMA1_DISALLOWED_PACKET)),
582 /*18*/	FLAG_ENTRY0("TxSdma2DisallowedPacketErr",
583 		SEES(TX_SDMA2_DISALLOWED_PACKET)),
584 /*19*/	FLAG_ENTRY0("TxSdma3DisallowedPacketErr",
585 		SEES(TX_SDMA3_DISALLOWED_PACKET)),
586 /*20*/	FLAG_ENTRY0("TxSdma4DisallowedPacketErr",
587 		SEES(TX_SDMA4_DISALLOWED_PACKET)),
588 /*21*/	FLAG_ENTRY0("TxSdma5DisallowedPacketErr",
589 		SEES(TX_SDMA5_DISALLOWED_PACKET)),
590 /*22*/	FLAG_ENTRY0("TxSdma6DisallowedPacketErr",
591 		SEES(TX_SDMA6_DISALLOWED_PACKET)),
592 /*23*/	FLAG_ENTRY0("TxSdma7DisallowedPacketErr",
593 		SEES(TX_SDMA7_DISALLOWED_PACKET)),
594 /*24*/	FLAG_ENTRY0("TxSdma8DisallowedPacketErr",
595 		SEES(TX_SDMA8_DISALLOWED_PACKET)),
596 /*25*/	FLAG_ENTRY0("TxSdma9DisallowedPacketErr",
597 		SEES(TX_SDMA9_DISALLOWED_PACKET)),
598 /*26*/	FLAG_ENTRY0("TxSdma10DisallowedPacketErr",
599 		SEES(TX_SDMA10_DISALLOWED_PACKET)),
600 /*27*/	FLAG_ENTRY0("TxSdma11DisallowedPacketErr",
601 		SEES(TX_SDMA11_DISALLOWED_PACKET)),
602 /*28*/	FLAG_ENTRY0("TxSdma12DisallowedPacketErr",
603 		SEES(TX_SDMA12_DISALLOWED_PACKET)),
604 /*29*/	FLAG_ENTRY0("TxSdma13DisallowedPacketErr",
605 		SEES(TX_SDMA13_DISALLOWED_PACKET)),
606 /*30*/	FLAG_ENTRY0("TxSdma14DisallowedPacketErr",
607 		SEES(TX_SDMA14_DISALLOWED_PACKET)),
608 /*31*/	FLAG_ENTRY0("TxSdma15DisallowedPacketErr",
609 		SEES(TX_SDMA15_DISALLOWED_PACKET)),
610 /*32*/	FLAG_ENTRY0("TxLaunchFifo0UncOrParityErr",
611 		SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY)),
612 /*33*/	FLAG_ENTRY0("TxLaunchFifo1UncOrParityErr",
613 		SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY)),
614 /*34*/	FLAG_ENTRY0("TxLaunchFifo2UncOrParityErr",
615 		SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY)),
616 /*35*/	FLAG_ENTRY0("TxLaunchFifo3UncOrParityErr",
617 		SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY)),
618 /*36*/	FLAG_ENTRY0("TxLaunchFifo4UncOrParityErr",
619 		SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY)),
620 /*37*/	FLAG_ENTRY0("TxLaunchFifo5UncOrParityErr",
621 		SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY)),
622 /*38*/	FLAG_ENTRY0("TxLaunchFifo6UncOrParityErr",
623 		SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY)),
624 /*39*/	FLAG_ENTRY0("TxLaunchFifo7UncOrParityErr",
625 		SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY)),
626 /*40*/	FLAG_ENTRY0("TxLaunchFifo8UncOrParityErr",
627 		SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY)),
628 /*41*/	FLAG_ENTRY0("TxCreditReturnParityErr", SEES(TX_CREDIT_RETURN_PARITY)),
629 /*42*/	FLAG_ENTRY0("TxSbHdrUncErr", SEES(TX_SB_HDR_UNC)),
630 /*43*/	FLAG_ENTRY0("TxReadSdmaMemoryUncErr", SEES(TX_READ_SDMA_MEMORY_UNC)),
631 /*44*/	FLAG_ENTRY0("TxReadPioMemoryUncErr", SEES(TX_READ_PIO_MEMORY_UNC)),
632 /*45*/	FLAG_ENTRY0("TxEgressFifoUncErr", SEES(TX_EGRESS_FIFO_UNC)),
633 /*46*/	FLAG_ENTRY0("TxHcrcInsertionErr", SEES(TX_HCRC_INSERTION)),
634 /*47*/	FLAG_ENTRY0("TxCreditReturnVLErr", SEES(TX_CREDIT_RETURN_VL)),
635 /*48*/	FLAG_ENTRY0("TxLaunchFifo0CorErr", SEES(TX_LAUNCH_FIFO0_COR)),
636 /*49*/	FLAG_ENTRY0("TxLaunchFifo1CorErr", SEES(TX_LAUNCH_FIFO1_COR)),
637 /*50*/	FLAG_ENTRY0("TxLaunchFifo2CorErr", SEES(TX_LAUNCH_FIFO2_COR)),
638 /*51*/	FLAG_ENTRY0("TxLaunchFifo3CorErr", SEES(TX_LAUNCH_FIFO3_COR)),
639 /*52*/	FLAG_ENTRY0("TxLaunchFifo4CorErr", SEES(TX_LAUNCH_FIFO4_COR)),
640 /*53*/	FLAG_ENTRY0("TxLaunchFifo5CorErr", SEES(TX_LAUNCH_FIFO5_COR)),
641 /*54*/	FLAG_ENTRY0("TxLaunchFifo6CorErr", SEES(TX_LAUNCH_FIFO6_COR)),
642 /*55*/	FLAG_ENTRY0("TxLaunchFifo7CorErr", SEES(TX_LAUNCH_FIFO7_COR)),
643 /*56*/	FLAG_ENTRY0("TxLaunchFifo8CorErr", SEES(TX_LAUNCH_FIFO8_COR)),
644 /*57*/	FLAG_ENTRY0("TxCreditOverrunErr", SEES(TX_CREDIT_OVERRUN)),
645 /*58*/	FLAG_ENTRY0("TxSbHdrCorErr", SEES(TX_SB_HDR_COR)),
646 /*59*/	FLAG_ENTRY0("TxReadSdmaMemoryCorErr", SEES(TX_READ_SDMA_MEMORY_COR)),
647 /*60*/	FLAG_ENTRY0("TxReadPioMemoryCorErr", SEES(TX_READ_PIO_MEMORY_COR)),
648 /*61*/	FLAG_ENTRY0("TxEgressFifoCorErr", SEES(TX_EGRESS_FIFO_COR)),
649 /*62*/	FLAG_ENTRY0("TxReadSdmaMemoryCsrUncErr",
650 		SEES(TX_READ_SDMA_MEMORY_CSR_UNC)),
651 /*63*/	FLAG_ENTRY0("TxReadPioMemoryCsrUncErr",
652 		SEES(TX_READ_PIO_MEMORY_CSR_UNC)),
653 };
654 
655 /*
656  * TXE Egress Error Info flags
657  */
658 #define SEEI(text) SEND_EGRESS_ERR_INFO_##text##_ERR_SMASK
659 static struct flag_table egress_err_info_flags[] = {
660 /* 0*/	FLAG_ENTRY0("Reserved", 0ull),
661 /* 1*/	FLAG_ENTRY0("VLErr", SEEI(VL)),
662 /* 2*/	FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
663 /* 3*/	FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
664 /* 4*/	FLAG_ENTRY0("PartitionKeyErr", SEEI(PARTITION_KEY)),
665 /* 5*/	FLAG_ENTRY0("SLIDErr", SEEI(SLID)),
666 /* 6*/	FLAG_ENTRY0("OpcodeErr", SEEI(OPCODE)),
667 /* 7*/	FLAG_ENTRY0("VLMappingErr", SEEI(VL_MAPPING)),
668 /* 8*/	FLAG_ENTRY0("RawErr", SEEI(RAW)),
669 /* 9*/	FLAG_ENTRY0("RawIPv6Err", SEEI(RAW_IPV6)),
670 /*10*/	FLAG_ENTRY0("GRHErr", SEEI(GRH)),
671 /*11*/	FLAG_ENTRY0("BypassErr", SEEI(BYPASS)),
672 /*12*/	FLAG_ENTRY0("KDETHPacketsErr", SEEI(KDETH_PACKETS)),
673 /*13*/	FLAG_ENTRY0("NonKDETHPacketsErr", SEEI(NON_KDETH_PACKETS)),
674 /*14*/	FLAG_ENTRY0("TooSmallIBPacketsErr", SEEI(TOO_SMALL_IB_PACKETS)),
675 /*15*/	FLAG_ENTRY0("TooSmallBypassPacketsErr", SEEI(TOO_SMALL_BYPASS_PACKETS)),
676 /*16*/	FLAG_ENTRY0("PbcTestErr", SEEI(PBC_TEST)),
677 /*17*/	FLAG_ENTRY0("BadPktLenErr", SEEI(BAD_PKT_LEN)),
678 /*18*/	FLAG_ENTRY0("TooLongIBPacketErr", SEEI(TOO_LONG_IB_PACKET)),
679 /*19*/	FLAG_ENTRY0("TooLongBypassPacketsErr", SEEI(TOO_LONG_BYPASS_PACKETS)),
680 /*20*/	FLAG_ENTRY0("PbcStaticRateControlErr", SEEI(PBC_STATIC_RATE_CONTROL)),
681 /*21*/	FLAG_ENTRY0("BypassBadPktLenErr", SEEI(BAD_PKT_LEN)),
682 };
683 
684 /* TXE Egress errors that cause an SPC freeze */
685 #define ALL_TXE_EGRESS_FREEZE_ERR \
686 	(SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY) \
687 	| SEES(TX_PIO_LAUNCH_INTF_PARITY) \
688 	| SEES(TX_SDMA_LAUNCH_INTF_PARITY) \
689 	| SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY) \
690 	| SEES(TX_LAUNCH_CSR_PARITY) \
691 	| SEES(TX_SBRD_CTL_CSR_PARITY) \
692 	| SEES(TX_CONFIG_PARITY) \
693 	| SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY) \
694 	| SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY) \
695 	| SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY) \
696 	| SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY) \
697 	| SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY) \
698 	| SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY) \
699 	| SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY) \
700 	| SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY) \
701 	| SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY) \
702 	| SEES(TX_CREDIT_RETURN_PARITY))
703 
704 /*
705  * TXE Send error flags
706  */
707 #define SES(name) SEND_ERR_STATUS_SEND_##name##_ERR_SMASK
708 static struct flag_table send_err_status_flags[] = {
709 /* 0*/	FLAG_ENTRY0("SendCsrParityErr", SES(CSR_PARITY)),
710 /* 1*/	FLAG_ENTRY0("SendCsrReadBadAddrErr", SES(CSR_READ_BAD_ADDR)),
711 /* 2*/	FLAG_ENTRY0("SendCsrWriteBadAddrErr", SES(CSR_WRITE_BAD_ADDR))
712 };
713 
714 /*
715  * TXE Send Context Error flags and consequences
716  */
717 static struct flag_table sc_err_status_flags[] = {
718 /* 0*/	FLAG_ENTRY("InconsistentSop",
719 		SEC_PACKET_DROPPED | SEC_SC_HALTED,
720 		SEND_CTXT_ERR_STATUS_PIO_INCONSISTENT_SOP_ERR_SMASK),
721 /* 1*/	FLAG_ENTRY("DisallowedPacket",
722 		SEC_PACKET_DROPPED | SEC_SC_HALTED,
723 		SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK),
724 /* 2*/	FLAG_ENTRY("WriteCrossesBoundary",
725 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
726 		SEND_CTXT_ERR_STATUS_PIO_WRITE_CROSSES_BOUNDARY_ERR_SMASK),
727 /* 3*/	FLAG_ENTRY("WriteOverflow",
728 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
729 		SEND_CTXT_ERR_STATUS_PIO_WRITE_OVERFLOW_ERR_SMASK),
730 /* 4*/	FLAG_ENTRY("WriteOutOfBounds",
731 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
732 		SEND_CTXT_ERR_STATUS_PIO_WRITE_OUT_OF_BOUNDS_ERR_SMASK),
733 /* 5-63 reserved*/
734 };
735 
736 /*
737  * RXE Receive Error flags
738  */
739 #define RXES(name) RCV_ERR_STATUS_RX_##name##_ERR_SMASK
740 static struct flag_table rxe_err_status_flags[] = {
741 /* 0*/	FLAG_ENTRY0("RxDmaCsrCorErr", RXES(DMA_CSR_COR)),
742 /* 1*/	FLAG_ENTRY0("RxDcIntfParityErr", RXES(DC_INTF_PARITY)),
743 /* 2*/	FLAG_ENTRY0("RxRcvHdrUncErr", RXES(RCV_HDR_UNC)),
744 /* 3*/	FLAG_ENTRY0("RxRcvHdrCorErr", RXES(RCV_HDR_COR)),
745 /* 4*/	FLAG_ENTRY0("RxRcvDataUncErr", RXES(RCV_DATA_UNC)),
746 /* 5*/	FLAG_ENTRY0("RxRcvDataCorErr", RXES(RCV_DATA_COR)),
747 /* 6*/	FLAG_ENTRY0("RxRcvQpMapTableUncErr", RXES(RCV_QP_MAP_TABLE_UNC)),
748 /* 7*/	FLAG_ENTRY0("RxRcvQpMapTableCorErr", RXES(RCV_QP_MAP_TABLE_COR)),
749 /* 8*/	FLAG_ENTRY0("RxRcvCsrParityErr", RXES(RCV_CSR_PARITY)),
750 /* 9*/	FLAG_ENTRY0("RxDcSopEopParityErr", RXES(DC_SOP_EOP_PARITY)),
751 /*10*/	FLAG_ENTRY0("RxDmaFlagUncErr", RXES(DMA_FLAG_UNC)),
752 /*11*/	FLAG_ENTRY0("RxDmaFlagCorErr", RXES(DMA_FLAG_COR)),
753 /*12*/	FLAG_ENTRY0("RxRcvFsmEncodingErr", RXES(RCV_FSM_ENCODING)),
754 /*13*/	FLAG_ENTRY0("RxRbufFreeListUncErr", RXES(RBUF_FREE_LIST_UNC)),
755 /*14*/	FLAG_ENTRY0("RxRbufFreeListCorErr", RXES(RBUF_FREE_LIST_COR)),
756 /*15*/	FLAG_ENTRY0("RxRbufLookupDesRegUncErr", RXES(RBUF_LOOKUP_DES_REG_UNC)),
757 /*16*/	FLAG_ENTRY0("RxRbufLookupDesRegUncCorErr",
758 		RXES(RBUF_LOOKUP_DES_REG_UNC_COR)),
759 /*17*/	FLAG_ENTRY0("RxRbufLookupDesUncErr", RXES(RBUF_LOOKUP_DES_UNC)),
760 /*18*/	FLAG_ENTRY0("RxRbufLookupDesCorErr", RXES(RBUF_LOOKUP_DES_COR)),
761 /*19*/	FLAG_ENTRY0("RxRbufBlockListReadUncErr",
762 		RXES(RBUF_BLOCK_LIST_READ_UNC)),
763 /*20*/	FLAG_ENTRY0("RxRbufBlockListReadCorErr",
764 		RXES(RBUF_BLOCK_LIST_READ_COR)),
765 /*21*/	FLAG_ENTRY0("RxRbufCsrQHeadBufNumParityErr",
766 		RXES(RBUF_CSR_QHEAD_BUF_NUM_PARITY)),
767 /*22*/	FLAG_ENTRY0("RxRbufCsrQEntCntParityErr",
768 		RXES(RBUF_CSR_QENT_CNT_PARITY)),
769 /*23*/	FLAG_ENTRY0("RxRbufCsrQNextBufParityErr",
770 		RXES(RBUF_CSR_QNEXT_BUF_PARITY)),
771 /*24*/	FLAG_ENTRY0("RxRbufCsrQVldBitParityErr",
772 		RXES(RBUF_CSR_QVLD_BIT_PARITY)),
773 /*25*/	FLAG_ENTRY0("RxRbufCsrQHdPtrParityErr", RXES(RBUF_CSR_QHD_PTR_PARITY)),
774 /*26*/	FLAG_ENTRY0("RxRbufCsrQTlPtrParityErr", RXES(RBUF_CSR_QTL_PTR_PARITY)),
775 /*27*/	FLAG_ENTRY0("RxRbufCsrQNumOfPktParityErr",
776 		RXES(RBUF_CSR_QNUM_OF_PKT_PARITY)),
777 /*28*/	FLAG_ENTRY0("RxRbufCsrQEOPDWParityErr", RXES(RBUF_CSR_QEOPDW_PARITY)),
778 /*29*/	FLAG_ENTRY0("RxRbufCtxIdParityErr", RXES(RBUF_CTX_ID_PARITY)),
779 /*30*/	FLAG_ENTRY0("RxRBufBadLookupErr", RXES(RBUF_BAD_LOOKUP)),
780 /*31*/	FLAG_ENTRY0("RxRbufFullErr", RXES(RBUF_FULL)),
781 /*32*/	FLAG_ENTRY0("RxRbufEmptyErr", RXES(RBUF_EMPTY)),
782 /*33*/	FLAG_ENTRY0("RxRbufFlRdAddrParityErr", RXES(RBUF_FL_RD_ADDR_PARITY)),
783 /*34*/	FLAG_ENTRY0("RxRbufFlWrAddrParityErr", RXES(RBUF_FL_WR_ADDR_PARITY)),
784 /*35*/	FLAG_ENTRY0("RxRbufFlInitdoneParityErr",
785 		RXES(RBUF_FL_INITDONE_PARITY)),
786 /*36*/	FLAG_ENTRY0("RxRbufFlInitWrAddrParityErr",
787 		RXES(RBUF_FL_INIT_WR_ADDR_PARITY)),
788 /*37*/	FLAG_ENTRY0("RxRbufNextFreeBufUncErr", RXES(RBUF_NEXT_FREE_BUF_UNC)),
789 /*38*/	FLAG_ENTRY0("RxRbufNextFreeBufCorErr", RXES(RBUF_NEXT_FREE_BUF_COR)),
790 /*39*/	FLAG_ENTRY0("RxLookupDesPart1UncErr", RXES(LOOKUP_DES_PART1_UNC)),
791 /*40*/	FLAG_ENTRY0("RxLookupDesPart1UncCorErr",
792 		RXES(LOOKUP_DES_PART1_UNC_COR)),
793 /*41*/	FLAG_ENTRY0("RxLookupDesPart2ParityErr",
794 		RXES(LOOKUP_DES_PART2_PARITY)),
795 /*42*/	FLAG_ENTRY0("RxLookupRcvArrayUncErr", RXES(LOOKUP_RCV_ARRAY_UNC)),
796 /*43*/	FLAG_ENTRY0("RxLookupRcvArrayCorErr", RXES(LOOKUP_RCV_ARRAY_COR)),
797 /*44*/	FLAG_ENTRY0("RxLookupCsrParityErr", RXES(LOOKUP_CSR_PARITY)),
798 /*45*/	FLAG_ENTRY0("RxHqIntrCsrParityErr", RXES(HQ_INTR_CSR_PARITY)),
799 /*46*/	FLAG_ENTRY0("RxHqIntrFsmErr", RXES(HQ_INTR_FSM)),
800 /*47*/	FLAG_ENTRY0("RxRbufDescPart1UncErr", RXES(RBUF_DESC_PART1_UNC)),
801 /*48*/	FLAG_ENTRY0("RxRbufDescPart1CorErr", RXES(RBUF_DESC_PART1_COR)),
802 /*49*/	FLAG_ENTRY0("RxRbufDescPart2UncErr", RXES(RBUF_DESC_PART2_UNC)),
803 /*50*/	FLAG_ENTRY0("RxRbufDescPart2CorErr", RXES(RBUF_DESC_PART2_COR)),
804 /*51*/	FLAG_ENTRY0("RxDmaHdrFifoRdUncErr", RXES(DMA_HDR_FIFO_RD_UNC)),
805 /*52*/	FLAG_ENTRY0("RxDmaHdrFifoRdCorErr", RXES(DMA_HDR_FIFO_RD_COR)),
806 /*53*/	FLAG_ENTRY0("RxDmaDataFifoRdUncErr", RXES(DMA_DATA_FIFO_RD_UNC)),
807 /*54*/	FLAG_ENTRY0("RxDmaDataFifoRdCorErr", RXES(DMA_DATA_FIFO_RD_COR)),
808 /*55*/	FLAG_ENTRY0("RxRbufDataUncErr", RXES(RBUF_DATA_UNC)),
809 /*56*/	FLAG_ENTRY0("RxRbufDataCorErr", RXES(RBUF_DATA_COR)),
810 /*57*/	FLAG_ENTRY0("RxDmaCsrParityErr", RXES(DMA_CSR_PARITY)),
811 /*58*/	FLAG_ENTRY0("RxDmaEqFsmEncodingErr", RXES(DMA_EQ_FSM_ENCODING)),
812 /*59*/	FLAG_ENTRY0("RxDmaDqFsmEncodingErr", RXES(DMA_DQ_FSM_ENCODING)),
813 /*60*/	FLAG_ENTRY0("RxDmaCsrUncErr", RXES(DMA_CSR_UNC)),
814 /*61*/	FLAG_ENTRY0("RxCsrReadBadAddrErr", RXES(CSR_READ_BAD_ADDR)),
815 /*62*/	FLAG_ENTRY0("RxCsrWriteBadAddrErr", RXES(CSR_WRITE_BAD_ADDR)),
816 /*63*/	FLAG_ENTRY0("RxCsrParityErr", RXES(CSR_PARITY))
817 };
818 
819 /* RXE errors that will trigger an SPC freeze */
820 #define ALL_RXE_FREEZE_ERR  \
821 	(RCV_ERR_STATUS_RX_RCV_QP_MAP_TABLE_UNC_ERR_SMASK \
822 	| RCV_ERR_STATUS_RX_RCV_CSR_PARITY_ERR_SMASK \
823 	| RCV_ERR_STATUS_RX_DMA_FLAG_UNC_ERR_SMASK \
824 	| RCV_ERR_STATUS_RX_RCV_FSM_ENCODING_ERR_SMASK \
825 	| RCV_ERR_STATUS_RX_RBUF_FREE_LIST_UNC_ERR_SMASK \
826 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_ERR_SMASK \
827 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR_SMASK \
828 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_UNC_ERR_SMASK \
829 	| RCV_ERR_STATUS_RX_RBUF_BLOCK_LIST_READ_UNC_ERR_SMASK \
830 	| RCV_ERR_STATUS_RX_RBUF_CSR_QHEAD_BUF_NUM_PARITY_ERR_SMASK \
831 	| RCV_ERR_STATUS_RX_RBUF_CSR_QENT_CNT_PARITY_ERR_SMASK \
832 	| RCV_ERR_STATUS_RX_RBUF_CSR_QNEXT_BUF_PARITY_ERR_SMASK \
833 	| RCV_ERR_STATUS_RX_RBUF_CSR_QVLD_BIT_PARITY_ERR_SMASK \
834 	| RCV_ERR_STATUS_RX_RBUF_CSR_QHD_PTR_PARITY_ERR_SMASK \
835 	| RCV_ERR_STATUS_RX_RBUF_CSR_QTL_PTR_PARITY_ERR_SMASK \
836 	| RCV_ERR_STATUS_RX_RBUF_CSR_QNUM_OF_PKT_PARITY_ERR_SMASK \
837 	| RCV_ERR_STATUS_RX_RBUF_CSR_QEOPDW_PARITY_ERR_SMASK \
838 	| RCV_ERR_STATUS_RX_RBUF_CTX_ID_PARITY_ERR_SMASK \
839 	| RCV_ERR_STATUS_RX_RBUF_BAD_LOOKUP_ERR_SMASK \
840 	| RCV_ERR_STATUS_RX_RBUF_FULL_ERR_SMASK \
841 	| RCV_ERR_STATUS_RX_RBUF_EMPTY_ERR_SMASK \
842 	| RCV_ERR_STATUS_RX_RBUF_FL_RD_ADDR_PARITY_ERR_SMASK \
843 	| RCV_ERR_STATUS_RX_RBUF_FL_WR_ADDR_PARITY_ERR_SMASK \
844 	| RCV_ERR_STATUS_RX_RBUF_FL_INITDONE_PARITY_ERR_SMASK \
845 	| RCV_ERR_STATUS_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR_SMASK \
846 	| RCV_ERR_STATUS_RX_RBUF_NEXT_FREE_BUF_UNC_ERR_SMASK \
847 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_ERR_SMASK \
848 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_COR_ERR_SMASK \
849 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART2_PARITY_ERR_SMASK \
850 	| RCV_ERR_STATUS_RX_LOOKUP_RCV_ARRAY_UNC_ERR_SMASK \
851 	| RCV_ERR_STATUS_RX_LOOKUP_CSR_PARITY_ERR_SMASK \
852 	| RCV_ERR_STATUS_RX_HQ_INTR_CSR_PARITY_ERR_SMASK \
853 	| RCV_ERR_STATUS_RX_HQ_INTR_FSM_ERR_SMASK \
854 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART1_UNC_ERR_SMASK \
855 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART1_COR_ERR_SMASK \
856 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART2_UNC_ERR_SMASK \
857 	| RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK \
858 	| RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK \
859 	| RCV_ERR_STATUS_RX_RBUF_DATA_UNC_ERR_SMASK \
860 	| RCV_ERR_STATUS_RX_DMA_CSR_PARITY_ERR_SMASK \
861 	| RCV_ERR_STATUS_RX_DMA_EQ_FSM_ENCODING_ERR_SMASK \
862 	| RCV_ERR_STATUS_RX_DMA_DQ_FSM_ENCODING_ERR_SMASK \
863 	| RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK \
864 	| RCV_ERR_STATUS_RX_CSR_PARITY_ERR_SMASK)
865 
866 #define RXE_FREEZE_ABORT_MASK \
867 	(RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK | \
868 	RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK | \
869 	RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK)
870 
871 /*
872  * DCC Error Flags
873  */
874 #define DCCE(name) DCC_ERR_FLG_##name##_SMASK
875 static struct flag_table dcc_err_flags[] = {
876 	FLAG_ENTRY0("bad_l2_err", DCCE(BAD_L2_ERR)),
877 	FLAG_ENTRY0("bad_sc_err", DCCE(BAD_SC_ERR)),
878 	FLAG_ENTRY0("bad_mid_tail_err", DCCE(BAD_MID_TAIL_ERR)),
879 	FLAG_ENTRY0("bad_preemption_err", DCCE(BAD_PREEMPTION_ERR)),
880 	FLAG_ENTRY0("preemption_err", DCCE(PREEMPTION_ERR)),
881 	FLAG_ENTRY0("preemptionvl15_err", DCCE(PREEMPTIONVL15_ERR)),
882 	FLAG_ENTRY0("bad_vl_marker_err", DCCE(BAD_VL_MARKER_ERR)),
883 	FLAG_ENTRY0("bad_dlid_target_err", DCCE(BAD_DLID_TARGET_ERR)),
884 	FLAG_ENTRY0("bad_lver_err", DCCE(BAD_LVER_ERR)),
885 	FLAG_ENTRY0("uncorrectable_err", DCCE(UNCORRECTABLE_ERR)),
886 	FLAG_ENTRY0("bad_crdt_ack_err", DCCE(BAD_CRDT_ACK_ERR)),
887 	FLAG_ENTRY0("unsup_pkt_type", DCCE(UNSUP_PKT_TYPE)),
888 	FLAG_ENTRY0("bad_ctrl_flit_err", DCCE(BAD_CTRL_FLIT_ERR)),
889 	FLAG_ENTRY0("event_cntr_parity_err", DCCE(EVENT_CNTR_PARITY_ERR)),
890 	FLAG_ENTRY0("event_cntr_rollover_err", DCCE(EVENT_CNTR_ROLLOVER_ERR)),
891 	FLAG_ENTRY0("link_err", DCCE(LINK_ERR)),
892 	FLAG_ENTRY0("misc_cntr_rollover_err", DCCE(MISC_CNTR_ROLLOVER_ERR)),
893 	FLAG_ENTRY0("bad_ctrl_dist_err", DCCE(BAD_CTRL_DIST_ERR)),
894 	FLAG_ENTRY0("bad_tail_dist_err", DCCE(BAD_TAIL_DIST_ERR)),
895 	FLAG_ENTRY0("bad_head_dist_err", DCCE(BAD_HEAD_DIST_ERR)),
896 	FLAG_ENTRY0("nonvl15_state_err", DCCE(NONVL15_STATE_ERR)),
897 	FLAG_ENTRY0("vl15_multi_err", DCCE(VL15_MULTI_ERR)),
898 	FLAG_ENTRY0("bad_pkt_length_err", DCCE(BAD_PKT_LENGTH_ERR)),
899 	FLAG_ENTRY0("unsup_vl_err", DCCE(UNSUP_VL_ERR)),
900 	FLAG_ENTRY0("perm_nvl15_err", DCCE(PERM_NVL15_ERR)),
901 	FLAG_ENTRY0("slid_zero_err", DCCE(SLID_ZERO_ERR)),
902 	FLAG_ENTRY0("dlid_zero_err", DCCE(DLID_ZERO_ERR)),
903 	FLAG_ENTRY0("length_mtu_err", DCCE(LENGTH_MTU_ERR)),
904 	FLAG_ENTRY0("rx_early_drop_err", DCCE(RX_EARLY_DROP_ERR)),
905 	FLAG_ENTRY0("late_short_err", DCCE(LATE_SHORT_ERR)),
906 	FLAG_ENTRY0("late_long_err", DCCE(LATE_LONG_ERR)),
907 	FLAG_ENTRY0("late_ebp_err", DCCE(LATE_EBP_ERR)),
908 	FLAG_ENTRY0("fpe_tx_fifo_ovflw_err", DCCE(FPE_TX_FIFO_OVFLW_ERR)),
909 	FLAG_ENTRY0("fpe_tx_fifo_unflw_err", DCCE(FPE_TX_FIFO_UNFLW_ERR)),
910 	FLAG_ENTRY0("csr_access_blocked_host", DCCE(CSR_ACCESS_BLOCKED_HOST)),
911 	FLAG_ENTRY0("csr_access_blocked_uc", DCCE(CSR_ACCESS_BLOCKED_UC)),
912 	FLAG_ENTRY0("tx_ctrl_parity_err", DCCE(TX_CTRL_PARITY_ERR)),
913 	FLAG_ENTRY0("tx_ctrl_parity_mbe_err", DCCE(TX_CTRL_PARITY_MBE_ERR)),
914 	FLAG_ENTRY0("tx_sc_parity_err", DCCE(TX_SC_PARITY_ERR)),
915 	FLAG_ENTRY0("rx_ctrl_parity_mbe_err", DCCE(RX_CTRL_PARITY_MBE_ERR)),
916 	FLAG_ENTRY0("csr_parity_err", DCCE(CSR_PARITY_ERR)),
917 	FLAG_ENTRY0("csr_inval_addr", DCCE(CSR_INVAL_ADDR)),
918 	FLAG_ENTRY0("tx_byte_shft_parity_err", DCCE(TX_BYTE_SHFT_PARITY_ERR)),
919 	FLAG_ENTRY0("rx_byte_shft_parity_err", DCCE(RX_BYTE_SHFT_PARITY_ERR)),
920 	FLAG_ENTRY0("fmconfig_err", DCCE(FMCONFIG_ERR)),
921 	FLAG_ENTRY0("rcvport_err", DCCE(RCVPORT_ERR)),
922 };
923 
924 /*
925  * LCB error flags
926  */
927 #define LCBE(name) DC_LCB_ERR_FLG_##name##_SMASK
928 static struct flag_table lcb_err_flags[] = {
929 /* 0*/	FLAG_ENTRY0("CSR_PARITY_ERR", LCBE(CSR_PARITY_ERR)),
930 /* 1*/	FLAG_ENTRY0("INVALID_CSR_ADDR", LCBE(INVALID_CSR_ADDR)),
931 /* 2*/	FLAG_ENTRY0("RST_FOR_FAILED_DESKEW", LCBE(RST_FOR_FAILED_DESKEW)),
932 /* 3*/	FLAG_ENTRY0("ALL_LNS_FAILED_REINIT_TEST",
933 		LCBE(ALL_LNS_FAILED_REINIT_TEST)),
934 /* 4*/	FLAG_ENTRY0("LOST_REINIT_STALL_OR_TOS", LCBE(LOST_REINIT_STALL_OR_TOS)),
935 /* 5*/	FLAG_ENTRY0("TX_LESS_THAN_FOUR_LNS", LCBE(TX_LESS_THAN_FOUR_LNS)),
936 /* 6*/	FLAG_ENTRY0("RX_LESS_THAN_FOUR_LNS", LCBE(RX_LESS_THAN_FOUR_LNS)),
937 /* 7*/	FLAG_ENTRY0("SEQ_CRC_ERR", LCBE(SEQ_CRC_ERR)),
938 /* 8*/	FLAG_ENTRY0("REINIT_FROM_PEER", LCBE(REINIT_FROM_PEER)),
939 /* 9*/	FLAG_ENTRY0("REINIT_FOR_LN_DEGRADE", LCBE(REINIT_FOR_LN_DEGRADE)),
940 /*10*/	FLAG_ENTRY0("CRC_ERR_CNT_HIT_LIMIT", LCBE(CRC_ERR_CNT_HIT_LIMIT)),
941 /*11*/	FLAG_ENTRY0("RCLK_STOPPED", LCBE(RCLK_STOPPED)),
942 /*12*/	FLAG_ENTRY0("UNEXPECTED_REPLAY_MARKER", LCBE(UNEXPECTED_REPLAY_MARKER)),
943 /*13*/	FLAG_ENTRY0("UNEXPECTED_ROUND_TRIP_MARKER",
944 		LCBE(UNEXPECTED_ROUND_TRIP_MARKER)),
945 /*14*/	FLAG_ENTRY0("ILLEGAL_NULL_LTP", LCBE(ILLEGAL_NULL_LTP)),
946 /*15*/	FLAG_ENTRY0("ILLEGAL_FLIT_ENCODING", LCBE(ILLEGAL_FLIT_ENCODING)),
947 /*16*/	FLAG_ENTRY0("FLIT_INPUT_BUF_OFLW", LCBE(FLIT_INPUT_BUF_OFLW)),
948 /*17*/	FLAG_ENTRY0("VL_ACK_INPUT_BUF_OFLW", LCBE(VL_ACK_INPUT_BUF_OFLW)),
949 /*18*/	FLAG_ENTRY0("VL_ACK_INPUT_PARITY_ERR", LCBE(VL_ACK_INPUT_PARITY_ERR)),
950 /*19*/	FLAG_ENTRY0("VL_ACK_INPUT_WRONG_CRC_MODE",
951 		LCBE(VL_ACK_INPUT_WRONG_CRC_MODE)),
952 /*20*/	FLAG_ENTRY0("FLIT_INPUT_BUF_MBE", LCBE(FLIT_INPUT_BUF_MBE)),
953 /*21*/	FLAG_ENTRY0("FLIT_INPUT_BUF_SBE", LCBE(FLIT_INPUT_BUF_SBE)),
954 /*22*/	FLAG_ENTRY0("REPLAY_BUF_MBE", LCBE(REPLAY_BUF_MBE)),
955 /*23*/	FLAG_ENTRY0("REPLAY_BUF_SBE", LCBE(REPLAY_BUF_SBE)),
956 /*24*/	FLAG_ENTRY0("CREDIT_RETURN_FLIT_MBE", LCBE(CREDIT_RETURN_FLIT_MBE)),
957 /*25*/	FLAG_ENTRY0("RST_FOR_LINK_TIMEOUT", LCBE(RST_FOR_LINK_TIMEOUT)),
958 /*26*/	FLAG_ENTRY0("RST_FOR_INCOMPLT_RND_TRIP",
959 		LCBE(RST_FOR_INCOMPLT_RND_TRIP)),
960 /*27*/	FLAG_ENTRY0("HOLD_REINIT", LCBE(HOLD_REINIT)),
961 /*28*/	FLAG_ENTRY0("NEG_EDGE_LINK_TRANSFER_ACTIVE",
962 		LCBE(NEG_EDGE_LINK_TRANSFER_ACTIVE)),
963 /*29*/	FLAG_ENTRY0("REDUNDANT_FLIT_PARITY_ERR",
964 		LCBE(REDUNDANT_FLIT_PARITY_ERR))
965 };
966 
967 /*
968  * DC8051 Error Flags
969  */
970 #define D8E(name) DC_DC8051_ERR_FLG_##name##_SMASK
971 static struct flag_table dc8051_err_flags[] = {
972 	FLAG_ENTRY0("SET_BY_8051", D8E(SET_BY_8051)),
973 	FLAG_ENTRY0("LOST_8051_HEART_BEAT", D8E(LOST_8051_HEART_BEAT)),
974 	FLAG_ENTRY0("CRAM_MBE", D8E(CRAM_MBE)),
975 	FLAG_ENTRY0("CRAM_SBE", D8E(CRAM_SBE)),
976 	FLAG_ENTRY0("DRAM_MBE", D8E(DRAM_MBE)),
977 	FLAG_ENTRY0("DRAM_SBE", D8E(DRAM_SBE)),
978 	FLAG_ENTRY0("IRAM_MBE", D8E(IRAM_MBE)),
979 	FLAG_ENTRY0("IRAM_SBE", D8E(IRAM_SBE)),
980 	FLAG_ENTRY0("UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES",
981 		    D8E(UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES)),
982 	FLAG_ENTRY0("INVALID_CSR_ADDR", D8E(INVALID_CSR_ADDR)),
983 };
984 
985 /*
986  * DC8051 Information Error flags
987  *
988  * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.ERROR field.
989  */
990 static struct flag_table dc8051_info_err_flags[] = {
991 	FLAG_ENTRY0("Spico ROM check failed",  SPICO_ROM_FAILED),
992 	FLAG_ENTRY0("Unknown frame received",  UNKNOWN_FRAME),
993 	FLAG_ENTRY0("Target BER not met",      TARGET_BER_NOT_MET),
994 	FLAG_ENTRY0("Serdes internal loopback failure",
995 		    FAILED_SERDES_INTERNAL_LOOPBACK),
996 	FLAG_ENTRY0("Failed SerDes init",      FAILED_SERDES_INIT),
997 	FLAG_ENTRY0("Failed LNI(Polling)",     FAILED_LNI_POLLING),
998 	FLAG_ENTRY0("Failed LNI(Debounce)",    FAILED_LNI_DEBOUNCE),
999 	FLAG_ENTRY0("Failed LNI(EstbComm)",    FAILED_LNI_ESTBCOMM),
1000 	FLAG_ENTRY0("Failed LNI(OptEq)",       FAILED_LNI_OPTEQ),
1001 	FLAG_ENTRY0("Failed LNI(VerifyCap_1)", FAILED_LNI_VERIFY_CAP1),
1002 	FLAG_ENTRY0("Failed LNI(VerifyCap_2)", FAILED_LNI_VERIFY_CAP2),
1003 	FLAG_ENTRY0("Failed LNI(ConfigLT)",    FAILED_LNI_CONFIGLT),
1004 	FLAG_ENTRY0("Host Handshake Timeout",  HOST_HANDSHAKE_TIMEOUT),
1005 	FLAG_ENTRY0("External Device Request Timeout",
1006 		    EXTERNAL_DEVICE_REQ_TIMEOUT),
1007 };
1008 
1009 /*
1010  * DC8051 Information Host Information flags
1011  *
1012  * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.HOST_MSG field.
1013  */
1014 static struct flag_table dc8051_info_host_msg_flags[] = {
1015 	FLAG_ENTRY0("Host request done", 0x0001),
1016 	FLAG_ENTRY0("BC PWR_MGM message", 0x0002),
1017 	FLAG_ENTRY0("BC SMA message", 0x0004),
1018 	FLAG_ENTRY0("BC Unknown message (BCC)", 0x0008),
1019 	FLAG_ENTRY0("BC Unknown message (LCB)", 0x0010),
1020 	FLAG_ENTRY0("External device config request", 0x0020),
1021 	FLAG_ENTRY0("VerifyCap all frames received", 0x0040),
1022 	FLAG_ENTRY0("LinkUp achieved", 0x0080),
1023 	FLAG_ENTRY0("Link going down", 0x0100),
1024 	FLAG_ENTRY0("Link width downgraded", 0x0200),
1025 };
1026 
1027 static u32 encoded_size(u32 size);
1028 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate);
1029 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state);
1030 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
1031 			       u8 *continuous);
1032 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
1033 				  u8 *vcu, u16 *vl15buf, u8 *crc_sizes);
1034 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
1035 				      u8 *remote_tx_rate, u16 *link_widths);
1036 static void read_vc_local_link_mode(struct hfi1_devdata *dd, u8 *misc_bits,
1037 				    u8 *flag_bits, u16 *link_widths);
1038 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
1039 				  u8 *device_rev);
1040 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx);
1041 static int read_tx_settings(struct hfi1_devdata *dd, u8 *enable_lane_tx,
1042 			    u8 *tx_polarity_inversion,
1043 			    u8 *rx_polarity_inversion, u8 *max_rate);
1044 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
1045 				unsigned int context, u64 err_status);
1046 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 source, u64 reg);
1047 static void handle_dcc_err(struct hfi1_devdata *dd,
1048 			   unsigned int context, u64 err_status);
1049 static void handle_lcb_err(struct hfi1_devdata *dd,
1050 			   unsigned int context, u64 err_status);
1051 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg);
1052 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1053 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1054 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1055 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1056 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1057 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1058 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1059 static void set_partition_keys(struct hfi1_pportdata *ppd);
1060 static const char *link_state_name(u32 state);
1061 static const char *link_state_reason_name(struct hfi1_pportdata *ppd,
1062 					  u32 state);
1063 static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
1064 			   u64 *out_data);
1065 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data);
1066 static int thermal_init(struct hfi1_devdata *dd);
1067 
1068 static void update_statusp(struct hfi1_pportdata *ppd, u32 state);
1069 static int wait_phys_link_offline_substates(struct hfi1_pportdata *ppd,
1070 					    int msecs);
1071 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1072 				  int msecs);
1073 static void log_state_transition(struct hfi1_pportdata *ppd, u32 state);
1074 static void log_physical_state(struct hfi1_pportdata *ppd, u32 state);
1075 static int wait_physical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1076 				   int msecs);
1077 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc);
1078 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr);
1079 static void handle_temp_err(struct hfi1_devdata *dd);
1080 static void dc_shutdown(struct hfi1_devdata *dd);
1081 static void dc_start(struct hfi1_devdata *dd);
1082 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
1083 			   unsigned int *np);
1084 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd);
1085 static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms);
1086 static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index);
1087 static void update_xmit_counters(struct hfi1_pportdata *ppd, u16 link_width);
1088 
1089 /*
1090  * Error interrupt table entry.  This is used as input to the interrupt
1091  * "clear down" routine used for all second tier error interrupt register.
1092  * Second tier interrupt registers have a single bit representing them
1093  * in the top-level CceIntStatus.
1094  */
1095 struct err_reg_info {
1096 	u32 status;		/* status CSR offset */
1097 	u32 clear;		/* clear CSR offset */
1098 	u32 mask;		/* mask CSR offset */
1099 	void (*handler)(struct hfi1_devdata *dd, u32 source, u64 reg);
1100 	const char *desc;
1101 };
1102 
1103 #define NUM_MISC_ERRS (IS_GENERAL_ERR_END - IS_GENERAL_ERR_START)
1104 #define NUM_DC_ERRS (IS_DC_END - IS_DC_START)
1105 #define NUM_VARIOUS (IS_VARIOUS_END - IS_VARIOUS_START)
1106 
1107 /*
1108  * Helpers for building HFI and DC error interrupt table entries.  Different
1109  * helpers are needed because of inconsistent register names.
1110  */
1111 #define EE(reg, handler, desc) \
1112 	{ reg##_STATUS, reg##_CLEAR, reg##_MASK, \
1113 		handler, desc }
1114 #define DC_EE1(reg, handler, desc) \
1115 	{ reg##_FLG, reg##_FLG_CLR, reg##_FLG_EN, handler, desc }
1116 #define DC_EE2(reg, handler, desc) \
1117 	{ reg##_FLG, reg##_CLR, reg##_EN, handler, desc }
1118 
1119 /*
1120  * Table of the "misc" grouping of error interrupts.  Each entry refers to
1121  * another register containing more information.
1122  */
1123 static const struct err_reg_info misc_errs[NUM_MISC_ERRS] = {
1124 /* 0*/	EE(CCE_ERR,		handle_cce_err,    "CceErr"),
1125 /* 1*/	EE(RCV_ERR,		handle_rxe_err,    "RxeErr"),
1126 /* 2*/	EE(MISC_ERR,	handle_misc_err,   "MiscErr"),
1127 /* 3*/	{ 0, 0, 0, NULL }, /* reserved */
1128 /* 4*/	EE(SEND_PIO_ERR,    handle_pio_err,    "PioErr"),
1129 /* 5*/	EE(SEND_DMA_ERR,    handle_sdma_err,   "SDmaErr"),
1130 /* 6*/	EE(SEND_EGRESS_ERR, handle_egress_err, "EgressErr"),
1131 /* 7*/	EE(SEND_ERR,	handle_txe_err,    "TxeErr")
1132 	/* the rest are reserved */
1133 };
1134 
1135 /*
1136  * Index into the Various section of the interrupt sources
1137  * corresponding to the Critical Temperature interrupt.
1138  */
1139 #define TCRIT_INT_SOURCE 4
1140 
1141 /*
1142  * SDMA error interrupt entry - refers to another register containing more
1143  * information.
1144  */
1145 static const struct err_reg_info sdma_eng_err =
1146 	EE(SEND_DMA_ENG_ERR, handle_sdma_eng_err, "SDmaEngErr");
1147 
1148 static const struct err_reg_info various_err[NUM_VARIOUS] = {
1149 /* 0*/	{ 0, 0, 0, NULL }, /* PbcInt */
1150 /* 1*/	{ 0, 0, 0, NULL }, /* GpioAssertInt */
1151 /* 2*/	EE(ASIC_QSFP1,	handle_qsfp_int,	"QSFP1"),
1152 /* 3*/	EE(ASIC_QSFP2,	handle_qsfp_int,	"QSFP2"),
1153 /* 4*/	{ 0, 0, 0, NULL }, /* TCritInt */
1154 	/* rest are reserved */
1155 };
1156 
1157 /*
1158  * The DC encoding of mtu_cap for 10K MTU in the DCC_CFG_PORT_CONFIG
1159  * register can not be derived from the MTU value because 10K is not
1160  * a power of 2. Therefore, we need a constant. Everything else can
1161  * be calculated.
1162  */
1163 #define DCC_CFG_PORT_MTU_CAP_10240 7
1164 
1165 /*
1166  * Table of the DC grouping of error interrupts.  Each entry refers to
1167  * another register containing more information.
1168  */
1169 static const struct err_reg_info dc_errs[NUM_DC_ERRS] = {
1170 /* 0*/	DC_EE1(DCC_ERR,		handle_dcc_err,	       "DCC Err"),
1171 /* 1*/	DC_EE2(DC_LCB_ERR,	handle_lcb_err,	       "LCB Err"),
1172 /* 2*/	DC_EE2(DC_DC8051_ERR,	handle_8051_interrupt, "DC8051 Interrupt"),
1173 /* 3*/	/* dc_lbm_int - special, see is_dc_int() */
1174 	/* the rest are reserved */
1175 };
1176 
1177 struct cntr_entry {
1178 	/*
1179 	 * counter name
1180 	 */
1181 	char *name;
1182 
1183 	/*
1184 	 * csr to read for name (if applicable)
1185 	 */
1186 	u64 csr;
1187 
1188 	/*
1189 	 * offset into dd or ppd to store the counter's value
1190 	 */
1191 	int offset;
1192 
1193 	/*
1194 	 * flags
1195 	 */
1196 	u8 flags;
1197 
1198 	/*
1199 	 * accessor for stat element, context either dd or ppd
1200 	 */
1201 	u64 (*rw_cntr)(const struct cntr_entry *, void *context, int vl,
1202 		       int mode, u64 data);
1203 };
1204 
1205 #define C_RCV_HDR_OVF_FIRST C_RCV_HDR_OVF_0
1206 #define C_RCV_HDR_OVF_LAST C_RCV_HDR_OVF_159
1207 
1208 #define CNTR_ELEM(name, csr, offset, flags, accessor) \
1209 { \
1210 	name, \
1211 	csr, \
1212 	offset, \
1213 	flags, \
1214 	accessor \
1215 }
1216 
1217 /* 32bit RXE */
1218 #define RXE32_PORT_CNTR_ELEM(name, counter, flags) \
1219 CNTR_ELEM(#name, \
1220 	  (counter * 8 + RCV_COUNTER_ARRAY32), \
1221 	  0, flags | CNTR_32BIT, \
1222 	  port_access_u32_csr)
1223 
1224 #define RXE32_DEV_CNTR_ELEM(name, counter, flags) \
1225 CNTR_ELEM(#name, \
1226 	  (counter * 8 + RCV_COUNTER_ARRAY32), \
1227 	  0, flags | CNTR_32BIT, \
1228 	  dev_access_u32_csr)
1229 
1230 /* 64bit RXE */
1231 #define RXE64_PORT_CNTR_ELEM(name, counter, flags) \
1232 CNTR_ELEM(#name, \
1233 	  (counter * 8 + RCV_COUNTER_ARRAY64), \
1234 	  0, flags, \
1235 	  port_access_u64_csr)
1236 
1237 #define RXE64_DEV_CNTR_ELEM(name, counter, flags) \
1238 CNTR_ELEM(#name, \
1239 	  (counter * 8 + RCV_COUNTER_ARRAY64), \
1240 	  0, flags, \
1241 	  dev_access_u64_csr)
1242 
1243 #define OVR_LBL(ctx) C_RCV_HDR_OVF_ ## ctx
1244 #define OVR_ELM(ctx) \
1245 CNTR_ELEM("RcvHdrOvr" #ctx, \
1246 	  (RCV_HDR_OVFL_CNT + ctx * 0x100), \
1247 	  0, CNTR_NORMAL, port_access_u64_csr)
1248 
1249 /* 32bit TXE */
1250 #define TXE32_PORT_CNTR_ELEM(name, counter, flags) \
1251 CNTR_ELEM(#name, \
1252 	  (counter * 8 + SEND_COUNTER_ARRAY32), \
1253 	  0, flags | CNTR_32BIT, \
1254 	  port_access_u32_csr)
1255 
1256 /* 64bit TXE */
1257 #define TXE64_PORT_CNTR_ELEM(name, counter, flags) \
1258 CNTR_ELEM(#name, \
1259 	  (counter * 8 + SEND_COUNTER_ARRAY64), \
1260 	  0, flags, \
1261 	  port_access_u64_csr)
1262 
1263 # define TX64_DEV_CNTR_ELEM(name, counter, flags) \
1264 CNTR_ELEM(#name,\
1265 	  counter * 8 + SEND_COUNTER_ARRAY64, \
1266 	  0, \
1267 	  flags, \
1268 	  dev_access_u64_csr)
1269 
1270 /* CCE */
1271 #define CCE_PERF_DEV_CNTR_ELEM(name, counter, flags) \
1272 CNTR_ELEM(#name, \
1273 	  (counter * 8 + CCE_COUNTER_ARRAY32), \
1274 	  0, flags | CNTR_32BIT, \
1275 	  dev_access_u32_csr)
1276 
1277 #define CCE_INT_DEV_CNTR_ELEM(name, counter, flags) \
1278 CNTR_ELEM(#name, \
1279 	  (counter * 8 + CCE_INT_COUNTER_ARRAY32), \
1280 	  0, flags | CNTR_32BIT, \
1281 	  dev_access_u32_csr)
1282 
1283 /* DC */
1284 #define DC_PERF_CNTR(name, counter, flags) \
1285 CNTR_ELEM(#name, \
1286 	  counter, \
1287 	  0, \
1288 	  flags, \
1289 	  dev_access_u64_csr)
1290 
1291 #define DC_PERF_CNTR_LCB(name, counter, flags) \
1292 CNTR_ELEM(#name, \
1293 	  counter, \
1294 	  0, \
1295 	  flags, \
1296 	  dc_access_lcb_cntr)
1297 
1298 /* ibp counters */
1299 #define SW_IBP_CNTR(name, cntr) \
1300 CNTR_ELEM(#name, \
1301 	  0, \
1302 	  0, \
1303 	  CNTR_SYNTH, \
1304 	  access_ibp_##cntr)
1305 
1306 /**
1307  * hfi_addr_from_offset - return addr for readq/writeq
1308  * @dd - the dd device
1309  * @offset - the offset of the CSR within bar0
1310  *
1311  * This routine selects the appropriate base address
1312  * based on the indicated offset.
1313  */
hfi1_addr_from_offset(const struct hfi1_devdata * dd,u32 offset)1314 static inline void __iomem *hfi1_addr_from_offset(
1315 	const struct hfi1_devdata *dd,
1316 	u32 offset)
1317 {
1318 	if (offset >= dd->base2_start)
1319 		return dd->kregbase2 + (offset - dd->base2_start);
1320 	return dd->kregbase1 + offset;
1321 }
1322 
1323 /**
1324  * read_csr - read CSR at the indicated offset
1325  * @dd - the dd device
1326  * @offset - the offset of the CSR within bar0
1327  *
1328  * Return: the value read or all FF's if there
1329  * is no mapping
1330  */
read_csr(const struct hfi1_devdata * dd,u32 offset)1331 u64 read_csr(const struct hfi1_devdata *dd, u32 offset)
1332 {
1333 	if (dd->flags & HFI1_PRESENT)
1334 		return readq(hfi1_addr_from_offset(dd, offset));
1335 	return -1;
1336 }
1337 
1338 /**
1339  * write_csr - write CSR at the indicated offset
1340  * @dd - the dd device
1341  * @offset - the offset of the CSR within bar0
1342  * @value - value to write
1343  */
write_csr(const struct hfi1_devdata * dd,u32 offset,u64 value)1344 void write_csr(const struct hfi1_devdata *dd, u32 offset, u64 value)
1345 {
1346 	if (dd->flags & HFI1_PRESENT) {
1347 		void __iomem *base = hfi1_addr_from_offset(dd, offset);
1348 
1349 		/* avoid write to RcvArray */
1350 		if (WARN_ON(offset >= RCV_ARRAY && offset < dd->base2_start))
1351 			return;
1352 		writeq(value, base);
1353 	}
1354 }
1355 
1356 /**
1357  * get_csr_addr - return te iomem address for offset
1358  * @dd - the dd device
1359  * @offset - the offset of the CSR within bar0
1360  *
1361  * Return: The iomem address to use in subsequent
1362  * writeq/readq operations.
1363  */
get_csr_addr(const struct hfi1_devdata * dd,u32 offset)1364 void __iomem *get_csr_addr(
1365 	const struct hfi1_devdata *dd,
1366 	u32 offset)
1367 {
1368 	if (dd->flags & HFI1_PRESENT)
1369 		return hfi1_addr_from_offset(dd, offset);
1370 	return NULL;
1371 }
1372 
read_write_csr(const struct hfi1_devdata * dd,u32 csr,int mode,u64 value)1373 static inline u64 read_write_csr(const struct hfi1_devdata *dd, u32 csr,
1374 				 int mode, u64 value)
1375 {
1376 	u64 ret;
1377 
1378 	if (mode == CNTR_MODE_R) {
1379 		ret = read_csr(dd, csr);
1380 	} else if (mode == CNTR_MODE_W) {
1381 		write_csr(dd, csr, value);
1382 		ret = value;
1383 	} else {
1384 		dd_dev_err(dd, "Invalid cntr register access mode");
1385 		return 0;
1386 	}
1387 
1388 	hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, ret, mode);
1389 	return ret;
1390 }
1391 
1392 /* Dev Access */
dev_access_u32_csr(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1393 static u64 dev_access_u32_csr(const struct cntr_entry *entry,
1394 			      void *context, int vl, int mode, u64 data)
1395 {
1396 	struct hfi1_devdata *dd = context;
1397 	u64 csr = entry->csr;
1398 
1399 	if (entry->flags & CNTR_SDMA) {
1400 		if (vl == CNTR_INVALID_VL)
1401 			return 0;
1402 		csr += 0x100 * vl;
1403 	} else {
1404 		if (vl != CNTR_INVALID_VL)
1405 			return 0;
1406 	}
1407 	return read_write_csr(dd, csr, mode, data);
1408 }
1409 
access_sde_err_cnt(const struct cntr_entry * entry,void * context,int idx,int mode,u64 data)1410 static u64 access_sde_err_cnt(const struct cntr_entry *entry,
1411 			      void *context, int idx, int mode, u64 data)
1412 {
1413 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1414 
1415 	if (dd->per_sdma && idx < dd->num_sdma)
1416 		return dd->per_sdma[idx].err_cnt;
1417 	return 0;
1418 }
1419 
access_sde_int_cnt(const struct cntr_entry * entry,void * context,int idx,int mode,u64 data)1420 static u64 access_sde_int_cnt(const struct cntr_entry *entry,
1421 			      void *context, int idx, int mode, u64 data)
1422 {
1423 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1424 
1425 	if (dd->per_sdma && idx < dd->num_sdma)
1426 		return dd->per_sdma[idx].sdma_int_cnt;
1427 	return 0;
1428 }
1429 
access_sde_idle_int_cnt(const struct cntr_entry * entry,void * context,int idx,int mode,u64 data)1430 static u64 access_sde_idle_int_cnt(const struct cntr_entry *entry,
1431 				   void *context, int idx, int mode, u64 data)
1432 {
1433 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1434 
1435 	if (dd->per_sdma && idx < dd->num_sdma)
1436 		return dd->per_sdma[idx].idle_int_cnt;
1437 	return 0;
1438 }
1439 
access_sde_progress_int_cnt(const struct cntr_entry * entry,void * context,int idx,int mode,u64 data)1440 static u64 access_sde_progress_int_cnt(const struct cntr_entry *entry,
1441 				       void *context, int idx, int mode,
1442 				       u64 data)
1443 {
1444 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1445 
1446 	if (dd->per_sdma && idx < dd->num_sdma)
1447 		return dd->per_sdma[idx].progress_int_cnt;
1448 	return 0;
1449 }
1450 
dev_access_u64_csr(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1451 static u64 dev_access_u64_csr(const struct cntr_entry *entry, void *context,
1452 			      int vl, int mode, u64 data)
1453 {
1454 	struct hfi1_devdata *dd = context;
1455 
1456 	u64 val = 0;
1457 	u64 csr = entry->csr;
1458 
1459 	if (entry->flags & CNTR_VL) {
1460 		if (vl == CNTR_INVALID_VL)
1461 			return 0;
1462 		csr += 8 * vl;
1463 	} else {
1464 		if (vl != CNTR_INVALID_VL)
1465 			return 0;
1466 	}
1467 
1468 	val = read_write_csr(dd, csr, mode, data);
1469 	return val;
1470 }
1471 
dc_access_lcb_cntr(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1472 static u64 dc_access_lcb_cntr(const struct cntr_entry *entry, void *context,
1473 			      int vl, int mode, u64 data)
1474 {
1475 	struct hfi1_devdata *dd = context;
1476 	u32 csr = entry->csr;
1477 	int ret = 0;
1478 
1479 	if (vl != CNTR_INVALID_VL)
1480 		return 0;
1481 	if (mode == CNTR_MODE_R)
1482 		ret = read_lcb_csr(dd, csr, &data);
1483 	else if (mode == CNTR_MODE_W)
1484 		ret = write_lcb_csr(dd, csr, data);
1485 
1486 	if (ret) {
1487 		dd_dev_err(dd, "Could not acquire LCB for counter 0x%x", csr);
1488 		return 0;
1489 	}
1490 
1491 	hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, data, mode);
1492 	return data;
1493 }
1494 
1495 /* Port Access */
port_access_u32_csr(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1496 static u64 port_access_u32_csr(const struct cntr_entry *entry, void *context,
1497 			       int vl, int mode, u64 data)
1498 {
1499 	struct hfi1_pportdata *ppd = context;
1500 
1501 	if (vl != CNTR_INVALID_VL)
1502 		return 0;
1503 	return read_write_csr(ppd->dd, entry->csr, mode, data);
1504 }
1505 
port_access_u64_csr(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1506 static u64 port_access_u64_csr(const struct cntr_entry *entry,
1507 			       void *context, int vl, int mode, u64 data)
1508 {
1509 	struct hfi1_pportdata *ppd = context;
1510 	u64 val;
1511 	u64 csr = entry->csr;
1512 
1513 	if (entry->flags & CNTR_VL) {
1514 		if (vl == CNTR_INVALID_VL)
1515 			return 0;
1516 		csr += 8 * vl;
1517 	} else {
1518 		if (vl != CNTR_INVALID_VL)
1519 			return 0;
1520 	}
1521 	val = read_write_csr(ppd->dd, csr, mode, data);
1522 	return val;
1523 }
1524 
1525 /* Software defined */
read_write_sw(struct hfi1_devdata * dd,u64 * cntr,int mode,u64 data)1526 static inline u64 read_write_sw(struct hfi1_devdata *dd, u64 *cntr, int mode,
1527 				u64 data)
1528 {
1529 	u64 ret;
1530 
1531 	if (mode == CNTR_MODE_R) {
1532 		ret = *cntr;
1533 	} else if (mode == CNTR_MODE_W) {
1534 		*cntr = data;
1535 		ret = data;
1536 	} else {
1537 		dd_dev_err(dd, "Invalid cntr sw access mode");
1538 		return 0;
1539 	}
1540 
1541 	hfi1_cdbg(CNTR, "val 0x%llx mode %d", ret, mode);
1542 
1543 	return ret;
1544 }
1545 
access_sw_link_dn_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1546 static u64 access_sw_link_dn_cnt(const struct cntr_entry *entry, void *context,
1547 				 int vl, int mode, u64 data)
1548 {
1549 	struct hfi1_pportdata *ppd = context;
1550 
1551 	if (vl != CNTR_INVALID_VL)
1552 		return 0;
1553 	return read_write_sw(ppd->dd, &ppd->link_downed, mode, data);
1554 }
1555 
access_sw_link_up_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1556 static u64 access_sw_link_up_cnt(const struct cntr_entry *entry, void *context,
1557 				 int vl, int mode, u64 data)
1558 {
1559 	struct hfi1_pportdata *ppd = context;
1560 
1561 	if (vl != CNTR_INVALID_VL)
1562 		return 0;
1563 	return read_write_sw(ppd->dd, &ppd->link_up, mode, data);
1564 }
1565 
access_sw_unknown_frame_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1566 static u64 access_sw_unknown_frame_cnt(const struct cntr_entry *entry,
1567 				       void *context, int vl, int mode,
1568 				       u64 data)
1569 {
1570 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1571 
1572 	if (vl != CNTR_INVALID_VL)
1573 		return 0;
1574 	return read_write_sw(ppd->dd, &ppd->unknown_frame_count, mode, data);
1575 }
1576 
access_sw_xmit_discards(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1577 static u64 access_sw_xmit_discards(const struct cntr_entry *entry,
1578 				   void *context, int vl, int mode, u64 data)
1579 {
1580 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1581 	u64 zero = 0;
1582 	u64 *counter;
1583 
1584 	if (vl == CNTR_INVALID_VL)
1585 		counter = &ppd->port_xmit_discards;
1586 	else if (vl >= 0 && vl < C_VL_COUNT)
1587 		counter = &ppd->port_xmit_discards_vl[vl];
1588 	else
1589 		counter = &zero;
1590 
1591 	return read_write_sw(ppd->dd, counter, mode, data);
1592 }
1593 
access_xmit_constraint_errs(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1594 static u64 access_xmit_constraint_errs(const struct cntr_entry *entry,
1595 				       void *context, int vl, int mode,
1596 				       u64 data)
1597 {
1598 	struct hfi1_pportdata *ppd = context;
1599 
1600 	if (vl != CNTR_INVALID_VL)
1601 		return 0;
1602 
1603 	return read_write_sw(ppd->dd, &ppd->port_xmit_constraint_errors,
1604 			     mode, data);
1605 }
1606 
access_rcv_constraint_errs(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1607 static u64 access_rcv_constraint_errs(const struct cntr_entry *entry,
1608 				      void *context, int vl, int mode, u64 data)
1609 {
1610 	struct hfi1_pportdata *ppd = context;
1611 
1612 	if (vl != CNTR_INVALID_VL)
1613 		return 0;
1614 
1615 	return read_write_sw(ppd->dd, &ppd->port_rcv_constraint_errors,
1616 			     mode, data);
1617 }
1618 
get_all_cpu_total(u64 __percpu * cntr)1619 u64 get_all_cpu_total(u64 __percpu *cntr)
1620 {
1621 	int cpu;
1622 	u64 counter = 0;
1623 
1624 	for_each_possible_cpu(cpu)
1625 		counter += *per_cpu_ptr(cntr, cpu);
1626 	return counter;
1627 }
1628 
read_write_cpu(struct hfi1_devdata * dd,u64 * z_val,u64 __percpu * cntr,int vl,int mode,u64 data)1629 static u64 read_write_cpu(struct hfi1_devdata *dd, u64 *z_val,
1630 			  u64 __percpu *cntr,
1631 			  int vl, int mode, u64 data)
1632 {
1633 	u64 ret = 0;
1634 
1635 	if (vl != CNTR_INVALID_VL)
1636 		return 0;
1637 
1638 	if (mode == CNTR_MODE_R) {
1639 		ret = get_all_cpu_total(cntr) - *z_val;
1640 	} else if (mode == CNTR_MODE_W) {
1641 		/* A write can only zero the counter */
1642 		if (data == 0)
1643 			*z_val = get_all_cpu_total(cntr);
1644 		else
1645 			dd_dev_err(dd, "Per CPU cntrs can only be zeroed");
1646 	} else {
1647 		dd_dev_err(dd, "Invalid cntr sw cpu access mode");
1648 		return 0;
1649 	}
1650 
1651 	return ret;
1652 }
1653 
access_sw_cpu_intr(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1654 static u64 access_sw_cpu_intr(const struct cntr_entry *entry,
1655 			      void *context, int vl, int mode, u64 data)
1656 {
1657 	struct hfi1_devdata *dd = context;
1658 
1659 	return read_write_cpu(dd, &dd->z_int_counter, dd->int_counter, vl,
1660 			      mode, data);
1661 }
1662 
access_sw_cpu_rcv_limit(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1663 static u64 access_sw_cpu_rcv_limit(const struct cntr_entry *entry,
1664 				   void *context, int vl, int mode, u64 data)
1665 {
1666 	struct hfi1_devdata *dd = context;
1667 
1668 	return read_write_cpu(dd, &dd->z_rcv_limit, dd->rcv_limit, vl,
1669 			      mode, data);
1670 }
1671 
access_sw_pio_wait(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1672 static u64 access_sw_pio_wait(const struct cntr_entry *entry,
1673 			      void *context, int vl, int mode, u64 data)
1674 {
1675 	struct hfi1_devdata *dd = context;
1676 
1677 	return dd->verbs_dev.n_piowait;
1678 }
1679 
access_sw_pio_drain(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1680 static u64 access_sw_pio_drain(const struct cntr_entry *entry,
1681 			       void *context, int vl, int mode, u64 data)
1682 {
1683 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1684 
1685 	return dd->verbs_dev.n_piodrain;
1686 }
1687 
access_sw_vtx_wait(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1688 static u64 access_sw_vtx_wait(const struct cntr_entry *entry,
1689 			      void *context, int vl, int mode, u64 data)
1690 {
1691 	struct hfi1_devdata *dd = context;
1692 
1693 	return dd->verbs_dev.n_txwait;
1694 }
1695 
access_sw_kmem_wait(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1696 static u64 access_sw_kmem_wait(const struct cntr_entry *entry,
1697 			       void *context, int vl, int mode, u64 data)
1698 {
1699 	struct hfi1_devdata *dd = context;
1700 
1701 	return dd->verbs_dev.n_kmem_wait;
1702 }
1703 
access_sw_send_schedule(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1704 static u64 access_sw_send_schedule(const struct cntr_entry *entry,
1705 				   void *context, int vl, int mode, u64 data)
1706 {
1707 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1708 
1709 	return read_write_cpu(dd, &dd->z_send_schedule, dd->send_schedule, vl,
1710 			      mode, data);
1711 }
1712 
1713 /* Software counters for the error status bits within MISC_ERR_STATUS */
access_misc_pll_lock_fail_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1714 static u64 access_misc_pll_lock_fail_err_cnt(const struct cntr_entry *entry,
1715 					     void *context, int vl, int mode,
1716 					     u64 data)
1717 {
1718 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1719 
1720 	return dd->misc_err_status_cnt[12];
1721 }
1722 
access_misc_mbist_fail_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1723 static u64 access_misc_mbist_fail_err_cnt(const struct cntr_entry *entry,
1724 					  void *context, int vl, int mode,
1725 					  u64 data)
1726 {
1727 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1728 
1729 	return dd->misc_err_status_cnt[11];
1730 }
1731 
access_misc_invalid_eep_cmd_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1732 static u64 access_misc_invalid_eep_cmd_err_cnt(const struct cntr_entry *entry,
1733 					       void *context, int vl, int mode,
1734 					       u64 data)
1735 {
1736 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1737 
1738 	return dd->misc_err_status_cnt[10];
1739 }
1740 
access_misc_efuse_done_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1741 static u64 access_misc_efuse_done_parity_err_cnt(const struct cntr_entry *entry,
1742 						 void *context, int vl,
1743 						 int mode, u64 data)
1744 {
1745 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1746 
1747 	return dd->misc_err_status_cnt[9];
1748 }
1749 
access_misc_efuse_write_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1750 static u64 access_misc_efuse_write_err_cnt(const struct cntr_entry *entry,
1751 					   void *context, int vl, int mode,
1752 					   u64 data)
1753 {
1754 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1755 
1756 	return dd->misc_err_status_cnt[8];
1757 }
1758 
access_misc_efuse_read_bad_addr_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1759 static u64 access_misc_efuse_read_bad_addr_err_cnt(
1760 				const struct cntr_entry *entry,
1761 				void *context, int vl, int mode, u64 data)
1762 {
1763 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1764 
1765 	return dd->misc_err_status_cnt[7];
1766 }
1767 
access_misc_efuse_csr_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1768 static u64 access_misc_efuse_csr_parity_err_cnt(const struct cntr_entry *entry,
1769 						void *context, int vl,
1770 						int mode, u64 data)
1771 {
1772 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1773 
1774 	return dd->misc_err_status_cnt[6];
1775 }
1776 
access_misc_fw_auth_failed_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1777 static u64 access_misc_fw_auth_failed_err_cnt(const struct cntr_entry *entry,
1778 					      void *context, int vl, int mode,
1779 					      u64 data)
1780 {
1781 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1782 
1783 	return dd->misc_err_status_cnt[5];
1784 }
1785 
access_misc_key_mismatch_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1786 static u64 access_misc_key_mismatch_err_cnt(const struct cntr_entry *entry,
1787 					    void *context, int vl, int mode,
1788 					    u64 data)
1789 {
1790 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1791 
1792 	return dd->misc_err_status_cnt[4];
1793 }
1794 
access_misc_sbus_write_failed_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1795 static u64 access_misc_sbus_write_failed_err_cnt(const struct cntr_entry *entry,
1796 						 void *context, int vl,
1797 						 int mode, u64 data)
1798 {
1799 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1800 
1801 	return dd->misc_err_status_cnt[3];
1802 }
1803 
access_misc_csr_write_bad_addr_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1804 static u64 access_misc_csr_write_bad_addr_err_cnt(
1805 				const struct cntr_entry *entry,
1806 				void *context, int vl, int mode, u64 data)
1807 {
1808 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1809 
1810 	return dd->misc_err_status_cnt[2];
1811 }
1812 
access_misc_csr_read_bad_addr_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1813 static u64 access_misc_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1814 						 void *context, int vl,
1815 						 int mode, u64 data)
1816 {
1817 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1818 
1819 	return dd->misc_err_status_cnt[1];
1820 }
1821 
access_misc_csr_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1822 static u64 access_misc_csr_parity_err_cnt(const struct cntr_entry *entry,
1823 					  void *context, int vl, int mode,
1824 					  u64 data)
1825 {
1826 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1827 
1828 	return dd->misc_err_status_cnt[0];
1829 }
1830 
1831 /*
1832  * Software counter for the aggregate of
1833  * individual CceErrStatus counters
1834  */
access_sw_cce_err_status_aggregated_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1835 static u64 access_sw_cce_err_status_aggregated_cnt(
1836 				const struct cntr_entry *entry,
1837 				void *context, int vl, int mode, u64 data)
1838 {
1839 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1840 
1841 	return dd->sw_cce_err_status_aggregate;
1842 }
1843 
1844 /*
1845  * Software counters corresponding to each of the
1846  * error status bits within CceErrStatus
1847  */
access_cce_msix_csr_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1848 static u64 access_cce_msix_csr_parity_err_cnt(const struct cntr_entry *entry,
1849 					      void *context, int vl, int mode,
1850 					      u64 data)
1851 {
1852 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1853 
1854 	return dd->cce_err_status_cnt[40];
1855 }
1856 
access_cce_int_map_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1857 static u64 access_cce_int_map_unc_err_cnt(const struct cntr_entry *entry,
1858 					  void *context, int vl, int mode,
1859 					  u64 data)
1860 {
1861 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1862 
1863 	return dd->cce_err_status_cnt[39];
1864 }
1865 
access_cce_int_map_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1866 static u64 access_cce_int_map_cor_err_cnt(const struct cntr_entry *entry,
1867 					  void *context, int vl, int mode,
1868 					  u64 data)
1869 {
1870 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1871 
1872 	return dd->cce_err_status_cnt[38];
1873 }
1874 
access_cce_msix_table_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1875 static u64 access_cce_msix_table_unc_err_cnt(const struct cntr_entry *entry,
1876 					     void *context, int vl, int mode,
1877 					     u64 data)
1878 {
1879 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1880 
1881 	return dd->cce_err_status_cnt[37];
1882 }
1883 
access_cce_msix_table_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1884 static u64 access_cce_msix_table_cor_err_cnt(const struct cntr_entry *entry,
1885 					     void *context, int vl, int mode,
1886 					     u64 data)
1887 {
1888 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1889 
1890 	return dd->cce_err_status_cnt[36];
1891 }
1892 
access_cce_rxdma_conv_fifo_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1893 static u64 access_cce_rxdma_conv_fifo_parity_err_cnt(
1894 				const struct cntr_entry *entry,
1895 				void *context, int vl, int mode, u64 data)
1896 {
1897 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1898 
1899 	return dd->cce_err_status_cnt[35];
1900 }
1901 
access_cce_rcpl_async_fifo_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1902 static u64 access_cce_rcpl_async_fifo_parity_err_cnt(
1903 				const struct cntr_entry *entry,
1904 				void *context, int vl, int mode, u64 data)
1905 {
1906 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1907 
1908 	return dd->cce_err_status_cnt[34];
1909 }
1910 
access_cce_seg_write_bad_addr_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1911 static u64 access_cce_seg_write_bad_addr_err_cnt(const struct cntr_entry *entry,
1912 						 void *context, int vl,
1913 						 int mode, u64 data)
1914 {
1915 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1916 
1917 	return dd->cce_err_status_cnt[33];
1918 }
1919 
access_cce_seg_read_bad_addr_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1920 static u64 access_cce_seg_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1921 						void *context, int vl, int mode,
1922 						u64 data)
1923 {
1924 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1925 
1926 	return dd->cce_err_status_cnt[32];
1927 }
1928 
access_la_triggered_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1929 static u64 access_la_triggered_cnt(const struct cntr_entry *entry,
1930 				   void *context, int vl, int mode, u64 data)
1931 {
1932 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1933 
1934 	return dd->cce_err_status_cnt[31];
1935 }
1936 
access_cce_trgt_cpl_timeout_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1937 static u64 access_cce_trgt_cpl_timeout_err_cnt(const struct cntr_entry *entry,
1938 					       void *context, int vl, int mode,
1939 					       u64 data)
1940 {
1941 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1942 
1943 	return dd->cce_err_status_cnt[30];
1944 }
1945 
access_pcic_receive_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1946 static u64 access_pcic_receive_parity_err_cnt(const struct cntr_entry *entry,
1947 					      void *context, int vl, int mode,
1948 					      u64 data)
1949 {
1950 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1951 
1952 	return dd->cce_err_status_cnt[29];
1953 }
1954 
access_pcic_transmit_back_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1955 static u64 access_pcic_transmit_back_parity_err_cnt(
1956 				const struct cntr_entry *entry,
1957 				void *context, int vl, int mode, u64 data)
1958 {
1959 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1960 
1961 	return dd->cce_err_status_cnt[28];
1962 }
1963 
access_pcic_transmit_front_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1964 static u64 access_pcic_transmit_front_parity_err_cnt(
1965 				const struct cntr_entry *entry,
1966 				void *context, int vl, int mode, u64 data)
1967 {
1968 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1969 
1970 	return dd->cce_err_status_cnt[27];
1971 }
1972 
access_pcic_cpl_dat_q_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1973 static u64 access_pcic_cpl_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1974 					     void *context, int vl, int mode,
1975 					     u64 data)
1976 {
1977 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1978 
1979 	return dd->cce_err_status_cnt[26];
1980 }
1981 
access_pcic_cpl_hd_q_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1982 static u64 access_pcic_cpl_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1983 					    void *context, int vl, int mode,
1984 					    u64 data)
1985 {
1986 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1987 
1988 	return dd->cce_err_status_cnt[25];
1989 }
1990 
access_pcic_post_dat_q_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)1991 static u64 access_pcic_post_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1992 					      void *context, int vl, int mode,
1993 					      u64 data)
1994 {
1995 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1996 
1997 	return dd->cce_err_status_cnt[24];
1998 }
1999 
access_pcic_post_hd_q_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2000 static u64 access_pcic_post_hd_q_unc_err_cnt(const struct cntr_entry *entry,
2001 					     void *context, int vl, int mode,
2002 					     u64 data)
2003 {
2004 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2005 
2006 	return dd->cce_err_status_cnt[23];
2007 }
2008 
access_pcic_retry_sot_mem_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2009 static u64 access_pcic_retry_sot_mem_unc_err_cnt(const struct cntr_entry *entry,
2010 						 void *context, int vl,
2011 						 int mode, u64 data)
2012 {
2013 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2014 
2015 	return dd->cce_err_status_cnt[22];
2016 }
2017 
access_pcic_retry_mem_unc_err(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2018 static u64 access_pcic_retry_mem_unc_err(const struct cntr_entry *entry,
2019 					 void *context, int vl, int mode,
2020 					 u64 data)
2021 {
2022 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2023 
2024 	return dd->cce_err_status_cnt[21];
2025 }
2026 
access_pcic_n_post_dat_q_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2027 static u64 access_pcic_n_post_dat_q_parity_err_cnt(
2028 				const struct cntr_entry *entry,
2029 				void *context, int vl, int mode, u64 data)
2030 {
2031 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2032 
2033 	return dd->cce_err_status_cnt[20];
2034 }
2035 
access_pcic_n_post_h_q_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2036 static u64 access_pcic_n_post_h_q_parity_err_cnt(const struct cntr_entry *entry,
2037 						 void *context, int vl,
2038 						 int mode, u64 data)
2039 {
2040 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2041 
2042 	return dd->cce_err_status_cnt[19];
2043 }
2044 
access_pcic_cpl_dat_q_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2045 static u64 access_pcic_cpl_dat_q_cor_err_cnt(const struct cntr_entry *entry,
2046 					     void *context, int vl, int mode,
2047 					     u64 data)
2048 {
2049 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2050 
2051 	return dd->cce_err_status_cnt[18];
2052 }
2053 
access_pcic_cpl_hd_q_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2054 static u64 access_pcic_cpl_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2055 					    void *context, int vl, int mode,
2056 					    u64 data)
2057 {
2058 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2059 
2060 	return dd->cce_err_status_cnt[17];
2061 }
2062 
access_pcic_post_dat_q_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2063 static u64 access_pcic_post_dat_q_cor_err_cnt(const struct cntr_entry *entry,
2064 					      void *context, int vl, int mode,
2065 					      u64 data)
2066 {
2067 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2068 
2069 	return dd->cce_err_status_cnt[16];
2070 }
2071 
access_pcic_post_hd_q_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2072 static u64 access_pcic_post_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2073 					     void *context, int vl, int mode,
2074 					     u64 data)
2075 {
2076 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2077 
2078 	return dd->cce_err_status_cnt[15];
2079 }
2080 
access_pcic_retry_sot_mem_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2081 static u64 access_pcic_retry_sot_mem_cor_err_cnt(const struct cntr_entry *entry,
2082 						 void *context, int vl,
2083 						 int mode, u64 data)
2084 {
2085 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2086 
2087 	return dd->cce_err_status_cnt[14];
2088 }
2089 
access_pcic_retry_mem_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2090 static u64 access_pcic_retry_mem_cor_err_cnt(const struct cntr_entry *entry,
2091 					     void *context, int vl, int mode,
2092 					     u64 data)
2093 {
2094 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2095 
2096 	return dd->cce_err_status_cnt[13];
2097 }
2098 
access_cce_cli1_async_fifo_dbg_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2099 static u64 access_cce_cli1_async_fifo_dbg_parity_err_cnt(
2100 				const struct cntr_entry *entry,
2101 				void *context, int vl, int mode, u64 data)
2102 {
2103 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2104 
2105 	return dd->cce_err_status_cnt[12];
2106 }
2107 
access_cce_cli1_async_fifo_rxdma_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2108 static u64 access_cce_cli1_async_fifo_rxdma_parity_err_cnt(
2109 				const struct cntr_entry *entry,
2110 				void *context, int vl, int mode, u64 data)
2111 {
2112 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2113 
2114 	return dd->cce_err_status_cnt[11];
2115 }
2116 
access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2117 static u64 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt(
2118 				const struct cntr_entry *entry,
2119 				void *context, int vl, int mode, u64 data)
2120 {
2121 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2122 
2123 	return dd->cce_err_status_cnt[10];
2124 }
2125 
access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2126 static u64 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt(
2127 				const struct cntr_entry *entry,
2128 				void *context, int vl, int mode, u64 data)
2129 {
2130 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2131 
2132 	return dd->cce_err_status_cnt[9];
2133 }
2134 
access_cce_cli2_async_fifo_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2135 static u64 access_cce_cli2_async_fifo_parity_err_cnt(
2136 				const struct cntr_entry *entry,
2137 				void *context, int vl, int mode, u64 data)
2138 {
2139 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2140 
2141 	return dd->cce_err_status_cnt[8];
2142 }
2143 
access_cce_csr_cfg_bus_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2144 static u64 access_cce_csr_cfg_bus_parity_err_cnt(const struct cntr_entry *entry,
2145 						 void *context, int vl,
2146 						 int mode, u64 data)
2147 {
2148 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2149 
2150 	return dd->cce_err_status_cnt[7];
2151 }
2152 
access_cce_cli0_async_fifo_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2153 static u64 access_cce_cli0_async_fifo_parity_err_cnt(
2154 				const struct cntr_entry *entry,
2155 				void *context, int vl, int mode, u64 data)
2156 {
2157 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2158 
2159 	return dd->cce_err_status_cnt[6];
2160 }
2161 
access_cce_rspd_data_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2162 static u64 access_cce_rspd_data_parity_err_cnt(const struct cntr_entry *entry,
2163 					       void *context, int vl, int mode,
2164 					       u64 data)
2165 {
2166 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2167 
2168 	return dd->cce_err_status_cnt[5];
2169 }
2170 
access_cce_trgt_access_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2171 static u64 access_cce_trgt_access_err_cnt(const struct cntr_entry *entry,
2172 					  void *context, int vl, int mode,
2173 					  u64 data)
2174 {
2175 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2176 
2177 	return dd->cce_err_status_cnt[4];
2178 }
2179 
access_cce_trgt_async_fifo_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2180 static u64 access_cce_trgt_async_fifo_parity_err_cnt(
2181 				const struct cntr_entry *entry,
2182 				void *context, int vl, int mode, u64 data)
2183 {
2184 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2185 
2186 	return dd->cce_err_status_cnt[3];
2187 }
2188 
access_cce_csr_write_bad_addr_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2189 static u64 access_cce_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2190 						 void *context, int vl,
2191 						 int mode, u64 data)
2192 {
2193 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2194 
2195 	return dd->cce_err_status_cnt[2];
2196 }
2197 
access_cce_csr_read_bad_addr_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2198 static u64 access_cce_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2199 						void *context, int vl,
2200 						int mode, u64 data)
2201 {
2202 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2203 
2204 	return dd->cce_err_status_cnt[1];
2205 }
2206 
access_ccs_csr_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2207 static u64 access_ccs_csr_parity_err_cnt(const struct cntr_entry *entry,
2208 					 void *context, int vl, int mode,
2209 					 u64 data)
2210 {
2211 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2212 
2213 	return dd->cce_err_status_cnt[0];
2214 }
2215 
2216 /*
2217  * Software counters corresponding to each of the
2218  * error status bits within RcvErrStatus
2219  */
access_rx_csr_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2220 static u64 access_rx_csr_parity_err_cnt(const struct cntr_entry *entry,
2221 					void *context, int vl, int mode,
2222 					u64 data)
2223 {
2224 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2225 
2226 	return dd->rcv_err_status_cnt[63];
2227 }
2228 
access_rx_csr_write_bad_addr_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2229 static u64 access_rx_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2230 						void *context, int vl,
2231 						int mode, u64 data)
2232 {
2233 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2234 
2235 	return dd->rcv_err_status_cnt[62];
2236 }
2237 
access_rx_csr_read_bad_addr_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2238 static u64 access_rx_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2239 					       void *context, int vl, int mode,
2240 					       u64 data)
2241 {
2242 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2243 
2244 	return dd->rcv_err_status_cnt[61];
2245 }
2246 
access_rx_dma_csr_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2247 static u64 access_rx_dma_csr_unc_err_cnt(const struct cntr_entry *entry,
2248 					 void *context, int vl, int mode,
2249 					 u64 data)
2250 {
2251 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2252 
2253 	return dd->rcv_err_status_cnt[60];
2254 }
2255 
access_rx_dma_dq_fsm_encoding_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2256 static u64 access_rx_dma_dq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2257 						 void *context, int vl,
2258 						 int mode, u64 data)
2259 {
2260 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2261 
2262 	return dd->rcv_err_status_cnt[59];
2263 }
2264 
access_rx_dma_eq_fsm_encoding_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2265 static u64 access_rx_dma_eq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2266 						 void *context, int vl,
2267 						 int mode, u64 data)
2268 {
2269 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2270 
2271 	return dd->rcv_err_status_cnt[58];
2272 }
2273 
access_rx_dma_csr_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2274 static u64 access_rx_dma_csr_parity_err_cnt(const struct cntr_entry *entry,
2275 					    void *context, int vl, int mode,
2276 					    u64 data)
2277 {
2278 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2279 
2280 	return dd->rcv_err_status_cnt[57];
2281 }
2282 
access_rx_rbuf_data_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2283 static u64 access_rx_rbuf_data_cor_err_cnt(const struct cntr_entry *entry,
2284 					   void *context, int vl, int mode,
2285 					   u64 data)
2286 {
2287 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2288 
2289 	return dd->rcv_err_status_cnt[56];
2290 }
2291 
access_rx_rbuf_data_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2292 static u64 access_rx_rbuf_data_unc_err_cnt(const struct cntr_entry *entry,
2293 					   void *context, int vl, int mode,
2294 					   u64 data)
2295 {
2296 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2297 
2298 	return dd->rcv_err_status_cnt[55];
2299 }
2300 
access_rx_dma_data_fifo_rd_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2301 static u64 access_rx_dma_data_fifo_rd_cor_err_cnt(
2302 				const struct cntr_entry *entry,
2303 				void *context, int vl, int mode, u64 data)
2304 {
2305 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2306 
2307 	return dd->rcv_err_status_cnt[54];
2308 }
2309 
access_rx_dma_data_fifo_rd_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2310 static u64 access_rx_dma_data_fifo_rd_unc_err_cnt(
2311 				const struct cntr_entry *entry,
2312 				void *context, int vl, int mode, u64 data)
2313 {
2314 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2315 
2316 	return dd->rcv_err_status_cnt[53];
2317 }
2318 
access_rx_dma_hdr_fifo_rd_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2319 static u64 access_rx_dma_hdr_fifo_rd_cor_err_cnt(const struct cntr_entry *entry,
2320 						 void *context, int vl,
2321 						 int mode, u64 data)
2322 {
2323 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2324 
2325 	return dd->rcv_err_status_cnt[52];
2326 }
2327 
access_rx_dma_hdr_fifo_rd_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2328 static u64 access_rx_dma_hdr_fifo_rd_unc_err_cnt(const struct cntr_entry *entry,
2329 						 void *context, int vl,
2330 						 int mode, u64 data)
2331 {
2332 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2333 
2334 	return dd->rcv_err_status_cnt[51];
2335 }
2336 
access_rx_rbuf_desc_part2_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2337 static u64 access_rx_rbuf_desc_part2_cor_err_cnt(const struct cntr_entry *entry,
2338 						 void *context, int vl,
2339 						 int mode, u64 data)
2340 {
2341 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2342 
2343 	return dd->rcv_err_status_cnt[50];
2344 }
2345 
access_rx_rbuf_desc_part2_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2346 static u64 access_rx_rbuf_desc_part2_unc_err_cnt(const struct cntr_entry *entry,
2347 						 void *context, int vl,
2348 						 int mode, u64 data)
2349 {
2350 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2351 
2352 	return dd->rcv_err_status_cnt[49];
2353 }
2354 
access_rx_rbuf_desc_part1_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2355 static u64 access_rx_rbuf_desc_part1_cor_err_cnt(const struct cntr_entry *entry,
2356 						 void *context, int vl,
2357 						 int mode, u64 data)
2358 {
2359 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2360 
2361 	return dd->rcv_err_status_cnt[48];
2362 }
2363 
access_rx_rbuf_desc_part1_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2364 static u64 access_rx_rbuf_desc_part1_unc_err_cnt(const struct cntr_entry *entry,
2365 						 void *context, int vl,
2366 						 int mode, u64 data)
2367 {
2368 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2369 
2370 	return dd->rcv_err_status_cnt[47];
2371 }
2372 
access_rx_hq_intr_fsm_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2373 static u64 access_rx_hq_intr_fsm_err_cnt(const struct cntr_entry *entry,
2374 					 void *context, int vl, int mode,
2375 					 u64 data)
2376 {
2377 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2378 
2379 	return dd->rcv_err_status_cnt[46];
2380 }
2381 
access_rx_hq_intr_csr_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2382 static u64 access_rx_hq_intr_csr_parity_err_cnt(
2383 				const struct cntr_entry *entry,
2384 				void *context, int vl, int mode, u64 data)
2385 {
2386 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2387 
2388 	return dd->rcv_err_status_cnt[45];
2389 }
2390 
access_rx_lookup_csr_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2391 static u64 access_rx_lookup_csr_parity_err_cnt(
2392 				const struct cntr_entry *entry,
2393 				void *context, int vl, int mode, u64 data)
2394 {
2395 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2396 
2397 	return dd->rcv_err_status_cnt[44];
2398 }
2399 
access_rx_lookup_rcv_array_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2400 static u64 access_rx_lookup_rcv_array_cor_err_cnt(
2401 				const struct cntr_entry *entry,
2402 				void *context, int vl, int mode, u64 data)
2403 {
2404 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2405 
2406 	return dd->rcv_err_status_cnt[43];
2407 }
2408 
access_rx_lookup_rcv_array_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2409 static u64 access_rx_lookup_rcv_array_unc_err_cnt(
2410 				const struct cntr_entry *entry,
2411 				void *context, int vl, int mode, u64 data)
2412 {
2413 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2414 
2415 	return dd->rcv_err_status_cnt[42];
2416 }
2417 
access_rx_lookup_des_part2_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2418 static u64 access_rx_lookup_des_part2_parity_err_cnt(
2419 				const struct cntr_entry *entry,
2420 				void *context, int vl, int mode, u64 data)
2421 {
2422 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2423 
2424 	return dd->rcv_err_status_cnt[41];
2425 }
2426 
access_rx_lookup_des_part1_unc_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2427 static u64 access_rx_lookup_des_part1_unc_cor_err_cnt(
2428 				const struct cntr_entry *entry,
2429 				void *context, int vl, int mode, u64 data)
2430 {
2431 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2432 
2433 	return dd->rcv_err_status_cnt[40];
2434 }
2435 
access_rx_lookup_des_part1_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2436 static u64 access_rx_lookup_des_part1_unc_err_cnt(
2437 				const struct cntr_entry *entry,
2438 				void *context, int vl, int mode, u64 data)
2439 {
2440 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2441 
2442 	return dd->rcv_err_status_cnt[39];
2443 }
2444 
access_rx_rbuf_next_free_buf_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2445 static u64 access_rx_rbuf_next_free_buf_cor_err_cnt(
2446 				const struct cntr_entry *entry,
2447 				void *context, int vl, int mode, u64 data)
2448 {
2449 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2450 
2451 	return dd->rcv_err_status_cnt[38];
2452 }
2453 
access_rx_rbuf_next_free_buf_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2454 static u64 access_rx_rbuf_next_free_buf_unc_err_cnt(
2455 				const struct cntr_entry *entry,
2456 				void *context, int vl, int mode, u64 data)
2457 {
2458 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2459 
2460 	return dd->rcv_err_status_cnt[37];
2461 }
2462 
access_rbuf_fl_init_wr_addr_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2463 static u64 access_rbuf_fl_init_wr_addr_parity_err_cnt(
2464 				const struct cntr_entry *entry,
2465 				void *context, int vl, int mode, u64 data)
2466 {
2467 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2468 
2469 	return dd->rcv_err_status_cnt[36];
2470 }
2471 
access_rx_rbuf_fl_initdone_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2472 static u64 access_rx_rbuf_fl_initdone_parity_err_cnt(
2473 				const struct cntr_entry *entry,
2474 				void *context, int vl, int mode, u64 data)
2475 {
2476 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2477 
2478 	return dd->rcv_err_status_cnt[35];
2479 }
2480 
access_rx_rbuf_fl_write_addr_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2481 static u64 access_rx_rbuf_fl_write_addr_parity_err_cnt(
2482 				const struct cntr_entry *entry,
2483 				void *context, int vl, int mode, u64 data)
2484 {
2485 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2486 
2487 	return dd->rcv_err_status_cnt[34];
2488 }
2489 
access_rx_rbuf_fl_rd_addr_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2490 static u64 access_rx_rbuf_fl_rd_addr_parity_err_cnt(
2491 				const struct cntr_entry *entry,
2492 				void *context, int vl, int mode, u64 data)
2493 {
2494 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2495 
2496 	return dd->rcv_err_status_cnt[33];
2497 }
2498 
access_rx_rbuf_empty_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2499 static u64 access_rx_rbuf_empty_err_cnt(const struct cntr_entry *entry,
2500 					void *context, int vl, int mode,
2501 					u64 data)
2502 {
2503 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2504 
2505 	return dd->rcv_err_status_cnt[32];
2506 }
2507 
access_rx_rbuf_full_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2508 static u64 access_rx_rbuf_full_err_cnt(const struct cntr_entry *entry,
2509 				       void *context, int vl, int mode,
2510 				       u64 data)
2511 {
2512 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2513 
2514 	return dd->rcv_err_status_cnt[31];
2515 }
2516 
access_rbuf_bad_lookup_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2517 static u64 access_rbuf_bad_lookup_err_cnt(const struct cntr_entry *entry,
2518 					  void *context, int vl, int mode,
2519 					  u64 data)
2520 {
2521 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2522 
2523 	return dd->rcv_err_status_cnt[30];
2524 }
2525 
access_rbuf_ctx_id_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2526 static u64 access_rbuf_ctx_id_parity_err_cnt(const struct cntr_entry *entry,
2527 					     void *context, int vl, int mode,
2528 					     u64 data)
2529 {
2530 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2531 
2532 	return dd->rcv_err_status_cnt[29];
2533 }
2534 
access_rbuf_csr_qeopdw_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2535 static u64 access_rbuf_csr_qeopdw_parity_err_cnt(const struct cntr_entry *entry,
2536 						 void *context, int vl,
2537 						 int mode, u64 data)
2538 {
2539 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2540 
2541 	return dd->rcv_err_status_cnt[28];
2542 }
2543 
access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2544 static u64 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt(
2545 				const struct cntr_entry *entry,
2546 				void *context, int vl, int mode, u64 data)
2547 {
2548 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2549 
2550 	return dd->rcv_err_status_cnt[27];
2551 }
2552 
access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2553 static u64 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt(
2554 				const struct cntr_entry *entry,
2555 				void *context, int vl, int mode, u64 data)
2556 {
2557 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2558 
2559 	return dd->rcv_err_status_cnt[26];
2560 }
2561 
access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2562 static u64 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt(
2563 				const struct cntr_entry *entry,
2564 				void *context, int vl, int mode, u64 data)
2565 {
2566 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2567 
2568 	return dd->rcv_err_status_cnt[25];
2569 }
2570 
access_rx_rbuf_csr_q_vld_bit_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2571 static u64 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt(
2572 				const struct cntr_entry *entry,
2573 				void *context, int vl, int mode, u64 data)
2574 {
2575 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2576 
2577 	return dd->rcv_err_status_cnt[24];
2578 }
2579 
access_rx_rbuf_csr_q_next_buf_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2580 static u64 access_rx_rbuf_csr_q_next_buf_parity_err_cnt(
2581 				const struct cntr_entry *entry,
2582 				void *context, int vl, int mode, u64 data)
2583 {
2584 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2585 
2586 	return dd->rcv_err_status_cnt[23];
2587 }
2588 
access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2589 static u64 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt(
2590 				const struct cntr_entry *entry,
2591 				void *context, int vl, int mode, u64 data)
2592 {
2593 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2594 
2595 	return dd->rcv_err_status_cnt[22];
2596 }
2597 
access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2598 static u64 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt(
2599 				const struct cntr_entry *entry,
2600 				void *context, int vl, int mode, u64 data)
2601 {
2602 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2603 
2604 	return dd->rcv_err_status_cnt[21];
2605 }
2606 
access_rx_rbuf_block_list_read_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2607 static u64 access_rx_rbuf_block_list_read_cor_err_cnt(
2608 				const struct cntr_entry *entry,
2609 				void *context, int vl, int mode, u64 data)
2610 {
2611 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2612 
2613 	return dd->rcv_err_status_cnt[20];
2614 }
2615 
access_rx_rbuf_block_list_read_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2616 static u64 access_rx_rbuf_block_list_read_unc_err_cnt(
2617 				const struct cntr_entry *entry,
2618 				void *context, int vl, int mode, u64 data)
2619 {
2620 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2621 
2622 	return dd->rcv_err_status_cnt[19];
2623 }
2624 
access_rx_rbuf_lookup_des_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2625 static u64 access_rx_rbuf_lookup_des_cor_err_cnt(const struct cntr_entry *entry,
2626 						 void *context, int vl,
2627 						 int mode, u64 data)
2628 {
2629 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2630 
2631 	return dd->rcv_err_status_cnt[18];
2632 }
2633 
access_rx_rbuf_lookup_des_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2634 static u64 access_rx_rbuf_lookup_des_unc_err_cnt(const struct cntr_entry *entry,
2635 						 void *context, int vl,
2636 						 int mode, u64 data)
2637 {
2638 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2639 
2640 	return dd->rcv_err_status_cnt[17];
2641 }
2642 
access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2643 static u64 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt(
2644 				const struct cntr_entry *entry,
2645 				void *context, int vl, int mode, u64 data)
2646 {
2647 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2648 
2649 	return dd->rcv_err_status_cnt[16];
2650 }
2651 
access_rx_rbuf_lookup_des_reg_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2652 static u64 access_rx_rbuf_lookup_des_reg_unc_err_cnt(
2653 				const struct cntr_entry *entry,
2654 				void *context, int vl, int mode, u64 data)
2655 {
2656 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2657 
2658 	return dd->rcv_err_status_cnt[15];
2659 }
2660 
access_rx_rbuf_free_list_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2661 static u64 access_rx_rbuf_free_list_cor_err_cnt(const struct cntr_entry *entry,
2662 						void *context, int vl,
2663 						int mode, u64 data)
2664 {
2665 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2666 
2667 	return dd->rcv_err_status_cnt[14];
2668 }
2669 
access_rx_rbuf_free_list_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2670 static u64 access_rx_rbuf_free_list_unc_err_cnt(const struct cntr_entry *entry,
2671 						void *context, int vl,
2672 						int mode, u64 data)
2673 {
2674 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2675 
2676 	return dd->rcv_err_status_cnt[13];
2677 }
2678 
access_rx_rcv_fsm_encoding_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2679 static u64 access_rx_rcv_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2680 					      void *context, int vl, int mode,
2681 					      u64 data)
2682 {
2683 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2684 
2685 	return dd->rcv_err_status_cnt[12];
2686 }
2687 
access_rx_dma_flag_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2688 static u64 access_rx_dma_flag_cor_err_cnt(const struct cntr_entry *entry,
2689 					  void *context, int vl, int mode,
2690 					  u64 data)
2691 {
2692 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2693 
2694 	return dd->rcv_err_status_cnt[11];
2695 }
2696 
access_rx_dma_flag_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2697 static u64 access_rx_dma_flag_unc_err_cnt(const struct cntr_entry *entry,
2698 					  void *context, int vl, int mode,
2699 					  u64 data)
2700 {
2701 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2702 
2703 	return dd->rcv_err_status_cnt[10];
2704 }
2705 
access_rx_dc_sop_eop_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2706 static u64 access_rx_dc_sop_eop_parity_err_cnt(const struct cntr_entry *entry,
2707 					       void *context, int vl, int mode,
2708 					       u64 data)
2709 {
2710 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2711 
2712 	return dd->rcv_err_status_cnt[9];
2713 }
2714 
access_rx_rcv_csr_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2715 static u64 access_rx_rcv_csr_parity_err_cnt(const struct cntr_entry *entry,
2716 					    void *context, int vl, int mode,
2717 					    u64 data)
2718 {
2719 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2720 
2721 	return dd->rcv_err_status_cnt[8];
2722 }
2723 
access_rx_rcv_qp_map_table_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2724 static u64 access_rx_rcv_qp_map_table_cor_err_cnt(
2725 				const struct cntr_entry *entry,
2726 				void *context, int vl, int mode, u64 data)
2727 {
2728 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2729 
2730 	return dd->rcv_err_status_cnt[7];
2731 }
2732 
access_rx_rcv_qp_map_table_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2733 static u64 access_rx_rcv_qp_map_table_unc_err_cnt(
2734 				const struct cntr_entry *entry,
2735 				void *context, int vl, int mode, u64 data)
2736 {
2737 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2738 
2739 	return dd->rcv_err_status_cnt[6];
2740 }
2741 
access_rx_rcv_data_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2742 static u64 access_rx_rcv_data_cor_err_cnt(const struct cntr_entry *entry,
2743 					  void *context, int vl, int mode,
2744 					  u64 data)
2745 {
2746 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2747 
2748 	return dd->rcv_err_status_cnt[5];
2749 }
2750 
access_rx_rcv_data_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2751 static u64 access_rx_rcv_data_unc_err_cnt(const struct cntr_entry *entry,
2752 					  void *context, int vl, int mode,
2753 					  u64 data)
2754 {
2755 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2756 
2757 	return dd->rcv_err_status_cnt[4];
2758 }
2759 
access_rx_rcv_hdr_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2760 static u64 access_rx_rcv_hdr_cor_err_cnt(const struct cntr_entry *entry,
2761 					 void *context, int vl, int mode,
2762 					 u64 data)
2763 {
2764 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2765 
2766 	return dd->rcv_err_status_cnt[3];
2767 }
2768 
access_rx_rcv_hdr_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2769 static u64 access_rx_rcv_hdr_unc_err_cnt(const struct cntr_entry *entry,
2770 					 void *context, int vl, int mode,
2771 					 u64 data)
2772 {
2773 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2774 
2775 	return dd->rcv_err_status_cnt[2];
2776 }
2777 
access_rx_dc_intf_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2778 static u64 access_rx_dc_intf_parity_err_cnt(const struct cntr_entry *entry,
2779 					    void *context, int vl, int mode,
2780 					    u64 data)
2781 {
2782 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2783 
2784 	return dd->rcv_err_status_cnt[1];
2785 }
2786 
access_rx_dma_csr_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2787 static u64 access_rx_dma_csr_cor_err_cnt(const struct cntr_entry *entry,
2788 					 void *context, int vl, int mode,
2789 					 u64 data)
2790 {
2791 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2792 
2793 	return dd->rcv_err_status_cnt[0];
2794 }
2795 
2796 /*
2797  * Software counters corresponding to each of the
2798  * error status bits within SendPioErrStatus
2799  */
access_pio_pec_sop_head_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2800 static u64 access_pio_pec_sop_head_parity_err_cnt(
2801 				const struct cntr_entry *entry,
2802 				void *context, int vl, int mode, u64 data)
2803 {
2804 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2805 
2806 	return dd->send_pio_err_status_cnt[35];
2807 }
2808 
access_pio_pcc_sop_head_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2809 static u64 access_pio_pcc_sop_head_parity_err_cnt(
2810 				const struct cntr_entry *entry,
2811 				void *context, int vl, int mode, u64 data)
2812 {
2813 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2814 
2815 	return dd->send_pio_err_status_cnt[34];
2816 }
2817 
access_pio_last_returned_cnt_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2818 static u64 access_pio_last_returned_cnt_parity_err_cnt(
2819 				const struct cntr_entry *entry,
2820 				void *context, int vl, int mode, u64 data)
2821 {
2822 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2823 
2824 	return dd->send_pio_err_status_cnt[33];
2825 }
2826 
access_pio_current_free_cnt_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2827 static u64 access_pio_current_free_cnt_parity_err_cnt(
2828 				const struct cntr_entry *entry,
2829 				void *context, int vl, int mode, u64 data)
2830 {
2831 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2832 
2833 	return dd->send_pio_err_status_cnt[32];
2834 }
2835 
access_pio_reserved_31_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2836 static u64 access_pio_reserved_31_err_cnt(const struct cntr_entry *entry,
2837 					  void *context, int vl, int mode,
2838 					  u64 data)
2839 {
2840 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2841 
2842 	return dd->send_pio_err_status_cnt[31];
2843 }
2844 
access_pio_reserved_30_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2845 static u64 access_pio_reserved_30_err_cnt(const struct cntr_entry *entry,
2846 					  void *context, int vl, int mode,
2847 					  u64 data)
2848 {
2849 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2850 
2851 	return dd->send_pio_err_status_cnt[30];
2852 }
2853 
access_pio_ppmc_sop_len_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2854 static u64 access_pio_ppmc_sop_len_err_cnt(const struct cntr_entry *entry,
2855 					   void *context, int vl, int mode,
2856 					   u64 data)
2857 {
2858 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2859 
2860 	return dd->send_pio_err_status_cnt[29];
2861 }
2862 
access_pio_ppmc_bqc_mem_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2863 static u64 access_pio_ppmc_bqc_mem_parity_err_cnt(
2864 				const struct cntr_entry *entry,
2865 				void *context, int vl, int mode, u64 data)
2866 {
2867 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2868 
2869 	return dd->send_pio_err_status_cnt[28];
2870 }
2871 
access_pio_vl_fifo_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2872 static u64 access_pio_vl_fifo_parity_err_cnt(const struct cntr_entry *entry,
2873 					     void *context, int vl, int mode,
2874 					     u64 data)
2875 {
2876 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2877 
2878 	return dd->send_pio_err_status_cnt[27];
2879 }
2880 
access_pio_vlf_sop_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2881 static u64 access_pio_vlf_sop_parity_err_cnt(const struct cntr_entry *entry,
2882 					     void *context, int vl, int mode,
2883 					     u64 data)
2884 {
2885 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2886 
2887 	return dd->send_pio_err_status_cnt[26];
2888 }
2889 
access_pio_vlf_v1_len_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2890 static u64 access_pio_vlf_v1_len_parity_err_cnt(const struct cntr_entry *entry,
2891 						void *context, int vl,
2892 						int mode, u64 data)
2893 {
2894 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2895 
2896 	return dd->send_pio_err_status_cnt[25];
2897 }
2898 
access_pio_block_qw_count_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2899 static u64 access_pio_block_qw_count_parity_err_cnt(
2900 				const struct cntr_entry *entry,
2901 				void *context, int vl, int mode, u64 data)
2902 {
2903 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2904 
2905 	return dd->send_pio_err_status_cnt[24];
2906 }
2907 
access_pio_write_qw_valid_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2908 static u64 access_pio_write_qw_valid_parity_err_cnt(
2909 				const struct cntr_entry *entry,
2910 				void *context, int vl, int mode, u64 data)
2911 {
2912 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2913 
2914 	return dd->send_pio_err_status_cnt[23];
2915 }
2916 
access_pio_state_machine_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2917 static u64 access_pio_state_machine_err_cnt(const struct cntr_entry *entry,
2918 					    void *context, int vl, int mode,
2919 					    u64 data)
2920 {
2921 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2922 
2923 	return dd->send_pio_err_status_cnt[22];
2924 }
2925 
access_pio_write_data_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2926 static u64 access_pio_write_data_parity_err_cnt(const struct cntr_entry *entry,
2927 						void *context, int vl,
2928 						int mode, u64 data)
2929 {
2930 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2931 
2932 	return dd->send_pio_err_status_cnt[21];
2933 }
2934 
access_pio_host_addr_mem_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2935 static u64 access_pio_host_addr_mem_cor_err_cnt(const struct cntr_entry *entry,
2936 						void *context, int vl,
2937 						int mode, u64 data)
2938 {
2939 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2940 
2941 	return dd->send_pio_err_status_cnt[20];
2942 }
2943 
access_pio_host_addr_mem_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2944 static u64 access_pio_host_addr_mem_unc_err_cnt(const struct cntr_entry *entry,
2945 						void *context, int vl,
2946 						int mode, u64 data)
2947 {
2948 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2949 
2950 	return dd->send_pio_err_status_cnt[19];
2951 }
2952 
access_pio_pkt_evict_sm_or_arb_sm_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2953 static u64 access_pio_pkt_evict_sm_or_arb_sm_err_cnt(
2954 				const struct cntr_entry *entry,
2955 				void *context, int vl, int mode, u64 data)
2956 {
2957 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2958 
2959 	return dd->send_pio_err_status_cnt[18];
2960 }
2961 
access_pio_init_sm_in_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2962 static u64 access_pio_init_sm_in_err_cnt(const struct cntr_entry *entry,
2963 					 void *context, int vl, int mode,
2964 					 u64 data)
2965 {
2966 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2967 
2968 	return dd->send_pio_err_status_cnt[17];
2969 }
2970 
access_pio_ppmc_pbl_fifo_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2971 static u64 access_pio_ppmc_pbl_fifo_err_cnt(const struct cntr_entry *entry,
2972 					    void *context, int vl, int mode,
2973 					    u64 data)
2974 {
2975 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2976 
2977 	return dd->send_pio_err_status_cnt[16];
2978 }
2979 
access_pio_credit_ret_fifo_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2980 static u64 access_pio_credit_ret_fifo_parity_err_cnt(
2981 				const struct cntr_entry *entry,
2982 				void *context, int vl, int mode, u64 data)
2983 {
2984 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2985 
2986 	return dd->send_pio_err_status_cnt[15];
2987 }
2988 
access_pio_v1_len_mem_bank1_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2989 static u64 access_pio_v1_len_mem_bank1_cor_err_cnt(
2990 				const struct cntr_entry *entry,
2991 				void *context, int vl, int mode, u64 data)
2992 {
2993 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2994 
2995 	return dd->send_pio_err_status_cnt[14];
2996 }
2997 
access_pio_v1_len_mem_bank0_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)2998 static u64 access_pio_v1_len_mem_bank0_cor_err_cnt(
2999 				const struct cntr_entry *entry,
3000 				void *context, int vl, int mode, u64 data)
3001 {
3002 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3003 
3004 	return dd->send_pio_err_status_cnt[13];
3005 }
3006 
access_pio_v1_len_mem_bank1_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3007 static u64 access_pio_v1_len_mem_bank1_unc_err_cnt(
3008 				const struct cntr_entry *entry,
3009 				void *context, int vl, int mode, u64 data)
3010 {
3011 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3012 
3013 	return dd->send_pio_err_status_cnt[12];
3014 }
3015 
access_pio_v1_len_mem_bank0_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3016 static u64 access_pio_v1_len_mem_bank0_unc_err_cnt(
3017 				const struct cntr_entry *entry,
3018 				void *context, int vl, int mode, u64 data)
3019 {
3020 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3021 
3022 	return dd->send_pio_err_status_cnt[11];
3023 }
3024 
access_pio_sm_pkt_reset_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3025 static u64 access_pio_sm_pkt_reset_parity_err_cnt(
3026 				const struct cntr_entry *entry,
3027 				void *context, int vl, int mode, u64 data)
3028 {
3029 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3030 
3031 	return dd->send_pio_err_status_cnt[10];
3032 }
3033 
access_pio_pkt_evict_fifo_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3034 static u64 access_pio_pkt_evict_fifo_parity_err_cnt(
3035 				const struct cntr_entry *entry,
3036 				void *context, int vl, int mode, u64 data)
3037 {
3038 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3039 
3040 	return dd->send_pio_err_status_cnt[9];
3041 }
3042 
access_pio_sbrdctrl_crrel_fifo_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3043 static u64 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt(
3044 				const struct cntr_entry *entry,
3045 				void *context, int vl, int mode, u64 data)
3046 {
3047 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3048 
3049 	return dd->send_pio_err_status_cnt[8];
3050 }
3051 
access_pio_sbrdctl_crrel_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3052 static u64 access_pio_sbrdctl_crrel_parity_err_cnt(
3053 				const struct cntr_entry *entry,
3054 				void *context, int vl, int mode, u64 data)
3055 {
3056 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3057 
3058 	return dd->send_pio_err_status_cnt[7];
3059 }
3060 
access_pio_pec_fifo_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3061 static u64 access_pio_pec_fifo_parity_err_cnt(const struct cntr_entry *entry,
3062 					      void *context, int vl, int mode,
3063 					      u64 data)
3064 {
3065 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3066 
3067 	return dd->send_pio_err_status_cnt[6];
3068 }
3069 
access_pio_pcc_fifo_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3070 static u64 access_pio_pcc_fifo_parity_err_cnt(const struct cntr_entry *entry,
3071 					      void *context, int vl, int mode,
3072 					      u64 data)
3073 {
3074 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3075 
3076 	return dd->send_pio_err_status_cnt[5];
3077 }
3078 
access_pio_sb_mem_fifo1_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3079 static u64 access_pio_sb_mem_fifo1_err_cnt(const struct cntr_entry *entry,
3080 					   void *context, int vl, int mode,
3081 					   u64 data)
3082 {
3083 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3084 
3085 	return dd->send_pio_err_status_cnt[4];
3086 }
3087 
access_pio_sb_mem_fifo0_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3088 static u64 access_pio_sb_mem_fifo0_err_cnt(const struct cntr_entry *entry,
3089 					   void *context, int vl, int mode,
3090 					   u64 data)
3091 {
3092 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3093 
3094 	return dd->send_pio_err_status_cnt[3];
3095 }
3096 
access_pio_csr_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3097 static u64 access_pio_csr_parity_err_cnt(const struct cntr_entry *entry,
3098 					 void *context, int vl, int mode,
3099 					 u64 data)
3100 {
3101 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3102 
3103 	return dd->send_pio_err_status_cnt[2];
3104 }
3105 
access_pio_write_addr_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3106 static u64 access_pio_write_addr_parity_err_cnt(const struct cntr_entry *entry,
3107 						void *context, int vl,
3108 						int mode, u64 data)
3109 {
3110 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3111 
3112 	return dd->send_pio_err_status_cnt[1];
3113 }
3114 
access_pio_write_bad_ctxt_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3115 static u64 access_pio_write_bad_ctxt_err_cnt(const struct cntr_entry *entry,
3116 					     void *context, int vl, int mode,
3117 					     u64 data)
3118 {
3119 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3120 
3121 	return dd->send_pio_err_status_cnt[0];
3122 }
3123 
3124 /*
3125  * Software counters corresponding to each of the
3126  * error status bits within SendDmaErrStatus
3127  */
access_sdma_pcie_req_tracking_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3128 static u64 access_sdma_pcie_req_tracking_cor_err_cnt(
3129 				const struct cntr_entry *entry,
3130 				void *context, int vl, int mode, u64 data)
3131 {
3132 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3133 
3134 	return dd->send_dma_err_status_cnt[3];
3135 }
3136 
access_sdma_pcie_req_tracking_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3137 static u64 access_sdma_pcie_req_tracking_unc_err_cnt(
3138 				const struct cntr_entry *entry,
3139 				void *context, int vl, int mode, u64 data)
3140 {
3141 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3142 
3143 	return dd->send_dma_err_status_cnt[2];
3144 }
3145 
access_sdma_csr_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3146 static u64 access_sdma_csr_parity_err_cnt(const struct cntr_entry *entry,
3147 					  void *context, int vl, int mode,
3148 					  u64 data)
3149 {
3150 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3151 
3152 	return dd->send_dma_err_status_cnt[1];
3153 }
3154 
access_sdma_rpy_tag_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3155 static u64 access_sdma_rpy_tag_err_cnt(const struct cntr_entry *entry,
3156 				       void *context, int vl, int mode,
3157 				       u64 data)
3158 {
3159 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3160 
3161 	return dd->send_dma_err_status_cnt[0];
3162 }
3163 
3164 /*
3165  * Software counters corresponding to each of the
3166  * error status bits within SendEgressErrStatus
3167  */
access_tx_read_pio_memory_csr_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3168 static u64 access_tx_read_pio_memory_csr_unc_err_cnt(
3169 				const struct cntr_entry *entry,
3170 				void *context, int vl, int mode, u64 data)
3171 {
3172 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3173 
3174 	return dd->send_egress_err_status_cnt[63];
3175 }
3176 
access_tx_read_sdma_memory_csr_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3177 static u64 access_tx_read_sdma_memory_csr_err_cnt(
3178 				const struct cntr_entry *entry,
3179 				void *context, int vl, int mode, u64 data)
3180 {
3181 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3182 
3183 	return dd->send_egress_err_status_cnt[62];
3184 }
3185 
access_tx_egress_fifo_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3186 static u64 access_tx_egress_fifo_cor_err_cnt(const struct cntr_entry *entry,
3187 					     void *context, int vl, int mode,
3188 					     u64 data)
3189 {
3190 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3191 
3192 	return dd->send_egress_err_status_cnt[61];
3193 }
3194 
access_tx_read_pio_memory_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3195 static u64 access_tx_read_pio_memory_cor_err_cnt(const struct cntr_entry *entry,
3196 						 void *context, int vl,
3197 						 int mode, u64 data)
3198 {
3199 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3200 
3201 	return dd->send_egress_err_status_cnt[60];
3202 }
3203 
access_tx_read_sdma_memory_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3204 static u64 access_tx_read_sdma_memory_cor_err_cnt(
3205 				const struct cntr_entry *entry,
3206 				void *context, int vl, int mode, u64 data)
3207 {
3208 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3209 
3210 	return dd->send_egress_err_status_cnt[59];
3211 }
3212 
access_tx_sb_hdr_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3213 static u64 access_tx_sb_hdr_cor_err_cnt(const struct cntr_entry *entry,
3214 					void *context, int vl, int mode,
3215 					u64 data)
3216 {
3217 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3218 
3219 	return dd->send_egress_err_status_cnt[58];
3220 }
3221 
access_tx_credit_overrun_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3222 static u64 access_tx_credit_overrun_err_cnt(const struct cntr_entry *entry,
3223 					    void *context, int vl, int mode,
3224 					    u64 data)
3225 {
3226 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3227 
3228 	return dd->send_egress_err_status_cnt[57];
3229 }
3230 
access_tx_launch_fifo8_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3231 static u64 access_tx_launch_fifo8_cor_err_cnt(const struct cntr_entry *entry,
3232 					      void *context, int vl, int mode,
3233 					      u64 data)
3234 {
3235 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3236 
3237 	return dd->send_egress_err_status_cnt[56];
3238 }
3239 
access_tx_launch_fifo7_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3240 static u64 access_tx_launch_fifo7_cor_err_cnt(const struct cntr_entry *entry,
3241 					      void *context, int vl, int mode,
3242 					      u64 data)
3243 {
3244 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3245 
3246 	return dd->send_egress_err_status_cnt[55];
3247 }
3248 
access_tx_launch_fifo6_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3249 static u64 access_tx_launch_fifo6_cor_err_cnt(const struct cntr_entry *entry,
3250 					      void *context, int vl, int mode,
3251 					      u64 data)
3252 {
3253 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3254 
3255 	return dd->send_egress_err_status_cnt[54];
3256 }
3257 
access_tx_launch_fifo5_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3258 static u64 access_tx_launch_fifo5_cor_err_cnt(const struct cntr_entry *entry,
3259 					      void *context, int vl, int mode,
3260 					      u64 data)
3261 {
3262 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3263 
3264 	return dd->send_egress_err_status_cnt[53];
3265 }
3266 
access_tx_launch_fifo4_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3267 static u64 access_tx_launch_fifo4_cor_err_cnt(const struct cntr_entry *entry,
3268 					      void *context, int vl, int mode,
3269 					      u64 data)
3270 {
3271 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3272 
3273 	return dd->send_egress_err_status_cnt[52];
3274 }
3275 
access_tx_launch_fifo3_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3276 static u64 access_tx_launch_fifo3_cor_err_cnt(const struct cntr_entry *entry,
3277 					      void *context, int vl, int mode,
3278 					      u64 data)
3279 {
3280 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3281 
3282 	return dd->send_egress_err_status_cnt[51];
3283 }
3284 
access_tx_launch_fifo2_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3285 static u64 access_tx_launch_fifo2_cor_err_cnt(const struct cntr_entry *entry,
3286 					      void *context, int vl, int mode,
3287 					      u64 data)
3288 {
3289 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3290 
3291 	return dd->send_egress_err_status_cnt[50];
3292 }
3293 
access_tx_launch_fifo1_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3294 static u64 access_tx_launch_fifo1_cor_err_cnt(const struct cntr_entry *entry,
3295 					      void *context, int vl, int mode,
3296 					      u64 data)
3297 {
3298 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3299 
3300 	return dd->send_egress_err_status_cnt[49];
3301 }
3302 
access_tx_launch_fifo0_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3303 static u64 access_tx_launch_fifo0_cor_err_cnt(const struct cntr_entry *entry,
3304 					      void *context, int vl, int mode,
3305 					      u64 data)
3306 {
3307 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3308 
3309 	return dd->send_egress_err_status_cnt[48];
3310 }
3311 
access_tx_credit_return_vl_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3312 static u64 access_tx_credit_return_vl_err_cnt(const struct cntr_entry *entry,
3313 					      void *context, int vl, int mode,
3314 					      u64 data)
3315 {
3316 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3317 
3318 	return dd->send_egress_err_status_cnt[47];
3319 }
3320 
access_tx_hcrc_insertion_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3321 static u64 access_tx_hcrc_insertion_err_cnt(const struct cntr_entry *entry,
3322 					    void *context, int vl, int mode,
3323 					    u64 data)
3324 {
3325 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3326 
3327 	return dd->send_egress_err_status_cnt[46];
3328 }
3329 
access_tx_egress_fifo_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3330 static u64 access_tx_egress_fifo_unc_err_cnt(const struct cntr_entry *entry,
3331 					     void *context, int vl, int mode,
3332 					     u64 data)
3333 {
3334 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3335 
3336 	return dd->send_egress_err_status_cnt[45];
3337 }
3338 
access_tx_read_pio_memory_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3339 static u64 access_tx_read_pio_memory_unc_err_cnt(const struct cntr_entry *entry,
3340 						 void *context, int vl,
3341 						 int mode, u64 data)
3342 {
3343 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3344 
3345 	return dd->send_egress_err_status_cnt[44];
3346 }
3347 
access_tx_read_sdma_memory_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3348 static u64 access_tx_read_sdma_memory_unc_err_cnt(
3349 				const struct cntr_entry *entry,
3350 				void *context, int vl, int mode, u64 data)
3351 {
3352 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3353 
3354 	return dd->send_egress_err_status_cnt[43];
3355 }
3356 
access_tx_sb_hdr_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3357 static u64 access_tx_sb_hdr_unc_err_cnt(const struct cntr_entry *entry,
3358 					void *context, int vl, int mode,
3359 					u64 data)
3360 {
3361 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3362 
3363 	return dd->send_egress_err_status_cnt[42];
3364 }
3365 
access_tx_credit_return_partiy_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3366 static u64 access_tx_credit_return_partiy_err_cnt(
3367 				const struct cntr_entry *entry,
3368 				void *context, int vl, int mode, u64 data)
3369 {
3370 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3371 
3372 	return dd->send_egress_err_status_cnt[41];
3373 }
3374 
access_tx_launch_fifo8_unc_or_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3375 static u64 access_tx_launch_fifo8_unc_or_parity_err_cnt(
3376 				const struct cntr_entry *entry,
3377 				void *context, int vl, int mode, u64 data)
3378 {
3379 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3380 
3381 	return dd->send_egress_err_status_cnt[40];
3382 }
3383 
access_tx_launch_fifo7_unc_or_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3384 static u64 access_tx_launch_fifo7_unc_or_parity_err_cnt(
3385 				const struct cntr_entry *entry,
3386 				void *context, int vl, int mode, u64 data)
3387 {
3388 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3389 
3390 	return dd->send_egress_err_status_cnt[39];
3391 }
3392 
access_tx_launch_fifo6_unc_or_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3393 static u64 access_tx_launch_fifo6_unc_or_parity_err_cnt(
3394 				const struct cntr_entry *entry,
3395 				void *context, int vl, int mode, u64 data)
3396 {
3397 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3398 
3399 	return dd->send_egress_err_status_cnt[38];
3400 }
3401 
access_tx_launch_fifo5_unc_or_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3402 static u64 access_tx_launch_fifo5_unc_or_parity_err_cnt(
3403 				const struct cntr_entry *entry,
3404 				void *context, int vl, int mode, u64 data)
3405 {
3406 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3407 
3408 	return dd->send_egress_err_status_cnt[37];
3409 }
3410 
access_tx_launch_fifo4_unc_or_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3411 static u64 access_tx_launch_fifo4_unc_or_parity_err_cnt(
3412 				const struct cntr_entry *entry,
3413 				void *context, int vl, int mode, u64 data)
3414 {
3415 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3416 
3417 	return dd->send_egress_err_status_cnt[36];
3418 }
3419 
access_tx_launch_fifo3_unc_or_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3420 static u64 access_tx_launch_fifo3_unc_or_parity_err_cnt(
3421 				const struct cntr_entry *entry,
3422 				void *context, int vl, int mode, u64 data)
3423 {
3424 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3425 
3426 	return dd->send_egress_err_status_cnt[35];
3427 }
3428 
access_tx_launch_fifo2_unc_or_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3429 static u64 access_tx_launch_fifo2_unc_or_parity_err_cnt(
3430 				const struct cntr_entry *entry,
3431 				void *context, int vl, int mode, u64 data)
3432 {
3433 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3434 
3435 	return dd->send_egress_err_status_cnt[34];
3436 }
3437 
access_tx_launch_fifo1_unc_or_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3438 static u64 access_tx_launch_fifo1_unc_or_parity_err_cnt(
3439 				const struct cntr_entry *entry,
3440 				void *context, int vl, int mode, u64 data)
3441 {
3442 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3443 
3444 	return dd->send_egress_err_status_cnt[33];
3445 }
3446 
access_tx_launch_fifo0_unc_or_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3447 static u64 access_tx_launch_fifo0_unc_or_parity_err_cnt(
3448 				const struct cntr_entry *entry,
3449 				void *context, int vl, int mode, u64 data)
3450 {
3451 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3452 
3453 	return dd->send_egress_err_status_cnt[32];
3454 }
3455 
access_tx_sdma15_disallowed_packet_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3456 static u64 access_tx_sdma15_disallowed_packet_err_cnt(
3457 				const struct cntr_entry *entry,
3458 				void *context, int vl, int mode, u64 data)
3459 {
3460 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3461 
3462 	return dd->send_egress_err_status_cnt[31];
3463 }
3464 
access_tx_sdma14_disallowed_packet_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3465 static u64 access_tx_sdma14_disallowed_packet_err_cnt(
3466 				const struct cntr_entry *entry,
3467 				void *context, int vl, int mode, u64 data)
3468 {
3469 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3470 
3471 	return dd->send_egress_err_status_cnt[30];
3472 }
3473 
access_tx_sdma13_disallowed_packet_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3474 static u64 access_tx_sdma13_disallowed_packet_err_cnt(
3475 				const struct cntr_entry *entry,
3476 				void *context, int vl, int mode, u64 data)
3477 {
3478 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3479 
3480 	return dd->send_egress_err_status_cnt[29];
3481 }
3482 
access_tx_sdma12_disallowed_packet_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3483 static u64 access_tx_sdma12_disallowed_packet_err_cnt(
3484 				const struct cntr_entry *entry,
3485 				void *context, int vl, int mode, u64 data)
3486 {
3487 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3488 
3489 	return dd->send_egress_err_status_cnt[28];
3490 }
3491 
access_tx_sdma11_disallowed_packet_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3492 static u64 access_tx_sdma11_disallowed_packet_err_cnt(
3493 				const struct cntr_entry *entry,
3494 				void *context, int vl, int mode, u64 data)
3495 {
3496 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3497 
3498 	return dd->send_egress_err_status_cnt[27];
3499 }
3500 
access_tx_sdma10_disallowed_packet_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3501 static u64 access_tx_sdma10_disallowed_packet_err_cnt(
3502 				const struct cntr_entry *entry,
3503 				void *context, int vl, int mode, u64 data)
3504 {
3505 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3506 
3507 	return dd->send_egress_err_status_cnt[26];
3508 }
3509 
access_tx_sdma9_disallowed_packet_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3510 static u64 access_tx_sdma9_disallowed_packet_err_cnt(
3511 				const struct cntr_entry *entry,
3512 				void *context, int vl, int mode, u64 data)
3513 {
3514 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3515 
3516 	return dd->send_egress_err_status_cnt[25];
3517 }
3518 
access_tx_sdma8_disallowed_packet_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3519 static u64 access_tx_sdma8_disallowed_packet_err_cnt(
3520 				const struct cntr_entry *entry,
3521 				void *context, int vl, int mode, u64 data)
3522 {
3523 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3524 
3525 	return dd->send_egress_err_status_cnt[24];
3526 }
3527 
access_tx_sdma7_disallowed_packet_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3528 static u64 access_tx_sdma7_disallowed_packet_err_cnt(
3529 				const struct cntr_entry *entry,
3530 				void *context, int vl, int mode, u64 data)
3531 {
3532 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3533 
3534 	return dd->send_egress_err_status_cnt[23];
3535 }
3536 
access_tx_sdma6_disallowed_packet_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3537 static u64 access_tx_sdma6_disallowed_packet_err_cnt(
3538 				const struct cntr_entry *entry,
3539 				void *context, int vl, int mode, u64 data)
3540 {
3541 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3542 
3543 	return dd->send_egress_err_status_cnt[22];
3544 }
3545 
access_tx_sdma5_disallowed_packet_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3546 static u64 access_tx_sdma5_disallowed_packet_err_cnt(
3547 				const struct cntr_entry *entry,
3548 				void *context, int vl, int mode, u64 data)
3549 {
3550 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3551 
3552 	return dd->send_egress_err_status_cnt[21];
3553 }
3554 
access_tx_sdma4_disallowed_packet_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3555 static u64 access_tx_sdma4_disallowed_packet_err_cnt(
3556 				const struct cntr_entry *entry,
3557 				void *context, int vl, int mode, u64 data)
3558 {
3559 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3560 
3561 	return dd->send_egress_err_status_cnt[20];
3562 }
3563 
access_tx_sdma3_disallowed_packet_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3564 static u64 access_tx_sdma3_disallowed_packet_err_cnt(
3565 				const struct cntr_entry *entry,
3566 				void *context, int vl, int mode, u64 data)
3567 {
3568 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3569 
3570 	return dd->send_egress_err_status_cnt[19];
3571 }
3572 
access_tx_sdma2_disallowed_packet_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3573 static u64 access_tx_sdma2_disallowed_packet_err_cnt(
3574 				const struct cntr_entry *entry,
3575 				void *context, int vl, int mode, u64 data)
3576 {
3577 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3578 
3579 	return dd->send_egress_err_status_cnt[18];
3580 }
3581 
access_tx_sdma1_disallowed_packet_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3582 static u64 access_tx_sdma1_disallowed_packet_err_cnt(
3583 				const struct cntr_entry *entry,
3584 				void *context, int vl, int mode, u64 data)
3585 {
3586 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3587 
3588 	return dd->send_egress_err_status_cnt[17];
3589 }
3590 
access_tx_sdma0_disallowed_packet_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3591 static u64 access_tx_sdma0_disallowed_packet_err_cnt(
3592 				const struct cntr_entry *entry,
3593 				void *context, int vl, int mode, u64 data)
3594 {
3595 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3596 
3597 	return dd->send_egress_err_status_cnt[16];
3598 }
3599 
access_tx_config_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3600 static u64 access_tx_config_parity_err_cnt(const struct cntr_entry *entry,
3601 					   void *context, int vl, int mode,
3602 					   u64 data)
3603 {
3604 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3605 
3606 	return dd->send_egress_err_status_cnt[15];
3607 }
3608 
access_tx_sbrd_ctl_csr_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3609 static u64 access_tx_sbrd_ctl_csr_parity_err_cnt(const struct cntr_entry *entry,
3610 						 void *context, int vl,
3611 						 int mode, u64 data)
3612 {
3613 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3614 
3615 	return dd->send_egress_err_status_cnt[14];
3616 }
3617 
access_tx_launch_csr_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3618 static u64 access_tx_launch_csr_parity_err_cnt(const struct cntr_entry *entry,
3619 					       void *context, int vl, int mode,
3620 					       u64 data)
3621 {
3622 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3623 
3624 	return dd->send_egress_err_status_cnt[13];
3625 }
3626 
access_tx_illegal_vl_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3627 static u64 access_tx_illegal_vl_err_cnt(const struct cntr_entry *entry,
3628 					void *context, int vl, int mode,
3629 					u64 data)
3630 {
3631 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3632 
3633 	return dd->send_egress_err_status_cnt[12];
3634 }
3635 
access_tx_sbrd_ctl_state_machine_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3636 static u64 access_tx_sbrd_ctl_state_machine_parity_err_cnt(
3637 				const struct cntr_entry *entry,
3638 				void *context, int vl, int mode, u64 data)
3639 {
3640 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3641 
3642 	return dd->send_egress_err_status_cnt[11];
3643 }
3644 
access_egress_reserved_10_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3645 static u64 access_egress_reserved_10_err_cnt(const struct cntr_entry *entry,
3646 					     void *context, int vl, int mode,
3647 					     u64 data)
3648 {
3649 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3650 
3651 	return dd->send_egress_err_status_cnt[10];
3652 }
3653 
access_egress_reserved_9_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3654 static u64 access_egress_reserved_9_err_cnt(const struct cntr_entry *entry,
3655 					    void *context, int vl, int mode,
3656 					    u64 data)
3657 {
3658 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3659 
3660 	return dd->send_egress_err_status_cnt[9];
3661 }
3662 
access_tx_sdma_launch_intf_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3663 static u64 access_tx_sdma_launch_intf_parity_err_cnt(
3664 				const struct cntr_entry *entry,
3665 				void *context, int vl, int mode, u64 data)
3666 {
3667 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3668 
3669 	return dd->send_egress_err_status_cnt[8];
3670 }
3671 
access_tx_pio_launch_intf_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3672 static u64 access_tx_pio_launch_intf_parity_err_cnt(
3673 				const struct cntr_entry *entry,
3674 				void *context, int vl, int mode, u64 data)
3675 {
3676 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3677 
3678 	return dd->send_egress_err_status_cnt[7];
3679 }
3680 
access_egress_reserved_6_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3681 static u64 access_egress_reserved_6_err_cnt(const struct cntr_entry *entry,
3682 					    void *context, int vl, int mode,
3683 					    u64 data)
3684 {
3685 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3686 
3687 	return dd->send_egress_err_status_cnt[6];
3688 }
3689 
access_tx_incorrect_link_state_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3690 static u64 access_tx_incorrect_link_state_err_cnt(
3691 				const struct cntr_entry *entry,
3692 				void *context, int vl, int mode, u64 data)
3693 {
3694 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3695 
3696 	return dd->send_egress_err_status_cnt[5];
3697 }
3698 
access_tx_linkdown_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3699 static u64 access_tx_linkdown_err_cnt(const struct cntr_entry *entry,
3700 				      void *context, int vl, int mode,
3701 				      u64 data)
3702 {
3703 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3704 
3705 	return dd->send_egress_err_status_cnt[4];
3706 }
3707 
access_tx_egress_fifi_underrun_or_parity_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3708 static u64 access_tx_egress_fifi_underrun_or_parity_err_cnt(
3709 				const struct cntr_entry *entry,
3710 				void *context, int vl, int mode, u64 data)
3711 {
3712 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3713 
3714 	return dd->send_egress_err_status_cnt[3];
3715 }
3716 
access_egress_reserved_2_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3717 static u64 access_egress_reserved_2_err_cnt(const struct cntr_entry *entry,
3718 					    void *context, int vl, int mode,
3719 					    u64 data)
3720 {
3721 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3722 
3723 	return dd->send_egress_err_status_cnt[2];
3724 }
3725 
access_tx_pkt_integrity_mem_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3726 static u64 access_tx_pkt_integrity_mem_unc_err_cnt(
3727 				const struct cntr_entry *entry,
3728 				void *context, int vl, int mode, u64 data)
3729 {
3730 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3731 
3732 	return dd->send_egress_err_status_cnt[1];
3733 }
3734 
access_tx_pkt_integrity_mem_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3735 static u64 access_tx_pkt_integrity_mem_cor_err_cnt(
3736 				const struct cntr_entry *entry,
3737 				void *context, int vl, int mode, u64 data)
3738 {
3739 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3740 
3741 	return dd->send_egress_err_status_cnt[0];
3742 }
3743 
3744 /*
3745  * Software counters corresponding to each of the
3746  * error status bits within SendErrStatus
3747  */
access_send_csr_write_bad_addr_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3748 static u64 access_send_csr_write_bad_addr_err_cnt(
3749 				const struct cntr_entry *entry,
3750 				void *context, int vl, int mode, u64 data)
3751 {
3752 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3753 
3754 	return dd->send_err_status_cnt[2];
3755 }
3756 
access_send_csr_read_bad_addr_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3757 static u64 access_send_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
3758 						 void *context, int vl,
3759 						 int mode, u64 data)
3760 {
3761 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3762 
3763 	return dd->send_err_status_cnt[1];
3764 }
3765 
access_send_csr_parity_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3766 static u64 access_send_csr_parity_cnt(const struct cntr_entry *entry,
3767 				      void *context, int vl, int mode,
3768 				      u64 data)
3769 {
3770 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3771 
3772 	return dd->send_err_status_cnt[0];
3773 }
3774 
3775 /*
3776  * Software counters corresponding to each of the
3777  * error status bits within SendCtxtErrStatus
3778  */
access_pio_write_out_of_bounds_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3779 static u64 access_pio_write_out_of_bounds_err_cnt(
3780 				const struct cntr_entry *entry,
3781 				void *context, int vl, int mode, u64 data)
3782 {
3783 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3784 
3785 	return dd->sw_ctxt_err_status_cnt[4];
3786 }
3787 
access_pio_write_overflow_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3788 static u64 access_pio_write_overflow_err_cnt(const struct cntr_entry *entry,
3789 					     void *context, int vl, int mode,
3790 					     u64 data)
3791 {
3792 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3793 
3794 	return dd->sw_ctxt_err_status_cnt[3];
3795 }
3796 
access_pio_write_crosses_boundary_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3797 static u64 access_pio_write_crosses_boundary_err_cnt(
3798 				const struct cntr_entry *entry,
3799 				void *context, int vl, int mode, u64 data)
3800 {
3801 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3802 
3803 	return dd->sw_ctxt_err_status_cnt[2];
3804 }
3805 
access_pio_disallowed_packet_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3806 static u64 access_pio_disallowed_packet_err_cnt(const struct cntr_entry *entry,
3807 						void *context, int vl,
3808 						int mode, u64 data)
3809 {
3810 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3811 
3812 	return dd->sw_ctxt_err_status_cnt[1];
3813 }
3814 
access_pio_inconsistent_sop_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3815 static u64 access_pio_inconsistent_sop_err_cnt(const struct cntr_entry *entry,
3816 					       void *context, int vl, int mode,
3817 					       u64 data)
3818 {
3819 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3820 
3821 	return dd->sw_ctxt_err_status_cnt[0];
3822 }
3823 
3824 /*
3825  * Software counters corresponding to each of the
3826  * error status bits within SendDmaEngErrStatus
3827  */
access_sdma_header_request_fifo_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3828 static u64 access_sdma_header_request_fifo_cor_err_cnt(
3829 				const struct cntr_entry *entry,
3830 				void *context, int vl, int mode, u64 data)
3831 {
3832 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3833 
3834 	return dd->sw_send_dma_eng_err_status_cnt[23];
3835 }
3836 
access_sdma_header_storage_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3837 static u64 access_sdma_header_storage_cor_err_cnt(
3838 				const struct cntr_entry *entry,
3839 				void *context, int vl, int mode, u64 data)
3840 {
3841 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3842 
3843 	return dd->sw_send_dma_eng_err_status_cnt[22];
3844 }
3845 
access_sdma_packet_tracking_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3846 static u64 access_sdma_packet_tracking_cor_err_cnt(
3847 				const struct cntr_entry *entry,
3848 				void *context, int vl, int mode, u64 data)
3849 {
3850 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3851 
3852 	return dd->sw_send_dma_eng_err_status_cnt[21];
3853 }
3854 
access_sdma_assembly_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3855 static u64 access_sdma_assembly_cor_err_cnt(const struct cntr_entry *entry,
3856 					    void *context, int vl, int mode,
3857 					    u64 data)
3858 {
3859 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3860 
3861 	return dd->sw_send_dma_eng_err_status_cnt[20];
3862 }
3863 
access_sdma_desc_table_cor_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3864 static u64 access_sdma_desc_table_cor_err_cnt(const struct cntr_entry *entry,
3865 					      void *context, int vl, int mode,
3866 					      u64 data)
3867 {
3868 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3869 
3870 	return dd->sw_send_dma_eng_err_status_cnt[19];
3871 }
3872 
access_sdma_header_request_fifo_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3873 static u64 access_sdma_header_request_fifo_unc_err_cnt(
3874 				const struct cntr_entry *entry,
3875 				void *context, int vl, int mode, u64 data)
3876 {
3877 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3878 
3879 	return dd->sw_send_dma_eng_err_status_cnt[18];
3880 }
3881 
access_sdma_header_storage_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3882 static u64 access_sdma_header_storage_unc_err_cnt(
3883 				const struct cntr_entry *entry,
3884 				void *context, int vl, int mode, u64 data)
3885 {
3886 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3887 
3888 	return dd->sw_send_dma_eng_err_status_cnt[17];
3889 }
3890 
access_sdma_packet_tracking_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3891 static u64 access_sdma_packet_tracking_unc_err_cnt(
3892 				const struct cntr_entry *entry,
3893 				void *context, int vl, int mode, u64 data)
3894 {
3895 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3896 
3897 	return dd->sw_send_dma_eng_err_status_cnt[16];
3898 }
3899 
access_sdma_assembly_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3900 static u64 access_sdma_assembly_unc_err_cnt(const struct cntr_entry *entry,
3901 					    void *context, int vl, int mode,
3902 					    u64 data)
3903 {
3904 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3905 
3906 	return dd->sw_send_dma_eng_err_status_cnt[15];
3907 }
3908 
access_sdma_desc_table_unc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3909 static u64 access_sdma_desc_table_unc_err_cnt(const struct cntr_entry *entry,
3910 					      void *context, int vl, int mode,
3911 					      u64 data)
3912 {
3913 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3914 
3915 	return dd->sw_send_dma_eng_err_status_cnt[14];
3916 }
3917 
access_sdma_timeout_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3918 static u64 access_sdma_timeout_err_cnt(const struct cntr_entry *entry,
3919 				       void *context, int vl, int mode,
3920 				       u64 data)
3921 {
3922 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3923 
3924 	return dd->sw_send_dma_eng_err_status_cnt[13];
3925 }
3926 
access_sdma_header_length_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3927 static u64 access_sdma_header_length_err_cnt(const struct cntr_entry *entry,
3928 					     void *context, int vl, int mode,
3929 					     u64 data)
3930 {
3931 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3932 
3933 	return dd->sw_send_dma_eng_err_status_cnt[12];
3934 }
3935 
access_sdma_header_address_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3936 static u64 access_sdma_header_address_err_cnt(const struct cntr_entry *entry,
3937 					      void *context, int vl, int mode,
3938 					      u64 data)
3939 {
3940 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3941 
3942 	return dd->sw_send_dma_eng_err_status_cnt[11];
3943 }
3944 
access_sdma_header_select_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3945 static u64 access_sdma_header_select_err_cnt(const struct cntr_entry *entry,
3946 					     void *context, int vl, int mode,
3947 					     u64 data)
3948 {
3949 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3950 
3951 	return dd->sw_send_dma_eng_err_status_cnt[10];
3952 }
3953 
access_sdma_reserved_9_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3954 static u64 access_sdma_reserved_9_err_cnt(const struct cntr_entry *entry,
3955 					  void *context, int vl, int mode,
3956 					  u64 data)
3957 {
3958 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3959 
3960 	return dd->sw_send_dma_eng_err_status_cnt[9];
3961 }
3962 
access_sdma_packet_desc_overflow_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3963 static u64 access_sdma_packet_desc_overflow_err_cnt(
3964 				const struct cntr_entry *entry,
3965 				void *context, int vl, int mode, u64 data)
3966 {
3967 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3968 
3969 	return dd->sw_send_dma_eng_err_status_cnt[8];
3970 }
3971 
access_sdma_length_mismatch_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3972 static u64 access_sdma_length_mismatch_err_cnt(const struct cntr_entry *entry,
3973 					       void *context, int vl,
3974 					       int mode, u64 data)
3975 {
3976 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3977 
3978 	return dd->sw_send_dma_eng_err_status_cnt[7];
3979 }
3980 
access_sdma_halt_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3981 static u64 access_sdma_halt_err_cnt(const struct cntr_entry *entry,
3982 				    void *context, int vl, int mode, u64 data)
3983 {
3984 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3985 
3986 	return dd->sw_send_dma_eng_err_status_cnt[6];
3987 }
3988 
access_sdma_mem_read_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3989 static u64 access_sdma_mem_read_err_cnt(const struct cntr_entry *entry,
3990 					void *context, int vl, int mode,
3991 					u64 data)
3992 {
3993 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3994 
3995 	return dd->sw_send_dma_eng_err_status_cnt[5];
3996 }
3997 
access_sdma_first_desc_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)3998 static u64 access_sdma_first_desc_err_cnt(const struct cntr_entry *entry,
3999 					  void *context, int vl, int mode,
4000 					  u64 data)
4001 {
4002 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4003 
4004 	return dd->sw_send_dma_eng_err_status_cnt[4];
4005 }
4006 
access_sdma_tail_out_of_bounds_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)4007 static u64 access_sdma_tail_out_of_bounds_err_cnt(
4008 				const struct cntr_entry *entry,
4009 				void *context, int vl, int mode, u64 data)
4010 {
4011 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4012 
4013 	return dd->sw_send_dma_eng_err_status_cnt[3];
4014 }
4015 
access_sdma_too_long_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)4016 static u64 access_sdma_too_long_err_cnt(const struct cntr_entry *entry,
4017 					void *context, int vl, int mode,
4018 					u64 data)
4019 {
4020 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4021 
4022 	return dd->sw_send_dma_eng_err_status_cnt[2];
4023 }
4024 
access_sdma_gen_mismatch_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)4025 static u64 access_sdma_gen_mismatch_err_cnt(const struct cntr_entry *entry,
4026 					    void *context, int vl, int mode,
4027 					    u64 data)
4028 {
4029 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4030 
4031 	return dd->sw_send_dma_eng_err_status_cnt[1];
4032 }
4033 
access_sdma_wrong_dw_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)4034 static u64 access_sdma_wrong_dw_err_cnt(const struct cntr_entry *entry,
4035 					void *context, int vl, int mode,
4036 					u64 data)
4037 {
4038 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4039 
4040 	return dd->sw_send_dma_eng_err_status_cnt[0];
4041 }
4042 
access_dc_rcv_err_cnt(const struct cntr_entry * entry,void * context,int vl,int mode,u64 data)4043 static u64 access_dc_rcv_err_cnt(const struct cntr_entry *entry,
4044 				 void *context, int vl, int mode,
4045 				 u64 data)
4046 {
4047 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4048 
4049 	u64 val = 0;
4050 	u64 csr = entry->csr;
4051 
4052 	val = read_write_csr(dd, csr, mode, data);
4053 	if (mode == CNTR_MODE_R) {
4054 		val = val > CNTR_MAX - dd->sw_rcv_bypass_packet_errors ?
4055 			CNTR_MAX : val + dd->sw_rcv_bypass_packet_errors;
4056 	} else if (mode == CNTR_MODE_W) {
4057 		dd->sw_rcv_bypass_packet_errors = 0;
4058 	} else {
4059 		dd_dev_err(dd, "Invalid cntr register access mode");
4060 		return 0;
4061 	}
4062 	return val;
4063 }
4064 
4065 #define def_access_sw_cpu(cntr) \
4066 static u64 access_sw_cpu_##cntr(const struct cntr_entry *entry,		      \
4067 			      void *context, int vl, int mode, u64 data)      \
4068 {									      \
4069 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;	      \
4070 	return read_write_cpu(ppd->dd, &ppd->ibport_data.rvp.z_ ##cntr,	      \
4071 			      ppd->ibport_data.rvp.cntr, vl,		      \
4072 			      mode, data);				      \
4073 }
4074 
4075 def_access_sw_cpu(rc_acks);
4076 def_access_sw_cpu(rc_qacks);
4077 def_access_sw_cpu(rc_delayed_comp);
4078 
4079 #define def_access_ibp_counter(cntr) \
4080 static u64 access_ibp_##cntr(const struct cntr_entry *entry,		      \
4081 				void *context, int vl, int mode, u64 data)    \
4082 {									      \
4083 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;	      \
4084 									      \
4085 	if (vl != CNTR_INVALID_VL)					      \
4086 		return 0;						      \
4087 									      \
4088 	return read_write_sw(ppd->dd, &ppd->ibport_data.rvp.n_ ##cntr,	      \
4089 			     mode, data);				      \
4090 }
4091 
4092 def_access_ibp_counter(loop_pkts);
4093 def_access_ibp_counter(rc_resends);
4094 def_access_ibp_counter(rnr_naks);
4095 def_access_ibp_counter(other_naks);
4096 def_access_ibp_counter(rc_timeouts);
4097 def_access_ibp_counter(pkt_drops);
4098 def_access_ibp_counter(dmawait);
4099 def_access_ibp_counter(rc_seqnak);
4100 def_access_ibp_counter(rc_dupreq);
4101 def_access_ibp_counter(rdma_seq);
4102 def_access_ibp_counter(unaligned);
4103 def_access_ibp_counter(seq_naks);
4104 
4105 static struct cntr_entry dev_cntrs[DEV_CNTR_LAST] = {
4106 [C_RCV_OVF] = RXE32_DEV_CNTR_ELEM(RcvOverflow, RCV_BUF_OVFL_CNT, CNTR_SYNTH),
4107 [C_RX_TID_FULL] = RXE32_DEV_CNTR_ELEM(RxTIDFullEr, RCV_TID_FULL_ERR_CNT,
4108 			CNTR_NORMAL),
4109 [C_RX_TID_INVALID] = RXE32_DEV_CNTR_ELEM(RxTIDInvalid, RCV_TID_VALID_ERR_CNT,
4110 			CNTR_NORMAL),
4111 [C_RX_TID_FLGMS] = RXE32_DEV_CNTR_ELEM(RxTidFLGMs,
4112 			RCV_TID_FLOW_GEN_MISMATCH_CNT,
4113 			CNTR_NORMAL),
4114 [C_RX_CTX_EGRS] = RXE32_DEV_CNTR_ELEM(RxCtxEgrS, RCV_CONTEXT_EGR_STALL,
4115 			CNTR_NORMAL),
4116 [C_RCV_TID_FLSMS] = RXE32_DEV_CNTR_ELEM(RxTidFLSMs,
4117 			RCV_TID_FLOW_SEQ_MISMATCH_CNT, CNTR_NORMAL),
4118 [C_CCE_PCI_CR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciCrSt,
4119 			CCE_PCIE_POSTED_CRDT_STALL_CNT, CNTR_NORMAL),
4120 [C_CCE_PCI_TR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciTrSt, CCE_PCIE_TRGT_STALL_CNT,
4121 			CNTR_NORMAL),
4122 [C_CCE_PIO_WR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePioWrSt, CCE_PIO_WR_STALL_CNT,
4123 			CNTR_NORMAL),
4124 [C_CCE_ERR_INT] = CCE_INT_DEV_CNTR_ELEM(CceErrInt, CCE_ERR_INT_CNT,
4125 			CNTR_NORMAL),
4126 [C_CCE_SDMA_INT] = CCE_INT_DEV_CNTR_ELEM(CceSdmaInt, CCE_SDMA_INT_CNT,
4127 			CNTR_NORMAL),
4128 [C_CCE_MISC_INT] = CCE_INT_DEV_CNTR_ELEM(CceMiscInt, CCE_MISC_INT_CNT,
4129 			CNTR_NORMAL),
4130 [C_CCE_RCV_AV_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvAvInt, CCE_RCV_AVAIL_INT_CNT,
4131 			CNTR_NORMAL),
4132 [C_CCE_RCV_URG_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvUrgInt,
4133 			CCE_RCV_URGENT_INT_CNT,	CNTR_NORMAL),
4134 [C_CCE_SEND_CR_INT] = CCE_INT_DEV_CNTR_ELEM(CceSndCrInt,
4135 			CCE_SEND_CREDIT_INT_CNT, CNTR_NORMAL),
4136 [C_DC_UNC_ERR] = DC_PERF_CNTR(DcUnctblErr, DCC_ERR_UNCORRECTABLE_CNT,
4137 			      CNTR_SYNTH),
4138 [C_DC_RCV_ERR] = CNTR_ELEM("DcRecvErr", DCC_ERR_PORTRCV_ERR_CNT, 0, CNTR_SYNTH,
4139 			    access_dc_rcv_err_cnt),
4140 [C_DC_FM_CFG_ERR] = DC_PERF_CNTR(DcFmCfgErr, DCC_ERR_FMCONFIG_ERR_CNT,
4141 				 CNTR_SYNTH),
4142 [C_DC_RMT_PHY_ERR] = DC_PERF_CNTR(DcRmtPhyErr, DCC_ERR_RCVREMOTE_PHY_ERR_CNT,
4143 				  CNTR_SYNTH),
4144 [C_DC_DROPPED_PKT] = DC_PERF_CNTR(DcDroppedPkt, DCC_ERR_DROPPED_PKT_CNT,
4145 				  CNTR_SYNTH),
4146 [C_DC_MC_XMIT_PKTS] = DC_PERF_CNTR(DcMcXmitPkts,
4147 				   DCC_PRF_PORT_XMIT_MULTICAST_CNT, CNTR_SYNTH),
4148 [C_DC_MC_RCV_PKTS] = DC_PERF_CNTR(DcMcRcvPkts,
4149 				  DCC_PRF_PORT_RCV_MULTICAST_PKT_CNT,
4150 				  CNTR_SYNTH),
4151 [C_DC_XMIT_CERR] = DC_PERF_CNTR(DcXmitCorr,
4152 				DCC_PRF_PORT_XMIT_CORRECTABLE_CNT, CNTR_SYNTH),
4153 [C_DC_RCV_CERR] = DC_PERF_CNTR(DcRcvCorrCnt, DCC_PRF_PORT_RCV_CORRECTABLE_CNT,
4154 			       CNTR_SYNTH),
4155 [C_DC_RCV_FCC] = DC_PERF_CNTR(DcRxFCntl, DCC_PRF_RX_FLOW_CRTL_CNT,
4156 			      CNTR_SYNTH),
4157 [C_DC_XMIT_FCC] = DC_PERF_CNTR(DcXmitFCntl, DCC_PRF_TX_FLOW_CRTL_CNT,
4158 			       CNTR_SYNTH),
4159 [C_DC_XMIT_FLITS] = DC_PERF_CNTR(DcXmitFlits, DCC_PRF_PORT_XMIT_DATA_CNT,
4160 				 CNTR_SYNTH),
4161 [C_DC_RCV_FLITS] = DC_PERF_CNTR(DcRcvFlits, DCC_PRF_PORT_RCV_DATA_CNT,
4162 				CNTR_SYNTH),
4163 [C_DC_XMIT_PKTS] = DC_PERF_CNTR(DcXmitPkts, DCC_PRF_PORT_XMIT_PKTS_CNT,
4164 				CNTR_SYNTH),
4165 [C_DC_RCV_PKTS] = DC_PERF_CNTR(DcRcvPkts, DCC_PRF_PORT_RCV_PKTS_CNT,
4166 			       CNTR_SYNTH),
4167 [C_DC_RX_FLIT_VL] = DC_PERF_CNTR(DcRxFlitVl, DCC_PRF_PORT_VL_RCV_DATA_CNT,
4168 				 CNTR_SYNTH | CNTR_VL),
4169 [C_DC_RX_PKT_VL] = DC_PERF_CNTR(DcRxPktVl, DCC_PRF_PORT_VL_RCV_PKTS_CNT,
4170 				CNTR_SYNTH | CNTR_VL),
4171 [C_DC_RCV_FCN] = DC_PERF_CNTR(DcRcvFcn, DCC_PRF_PORT_RCV_FECN_CNT, CNTR_SYNTH),
4172 [C_DC_RCV_FCN_VL] = DC_PERF_CNTR(DcRcvFcnVl, DCC_PRF_PORT_VL_RCV_FECN_CNT,
4173 				 CNTR_SYNTH | CNTR_VL),
4174 [C_DC_RCV_BCN] = DC_PERF_CNTR(DcRcvBcn, DCC_PRF_PORT_RCV_BECN_CNT, CNTR_SYNTH),
4175 [C_DC_RCV_BCN_VL] = DC_PERF_CNTR(DcRcvBcnVl, DCC_PRF_PORT_VL_RCV_BECN_CNT,
4176 				 CNTR_SYNTH | CNTR_VL),
4177 [C_DC_RCV_BBL] = DC_PERF_CNTR(DcRcvBbl, DCC_PRF_PORT_RCV_BUBBLE_CNT,
4178 			      CNTR_SYNTH),
4179 [C_DC_RCV_BBL_VL] = DC_PERF_CNTR(DcRcvBblVl, DCC_PRF_PORT_VL_RCV_BUBBLE_CNT,
4180 				 CNTR_SYNTH | CNTR_VL),
4181 [C_DC_MARK_FECN] = DC_PERF_CNTR(DcMarkFcn, DCC_PRF_PORT_MARK_FECN_CNT,
4182 				CNTR_SYNTH),
4183 [C_DC_MARK_FECN_VL] = DC_PERF_CNTR(DcMarkFcnVl, DCC_PRF_PORT_VL_MARK_FECN_CNT,
4184 				   CNTR_SYNTH | CNTR_VL),
4185 [C_DC_TOTAL_CRC] =
4186 	DC_PERF_CNTR_LCB(DcTotCrc, DC_LCB_ERR_INFO_TOTAL_CRC_ERR,
4187 			 CNTR_SYNTH),
4188 [C_DC_CRC_LN0] = DC_PERF_CNTR_LCB(DcCrcLn0, DC_LCB_ERR_INFO_CRC_ERR_LN0,
4189 				  CNTR_SYNTH),
4190 [C_DC_CRC_LN1] = DC_PERF_CNTR_LCB(DcCrcLn1, DC_LCB_ERR_INFO_CRC_ERR_LN1,
4191 				  CNTR_SYNTH),
4192 [C_DC_CRC_LN2] = DC_PERF_CNTR_LCB(DcCrcLn2, DC_LCB_ERR_INFO_CRC_ERR_LN2,
4193 				  CNTR_SYNTH),
4194 [C_DC_CRC_LN3] = DC_PERF_CNTR_LCB(DcCrcLn3, DC_LCB_ERR_INFO_CRC_ERR_LN3,
4195 				  CNTR_SYNTH),
4196 [C_DC_CRC_MULT_LN] =
4197 	DC_PERF_CNTR_LCB(DcMultLn, DC_LCB_ERR_INFO_CRC_ERR_MULTI_LN,
4198 			 CNTR_SYNTH),
4199 [C_DC_TX_REPLAY] = DC_PERF_CNTR_LCB(DcTxReplay, DC_LCB_ERR_INFO_TX_REPLAY_CNT,
4200 				    CNTR_SYNTH),
4201 [C_DC_RX_REPLAY] = DC_PERF_CNTR_LCB(DcRxReplay, DC_LCB_ERR_INFO_RX_REPLAY_CNT,
4202 				    CNTR_SYNTH),
4203 [C_DC_SEQ_CRC_CNT] =
4204 	DC_PERF_CNTR_LCB(DcLinkSeqCrc, DC_LCB_ERR_INFO_SEQ_CRC_CNT,
4205 			 CNTR_SYNTH),
4206 [C_DC_ESC0_ONLY_CNT] =
4207 	DC_PERF_CNTR_LCB(DcEsc0, DC_LCB_ERR_INFO_ESCAPE_0_ONLY_CNT,
4208 			 CNTR_SYNTH),
4209 [C_DC_ESC0_PLUS1_CNT] =
4210 	DC_PERF_CNTR_LCB(DcEsc1, DC_LCB_ERR_INFO_ESCAPE_0_PLUS1_CNT,
4211 			 CNTR_SYNTH),
4212 [C_DC_ESC0_PLUS2_CNT] =
4213 	DC_PERF_CNTR_LCB(DcEsc0Plus2, DC_LCB_ERR_INFO_ESCAPE_0_PLUS2_CNT,
4214 			 CNTR_SYNTH),
4215 [C_DC_REINIT_FROM_PEER_CNT] =
4216 	DC_PERF_CNTR_LCB(DcReinitPeer, DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT,
4217 			 CNTR_SYNTH),
4218 [C_DC_SBE_CNT] = DC_PERF_CNTR_LCB(DcSbe, DC_LCB_ERR_INFO_SBE_CNT,
4219 				  CNTR_SYNTH),
4220 [C_DC_MISC_FLG_CNT] =
4221 	DC_PERF_CNTR_LCB(DcMiscFlg, DC_LCB_ERR_INFO_MISC_FLG_CNT,
4222 			 CNTR_SYNTH),
4223 [C_DC_PRF_GOOD_LTP_CNT] =
4224 	DC_PERF_CNTR_LCB(DcGoodLTP, DC_LCB_PRF_GOOD_LTP_CNT, CNTR_SYNTH),
4225 [C_DC_PRF_ACCEPTED_LTP_CNT] =
4226 	DC_PERF_CNTR_LCB(DcAccLTP, DC_LCB_PRF_ACCEPTED_LTP_CNT,
4227 			 CNTR_SYNTH),
4228 [C_DC_PRF_RX_FLIT_CNT] =
4229 	DC_PERF_CNTR_LCB(DcPrfRxFlit, DC_LCB_PRF_RX_FLIT_CNT, CNTR_SYNTH),
4230 [C_DC_PRF_TX_FLIT_CNT] =
4231 	DC_PERF_CNTR_LCB(DcPrfTxFlit, DC_LCB_PRF_TX_FLIT_CNT, CNTR_SYNTH),
4232 [C_DC_PRF_CLK_CNTR] =
4233 	DC_PERF_CNTR_LCB(DcPrfClk, DC_LCB_PRF_CLK_CNTR, CNTR_SYNTH),
4234 [C_DC_PG_DBG_FLIT_CRDTS_CNT] =
4235 	DC_PERF_CNTR_LCB(DcFltCrdts, DC_LCB_PG_DBG_FLIT_CRDTS_CNT, CNTR_SYNTH),
4236 [C_DC_PG_STS_PAUSE_COMPLETE_CNT] =
4237 	DC_PERF_CNTR_LCB(DcPauseComp, DC_LCB_PG_STS_PAUSE_COMPLETE_CNT,
4238 			 CNTR_SYNTH),
4239 [C_DC_PG_STS_TX_SBE_CNT] =
4240 	DC_PERF_CNTR_LCB(DcStsTxSbe, DC_LCB_PG_STS_TX_SBE_CNT, CNTR_SYNTH),
4241 [C_DC_PG_STS_TX_MBE_CNT] =
4242 	DC_PERF_CNTR_LCB(DcStsTxMbe, DC_LCB_PG_STS_TX_MBE_CNT,
4243 			 CNTR_SYNTH),
4244 [C_SW_CPU_INTR] = CNTR_ELEM("Intr", 0, 0, CNTR_NORMAL,
4245 			    access_sw_cpu_intr),
4246 [C_SW_CPU_RCV_LIM] = CNTR_ELEM("RcvLimit", 0, 0, CNTR_NORMAL,
4247 			    access_sw_cpu_rcv_limit),
4248 [C_SW_VTX_WAIT] = CNTR_ELEM("vTxWait", 0, 0, CNTR_NORMAL,
4249 			    access_sw_vtx_wait),
4250 [C_SW_PIO_WAIT] = CNTR_ELEM("PioWait", 0, 0, CNTR_NORMAL,
4251 			    access_sw_pio_wait),
4252 [C_SW_PIO_DRAIN] = CNTR_ELEM("PioDrain", 0, 0, CNTR_NORMAL,
4253 			    access_sw_pio_drain),
4254 [C_SW_KMEM_WAIT] = CNTR_ELEM("KmemWait", 0, 0, CNTR_NORMAL,
4255 			    access_sw_kmem_wait),
4256 [C_SW_SEND_SCHED] = CNTR_ELEM("SendSched", 0, 0, CNTR_NORMAL,
4257 			    access_sw_send_schedule),
4258 [C_SDMA_DESC_FETCHED_CNT] = CNTR_ELEM("SDEDscFdCn",
4259 				      SEND_DMA_DESC_FETCHED_CNT, 0,
4260 				      CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4261 				      dev_access_u32_csr),
4262 [C_SDMA_INT_CNT] = CNTR_ELEM("SDMAInt", 0, 0,
4263 			     CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4264 			     access_sde_int_cnt),
4265 [C_SDMA_ERR_CNT] = CNTR_ELEM("SDMAErrCt", 0, 0,
4266 			     CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4267 			     access_sde_err_cnt),
4268 [C_SDMA_IDLE_INT_CNT] = CNTR_ELEM("SDMAIdInt", 0, 0,
4269 				  CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4270 				  access_sde_idle_int_cnt),
4271 [C_SDMA_PROGRESS_INT_CNT] = CNTR_ELEM("SDMAPrIntCn", 0, 0,
4272 				      CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4273 				      access_sde_progress_int_cnt),
4274 /* MISC_ERR_STATUS */
4275 [C_MISC_PLL_LOCK_FAIL_ERR] = CNTR_ELEM("MISC_PLL_LOCK_FAIL_ERR", 0, 0,
4276 				CNTR_NORMAL,
4277 				access_misc_pll_lock_fail_err_cnt),
4278 [C_MISC_MBIST_FAIL_ERR] = CNTR_ELEM("MISC_MBIST_FAIL_ERR", 0, 0,
4279 				CNTR_NORMAL,
4280 				access_misc_mbist_fail_err_cnt),
4281 [C_MISC_INVALID_EEP_CMD_ERR] = CNTR_ELEM("MISC_INVALID_EEP_CMD_ERR", 0, 0,
4282 				CNTR_NORMAL,
4283 				access_misc_invalid_eep_cmd_err_cnt),
4284 [C_MISC_EFUSE_DONE_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_DONE_PARITY_ERR", 0, 0,
4285 				CNTR_NORMAL,
4286 				access_misc_efuse_done_parity_err_cnt),
4287 [C_MISC_EFUSE_WRITE_ERR] = CNTR_ELEM("MISC_EFUSE_WRITE_ERR", 0, 0,
4288 				CNTR_NORMAL,
4289 				access_misc_efuse_write_err_cnt),
4290 [C_MISC_EFUSE_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_EFUSE_READ_BAD_ADDR_ERR", 0,
4291 				0, CNTR_NORMAL,
4292 				access_misc_efuse_read_bad_addr_err_cnt),
4293 [C_MISC_EFUSE_CSR_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_CSR_PARITY_ERR", 0, 0,
4294 				CNTR_NORMAL,
4295 				access_misc_efuse_csr_parity_err_cnt),
4296 [C_MISC_FW_AUTH_FAILED_ERR] = CNTR_ELEM("MISC_FW_AUTH_FAILED_ERR", 0, 0,
4297 				CNTR_NORMAL,
4298 				access_misc_fw_auth_failed_err_cnt),
4299 [C_MISC_KEY_MISMATCH_ERR] = CNTR_ELEM("MISC_KEY_MISMATCH_ERR", 0, 0,
4300 				CNTR_NORMAL,
4301 				access_misc_key_mismatch_err_cnt),
4302 [C_MISC_SBUS_WRITE_FAILED_ERR] = CNTR_ELEM("MISC_SBUS_WRITE_FAILED_ERR", 0, 0,
4303 				CNTR_NORMAL,
4304 				access_misc_sbus_write_failed_err_cnt),
4305 [C_MISC_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_WRITE_BAD_ADDR_ERR", 0, 0,
4306 				CNTR_NORMAL,
4307 				access_misc_csr_write_bad_addr_err_cnt),
4308 [C_MISC_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_READ_BAD_ADDR_ERR", 0, 0,
4309 				CNTR_NORMAL,
4310 				access_misc_csr_read_bad_addr_err_cnt),
4311 [C_MISC_CSR_PARITY_ERR] = CNTR_ELEM("MISC_CSR_PARITY_ERR", 0, 0,
4312 				CNTR_NORMAL,
4313 				access_misc_csr_parity_err_cnt),
4314 /* CceErrStatus */
4315 [C_CCE_ERR_STATUS_AGGREGATED_CNT] = CNTR_ELEM("CceErrStatusAggregatedCnt", 0, 0,
4316 				CNTR_NORMAL,
4317 				access_sw_cce_err_status_aggregated_cnt),
4318 [C_CCE_MSIX_CSR_PARITY_ERR] = CNTR_ELEM("CceMsixCsrParityErr", 0, 0,
4319 				CNTR_NORMAL,
4320 				access_cce_msix_csr_parity_err_cnt),
4321 [C_CCE_INT_MAP_UNC_ERR] = CNTR_ELEM("CceIntMapUncErr", 0, 0,
4322 				CNTR_NORMAL,
4323 				access_cce_int_map_unc_err_cnt),
4324 [C_CCE_INT_MAP_COR_ERR] = CNTR_ELEM("CceIntMapCorErr", 0, 0,
4325 				CNTR_NORMAL,
4326 				access_cce_int_map_cor_err_cnt),
4327 [C_CCE_MSIX_TABLE_UNC_ERR] = CNTR_ELEM("CceMsixTableUncErr", 0, 0,
4328 				CNTR_NORMAL,
4329 				access_cce_msix_table_unc_err_cnt),
4330 [C_CCE_MSIX_TABLE_COR_ERR] = CNTR_ELEM("CceMsixTableCorErr", 0, 0,
4331 				CNTR_NORMAL,
4332 				access_cce_msix_table_cor_err_cnt),
4333 [C_CCE_RXDMA_CONV_FIFO_PARITY_ERR] = CNTR_ELEM("CceRxdmaConvFifoParityErr", 0,
4334 				0, CNTR_NORMAL,
4335 				access_cce_rxdma_conv_fifo_parity_err_cnt),
4336 [C_CCE_RCPL_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceRcplAsyncFifoParityErr", 0,
4337 				0, CNTR_NORMAL,
4338 				access_cce_rcpl_async_fifo_parity_err_cnt),
4339 [C_CCE_SEG_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceSegWriteBadAddrErr", 0, 0,
4340 				CNTR_NORMAL,
4341 				access_cce_seg_write_bad_addr_err_cnt),
4342 [C_CCE_SEG_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceSegReadBadAddrErr", 0, 0,
4343 				CNTR_NORMAL,
4344 				access_cce_seg_read_bad_addr_err_cnt),
4345 [C_LA_TRIGGERED] = CNTR_ELEM("Cce LATriggered", 0, 0,
4346 				CNTR_NORMAL,
4347 				access_la_triggered_cnt),
4348 [C_CCE_TRGT_CPL_TIMEOUT_ERR] = CNTR_ELEM("CceTrgtCplTimeoutErr", 0, 0,
4349 				CNTR_NORMAL,
4350 				access_cce_trgt_cpl_timeout_err_cnt),
4351 [C_PCIC_RECEIVE_PARITY_ERR] = CNTR_ELEM("PcicReceiveParityErr", 0, 0,
4352 				CNTR_NORMAL,
4353 				access_pcic_receive_parity_err_cnt),
4354 [C_PCIC_TRANSMIT_BACK_PARITY_ERR] = CNTR_ELEM("PcicTransmitBackParityErr", 0, 0,
4355 				CNTR_NORMAL,
4356 				access_pcic_transmit_back_parity_err_cnt),
4357 [C_PCIC_TRANSMIT_FRONT_PARITY_ERR] = CNTR_ELEM("PcicTransmitFrontParityErr", 0,
4358 				0, CNTR_NORMAL,
4359 				access_pcic_transmit_front_parity_err_cnt),
4360 [C_PCIC_CPL_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicCplDatQUncErr", 0, 0,
4361 				CNTR_NORMAL,
4362 				access_pcic_cpl_dat_q_unc_err_cnt),
4363 [C_PCIC_CPL_HD_Q_UNC_ERR] = CNTR_ELEM("PcicCplHdQUncErr", 0, 0,
4364 				CNTR_NORMAL,
4365 				access_pcic_cpl_hd_q_unc_err_cnt),
4366 [C_PCIC_POST_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicPostDatQUncErr", 0, 0,
4367 				CNTR_NORMAL,
4368 				access_pcic_post_dat_q_unc_err_cnt),
4369 [C_PCIC_POST_HD_Q_UNC_ERR] = CNTR_ELEM("PcicPostHdQUncErr", 0, 0,
4370 				CNTR_NORMAL,
4371 				access_pcic_post_hd_q_unc_err_cnt),
4372 [C_PCIC_RETRY_SOT_MEM_UNC_ERR] = CNTR_ELEM("PcicRetrySotMemUncErr", 0, 0,
4373 				CNTR_NORMAL,
4374 				access_pcic_retry_sot_mem_unc_err_cnt),
4375 [C_PCIC_RETRY_MEM_UNC_ERR] = CNTR_ELEM("PcicRetryMemUncErr", 0, 0,
4376 				CNTR_NORMAL,
4377 				access_pcic_retry_mem_unc_err),
4378 [C_PCIC_N_POST_DAT_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostDatQParityErr", 0, 0,
4379 				CNTR_NORMAL,
4380 				access_pcic_n_post_dat_q_parity_err_cnt),
4381 [C_PCIC_N_POST_H_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostHQParityErr", 0, 0,
4382 				CNTR_NORMAL,
4383 				access_pcic_n_post_h_q_parity_err_cnt),
4384 [C_PCIC_CPL_DAT_Q_COR_ERR] = CNTR_ELEM("PcicCplDatQCorErr", 0, 0,
4385 				CNTR_NORMAL,
4386 				access_pcic_cpl_dat_q_cor_err_cnt),
4387 [C_PCIC_CPL_HD_Q_COR_ERR] = CNTR_ELEM("PcicCplHdQCorErr", 0, 0,
4388 				CNTR_NORMAL,
4389 				access_pcic_cpl_hd_q_cor_err_cnt),
4390 [C_PCIC_POST_DAT_Q_COR_ERR] = CNTR_ELEM("PcicPostDatQCorErr", 0, 0,
4391 				CNTR_NORMAL,
4392 				access_pcic_post_dat_q_cor_err_cnt),
4393 [C_PCIC_POST_HD_Q_COR_ERR] = CNTR_ELEM("PcicPostHdQCorErr", 0, 0,
4394 				CNTR_NORMAL,
4395 				access_pcic_post_hd_q_cor_err_cnt),
4396 [C_PCIC_RETRY_SOT_MEM_COR_ERR] = CNTR_ELEM("PcicRetrySotMemCorErr", 0, 0,
4397 				CNTR_NORMAL,
4398 				access_pcic_retry_sot_mem_cor_err_cnt),
4399 [C_PCIC_RETRY_MEM_COR_ERR] = CNTR_ELEM("PcicRetryMemCorErr", 0, 0,
4400 				CNTR_NORMAL,
4401 				access_pcic_retry_mem_cor_err_cnt),
4402 [C_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERR] = CNTR_ELEM(
4403 				"CceCli1AsyncFifoDbgParityError", 0, 0,
4404 				CNTR_NORMAL,
4405 				access_cce_cli1_async_fifo_dbg_parity_err_cnt),
4406 [C_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERR] = CNTR_ELEM(
4407 				"CceCli1AsyncFifoRxdmaParityError", 0, 0,
4408 				CNTR_NORMAL,
4409 				access_cce_cli1_async_fifo_rxdma_parity_err_cnt
4410 				),
4411 [C_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR] = CNTR_ELEM(
4412 			"CceCli1AsyncFifoSdmaHdParityErr", 0, 0,
4413 			CNTR_NORMAL,
4414 			access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt),
4415 [C_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR] = CNTR_ELEM(
4416 			"CceCli1AsyncFifoPioCrdtParityErr", 0, 0,
4417 			CNTR_NORMAL,
4418 			access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt),
4419 [C_CCE_CLI2_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceCli2AsyncFifoParityErr", 0,
4420 			0, CNTR_NORMAL,
4421 			access_cce_cli2_async_fifo_parity_err_cnt),
4422 [C_CCE_CSR_CFG_BUS_PARITY_ERR] = CNTR_ELEM("CceCsrCfgBusParityErr", 0, 0,
4423 			CNTR_NORMAL,
4424 			access_cce_csr_cfg_bus_parity_err_cnt),
4425 [C_CCE_CLI0_ASYNC_FIFO_PARTIY_ERR] = CNTR_ELEM("CceCli0AsyncFifoParityErr", 0,
4426 			0, CNTR_NORMAL,
4427 			access_cce_cli0_async_fifo_parity_err_cnt),
4428 [C_CCE_RSPD_DATA_PARITY_ERR] = CNTR_ELEM("CceRspdDataParityErr", 0, 0,
4429 			CNTR_NORMAL,
4430 			access_cce_rspd_data_parity_err_cnt),
4431 [C_CCE_TRGT_ACCESS_ERR] = CNTR_ELEM("CceTrgtAccessErr", 0, 0,
4432 			CNTR_NORMAL,
4433 			access_cce_trgt_access_err_cnt),
4434 [C_CCE_TRGT_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceTrgtAsyncFifoParityErr", 0,
4435 			0, CNTR_NORMAL,
4436 			access_cce_trgt_async_fifo_parity_err_cnt),
4437 [C_CCE_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrWriteBadAddrErr", 0, 0,
4438 			CNTR_NORMAL,
4439 			access_cce_csr_write_bad_addr_err_cnt),
4440 [C_CCE_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrReadBadAddrErr", 0, 0,
4441 			CNTR_NORMAL,
4442 			access_cce_csr_read_bad_addr_err_cnt),
4443 [C_CCE_CSR_PARITY_ERR] = CNTR_ELEM("CceCsrParityErr", 0, 0,
4444 			CNTR_NORMAL,
4445 			access_ccs_csr_parity_err_cnt),
4446 
4447 /* RcvErrStatus */
4448 [C_RX_CSR_PARITY_ERR] = CNTR_ELEM("RxCsrParityErr", 0, 0,
4449 			CNTR_NORMAL,
4450 			access_rx_csr_parity_err_cnt),
4451 [C_RX_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrWriteBadAddrErr", 0, 0,
4452 			CNTR_NORMAL,
4453 			access_rx_csr_write_bad_addr_err_cnt),
4454 [C_RX_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrReadBadAddrErr", 0, 0,
4455 			CNTR_NORMAL,
4456 			access_rx_csr_read_bad_addr_err_cnt),
4457 [C_RX_DMA_CSR_UNC_ERR] = CNTR_ELEM("RxDmaCsrUncErr", 0, 0,
4458 			CNTR_NORMAL,
4459 			access_rx_dma_csr_unc_err_cnt),
4460 [C_RX_DMA_DQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaDqFsmEncodingErr", 0, 0,
4461 			CNTR_NORMAL,
4462 			access_rx_dma_dq_fsm_encoding_err_cnt),
4463 [C_RX_DMA_EQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaEqFsmEncodingErr", 0, 0,
4464 			CNTR_NORMAL,
4465 			access_rx_dma_eq_fsm_encoding_err_cnt),
4466 [C_RX_DMA_CSR_PARITY_ERR] = CNTR_ELEM("RxDmaCsrParityErr", 0, 0,
4467 			CNTR_NORMAL,
4468 			access_rx_dma_csr_parity_err_cnt),
4469 [C_RX_RBUF_DATA_COR_ERR] = CNTR_ELEM("RxRbufDataCorErr", 0, 0,
4470 			CNTR_NORMAL,
4471 			access_rx_rbuf_data_cor_err_cnt),
4472 [C_RX_RBUF_DATA_UNC_ERR] = CNTR_ELEM("RxRbufDataUncErr", 0, 0,
4473 			CNTR_NORMAL,
4474 			access_rx_rbuf_data_unc_err_cnt),
4475 [C_RX_DMA_DATA_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaDataFifoRdCorErr", 0, 0,
4476 			CNTR_NORMAL,
4477 			access_rx_dma_data_fifo_rd_cor_err_cnt),
4478 [C_RX_DMA_DATA_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaDataFifoRdUncErr", 0, 0,
4479 			CNTR_NORMAL,
4480 			access_rx_dma_data_fifo_rd_unc_err_cnt),
4481 [C_RX_DMA_HDR_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaHdrFifoRdCorErr", 0, 0,
4482 			CNTR_NORMAL,
4483 			access_rx_dma_hdr_fifo_rd_cor_err_cnt),
4484 [C_RX_DMA_HDR_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaHdrFifoRdUncErr", 0, 0,
4485 			CNTR_NORMAL,
4486 			access_rx_dma_hdr_fifo_rd_unc_err_cnt),
4487 [C_RX_RBUF_DESC_PART2_COR_ERR] = CNTR_ELEM("RxRbufDescPart2CorErr", 0, 0,
4488 			CNTR_NORMAL,
4489 			access_rx_rbuf_desc_part2_cor_err_cnt),
4490 [C_RX_RBUF_DESC_PART2_UNC_ERR] = CNTR_ELEM("RxRbufDescPart2UncErr", 0, 0,
4491 			CNTR_NORMAL,
4492 			access_rx_rbuf_desc_part2_unc_err_cnt),
4493 [C_RX_RBUF_DESC_PART1_COR_ERR] = CNTR_ELEM("RxRbufDescPart1CorErr", 0, 0,
4494 			CNTR_NORMAL,
4495 			access_rx_rbuf_desc_part1_cor_err_cnt),
4496 [C_RX_RBUF_DESC_PART1_UNC_ERR] = CNTR_ELEM("RxRbufDescPart1UncErr", 0, 0,
4497 			CNTR_NORMAL,
4498 			access_rx_rbuf_desc_part1_unc_err_cnt),
4499 [C_RX_HQ_INTR_FSM_ERR] = CNTR_ELEM("RxHqIntrFsmErr", 0, 0,
4500 			CNTR_NORMAL,
4501 			access_rx_hq_intr_fsm_err_cnt),
4502 [C_RX_HQ_INTR_CSR_PARITY_ERR] = CNTR_ELEM("RxHqIntrCsrParityErr", 0, 0,
4503 			CNTR_NORMAL,
4504 			access_rx_hq_intr_csr_parity_err_cnt),
4505 [C_RX_LOOKUP_CSR_PARITY_ERR] = CNTR_ELEM("RxLookupCsrParityErr", 0, 0,
4506 			CNTR_NORMAL,
4507 			access_rx_lookup_csr_parity_err_cnt),
4508 [C_RX_LOOKUP_RCV_ARRAY_COR_ERR] = CNTR_ELEM("RxLookupRcvArrayCorErr", 0, 0,
4509 			CNTR_NORMAL,
4510 			access_rx_lookup_rcv_array_cor_err_cnt),
4511 [C_RX_LOOKUP_RCV_ARRAY_UNC_ERR] = CNTR_ELEM("RxLookupRcvArrayUncErr", 0, 0,
4512 			CNTR_NORMAL,
4513 			access_rx_lookup_rcv_array_unc_err_cnt),
4514 [C_RX_LOOKUP_DES_PART2_PARITY_ERR] = CNTR_ELEM("RxLookupDesPart2ParityErr", 0,
4515 			0, CNTR_NORMAL,
4516 			access_rx_lookup_des_part2_parity_err_cnt),
4517 [C_RX_LOOKUP_DES_PART1_UNC_COR_ERR] = CNTR_ELEM("RxLookupDesPart1UncCorErr", 0,
4518 			0, CNTR_NORMAL,
4519 			access_rx_lookup_des_part1_unc_cor_err_cnt),
4520 [C_RX_LOOKUP_DES_PART1_UNC_ERR] = CNTR_ELEM("RxLookupDesPart1UncErr", 0, 0,
4521 			CNTR_NORMAL,
4522 			access_rx_lookup_des_part1_unc_err_cnt),
4523 [C_RX_RBUF_NEXT_FREE_BUF_COR_ERR] = CNTR_ELEM("RxRbufNextFreeBufCorErr", 0, 0,
4524 			CNTR_NORMAL,
4525 			access_rx_rbuf_next_free_buf_cor_err_cnt),
4526 [C_RX_RBUF_NEXT_FREE_BUF_UNC_ERR] = CNTR_ELEM("RxRbufNextFreeBufUncErr", 0, 0,
4527 			CNTR_NORMAL,
4528 			access_rx_rbuf_next_free_buf_unc_err_cnt),
4529 [C_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR] = CNTR_ELEM(
4530 			"RxRbufFlInitWrAddrParityErr", 0, 0,
4531 			CNTR_NORMAL,
4532 			access_rbuf_fl_init_wr_addr_parity_err_cnt),
4533 [C_RX_RBUF_FL_INITDONE_PARITY_ERR] = CNTR_ELEM("RxRbufFlInitdoneParityErr", 0,
4534 			0, CNTR_NORMAL,
4535 			access_rx_rbuf_fl_initdone_parity_err_cnt),
4536 [C_RX_RBUF_FL_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlWrAddrParityErr", 0,
4537 			0, CNTR_NORMAL,
4538 			access_rx_rbuf_fl_write_addr_parity_err_cnt),
4539 [C_RX_RBUF_FL_RD_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlRdAddrParityErr", 0, 0,
4540 			CNTR_NORMAL,
4541 			access_rx_rbuf_fl_rd_addr_parity_err_cnt),
4542 [C_RX_RBUF_EMPTY_ERR] = CNTR_ELEM("RxRbufEmptyErr", 0, 0,
4543 			CNTR_NORMAL,
4544 			access_rx_rbuf_empty_err_cnt),
4545 [C_RX_RBUF_FULL_ERR] = CNTR_ELEM("RxRbufFullErr", 0, 0,
4546 			CNTR_NORMAL,
4547 			access_rx_rbuf_full_err_cnt),
4548 [C_RX_RBUF_BAD_LOOKUP_ERR] = CNTR_ELEM("RxRBufBadLookupErr", 0, 0,
4549 			CNTR_NORMAL,
4550 			access_rbuf_bad_lookup_err_cnt),
4551 [C_RX_RBUF_CTX_ID_PARITY_ERR] = CNTR_ELEM("RxRbufCtxIdParityErr", 0, 0,
4552 			CNTR_NORMAL,
4553 			access_rbuf_ctx_id_parity_err_cnt),
4554 [C_RX_RBUF_CSR_QEOPDW_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEOPDWParityErr", 0, 0,
4555 			CNTR_NORMAL,
4556 			access_rbuf_csr_qeopdw_parity_err_cnt),
4557 [C_RX_RBUF_CSR_Q_NUM_OF_PKT_PARITY_ERR] = CNTR_ELEM(
4558 			"RxRbufCsrQNumOfPktParityErr", 0, 0,
4559 			CNTR_NORMAL,
4560 			access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt),
4561 [C_RX_RBUF_CSR_Q_T1_PTR_PARITY_ERR] = CNTR_ELEM(
4562 			"RxRbufCsrQTlPtrParityErr", 0, 0,
4563 			CNTR_NORMAL,
4564 			access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt),
4565 [C_RX_RBUF_CSR_Q_HD_PTR_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQHdPtrParityErr", 0,
4566 			0, CNTR_NORMAL,
4567 			access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt),
4568 [C_RX_RBUF_CSR_Q_VLD_BIT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQVldBitParityErr", 0,
4569 			0, CNTR_NORMAL,
4570 			access_rx_rbuf_csr_q_vld_bit_parity_err_cnt),
4571 [C_RX_RBUF_CSR_Q_NEXT_BUF_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQNextBufParityErr",
4572 			0, 0, CNTR_NORMAL,
4573 			access_rx_rbuf_csr_q_next_buf_parity_err_cnt),
4574 [C_RX_RBUF_CSR_Q_ENT_CNT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEntCntParityErr", 0,
4575 			0, CNTR_NORMAL,
4576 			access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt),
4577 [C_RX_RBUF_CSR_Q_HEAD_BUF_NUM_PARITY_ERR] = CNTR_ELEM(
4578 			"RxRbufCsrQHeadBufNumParityErr", 0, 0,
4579 			CNTR_NORMAL,
4580 			access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt),
4581 [C_RX_RBUF_BLOCK_LIST_READ_COR_ERR] = CNTR_ELEM("RxRbufBlockListReadCorErr", 0,
4582 			0, CNTR_NORMAL,
4583 			access_rx_rbuf_block_list_read_cor_err_cnt),
4584 [C_RX_RBUF_BLOCK_LIST_READ_UNC_ERR] = CNTR_ELEM("RxRbufBlockListReadUncErr", 0,
4585 			0, CNTR_NORMAL,
4586 			access_rx_rbuf_block_list_read_unc_err_cnt),
4587 [C_RX_RBUF_LOOKUP_DES_COR_ERR] = CNTR_ELEM("RxRbufLookupDesCorErr", 0, 0,
4588 			CNTR_NORMAL,
4589 			access_rx_rbuf_lookup_des_cor_err_cnt),
4590 [C_RX_RBUF_LOOKUP_DES_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesUncErr", 0, 0,
4591 			CNTR_NORMAL,
4592 			access_rx_rbuf_lookup_des_unc_err_cnt),
4593 [C_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR] = CNTR_ELEM(
4594 			"RxRbufLookupDesRegUncCorErr", 0, 0,
4595 			CNTR_NORMAL,
4596 			access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt),
4597 [C_RX_RBUF_LOOKUP_DES_REG_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesRegUncErr", 0, 0,
4598 			CNTR_NORMAL,
4599 			access_rx_rbuf_lookup_des_reg_unc_err_cnt),
4600 [C_RX_RBUF_FREE_LIST_COR_ERR] = CNTR_ELEM("RxRbufFreeListCorErr", 0, 0,
4601 			CNTR_NORMAL,
4602 			access_rx_rbuf_free_list_cor_err_cnt),
4603 [C_RX_RBUF_FREE_LIST_UNC_ERR] = CNTR_ELEM("RxRbufFreeListUncErr", 0, 0,
4604 			CNTR_NORMAL,
4605 			access_rx_rbuf_free_list_unc_err_cnt),
4606 [C_RX_RCV_FSM_ENCODING_ERR] = CNTR_ELEM("RxRcvFsmEncodingErr", 0, 0,
4607 			CNTR_NORMAL,
4608 			access_rx_rcv_fsm_encoding_err_cnt),
4609 [C_RX_DMA_FLAG_COR_ERR] = CNTR_ELEM("RxDmaFlagCorErr", 0, 0,
4610 			CNTR_NORMAL,
4611 			access_rx_dma_flag_cor_err_cnt),
4612 [C_RX_DMA_FLAG_UNC_ERR] = CNTR_ELEM("RxDmaFlagUncErr", 0, 0,
4613 			CNTR_NORMAL,
4614 			access_rx_dma_flag_unc_err_cnt),
4615 [C_RX_DC_SOP_EOP_PARITY_ERR] = CNTR_ELEM("RxDcSopEopParityErr", 0, 0,
4616 			CNTR_NORMAL,
4617 			access_rx_dc_sop_eop_parity_err_cnt),
4618 [C_RX_RCV_CSR_PARITY_ERR] = CNTR_ELEM("RxRcvCsrParityErr", 0, 0,
4619 			CNTR_NORMAL,
4620 			access_rx_rcv_csr_parity_err_cnt),
4621 [C_RX_RCV_QP_MAP_TABLE_COR_ERR] = CNTR_ELEM("RxRcvQpMapTableCorErr", 0, 0,
4622 			CNTR_NORMAL,
4623 			access_rx_rcv_qp_map_table_cor_err_cnt),
4624 [C_RX_RCV_QP_MAP_TABLE_UNC_ERR] = CNTR_ELEM("RxRcvQpMapTableUncErr", 0, 0,
4625 			CNTR_NORMAL,
4626 			access_rx_rcv_qp_map_table_unc_err_cnt),
4627 [C_RX_RCV_DATA_COR_ERR] = CNTR_ELEM("RxRcvDataCorErr", 0, 0,
4628 			CNTR_NORMAL,
4629 			access_rx_rcv_data_cor_err_cnt),
4630 [C_RX_RCV_DATA_UNC_ERR] = CNTR_ELEM("RxRcvDataUncErr", 0, 0,
4631 			CNTR_NORMAL,
4632 			access_rx_rcv_data_unc_err_cnt),
4633 [C_RX_RCV_HDR_COR_ERR] = CNTR_ELEM("RxRcvHdrCorErr", 0, 0,
4634 			CNTR_NORMAL,
4635 			access_rx_rcv_hdr_cor_err_cnt),
4636 [C_RX_RCV_HDR_UNC_ERR] = CNTR_ELEM("RxRcvHdrUncErr", 0, 0,
4637 			CNTR_NORMAL,
4638 			access_rx_rcv_hdr_unc_err_cnt),
4639 [C_RX_DC_INTF_PARITY_ERR] = CNTR_ELEM("RxDcIntfParityErr", 0, 0,
4640 			CNTR_NORMAL,
4641 			access_rx_dc_intf_parity_err_cnt),
4642 [C_RX_DMA_CSR_COR_ERR] = CNTR_ELEM("RxDmaCsrCorErr", 0, 0,
4643 			CNTR_NORMAL,
4644 			access_rx_dma_csr_cor_err_cnt),
4645 /* SendPioErrStatus */
4646 [C_PIO_PEC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPecSopHeadParityErr", 0, 0,
4647 			CNTR_NORMAL,
4648 			access_pio_pec_sop_head_parity_err_cnt),
4649 [C_PIO_PCC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPccSopHeadParityErr", 0, 0,
4650 			CNTR_NORMAL,
4651 			access_pio_pcc_sop_head_parity_err_cnt),
4652 [C_PIO_LAST_RETURNED_CNT_PARITY_ERR] = CNTR_ELEM("PioLastReturnedCntParityErr",
4653 			0, 0, CNTR_NORMAL,
4654 			access_pio_last_returned_cnt_parity_err_cnt),
4655 [C_PIO_CURRENT_FREE_CNT_PARITY_ERR] = CNTR_ELEM("PioCurrentFreeCntParityErr", 0,
4656 			0, CNTR_NORMAL,
4657 			access_pio_current_free_cnt_parity_err_cnt),
4658 [C_PIO_RSVD_31_ERR] = CNTR_ELEM("Pio Reserved 31", 0, 0,
4659 			CNTR_NORMAL,
4660 			access_pio_reserved_31_err_cnt),
4661 [C_PIO_RSVD_30_ERR] = CNTR_ELEM("Pio Reserved 30", 0, 0,
4662 			CNTR_NORMAL,
4663 			access_pio_reserved_30_err_cnt),
4664 [C_PIO_PPMC_SOP_LEN_ERR] = CNTR_ELEM("PioPpmcSopLenErr", 0, 0,
4665 			CNTR_NORMAL,
4666 			access_pio_ppmc_sop_len_err_cnt),
4667 [C_PIO_PPMC_BQC_MEM_PARITY_ERR] = CNTR_ELEM("PioPpmcBqcMemParityErr", 0, 0,
4668 			CNTR_NORMAL,
4669 			access_pio_ppmc_bqc_mem_parity_err_cnt),
4670 [C_PIO_VL_FIFO_PARITY_ERR] = CNTR_ELEM("PioVlFifoParityErr", 0, 0,
4671 			CNTR_NORMAL,
4672 			access_pio_vl_fifo_parity_err_cnt),
4673 [C_PIO_VLF_SOP_PARITY_ERR] = CNTR_ELEM("PioVlfSopParityErr", 0, 0,
4674 			CNTR_NORMAL,
4675 			access_pio_vlf_sop_parity_err_cnt),
4676 [C_PIO_VLF_V1_LEN_PARITY_ERR] = CNTR_ELEM("PioVlfVlLenParityErr", 0, 0,
4677 			CNTR_NORMAL,
4678 			access_pio_vlf_v1_len_parity_err_cnt),
4679 [C_PIO_BLOCK_QW_COUNT_PARITY_ERR] = CNTR_ELEM("PioBlockQwCountParityErr", 0, 0,
4680 			CNTR_NORMAL,
4681 			access_pio_block_qw_count_parity_err_cnt),
4682 [C_PIO_WRITE_QW_VALID_PARITY_ERR] = CNTR_ELEM("PioWriteQwValidParityErr", 0, 0,
4683 			CNTR_NORMAL,
4684 			access_pio_write_qw_valid_parity_err_cnt),
4685 [C_PIO_STATE_MACHINE_ERR] = CNTR_ELEM("PioStateMachineErr", 0, 0,
4686 			CNTR_NORMAL,
4687 			access_pio_state_machine_err_cnt),
4688 [C_PIO_WRITE_DATA_PARITY_ERR] = CNTR_ELEM("PioWriteDataParityErr", 0, 0,
4689 			CNTR_NORMAL,
4690 			access_pio_write_data_parity_err_cnt),
4691 [C_PIO_HOST_ADDR_MEM_COR_ERR] = CNTR_ELEM("PioHostAddrMemCorErr", 0, 0,
4692 			CNTR_NORMAL,
4693 			access_pio_host_addr_mem_cor_err_cnt),
4694 [C_PIO_HOST_ADDR_MEM_UNC_ERR] = CNTR_ELEM("PioHostAddrMemUncErr", 0, 0,
4695 			CNTR_NORMAL,
4696 			access_pio_host_addr_mem_unc_err_cnt),
4697 [C_PIO_PKT_EVICT_SM_OR_ARM_SM_ERR] = CNTR_ELEM("PioPktEvictSmOrArbSmErr", 0, 0,
4698 			CNTR_NORMAL,
4699 			access_pio_pkt_evict_sm_or_arb_sm_err_cnt),
4700 [C_PIO_INIT_SM_IN_ERR] = CNTR_ELEM("PioInitSmInErr", 0, 0,
4701 			CNTR_NORMAL,
4702 			access_pio_init_sm_in_err_cnt),
4703 [C_PIO_PPMC_PBL_FIFO_ERR] = CNTR_ELEM("PioPpmcPblFifoErr", 0, 0,
4704 			CNTR_NORMAL,
4705 			access_pio_ppmc_pbl_fifo_err_cnt),
4706 [C_PIO_CREDIT_RET_FIFO_PARITY_ERR] = CNTR_ELEM("PioCreditRetFifoParityErr", 0,
4707 			0, CNTR_NORMAL,
4708 			access_pio_credit_ret_fifo_parity_err_cnt),
4709 [C_PIO_V1_LEN_MEM_BANK1_COR_ERR] = CNTR_ELEM("PioVlLenMemBank1CorErr", 0, 0,
4710 			CNTR_NORMAL,
4711 			access_pio_v1_len_mem_bank1_cor_err_cnt),
4712 [C_PIO_V1_LEN_MEM_BANK0_COR_ERR] = CNTR_ELEM("PioVlLenMemBank0CorErr", 0, 0,
4713 			CNTR_NORMAL,
4714 			access_pio_v1_len_mem_bank0_cor_err_cnt),
4715 [C_PIO_V1_LEN_MEM_BANK1_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank1UncErr", 0, 0,
4716 			CNTR_NORMAL,
4717 			access_pio_v1_len_mem_bank1_unc_err_cnt),
4718 [C_PIO_V1_LEN_MEM_BANK0_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank0UncErr", 0, 0,
4719 			CNTR_NORMAL,
4720 			access_pio_v1_len_mem_bank0_unc_err_cnt),
4721 [C_PIO_SM_PKT_RESET_PARITY_ERR] = CNTR_ELEM("PioSmPktResetParityErr", 0, 0,
4722 			CNTR_NORMAL,
4723 			access_pio_sm_pkt_reset_parity_err_cnt),
4724 [C_PIO_PKT_EVICT_FIFO_PARITY_ERR] = CNTR_ELEM("PioPktEvictFifoParityErr", 0, 0,
4725 			CNTR_NORMAL,
4726 			access_pio_pkt_evict_fifo_parity_err_cnt),
4727 [C_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR] = CNTR_ELEM(
4728 			"PioSbrdctrlCrrelFifoParityErr", 0, 0,
4729 			CNTR_NORMAL,
4730 			access_pio_sbrdctrl_crrel_fifo_parity_err_cnt),
4731 [C_PIO_SBRDCTL_CRREL_PARITY_ERR] = CNTR_ELEM("PioSbrdctlCrrelParityErr", 0, 0,
4732 			CNTR_NORMAL,
4733 			access_pio_sbrdctl_crrel_parity_err_cnt),
4734 [C_PIO_PEC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPecFifoParityErr", 0, 0,
4735 			CNTR_NORMAL,
4736 			access_pio_pec_fifo_parity_err_cnt),
4737 [C_PIO_PCC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPccFifoParityErr", 0, 0,
4738 			CNTR_NORMAL,
4739 			access_pio_pcc_fifo_parity_err_cnt),
4740 [C_PIO_SB_MEM_FIFO1_ERR] = CNTR_ELEM("PioSbMemFifo1Err", 0, 0,
4741 			CNTR_NORMAL,
4742 			access_pio_sb_mem_fifo1_err_cnt),
4743 [C_PIO_SB_MEM_FIFO0_ERR] = CNTR_ELEM("PioSbMemFifo0Err", 0, 0,
4744 			CNTR_NORMAL,
4745 			access_pio_sb_mem_fifo0_err_cnt),
4746 [C_PIO_CSR_PARITY_ERR] = CNTR_ELEM("PioCsrParityErr", 0, 0,
4747 			CNTR_NORMAL,
4748 			access_pio_csr_parity_err_cnt),
4749 [C_PIO_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("PioWriteAddrParityErr", 0, 0,
4750 			CNTR_NORMAL,
4751 			access_pio_write_addr_parity_err_cnt),
4752 [C_PIO_WRITE_BAD_CTXT_ERR] = CNTR_ELEM("PioWriteBadCtxtErr", 0, 0,
4753 			CNTR_NORMAL,
4754 			access_pio_write_bad_ctxt_err_cnt),
4755 /* SendDmaErrStatus */
4756 [C_SDMA_PCIE_REQ_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPcieReqTrackingCorErr", 0,
4757 			0, CNTR_NORMAL,
4758 			access_sdma_pcie_req_tracking_cor_err_cnt),
4759 [C_SDMA_PCIE_REQ_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPcieReqTrackingUncErr", 0,
4760 			0, CNTR_NORMAL,
4761 			access_sdma_pcie_req_tracking_unc_err_cnt),
4762 [C_SDMA_CSR_PARITY_ERR] = CNTR_ELEM("SDmaCsrParityErr", 0, 0,
4763 			CNTR_NORMAL,
4764 			access_sdma_csr_parity_err_cnt),
4765 [C_SDMA_RPY_TAG_ERR] = CNTR_ELEM("SDmaRpyTagErr", 0, 0,
4766 			CNTR_NORMAL,
4767 			access_sdma_rpy_tag_err_cnt),
4768 /* SendEgressErrStatus */
4769 [C_TX_READ_PIO_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryCsrUncErr", 0, 0,
4770 			CNTR_NORMAL,
4771 			access_tx_read_pio_memory_csr_unc_err_cnt),
4772 [C_TX_READ_SDMA_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryCsrUncErr", 0,
4773 			0, CNTR_NORMAL,
4774 			access_tx_read_sdma_memory_csr_err_cnt),
4775 [C_TX_EGRESS_FIFO_COR_ERR] = CNTR_ELEM("TxEgressFifoCorErr", 0, 0,
4776 			CNTR_NORMAL,
4777 			access_tx_egress_fifo_cor_err_cnt),
4778 [C_TX_READ_PIO_MEMORY_COR_ERR] = CNTR_ELEM("TxReadPioMemoryCorErr", 0, 0,
4779 			CNTR_NORMAL,
4780 			access_tx_read_pio_memory_cor_err_cnt),
4781 [C_TX_READ_SDMA_MEMORY_COR_ERR] = CNTR_ELEM("TxReadSdmaMemoryCorErr", 0, 0,
4782 			CNTR_NORMAL,
4783 			access_tx_read_sdma_memory_cor_err_cnt),
4784 [C_TX_SB_HDR_COR_ERR] = CNTR_ELEM("TxSbHdrCorErr", 0, 0,
4785 			CNTR_NORMAL,
4786 			access_tx_sb_hdr_cor_err_cnt),
4787 [C_TX_CREDIT_OVERRUN_ERR] = CNTR_ELEM("TxCreditOverrunErr", 0, 0,
4788 			CNTR_NORMAL,
4789 			access_tx_credit_overrun_err_cnt),
4790 [C_TX_LAUNCH_FIFO8_COR_ERR] = CNTR_ELEM("TxLaunchFifo8CorErr", 0, 0,
4791 			CNTR_NORMAL,
4792 			access_tx_launch_fifo8_cor_err_cnt),
4793 [C_TX_LAUNCH_FIFO7_COR_ERR] = CNTR_ELEM("TxLaunchFifo7CorErr", 0, 0,
4794 			CNTR_NORMAL,
4795 			access_tx_launch_fifo7_cor_err_cnt),
4796 [C_TX_LAUNCH_FIFO6_COR_ERR] = CNTR_ELEM("TxLaunchFifo6CorErr", 0, 0,
4797 			CNTR_NORMAL,
4798 			access_tx_launch_fifo6_cor_err_cnt),
4799 [C_TX_LAUNCH_FIFO5_COR_ERR] = CNTR_ELEM("TxLaunchFifo5CorErr", 0, 0,
4800 			CNTR_NORMAL,
4801 			access_tx_launch_fifo5_cor_err_cnt),
4802 [C_TX_LAUNCH_FIFO4_COR_ERR] = CNTR_ELEM("TxLaunchFifo4CorErr", 0, 0,
4803 			CNTR_NORMAL,
4804 			access_tx_launch_fifo4_cor_err_cnt),
4805 [C_TX_LAUNCH_FIFO3_COR_ERR] = CNTR_ELEM("TxLaunchFifo3CorErr", 0, 0,
4806 			CNTR_NORMAL,
4807 			access_tx_launch_fifo3_cor_err_cnt),
4808 [C_TX_LAUNCH_FIFO2_COR_ERR] = CNTR_ELEM("TxLaunchFifo2CorErr", 0, 0,
4809 			CNTR_NORMAL,
4810 			access_tx_launch_fifo2_cor_err_cnt),
4811 [C_TX_LAUNCH_FIFO1_COR_ERR] = CNTR_ELEM("TxLaunchFifo1CorErr", 0, 0,
4812 			CNTR_NORMAL,
4813 			access_tx_launch_fifo1_cor_err_cnt),
4814 [C_TX_LAUNCH_FIFO0_COR_ERR] = CNTR_ELEM("TxLaunchFifo0CorErr", 0, 0,
4815 			CNTR_NORMAL,
4816 			access_tx_launch_fifo0_cor_err_cnt),
4817 [C_TX_CREDIT_RETURN_VL_ERR] = CNTR_ELEM("TxCreditReturnVLErr", 0, 0,
4818 			CNTR_NORMAL,
4819 			access_tx_credit_return_vl_err_cnt),
4820 [C_TX_HCRC_INSERTION_ERR] = CNTR_ELEM("TxHcrcInsertionErr", 0, 0,
4821 			CNTR_NORMAL,
4822 			access_tx_hcrc_insertion_err_cnt),
4823 [C_TX_EGRESS_FIFI_UNC_ERR] = CNTR_ELEM("TxEgressFifoUncErr", 0, 0,
4824 			CNTR_NORMAL,
4825 			access_tx_egress_fifo_unc_err_cnt),
4826 [C_TX_READ_PIO_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryUncErr", 0, 0,
4827 			CNTR_NORMAL,
4828 			access_tx_read_pio_memory_unc_err_cnt),
4829 [C_TX_READ_SDMA_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryUncErr", 0, 0,
4830 			CNTR_NORMAL,
4831 			access_tx_read_sdma_memory_unc_err_cnt),
4832 [C_TX_SB_HDR_UNC_ERR] = CNTR_ELEM("TxSbHdrUncErr", 0, 0,
4833 			CNTR_NORMAL,
4834 			access_tx_sb_hdr_unc_err_cnt),
4835 [C_TX_CREDIT_RETURN_PARITY_ERR] = CNTR_ELEM("TxCreditReturnParityErr", 0, 0,
4836 			CNTR_NORMAL,
4837 			access_tx_credit_return_partiy_err_cnt),
4838 [C_TX_LAUNCH_FIFO8_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo8UncOrParityErr",
4839 			0, 0, CNTR_NORMAL,
4840 			access_tx_launch_fifo8_unc_or_parity_err_cnt),
4841 [C_TX_LAUNCH_FIFO7_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo7UncOrParityErr",
4842 			0, 0, CNTR_NORMAL,
4843 			access_tx_launch_fifo7_unc_or_parity_err_cnt),
4844 [C_TX_LAUNCH_FIFO6_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo6UncOrParityErr",
4845 			0, 0, CNTR_NORMAL,
4846 			access_tx_launch_fifo6_unc_or_parity_err_cnt),
4847 [C_TX_LAUNCH_FIFO5_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo5UncOrParityErr",
4848 			0, 0, CNTR_NORMAL,
4849 			access_tx_launch_fifo5_unc_or_parity_err_cnt),
4850 [C_TX_LAUNCH_FIFO4_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo4UncOrParityErr",
4851 			0, 0, CNTR_NORMAL,
4852 			access_tx_launch_fifo4_unc_or_parity_err_cnt),
4853 [C_TX_LAUNCH_FIFO3_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo3UncOrParityErr",
4854 			0, 0, CNTR_NORMAL,
4855 			access_tx_launch_fifo3_unc_or_parity_err_cnt),
4856 [C_TX_LAUNCH_FIFO2_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo2UncOrParityErr",
4857 			0, 0, CNTR_NORMAL,
4858 			access_tx_launch_fifo2_unc_or_parity_err_cnt),
4859 [C_TX_LAUNCH_FIFO1_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo1UncOrParityErr",
4860 			0, 0, CNTR_NORMAL,
4861 			access_tx_launch_fifo1_unc_or_parity_err_cnt),
4862 [C_TX_LAUNCH_FIFO0_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo0UncOrParityErr",
4863 			0, 0, CNTR_NORMAL,
4864 			access_tx_launch_fifo0_unc_or_parity_err_cnt),
4865 [C_TX_SDMA15_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma15DisallowedPacketErr",
4866 			0, 0, CNTR_NORMAL,
4867 			access_tx_sdma15_disallowed_packet_err_cnt),
4868 [C_TX_SDMA14_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma14DisallowedPacketErr",
4869 			0, 0, CNTR_NORMAL,
4870 			access_tx_sdma14_disallowed_packet_err_cnt),
4871 [C_TX_SDMA13_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma13DisallowedPacketErr",
4872 			0, 0, CNTR_NORMAL,
4873 			access_tx_sdma13_disallowed_packet_err_cnt),
4874 [C_TX_SDMA12_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma12DisallowedPacketErr",
4875 			0, 0, CNTR_NORMAL,
4876 			access_tx_sdma12_disallowed_packet_err_cnt),
4877 [C_TX_SDMA11_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma11DisallowedPacketErr",
4878 			0, 0, CNTR_NORMAL,
4879 			access_tx_sdma11_disallowed_packet_err_cnt),
4880 [C_TX_SDMA10_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma10DisallowedPacketErr",
4881 			0, 0, CNTR_NORMAL,
4882 			access_tx_sdma10_disallowed_packet_err_cnt),
4883 [C_TX_SDMA9_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma9DisallowedPacketErr",
4884 			0, 0, CNTR_NORMAL,
4885 			access_tx_sdma9_disallowed_packet_err_cnt),
4886 [C_TX_SDMA8_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma8DisallowedPacketErr",
4887 			0, 0, CNTR_NORMAL,
4888 			access_tx_sdma8_disallowed_packet_err_cnt),
4889 [C_TX_SDMA7_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma7DisallowedPacketErr",
4890 			0, 0, CNTR_NORMAL,
4891 			access_tx_sdma7_disallowed_packet_err_cnt),
4892 [C_TX_SDMA6_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma6DisallowedPacketErr",
4893 			0, 0, CNTR_NORMAL,
4894 			access_tx_sdma6_disallowed_packet_err_cnt),
4895 [C_TX_SDMA5_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma5DisallowedPacketErr",
4896 			0, 0, CNTR_NORMAL,
4897 			access_tx_sdma5_disallowed_packet_err_cnt),
4898 [C_TX_SDMA4_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma4DisallowedPacketErr",
4899 			0, 0, CNTR_NORMAL,
4900 			access_tx_sdma4_disallowed_packet_err_cnt),
4901 [C_TX_SDMA3_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma3DisallowedPacketErr",
4902 			0, 0, CNTR_NORMAL,
4903 			access_tx_sdma3_disallowed_packet_err_cnt),
4904 [C_TX_SDMA2_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma2DisallowedPacketErr",
4905 			0, 0, CNTR_NORMAL,
4906 			access_tx_sdma2_disallowed_packet_err_cnt),
4907 [C_TX_SDMA1_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma1DisallowedPacketErr",
4908 			0, 0, CNTR_NORMAL,
4909 			access_tx_sdma1_disallowed_packet_err_cnt),
4910 [C_TX_SDMA0_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma0DisallowedPacketErr",
4911 			0, 0, CNTR_NORMAL,
4912 			access_tx_sdma0_disallowed_packet_err_cnt),
4913 [C_TX_CONFIG_PARITY_ERR] = CNTR_ELEM("TxConfigParityErr", 0, 0,
4914 			CNTR_NORMAL,
4915 			access_tx_config_parity_err_cnt),
4916 [C_TX_SBRD_CTL_CSR_PARITY_ERR] = CNTR_ELEM("TxSbrdCtlCsrParityErr", 0, 0,
4917 			CNTR_NORMAL,
4918 			access_tx_sbrd_ctl_csr_parity_err_cnt),
4919 [C_TX_LAUNCH_CSR_PARITY_ERR] = CNTR_ELEM("TxLaunchCsrParityErr", 0, 0,
4920 			CNTR_NORMAL,
4921 			access_tx_launch_csr_parity_err_cnt),
4922 [C_TX_ILLEGAL_CL_ERR] = CNTR_ELEM("TxIllegalVLErr", 0, 0,
4923 			CNTR_NORMAL,
4924 			access_tx_illegal_vl_err_cnt),
4925 [C_TX_SBRD_CTL_STATE_MACHINE_PARITY_ERR] = CNTR_ELEM(
4926 			"TxSbrdCtlStateMachineParityErr", 0, 0,
4927 			CNTR_NORMAL,
4928 			access_tx_sbrd_ctl_state_machine_parity_err_cnt),
4929 [C_TX_RESERVED_10] = CNTR_ELEM("Tx Egress Reserved 10", 0, 0,
4930 			CNTR_NORMAL,
4931 			access_egress_reserved_10_err_cnt),
4932 [C_TX_RESERVED_9] = CNTR_ELEM("Tx Egress Reserved 9", 0, 0,
4933 			CNTR_NORMAL,
4934 			access_egress_reserved_9_err_cnt),
4935 [C_TX_SDMA_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxSdmaLaunchIntfParityErr",
4936 			0, 0, CNTR_NORMAL,
4937 			access_tx_sdma_launch_intf_parity_err_cnt),
4938 [C_TX_PIO_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxPioLaunchIntfParityErr", 0, 0,
4939 			CNTR_NORMAL,
4940 			access_tx_pio_launch_intf_parity_err_cnt),
4941 [C_TX_RESERVED_6] = CNTR_ELEM("Tx Egress Reserved 6", 0, 0,
4942 			CNTR_NORMAL,
4943 			access_egress_reserved_6_err_cnt),
4944 [C_TX_INCORRECT_LINK_STATE_ERR] = CNTR_ELEM("TxIncorrectLinkStateErr", 0, 0,
4945 			CNTR_NORMAL,
4946 			access_tx_incorrect_link_state_err_cnt),
4947 [C_TX_LINK_DOWN_ERR] = CNTR_ELEM("TxLinkdownErr", 0, 0,
4948 			CNTR_NORMAL,
4949 			access_tx_linkdown_err_cnt),
4950 [C_TX_EGRESS_FIFO_UNDERRUN_OR_PARITY_ERR] = CNTR_ELEM(
4951 			"EgressFifoUnderrunOrParityErr", 0, 0,
4952 			CNTR_NORMAL,
4953 			access_tx_egress_fifi_underrun_or_parity_err_cnt),
4954 [C_TX_RESERVED_2] = CNTR_ELEM("Tx Egress Reserved 2", 0, 0,
4955 			CNTR_NORMAL,
4956 			access_egress_reserved_2_err_cnt),
4957 [C_TX_PKT_INTEGRITY_MEM_UNC_ERR] = CNTR_ELEM("TxPktIntegrityMemUncErr", 0, 0,
4958 			CNTR_NORMAL,
4959 			access_tx_pkt_integrity_mem_unc_err_cnt),
4960 [C_TX_PKT_INTEGRITY_MEM_COR_ERR] = CNTR_ELEM("TxPktIntegrityMemCorErr", 0, 0,
4961 			CNTR_NORMAL,
4962 			access_tx_pkt_integrity_mem_cor_err_cnt),
4963 /* SendErrStatus */
4964 [C_SEND_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("SendCsrWriteBadAddrErr", 0, 0,
4965 			CNTR_NORMAL,
4966 			access_send_csr_write_bad_addr_err_cnt),
4967 [C_SEND_CSR_READ_BAD_ADD_ERR] = CNTR_ELEM("SendCsrReadBadAddrErr", 0, 0,
4968 			CNTR_NORMAL,
4969 			access_send_csr_read_bad_addr_err_cnt),
4970 [C_SEND_CSR_PARITY_ERR] = CNTR_ELEM("SendCsrParityErr", 0, 0,
4971 			CNTR_NORMAL,
4972 			access_send_csr_parity_cnt),
4973 /* SendCtxtErrStatus */
4974 [C_PIO_WRITE_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("PioWriteOutOfBoundsErr", 0, 0,
4975 			CNTR_NORMAL,
4976 			access_pio_write_out_of_bounds_err_cnt),
4977 [C_PIO_WRITE_OVERFLOW_ERR] = CNTR_ELEM("PioWriteOverflowErr", 0, 0,
4978 			CNTR_NORMAL,
4979 			access_pio_write_overflow_err_cnt),
4980 [C_PIO_WRITE_CROSSES_BOUNDARY_ERR] = CNTR_ELEM("PioWriteCrossesBoundaryErr",
4981 			0, 0, CNTR_NORMAL,
4982 			access_pio_write_crosses_boundary_err_cnt),
4983 [C_PIO_DISALLOWED_PACKET_ERR] = CNTR_ELEM("PioDisallowedPacketErr", 0, 0,
4984 			CNTR_NORMAL,
4985 			access_pio_disallowed_packet_err_cnt),
4986 [C_PIO_INCONSISTENT_SOP_ERR] = CNTR_ELEM("PioInconsistentSopErr", 0, 0,
4987 			CNTR_NORMAL,
4988 			access_pio_inconsistent_sop_err_cnt),
4989 /* SendDmaEngErrStatus */
4990 [C_SDMA_HEADER_REQUEST_FIFO_COR_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoCorErr",
4991 			0, 0, CNTR_NORMAL,
4992 			access_sdma_header_request_fifo_cor_err_cnt),
4993 [C_SDMA_HEADER_STORAGE_COR_ERR] = CNTR_ELEM("SDmaHeaderStorageCorErr", 0, 0,
4994 			CNTR_NORMAL,
4995 			access_sdma_header_storage_cor_err_cnt),
4996 [C_SDMA_PACKET_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPacketTrackingCorErr", 0, 0,
4997 			CNTR_NORMAL,
4998 			access_sdma_packet_tracking_cor_err_cnt),
4999 [C_SDMA_ASSEMBLY_COR_ERR] = CNTR_ELEM("SDmaAssemblyCorErr", 0, 0,
5000 			CNTR_NORMAL,
5001 			access_sdma_assembly_cor_err_cnt),
5002 [C_SDMA_DESC_TABLE_COR_ERR] = CNTR_ELEM("SDmaDescTableCorErr", 0, 0,
5003 			CNTR_NORMAL,
5004 			access_sdma_desc_table_cor_err_cnt),
5005 [C_SDMA_HEADER_REQUEST_FIFO_UNC_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoUncErr",
5006 			0, 0, CNTR_NORMAL,
5007 			access_sdma_header_request_fifo_unc_err_cnt),
5008 [C_SDMA_HEADER_STORAGE_UNC_ERR] = CNTR_ELEM("SDmaHeaderStorageUncErr", 0, 0,
5009 			CNTR_NORMAL,
5010 			access_sdma_header_storage_unc_err_cnt),
5011 [C_SDMA_PACKET_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPacketTrackingUncErr", 0, 0,
5012 			CNTR_NORMAL,
5013 			access_sdma_packet_tracking_unc_err_cnt),
5014 [C_SDMA_ASSEMBLY_UNC_ERR] = CNTR_ELEM("SDmaAssemblyUncErr", 0, 0,
5015 			CNTR_NORMAL,
5016 			access_sdma_assembly_unc_err_cnt),
5017 [C_SDMA_DESC_TABLE_UNC_ERR] = CNTR_ELEM("SDmaDescTableUncErr", 0, 0,
5018 			CNTR_NORMAL,
5019 			access_sdma_desc_table_unc_err_cnt),
5020 [C_SDMA_TIMEOUT_ERR] = CNTR_ELEM("SDmaTimeoutErr", 0, 0,
5021 			CNTR_NORMAL,
5022 			access_sdma_timeout_err_cnt),
5023 [C_SDMA_HEADER_LENGTH_ERR] = CNTR_ELEM("SDmaHeaderLengthErr", 0, 0,
5024 			CNTR_NORMAL,
5025 			access_sdma_header_length_err_cnt),
5026 [C_SDMA_HEADER_ADDRESS_ERR] = CNTR_ELEM("SDmaHeaderAddressErr", 0, 0,
5027 			CNTR_NORMAL,
5028 			access_sdma_header_address_err_cnt),
5029 [C_SDMA_HEADER_SELECT_ERR] = CNTR_ELEM("SDmaHeaderSelectErr", 0, 0,
5030 			CNTR_NORMAL,
5031 			access_sdma_header_select_err_cnt),
5032 [C_SMDA_RESERVED_9] = CNTR_ELEM("SDma Reserved 9", 0, 0,
5033 			CNTR_NORMAL,
5034 			access_sdma_reserved_9_err_cnt),
5035 [C_SDMA_PACKET_DESC_OVERFLOW_ERR] = CNTR_ELEM("SDmaPacketDescOverflowErr", 0, 0,
5036 			CNTR_NORMAL,
5037 			access_sdma_packet_desc_overflow_err_cnt),
5038 [C_SDMA_LENGTH_MISMATCH_ERR] = CNTR_ELEM("SDmaLengthMismatchErr", 0, 0,
5039 			CNTR_NORMAL,
5040 			access_sdma_length_mismatch_err_cnt),
5041 [C_SDMA_HALT_ERR] = CNTR_ELEM("SDmaHaltErr", 0, 0,
5042 			CNTR_NORMAL,
5043 			access_sdma_halt_err_cnt),
5044 [C_SDMA_MEM_READ_ERR] = CNTR_ELEM("SDmaMemReadErr", 0, 0,
5045 			CNTR_NORMAL,
5046 			access_sdma_mem_read_err_cnt),
5047 [C_SDMA_FIRST_DESC_ERR] = CNTR_ELEM("SDmaFirstDescErr", 0, 0,
5048 			CNTR_NORMAL,
5049 			access_sdma_first_desc_err_cnt),
5050 [C_SDMA_TAIL_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("SDmaTailOutOfBoundsErr", 0, 0,
5051 			CNTR_NORMAL,
5052 			access_sdma_tail_out_of_bounds_err_cnt),
5053 [C_SDMA_TOO_LONG_ERR] = CNTR_ELEM("SDmaTooLongErr", 0, 0,
5054 			CNTR_NORMAL,
5055 			access_sdma_too_long_err_cnt),
5056 [C_SDMA_GEN_MISMATCH_ERR] = CNTR_ELEM("SDmaGenMismatchErr", 0, 0,
5057 			CNTR_NORMAL,
5058 			access_sdma_gen_mismatch_err_cnt),
5059 [C_SDMA_WRONG_DW_ERR] = CNTR_ELEM("SDmaWrongDwErr", 0, 0,
5060 			CNTR_NORMAL,
5061 			access_sdma_wrong_dw_err_cnt),
5062 };
5063 
5064 static struct cntr_entry port_cntrs[PORT_CNTR_LAST] = {
5065 [C_TX_UNSUP_VL] = TXE32_PORT_CNTR_ELEM(TxUnVLErr, SEND_UNSUP_VL_ERR_CNT,
5066 			CNTR_NORMAL),
5067 [C_TX_INVAL_LEN] = TXE32_PORT_CNTR_ELEM(TxInvalLen, SEND_LEN_ERR_CNT,
5068 			CNTR_NORMAL),
5069 [C_TX_MM_LEN_ERR] = TXE32_PORT_CNTR_ELEM(TxMMLenErr, SEND_MAX_MIN_LEN_ERR_CNT,
5070 			CNTR_NORMAL),
5071 [C_TX_UNDERRUN] = TXE32_PORT_CNTR_ELEM(TxUnderrun, SEND_UNDERRUN_CNT,
5072 			CNTR_NORMAL),
5073 [C_TX_FLOW_STALL] = TXE32_PORT_CNTR_ELEM(TxFlowStall, SEND_FLOW_STALL_CNT,
5074 			CNTR_NORMAL),
5075 [C_TX_DROPPED] = TXE32_PORT_CNTR_ELEM(TxDropped, SEND_DROPPED_PKT_CNT,
5076 			CNTR_NORMAL),
5077 [C_TX_HDR_ERR] = TXE32_PORT_CNTR_ELEM(TxHdrErr, SEND_HEADERS_ERR_CNT,
5078 			CNTR_NORMAL),
5079 [C_TX_PKT] = TXE64_PORT_CNTR_ELEM(TxPkt, SEND_DATA_PKT_CNT, CNTR_NORMAL),
5080 [C_TX_WORDS] = TXE64_PORT_CNTR_ELEM(TxWords, SEND_DWORD_CNT, CNTR_NORMAL),
5081 [C_TX_WAIT] = TXE64_PORT_CNTR_ELEM(TxWait, SEND_WAIT_CNT, CNTR_SYNTH),
5082 [C_TX_FLIT_VL] = TXE64_PORT_CNTR_ELEM(TxFlitVL, SEND_DATA_VL0_CNT,
5083 				      CNTR_SYNTH | CNTR_VL),
5084 [C_TX_PKT_VL] = TXE64_PORT_CNTR_ELEM(TxPktVL, SEND_DATA_PKT_VL0_CNT,
5085 				     CNTR_SYNTH | CNTR_VL),
5086 [C_TX_WAIT_VL] = TXE64_PORT_CNTR_ELEM(TxWaitVL, SEND_WAIT_VL0_CNT,
5087 				      CNTR_SYNTH | CNTR_VL),
5088 [C_RX_PKT] = RXE64_PORT_CNTR_ELEM(RxPkt, RCV_DATA_PKT_CNT, CNTR_NORMAL),
5089 [C_RX_WORDS] = RXE64_PORT_CNTR_ELEM(RxWords, RCV_DWORD_CNT, CNTR_NORMAL),
5090 [C_SW_LINK_DOWN] = CNTR_ELEM("SwLinkDown", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5091 			     access_sw_link_dn_cnt),
5092 [C_SW_LINK_UP] = CNTR_ELEM("SwLinkUp", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5093 			   access_sw_link_up_cnt),
5094 [C_SW_UNKNOWN_FRAME] = CNTR_ELEM("UnknownFrame", 0, 0, CNTR_NORMAL,
5095 				 access_sw_unknown_frame_cnt),
5096 [C_SW_XMIT_DSCD] = CNTR_ELEM("XmitDscd", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5097 			     access_sw_xmit_discards),
5098 [C_SW_XMIT_DSCD_VL] = CNTR_ELEM("XmitDscdVl", 0, 0,
5099 				CNTR_SYNTH | CNTR_32BIT | CNTR_VL,
5100 				access_sw_xmit_discards),
5101 [C_SW_XMIT_CSTR_ERR] = CNTR_ELEM("XmitCstrErr", 0, 0, CNTR_SYNTH,
5102 				 access_xmit_constraint_errs),
5103 [C_SW_RCV_CSTR_ERR] = CNTR_ELEM("RcvCstrErr", 0, 0, CNTR_SYNTH,
5104 				access_rcv_constraint_errs),
5105 [C_SW_IBP_LOOP_PKTS] = SW_IBP_CNTR(LoopPkts, loop_pkts),
5106 [C_SW_IBP_RC_RESENDS] = SW_IBP_CNTR(RcResend, rc_resends),
5107 [C_SW_IBP_RNR_NAKS] = SW_IBP_CNTR(RnrNak, rnr_naks),
5108 [C_SW_IBP_OTHER_NAKS] = SW_IBP_CNTR(OtherNak, other_naks),
5109 [C_SW_IBP_RC_TIMEOUTS] = SW_IBP_CNTR(RcTimeOut, rc_timeouts),
5110 [C_SW_IBP_PKT_DROPS] = SW_IBP_CNTR(PktDrop, pkt_drops),
5111 [C_SW_IBP_DMA_WAIT] = SW_IBP_CNTR(DmaWait, dmawait),
5112 [C_SW_IBP_RC_SEQNAK] = SW_IBP_CNTR(RcSeqNak, rc_seqnak),
5113 [C_SW_IBP_RC_DUPREQ] = SW_IBP_CNTR(RcDupRew, rc_dupreq),
5114 [C_SW_IBP_RDMA_SEQ] = SW_IBP_CNTR(RdmaSeq, rdma_seq),
5115 [C_SW_IBP_UNALIGNED] = SW_IBP_CNTR(Unaligned, unaligned),
5116 [C_SW_IBP_SEQ_NAK] = SW_IBP_CNTR(SeqNak, seq_naks),
5117 [C_SW_CPU_RC_ACKS] = CNTR_ELEM("RcAcks", 0, 0, CNTR_NORMAL,
5118 			       access_sw_cpu_rc_acks),
5119 [C_SW_CPU_RC_QACKS] = CNTR_ELEM("RcQacks", 0, 0, CNTR_NORMAL,
5120 				access_sw_cpu_rc_qacks),
5121 [C_SW_CPU_RC_DELAYED_COMP] = CNTR_ELEM("RcDelayComp", 0, 0, CNTR_NORMAL,
5122 				       access_sw_cpu_rc_delayed_comp),
5123 [OVR_LBL(0)] = OVR_ELM(0), [OVR_LBL(1)] = OVR_ELM(1),
5124 [OVR_LBL(2)] = OVR_ELM(2), [OVR_LBL(3)] = OVR_ELM(3),
5125 [OVR_LBL(4)] = OVR_ELM(4), [OVR_LBL(5)] = OVR_ELM(5),
5126 [OVR_LBL(6)] = OVR_ELM(6), [OVR_LBL(7)] = OVR_ELM(7),
5127 [OVR_LBL(8)] = OVR_ELM(8), [OVR_LBL(9)] = OVR_ELM(9),
5128 [OVR_LBL(10)] = OVR_ELM(10), [OVR_LBL(11)] = OVR_ELM(11),
5129 [OVR_LBL(12)] = OVR_ELM(12), [OVR_LBL(13)] = OVR_ELM(13),
5130 [OVR_LBL(14)] = OVR_ELM(14), [OVR_LBL(15)] = OVR_ELM(15),
5131 [OVR_LBL(16)] = OVR_ELM(16), [OVR_LBL(17)] = OVR_ELM(17),
5132 [OVR_LBL(18)] = OVR_ELM(18), [OVR_LBL(19)] = OVR_ELM(19),
5133 [OVR_LBL(20)] = OVR_ELM(20), [OVR_LBL(21)] = OVR_ELM(21),
5134 [OVR_LBL(22)] = OVR_ELM(22), [OVR_LBL(23)] = OVR_ELM(23),
5135 [OVR_LBL(24)] = OVR_ELM(24), [OVR_LBL(25)] = OVR_ELM(25),
5136 [OVR_LBL(26)] = OVR_ELM(26), [OVR_LBL(27)] = OVR_ELM(27),
5137 [OVR_LBL(28)] = OVR_ELM(28), [OVR_LBL(29)] = OVR_ELM(29),
5138 [OVR_LBL(30)] = OVR_ELM(30), [OVR_LBL(31)] = OVR_ELM(31),
5139 [OVR_LBL(32)] = OVR_ELM(32), [OVR_LBL(33)] = OVR_ELM(33),
5140 [OVR_LBL(34)] = OVR_ELM(34), [OVR_LBL(35)] = OVR_ELM(35),
5141 [OVR_LBL(36)] = OVR_ELM(36), [OVR_LBL(37)] = OVR_ELM(37),
5142 [OVR_LBL(38)] = OVR_ELM(38), [OVR_LBL(39)] = OVR_ELM(39),
5143 [OVR_LBL(40)] = OVR_ELM(40), [OVR_LBL(41)] = OVR_ELM(41),
5144 [OVR_LBL(42)] = OVR_ELM(42), [OVR_LBL(43)] = OVR_ELM(43),
5145 [OVR_LBL(44)] = OVR_ELM(44), [OVR_LBL(45)] = OVR_ELM(45),
5146 [OVR_LBL(46)] = OVR_ELM(46), [OVR_LBL(47)] = OVR_ELM(47),
5147 [OVR_LBL(48)] = OVR_ELM(48), [OVR_LBL(49)] = OVR_ELM(49),
5148 [OVR_LBL(50)] = OVR_ELM(50), [OVR_LBL(51)] = OVR_ELM(51),
5149 [OVR_LBL(52)] = OVR_ELM(52), [OVR_LBL(53)] = OVR_ELM(53),
5150 [OVR_LBL(54)] = OVR_ELM(54), [OVR_LBL(55)] = OVR_ELM(55),
5151 [OVR_LBL(56)] = OVR_ELM(56), [OVR_LBL(57)] = OVR_ELM(57),
5152 [OVR_LBL(58)] = OVR_ELM(58), [OVR_LBL(59)] = OVR_ELM(59),
5153 [OVR_LBL(60)] = OVR_ELM(60), [OVR_LBL(61)] = OVR_ELM(61),
5154 [OVR_LBL(62)] = OVR_ELM(62), [OVR_LBL(63)] = OVR_ELM(63),
5155 [OVR_LBL(64)] = OVR_ELM(64), [OVR_LBL(65)] = OVR_ELM(65),
5156 [OVR_LBL(66)] = OVR_ELM(66), [OVR_LBL(67)] = OVR_ELM(67),
5157 [OVR_LBL(68)] = OVR_ELM(68), [OVR_LBL(69)] = OVR_ELM(69),
5158 [OVR_LBL(70)] = OVR_ELM(70), [OVR_LBL(71)] = OVR_ELM(71),
5159 [OVR_LBL(72)] = OVR_ELM(72), [OVR_LBL(73)] = OVR_ELM(73),
5160 [OVR_LBL(74)] = OVR_ELM(74), [OVR_LBL(75)] = OVR_ELM(75),
5161 [OVR_LBL(76)] = OVR_ELM(76), [OVR_LBL(77)] = OVR_ELM(77),
5162 [OVR_LBL(78)] = OVR_ELM(78), [OVR_LBL(79)] = OVR_ELM(79),
5163 [OVR_LBL(80)] = OVR_ELM(80), [OVR_LBL(81)] = OVR_ELM(81),
5164 [OVR_LBL(82)] = OVR_ELM(82), [OVR_LBL(83)] = OVR_ELM(83),
5165 [OVR_LBL(84)] = OVR_ELM(84), [OVR_LBL(85)] = OVR_ELM(85),
5166 [OVR_LBL(86)] = OVR_ELM(86), [OVR_LBL(87)] = OVR_ELM(87),
5167 [OVR_LBL(88)] = OVR_ELM(88), [OVR_LBL(89)] = OVR_ELM(89),
5168 [OVR_LBL(90)] = OVR_ELM(90), [OVR_LBL(91)] = OVR_ELM(91),
5169 [OVR_LBL(92)] = OVR_ELM(92), [OVR_LBL(93)] = OVR_ELM(93),
5170 [OVR_LBL(94)] = OVR_ELM(94), [OVR_LBL(95)] = OVR_ELM(95),
5171 [OVR_LBL(96)] = OVR_ELM(96), [OVR_LBL(97)] = OVR_ELM(97),
5172 [OVR_LBL(98)] = OVR_ELM(98), [OVR_LBL(99)] = OVR_ELM(99),
5173 [OVR_LBL(100)] = OVR_ELM(100), [OVR_LBL(101)] = OVR_ELM(101),
5174 [OVR_LBL(102)] = OVR_ELM(102), [OVR_LBL(103)] = OVR_ELM(103),
5175 [OVR_LBL(104)] = OVR_ELM(104), [OVR_LBL(105)] = OVR_ELM(105),
5176 [OVR_LBL(106)] = OVR_ELM(106), [OVR_LBL(107)] = OVR_ELM(107),
5177 [OVR_LBL(108)] = OVR_ELM(108), [OVR_LBL(109)] = OVR_ELM(109),
5178 [OVR_LBL(110)] = OVR_ELM(110), [OVR_LBL(111)] = OVR_ELM(111),
5179 [OVR_LBL(112)] = OVR_ELM(112), [OVR_LBL(113)] = OVR_ELM(113),
5180 [OVR_LBL(114)] = OVR_ELM(114), [OVR_LBL(115)] = OVR_ELM(115),
5181 [OVR_LBL(116)] = OVR_ELM(116), [OVR_LBL(117)] = OVR_ELM(117),
5182 [OVR_LBL(118)] = OVR_ELM(118), [OVR_LBL(119)] = OVR_ELM(119),
5183 [OVR_LBL(120)] = OVR_ELM(120), [OVR_LBL(121)] = OVR_ELM(121),
5184 [OVR_LBL(122)] = OVR_ELM(122), [OVR_LBL(123)] = OVR_ELM(123),
5185 [OVR_LBL(124)] = OVR_ELM(124), [OVR_LBL(125)] = OVR_ELM(125),
5186 [OVR_LBL(126)] = OVR_ELM(126), [OVR_LBL(127)] = OVR_ELM(127),
5187 [OVR_LBL(128)] = OVR_ELM(128), [OVR_LBL(129)] = OVR_ELM(129),
5188 [OVR_LBL(130)] = OVR_ELM(130), [OVR_LBL(131)] = OVR_ELM(131),
5189 [OVR_LBL(132)] = OVR_ELM(132), [OVR_LBL(133)] = OVR_ELM(133),
5190 [OVR_LBL(134)] = OVR_ELM(134), [OVR_LBL(135)] = OVR_ELM(135),
5191 [OVR_LBL(136)] = OVR_ELM(136), [OVR_LBL(137)] = OVR_ELM(137),
5192 [OVR_LBL(138)] = OVR_ELM(138), [OVR_LBL(139)] = OVR_ELM(139),
5193 [OVR_LBL(140)] = OVR_ELM(140), [OVR_LBL(141)] = OVR_ELM(141),
5194 [OVR_LBL(142)] = OVR_ELM(142), [OVR_LBL(143)] = OVR_ELM(143),
5195 [OVR_LBL(144)] = OVR_ELM(144), [OVR_LBL(145)] = OVR_ELM(145),
5196 [OVR_LBL(146)] = OVR_ELM(146), [OVR_LBL(147)] = OVR_ELM(147),
5197 [OVR_LBL(148)] = OVR_ELM(148), [OVR_LBL(149)] = OVR_ELM(149),
5198 [OVR_LBL(150)] = OVR_ELM(150), [OVR_LBL(151)] = OVR_ELM(151),
5199 [OVR_LBL(152)] = OVR_ELM(152), [OVR_LBL(153)] = OVR_ELM(153),
5200 [OVR_LBL(154)] = OVR_ELM(154), [OVR_LBL(155)] = OVR_ELM(155),
5201 [OVR_LBL(156)] = OVR_ELM(156), [OVR_LBL(157)] = OVR_ELM(157),
5202 [OVR_LBL(158)] = OVR_ELM(158), [OVR_LBL(159)] = OVR_ELM(159),
5203 };
5204 
5205 /* ======================================================================== */
5206 
5207 /* return true if this is chip revision revision a */
is_ax(struct hfi1_devdata * dd)5208 int is_ax(struct hfi1_devdata *dd)
5209 {
5210 	u8 chip_rev_minor =
5211 		dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5212 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
5213 	return (chip_rev_minor & 0xf0) == 0;
5214 }
5215 
5216 /* return true if this is chip revision revision b */
is_bx(struct hfi1_devdata * dd)5217 int is_bx(struct hfi1_devdata *dd)
5218 {
5219 	u8 chip_rev_minor =
5220 		dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5221 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
5222 	return (chip_rev_minor & 0xF0) == 0x10;
5223 }
5224 
5225 /*
5226  * Append string s to buffer buf.  Arguments curp and len are the current
5227  * position and remaining length, respectively.
5228  *
5229  * return 0 on success, 1 on out of room
5230  */
append_str(char * buf,char ** curp,int * lenp,const char * s)5231 static int append_str(char *buf, char **curp, int *lenp, const char *s)
5232 {
5233 	char *p = *curp;
5234 	int len = *lenp;
5235 	int result = 0; /* success */
5236 	char c;
5237 
5238 	/* add a comma, if first in the buffer */
5239 	if (p != buf) {
5240 		if (len == 0) {
5241 			result = 1; /* out of room */
5242 			goto done;
5243 		}
5244 		*p++ = ',';
5245 		len--;
5246 	}
5247 
5248 	/* copy the string */
5249 	while ((c = *s++) != 0) {
5250 		if (len == 0) {
5251 			result = 1; /* out of room */
5252 			goto done;
5253 		}
5254 		*p++ = c;
5255 		len--;
5256 	}
5257 
5258 done:
5259 	/* write return values */
5260 	*curp = p;
5261 	*lenp = len;
5262 
5263 	return result;
5264 }
5265 
5266 /*
5267  * Using the given flag table, print a comma separated string into
5268  * the buffer.  End in '*' if the buffer is too short.
5269  */
flag_string(char * buf,int buf_len,u64 flags,struct flag_table * table,int table_size)5270 static char *flag_string(char *buf, int buf_len, u64 flags,
5271 			 struct flag_table *table, int table_size)
5272 {
5273 	char extra[32];
5274 	char *p = buf;
5275 	int len = buf_len;
5276 	int no_room = 0;
5277 	int i;
5278 
5279 	/* make sure there is at least 2 so we can form "*" */
5280 	if (len < 2)
5281 		return "";
5282 
5283 	len--;	/* leave room for a nul */
5284 	for (i = 0; i < table_size; i++) {
5285 		if (flags & table[i].flag) {
5286 			no_room = append_str(buf, &p, &len, table[i].str);
5287 			if (no_room)
5288 				break;
5289 			flags &= ~table[i].flag;
5290 		}
5291 	}
5292 
5293 	/* any undocumented bits left? */
5294 	if (!no_room && flags) {
5295 		snprintf(extra, sizeof(extra), "bits 0x%llx", flags);
5296 		no_room = append_str(buf, &p, &len, extra);
5297 	}
5298 
5299 	/* add * if ran out of room */
5300 	if (no_room) {
5301 		/* may need to back up to add space for a '*' */
5302 		if (len == 0)
5303 			--p;
5304 		*p++ = '*';
5305 	}
5306 
5307 	/* add final nul - space already allocated above */
5308 	*p = 0;
5309 	return buf;
5310 }
5311 
5312 /* first 8 CCE error interrupt source names */
5313 static const char * const cce_misc_names[] = {
5314 	"CceErrInt",		/* 0 */
5315 	"RxeErrInt",		/* 1 */
5316 	"MiscErrInt",		/* 2 */
5317 	"Reserved3",		/* 3 */
5318 	"PioErrInt",		/* 4 */
5319 	"SDmaErrInt",		/* 5 */
5320 	"EgressErrInt",		/* 6 */
5321 	"TxeErrInt"		/* 7 */
5322 };
5323 
5324 /*
5325  * Return the miscellaneous error interrupt name.
5326  */
is_misc_err_name(char * buf,size_t bsize,unsigned int source)5327 static char *is_misc_err_name(char *buf, size_t bsize, unsigned int source)
5328 {
5329 	if (source < ARRAY_SIZE(cce_misc_names))
5330 		strncpy(buf, cce_misc_names[source], bsize);
5331 	else
5332 		snprintf(buf, bsize, "Reserved%u",
5333 			 source + IS_GENERAL_ERR_START);
5334 
5335 	return buf;
5336 }
5337 
5338 /*
5339  * Return the SDMA engine error interrupt name.
5340  */
is_sdma_eng_err_name(char * buf,size_t bsize,unsigned int source)5341 static char *is_sdma_eng_err_name(char *buf, size_t bsize, unsigned int source)
5342 {
5343 	snprintf(buf, bsize, "SDmaEngErrInt%u", source);
5344 	return buf;
5345 }
5346 
5347 /*
5348  * Return the send context error interrupt name.
5349  */
is_sendctxt_err_name(char * buf,size_t bsize,unsigned int source)5350 static char *is_sendctxt_err_name(char *buf, size_t bsize, unsigned int source)
5351 {
5352 	snprintf(buf, bsize, "SendCtxtErrInt%u", source);
5353 	return buf;
5354 }
5355 
5356 static const char * const various_names[] = {
5357 	"PbcInt",
5358 	"GpioAssertInt",
5359 	"Qsfp1Int",
5360 	"Qsfp2Int",
5361 	"TCritInt"
5362 };
5363 
5364 /*
5365  * Return the various interrupt name.
5366  */
is_various_name(char * buf,size_t bsize,unsigned int source)5367 static char *is_various_name(char *buf, size_t bsize, unsigned int source)
5368 {
5369 	if (source < ARRAY_SIZE(various_names))
5370 		strncpy(buf, various_names[source], bsize);
5371 	else
5372 		snprintf(buf, bsize, "Reserved%u", source + IS_VARIOUS_START);
5373 	return buf;
5374 }
5375 
5376 /*
5377  * Return the DC interrupt name.
5378  */
is_dc_name(char * buf,size_t bsize,unsigned int source)5379 static char *is_dc_name(char *buf, size_t bsize, unsigned int source)
5380 {
5381 	static const char * const dc_int_names[] = {
5382 		"common",
5383 		"lcb",
5384 		"8051",
5385 		"lbm"	/* local block merge */
5386 	};
5387 
5388 	if (source < ARRAY_SIZE(dc_int_names))
5389 		snprintf(buf, bsize, "dc_%s_int", dc_int_names[source]);
5390 	else
5391 		snprintf(buf, bsize, "DCInt%u", source);
5392 	return buf;
5393 }
5394 
5395 static const char * const sdma_int_names[] = {
5396 	"SDmaInt",
5397 	"SdmaIdleInt",
5398 	"SdmaProgressInt",
5399 };
5400 
5401 /*
5402  * Return the SDMA engine interrupt name.
5403  */
is_sdma_eng_name(char * buf,size_t bsize,unsigned int source)5404 static char *is_sdma_eng_name(char *buf, size_t bsize, unsigned int source)
5405 {
5406 	/* what interrupt */
5407 	unsigned int what  = source / TXE_NUM_SDMA_ENGINES;
5408 	/* which engine */
5409 	unsigned int which = source % TXE_NUM_SDMA_ENGINES;
5410 
5411 	if (likely(what < 3))
5412 		snprintf(buf, bsize, "%s%u", sdma_int_names[what], which);
5413 	else
5414 		snprintf(buf, bsize, "Invalid SDMA interrupt %u", source);
5415 	return buf;
5416 }
5417 
5418 /*
5419  * Return the receive available interrupt name.
5420  */
is_rcv_avail_name(char * buf,size_t bsize,unsigned int source)5421 static char *is_rcv_avail_name(char *buf, size_t bsize, unsigned int source)
5422 {
5423 	snprintf(buf, bsize, "RcvAvailInt%u", source);
5424 	return buf;
5425 }
5426 
5427 /*
5428  * Return the receive urgent interrupt name.
5429  */
is_rcv_urgent_name(char * buf,size_t bsize,unsigned int source)5430 static char *is_rcv_urgent_name(char *buf, size_t bsize, unsigned int source)
5431 {
5432 	snprintf(buf, bsize, "RcvUrgentInt%u", source);
5433 	return buf;
5434 }
5435 
5436 /*
5437  * Return the send credit interrupt name.
5438  */
is_send_credit_name(char * buf,size_t bsize,unsigned int source)5439 static char *is_send_credit_name(char *buf, size_t bsize, unsigned int source)
5440 {
5441 	snprintf(buf, bsize, "SendCreditInt%u", source);
5442 	return buf;
5443 }
5444 
5445 /*
5446  * Return the reserved interrupt name.
5447  */
is_reserved_name(char * buf,size_t bsize,unsigned int source)5448 static char *is_reserved_name(char *buf, size_t bsize, unsigned int source)
5449 {
5450 	snprintf(buf, bsize, "Reserved%u", source + IS_RESERVED_START);
5451 	return buf;
5452 }
5453 
cce_err_status_string(char * buf,int buf_len,u64 flags)5454 static char *cce_err_status_string(char *buf, int buf_len, u64 flags)
5455 {
5456 	return flag_string(buf, buf_len, flags,
5457 			   cce_err_status_flags,
5458 			   ARRAY_SIZE(cce_err_status_flags));
5459 }
5460 
rxe_err_status_string(char * buf,int buf_len,u64 flags)5461 static char *rxe_err_status_string(char *buf, int buf_len, u64 flags)
5462 {
5463 	return flag_string(buf, buf_len, flags,
5464 			   rxe_err_status_flags,
5465 			   ARRAY_SIZE(rxe_err_status_flags));
5466 }
5467 
misc_err_status_string(char * buf,int buf_len,u64 flags)5468 static char *misc_err_status_string(char *buf, int buf_len, u64 flags)
5469 {
5470 	return flag_string(buf, buf_len, flags, misc_err_status_flags,
5471 			   ARRAY_SIZE(misc_err_status_flags));
5472 }
5473 
pio_err_status_string(char * buf,int buf_len,u64 flags)5474 static char *pio_err_status_string(char *buf, int buf_len, u64 flags)
5475 {
5476 	return flag_string(buf, buf_len, flags,
5477 			   pio_err_status_flags,
5478 			   ARRAY_SIZE(pio_err_status_flags));
5479 }
5480 
sdma_err_status_string(char * buf,int buf_len,u64 flags)5481 static char *sdma_err_status_string(char *buf, int buf_len, u64 flags)
5482 {
5483 	return flag_string(buf, buf_len, flags,
5484 			   sdma_err_status_flags,
5485 			   ARRAY_SIZE(sdma_err_status_flags));
5486 }
5487 
egress_err_status_string(char * buf,int buf_len,u64 flags)5488 static char *egress_err_status_string(char *buf, int buf_len, u64 flags)
5489 {
5490 	return flag_string(buf, buf_len, flags,
5491 			   egress_err_status_flags,
5492 			   ARRAY_SIZE(egress_err_status_flags));
5493 }
5494 
egress_err_info_string(char * buf,int buf_len,u64 flags)5495 static char *egress_err_info_string(char *buf, int buf_len, u64 flags)
5496 {
5497 	return flag_string(buf, buf_len, flags,
5498 			   egress_err_info_flags,
5499 			   ARRAY_SIZE(egress_err_info_flags));
5500 }
5501 
send_err_status_string(char * buf,int buf_len,u64 flags)5502 static char *send_err_status_string(char *buf, int buf_len, u64 flags)
5503 {
5504 	return flag_string(buf, buf_len, flags,
5505 			   send_err_status_flags,
5506 			   ARRAY_SIZE(send_err_status_flags));
5507 }
5508 
handle_cce_err(struct hfi1_devdata * dd,u32 unused,u64 reg)5509 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5510 {
5511 	char buf[96];
5512 	int i = 0;
5513 
5514 	/*
5515 	 * For most these errors, there is nothing that can be done except
5516 	 * report or record it.
5517 	 */
5518 	dd_dev_info(dd, "CCE Error: %s\n",
5519 		    cce_err_status_string(buf, sizeof(buf), reg));
5520 
5521 	if ((reg & CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK) &&
5522 	    is_ax(dd) && (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)) {
5523 		/* this error requires a manual drop into SPC freeze mode */
5524 		/* then a fix up */
5525 		start_freeze_handling(dd->pport, FREEZE_SELF);
5526 	}
5527 
5528 	for (i = 0; i < NUM_CCE_ERR_STATUS_COUNTERS; i++) {
5529 		if (reg & (1ull << i)) {
5530 			incr_cntr64(&dd->cce_err_status_cnt[i]);
5531 			/* maintain a counter over all cce_err_status errors */
5532 			incr_cntr64(&dd->sw_cce_err_status_aggregate);
5533 		}
5534 	}
5535 }
5536 
5537 /*
5538  * Check counters for receive errors that do not have an interrupt
5539  * associated with them.
5540  */
5541 #define RCVERR_CHECK_TIME 10
update_rcverr_timer(struct timer_list * t)5542 static void update_rcverr_timer(struct timer_list *t)
5543 {
5544 	struct hfi1_devdata *dd = from_timer(dd, t, rcverr_timer);
5545 	struct hfi1_pportdata *ppd = dd->pport;
5546 	u32 cur_ovfl_cnt = read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL);
5547 
5548 	if (dd->rcv_ovfl_cnt < cur_ovfl_cnt &&
5549 	    ppd->port_error_action & OPA_PI_MASK_EX_BUFFER_OVERRUN) {
5550 		dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__);
5551 		set_link_down_reason(
5552 		ppd, OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN, 0,
5553 		OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN);
5554 		queue_work(ppd->link_wq, &ppd->link_bounce_work);
5555 	}
5556 	dd->rcv_ovfl_cnt = (u32)cur_ovfl_cnt;
5557 
5558 	mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5559 }
5560 
init_rcverr(struct hfi1_devdata * dd)5561 static int init_rcverr(struct hfi1_devdata *dd)
5562 {
5563 	timer_setup(&dd->rcverr_timer, update_rcverr_timer, 0);
5564 	/* Assume the hardware counter has been reset */
5565 	dd->rcv_ovfl_cnt = 0;
5566 	return mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5567 }
5568 
free_rcverr(struct hfi1_devdata * dd)5569 static void free_rcverr(struct hfi1_devdata *dd)
5570 {
5571 	if (dd->rcverr_timer.function)
5572 		del_timer_sync(&dd->rcverr_timer);
5573 }
5574 
handle_rxe_err(struct hfi1_devdata * dd,u32 unused,u64 reg)5575 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5576 {
5577 	char buf[96];
5578 	int i = 0;
5579 
5580 	dd_dev_info(dd, "Receive Error: %s\n",
5581 		    rxe_err_status_string(buf, sizeof(buf), reg));
5582 
5583 	if (reg & ALL_RXE_FREEZE_ERR) {
5584 		int flags = 0;
5585 
5586 		/*
5587 		 * Freeze mode recovery is disabled for the errors
5588 		 * in RXE_FREEZE_ABORT_MASK
5589 		 */
5590 		if (is_ax(dd) && (reg & RXE_FREEZE_ABORT_MASK))
5591 			flags = FREEZE_ABORT;
5592 
5593 		start_freeze_handling(dd->pport, flags);
5594 	}
5595 
5596 	for (i = 0; i < NUM_RCV_ERR_STATUS_COUNTERS; i++) {
5597 		if (reg & (1ull << i))
5598 			incr_cntr64(&dd->rcv_err_status_cnt[i]);
5599 	}
5600 }
5601 
handle_misc_err(struct hfi1_devdata * dd,u32 unused,u64 reg)5602 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5603 {
5604 	char buf[96];
5605 	int i = 0;
5606 
5607 	dd_dev_info(dd, "Misc Error: %s",
5608 		    misc_err_status_string(buf, sizeof(buf), reg));
5609 	for (i = 0; i < NUM_MISC_ERR_STATUS_COUNTERS; i++) {
5610 		if (reg & (1ull << i))
5611 			incr_cntr64(&dd->misc_err_status_cnt[i]);
5612 	}
5613 }
5614 
handle_pio_err(struct hfi1_devdata * dd,u32 unused,u64 reg)5615 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5616 {
5617 	char buf[96];
5618 	int i = 0;
5619 
5620 	dd_dev_info(dd, "PIO Error: %s\n",
5621 		    pio_err_status_string(buf, sizeof(buf), reg));
5622 
5623 	if (reg & ALL_PIO_FREEZE_ERR)
5624 		start_freeze_handling(dd->pport, 0);
5625 
5626 	for (i = 0; i < NUM_SEND_PIO_ERR_STATUS_COUNTERS; i++) {
5627 		if (reg & (1ull << i))
5628 			incr_cntr64(&dd->send_pio_err_status_cnt[i]);
5629 	}
5630 }
5631 
handle_sdma_err(struct hfi1_devdata * dd,u32 unused,u64 reg)5632 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5633 {
5634 	char buf[96];
5635 	int i = 0;
5636 
5637 	dd_dev_info(dd, "SDMA Error: %s\n",
5638 		    sdma_err_status_string(buf, sizeof(buf), reg));
5639 
5640 	if (reg & ALL_SDMA_FREEZE_ERR)
5641 		start_freeze_handling(dd->pport, 0);
5642 
5643 	for (i = 0; i < NUM_SEND_DMA_ERR_STATUS_COUNTERS; i++) {
5644 		if (reg & (1ull << i))
5645 			incr_cntr64(&dd->send_dma_err_status_cnt[i]);
5646 	}
5647 }
5648 
__count_port_discards(struct hfi1_pportdata * ppd)5649 static inline void __count_port_discards(struct hfi1_pportdata *ppd)
5650 {
5651 	incr_cntr64(&ppd->port_xmit_discards);
5652 }
5653 
count_port_inactive(struct hfi1_devdata * dd)5654 static void count_port_inactive(struct hfi1_devdata *dd)
5655 {
5656 	__count_port_discards(dd->pport);
5657 }
5658 
5659 /*
5660  * We have had a "disallowed packet" error during egress. Determine the
5661  * integrity check which failed, and update relevant error counter, etc.
5662  *
5663  * Note that the SEND_EGRESS_ERR_INFO register has only a single
5664  * bit of state per integrity check, and so we can miss the reason for an
5665  * egress error if more than one packet fails the same integrity check
5666  * since we cleared the corresponding bit in SEND_EGRESS_ERR_INFO.
5667  */
handle_send_egress_err_info(struct hfi1_devdata * dd,int vl)5668 static void handle_send_egress_err_info(struct hfi1_devdata *dd,
5669 					int vl)
5670 {
5671 	struct hfi1_pportdata *ppd = dd->pport;
5672 	u64 src = read_csr(dd, SEND_EGRESS_ERR_SOURCE); /* read first */
5673 	u64 info = read_csr(dd, SEND_EGRESS_ERR_INFO);
5674 	char buf[96];
5675 
5676 	/* clear down all observed info as quickly as possible after read */
5677 	write_csr(dd, SEND_EGRESS_ERR_INFO, info);
5678 
5679 	dd_dev_info(dd,
5680 		    "Egress Error Info: 0x%llx, %s Egress Error Src 0x%llx\n",
5681 		    info, egress_err_info_string(buf, sizeof(buf), info), src);
5682 
5683 	/* Eventually add other counters for each bit */
5684 	if (info & PORT_DISCARD_EGRESS_ERRS) {
5685 		int weight, i;
5686 
5687 		/*
5688 		 * Count all applicable bits as individual errors and
5689 		 * attribute them to the packet that triggered this handler.
5690 		 * This may not be completely accurate due to limitations
5691 		 * on the available hardware error information.  There is
5692 		 * a single information register and any number of error
5693 		 * packets may have occurred and contributed to it before
5694 		 * this routine is called.  This means that:
5695 		 * a) If multiple packets with the same error occur before
5696 		 *    this routine is called, earlier packets are missed.
5697 		 *    There is only a single bit for each error type.
5698 		 * b) Errors may not be attributed to the correct VL.
5699 		 *    The driver is attributing all bits in the info register
5700 		 *    to the packet that triggered this call, but bits
5701 		 *    could be an accumulation of different packets with
5702 		 *    different VLs.
5703 		 * c) A single error packet may have multiple counts attached
5704 		 *    to it.  There is no way for the driver to know if
5705 		 *    multiple bits set in the info register are due to a
5706 		 *    single packet or multiple packets.  The driver assumes
5707 		 *    multiple packets.
5708 		 */
5709 		weight = hweight64(info & PORT_DISCARD_EGRESS_ERRS);
5710 		for (i = 0; i < weight; i++) {
5711 			__count_port_discards(ppd);
5712 			if (vl >= 0 && vl < TXE_NUM_DATA_VL)
5713 				incr_cntr64(&ppd->port_xmit_discards_vl[vl]);
5714 			else if (vl == 15)
5715 				incr_cntr64(&ppd->port_xmit_discards_vl
5716 					    [C_VL_15]);
5717 		}
5718 	}
5719 }
5720 
5721 /*
5722  * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5723  * register. Does it represent a 'port inactive' error?
5724  */
port_inactive_err(u64 posn)5725 static inline int port_inactive_err(u64 posn)
5726 {
5727 	return (posn >= SEES(TX_LINKDOWN) &&
5728 		posn <= SEES(TX_INCORRECT_LINK_STATE));
5729 }
5730 
5731 /*
5732  * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5733  * register. Does it represent a 'disallowed packet' error?
5734  */
disallowed_pkt_err(int posn)5735 static inline int disallowed_pkt_err(int posn)
5736 {
5737 	return (posn >= SEES(TX_SDMA0_DISALLOWED_PACKET) &&
5738 		posn <= SEES(TX_SDMA15_DISALLOWED_PACKET));
5739 }
5740 
5741 /*
5742  * Input value is a bit position of one of the SDMA engine disallowed
5743  * packet errors.  Return which engine.  Use of this must be guarded by
5744  * disallowed_pkt_err().
5745  */
disallowed_pkt_engine(int posn)5746 static inline int disallowed_pkt_engine(int posn)
5747 {
5748 	return posn - SEES(TX_SDMA0_DISALLOWED_PACKET);
5749 }
5750 
5751 /*
5752  * Translate an SDMA engine to a VL.  Return -1 if the tranlation cannot
5753  * be done.
5754  */
engine_to_vl(struct hfi1_devdata * dd,int engine)5755 static int engine_to_vl(struct hfi1_devdata *dd, int engine)
5756 {
5757 	struct sdma_vl_map *m;
5758 	int vl;
5759 
5760 	/* range check */
5761 	if (engine < 0 || engine >= TXE_NUM_SDMA_ENGINES)
5762 		return -1;
5763 
5764 	rcu_read_lock();
5765 	m = rcu_dereference(dd->sdma_map);
5766 	vl = m->engine_to_vl[engine];
5767 	rcu_read_unlock();
5768 
5769 	return vl;
5770 }
5771 
5772 /*
5773  * Translate the send context (sofware index) into a VL.  Return -1 if the
5774  * translation cannot be done.
5775  */
sc_to_vl(struct hfi1_devdata * dd,int sw_index)5776 static int sc_to_vl(struct hfi1_devdata *dd, int sw_index)
5777 {
5778 	struct send_context_info *sci;
5779 	struct send_context *sc;
5780 	int i;
5781 
5782 	sci = &dd->send_contexts[sw_index];
5783 
5784 	/* there is no information for user (PSM) and ack contexts */
5785 	if ((sci->type != SC_KERNEL) && (sci->type != SC_VL15))
5786 		return -1;
5787 
5788 	sc = sci->sc;
5789 	if (!sc)
5790 		return -1;
5791 	if (dd->vld[15].sc == sc)
5792 		return 15;
5793 	for (i = 0; i < num_vls; i++)
5794 		if (dd->vld[i].sc == sc)
5795 			return i;
5796 
5797 	return -1;
5798 }
5799 
handle_egress_err(struct hfi1_devdata * dd,u32 unused,u64 reg)5800 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5801 {
5802 	u64 reg_copy = reg, handled = 0;
5803 	char buf[96];
5804 	int i = 0;
5805 
5806 	if (reg & ALL_TXE_EGRESS_FREEZE_ERR)
5807 		start_freeze_handling(dd->pport, 0);
5808 	else if (is_ax(dd) &&
5809 		 (reg & SEND_EGRESS_ERR_STATUS_TX_CREDIT_RETURN_VL_ERR_SMASK) &&
5810 		 (dd->icode != ICODE_FUNCTIONAL_SIMULATOR))
5811 		start_freeze_handling(dd->pport, 0);
5812 
5813 	while (reg_copy) {
5814 		int posn = fls64(reg_copy);
5815 		/* fls64() returns a 1-based offset, we want it zero based */
5816 		int shift = posn - 1;
5817 		u64 mask = 1ULL << shift;
5818 
5819 		if (port_inactive_err(shift)) {
5820 			count_port_inactive(dd);
5821 			handled |= mask;
5822 		} else if (disallowed_pkt_err(shift)) {
5823 			int vl = engine_to_vl(dd, disallowed_pkt_engine(shift));
5824 
5825 			handle_send_egress_err_info(dd, vl);
5826 			handled |= mask;
5827 		}
5828 		reg_copy &= ~mask;
5829 	}
5830 
5831 	reg &= ~handled;
5832 
5833 	if (reg)
5834 		dd_dev_info(dd, "Egress Error: %s\n",
5835 			    egress_err_status_string(buf, sizeof(buf), reg));
5836 
5837 	for (i = 0; i < NUM_SEND_EGRESS_ERR_STATUS_COUNTERS; i++) {
5838 		if (reg & (1ull << i))
5839 			incr_cntr64(&dd->send_egress_err_status_cnt[i]);
5840 	}
5841 }
5842 
handle_txe_err(struct hfi1_devdata * dd,u32 unused,u64 reg)5843 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5844 {
5845 	char buf[96];
5846 	int i = 0;
5847 
5848 	dd_dev_info(dd, "Send Error: %s\n",
5849 		    send_err_status_string(buf, sizeof(buf), reg));
5850 
5851 	for (i = 0; i < NUM_SEND_ERR_STATUS_COUNTERS; i++) {
5852 		if (reg & (1ull << i))
5853 			incr_cntr64(&dd->send_err_status_cnt[i]);
5854 	}
5855 }
5856 
5857 /*
5858  * The maximum number of times the error clear down will loop before
5859  * blocking a repeating error.  This value is arbitrary.
5860  */
5861 #define MAX_CLEAR_COUNT 20
5862 
5863 /*
5864  * Clear and handle an error register.  All error interrupts are funneled
5865  * through here to have a central location to correctly handle single-
5866  * or multi-shot errors.
5867  *
5868  * For non per-context registers, call this routine with a context value
5869  * of 0 so the per-context offset is zero.
5870  *
5871  * If the handler loops too many times, assume that something is wrong
5872  * and can't be fixed, so mask the error bits.
5873  */
interrupt_clear_down(struct hfi1_devdata * dd,u32 context,const struct err_reg_info * eri)5874 static void interrupt_clear_down(struct hfi1_devdata *dd,
5875 				 u32 context,
5876 				 const struct err_reg_info *eri)
5877 {
5878 	u64 reg;
5879 	u32 count;
5880 
5881 	/* read in a loop until no more errors are seen */
5882 	count = 0;
5883 	while (1) {
5884 		reg = read_kctxt_csr(dd, context, eri->status);
5885 		if (reg == 0)
5886 			break;
5887 		write_kctxt_csr(dd, context, eri->clear, reg);
5888 		if (likely(eri->handler))
5889 			eri->handler(dd, context, reg);
5890 		count++;
5891 		if (count > MAX_CLEAR_COUNT) {
5892 			u64 mask;
5893 
5894 			dd_dev_err(dd, "Repeating %s bits 0x%llx - masking\n",
5895 				   eri->desc, reg);
5896 			/*
5897 			 * Read-modify-write so any other masked bits
5898 			 * remain masked.
5899 			 */
5900 			mask = read_kctxt_csr(dd, context, eri->mask);
5901 			mask &= ~reg;
5902 			write_kctxt_csr(dd, context, eri->mask, mask);
5903 			break;
5904 		}
5905 	}
5906 }
5907 
5908 /*
5909  * CCE block "misc" interrupt.  Source is < 16.
5910  */
is_misc_err_int(struct hfi1_devdata * dd,unsigned int source)5911 static void is_misc_err_int(struct hfi1_devdata *dd, unsigned int source)
5912 {
5913 	const struct err_reg_info *eri = &misc_errs[source];
5914 
5915 	if (eri->handler) {
5916 		interrupt_clear_down(dd, 0, eri);
5917 	} else {
5918 		dd_dev_err(dd, "Unexpected misc interrupt (%u) - reserved\n",
5919 			   source);
5920 	}
5921 }
5922 
send_context_err_status_string(char * buf,int buf_len,u64 flags)5923 static char *send_context_err_status_string(char *buf, int buf_len, u64 flags)
5924 {
5925 	return flag_string(buf, buf_len, flags,
5926 			   sc_err_status_flags,
5927 			   ARRAY_SIZE(sc_err_status_flags));
5928 }
5929 
5930 /*
5931  * Send context error interrupt.  Source (hw_context) is < 160.
5932  *
5933  * All send context errors cause the send context to halt.  The normal
5934  * clear-down mechanism cannot be used because we cannot clear the
5935  * error bits until several other long-running items are done first.
5936  * This is OK because with the context halted, nothing else is going
5937  * to happen on it anyway.
5938  */
is_sendctxt_err_int(struct hfi1_devdata * dd,unsigned int hw_context)5939 static void is_sendctxt_err_int(struct hfi1_devdata *dd,
5940 				unsigned int hw_context)
5941 {
5942 	struct send_context_info *sci;
5943 	struct send_context *sc;
5944 	char flags[96];
5945 	u64 status;
5946 	u32 sw_index;
5947 	int i = 0;
5948 	unsigned long irq_flags;
5949 
5950 	sw_index = dd->hw_to_sw[hw_context];
5951 	if (sw_index >= dd->num_send_contexts) {
5952 		dd_dev_err(dd,
5953 			   "out of range sw index %u for send context %u\n",
5954 			   sw_index, hw_context);
5955 		return;
5956 	}
5957 	sci = &dd->send_contexts[sw_index];
5958 	spin_lock_irqsave(&dd->sc_lock, irq_flags);
5959 	sc = sci->sc;
5960 	if (!sc) {
5961 		dd_dev_err(dd, "%s: context %u(%u): no sc?\n", __func__,
5962 			   sw_index, hw_context);
5963 		spin_unlock_irqrestore(&dd->sc_lock, irq_flags);
5964 		return;
5965 	}
5966 
5967 	/* tell the software that a halt has begun */
5968 	sc_stop(sc, SCF_HALTED);
5969 
5970 	status = read_kctxt_csr(dd, hw_context, SEND_CTXT_ERR_STATUS);
5971 
5972 	dd_dev_info(dd, "Send Context %u(%u) Error: %s\n", sw_index, hw_context,
5973 		    send_context_err_status_string(flags, sizeof(flags),
5974 						   status));
5975 
5976 	if (status & SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK)
5977 		handle_send_egress_err_info(dd, sc_to_vl(dd, sw_index));
5978 
5979 	/*
5980 	 * Automatically restart halted kernel contexts out of interrupt
5981 	 * context.  User contexts must ask the driver to restart the context.
5982 	 */
5983 	if (sc->type != SC_USER)
5984 		queue_work(dd->pport->hfi1_wq, &sc->halt_work);
5985 	spin_unlock_irqrestore(&dd->sc_lock, irq_flags);
5986 
5987 	/*
5988 	 * Update the counters for the corresponding status bits.
5989 	 * Note that these particular counters are aggregated over all
5990 	 * 160 contexts.
5991 	 */
5992 	for (i = 0; i < NUM_SEND_CTXT_ERR_STATUS_COUNTERS; i++) {
5993 		if (status & (1ull << i))
5994 			incr_cntr64(&dd->sw_ctxt_err_status_cnt[i]);
5995 	}
5996 }
5997 
handle_sdma_eng_err(struct hfi1_devdata * dd,unsigned int source,u64 status)5998 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
5999 				unsigned int source, u64 status)
6000 {
6001 	struct sdma_engine *sde;
6002 	int i = 0;
6003 
6004 	sde = &dd->per_sdma[source];
6005 #ifdef CONFIG_SDMA_VERBOSITY
6006 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
6007 		   slashstrip(__FILE__), __LINE__, __func__);
6008 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) source: %u status 0x%llx\n",
6009 		   sde->this_idx, source, (unsigned long long)status);
6010 #endif
6011 	sde->err_cnt++;
6012 	sdma_engine_error(sde, status);
6013 
6014 	/*
6015 	* Update the counters for the corresponding status bits.
6016 	* Note that these particular counters are aggregated over
6017 	* all 16 DMA engines.
6018 	*/
6019 	for (i = 0; i < NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS; i++) {
6020 		if (status & (1ull << i))
6021 			incr_cntr64(&dd->sw_send_dma_eng_err_status_cnt[i]);
6022 	}
6023 }
6024 
6025 /*
6026  * CCE block SDMA error interrupt.  Source is < 16.
6027  */
is_sdma_eng_err_int(struct hfi1_devdata * dd,unsigned int source)6028 static void is_sdma_eng_err_int(struct hfi1_devdata *dd, unsigned int source)
6029 {
6030 #ifdef CONFIG_SDMA_VERBOSITY
6031 	struct sdma_engine *sde = &dd->per_sdma[source];
6032 
6033 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
6034 		   slashstrip(__FILE__), __LINE__, __func__);
6035 	dd_dev_err(dd, "CONFIG SDMA(%u) source: %u\n", sde->this_idx,
6036 		   source);
6037 	sdma_dumpstate(sde);
6038 #endif
6039 	interrupt_clear_down(dd, source, &sdma_eng_err);
6040 }
6041 
6042 /*
6043  * CCE block "various" interrupt.  Source is < 8.
6044  */
is_various_int(struct hfi1_devdata * dd,unsigned int source)6045 static void is_various_int(struct hfi1_devdata *dd, unsigned int source)
6046 {
6047 	const struct err_reg_info *eri = &various_err[source];
6048 
6049 	/*
6050 	 * TCritInt cannot go through interrupt_clear_down()
6051 	 * because it is not a second tier interrupt. The handler
6052 	 * should be called directly.
6053 	 */
6054 	if (source == TCRIT_INT_SOURCE)
6055 		handle_temp_err(dd);
6056 	else if (eri->handler)
6057 		interrupt_clear_down(dd, 0, eri);
6058 	else
6059 		dd_dev_info(dd,
6060 			    "%s: Unimplemented/reserved interrupt %d\n",
6061 			    __func__, source);
6062 }
6063 
handle_qsfp_int(struct hfi1_devdata * dd,u32 src_ctx,u64 reg)6064 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 src_ctx, u64 reg)
6065 {
6066 	/* src_ctx is always zero */
6067 	struct hfi1_pportdata *ppd = dd->pport;
6068 	unsigned long flags;
6069 	u64 qsfp_int_mgmt = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
6070 
6071 	if (reg & QSFP_HFI0_MODPRST_N) {
6072 		if (!qsfp_mod_present(ppd)) {
6073 			dd_dev_info(dd, "%s: QSFP module removed\n",
6074 				    __func__);
6075 
6076 			ppd->driver_link_ready = 0;
6077 			/*
6078 			 * Cable removed, reset all our information about the
6079 			 * cache and cable capabilities
6080 			 */
6081 
6082 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6083 			/*
6084 			 * We don't set cache_refresh_required here as we expect
6085 			 * an interrupt when a cable is inserted
6086 			 */
6087 			ppd->qsfp_info.cache_valid = 0;
6088 			ppd->qsfp_info.reset_needed = 0;
6089 			ppd->qsfp_info.limiting_active = 0;
6090 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6091 					       flags);
6092 			/* Invert the ModPresent pin now to detect plug-in */
6093 			write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6094 				  ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6095 
6096 			if ((ppd->offline_disabled_reason >
6097 			  HFI1_ODR_MASK(
6098 			  OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED)) ||
6099 			  (ppd->offline_disabled_reason ==
6100 			  HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE)))
6101 				ppd->offline_disabled_reason =
6102 				HFI1_ODR_MASK(
6103 				OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED);
6104 
6105 			if (ppd->host_link_state == HLS_DN_POLL) {
6106 				/*
6107 				 * The link is still in POLL. This means
6108 				 * that the normal link down processing
6109 				 * will not happen. We have to do it here
6110 				 * before turning the DC off.
6111 				 */
6112 				queue_work(ppd->link_wq, &ppd->link_down_work);
6113 			}
6114 		} else {
6115 			dd_dev_info(dd, "%s: QSFP module inserted\n",
6116 				    __func__);
6117 
6118 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6119 			ppd->qsfp_info.cache_valid = 0;
6120 			ppd->qsfp_info.cache_refresh_required = 1;
6121 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6122 					       flags);
6123 
6124 			/*
6125 			 * Stop inversion of ModPresent pin to detect
6126 			 * removal of the cable
6127 			 */
6128 			qsfp_int_mgmt &= ~(u64)QSFP_HFI0_MODPRST_N;
6129 			write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6130 				  ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6131 
6132 			ppd->offline_disabled_reason =
6133 				HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
6134 		}
6135 	}
6136 
6137 	if (reg & QSFP_HFI0_INT_N) {
6138 		dd_dev_info(dd, "%s: Interrupt received from QSFP module\n",
6139 			    __func__);
6140 		spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6141 		ppd->qsfp_info.check_interrupt_flags = 1;
6142 		spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, flags);
6143 	}
6144 
6145 	/* Schedule the QSFP work only if there is a cable attached. */
6146 	if (qsfp_mod_present(ppd))
6147 		queue_work(ppd->link_wq, &ppd->qsfp_info.qsfp_work);
6148 }
6149 
request_host_lcb_access(struct hfi1_devdata * dd)6150 static int request_host_lcb_access(struct hfi1_devdata *dd)
6151 {
6152 	int ret;
6153 
6154 	ret = do_8051_command(dd, HCMD_MISC,
6155 			      (u64)HCMD_MISC_REQUEST_LCB_ACCESS <<
6156 			      LOAD_DATA_FIELD_ID_SHIFT, NULL);
6157 	if (ret != HCMD_SUCCESS) {
6158 		dd_dev_err(dd, "%s: command failed with error %d\n",
6159 			   __func__, ret);
6160 	}
6161 	return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6162 }
6163 
request_8051_lcb_access(struct hfi1_devdata * dd)6164 static int request_8051_lcb_access(struct hfi1_devdata *dd)
6165 {
6166 	int ret;
6167 
6168 	ret = do_8051_command(dd, HCMD_MISC,
6169 			      (u64)HCMD_MISC_GRANT_LCB_ACCESS <<
6170 			      LOAD_DATA_FIELD_ID_SHIFT, NULL);
6171 	if (ret != HCMD_SUCCESS) {
6172 		dd_dev_err(dd, "%s: command failed with error %d\n",
6173 			   __func__, ret);
6174 	}
6175 	return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6176 }
6177 
6178 /*
6179  * Set the LCB selector - allow host access.  The DCC selector always
6180  * points to the host.
6181  */
set_host_lcb_access(struct hfi1_devdata * dd)6182 static inline void set_host_lcb_access(struct hfi1_devdata *dd)
6183 {
6184 	write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6185 		  DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK |
6186 		  DC_DC8051_CFG_CSR_ACCESS_SEL_LCB_SMASK);
6187 }
6188 
6189 /*
6190  * Clear the LCB selector - allow 8051 access.  The DCC selector always
6191  * points to the host.
6192  */
set_8051_lcb_access(struct hfi1_devdata * dd)6193 static inline void set_8051_lcb_access(struct hfi1_devdata *dd)
6194 {
6195 	write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6196 		  DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK);
6197 }
6198 
6199 /*
6200  * Acquire LCB access from the 8051.  If the host already has access,
6201  * just increment a counter.  Otherwise, inform the 8051 that the
6202  * host is taking access.
6203  *
6204  * Returns:
6205  *	0 on success
6206  *	-EBUSY if the 8051 has control and cannot be disturbed
6207  *	-errno if unable to acquire access from the 8051
6208  */
acquire_lcb_access(struct hfi1_devdata * dd,int sleep_ok)6209 int acquire_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6210 {
6211 	struct hfi1_pportdata *ppd = dd->pport;
6212 	int ret = 0;
6213 
6214 	/*
6215 	 * Use the host link state lock so the operation of this routine
6216 	 * { link state check, selector change, count increment } can occur
6217 	 * as a unit against a link state change.  Otherwise there is a
6218 	 * race between the state change and the count increment.
6219 	 */
6220 	if (sleep_ok) {
6221 		mutex_lock(&ppd->hls_lock);
6222 	} else {
6223 		while (!mutex_trylock(&ppd->hls_lock))
6224 			udelay(1);
6225 	}
6226 
6227 	/* this access is valid only when the link is up */
6228 	if (ppd->host_link_state & HLS_DOWN) {
6229 		dd_dev_info(dd, "%s: link state %s not up\n",
6230 			    __func__, link_state_name(ppd->host_link_state));
6231 		ret = -EBUSY;
6232 		goto done;
6233 	}
6234 
6235 	if (dd->lcb_access_count == 0) {
6236 		ret = request_host_lcb_access(dd);
6237 		if (ret) {
6238 			dd_dev_err(dd,
6239 				   "%s: unable to acquire LCB access, err %d\n",
6240 				   __func__, ret);
6241 			goto done;
6242 		}
6243 		set_host_lcb_access(dd);
6244 	}
6245 	dd->lcb_access_count++;
6246 done:
6247 	mutex_unlock(&ppd->hls_lock);
6248 	return ret;
6249 }
6250 
6251 /*
6252  * Release LCB access by decrementing the use count.  If the count is moving
6253  * from 1 to 0, inform 8051 that it has control back.
6254  *
6255  * Returns:
6256  *	0 on success
6257  *	-errno if unable to release access to the 8051
6258  */
release_lcb_access(struct hfi1_devdata * dd,int sleep_ok)6259 int release_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6260 {
6261 	int ret = 0;
6262 
6263 	/*
6264 	 * Use the host link state lock because the acquire needed it.
6265 	 * Here, we only need to keep { selector change, count decrement }
6266 	 * as a unit.
6267 	 */
6268 	if (sleep_ok) {
6269 		mutex_lock(&dd->pport->hls_lock);
6270 	} else {
6271 		while (!mutex_trylock(&dd->pport->hls_lock))
6272 			udelay(1);
6273 	}
6274 
6275 	if (dd->lcb_access_count == 0) {
6276 		dd_dev_err(dd, "%s: LCB access count is zero.  Skipping.\n",
6277 			   __func__);
6278 		goto done;
6279 	}
6280 
6281 	if (dd->lcb_access_count == 1) {
6282 		set_8051_lcb_access(dd);
6283 		ret = request_8051_lcb_access(dd);
6284 		if (ret) {
6285 			dd_dev_err(dd,
6286 				   "%s: unable to release LCB access, err %d\n",
6287 				   __func__, ret);
6288 			/* restore host access if the grant didn't work */
6289 			set_host_lcb_access(dd);
6290 			goto done;
6291 		}
6292 	}
6293 	dd->lcb_access_count--;
6294 done:
6295 	mutex_unlock(&dd->pport->hls_lock);
6296 	return ret;
6297 }
6298 
6299 /*
6300  * Initialize LCB access variables and state.  Called during driver load,
6301  * after most of the initialization is finished.
6302  *
6303  * The DC default is LCB access on for the host.  The driver defaults to
6304  * leaving access to the 8051.  Assign access now - this constrains the call
6305  * to this routine to be after all LCB set-up is done.  In particular, after
6306  * hf1_init_dd() -> set_up_interrupts() -> clear_all_interrupts()
6307  */
init_lcb_access(struct hfi1_devdata * dd)6308 static void init_lcb_access(struct hfi1_devdata *dd)
6309 {
6310 	dd->lcb_access_count = 0;
6311 }
6312 
6313 /*
6314  * Write a response back to a 8051 request.
6315  */
hreq_response(struct hfi1_devdata * dd,u8 return_code,u16 rsp_data)6316 static void hreq_response(struct hfi1_devdata *dd, u8 return_code, u16 rsp_data)
6317 {
6318 	write_csr(dd, DC_DC8051_CFG_EXT_DEV_0,
6319 		  DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK |
6320 		  (u64)return_code <<
6321 		  DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT |
6322 		  (u64)rsp_data << DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
6323 }
6324 
6325 /*
6326  * Handle host requests from the 8051.
6327  */
handle_8051_request(struct hfi1_pportdata * ppd)6328 static void handle_8051_request(struct hfi1_pportdata *ppd)
6329 {
6330 	struct hfi1_devdata *dd = ppd->dd;
6331 	u64 reg;
6332 	u16 data = 0;
6333 	u8 type;
6334 
6335 	reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_1);
6336 	if ((reg & DC_DC8051_CFG_EXT_DEV_1_REQ_NEW_SMASK) == 0)
6337 		return;	/* no request */
6338 
6339 	/* zero out COMPLETED so the response is seen */
6340 	write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, 0);
6341 
6342 	/* extract request details */
6343 	type = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_SHIFT)
6344 			& DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_MASK;
6345 	data = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT)
6346 			& DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_MASK;
6347 
6348 	switch (type) {
6349 	case HREQ_LOAD_CONFIG:
6350 	case HREQ_SAVE_CONFIG:
6351 	case HREQ_READ_CONFIG:
6352 	case HREQ_SET_TX_EQ_ABS:
6353 	case HREQ_SET_TX_EQ_REL:
6354 	case HREQ_ENABLE:
6355 		dd_dev_info(dd, "8051 request: request 0x%x not supported\n",
6356 			    type);
6357 		hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6358 		break;
6359 	case HREQ_LCB_RESET:
6360 		/* Put the LCB, RX FPE and TX FPE into reset */
6361 		write_csr(dd, DCC_CFG_RESET, LCB_RX_FPE_TX_FPE_INTO_RESET);
6362 		/* Make sure the write completed */
6363 		(void)read_csr(dd, DCC_CFG_RESET);
6364 		/* Hold the reset long enough to take effect */
6365 		udelay(1);
6366 		/* Take the LCB, RX FPE and TX FPE out of reset */
6367 		write_csr(dd, DCC_CFG_RESET, LCB_RX_FPE_TX_FPE_OUT_OF_RESET);
6368 		hreq_response(dd, HREQ_SUCCESS, 0);
6369 
6370 		break;
6371 	case HREQ_CONFIG_DONE:
6372 		hreq_response(dd, HREQ_SUCCESS, 0);
6373 		break;
6374 
6375 	case HREQ_INTERFACE_TEST:
6376 		hreq_response(dd, HREQ_SUCCESS, data);
6377 		break;
6378 	default:
6379 		dd_dev_err(dd, "8051 request: unknown request 0x%x\n", type);
6380 		hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6381 		break;
6382 	}
6383 }
6384 
6385 /*
6386  * Set up allocation unit vaulue.
6387  */
set_up_vau(struct hfi1_devdata * dd,u8 vau)6388 void set_up_vau(struct hfi1_devdata *dd, u8 vau)
6389 {
6390 	u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
6391 
6392 	/* do not modify other values in the register */
6393 	reg &= ~SEND_CM_GLOBAL_CREDIT_AU_SMASK;
6394 	reg |= (u64)vau << SEND_CM_GLOBAL_CREDIT_AU_SHIFT;
6395 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
6396 }
6397 
6398 /*
6399  * Set up initial VL15 credits of the remote.  Assumes the rest of
6400  * the CM credit registers are zero from a previous global or credit reset.
6401  * Shared limit for VL15 will always be 0.
6402  */
set_up_vl15(struct hfi1_devdata * dd,u16 vl15buf)6403 void set_up_vl15(struct hfi1_devdata *dd, u16 vl15buf)
6404 {
6405 	u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
6406 
6407 	/* set initial values for total and shared credit limit */
6408 	reg &= ~(SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK |
6409 		 SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK);
6410 
6411 	/*
6412 	 * Set total limit to be equal to VL15 credits.
6413 	 * Leave shared limit at 0.
6414 	 */
6415 	reg |= (u64)vl15buf << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
6416 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
6417 
6418 	write_csr(dd, SEND_CM_CREDIT_VL15, (u64)vl15buf
6419 		  << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT);
6420 }
6421 
6422 /*
6423  * Zero all credit details from the previous connection and
6424  * reset the CM manager's internal counters.
6425  */
reset_link_credits(struct hfi1_devdata * dd)6426 void reset_link_credits(struct hfi1_devdata *dd)
6427 {
6428 	int i;
6429 
6430 	/* remove all previous VL credit limits */
6431 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
6432 		write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
6433 	write_csr(dd, SEND_CM_CREDIT_VL15, 0);
6434 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, 0);
6435 	/* reset the CM block */
6436 	pio_send_control(dd, PSC_CM_RESET);
6437 	/* reset cached value */
6438 	dd->vl15buf_cached = 0;
6439 }
6440 
6441 /* convert a vCU to a CU */
vcu_to_cu(u8 vcu)6442 static u32 vcu_to_cu(u8 vcu)
6443 {
6444 	return 1 << vcu;
6445 }
6446 
6447 /* convert a CU to a vCU */
cu_to_vcu(u32 cu)6448 static u8 cu_to_vcu(u32 cu)
6449 {
6450 	return ilog2(cu);
6451 }
6452 
6453 /* convert a vAU to an AU */
vau_to_au(u8 vau)6454 static u32 vau_to_au(u8 vau)
6455 {
6456 	return 8 * (1 << vau);
6457 }
6458 
set_linkup_defaults(struct hfi1_pportdata * ppd)6459 static void set_linkup_defaults(struct hfi1_pportdata *ppd)
6460 {
6461 	ppd->sm_trap_qp = 0x0;
6462 	ppd->sa_qp = 0x1;
6463 }
6464 
6465 /*
6466  * Graceful LCB shutdown.  This leaves the LCB FIFOs in reset.
6467  */
lcb_shutdown(struct hfi1_devdata * dd,int abort)6468 static void lcb_shutdown(struct hfi1_devdata *dd, int abort)
6469 {
6470 	u64 reg;
6471 
6472 	/* clear lcb run: LCB_CFG_RUN.EN = 0 */
6473 	write_csr(dd, DC_LCB_CFG_RUN, 0);
6474 	/* set tx fifo reset: LCB_CFG_TX_FIFOS_RESET.VAL = 1 */
6475 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET,
6476 		  1ull << DC_LCB_CFG_TX_FIFOS_RESET_VAL_SHIFT);
6477 	/* set dcc reset csr: DCC_CFG_RESET.{reset_lcb,reset_rx_fpe} = 1 */
6478 	dd->lcb_err_en = read_csr(dd, DC_LCB_ERR_EN);
6479 	reg = read_csr(dd, DCC_CFG_RESET);
6480 	write_csr(dd, DCC_CFG_RESET, reg |
6481 		  DCC_CFG_RESET_RESET_LCB | DCC_CFG_RESET_RESET_RX_FPE);
6482 	(void)read_csr(dd, DCC_CFG_RESET); /* make sure the write completed */
6483 	if (!abort) {
6484 		udelay(1);    /* must hold for the longer of 16cclks or 20ns */
6485 		write_csr(dd, DCC_CFG_RESET, reg);
6486 		write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6487 	}
6488 }
6489 
6490 /*
6491  * This routine should be called after the link has been transitioned to
6492  * OFFLINE (OFFLINE state has the side effect of putting the SerDes into
6493  * reset).
6494  *
6495  * The expectation is that the caller of this routine would have taken
6496  * care of properly transitioning the link into the correct state.
6497  * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6498  *       before calling this function.
6499  */
_dc_shutdown(struct hfi1_devdata * dd)6500 static void _dc_shutdown(struct hfi1_devdata *dd)
6501 {
6502 	lockdep_assert_held(&dd->dc8051_lock);
6503 
6504 	if (dd->dc_shutdown)
6505 		return;
6506 
6507 	dd->dc_shutdown = 1;
6508 	/* Shutdown the LCB */
6509 	lcb_shutdown(dd, 1);
6510 	/*
6511 	 * Going to OFFLINE would have causes the 8051 to put the
6512 	 * SerDes into reset already. Just need to shut down the 8051,
6513 	 * itself.
6514 	 */
6515 	write_csr(dd, DC_DC8051_CFG_RST, 0x1);
6516 }
6517 
dc_shutdown(struct hfi1_devdata * dd)6518 static void dc_shutdown(struct hfi1_devdata *dd)
6519 {
6520 	mutex_lock(&dd->dc8051_lock);
6521 	_dc_shutdown(dd);
6522 	mutex_unlock(&dd->dc8051_lock);
6523 }
6524 
6525 /*
6526  * Calling this after the DC has been brought out of reset should not
6527  * do any damage.
6528  * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6529  *       before calling this function.
6530  */
_dc_start(struct hfi1_devdata * dd)6531 static void _dc_start(struct hfi1_devdata *dd)
6532 {
6533 	lockdep_assert_held(&dd->dc8051_lock);
6534 
6535 	if (!dd->dc_shutdown)
6536 		return;
6537 
6538 	/* Take the 8051 out of reset */
6539 	write_csr(dd, DC_DC8051_CFG_RST, 0ull);
6540 	/* Wait until 8051 is ready */
6541 	if (wait_fm_ready(dd, TIMEOUT_8051_START))
6542 		dd_dev_err(dd, "%s: timeout starting 8051 firmware\n",
6543 			   __func__);
6544 
6545 	/* Take away reset for LCB and RX FPE (set in lcb_shutdown). */
6546 	write_csr(dd, DCC_CFG_RESET, LCB_RX_FPE_TX_FPE_OUT_OF_RESET);
6547 	/* lcb_shutdown() with abort=1 does not restore these */
6548 	write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6549 	dd->dc_shutdown = 0;
6550 }
6551 
dc_start(struct hfi1_devdata * dd)6552 static void dc_start(struct hfi1_devdata *dd)
6553 {
6554 	mutex_lock(&dd->dc8051_lock);
6555 	_dc_start(dd);
6556 	mutex_unlock(&dd->dc8051_lock);
6557 }
6558 
6559 /*
6560  * These LCB adjustments are for the Aurora SerDes core in the FPGA.
6561  */
adjust_lcb_for_fpga_serdes(struct hfi1_devdata * dd)6562 static void adjust_lcb_for_fpga_serdes(struct hfi1_devdata *dd)
6563 {
6564 	u64 rx_radr, tx_radr;
6565 	u32 version;
6566 
6567 	if (dd->icode != ICODE_FPGA_EMULATION)
6568 		return;
6569 
6570 	/*
6571 	 * These LCB defaults on emulator _s are good, nothing to do here:
6572 	 *	LCB_CFG_TX_FIFOS_RADR
6573 	 *	LCB_CFG_RX_FIFOS_RADR
6574 	 *	LCB_CFG_LN_DCLK
6575 	 *	LCB_CFG_IGNORE_LOST_RCLK
6576 	 */
6577 	if (is_emulator_s(dd))
6578 		return;
6579 	/* else this is _p */
6580 
6581 	version = emulator_rev(dd);
6582 	if (!is_ax(dd))
6583 		version = 0x2d;	/* all B0 use 0x2d or higher settings */
6584 
6585 	if (version <= 0x12) {
6586 		/* release 0x12 and below */
6587 
6588 		/*
6589 		 * LCB_CFG_RX_FIFOS_RADR.RST_VAL = 0x9
6590 		 * LCB_CFG_RX_FIFOS_RADR.OK_TO_JUMP_VAL = 0x9
6591 		 * LCB_CFG_RX_FIFOS_RADR.DO_NOT_JUMP_VAL = 0xa
6592 		 */
6593 		rx_radr =
6594 		      0xaull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6595 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6596 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6597 		/*
6598 		 * LCB_CFG_TX_FIFOS_RADR.ON_REINIT = 0 (default)
6599 		 * LCB_CFG_TX_FIFOS_RADR.RST_VAL = 6
6600 		 */
6601 		tx_radr = 6ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6602 	} else if (version <= 0x18) {
6603 		/* release 0x13 up to 0x18 */
6604 		/* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6605 		rx_radr =
6606 		      0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6607 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6608 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6609 		tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6610 	} else if (version == 0x19) {
6611 		/* release 0x19 */
6612 		/* LCB_CFG_RX_FIFOS_RADR = 0xa99 */
6613 		rx_radr =
6614 		      0xAull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6615 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6616 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6617 		tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6618 	} else if (version == 0x1a) {
6619 		/* release 0x1a */
6620 		/* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6621 		rx_radr =
6622 		      0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6623 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6624 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6625 		tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6626 		write_csr(dd, DC_LCB_CFG_LN_DCLK, 1ull);
6627 	} else {
6628 		/* release 0x1b and higher */
6629 		/* LCB_CFG_RX_FIFOS_RADR = 0x877 */
6630 		rx_radr =
6631 		      0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6632 		    | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6633 		    | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6634 		tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6635 	}
6636 
6637 	write_csr(dd, DC_LCB_CFG_RX_FIFOS_RADR, rx_radr);
6638 	/* LCB_CFG_IGNORE_LOST_RCLK.EN = 1 */
6639 	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
6640 		  DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
6641 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RADR, tx_radr);
6642 }
6643 
6644 /*
6645  * Handle a SMA idle message
6646  *
6647  * This is a work-queue function outside of the interrupt.
6648  */
handle_sma_message(struct work_struct * work)6649 void handle_sma_message(struct work_struct *work)
6650 {
6651 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6652 							sma_message_work);
6653 	struct hfi1_devdata *dd = ppd->dd;
6654 	u64 msg;
6655 	int ret;
6656 
6657 	/*
6658 	 * msg is bytes 1-4 of the 40-bit idle message - the command code
6659 	 * is stripped off
6660 	 */
6661 	ret = read_idle_sma(dd, &msg);
6662 	if (ret)
6663 		return;
6664 	dd_dev_info(dd, "%s: SMA message 0x%llx\n", __func__, msg);
6665 	/*
6666 	 * React to the SMA message.  Byte[1] (0 for us) is the command.
6667 	 */
6668 	switch (msg & 0xff) {
6669 	case SMA_IDLE_ARM:
6670 		/*
6671 		 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6672 		 * State Transitions
6673 		 *
6674 		 * Only expected in INIT or ARMED, discard otherwise.
6675 		 */
6676 		if (ppd->host_link_state & (HLS_UP_INIT | HLS_UP_ARMED))
6677 			ppd->neighbor_normal = 1;
6678 		break;
6679 	case SMA_IDLE_ACTIVE:
6680 		/*
6681 		 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6682 		 * State Transitions
6683 		 *
6684 		 * Can activate the node.  Discard otherwise.
6685 		 */
6686 		if (ppd->host_link_state == HLS_UP_ARMED &&
6687 		    ppd->is_active_optimize_enabled) {
6688 			ppd->neighbor_normal = 1;
6689 			ret = set_link_state(ppd, HLS_UP_ACTIVE);
6690 			if (ret)
6691 				dd_dev_err(
6692 					dd,
6693 					"%s: received Active SMA idle message, couldn't set link to Active\n",
6694 					__func__);
6695 		}
6696 		break;
6697 	default:
6698 		dd_dev_err(dd,
6699 			   "%s: received unexpected SMA idle message 0x%llx\n",
6700 			   __func__, msg);
6701 		break;
6702 	}
6703 }
6704 
adjust_rcvctrl(struct hfi1_devdata * dd,u64 add,u64 clear)6705 static void adjust_rcvctrl(struct hfi1_devdata *dd, u64 add, u64 clear)
6706 {
6707 	u64 rcvctrl;
6708 	unsigned long flags;
6709 
6710 	spin_lock_irqsave(&dd->rcvctrl_lock, flags);
6711 	rcvctrl = read_csr(dd, RCV_CTRL);
6712 	rcvctrl |= add;
6713 	rcvctrl &= ~clear;
6714 	write_csr(dd, RCV_CTRL, rcvctrl);
6715 	spin_unlock_irqrestore(&dd->rcvctrl_lock, flags);
6716 }
6717 
add_rcvctrl(struct hfi1_devdata * dd,u64 add)6718 static inline void add_rcvctrl(struct hfi1_devdata *dd, u64 add)
6719 {
6720 	adjust_rcvctrl(dd, add, 0);
6721 }
6722 
clear_rcvctrl(struct hfi1_devdata * dd,u64 clear)6723 static inline void clear_rcvctrl(struct hfi1_devdata *dd, u64 clear)
6724 {
6725 	adjust_rcvctrl(dd, 0, clear);
6726 }
6727 
6728 /*
6729  * Called from all interrupt handlers to start handling an SPC freeze.
6730  */
start_freeze_handling(struct hfi1_pportdata * ppd,int flags)6731 void start_freeze_handling(struct hfi1_pportdata *ppd, int flags)
6732 {
6733 	struct hfi1_devdata *dd = ppd->dd;
6734 	struct send_context *sc;
6735 	int i;
6736 	int sc_flags;
6737 
6738 	if (flags & FREEZE_SELF)
6739 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6740 
6741 	/* enter frozen mode */
6742 	dd->flags |= HFI1_FROZEN;
6743 
6744 	/* notify all SDMA engines that they are going into a freeze */
6745 	sdma_freeze_notify(dd, !!(flags & FREEZE_LINK_DOWN));
6746 
6747 	sc_flags = SCF_FROZEN | SCF_HALTED | (flags & FREEZE_LINK_DOWN ?
6748 					      SCF_LINK_DOWN : 0);
6749 	/* do halt pre-handling on all enabled send contexts */
6750 	for (i = 0; i < dd->num_send_contexts; i++) {
6751 		sc = dd->send_contexts[i].sc;
6752 		if (sc && (sc->flags & SCF_ENABLED))
6753 			sc_stop(sc, sc_flags);
6754 	}
6755 
6756 	/* Send context are frozen. Notify user space */
6757 	hfi1_set_uevent_bits(ppd, _HFI1_EVENT_FROZEN_BIT);
6758 
6759 	if (flags & FREEZE_ABORT) {
6760 		dd_dev_err(dd,
6761 			   "Aborted freeze recovery. Please REBOOT system\n");
6762 		return;
6763 	}
6764 	/* queue non-interrupt handler */
6765 	queue_work(ppd->hfi1_wq, &ppd->freeze_work);
6766 }
6767 
6768 /*
6769  * Wait until all 4 sub-blocks indicate that they have frozen or unfrozen,
6770  * depending on the "freeze" parameter.
6771  *
6772  * No need to return an error if it times out, our only option
6773  * is to proceed anyway.
6774  */
wait_for_freeze_status(struct hfi1_devdata * dd,int freeze)6775 static void wait_for_freeze_status(struct hfi1_devdata *dd, int freeze)
6776 {
6777 	unsigned long timeout;
6778 	u64 reg;
6779 
6780 	timeout = jiffies + msecs_to_jiffies(FREEZE_STATUS_TIMEOUT);
6781 	while (1) {
6782 		reg = read_csr(dd, CCE_STATUS);
6783 		if (freeze) {
6784 			/* waiting until all indicators are set */
6785 			if ((reg & ALL_FROZE) == ALL_FROZE)
6786 				return;	/* all done */
6787 		} else {
6788 			/* waiting until all indicators are clear */
6789 			if ((reg & ALL_FROZE) == 0)
6790 				return; /* all done */
6791 		}
6792 
6793 		if (time_after(jiffies, timeout)) {
6794 			dd_dev_err(dd,
6795 				   "Time out waiting for SPC %sfreeze, bits 0x%llx, expecting 0x%llx, continuing",
6796 				   freeze ? "" : "un", reg & ALL_FROZE,
6797 				   freeze ? ALL_FROZE : 0ull);
6798 			return;
6799 		}
6800 		usleep_range(80, 120);
6801 	}
6802 }
6803 
6804 /*
6805  * Do all freeze handling for the RXE block.
6806  */
rxe_freeze(struct hfi1_devdata * dd)6807 static void rxe_freeze(struct hfi1_devdata *dd)
6808 {
6809 	int i;
6810 	struct hfi1_ctxtdata *rcd;
6811 
6812 	/* disable port */
6813 	clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6814 
6815 	/* disable all receive contexts */
6816 	for (i = 0; i < dd->num_rcv_contexts; i++) {
6817 		rcd = hfi1_rcd_get_by_index(dd, i);
6818 		hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS, rcd);
6819 		hfi1_rcd_put(rcd);
6820 	}
6821 }
6822 
6823 /*
6824  * Unfreeze handling for the RXE block - kernel contexts only.
6825  * This will also enable the port.  User contexts will do unfreeze
6826  * handling on a per-context basis as they call into the driver.
6827  *
6828  */
rxe_kernel_unfreeze(struct hfi1_devdata * dd)6829 static void rxe_kernel_unfreeze(struct hfi1_devdata *dd)
6830 {
6831 	u32 rcvmask;
6832 	u16 i;
6833 	struct hfi1_ctxtdata *rcd;
6834 
6835 	/* enable all kernel contexts */
6836 	for (i = 0; i < dd->num_rcv_contexts; i++) {
6837 		rcd = hfi1_rcd_get_by_index(dd, i);
6838 
6839 		/* Ensure all non-user contexts(including vnic) are enabled */
6840 		if (!rcd ||
6841 		    (i >= dd->first_dyn_alloc_ctxt && !rcd->is_vnic)) {
6842 			hfi1_rcd_put(rcd);
6843 			continue;
6844 		}
6845 		rcvmask = HFI1_RCVCTRL_CTXT_ENB;
6846 		/* HFI1_RCVCTRL_TAILUPD_[ENB|DIS] needs to be set explicitly */
6847 		rcvmask |= rcd->rcvhdrtail_kvaddr ?
6848 			HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
6849 		hfi1_rcvctrl(dd, rcvmask, rcd);
6850 		hfi1_rcd_put(rcd);
6851 	}
6852 
6853 	/* enable port */
6854 	add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6855 }
6856 
6857 /*
6858  * Non-interrupt SPC freeze handling.
6859  *
6860  * This is a work-queue function outside of the triggering interrupt.
6861  */
handle_freeze(struct work_struct * work)6862 void handle_freeze(struct work_struct *work)
6863 {
6864 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6865 								freeze_work);
6866 	struct hfi1_devdata *dd = ppd->dd;
6867 
6868 	/* wait for freeze indicators on all affected blocks */
6869 	wait_for_freeze_status(dd, 1);
6870 
6871 	/* SPC is now frozen */
6872 
6873 	/* do send PIO freeze steps */
6874 	pio_freeze(dd);
6875 
6876 	/* do send DMA freeze steps */
6877 	sdma_freeze(dd);
6878 
6879 	/* do send egress freeze steps - nothing to do */
6880 
6881 	/* do receive freeze steps */
6882 	rxe_freeze(dd);
6883 
6884 	/*
6885 	 * Unfreeze the hardware - clear the freeze, wait for each
6886 	 * block's frozen bit to clear, then clear the frozen flag.
6887 	 */
6888 	write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6889 	wait_for_freeze_status(dd, 0);
6890 
6891 	if (is_ax(dd)) {
6892 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6893 		wait_for_freeze_status(dd, 1);
6894 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6895 		wait_for_freeze_status(dd, 0);
6896 	}
6897 
6898 	/* do send PIO unfreeze steps for kernel contexts */
6899 	pio_kernel_unfreeze(dd);
6900 
6901 	/* do send DMA unfreeze steps */
6902 	sdma_unfreeze(dd);
6903 
6904 	/* do send egress unfreeze steps - nothing to do */
6905 
6906 	/* do receive unfreeze steps for kernel contexts */
6907 	rxe_kernel_unfreeze(dd);
6908 
6909 	/*
6910 	 * The unfreeze procedure touches global device registers when
6911 	 * it disables and re-enables RXE. Mark the device unfrozen
6912 	 * after all that is done so other parts of the driver waiting
6913 	 * for the device to unfreeze don't do things out of order.
6914 	 *
6915 	 * The above implies that the meaning of HFI1_FROZEN flag is
6916 	 * "Device has gone into freeze mode and freeze mode handling
6917 	 * is still in progress."
6918 	 *
6919 	 * The flag will be removed when freeze mode processing has
6920 	 * completed.
6921 	 */
6922 	dd->flags &= ~HFI1_FROZEN;
6923 	wake_up(&dd->event_queue);
6924 
6925 	/* no longer frozen */
6926 }
6927 
6928 /**
6929  * update_xmit_counters - update PortXmitWait/PortVlXmitWait
6930  * counters.
6931  * @ppd: info of physical Hfi port
6932  * @link_width: new link width after link up or downgrade
6933  *
6934  * Update the PortXmitWait and PortVlXmitWait counters after
6935  * a link up or downgrade event to reflect a link width change.
6936  */
update_xmit_counters(struct hfi1_pportdata * ppd,u16 link_width)6937 static void update_xmit_counters(struct hfi1_pportdata *ppd, u16 link_width)
6938 {
6939 	int i;
6940 	u16 tx_width;
6941 	u16 link_speed;
6942 
6943 	tx_width = tx_link_width(link_width);
6944 	link_speed = get_link_speed(ppd->link_speed_active);
6945 
6946 	/*
6947 	 * There are C_VL_COUNT number of PortVLXmitWait counters.
6948 	 * Adding 1 to C_VL_COUNT to include the PortXmitWait counter.
6949 	 */
6950 	for (i = 0; i < C_VL_COUNT + 1; i++)
6951 		get_xmit_wait_counters(ppd, tx_width, link_speed, i);
6952 }
6953 
6954 /*
6955  * Handle a link up interrupt from the 8051.
6956  *
6957  * This is a work-queue function outside of the interrupt.
6958  */
handle_link_up(struct work_struct * work)6959 void handle_link_up(struct work_struct *work)
6960 {
6961 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6962 						  link_up_work);
6963 	struct hfi1_devdata *dd = ppd->dd;
6964 
6965 	set_link_state(ppd, HLS_UP_INIT);
6966 
6967 	/* cache the read of DC_LCB_STS_ROUND_TRIP_LTP_CNT */
6968 	read_ltp_rtt(dd);
6969 	/*
6970 	 * OPA specifies that certain counters are cleared on a transition
6971 	 * to link up, so do that.
6972 	 */
6973 	clear_linkup_counters(dd);
6974 	/*
6975 	 * And (re)set link up default values.
6976 	 */
6977 	set_linkup_defaults(ppd);
6978 
6979 	/*
6980 	 * Set VL15 credits. Use cached value from verify cap interrupt.
6981 	 * In case of quick linkup or simulator, vl15 value will be set by
6982 	 * handle_linkup_change. VerifyCap interrupt handler will not be
6983 	 * called in those scenarios.
6984 	 */
6985 	if (!(quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR))
6986 		set_up_vl15(dd, dd->vl15buf_cached);
6987 
6988 	/* enforce link speed enabled */
6989 	if ((ppd->link_speed_active & ppd->link_speed_enabled) == 0) {
6990 		/* oops - current speed is not enabled, bounce */
6991 		dd_dev_err(dd,
6992 			   "Link speed active 0x%x is outside enabled 0x%x, downing link\n",
6993 			   ppd->link_speed_active, ppd->link_speed_enabled);
6994 		set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SPEED_POLICY, 0,
6995 				     OPA_LINKDOWN_REASON_SPEED_POLICY);
6996 		set_link_state(ppd, HLS_DN_OFFLINE);
6997 		start_link(ppd);
6998 	}
6999 }
7000 
7001 /*
7002  * Several pieces of LNI information were cached for SMA in ppd.
7003  * Reset these on link down
7004  */
reset_neighbor_info(struct hfi1_pportdata * ppd)7005 static void reset_neighbor_info(struct hfi1_pportdata *ppd)
7006 {
7007 	ppd->neighbor_guid = 0;
7008 	ppd->neighbor_port_number = 0;
7009 	ppd->neighbor_type = 0;
7010 	ppd->neighbor_fm_security = 0;
7011 }
7012 
7013 static const char * const link_down_reason_strs[] = {
7014 	[OPA_LINKDOWN_REASON_NONE] = "None",
7015 	[OPA_LINKDOWN_REASON_RCV_ERROR_0] = "Receive error 0",
7016 	[OPA_LINKDOWN_REASON_BAD_PKT_LEN] = "Bad packet length",
7017 	[OPA_LINKDOWN_REASON_PKT_TOO_LONG] = "Packet too long",
7018 	[OPA_LINKDOWN_REASON_PKT_TOO_SHORT] = "Packet too short",
7019 	[OPA_LINKDOWN_REASON_BAD_SLID] = "Bad SLID",
7020 	[OPA_LINKDOWN_REASON_BAD_DLID] = "Bad DLID",
7021 	[OPA_LINKDOWN_REASON_BAD_L2] = "Bad L2",
7022 	[OPA_LINKDOWN_REASON_BAD_SC] = "Bad SC",
7023 	[OPA_LINKDOWN_REASON_RCV_ERROR_8] = "Receive error 8",
7024 	[OPA_LINKDOWN_REASON_BAD_MID_TAIL] = "Bad mid tail",
7025 	[OPA_LINKDOWN_REASON_RCV_ERROR_10] = "Receive error 10",
7026 	[OPA_LINKDOWN_REASON_PREEMPT_ERROR] = "Preempt error",
7027 	[OPA_LINKDOWN_REASON_PREEMPT_VL15] = "Preempt vl15",
7028 	[OPA_LINKDOWN_REASON_BAD_VL_MARKER] = "Bad VL marker",
7029 	[OPA_LINKDOWN_REASON_RCV_ERROR_14] = "Receive error 14",
7030 	[OPA_LINKDOWN_REASON_RCV_ERROR_15] = "Receive error 15",
7031 	[OPA_LINKDOWN_REASON_BAD_HEAD_DIST] = "Bad head distance",
7032 	[OPA_LINKDOWN_REASON_BAD_TAIL_DIST] = "Bad tail distance",
7033 	[OPA_LINKDOWN_REASON_BAD_CTRL_DIST] = "Bad control distance",
7034 	[OPA_LINKDOWN_REASON_BAD_CREDIT_ACK] = "Bad credit ack",
7035 	[OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER] = "Unsupported VL marker",
7036 	[OPA_LINKDOWN_REASON_BAD_PREEMPT] = "Bad preempt",
7037 	[OPA_LINKDOWN_REASON_BAD_CONTROL_FLIT] = "Bad control flit",
7038 	[OPA_LINKDOWN_REASON_EXCEED_MULTICAST_LIMIT] = "Exceed multicast limit",
7039 	[OPA_LINKDOWN_REASON_RCV_ERROR_24] = "Receive error 24",
7040 	[OPA_LINKDOWN_REASON_RCV_ERROR_25] = "Receive error 25",
7041 	[OPA_LINKDOWN_REASON_RCV_ERROR_26] = "Receive error 26",
7042 	[OPA_LINKDOWN_REASON_RCV_ERROR_27] = "Receive error 27",
7043 	[OPA_LINKDOWN_REASON_RCV_ERROR_28] = "Receive error 28",
7044 	[OPA_LINKDOWN_REASON_RCV_ERROR_29] = "Receive error 29",
7045 	[OPA_LINKDOWN_REASON_RCV_ERROR_30] = "Receive error 30",
7046 	[OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN] =
7047 					"Excessive buffer overrun",
7048 	[OPA_LINKDOWN_REASON_UNKNOWN] = "Unknown",
7049 	[OPA_LINKDOWN_REASON_REBOOT] = "Reboot",
7050 	[OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN] = "Neighbor unknown",
7051 	[OPA_LINKDOWN_REASON_FM_BOUNCE] = "FM bounce",
7052 	[OPA_LINKDOWN_REASON_SPEED_POLICY] = "Speed policy",
7053 	[OPA_LINKDOWN_REASON_WIDTH_POLICY] = "Width policy",
7054 	[OPA_LINKDOWN_REASON_DISCONNECTED] = "Disconnected",
7055 	[OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED] =
7056 					"Local media not installed",
7057 	[OPA_LINKDOWN_REASON_NOT_INSTALLED] = "Not installed",
7058 	[OPA_LINKDOWN_REASON_CHASSIS_CONFIG] = "Chassis config",
7059 	[OPA_LINKDOWN_REASON_END_TO_END_NOT_INSTALLED] =
7060 					"End to end not installed",
7061 	[OPA_LINKDOWN_REASON_POWER_POLICY] = "Power policy",
7062 	[OPA_LINKDOWN_REASON_LINKSPEED_POLICY] = "Link speed policy",
7063 	[OPA_LINKDOWN_REASON_LINKWIDTH_POLICY] = "Link width policy",
7064 	[OPA_LINKDOWN_REASON_SWITCH_MGMT] = "Switch management",
7065 	[OPA_LINKDOWN_REASON_SMA_DISABLED] = "SMA disabled",
7066 	[OPA_LINKDOWN_REASON_TRANSIENT] = "Transient"
7067 };
7068 
7069 /* return the neighbor link down reason string */
link_down_reason_str(u8 reason)7070 static const char *link_down_reason_str(u8 reason)
7071 {
7072 	const char *str = NULL;
7073 
7074 	if (reason < ARRAY_SIZE(link_down_reason_strs))
7075 		str = link_down_reason_strs[reason];
7076 	if (!str)
7077 		str = "(invalid)";
7078 
7079 	return str;
7080 }
7081 
7082 /*
7083  * Handle a link down interrupt from the 8051.
7084  *
7085  * This is a work-queue function outside of the interrupt.
7086  */
handle_link_down(struct work_struct * work)7087 void handle_link_down(struct work_struct *work)
7088 {
7089 	u8 lcl_reason, neigh_reason = 0;
7090 	u8 link_down_reason;
7091 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7092 						  link_down_work);
7093 	int was_up;
7094 	static const char ldr_str[] = "Link down reason: ";
7095 
7096 	if ((ppd->host_link_state &
7097 	     (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) &&
7098 	     ppd->port_type == PORT_TYPE_FIXED)
7099 		ppd->offline_disabled_reason =
7100 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NOT_INSTALLED);
7101 
7102 	/* Go offline first, then deal with reading/writing through 8051 */
7103 	was_up = !!(ppd->host_link_state & HLS_UP);
7104 	set_link_state(ppd, HLS_DN_OFFLINE);
7105 	xchg(&ppd->is_link_down_queued, 0);
7106 
7107 	if (was_up) {
7108 		lcl_reason = 0;
7109 		/* link down reason is only valid if the link was up */
7110 		read_link_down_reason(ppd->dd, &link_down_reason);
7111 		switch (link_down_reason) {
7112 		case LDR_LINK_TRANSFER_ACTIVE_LOW:
7113 			/* the link went down, no idle message reason */
7114 			dd_dev_info(ppd->dd, "%sUnexpected link down\n",
7115 				    ldr_str);
7116 			break;
7117 		case LDR_RECEIVED_LINKDOWN_IDLE_MSG:
7118 			/*
7119 			 * The neighbor reason is only valid if an idle message
7120 			 * was received for it.
7121 			 */
7122 			read_planned_down_reason_code(ppd->dd, &neigh_reason);
7123 			dd_dev_info(ppd->dd,
7124 				    "%sNeighbor link down message %d, %s\n",
7125 				    ldr_str, neigh_reason,
7126 				    link_down_reason_str(neigh_reason));
7127 			break;
7128 		case LDR_RECEIVED_HOST_OFFLINE_REQ:
7129 			dd_dev_info(ppd->dd,
7130 				    "%sHost requested link to go offline\n",
7131 				    ldr_str);
7132 			break;
7133 		default:
7134 			dd_dev_info(ppd->dd, "%sUnknown reason 0x%x\n",
7135 				    ldr_str, link_down_reason);
7136 			break;
7137 		}
7138 
7139 		/*
7140 		 * If no reason, assume peer-initiated but missed
7141 		 * LinkGoingDown idle flits.
7142 		 */
7143 		if (neigh_reason == 0)
7144 			lcl_reason = OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN;
7145 	} else {
7146 		/* went down while polling or going up */
7147 		lcl_reason = OPA_LINKDOWN_REASON_TRANSIENT;
7148 	}
7149 
7150 	set_link_down_reason(ppd, lcl_reason, neigh_reason, 0);
7151 
7152 	/* inform the SMA when the link transitions from up to down */
7153 	if (was_up && ppd->local_link_down_reason.sma == 0 &&
7154 	    ppd->neigh_link_down_reason.sma == 0) {
7155 		ppd->local_link_down_reason.sma =
7156 					ppd->local_link_down_reason.latest;
7157 		ppd->neigh_link_down_reason.sma =
7158 					ppd->neigh_link_down_reason.latest;
7159 	}
7160 
7161 	reset_neighbor_info(ppd);
7162 
7163 	/* disable the port */
7164 	clear_rcvctrl(ppd->dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
7165 
7166 	/*
7167 	 * If there is no cable attached, turn the DC off. Otherwise,
7168 	 * start the link bring up.
7169 	 */
7170 	if (ppd->port_type == PORT_TYPE_QSFP && !qsfp_mod_present(ppd))
7171 		dc_shutdown(ppd->dd);
7172 	else
7173 		start_link(ppd);
7174 }
7175 
handle_link_bounce(struct work_struct * work)7176 void handle_link_bounce(struct work_struct *work)
7177 {
7178 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7179 							link_bounce_work);
7180 
7181 	/*
7182 	 * Only do something if the link is currently up.
7183 	 */
7184 	if (ppd->host_link_state & HLS_UP) {
7185 		set_link_state(ppd, HLS_DN_OFFLINE);
7186 		start_link(ppd);
7187 	} else {
7188 		dd_dev_info(ppd->dd, "%s: link not up (%s), nothing to do\n",
7189 			    __func__, link_state_name(ppd->host_link_state));
7190 	}
7191 }
7192 
7193 /*
7194  * Mask conversion: Capability exchange to Port LTP.  The capability
7195  * exchange has an implicit 16b CRC that is mandatory.
7196  */
cap_to_port_ltp(int cap)7197 static int cap_to_port_ltp(int cap)
7198 {
7199 	int port_ltp = PORT_LTP_CRC_MODE_16; /* this mode is mandatory */
7200 
7201 	if (cap & CAP_CRC_14B)
7202 		port_ltp |= PORT_LTP_CRC_MODE_14;
7203 	if (cap & CAP_CRC_48B)
7204 		port_ltp |= PORT_LTP_CRC_MODE_48;
7205 	if (cap & CAP_CRC_12B_16B_PER_LANE)
7206 		port_ltp |= PORT_LTP_CRC_MODE_PER_LANE;
7207 
7208 	return port_ltp;
7209 }
7210 
7211 /*
7212  * Convert an OPA Port LTP mask to capability mask
7213  */
port_ltp_to_cap(int port_ltp)7214 int port_ltp_to_cap(int port_ltp)
7215 {
7216 	int cap_mask = 0;
7217 
7218 	if (port_ltp & PORT_LTP_CRC_MODE_14)
7219 		cap_mask |= CAP_CRC_14B;
7220 	if (port_ltp & PORT_LTP_CRC_MODE_48)
7221 		cap_mask |= CAP_CRC_48B;
7222 	if (port_ltp & PORT_LTP_CRC_MODE_PER_LANE)
7223 		cap_mask |= CAP_CRC_12B_16B_PER_LANE;
7224 
7225 	return cap_mask;
7226 }
7227 
7228 /*
7229  * Convert a single DC LCB CRC mode to an OPA Port LTP mask.
7230  */
lcb_to_port_ltp(int lcb_crc)7231 static int lcb_to_port_ltp(int lcb_crc)
7232 {
7233 	int port_ltp = 0;
7234 
7235 	if (lcb_crc == LCB_CRC_12B_16B_PER_LANE)
7236 		port_ltp = PORT_LTP_CRC_MODE_PER_LANE;
7237 	else if (lcb_crc == LCB_CRC_48B)
7238 		port_ltp = PORT_LTP_CRC_MODE_48;
7239 	else if (lcb_crc == LCB_CRC_14B)
7240 		port_ltp = PORT_LTP_CRC_MODE_14;
7241 	else
7242 		port_ltp = PORT_LTP_CRC_MODE_16;
7243 
7244 	return port_ltp;
7245 }
7246 
clear_full_mgmt_pkey(struct hfi1_pportdata * ppd)7247 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd)
7248 {
7249 	if (ppd->pkeys[2] != 0) {
7250 		ppd->pkeys[2] = 0;
7251 		(void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
7252 		hfi1_event_pkey_change(ppd->dd, ppd->port);
7253 	}
7254 }
7255 
7256 /*
7257  * Convert the given link width to the OPA link width bitmask.
7258  */
link_width_to_bits(struct hfi1_devdata * dd,u16 width)7259 static u16 link_width_to_bits(struct hfi1_devdata *dd, u16 width)
7260 {
7261 	switch (width) {
7262 	case 0:
7263 		/*
7264 		 * Simulator and quick linkup do not set the width.
7265 		 * Just set it to 4x without complaint.
7266 		 */
7267 		if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR || quick_linkup)
7268 			return OPA_LINK_WIDTH_4X;
7269 		return 0; /* no lanes up */
7270 	case 1: return OPA_LINK_WIDTH_1X;
7271 	case 2: return OPA_LINK_WIDTH_2X;
7272 	case 3: return OPA_LINK_WIDTH_3X;
7273 	default:
7274 		dd_dev_info(dd, "%s: invalid width %d, using 4\n",
7275 			    __func__, width);
7276 		/* fall through */
7277 	case 4: return OPA_LINK_WIDTH_4X;
7278 	}
7279 }
7280 
7281 /*
7282  * Do a population count on the bottom nibble.
7283  */
7284 static const u8 bit_counts[16] = {
7285 	0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
7286 };
7287 
nibble_to_count(u8 nibble)7288 static inline u8 nibble_to_count(u8 nibble)
7289 {
7290 	return bit_counts[nibble & 0xf];
7291 }
7292 
7293 /*
7294  * Read the active lane information from the 8051 registers and return
7295  * their widths.
7296  *
7297  * Active lane information is found in these 8051 registers:
7298  *	enable_lane_tx
7299  *	enable_lane_rx
7300  */
get_link_widths(struct hfi1_devdata * dd,u16 * tx_width,u16 * rx_width)7301 static void get_link_widths(struct hfi1_devdata *dd, u16 *tx_width,
7302 			    u16 *rx_width)
7303 {
7304 	u16 tx, rx;
7305 	u8 enable_lane_rx;
7306 	u8 enable_lane_tx;
7307 	u8 tx_polarity_inversion;
7308 	u8 rx_polarity_inversion;
7309 	u8 max_rate;
7310 
7311 	/* read the active lanes */
7312 	read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
7313 			 &rx_polarity_inversion, &max_rate);
7314 	read_local_lni(dd, &enable_lane_rx);
7315 
7316 	/* convert to counts */
7317 	tx = nibble_to_count(enable_lane_tx);
7318 	rx = nibble_to_count(enable_lane_rx);
7319 
7320 	/*
7321 	 * Set link_speed_active here, overriding what was set in
7322 	 * handle_verify_cap().  The ASIC 8051 firmware does not correctly
7323 	 * set the max_rate field in handle_verify_cap until v0.19.
7324 	 */
7325 	if ((dd->icode == ICODE_RTL_SILICON) &&
7326 	    (dd->dc8051_ver < dc8051_ver(0, 19, 0))) {
7327 		/* max_rate: 0 = 12.5G, 1 = 25G */
7328 		switch (max_rate) {
7329 		case 0:
7330 			dd->pport[0].link_speed_active = OPA_LINK_SPEED_12_5G;
7331 			break;
7332 		default:
7333 			dd_dev_err(dd,
7334 				   "%s: unexpected max rate %d, using 25Gb\n",
7335 				   __func__, (int)max_rate);
7336 			/* fall through */
7337 		case 1:
7338 			dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G;
7339 			break;
7340 		}
7341 	}
7342 
7343 	dd_dev_info(dd,
7344 		    "Fabric active lanes (width): tx 0x%x (%d), rx 0x%x (%d)\n",
7345 		    enable_lane_tx, tx, enable_lane_rx, rx);
7346 	*tx_width = link_width_to_bits(dd, tx);
7347 	*rx_width = link_width_to_bits(dd, rx);
7348 }
7349 
7350 /*
7351  * Read verify_cap_local_fm_link_width[1] to obtain the link widths.
7352  * Valid after the end of VerifyCap and during LinkUp.  Does not change
7353  * after link up.  I.e. look elsewhere for downgrade information.
7354  *
7355  * Bits are:
7356  *	+ bits [7:4] contain the number of active transmitters
7357  *	+ bits [3:0] contain the number of active receivers
7358  * These are numbers 1 through 4 and can be different values if the
7359  * link is asymmetric.
7360  *
7361  * verify_cap_local_fm_link_width[0] retains its original value.
7362  */
get_linkup_widths(struct hfi1_devdata * dd,u16 * tx_width,u16 * rx_width)7363 static void get_linkup_widths(struct hfi1_devdata *dd, u16 *tx_width,
7364 			      u16 *rx_width)
7365 {
7366 	u16 widths, tx, rx;
7367 	u8 misc_bits, local_flags;
7368 	u16 active_tx, active_rx;
7369 
7370 	read_vc_local_link_mode(dd, &misc_bits, &local_flags, &widths);
7371 	tx = widths >> 12;
7372 	rx = (widths >> 8) & 0xf;
7373 
7374 	*tx_width = link_width_to_bits(dd, tx);
7375 	*rx_width = link_width_to_bits(dd, rx);
7376 
7377 	/* print the active widths */
7378 	get_link_widths(dd, &active_tx, &active_rx);
7379 }
7380 
7381 /*
7382  * Set ppd->link_width_active and ppd->link_width_downgrade_active using
7383  * hardware information when the link first comes up.
7384  *
7385  * The link width is not available until after VerifyCap.AllFramesReceived
7386  * (the trigger for handle_verify_cap), so this is outside that routine
7387  * and should be called when the 8051 signals linkup.
7388  */
get_linkup_link_widths(struct hfi1_pportdata * ppd)7389 void get_linkup_link_widths(struct hfi1_pportdata *ppd)
7390 {
7391 	u16 tx_width, rx_width;
7392 
7393 	/* get end-of-LNI link widths */
7394 	get_linkup_widths(ppd->dd, &tx_width, &rx_width);
7395 
7396 	/* use tx_width as the link is supposed to be symmetric on link up */
7397 	ppd->link_width_active = tx_width;
7398 	/* link width downgrade active (LWD.A) starts out matching LW.A */
7399 	ppd->link_width_downgrade_tx_active = ppd->link_width_active;
7400 	ppd->link_width_downgrade_rx_active = ppd->link_width_active;
7401 	/* per OPA spec, on link up LWD.E resets to LWD.S */
7402 	ppd->link_width_downgrade_enabled = ppd->link_width_downgrade_supported;
7403 	/* cache the active egress rate (units {10^6 bits/sec]) */
7404 	ppd->current_egress_rate = active_egress_rate(ppd);
7405 }
7406 
7407 /*
7408  * Handle a verify capabilities interrupt from the 8051.
7409  *
7410  * This is a work-queue function outside of the interrupt.
7411  */
handle_verify_cap(struct work_struct * work)7412 void handle_verify_cap(struct work_struct *work)
7413 {
7414 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7415 								link_vc_work);
7416 	struct hfi1_devdata *dd = ppd->dd;
7417 	u64 reg;
7418 	u8 power_management;
7419 	u8 continuous;
7420 	u8 vcu;
7421 	u8 vau;
7422 	u8 z;
7423 	u16 vl15buf;
7424 	u16 link_widths;
7425 	u16 crc_mask;
7426 	u16 crc_val;
7427 	u16 device_id;
7428 	u16 active_tx, active_rx;
7429 	u8 partner_supported_crc;
7430 	u8 remote_tx_rate;
7431 	u8 device_rev;
7432 
7433 	set_link_state(ppd, HLS_VERIFY_CAP);
7434 
7435 	lcb_shutdown(dd, 0);
7436 	adjust_lcb_for_fpga_serdes(dd);
7437 
7438 	read_vc_remote_phy(dd, &power_management, &continuous);
7439 	read_vc_remote_fabric(dd, &vau, &z, &vcu, &vl15buf,
7440 			      &partner_supported_crc);
7441 	read_vc_remote_link_width(dd, &remote_tx_rate, &link_widths);
7442 	read_remote_device_id(dd, &device_id, &device_rev);
7443 
7444 	/* print the active widths */
7445 	get_link_widths(dd, &active_tx, &active_rx);
7446 	dd_dev_info(dd,
7447 		    "Peer PHY: power management 0x%x, continuous updates 0x%x\n",
7448 		    (int)power_management, (int)continuous);
7449 	dd_dev_info(dd,
7450 		    "Peer Fabric: vAU %d, Z %d, vCU %d, vl15 credits 0x%x, CRC sizes 0x%x\n",
7451 		    (int)vau, (int)z, (int)vcu, (int)vl15buf,
7452 		    (int)partner_supported_crc);
7453 	dd_dev_info(dd, "Peer Link Width: tx rate 0x%x, widths 0x%x\n",
7454 		    (u32)remote_tx_rate, (u32)link_widths);
7455 	dd_dev_info(dd, "Peer Device ID: 0x%04x, Revision 0x%02x\n",
7456 		    (u32)device_id, (u32)device_rev);
7457 	/*
7458 	 * The peer vAU value just read is the peer receiver value.  HFI does
7459 	 * not support a transmit vAU of 0 (AU == 8).  We advertised that
7460 	 * with Z=1 in the fabric capabilities sent to the peer.  The peer
7461 	 * will see our Z=1, and, if it advertised a vAU of 0, will move its
7462 	 * receive to vAU of 1 (AU == 16).  Do the same here.  We do not care
7463 	 * about the peer Z value - our sent vAU is 3 (hardwired) and is not
7464 	 * subject to the Z value exception.
7465 	 */
7466 	if (vau == 0)
7467 		vau = 1;
7468 	set_up_vau(dd, vau);
7469 
7470 	/*
7471 	 * Set VL15 credits to 0 in global credit register. Cache remote VL15
7472 	 * credits value and wait for link-up interrupt ot set it.
7473 	 */
7474 	set_up_vl15(dd, 0);
7475 	dd->vl15buf_cached = vl15buf;
7476 
7477 	/* set up the LCB CRC mode */
7478 	crc_mask = ppd->port_crc_mode_enabled & partner_supported_crc;
7479 
7480 	/* order is important: use the lowest bit in common */
7481 	if (crc_mask & CAP_CRC_14B)
7482 		crc_val = LCB_CRC_14B;
7483 	else if (crc_mask & CAP_CRC_48B)
7484 		crc_val = LCB_CRC_48B;
7485 	else if (crc_mask & CAP_CRC_12B_16B_PER_LANE)
7486 		crc_val = LCB_CRC_12B_16B_PER_LANE;
7487 	else
7488 		crc_val = LCB_CRC_16B;
7489 
7490 	dd_dev_info(dd, "Final LCB CRC mode: %d\n", (int)crc_val);
7491 	write_csr(dd, DC_LCB_CFG_CRC_MODE,
7492 		  (u64)crc_val << DC_LCB_CFG_CRC_MODE_TX_VAL_SHIFT);
7493 
7494 	/* set (14b only) or clear sideband credit */
7495 	reg = read_csr(dd, SEND_CM_CTRL);
7496 	if (crc_val == LCB_CRC_14B && crc_14b_sideband) {
7497 		write_csr(dd, SEND_CM_CTRL,
7498 			  reg | SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7499 	} else {
7500 		write_csr(dd, SEND_CM_CTRL,
7501 			  reg & ~SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7502 	}
7503 
7504 	ppd->link_speed_active = 0;	/* invalid value */
7505 	if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
7506 		/* remote_tx_rate: 0 = 12.5G, 1 = 25G */
7507 		switch (remote_tx_rate) {
7508 		case 0:
7509 			ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7510 			break;
7511 		case 1:
7512 			ppd->link_speed_active = OPA_LINK_SPEED_25G;
7513 			break;
7514 		}
7515 	} else {
7516 		/* actual rate is highest bit of the ANDed rates */
7517 		u8 rate = remote_tx_rate & ppd->local_tx_rate;
7518 
7519 		if (rate & 2)
7520 			ppd->link_speed_active = OPA_LINK_SPEED_25G;
7521 		else if (rate & 1)
7522 			ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7523 	}
7524 	if (ppd->link_speed_active == 0) {
7525 		dd_dev_err(dd, "%s: unexpected remote tx rate %d, using 25Gb\n",
7526 			   __func__, (int)remote_tx_rate);
7527 		ppd->link_speed_active = OPA_LINK_SPEED_25G;
7528 	}
7529 
7530 	/*
7531 	 * Cache the values of the supported, enabled, and active
7532 	 * LTP CRC modes to return in 'portinfo' queries. But the bit
7533 	 * flags that are returned in the portinfo query differ from
7534 	 * what's in the link_crc_mask, crc_sizes, and crc_val
7535 	 * variables. Convert these here.
7536 	 */
7537 	ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
7538 		/* supported crc modes */
7539 	ppd->port_ltp_crc_mode |=
7540 		cap_to_port_ltp(ppd->port_crc_mode_enabled) << 4;
7541 		/* enabled crc modes */
7542 	ppd->port_ltp_crc_mode |= lcb_to_port_ltp(crc_val);
7543 		/* active crc mode */
7544 
7545 	/* set up the remote credit return table */
7546 	assign_remote_cm_au_table(dd, vcu);
7547 
7548 	/*
7549 	 * The LCB is reset on entry to handle_verify_cap(), so this must
7550 	 * be applied on every link up.
7551 	 *
7552 	 * Adjust LCB error kill enable to kill the link if
7553 	 * these RBUF errors are seen:
7554 	 *	REPLAY_BUF_MBE_SMASK
7555 	 *	FLIT_INPUT_BUF_MBE_SMASK
7556 	 */
7557 	if (is_ax(dd)) {			/* fixed in B0 */
7558 		reg = read_csr(dd, DC_LCB_CFG_LINK_KILL_EN);
7559 		reg |= DC_LCB_CFG_LINK_KILL_EN_REPLAY_BUF_MBE_SMASK
7560 			| DC_LCB_CFG_LINK_KILL_EN_FLIT_INPUT_BUF_MBE_SMASK;
7561 		write_csr(dd, DC_LCB_CFG_LINK_KILL_EN, reg);
7562 	}
7563 
7564 	/* pull LCB fifos out of reset - all fifo clocks must be stable */
7565 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
7566 
7567 	/* give 8051 access to the LCB CSRs */
7568 	write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
7569 	set_8051_lcb_access(dd);
7570 
7571 	/* tell the 8051 to go to LinkUp */
7572 	set_link_state(ppd, HLS_GOING_UP);
7573 }
7574 
7575 /**
7576  * apply_link_downgrade_policy - Apply the link width downgrade enabled
7577  * policy against the current active link widths.
7578  * @ppd: info of physical Hfi port
7579  * @refresh_widths: True indicates link downgrade event
7580  * @return: True indicates a successful link downgrade. False indicates
7581  *	    link downgrade event failed and the link will bounce back to
7582  *	    default link width.
7583  *
7584  * Called when the enabled policy changes or the active link widths
7585  * change.
7586  * Refresh_widths indicates that a link downgrade occurred. The
7587  * link_downgraded variable is set by refresh_widths and
7588  * determines the success/failure of the policy application.
7589  */
apply_link_downgrade_policy(struct hfi1_pportdata * ppd,bool refresh_widths)7590 bool apply_link_downgrade_policy(struct hfi1_pportdata *ppd,
7591 				 bool refresh_widths)
7592 {
7593 	int do_bounce = 0;
7594 	int tries;
7595 	u16 lwde;
7596 	u16 tx, rx;
7597 	bool link_downgraded = refresh_widths;
7598 
7599 	/* use the hls lock to avoid a race with actual link up */
7600 	tries = 0;
7601 retry:
7602 	mutex_lock(&ppd->hls_lock);
7603 	/* only apply if the link is up */
7604 	if (ppd->host_link_state & HLS_DOWN) {
7605 		/* still going up..wait and retry */
7606 		if (ppd->host_link_state & HLS_GOING_UP) {
7607 			if (++tries < 1000) {
7608 				mutex_unlock(&ppd->hls_lock);
7609 				usleep_range(100, 120); /* arbitrary */
7610 				goto retry;
7611 			}
7612 			dd_dev_err(ppd->dd,
7613 				   "%s: giving up waiting for link state change\n",
7614 				   __func__);
7615 		}
7616 		goto done;
7617 	}
7618 
7619 	lwde = ppd->link_width_downgrade_enabled;
7620 
7621 	if (refresh_widths) {
7622 		get_link_widths(ppd->dd, &tx, &rx);
7623 		ppd->link_width_downgrade_tx_active = tx;
7624 		ppd->link_width_downgrade_rx_active = rx;
7625 	}
7626 
7627 	if (ppd->link_width_downgrade_tx_active == 0 ||
7628 	    ppd->link_width_downgrade_rx_active == 0) {
7629 		/* the 8051 reported a dead link as a downgrade */
7630 		dd_dev_err(ppd->dd, "Link downgrade is really a link down, ignoring\n");
7631 		link_downgraded = false;
7632 	} else if (lwde == 0) {
7633 		/* downgrade is disabled */
7634 
7635 		/* bounce if not at starting active width */
7636 		if ((ppd->link_width_active !=
7637 		     ppd->link_width_downgrade_tx_active) ||
7638 		    (ppd->link_width_active !=
7639 		     ppd->link_width_downgrade_rx_active)) {
7640 			dd_dev_err(ppd->dd,
7641 				   "Link downgrade is disabled and link has downgraded, downing link\n");
7642 			dd_dev_err(ppd->dd,
7643 				   "  original 0x%x, tx active 0x%x, rx active 0x%x\n",
7644 				   ppd->link_width_active,
7645 				   ppd->link_width_downgrade_tx_active,
7646 				   ppd->link_width_downgrade_rx_active);
7647 			do_bounce = 1;
7648 			link_downgraded = false;
7649 		}
7650 	} else if ((lwde & ppd->link_width_downgrade_tx_active) == 0 ||
7651 		   (lwde & ppd->link_width_downgrade_rx_active) == 0) {
7652 		/* Tx or Rx is outside the enabled policy */
7653 		dd_dev_err(ppd->dd,
7654 			   "Link is outside of downgrade allowed, downing link\n");
7655 		dd_dev_err(ppd->dd,
7656 			   "  enabled 0x%x, tx active 0x%x, rx active 0x%x\n",
7657 			   lwde, ppd->link_width_downgrade_tx_active,
7658 			   ppd->link_width_downgrade_rx_active);
7659 		do_bounce = 1;
7660 		link_downgraded = false;
7661 	}
7662 
7663 done:
7664 	mutex_unlock(&ppd->hls_lock);
7665 
7666 	if (do_bounce) {
7667 		set_link_down_reason(ppd, OPA_LINKDOWN_REASON_WIDTH_POLICY, 0,
7668 				     OPA_LINKDOWN_REASON_WIDTH_POLICY);
7669 		set_link_state(ppd, HLS_DN_OFFLINE);
7670 		start_link(ppd);
7671 	}
7672 
7673 	return link_downgraded;
7674 }
7675 
7676 /*
7677  * Handle a link downgrade interrupt from the 8051.
7678  *
7679  * This is a work-queue function outside of the interrupt.
7680  */
handle_link_downgrade(struct work_struct * work)7681 void handle_link_downgrade(struct work_struct *work)
7682 {
7683 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7684 							link_downgrade_work);
7685 
7686 	dd_dev_info(ppd->dd, "8051: Link width downgrade\n");
7687 	if (apply_link_downgrade_policy(ppd, true))
7688 		update_xmit_counters(ppd, ppd->link_width_downgrade_tx_active);
7689 }
7690 
dcc_err_string(char * buf,int buf_len,u64 flags)7691 static char *dcc_err_string(char *buf, int buf_len, u64 flags)
7692 {
7693 	return flag_string(buf, buf_len, flags, dcc_err_flags,
7694 		ARRAY_SIZE(dcc_err_flags));
7695 }
7696 
lcb_err_string(char * buf,int buf_len,u64 flags)7697 static char *lcb_err_string(char *buf, int buf_len, u64 flags)
7698 {
7699 	return flag_string(buf, buf_len, flags, lcb_err_flags,
7700 		ARRAY_SIZE(lcb_err_flags));
7701 }
7702 
dc8051_err_string(char * buf,int buf_len,u64 flags)7703 static char *dc8051_err_string(char *buf, int buf_len, u64 flags)
7704 {
7705 	return flag_string(buf, buf_len, flags, dc8051_err_flags,
7706 		ARRAY_SIZE(dc8051_err_flags));
7707 }
7708 
dc8051_info_err_string(char * buf,int buf_len,u64 flags)7709 static char *dc8051_info_err_string(char *buf, int buf_len, u64 flags)
7710 {
7711 	return flag_string(buf, buf_len, flags, dc8051_info_err_flags,
7712 		ARRAY_SIZE(dc8051_info_err_flags));
7713 }
7714 
dc8051_info_host_msg_string(char * buf,int buf_len,u64 flags)7715 static char *dc8051_info_host_msg_string(char *buf, int buf_len, u64 flags)
7716 {
7717 	return flag_string(buf, buf_len, flags, dc8051_info_host_msg_flags,
7718 		ARRAY_SIZE(dc8051_info_host_msg_flags));
7719 }
7720 
handle_8051_interrupt(struct hfi1_devdata * dd,u32 unused,u64 reg)7721 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg)
7722 {
7723 	struct hfi1_pportdata *ppd = dd->pport;
7724 	u64 info, err, host_msg;
7725 	int queue_link_down = 0;
7726 	char buf[96];
7727 
7728 	/* look at the flags */
7729 	if (reg & DC_DC8051_ERR_FLG_SET_BY_8051_SMASK) {
7730 		/* 8051 information set by firmware */
7731 		/* read DC8051_DBG_ERR_INFO_SET_BY_8051 for details */
7732 		info = read_csr(dd, DC_DC8051_DBG_ERR_INFO_SET_BY_8051);
7733 		err = (info >> DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_SHIFT)
7734 			& DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_MASK;
7735 		host_msg = (info >>
7736 			DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_SHIFT)
7737 			& DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_MASK;
7738 
7739 		/*
7740 		 * Handle error flags.
7741 		 */
7742 		if (err & FAILED_LNI) {
7743 			/*
7744 			 * LNI error indications are cleared by the 8051
7745 			 * only when starting polling.  Only pay attention
7746 			 * to them when in the states that occur during
7747 			 * LNI.
7748 			 */
7749 			if (ppd->host_link_state
7750 			    & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
7751 				queue_link_down = 1;
7752 				dd_dev_info(dd, "Link error: %s\n",
7753 					    dc8051_info_err_string(buf,
7754 								   sizeof(buf),
7755 								   err &
7756 								   FAILED_LNI));
7757 			}
7758 			err &= ~(u64)FAILED_LNI;
7759 		}
7760 		/* unknown frames can happen durning LNI, just count */
7761 		if (err & UNKNOWN_FRAME) {
7762 			ppd->unknown_frame_count++;
7763 			err &= ~(u64)UNKNOWN_FRAME;
7764 		}
7765 		if (err) {
7766 			/* report remaining errors, but do not do anything */
7767 			dd_dev_err(dd, "8051 info error: %s\n",
7768 				   dc8051_info_err_string(buf, sizeof(buf),
7769 							  err));
7770 		}
7771 
7772 		/*
7773 		 * Handle host message flags.
7774 		 */
7775 		if (host_msg & HOST_REQ_DONE) {
7776 			/*
7777 			 * Presently, the driver does a busy wait for
7778 			 * host requests to complete.  This is only an
7779 			 * informational message.
7780 			 * NOTE: The 8051 clears the host message
7781 			 * information *on the next 8051 command*.
7782 			 * Therefore, when linkup is achieved,
7783 			 * this flag will still be set.
7784 			 */
7785 			host_msg &= ~(u64)HOST_REQ_DONE;
7786 		}
7787 		if (host_msg & BC_SMA_MSG) {
7788 			queue_work(ppd->link_wq, &ppd->sma_message_work);
7789 			host_msg &= ~(u64)BC_SMA_MSG;
7790 		}
7791 		if (host_msg & LINKUP_ACHIEVED) {
7792 			dd_dev_info(dd, "8051: Link up\n");
7793 			queue_work(ppd->link_wq, &ppd->link_up_work);
7794 			host_msg &= ~(u64)LINKUP_ACHIEVED;
7795 		}
7796 		if (host_msg & EXT_DEVICE_CFG_REQ) {
7797 			handle_8051_request(ppd);
7798 			host_msg &= ~(u64)EXT_DEVICE_CFG_REQ;
7799 		}
7800 		if (host_msg & VERIFY_CAP_FRAME) {
7801 			queue_work(ppd->link_wq, &ppd->link_vc_work);
7802 			host_msg &= ~(u64)VERIFY_CAP_FRAME;
7803 		}
7804 		if (host_msg & LINK_GOING_DOWN) {
7805 			const char *extra = "";
7806 			/* no downgrade action needed if going down */
7807 			if (host_msg & LINK_WIDTH_DOWNGRADED) {
7808 				host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7809 				extra = " (ignoring downgrade)";
7810 			}
7811 			dd_dev_info(dd, "8051: Link down%s\n", extra);
7812 			queue_link_down = 1;
7813 			host_msg &= ~(u64)LINK_GOING_DOWN;
7814 		}
7815 		if (host_msg & LINK_WIDTH_DOWNGRADED) {
7816 			queue_work(ppd->link_wq, &ppd->link_downgrade_work);
7817 			host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7818 		}
7819 		if (host_msg) {
7820 			/* report remaining messages, but do not do anything */
7821 			dd_dev_info(dd, "8051 info host message: %s\n",
7822 				    dc8051_info_host_msg_string(buf,
7823 								sizeof(buf),
7824 								host_msg));
7825 		}
7826 
7827 		reg &= ~DC_DC8051_ERR_FLG_SET_BY_8051_SMASK;
7828 	}
7829 	if (reg & DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK) {
7830 		/*
7831 		 * Lost the 8051 heartbeat.  If this happens, we
7832 		 * receive constant interrupts about it.  Disable
7833 		 * the interrupt after the first.
7834 		 */
7835 		dd_dev_err(dd, "Lost 8051 heartbeat\n");
7836 		write_csr(dd, DC_DC8051_ERR_EN,
7837 			  read_csr(dd, DC_DC8051_ERR_EN) &
7838 			  ~DC_DC8051_ERR_EN_LOST_8051_HEART_BEAT_SMASK);
7839 
7840 		reg &= ~DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK;
7841 	}
7842 	if (reg) {
7843 		/* report the error, but do not do anything */
7844 		dd_dev_err(dd, "8051 error: %s\n",
7845 			   dc8051_err_string(buf, sizeof(buf), reg));
7846 	}
7847 
7848 	if (queue_link_down) {
7849 		/*
7850 		 * if the link is already going down or disabled, do not
7851 		 * queue another. If there's a link down entry already
7852 		 * queued, don't queue another one.
7853 		 */
7854 		if ((ppd->host_link_state &
7855 		    (HLS_GOING_OFFLINE | HLS_LINK_COOLDOWN)) ||
7856 		    ppd->link_enabled == 0) {
7857 			dd_dev_info(dd, "%s: not queuing link down. host_link_state %x, link_enabled %x\n",
7858 				    __func__, ppd->host_link_state,
7859 				    ppd->link_enabled);
7860 		} else {
7861 			if (xchg(&ppd->is_link_down_queued, 1) == 1)
7862 				dd_dev_info(dd,
7863 					    "%s: link down request already queued\n",
7864 					    __func__);
7865 			else
7866 				queue_work(ppd->link_wq, &ppd->link_down_work);
7867 		}
7868 	}
7869 }
7870 
7871 static const char * const fm_config_txt[] = {
7872 [0] =
7873 	"BadHeadDist: Distance violation between two head flits",
7874 [1] =
7875 	"BadTailDist: Distance violation between two tail flits",
7876 [2] =
7877 	"BadCtrlDist: Distance violation between two credit control flits",
7878 [3] =
7879 	"BadCrdAck: Credits return for unsupported VL",
7880 [4] =
7881 	"UnsupportedVLMarker: Received VL Marker",
7882 [5] =
7883 	"BadPreempt: Exceeded the preemption nesting level",
7884 [6] =
7885 	"BadControlFlit: Received unsupported control flit",
7886 /* no 7 */
7887 [8] =
7888 	"UnsupportedVLMarker: Received VL Marker for unconfigured or disabled VL",
7889 };
7890 
7891 static const char * const port_rcv_txt[] = {
7892 [1] =
7893 	"BadPktLen: Illegal PktLen",
7894 [2] =
7895 	"PktLenTooLong: Packet longer than PktLen",
7896 [3] =
7897 	"PktLenTooShort: Packet shorter than PktLen",
7898 [4] =
7899 	"BadSLID: Illegal SLID (0, using multicast as SLID, does not include security validation of SLID)",
7900 [5] =
7901 	"BadDLID: Illegal DLID (0, doesn't match HFI)",
7902 [6] =
7903 	"BadL2: Illegal L2 opcode",
7904 [7] =
7905 	"BadSC: Unsupported SC",
7906 [9] =
7907 	"BadRC: Illegal RC",
7908 [11] =
7909 	"PreemptError: Preempting with same VL",
7910 [12] =
7911 	"PreemptVL15: Preempting a VL15 packet",
7912 };
7913 
7914 #define OPA_LDR_FMCONFIG_OFFSET 16
7915 #define OPA_LDR_PORTRCV_OFFSET 0
handle_dcc_err(struct hfi1_devdata * dd,u32 unused,u64 reg)7916 static void handle_dcc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
7917 {
7918 	u64 info, hdr0, hdr1;
7919 	const char *extra;
7920 	char buf[96];
7921 	struct hfi1_pportdata *ppd = dd->pport;
7922 	u8 lcl_reason = 0;
7923 	int do_bounce = 0;
7924 
7925 	if (reg & DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK) {
7926 		if (!(dd->err_info_uncorrectable & OPA_EI_STATUS_SMASK)) {
7927 			info = read_csr(dd, DCC_ERR_INFO_UNCORRECTABLE);
7928 			dd->err_info_uncorrectable = info & OPA_EI_CODE_SMASK;
7929 			/* set status bit */
7930 			dd->err_info_uncorrectable |= OPA_EI_STATUS_SMASK;
7931 		}
7932 		reg &= ~DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK;
7933 	}
7934 
7935 	if (reg & DCC_ERR_FLG_LINK_ERR_SMASK) {
7936 		struct hfi1_pportdata *ppd = dd->pport;
7937 		/* this counter saturates at (2^32) - 1 */
7938 		if (ppd->link_downed < (u32)UINT_MAX)
7939 			ppd->link_downed++;
7940 		reg &= ~DCC_ERR_FLG_LINK_ERR_SMASK;
7941 	}
7942 
7943 	if (reg & DCC_ERR_FLG_FMCONFIG_ERR_SMASK) {
7944 		u8 reason_valid = 1;
7945 
7946 		info = read_csr(dd, DCC_ERR_INFO_FMCONFIG);
7947 		if (!(dd->err_info_fmconfig & OPA_EI_STATUS_SMASK)) {
7948 			dd->err_info_fmconfig = info & OPA_EI_CODE_SMASK;
7949 			/* set status bit */
7950 			dd->err_info_fmconfig |= OPA_EI_STATUS_SMASK;
7951 		}
7952 		switch (info) {
7953 		case 0:
7954 		case 1:
7955 		case 2:
7956 		case 3:
7957 		case 4:
7958 		case 5:
7959 		case 6:
7960 			extra = fm_config_txt[info];
7961 			break;
7962 		case 8:
7963 			extra = fm_config_txt[info];
7964 			if (ppd->port_error_action &
7965 			    OPA_PI_MASK_FM_CFG_UNSUPPORTED_VL_MARKER) {
7966 				do_bounce = 1;
7967 				/*
7968 				 * lcl_reason cannot be derived from info
7969 				 * for this error
7970 				 */
7971 				lcl_reason =
7972 				  OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER;
7973 			}
7974 			break;
7975 		default:
7976 			reason_valid = 0;
7977 			snprintf(buf, sizeof(buf), "reserved%lld", info);
7978 			extra = buf;
7979 			break;
7980 		}
7981 
7982 		if (reason_valid && !do_bounce) {
7983 			do_bounce = ppd->port_error_action &
7984 					(1 << (OPA_LDR_FMCONFIG_OFFSET + info));
7985 			lcl_reason = info + OPA_LINKDOWN_REASON_BAD_HEAD_DIST;
7986 		}
7987 
7988 		/* just report this */
7989 		dd_dev_info_ratelimited(dd, "DCC Error: fmconfig error: %s\n",
7990 					extra);
7991 		reg &= ~DCC_ERR_FLG_FMCONFIG_ERR_SMASK;
7992 	}
7993 
7994 	if (reg & DCC_ERR_FLG_RCVPORT_ERR_SMASK) {
7995 		u8 reason_valid = 1;
7996 
7997 		info = read_csr(dd, DCC_ERR_INFO_PORTRCV);
7998 		hdr0 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR0);
7999 		hdr1 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR1);
8000 		if (!(dd->err_info_rcvport.status_and_code &
8001 		      OPA_EI_STATUS_SMASK)) {
8002 			dd->err_info_rcvport.status_and_code =
8003 				info & OPA_EI_CODE_SMASK;
8004 			/* set status bit */
8005 			dd->err_info_rcvport.status_and_code |=
8006 				OPA_EI_STATUS_SMASK;
8007 			/*
8008 			 * save first 2 flits in the packet that caused
8009 			 * the error
8010 			 */
8011 			dd->err_info_rcvport.packet_flit1 = hdr0;
8012 			dd->err_info_rcvport.packet_flit2 = hdr1;
8013 		}
8014 		switch (info) {
8015 		case 1:
8016 		case 2:
8017 		case 3:
8018 		case 4:
8019 		case 5:
8020 		case 6:
8021 		case 7:
8022 		case 9:
8023 		case 11:
8024 		case 12:
8025 			extra = port_rcv_txt[info];
8026 			break;
8027 		default:
8028 			reason_valid = 0;
8029 			snprintf(buf, sizeof(buf), "reserved%lld", info);
8030 			extra = buf;
8031 			break;
8032 		}
8033 
8034 		if (reason_valid && !do_bounce) {
8035 			do_bounce = ppd->port_error_action &
8036 					(1 << (OPA_LDR_PORTRCV_OFFSET + info));
8037 			lcl_reason = info + OPA_LINKDOWN_REASON_RCV_ERROR_0;
8038 		}
8039 
8040 		/* just report this */
8041 		dd_dev_info_ratelimited(dd, "DCC Error: PortRcv error: %s\n"
8042 					"               hdr0 0x%llx, hdr1 0x%llx\n",
8043 					extra, hdr0, hdr1);
8044 
8045 		reg &= ~DCC_ERR_FLG_RCVPORT_ERR_SMASK;
8046 	}
8047 
8048 	if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK) {
8049 		/* informative only */
8050 		dd_dev_info_ratelimited(dd, "8051 access to LCB blocked\n");
8051 		reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK;
8052 	}
8053 	if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK) {
8054 		/* informative only */
8055 		dd_dev_info_ratelimited(dd, "host access to LCB blocked\n");
8056 		reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK;
8057 	}
8058 
8059 	if (unlikely(hfi1_dbg_fault_suppress_err(&dd->verbs_dev)))
8060 		reg &= ~DCC_ERR_FLG_LATE_EBP_ERR_SMASK;
8061 
8062 	/* report any remaining errors */
8063 	if (reg)
8064 		dd_dev_info_ratelimited(dd, "DCC Error: %s\n",
8065 					dcc_err_string(buf, sizeof(buf), reg));
8066 
8067 	if (lcl_reason == 0)
8068 		lcl_reason = OPA_LINKDOWN_REASON_UNKNOWN;
8069 
8070 	if (do_bounce) {
8071 		dd_dev_info_ratelimited(dd, "%s: PortErrorAction bounce\n",
8072 					__func__);
8073 		set_link_down_reason(ppd, lcl_reason, 0, lcl_reason);
8074 		queue_work(ppd->link_wq, &ppd->link_bounce_work);
8075 	}
8076 }
8077 
handle_lcb_err(struct hfi1_devdata * dd,u32 unused,u64 reg)8078 static void handle_lcb_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
8079 {
8080 	char buf[96];
8081 
8082 	dd_dev_info(dd, "LCB Error: %s\n",
8083 		    lcb_err_string(buf, sizeof(buf), reg));
8084 }
8085 
8086 /*
8087  * CCE block DC interrupt.  Source is < 8.
8088  */
is_dc_int(struct hfi1_devdata * dd,unsigned int source)8089 static void is_dc_int(struct hfi1_devdata *dd, unsigned int source)
8090 {
8091 	const struct err_reg_info *eri = &dc_errs[source];
8092 
8093 	if (eri->handler) {
8094 		interrupt_clear_down(dd, 0, eri);
8095 	} else if (source == 3 /* dc_lbm_int */) {
8096 		/*
8097 		 * This indicates that a parity error has occurred on the
8098 		 * address/control lines presented to the LBM.  The error
8099 		 * is a single pulse, there is no associated error flag,
8100 		 * and it is non-maskable.  This is because if a parity
8101 		 * error occurs on the request the request is dropped.
8102 		 * This should never occur, but it is nice to know if it
8103 		 * ever does.
8104 		 */
8105 		dd_dev_err(dd, "Parity error in DC LBM block\n");
8106 	} else {
8107 		dd_dev_err(dd, "Invalid DC interrupt %u\n", source);
8108 	}
8109 }
8110 
8111 /*
8112  * TX block send credit interrupt.  Source is < 160.
8113  */
is_send_credit_int(struct hfi1_devdata * dd,unsigned int source)8114 static void is_send_credit_int(struct hfi1_devdata *dd, unsigned int source)
8115 {
8116 	sc_group_release_update(dd, source);
8117 }
8118 
8119 /*
8120  * TX block SDMA interrupt.  Source is < 48.
8121  *
8122  * SDMA interrupts are grouped by type:
8123  *
8124  *	 0 -  N-1 = SDma
8125  *	 N - 2N-1 = SDmaProgress
8126  *	2N - 3N-1 = SDmaIdle
8127  */
is_sdma_eng_int(struct hfi1_devdata * dd,unsigned int source)8128 static void is_sdma_eng_int(struct hfi1_devdata *dd, unsigned int source)
8129 {
8130 	/* what interrupt */
8131 	unsigned int what  = source / TXE_NUM_SDMA_ENGINES;
8132 	/* which engine */
8133 	unsigned int which = source % TXE_NUM_SDMA_ENGINES;
8134 
8135 #ifdef CONFIG_SDMA_VERBOSITY
8136 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", which,
8137 		   slashstrip(__FILE__), __LINE__, __func__);
8138 	sdma_dumpstate(&dd->per_sdma[which]);
8139 #endif
8140 
8141 	if (likely(what < 3 && which < dd->num_sdma)) {
8142 		sdma_engine_interrupt(&dd->per_sdma[which], 1ull << source);
8143 	} else {
8144 		/* should not happen */
8145 		dd_dev_err(dd, "Invalid SDMA interrupt 0x%x\n", source);
8146 	}
8147 }
8148 
8149 /**
8150  * is_rcv_avail_int() - User receive context available IRQ handler
8151  * @dd: valid dd
8152  * @source: logical IRQ source (offset from IS_RCVAVAIL_START)
8153  *
8154  * RX block receive available interrupt.  Source is < 160.
8155  *
8156  * This is the general interrupt handler for user (PSM) receive contexts,
8157  * and can only be used for non-threaded IRQs.
8158  */
is_rcv_avail_int(struct hfi1_devdata * dd,unsigned int source)8159 static void is_rcv_avail_int(struct hfi1_devdata *dd, unsigned int source)
8160 {
8161 	struct hfi1_ctxtdata *rcd;
8162 	char *err_detail;
8163 
8164 	if (likely(source < dd->num_rcv_contexts)) {
8165 		rcd = hfi1_rcd_get_by_index(dd, source);
8166 		if (rcd) {
8167 			handle_user_interrupt(rcd);
8168 			hfi1_rcd_put(rcd);
8169 			return;	/* OK */
8170 		}
8171 		/* received an interrupt, but no rcd */
8172 		err_detail = "dataless";
8173 	} else {
8174 		/* received an interrupt, but are not using that context */
8175 		err_detail = "out of range";
8176 	}
8177 	dd_dev_err(dd, "unexpected %s receive available context interrupt %u\n",
8178 		   err_detail, source);
8179 }
8180 
8181 /**
8182  * is_rcv_urgent_int() - User receive context urgent IRQ handler
8183  * @dd: valid dd
8184  * @source: logical IRQ source (ofse from IS_RCVURGENT_START)
8185  *
8186  * RX block receive urgent interrupt.  Source is < 160.
8187  *
8188  * NOTE: kernel receive contexts specifically do NOT enable this IRQ.
8189  */
is_rcv_urgent_int(struct hfi1_devdata * dd,unsigned int source)8190 static void is_rcv_urgent_int(struct hfi1_devdata *dd, unsigned int source)
8191 {
8192 	struct hfi1_ctxtdata *rcd;
8193 	char *err_detail;
8194 
8195 	if (likely(source < dd->num_rcv_contexts)) {
8196 		rcd = hfi1_rcd_get_by_index(dd, source);
8197 		if (rcd) {
8198 			handle_user_interrupt(rcd);
8199 			hfi1_rcd_put(rcd);
8200 			return;	/* OK */
8201 		}
8202 		/* received an interrupt, but no rcd */
8203 		err_detail = "dataless";
8204 	} else {
8205 		/* received an interrupt, but are not using that context */
8206 		err_detail = "out of range";
8207 	}
8208 	dd_dev_err(dd, "unexpected %s receive urgent context interrupt %u\n",
8209 		   err_detail, source);
8210 }
8211 
8212 /*
8213  * Reserved range interrupt.  Should not be called in normal operation.
8214  */
is_reserved_int(struct hfi1_devdata * dd,unsigned int source)8215 static void is_reserved_int(struct hfi1_devdata *dd, unsigned int source)
8216 {
8217 	char name[64];
8218 
8219 	dd_dev_err(dd, "unexpected %s interrupt\n",
8220 		   is_reserved_name(name, sizeof(name), source));
8221 }
8222 
8223 static const struct is_table is_table[] = {
8224 /*
8225  * start		 end
8226  *				name func		interrupt func
8227  */
8228 { IS_GENERAL_ERR_START,  IS_GENERAL_ERR_END,
8229 				is_misc_err_name,	is_misc_err_int },
8230 { IS_SDMAENG_ERR_START,  IS_SDMAENG_ERR_END,
8231 				is_sdma_eng_err_name,	is_sdma_eng_err_int },
8232 { IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END,
8233 				is_sendctxt_err_name,	is_sendctxt_err_int },
8234 { IS_SDMA_START,	     IS_SDMA_END,
8235 				is_sdma_eng_name,	is_sdma_eng_int },
8236 { IS_VARIOUS_START,	     IS_VARIOUS_END,
8237 				is_various_name,	is_various_int },
8238 { IS_DC_START,	     IS_DC_END,
8239 				is_dc_name,		is_dc_int },
8240 { IS_RCVAVAIL_START,     IS_RCVAVAIL_END,
8241 				is_rcv_avail_name,	is_rcv_avail_int },
8242 { IS_RCVURGENT_START,    IS_RCVURGENT_END,
8243 				is_rcv_urgent_name,	is_rcv_urgent_int },
8244 { IS_SENDCREDIT_START,   IS_SENDCREDIT_END,
8245 				is_send_credit_name,	is_send_credit_int},
8246 { IS_RESERVED_START,     IS_RESERVED_END,
8247 				is_reserved_name,	is_reserved_int},
8248 };
8249 
8250 /*
8251  * Interrupt source interrupt - called when the given source has an interrupt.
8252  * Source is a bit index into an array of 64-bit integers.
8253  */
is_interrupt(struct hfi1_devdata * dd,unsigned int source)8254 static void is_interrupt(struct hfi1_devdata *dd, unsigned int source)
8255 {
8256 	const struct is_table *entry;
8257 
8258 	/* avoids a double compare by walking the table in-order */
8259 	for (entry = &is_table[0]; entry->is_name; entry++) {
8260 		if (source < entry->end) {
8261 			trace_hfi1_interrupt(dd, entry, source);
8262 			entry->is_int(dd, source - entry->start);
8263 			return;
8264 		}
8265 	}
8266 	/* fell off the end */
8267 	dd_dev_err(dd, "invalid interrupt source %u\n", source);
8268 }
8269 
8270 /**
8271  * gerneral_interrupt() -  General interrupt handler
8272  * @irq: MSIx IRQ vector
8273  * @data: hfi1 devdata
8274  *
8275  * This is able to correctly handle all non-threaded interrupts.  Receive
8276  * context DATA IRQs are threaded and are not supported by this handler.
8277  *
8278  */
general_interrupt(int irq,void * data)8279 static irqreturn_t general_interrupt(int irq, void *data)
8280 {
8281 	struct hfi1_devdata *dd = data;
8282 	u64 regs[CCE_NUM_INT_CSRS];
8283 	u32 bit;
8284 	int i;
8285 	irqreturn_t handled = IRQ_NONE;
8286 
8287 	this_cpu_inc(*dd->int_counter);
8288 
8289 	/* phase 1: scan and clear all handled interrupts */
8290 	for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
8291 		if (dd->gi_mask[i] == 0) {
8292 			regs[i] = 0;	/* used later */
8293 			continue;
8294 		}
8295 		regs[i] = read_csr(dd, CCE_INT_STATUS + (8 * i)) &
8296 				dd->gi_mask[i];
8297 		/* only clear if anything is set */
8298 		if (regs[i])
8299 			write_csr(dd, CCE_INT_CLEAR + (8 * i), regs[i]);
8300 	}
8301 
8302 	/* phase 2: call the appropriate handler */
8303 	for_each_set_bit(bit, (unsigned long *)&regs[0],
8304 			 CCE_NUM_INT_CSRS * 64) {
8305 		is_interrupt(dd, bit);
8306 		handled = IRQ_HANDLED;
8307 	}
8308 
8309 	return handled;
8310 }
8311 
sdma_interrupt(int irq,void * data)8312 static irqreturn_t sdma_interrupt(int irq, void *data)
8313 {
8314 	struct sdma_engine *sde = data;
8315 	struct hfi1_devdata *dd = sde->dd;
8316 	u64 status;
8317 
8318 #ifdef CONFIG_SDMA_VERBOSITY
8319 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
8320 		   slashstrip(__FILE__), __LINE__, __func__);
8321 	sdma_dumpstate(sde);
8322 #endif
8323 
8324 	this_cpu_inc(*dd->int_counter);
8325 
8326 	/* This read_csr is really bad in the hot path */
8327 	status = read_csr(dd,
8328 			  CCE_INT_STATUS + (8 * (IS_SDMA_START / 64)))
8329 			  & sde->imask;
8330 	if (likely(status)) {
8331 		/* clear the interrupt(s) */
8332 		write_csr(dd,
8333 			  CCE_INT_CLEAR + (8 * (IS_SDMA_START / 64)),
8334 			  status);
8335 
8336 		/* handle the interrupt(s) */
8337 		sdma_engine_interrupt(sde, status);
8338 	} else {
8339 		dd_dev_info_ratelimited(dd, "SDMA engine %u interrupt, but no status bits set\n",
8340 					sde->this_idx);
8341 	}
8342 	return IRQ_HANDLED;
8343 }
8344 
8345 /*
8346  * Clear the receive interrupt.  Use a read of the interrupt clear CSR
8347  * to insure that the write completed.  This does NOT guarantee that
8348  * queued DMA writes to memory from the chip are pushed.
8349  */
clear_recv_intr(struct hfi1_ctxtdata * rcd)8350 static inline void clear_recv_intr(struct hfi1_ctxtdata *rcd)
8351 {
8352 	struct hfi1_devdata *dd = rcd->dd;
8353 	u32 addr = CCE_INT_CLEAR + (8 * rcd->ireg);
8354 
8355 	mmiowb();	/* make sure everything before is written */
8356 	write_csr(dd, addr, rcd->imask);
8357 	/* force the above write on the chip and get a value back */
8358 	(void)read_csr(dd, addr);
8359 }
8360 
8361 /* force the receive interrupt */
force_recv_intr(struct hfi1_ctxtdata * rcd)8362 void force_recv_intr(struct hfi1_ctxtdata *rcd)
8363 {
8364 	write_csr(rcd->dd, CCE_INT_FORCE + (8 * rcd->ireg), rcd->imask);
8365 }
8366 
8367 /*
8368  * Return non-zero if a packet is present.
8369  *
8370  * This routine is called when rechecking for packets after the RcvAvail
8371  * interrupt has been cleared down.  First, do a quick check of memory for
8372  * a packet present.  If not found, use an expensive CSR read of the context
8373  * tail to determine the actual tail.  The CSR read is necessary because there
8374  * is no method to push pending DMAs to memory other than an interrupt and we
8375  * are trying to determine if we need to force an interrupt.
8376  */
check_packet_present(struct hfi1_ctxtdata * rcd)8377 static inline int check_packet_present(struct hfi1_ctxtdata *rcd)
8378 {
8379 	u32 tail;
8380 	int present;
8381 
8382 	if (!rcd->rcvhdrtail_kvaddr)
8383 		present = (rcd->seq_cnt ==
8384 				rhf_rcv_seq(rhf_to_cpu(get_rhf_addr(rcd))));
8385 	else /* is RDMA rtail */
8386 		present = (rcd->head != get_rcvhdrtail(rcd));
8387 
8388 	if (present)
8389 		return 1;
8390 
8391 	/* fall back to a CSR read, correct indpendent of DMA_RTAIL */
8392 	tail = (u32)read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
8393 	return rcd->head != tail;
8394 }
8395 
8396 /*
8397  * Receive packet IRQ handler.  This routine expects to be on its own IRQ.
8398  * This routine will try to handle packets immediately (latency), but if
8399  * it finds too many, it will invoke the thread handler (bandwitdh).  The
8400  * chip receive interrupt is *not* cleared down until this or the thread (if
8401  * invoked) is finished.  The intent is to avoid extra interrupts while we
8402  * are processing packets anyway.
8403  */
receive_context_interrupt(int irq,void * data)8404 static irqreturn_t receive_context_interrupt(int irq, void *data)
8405 {
8406 	struct hfi1_ctxtdata *rcd = data;
8407 	struct hfi1_devdata *dd = rcd->dd;
8408 	int disposition;
8409 	int present;
8410 
8411 	trace_hfi1_receive_interrupt(dd, rcd);
8412 	this_cpu_inc(*dd->int_counter);
8413 	aspm_ctx_disable(rcd);
8414 
8415 	/* receive interrupt remains blocked while processing packets */
8416 	disposition = rcd->do_interrupt(rcd, 0);
8417 
8418 	/*
8419 	 * Too many packets were seen while processing packets in this
8420 	 * IRQ handler.  Invoke the handler thread.  The receive interrupt
8421 	 * remains blocked.
8422 	 */
8423 	if (disposition == RCV_PKT_LIMIT)
8424 		return IRQ_WAKE_THREAD;
8425 
8426 	/*
8427 	 * The packet processor detected no more packets.  Clear the receive
8428 	 * interrupt and recheck for a packet packet that may have arrived
8429 	 * after the previous check and interrupt clear.  If a packet arrived,
8430 	 * force another interrupt.
8431 	 */
8432 	clear_recv_intr(rcd);
8433 	present = check_packet_present(rcd);
8434 	if (present)
8435 		force_recv_intr(rcd);
8436 
8437 	return IRQ_HANDLED;
8438 }
8439 
8440 /*
8441  * Receive packet thread handler.  This expects to be invoked with the
8442  * receive interrupt still blocked.
8443  */
receive_context_thread(int irq,void * data)8444 static irqreturn_t receive_context_thread(int irq, void *data)
8445 {
8446 	struct hfi1_ctxtdata *rcd = data;
8447 	int present;
8448 
8449 	/* receive interrupt is still blocked from the IRQ handler */
8450 	(void)rcd->do_interrupt(rcd, 1);
8451 
8452 	/*
8453 	 * The packet processor will only return if it detected no more
8454 	 * packets.  Hold IRQs here so we can safely clear the interrupt and
8455 	 * recheck for a packet that may have arrived after the previous
8456 	 * check and the interrupt clear.  If a packet arrived, force another
8457 	 * interrupt.
8458 	 */
8459 	local_irq_disable();
8460 	clear_recv_intr(rcd);
8461 	present = check_packet_present(rcd);
8462 	if (present)
8463 		force_recv_intr(rcd);
8464 	local_irq_enable();
8465 
8466 	return IRQ_HANDLED;
8467 }
8468 
8469 /* ========================================================================= */
8470 
read_physical_state(struct hfi1_devdata * dd)8471 u32 read_physical_state(struct hfi1_devdata *dd)
8472 {
8473 	u64 reg;
8474 
8475 	reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
8476 	return (reg >> DC_DC8051_STS_CUR_STATE_PORT_SHIFT)
8477 				& DC_DC8051_STS_CUR_STATE_PORT_MASK;
8478 }
8479 
read_logical_state(struct hfi1_devdata * dd)8480 u32 read_logical_state(struct hfi1_devdata *dd)
8481 {
8482 	u64 reg;
8483 
8484 	reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8485 	return (reg >> DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT)
8486 				& DCC_CFG_PORT_CONFIG_LINK_STATE_MASK;
8487 }
8488 
set_logical_state(struct hfi1_devdata * dd,u32 chip_lstate)8489 static void set_logical_state(struct hfi1_devdata *dd, u32 chip_lstate)
8490 {
8491 	u64 reg;
8492 
8493 	reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8494 	/* clear current state, set new state */
8495 	reg &= ~DCC_CFG_PORT_CONFIG_LINK_STATE_SMASK;
8496 	reg |= (u64)chip_lstate << DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT;
8497 	write_csr(dd, DCC_CFG_PORT_CONFIG, reg);
8498 }
8499 
8500 /*
8501  * Use the 8051 to read a LCB CSR.
8502  */
read_lcb_via_8051(struct hfi1_devdata * dd,u32 addr,u64 * data)8503 static int read_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 *data)
8504 {
8505 	u32 regno;
8506 	int ret;
8507 
8508 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
8509 		if (acquire_lcb_access(dd, 0) == 0) {
8510 			*data = read_csr(dd, addr);
8511 			release_lcb_access(dd, 0);
8512 			return 0;
8513 		}
8514 		return -EBUSY;
8515 	}
8516 
8517 	/* register is an index of LCB registers: (offset - base) / 8 */
8518 	regno = (addr - DC_LCB_CFG_RUN) >> 3;
8519 	ret = do_8051_command(dd, HCMD_READ_LCB_CSR, regno, data);
8520 	if (ret != HCMD_SUCCESS)
8521 		return -EBUSY;
8522 	return 0;
8523 }
8524 
8525 /*
8526  * Provide a cache for some of the LCB registers in case the LCB is
8527  * unavailable.
8528  * (The LCB is unavailable in certain link states, for example.)
8529  */
8530 struct lcb_datum {
8531 	u32 off;
8532 	u64 val;
8533 };
8534 
8535 static struct lcb_datum lcb_cache[] = {
8536 	{ DC_LCB_ERR_INFO_RX_REPLAY_CNT, 0},
8537 	{ DC_LCB_ERR_INFO_SEQ_CRC_CNT, 0 },
8538 	{ DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT, 0 },
8539 };
8540 
update_lcb_cache(struct hfi1_devdata * dd)8541 static void update_lcb_cache(struct hfi1_devdata *dd)
8542 {
8543 	int i;
8544 	int ret;
8545 	u64 val;
8546 
8547 	for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8548 		ret = read_lcb_csr(dd, lcb_cache[i].off, &val);
8549 
8550 		/* Update if we get good data */
8551 		if (likely(ret != -EBUSY))
8552 			lcb_cache[i].val = val;
8553 	}
8554 }
8555 
read_lcb_cache(u32 off,u64 * val)8556 static int read_lcb_cache(u32 off, u64 *val)
8557 {
8558 	int i;
8559 
8560 	for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8561 		if (lcb_cache[i].off == off) {
8562 			*val = lcb_cache[i].val;
8563 			return 0;
8564 		}
8565 	}
8566 
8567 	pr_warn("%s bad offset 0x%x\n", __func__, off);
8568 	return -1;
8569 }
8570 
8571 /*
8572  * Read an LCB CSR.  Access may not be in host control, so check.
8573  * Return 0 on success, -EBUSY on failure.
8574  */
read_lcb_csr(struct hfi1_devdata * dd,u32 addr,u64 * data)8575 int read_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 *data)
8576 {
8577 	struct hfi1_pportdata *ppd = dd->pport;
8578 
8579 	/* if up, go through the 8051 for the value */
8580 	if (ppd->host_link_state & HLS_UP)
8581 		return read_lcb_via_8051(dd, addr, data);
8582 	/* if going up or down, check the cache, otherwise, no access */
8583 	if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE)) {
8584 		if (read_lcb_cache(addr, data))
8585 			return -EBUSY;
8586 		return 0;
8587 	}
8588 
8589 	/* otherwise, host has access */
8590 	*data = read_csr(dd, addr);
8591 	return 0;
8592 }
8593 
8594 /*
8595  * Use the 8051 to write a LCB CSR.
8596  */
write_lcb_via_8051(struct hfi1_devdata * dd,u32 addr,u64 data)8597 static int write_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 data)
8598 {
8599 	u32 regno;
8600 	int ret;
8601 
8602 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR ||
8603 	    (dd->dc8051_ver < dc8051_ver(0, 20, 0))) {
8604 		if (acquire_lcb_access(dd, 0) == 0) {
8605 			write_csr(dd, addr, data);
8606 			release_lcb_access(dd, 0);
8607 			return 0;
8608 		}
8609 		return -EBUSY;
8610 	}
8611 
8612 	/* register is an index of LCB registers: (offset - base) / 8 */
8613 	regno = (addr - DC_LCB_CFG_RUN) >> 3;
8614 	ret = do_8051_command(dd, HCMD_WRITE_LCB_CSR, regno, &data);
8615 	if (ret != HCMD_SUCCESS)
8616 		return -EBUSY;
8617 	return 0;
8618 }
8619 
8620 /*
8621  * Write an LCB CSR.  Access may not be in host control, so check.
8622  * Return 0 on success, -EBUSY on failure.
8623  */
write_lcb_csr(struct hfi1_devdata * dd,u32 addr,u64 data)8624 int write_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 data)
8625 {
8626 	struct hfi1_pportdata *ppd = dd->pport;
8627 
8628 	/* if up, go through the 8051 for the value */
8629 	if (ppd->host_link_state & HLS_UP)
8630 		return write_lcb_via_8051(dd, addr, data);
8631 	/* if going up or down, no access */
8632 	if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
8633 		return -EBUSY;
8634 	/* otherwise, host has access */
8635 	write_csr(dd, addr, data);
8636 	return 0;
8637 }
8638 
8639 /*
8640  * Returns:
8641  *	< 0 = Linux error, not able to get access
8642  *	> 0 = 8051 command RETURN_CODE
8643  */
do_8051_command(struct hfi1_devdata * dd,u32 type,u64 in_data,u64 * out_data)8644 static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
8645 			   u64 *out_data)
8646 {
8647 	u64 reg, completed;
8648 	int return_code;
8649 	unsigned long timeout;
8650 
8651 	hfi1_cdbg(DC8051, "type %d, data 0x%012llx", type, in_data);
8652 
8653 	mutex_lock(&dd->dc8051_lock);
8654 
8655 	/* We can't send any commands to the 8051 if it's in reset */
8656 	if (dd->dc_shutdown) {
8657 		return_code = -ENODEV;
8658 		goto fail;
8659 	}
8660 
8661 	/*
8662 	 * If an 8051 host command timed out previously, then the 8051 is
8663 	 * stuck.
8664 	 *
8665 	 * On first timeout, attempt to reset and restart the entire DC
8666 	 * block (including 8051). (Is this too big of a hammer?)
8667 	 *
8668 	 * If the 8051 times out a second time, the reset did not bring it
8669 	 * back to healthy life. In that case, fail any subsequent commands.
8670 	 */
8671 	if (dd->dc8051_timed_out) {
8672 		if (dd->dc8051_timed_out > 1) {
8673 			dd_dev_err(dd,
8674 				   "Previous 8051 host command timed out, skipping command %u\n",
8675 				   type);
8676 			return_code = -ENXIO;
8677 			goto fail;
8678 		}
8679 		_dc_shutdown(dd);
8680 		_dc_start(dd);
8681 	}
8682 
8683 	/*
8684 	 * If there is no timeout, then the 8051 command interface is
8685 	 * waiting for a command.
8686 	 */
8687 
8688 	/*
8689 	 * When writing a LCB CSR, out_data contains the full value to
8690 	 * to be written, while in_data contains the relative LCB
8691 	 * address in 7:0.  Do the work here, rather than the caller,
8692 	 * of distrubting the write data to where it needs to go:
8693 	 *
8694 	 * Write data
8695 	 *   39:00 -> in_data[47:8]
8696 	 *   47:40 -> DC8051_CFG_EXT_DEV_0.RETURN_CODE
8697 	 *   63:48 -> DC8051_CFG_EXT_DEV_0.RSP_DATA
8698 	 */
8699 	if (type == HCMD_WRITE_LCB_CSR) {
8700 		in_data |= ((*out_data) & 0xffffffffffull) << 8;
8701 		/* must preserve COMPLETED - it is tied to hardware */
8702 		reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_0);
8703 		reg &= DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK;
8704 		reg |= ((((*out_data) >> 40) & 0xff) <<
8705 				DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT)
8706 		      | ((((*out_data) >> 48) & 0xffff) <<
8707 				DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
8708 		write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, reg);
8709 	}
8710 
8711 	/*
8712 	 * Do two writes: the first to stabilize the type and req_data, the
8713 	 * second to activate.
8714 	 */
8715 	reg = ((u64)type & DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_MASK)
8716 			<< DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_SHIFT
8717 		| (in_data & DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_MASK)
8718 			<< DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_SHIFT;
8719 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8720 	reg |= DC_DC8051_CFG_HOST_CMD_0_REQ_NEW_SMASK;
8721 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8722 
8723 	/* wait for completion, alternate: interrupt */
8724 	timeout = jiffies + msecs_to_jiffies(DC8051_COMMAND_TIMEOUT);
8725 	while (1) {
8726 		reg = read_csr(dd, DC_DC8051_CFG_HOST_CMD_1);
8727 		completed = reg & DC_DC8051_CFG_HOST_CMD_1_COMPLETED_SMASK;
8728 		if (completed)
8729 			break;
8730 		if (time_after(jiffies, timeout)) {
8731 			dd->dc8051_timed_out++;
8732 			dd_dev_err(dd, "8051 host command %u timeout\n", type);
8733 			if (out_data)
8734 				*out_data = 0;
8735 			return_code = -ETIMEDOUT;
8736 			goto fail;
8737 		}
8738 		udelay(2);
8739 	}
8740 
8741 	if (out_data) {
8742 		*out_data = (reg >> DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_SHIFT)
8743 				& DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_MASK;
8744 		if (type == HCMD_READ_LCB_CSR) {
8745 			/* top 16 bits are in a different register */
8746 			*out_data |= (read_csr(dd, DC_DC8051_CFG_EXT_DEV_1)
8747 				& DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SMASK)
8748 				<< (48
8749 				    - DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT);
8750 		}
8751 	}
8752 	return_code = (reg >> DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_SHIFT)
8753 				& DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_MASK;
8754 	dd->dc8051_timed_out = 0;
8755 	/*
8756 	 * Clear command for next user.
8757 	 */
8758 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, 0);
8759 
8760 fail:
8761 	mutex_unlock(&dd->dc8051_lock);
8762 	return return_code;
8763 }
8764 
set_physical_link_state(struct hfi1_devdata * dd,u64 state)8765 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state)
8766 {
8767 	return do_8051_command(dd, HCMD_CHANGE_PHY_STATE, state, NULL);
8768 }
8769 
load_8051_config(struct hfi1_devdata * dd,u8 field_id,u8 lane_id,u32 config_data)8770 int load_8051_config(struct hfi1_devdata *dd, u8 field_id,
8771 		     u8 lane_id, u32 config_data)
8772 {
8773 	u64 data;
8774 	int ret;
8775 
8776 	data = (u64)field_id << LOAD_DATA_FIELD_ID_SHIFT
8777 		| (u64)lane_id << LOAD_DATA_LANE_ID_SHIFT
8778 		| (u64)config_data << LOAD_DATA_DATA_SHIFT;
8779 	ret = do_8051_command(dd, HCMD_LOAD_CONFIG_DATA, data, NULL);
8780 	if (ret != HCMD_SUCCESS) {
8781 		dd_dev_err(dd,
8782 			   "load 8051 config: field id %d, lane %d, err %d\n",
8783 			   (int)field_id, (int)lane_id, ret);
8784 	}
8785 	return ret;
8786 }
8787 
8788 /*
8789  * Read the 8051 firmware "registers".  Use the RAM directly.  Always
8790  * set the result, even on error.
8791  * Return 0 on success, -errno on failure
8792  */
read_8051_config(struct hfi1_devdata * dd,u8 field_id,u8 lane_id,u32 * result)8793 int read_8051_config(struct hfi1_devdata *dd, u8 field_id, u8 lane_id,
8794 		     u32 *result)
8795 {
8796 	u64 big_data;
8797 	u32 addr;
8798 	int ret;
8799 
8800 	/* address start depends on the lane_id */
8801 	if (lane_id < 4)
8802 		addr = (4 * NUM_GENERAL_FIELDS)
8803 			+ (lane_id * 4 * NUM_LANE_FIELDS);
8804 	else
8805 		addr = 0;
8806 	addr += field_id * 4;
8807 
8808 	/* read is in 8-byte chunks, hardware will truncate the address down */
8809 	ret = read_8051_data(dd, addr, 8, &big_data);
8810 
8811 	if (ret == 0) {
8812 		/* extract the 4 bytes we want */
8813 		if (addr & 0x4)
8814 			*result = (u32)(big_data >> 32);
8815 		else
8816 			*result = (u32)big_data;
8817 	} else {
8818 		*result = 0;
8819 		dd_dev_err(dd, "%s: direct read failed, lane %d, field %d!\n",
8820 			   __func__, lane_id, field_id);
8821 	}
8822 
8823 	return ret;
8824 }
8825 
write_vc_local_phy(struct hfi1_devdata * dd,u8 power_management,u8 continuous)8826 static int write_vc_local_phy(struct hfi1_devdata *dd, u8 power_management,
8827 			      u8 continuous)
8828 {
8829 	u32 frame;
8830 
8831 	frame = continuous << CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT
8832 		| power_management << POWER_MANAGEMENT_SHIFT;
8833 	return load_8051_config(dd, VERIFY_CAP_LOCAL_PHY,
8834 				GENERAL_CONFIG, frame);
8835 }
8836 
write_vc_local_fabric(struct hfi1_devdata * dd,u8 vau,u8 z,u8 vcu,u16 vl15buf,u8 crc_sizes)8837 static int write_vc_local_fabric(struct hfi1_devdata *dd, u8 vau, u8 z, u8 vcu,
8838 				 u16 vl15buf, u8 crc_sizes)
8839 {
8840 	u32 frame;
8841 
8842 	frame = (u32)vau << VAU_SHIFT
8843 		| (u32)z << Z_SHIFT
8844 		| (u32)vcu << VCU_SHIFT
8845 		| (u32)vl15buf << VL15BUF_SHIFT
8846 		| (u32)crc_sizes << CRC_SIZES_SHIFT;
8847 	return load_8051_config(dd, VERIFY_CAP_LOCAL_FABRIC,
8848 				GENERAL_CONFIG, frame);
8849 }
8850 
read_vc_local_link_mode(struct hfi1_devdata * dd,u8 * misc_bits,u8 * flag_bits,u16 * link_widths)8851 static void read_vc_local_link_mode(struct hfi1_devdata *dd, u8 *misc_bits,
8852 				    u8 *flag_bits, u16 *link_widths)
8853 {
8854 	u32 frame;
8855 
8856 	read_8051_config(dd, VERIFY_CAP_LOCAL_LINK_MODE, GENERAL_CONFIG,
8857 			 &frame);
8858 	*misc_bits = (frame >> MISC_CONFIG_BITS_SHIFT) & MISC_CONFIG_BITS_MASK;
8859 	*flag_bits = (frame >> LOCAL_FLAG_BITS_SHIFT) & LOCAL_FLAG_BITS_MASK;
8860 	*link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8861 }
8862 
write_vc_local_link_mode(struct hfi1_devdata * dd,u8 misc_bits,u8 flag_bits,u16 link_widths)8863 static int write_vc_local_link_mode(struct hfi1_devdata *dd,
8864 				    u8 misc_bits,
8865 				    u8 flag_bits,
8866 				    u16 link_widths)
8867 {
8868 	u32 frame;
8869 
8870 	frame = (u32)misc_bits << MISC_CONFIG_BITS_SHIFT
8871 		| (u32)flag_bits << LOCAL_FLAG_BITS_SHIFT
8872 		| (u32)link_widths << LINK_WIDTH_SHIFT;
8873 	return load_8051_config(dd, VERIFY_CAP_LOCAL_LINK_MODE, GENERAL_CONFIG,
8874 		     frame);
8875 }
8876 
write_local_device_id(struct hfi1_devdata * dd,u16 device_id,u8 device_rev)8877 static int write_local_device_id(struct hfi1_devdata *dd, u16 device_id,
8878 				 u8 device_rev)
8879 {
8880 	u32 frame;
8881 
8882 	frame = ((u32)device_id << LOCAL_DEVICE_ID_SHIFT)
8883 		| ((u32)device_rev << LOCAL_DEVICE_REV_SHIFT);
8884 	return load_8051_config(dd, LOCAL_DEVICE_ID, GENERAL_CONFIG, frame);
8885 }
8886 
read_remote_device_id(struct hfi1_devdata * dd,u16 * device_id,u8 * device_rev)8887 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
8888 				  u8 *device_rev)
8889 {
8890 	u32 frame;
8891 
8892 	read_8051_config(dd, REMOTE_DEVICE_ID, GENERAL_CONFIG, &frame);
8893 	*device_id = (frame >> REMOTE_DEVICE_ID_SHIFT) & REMOTE_DEVICE_ID_MASK;
8894 	*device_rev = (frame >> REMOTE_DEVICE_REV_SHIFT)
8895 			& REMOTE_DEVICE_REV_MASK;
8896 }
8897 
write_host_interface_version(struct hfi1_devdata * dd,u8 version)8898 int write_host_interface_version(struct hfi1_devdata *dd, u8 version)
8899 {
8900 	u32 frame;
8901 	u32 mask;
8902 
8903 	mask = (HOST_INTERFACE_VERSION_MASK << HOST_INTERFACE_VERSION_SHIFT);
8904 	read_8051_config(dd, RESERVED_REGISTERS, GENERAL_CONFIG, &frame);
8905 	/* Clear, then set field */
8906 	frame &= ~mask;
8907 	frame |= ((u32)version << HOST_INTERFACE_VERSION_SHIFT);
8908 	return load_8051_config(dd, RESERVED_REGISTERS, GENERAL_CONFIG,
8909 				frame);
8910 }
8911 
read_misc_status(struct hfi1_devdata * dd,u8 * ver_major,u8 * ver_minor,u8 * ver_patch)8912 void read_misc_status(struct hfi1_devdata *dd, u8 *ver_major, u8 *ver_minor,
8913 		      u8 *ver_patch)
8914 {
8915 	u32 frame;
8916 
8917 	read_8051_config(dd, MISC_STATUS, GENERAL_CONFIG, &frame);
8918 	*ver_major = (frame >> STS_FM_VERSION_MAJOR_SHIFT) &
8919 		STS_FM_VERSION_MAJOR_MASK;
8920 	*ver_minor = (frame >> STS_FM_VERSION_MINOR_SHIFT) &
8921 		STS_FM_VERSION_MINOR_MASK;
8922 
8923 	read_8051_config(dd, VERSION_PATCH, GENERAL_CONFIG, &frame);
8924 	*ver_patch = (frame >> STS_FM_VERSION_PATCH_SHIFT) &
8925 		STS_FM_VERSION_PATCH_MASK;
8926 }
8927 
read_vc_remote_phy(struct hfi1_devdata * dd,u8 * power_management,u8 * continuous)8928 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
8929 			       u8 *continuous)
8930 {
8931 	u32 frame;
8932 
8933 	read_8051_config(dd, VERIFY_CAP_REMOTE_PHY, GENERAL_CONFIG, &frame);
8934 	*power_management = (frame >> POWER_MANAGEMENT_SHIFT)
8935 					& POWER_MANAGEMENT_MASK;
8936 	*continuous = (frame >> CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT)
8937 					& CONTINIOUS_REMOTE_UPDATE_SUPPORT_MASK;
8938 }
8939 
read_vc_remote_fabric(struct hfi1_devdata * dd,u8 * vau,u8 * z,u8 * vcu,u16 * vl15buf,u8 * crc_sizes)8940 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
8941 				  u8 *vcu, u16 *vl15buf, u8 *crc_sizes)
8942 {
8943 	u32 frame;
8944 
8945 	read_8051_config(dd, VERIFY_CAP_REMOTE_FABRIC, GENERAL_CONFIG, &frame);
8946 	*vau = (frame >> VAU_SHIFT) & VAU_MASK;
8947 	*z = (frame >> Z_SHIFT) & Z_MASK;
8948 	*vcu = (frame >> VCU_SHIFT) & VCU_MASK;
8949 	*vl15buf = (frame >> VL15BUF_SHIFT) & VL15BUF_MASK;
8950 	*crc_sizes = (frame >> CRC_SIZES_SHIFT) & CRC_SIZES_MASK;
8951 }
8952 
read_vc_remote_link_width(struct hfi1_devdata * dd,u8 * remote_tx_rate,u16 * link_widths)8953 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
8954 				      u8 *remote_tx_rate,
8955 				      u16 *link_widths)
8956 {
8957 	u32 frame;
8958 
8959 	read_8051_config(dd, VERIFY_CAP_REMOTE_LINK_WIDTH, GENERAL_CONFIG,
8960 			 &frame);
8961 	*remote_tx_rate = (frame >> REMOTE_TX_RATE_SHIFT)
8962 				& REMOTE_TX_RATE_MASK;
8963 	*link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8964 }
8965 
read_local_lni(struct hfi1_devdata * dd,u8 * enable_lane_rx)8966 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx)
8967 {
8968 	u32 frame;
8969 
8970 	read_8051_config(dd, LOCAL_LNI_INFO, GENERAL_CONFIG, &frame);
8971 	*enable_lane_rx = (frame >> ENABLE_LANE_RX_SHIFT) & ENABLE_LANE_RX_MASK;
8972 }
8973 
read_last_local_state(struct hfi1_devdata * dd,u32 * lls)8974 static void read_last_local_state(struct hfi1_devdata *dd, u32 *lls)
8975 {
8976 	read_8051_config(dd, LAST_LOCAL_STATE_COMPLETE, GENERAL_CONFIG, lls);
8977 }
8978 
read_last_remote_state(struct hfi1_devdata * dd,u32 * lrs)8979 static void read_last_remote_state(struct hfi1_devdata *dd, u32 *lrs)
8980 {
8981 	read_8051_config(dd, LAST_REMOTE_STATE_COMPLETE, GENERAL_CONFIG, lrs);
8982 }
8983 
hfi1_read_link_quality(struct hfi1_devdata * dd,u8 * link_quality)8984 void hfi1_read_link_quality(struct hfi1_devdata *dd, u8 *link_quality)
8985 {
8986 	u32 frame;
8987 	int ret;
8988 
8989 	*link_quality = 0;
8990 	if (dd->pport->host_link_state & HLS_UP) {
8991 		ret = read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG,
8992 				       &frame);
8993 		if (ret == 0)
8994 			*link_quality = (frame >> LINK_QUALITY_SHIFT)
8995 						& LINK_QUALITY_MASK;
8996 	}
8997 }
8998 
read_planned_down_reason_code(struct hfi1_devdata * dd,u8 * pdrrc)8999 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc)
9000 {
9001 	u32 frame;
9002 
9003 	read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG, &frame);
9004 	*pdrrc = (frame >> DOWN_REMOTE_REASON_SHIFT) & DOWN_REMOTE_REASON_MASK;
9005 }
9006 
read_link_down_reason(struct hfi1_devdata * dd,u8 * ldr)9007 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr)
9008 {
9009 	u32 frame;
9010 
9011 	read_8051_config(dd, LINK_DOWN_REASON, GENERAL_CONFIG, &frame);
9012 	*ldr = (frame & 0xff);
9013 }
9014 
read_tx_settings(struct hfi1_devdata * dd,u8 * enable_lane_tx,u8 * tx_polarity_inversion,u8 * rx_polarity_inversion,u8 * max_rate)9015 static int read_tx_settings(struct hfi1_devdata *dd,
9016 			    u8 *enable_lane_tx,
9017 			    u8 *tx_polarity_inversion,
9018 			    u8 *rx_polarity_inversion,
9019 			    u8 *max_rate)
9020 {
9021 	u32 frame;
9022 	int ret;
9023 
9024 	ret = read_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, &frame);
9025 	*enable_lane_tx = (frame >> ENABLE_LANE_TX_SHIFT)
9026 				& ENABLE_LANE_TX_MASK;
9027 	*tx_polarity_inversion = (frame >> TX_POLARITY_INVERSION_SHIFT)
9028 				& TX_POLARITY_INVERSION_MASK;
9029 	*rx_polarity_inversion = (frame >> RX_POLARITY_INVERSION_SHIFT)
9030 				& RX_POLARITY_INVERSION_MASK;
9031 	*max_rate = (frame >> MAX_RATE_SHIFT) & MAX_RATE_MASK;
9032 	return ret;
9033 }
9034 
write_tx_settings(struct hfi1_devdata * dd,u8 enable_lane_tx,u8 tx_polarity_inversion,u8 rx_polarity_inversion,u8 max_rate)9035 static int write_tx_settings(struct hfi1_devdata *dd,
9036 			     u8 enable_lane_tx,
9037 			     u8 tx_polarity_inversion,
9038 			     u8 rx_polarity_inversion,
9039 			     u8 max_rate)
9040 {
9041 	u32 frame;
9042 
9043 	/* no need to mask, all variable sizes match field widths */
9044 	frame = enable_lane_tx << ENABLE_LANE_TX_SHIFT
9045 		| tx_polarity_inversion << TX_POLARITY_INVERSION_SHIFT
9046 		| rx_polarity_inversion << RX_POLARITY_INVERSION_SHIFT
9047 		| max_rate << MAX_RATE_SHIFT;
9048 	return load_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, frame);
9049 }
9050 
9051 /*
9052  * Read an idle LCB message.
9053  *
9054  * Returns 0 on success, -EINVAL on error
9055  */
read_idle_message(struct hfi1_devdata * dd,u64 type,u64 * data_out)9056 static int read_idle_message(struct hfi1_devdata *dd, u64 type, u64 *data_out)
9057 {
9058 	int ret;
9059 
9060 	ret = do_8051_command(dd, HCMD_READ_LCB_IDLE_MSG, type, data_out);
9061 	if (ret != HCMD_SUCCESS) {
9062 		dd_dev_err(dd, "read idle message: type %d, err %d\n",
9063 			   (u32)type, ret);
9064 		return -EINVAL;
9065 	}
9066 	dd_dev_info(dd, "%s: read idle message 0x%llx\n", __func__, *data_out);
9067 	/* return only the payload as we already know the type */
9068 	*data_out >>= IDLE_PAYLOAD_SHIFT;
9069 	return 0;
9070 }
9071 
9072 /*
9073  * Read an idle SMA message.  To be done in response to a notification from
9074  * the 8051.
9075  *
9076  * Returns 0 on success, -EINVAL on error
9077  */
read_idle_sma(struct hfi1_devdata * dd,u64 * data)9078 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data)
9079 {
9080 	return read_idle_message(dd, (u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT,
9081 				 data);
9082 }
9083 
9084 /*
9085  * Send an idle LCB message.
9086  *
9087  * Returns 0 on success, -EINVAL on error
9088  */
send_idle_message(struct hfi1_devdata * dd,u64 data)9089 static int send_idle_message(struct hfi1_devdata *dd, u64 data)
9090 {
9091 	int ret;
9092 
9093 	dd_dev_info(dd, "%s: sending idle message 0x%llx\n", __func__, data);
9094 	ret = do_8051_command(dd, HCMD_SEND_LCB_IDLE_MSG, data, NULL);
9095 	if (ret != HCMD_SUCCESS) {
9096 		dd_dev_err(dd, "send idle message: data 0x%llx, err %d\n",
9097 			   data, ret);
9098 		return -EINVAL;
9099 	}
9100 	return 0;
9101 }
9102 
9103 /*
9104  * Send an idle SMA message.
9105  *
9106  * Returns 0 on success, -EINVAL on error
9107  */
send_idle_sma(struct hfi1_devdata * dd,u64 message)9108 int send_idle_sma(struct hfi1_devdata *dd, u64 message)
9109 {
9110 	u64 data;
9111 
9112 	data = ((message & IDLE_PAYLOAD_MASK) << IDLE_PAYLOAD_SHIFT) |
9113 		((u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT);
9114 	return send_idle_message(dd, data);
9115 }
9116 
9117 /*
9118  * Initialize the LCB then do a quick link up.  This may or may not be
9119  * in loopback.
9120  *
9121  * return 0 on success, -errno on error
9122  */
do_quick_linkup(struct hfi1_devdata * dd)9123 static int do_quick_linkup(struct hfi1_devdata *dd)
9124 {
9125 	int ret;
9126 
9127 	lcb_shutdown(dd, 0);
9128 
9129 	if (loopback) {
9130 		/* LCB_CFG_LOOPBACK.VAL = 2 */
9131 		/* LCB_CFG_LANE_WIDTH.VAL = 0 */
9132 		write_csr(dd, DC_LCB_CFG_LOOPBACK,
9133 			  IB_PACKET_TYPE << DC_LCB_CFG_LOOPBACK_VAL_SHIFT);
9134 		write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
9135 	}
9136 
9137 	/* start the LCBs */
9138 	/* LCB_CFG_TX_FIFOS_RESET.VAL = 0 */
9139 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
9140 
9141 	/* simulator only loopback steps */
9142 	if (loopback && dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
9143 		/* LCB_CFG_RUN.EN = 1 */
9144 		write_csr(dd, DC_LCB_CFG_RUN,
9145 			  1ull << DC_LCB_CFG_RUN_EN_SHIFT);
9146 
9147 		ret = wait_link_transfer_active(dd, 10);
9148 		if (ret)
9149 			return ret;
9150 
9151 		write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP,
9152 			  1ull << DC_LCB_CFG_ALLOW_LINK_UP_VAL_SHIFT);
9153 	}
9154 
9155 	if (!loopback) {
9156 		/*
9157 		 * When doing quick linkup and not in loopback, both
9158 		 * sides must be done with LCB set-up before either
9159 		 * starts the quick linkup.  Put a delay here so that
9160 		 * both sides can be started and have a chance to be
9161 		 * done with LCB set up before resuming.
9162 		 */
9163 		dd_dev_err(dd,
9164 			   "Pausing for peer to be finished with LCB set up\n");
9165 		msleep(5000);
9166 		dd_dev_err(dd, "Continuing with quick linkup\n");
9167 	}
9168 
9169 	write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
9170 	set_8051_lcb_access(dd);
9171 
9172 	/*
9173 	 * State "quick" LinkUp request sets the physical link state to
9174 	 * LinkUp without a verify capability sequence.
9175 	 * This state is in simulator v37 and later.
9176 	 */
9177 	ret = set_physical_link_state(dd, PLS_QUICK_LINKUP);
9178 	if (ret != HCMD_SUCCESS) {
9179 		dd_dev_err(dd,
9180 			   "%s: set physical link state to quick LinkUp failed with return %d\n",
9181 			   __func__, ret);
9182 
9183 		set_host_lcb_access(dd);
9184 		write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
9185 
9186 		if (ret >= 0)
9187 			ret = -EINVAL;
9188 		return ret;
9189 	}
9190 
9191 	return 0; /* success */
9192 }
9193 
9194 /*
9195  * Do all special steps to set up loopback.
9196  */
init_loopback(struct hfi1_devdata * dd)9197 static int init_loopback(struct hfi1_devdata *dd)
9198 {
9199 	dd_dev_info(dd, "Entering loopback mode\n");
9200 
9201 	/* all loopbacks should disable self GUID check */
9202 	write_csr(dd, DC_DC8051_CFG_MODE,
9203 		  (read_csr(dd, DC_DC8051_CFG_MODE) | DISABLE_SELF_GUID_CHECK));
9204 
9205 	/*
9206 	 * The simulator has only one loopback option - LCB.  Switch
9207 	 * to that option, which includes quick link up.
9208 	 *
9209 	 * Accept all valid loopback values.
9210 	 */
9211 	if ((dd->icode == ICODE_FUNCTIONAL_SIMULATOR) &&
9212 	    (loopback == LOOPBACK_SERDES || loopback == LOOPBACK_LCB ||
9213 	     loopback == LOOPBACK_CABLE)) {
9214 		loopback = LOOPBACK_LCB;
9215 		quick_linkup = 1;
9216 		return 0;
9217 	}
9218 
9219 	/*
9220 	 * SerDes loopback init sequence is handled in set_local_link_attributes
9221 	 */
9222 	if (loopback == LOOPBACK_SERDES)
9223 		return 0;
9224 
9225 	/* LCB loopback - handled at poll time */
9226 	if (loopback == LOOPBACK_LCB) {
9227 		quick_linkup = 1; /* LCB is always quick linkup */
9228 
9229 		/* not supported in emulation due to emulation RTL changes */
9230 		if (dd->icode == ICODE_FPGA_EMULATION) {
9231 			dd_dev_err(dd,
9232 				   "LCB loopback not supported in emulation\n");
9233 			return -EINVAL;
9234 		}
9235 		return 0;
9236 	}
9237 
9238 	/* external cable loopback requires no extra steps */
9239 	if (loopback == LOOPBACK_CABLE)
9240 		return 0;
9241 
9242 	dd_dev_err(dd, "Invalid loopback mode %d\n", loopback);
9243 	return -EINVAL;
9244 }
9245 
9246 /*
9247  * Translate from the OPA_LINK_WIDTH handed to us by the FM to bits
9248  * used in the Verify Capability link width attribute.
9249  */
opa_to_vc_link_widths(u16 opa_widths)9250 static u16 opa_to_vc_link_widths(u16 opa_widths)
9251 {
9252 	int i;
9253 	u16 result = 0;
9254 
9255 	static const struct link_bits {
9256 		u16 from;
9257 		u16 to;
9258 	} opa_link_xlate[] = {
9259 		{ OPA_LINK_WIDTH_1X, 1 << (1 - 1)  },
9260 		{ OPA_LINK_WIDTH_2X, 1 << (2 - 1)  },
9261 		{ OPA_LINK_WIDTH_3X, 1 << (3 - 1)  },
9262 		{ OPA_LINK_WIDTH_4X, 1 << (4 - 1)  },
9263 	};
9264 
9265 	for (i = 0; i < ARRAY_SIZE(opa_link_xlate); i++) {
9266 		if (opa_widths & opa_link_xlate[i].from)
9267 			result |= opa_link_xlate[i].to;
9268 	}
9269 	return result;
9270 }
9271 
9272 /*
9273  * Set link attributes before moving to polling.
9274  */
set_local_link_attributes(struct hfi1_pportdata * ppd)9275 static int set_local_link_attributes(struct hfi1_pportdata *ppd)
9276 {
9277 	struct hfi1_devdata *dd = ppd->dd;
9278 	u8 enable_lane_tx;
9279 	u8 tx_polarity_inversion;
9280 	u8 rx_polarity_inversion;
9281 	int ret;
9282 	u32 misc_bits = 0;
9283 	/* reset our fabric serdes to clear any lingering problems */
9284 	fabric_serdes_reset(dd);
9285 
9286 	/* set the local tx rate - need to read-modify-write */
9287 	ret = read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
9288 			       &rx_polarity_inversion, &ppd->local_tx_rate);
9289 	if (ret)
9290 		goto set_local_link_attributes_fail;
9291 
9292 	if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
9293 		/* set the tx rate to the fastest enabled */
9294 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9295 			ppd->local_tx_rate = 1;
9296 		else
9297 			ppd->local_tx_rate = 0;
9298 	} else {
9299 		/* set the tx rate to all enabled */
9300 		ppd->local_tx_rate = 0;
9301 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9302 			ppd->local_tx_rate |= 2;
9303 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_12_5G)
9304 			ppd->local_tx_rate |= 1;
9305 	}
9306 
9307 	enable_lane_tx = 0xF; /* enable all four lanes */
9308 	ret = write_tx_settings(dd, enable_lane_tx, tx_polarity_inversion,
9309 				rx_polarity_inversion, ppd->local_tx_rate);
9310 	if (ret != HCMD_SUCCESS)
9311 		goto set_local_link_attributes_fail;
9312 
9313 	ret = write_host_interface_version(dd, HOST_INTERFACE_VERSION);
9314 	if (ret != HCMD_SUCCESS) {
9315 		dd_dev_err(dd,
9316 			   "Failed to set host interface version, return 0x%x\n",
9317 			   ret);
9318 		goto set_local_link_attributes_fail;
9319 	}
9320 
9321 	/*
9322 	 * DC supports continuous updates.
9323 	 */
9324 	ret = write_vc_local_phy(dd,
9325 				 0 /* no power management */,
9326 				 1 /* continuous updates */);
9327 	if (ret != HCMD_SUCCESS)
9328 		goto set_local_link_attributes_fail;
9329 
9330 	/* z=1 in the next call: AU of 0 is not supported by the hardware */
9331 	ret = write_vc_local_fabric(dd, dd->vau, 1, dd->vcu, dd->vl15_init,
9332 				    ppd->port_crc_mode_enabled);
9333 	if (ret != HCMD_SUCCESS)
9334 		goto set_local_link_attributes_fail;
9335 
9336 	/*
9337 	 * SerDes loopback init sequence requires
9338 	 * setting bit 0 of MISC_CONFIG_BITS
9339 	 */
9340 	if (loopback == LOOPBACK_SERDES)
9341 		misc_bits |= 1 << LOOPBACK_SERDES_CONFIG_BIT_MASK_SHIFT;
9342 
9343 	/*
9344 	 * An external device configuration request is used to reset the LCB
9345 	 * to retry to obtain operational lanes when the first attempt is
9346 	 * unsuccesful.
9347 	 */
9348 	if (dd->dc8051_ver >= dc8051_ver(1, 25, 0))
9349 		misc_bits |= 1 << EXT_CFG_LCB_RESET_SUPPORTED_SHIFT;
9350 
9351 	ret = write_vc_local_link_mode(dd, misc_bits, 0,
9352 				       opa_to_vc_link_widths(
9353 						ppd->link_width_enabled));
9354 	if (ret != HCMD_SUCCESS)
9355 		goto set_local_link_attributes_fail;
9356 
9357 	/* let peer know who we are */
9358 	ret = write_local_device_id(dd, dd->pcidev->device, dd->minrev);
9359 	if (ret == HCMD_SUCCESS)
9360 		return 0;
9361 
9362 set_local_link_attributes_fail:
9363 	dd_dev_err(dd,
9364 		   "Failed to set local link attributes, return 0x%x\n",
9365 		   ret);
9366 	return ret;
9367 }
9368 
9369 /*
9370  * Call this to start the link.
9371  * Do not do anything if the link is disabled.
9372  * Returns 0 if link is disabled, moved to polling, or the driver is not ready.
9373  */
start_link(struct hfi1_pportdata * ppd)9374 int start_link(struct hfi1_pportdata *ppd)
9375 {
9376 	/*
9377 	 * Tune the SerDes to a ballpark setting for optimal signal and bit
9378 	 * error rate.  Needs to be done before starting the link.
9379 	 */
9380 	tune_serdes(ppd);
9381 
9382 	if (!ppd->driver_link_ready) {
9383 		dd_dev_info(ppd->dd,
9384 			    "%s: stopping link start because driver is not ready\n",
9385 			    __func__);
9386 		return 0;
9387 	}
9388 
9389 	/*
9390 	 * FULL_MGMT_P_KEY is cleared from the pkey table, so that the
9391 	 * pkey table can be configured properly if the HFI unit is connected
9392 	 * to switch port with MgmtAllowed=NO
9393 	 */
9394 	clear_full_mgmt_pkey(ppd);
9395 
9396 	return set_link_state(ppd, HLS_DN_POLL);
9397 }
9398 
wait_for_qsfp_init(struct hfi1_pportdata * ppd)9399 static void wait_for_qsfp_init(struct hfi1_pportdata *ppd)
9400 {
9401 	struct hfi1_devdata *dd = ppd->dd;
9402 	u64 mask;
9403 	unsigned long timeout;
9404 
9405 	/*
9406 	 * Some QSFP cables have a quirk that asserts the IntN line as a side
9407 	 * effect of power up on plug-in. We ignore this false positive
9408 	 * interrupt until the module has finished powering up by waiting for
9409 	 * a minimum timeout of the module inrush initialization time of
9410 	 * 500 ms (SFF 8679 Table 5-6) to ensure the voltage rails in the
9411 	 * module have stabilized.
9412 	 */
9413 	msleep(500);
9414 
9415 	/*
9416 	 * Check for QSFP interrupt for t_init (SFF 8679 Table 8-1)
9417 	 */
9418 	timeout = jiffies + msecs_to_jiffies(2000);
9419 	while (1) {
9420 		mask = read_csr(dd, dd->hfi1_id ?
9421 				ASIC_QSFP2_IN : ASIC_QSFP1_IN);
9422 		if (!(mask & QSFP_HFI0_INT_N))
9423 			break;
9424 		if (time_after(jiffies, timeout)) {
9425 			dd_dev_info(dd, "%s: No IntN detected, reset complete\n",
9426 				    __func__);
9427 			break;
9428 		}
9429 		udelay(2);
9430 	}
9431 }
9432 
set_qsfp_int_n(struct hfi1_pportdata * ppd,u8 enable)9433 static void set_qsfp_int_n(struct hfi1_pportdata *ppd, u8 enable)
9434 {
9435 	struct hfi1_devdata *dd = ppd->dd;
9436 	u64 mask;
9437 
9438 	mask = read_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK);
9439 	if (enable) {
9440 		/*
9441 		 * Clear the status register to avoid an immediate interrupt
9442 		 * when we re-enable the IntN pin
9443 		 */
9444 		write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9445 			  QSFP_HFI0_INT_N);
9446 		mask |= (u64)QSFP_HFI0_INT_N;
9447 	} else {
9448 		mask &= ~(u64)QSFP_HFI0_INT_N;
9449 	}
9450 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK, mask);
9451 }
9452 
reset_qsfp(struct hfi1_pportdata * ppd)9453 int reset_qsfp(struct hfi1_pportdata *ppd)
9454 {
9455 	struct hfi1_devdata *dd = ppd->dd;
9456 	u64 mask, qsfp_mask;
9457 
9458 	/* Disable INT_N from triggering QSFP interrupts */
9459 	set_qsfp_int_n(ppd, 0);
9460 
9461 	/* Reset the QSFP */
9462 	mask = (u64)QSFP_HFI0_RESET_N;
9463 
9464 	qsfp_mask = read_csr(dd,
9465 			     dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT);
9466 	qsfp_mask &= ~mask;
9467 	write_csr(dd,
9468 		  dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9469 
9470 	udelay(10);
9471 
9472 	qsfp_mask |= mask;
9473 	write_csr(dd,
9474 		  dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9475 
9476 	wait_for_qsfp_init(ppd);
9477 
9478 	/*
9479 	 * Allow INT_N to trigger the QSFP interrupt to watch
9480 	 * for alarms and warnings
9481 	 */
9482 	set_qsfp_int_n(ppd, 1);
9483 
9484 	/*
9485 	 * After the reset, AOC transmitters are enabled by default. They need
9486 	 * to be turned off to complete the QSFP setup before they can be
9487 	 * enabled again.
9488 	 */
9489 	return set_qsfp_tx(ppd, 0);
9490 }
9491 
handle_qsfp_error_conditions(struct hfi1_pportdata * ppd,u8 * qsfp_interrupt_status)9492 static int handle_qsfp_error_conditions(struct hfi1_pportdata *ppd,
9493 					u8 *qsfp_interrupt_status)
9494 {
9495 	struct hfi1_devdata *dd = ppd->dd;
9496 
9497 	if ((qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_ALARM) ||
9498 	    (qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_WARNING))
9499 		dd_dev_err(dd, "%s: QSFP cable temperature too high\n",
9500 			   __func__);
9501 
9502 	if ((qsfp_interrupt_status[0] & QSFP_LOW_TEMP_ALARM) ||
9503 	    (qsfp_interrupt_status[0] & QSFP_LOW_TEMP_WARNING))
9504 		dd_dev_err(dd, "%s: QSFP cable temperature too low\n",
9505 			   __func__);
9506 
9507 	/*
9508 	 * The remaining alarms/warnings don't matter if the link is down.
9509 	 */
9510 	if (ppd->host_link_state & HLS_DOWN)
9511 		return 0;
9512 
9513 	if ((qsfp_interrupt_status[1] & QSFP_HIGH_VCC_ALARM) ||
9514 	    (qsfp_interrupt_status[1] & QSFP_HIGH_VCC_WARNING))
9515 		dd_dev_err(dd, "%s: QSFP supply voltage too high\n",
9516 			   __func__);
9517 
9518 	if ((qsfp_interrupt_status[1] & QSFP_LOW_VCC_ALARM) ||
9519 	    (qsfp_interrupt_status[1] & QSFP_LOW_VCC_WARNING))
9520 		dd_dev_err(dd, "%s: QSFP supply voltage too low\n",
9521 			   __func__);
9522 
9523 	/* Byte 2 is vendor specific */
9524 
9525 	if ((qsfp_interrupt_status[3] & QSFP_HIGH_POWER_ALARM) ||
9526 	    (qsfp_interrupt_status[3] & QSFP_HIGH_POWER_WARNING))
9527 		dd_dev_err(dd, "%s: Cable RX channel 1/2 power too high\n",
9528 			   __func__);
9529 
9530 	if ((qsfp_interrupt_status[3] & QSFP_LOW_POWER_ALARM) ||
9531 	    (qsfp_interrupt_status[3] & QSFP_LOW_POWER_WARNING))
9532 		dd_dev_err(dd, "%s: Cable RX channel 1/2 power too low\n",
9533 			   __func__);
9534 
9535 	if ((qsfp_interrupt_status[4] & QSFP_HIGH_POWER_ALARM) ||
9536 	    (qsfp_interrupt_status[4] & QSFP_HIGH_POWER_WARNING))
9537 		dd_dev_err(dd, "%s: Cable RX channel 3/4 power too high\n",
9538 			   __func__);
9539 
9540 	if ((qsfp_interrupt_status[4] & QSFP_LOW_POWER_ALARM) ||
9541 	    (qsfp_interrupt_status[4] & QSFP_LOW_POWER_WARNING))
9542 		dd_dev_err(dd, "%s: Cable RX channel 3/4 power too low\n",
9543 			   __func__);
9544 
9545 	if ((qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_ALARM) ||
9546 	    (qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_WARNING))
9547 		dd_dev_err(dd, "%s: Cable TX channel 1/2 bias too high\n",
9548 			   __func__);
9549 
9550 	if ((qsfp_interrupt_status[5] & QSFP_LOW_BIAS_ALARM) ||
9551 	    (qsfp_interrupt_status[5] & QSFP_LOW_BIAS_WARNING))
9552 		dd_dev_err(dd, "%s: Cable TX channel 1/2 bias too low\n",
9553 			   __func__);
9554 
9555 	if ((qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_ALARM) ||
9556 	    (qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_WARNING))
9557 		dd_dev_err(dd, "%s: Cable TX channel 3/4 bias too high\n",
9558 			   __func__);
9559 
9560 	if ((qsfp_interrupt_status[6] & QSFP_LOW_BIAS_ALARM) ||
9561 	    (qsfp_interrupt_status[6] & QSFP_LOW_BIAS_WARNING))
9562 		dd_dev_err(dd, "%s: Cable TX channel 3/4 bias too low\n",
9563 			   __func__);
9564 
9565 	if ((qsfp_interrupt_status[7] & QSFP_HIGH_POWER_ALARM) ||
9566 	    (qsfp_interrupt_status[7] & QSFP_HIGH_POWER_WARNING))
9567 		dd_dev_err(dd, "%s: Cable TX channel 1/2 power too high\n",
9568 			   __func__);
9569 
9570 	if ((qsfp_interrupt_status[7] & QSFP_LOW_POWER_ALARM) ||
9571 	    (qsfp_interrupt_status[7] & QSFP_LOW_POWER_WARNING))
9572 		dd_dev_err(dd, "%s: Cable TX channel 1/2 power too low\n",
9573 			   __func__);
9574 
9575 	if ((qsfp_interrupt_status[8] & QSFP_HIGH_POWER_ALARM) ||
9576 	    (qsfp_interrupt_status[8] & QSFP_HIGH_POWER_WARNING))
9577 		dd_dev_err(dd, "%s: Cable TX channel 3/4 power too high\n",
9578 			   __func__);
9579 
9580 	if ((qsfp_interrupt_status[8] & QSFP_LOW_POWER_ALARM) ||
9581 	    (qsfp_interrupt_status[8] & QSFP_LOW_POWER_WARNING))
9582 		dd_dev_err(dd, "%s: Cable TX channel 3/4 power too low\n",
9583 			   __func__);
9584 
9585 	/* Bytes 9-10 and 11-12 are reserved */
9586 	/* Bytes 13-15 are vendor specific */
9587 
9588 	return 0;
9589 }
9590 
9591 /* This routine will only be scheduled if the QSFP module present is asserted */
qsfp_event(struct work_struct * work)9592 void qsfp_event(struct work_struct *work)
9593 {
9594 	struct qsfp_data *qd;
9595 	struct hfi1_pportdata *ppd;
9596 	struct hfi1_devdata *dd;
9597 
9598 	qd = container_of(work, struct qsfp_data, qsfp_work);
9599 	ppd = qd->ppd;
9600 	dd = ppd->dd;
9601 
9602 	/* Sanity check */
9603 	if (!qsfp_mod_present(ppd))
9604 		return;
9605 
9606 	if (ppd->host_link_state == HLS_DN_DISABLE) {
9607 		dd_dev_info(ppd->dd,
9608 			    "%s: stopping link start because link is disabled\n",
9609 			    __func__);
9610 		return;
9611 	}
9612 
9613 	/*
9614 	 * Turn DC back on after cable has been re-inserted. Up until
9615 	 * now, the DC has been in reset to save power.
9616 	 */
9617 	dc_start(dd);
9618 
9619 	if (qd->cache_refresh_required) {
9620 		set_qsfp_int_n(ppd, 0);
9621 
9622 		wait_for_qsfp_init(ppd);
9623 
9624 		/*
9625 		 * Allow INT_N to trigger the QSFP interrupt to watch
9626 		 * for alarms and warnings
9627 		 */
9628 		set_qsfp_int_n(ppd, 1);
9629 
9630 		start_link(ppd);
9631 	}
9632 
9633 	if (qd->check_interrupt_flags) {
9634 		u8 qsfp_interrupt_status[16] = {0,};
9635 
9636 		if (one_qsfp_read(ppd, dd->hfi1_id, 6,
9637 				  &qsfp_interrupt_status[0], 16) != 16) {
9638 			dd_dev_info(dd,
9639 				    "%s: Failed to read status of QSFP module\n",
9640 				    __func__);
9641 		} else {
9642 			unsigned long flags;
9643 
9644 			handle_qsfp_error_conditions(
9645 					ppd, qsfp_interrupt_status);
9646 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
9647 			ppd->qsfp_info.check_interrupt_flags = 0;
9648 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
9649 					       flags);
9650 		}
9651 	}
9652 }
9653 
init_qsfp_int(struct hfi1_devdata * dd)9654 static void init_qsfp_int(struct hfi1_devdata *dd)
9655 {
9656 	struct hfi1_pportdata *ppd = dd->pport;
9657 	u64 qsfp_mask, cce_int_mask;
9658 	const int qsfp1_int_smask = QSFP1_INT % 64;
9659 	const int qsfp2_int_smask = QSFP2_INT % 64;
9660 
9661 	/*
9662 	 * disable QSFP1 interrupts for HFI1, QSFP2 interrupts for HFI0
9663 	 * Qsfp1Int and Qsfp2Int are adjacent bits in the same CSR,
9664 	 * therefore just one of QSFP1_INT/QSFP2_INT can be used to find
9665 	 * the index of the appropriate CSR in the CCEIntMask CSR array
9666 	 */
9667 	cce_int_mask = read_csr(dd, CCE_INT_MASK +
9668 				(8 * (QSFP1_INT / 64)));
9669 	if (dd->hfi1_id) {
9670 		cce_int_mask &= ~((u64)1 << qsfp1_int_smask);
9671 		write_csr(dd, CCE_INT_MASK + (8 * (QSFP1_INT / 64)),
9672 			  cce_int_mask);
9673 	} else {
9674 		cce_int_mask &= ~((u64)1 << qsfp2_int_smask);
9675 		write_csr(dd, CCE_INT_MASK + (8 * (QSFP2_INT / 64)),
9676 			  cce_int_mask);
9677 	}
9678 
9679 	qsfp_mask = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
9680 	/* Clear current status to avoid spurious interrupts */
9681 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9682 		  qsfp_mask);
9683 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK,
9684 		  qsfp_mask);
9685 
9686 	set_qsfp_int_n(ppd, 0);
9687 
9688 	/* Handle active low nature of INT_N and MODPRST_N pins */
9689 	if (qsfp_mod_present(ppd))
9690 		qsfp_mask &= ~(u64)QSFP_HFI0_MODPRST_N;
9691 	write_csr(dd,
9692 		  dd->hfi1_id ? ASIC_QSFP2_INVERT : ASIC_QSFP1_INVERT,
9693 		  qsfp_mask);
9694 }
9695 
9696 /*
9697  * Do a one-time initialize of the LCB block.
9698  */
init_lcb(struct hfi1_devdata * dd)9699 static void init_lcb(struct hfi1_devdata *dd)
9700 {
9701 	/* simulator does not correctly handle LCB cclk loopback, skip */
9702 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
9703 		return;
9704 
9705 	/* the DC has been reset earlier in the driver load */
9706 
9707 	/* set LCB for cclk loopback on the port */
9708 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x01);
9709 	write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0x00);
9710 	write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0x00);
9711 	write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
9712 	write_csr(dd, DC_LCB_CFG_CLK_CNTR, 0x08);
9713 	write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x02);
9714 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x00);
9715 }
9716 
9717 /*
9718  * Perform a test read on the QSFP.  Return 0 on success, -ERRNO
9719  * on error.
9720  */
test_qsfp_read(struct hfi1_pportdata * ppd)9721 static int test_qsfp_read(struct hfi1_pportdata *ppd)
9722 {
9723 	int ret;
9724 	u8 status;
9725 
9726 	/*
9727 	 * Report success if not a QSFP or, if it is a QSFP, but the cable is
9728 	 * not present
9729 	 */
9730 	if (ppd->port_type != PORT_TYPE_QSFP || !qsfp_mod_present(ppd))
9731 		return 0;
9732 
9733 	/* read byte 2, the status byte */
9734 	ret = one_qsfp_read(ppd, ppd->dd->hfi1_id, 2, &status, 1);
9735 	if (ret < 0)
9736 		return ret;
9737 	if (ret != 1)
9738 		return -EIO;
9739 
9740 	return 0; /* success */
9741 }
9742 
9743 /*
9744  * Values for QSFP retry.
9745  *
9746  * Give up after 10s (20 x 500ms).  The overall timeout was empirically
9747  * arrived at from experience on a large cluster.
9748  */
9749 #define MAX_QSFP_RETRIES 20
9750 #define QSFP_RETRY_WAIT 500 /* msec */
9751 
9752 /*
9753  * Try a QSFP read.  If it fails, schedule a retry for later.
9754  * Called on first link activation after driver load.
9755  */
try_start_link(struct hfi1_pportdata * ppd)9756 static void try_start_link(struct hfi1_pportdata *ppd)
9757 {
9758 	if (test_qsfp_read(ppd)) {
9759 		/* read failed */
9760 		if (ppd->qsfp_retry_count >= MAX_QSFP_RETRIES) {
9761 			dd_dev_err(ppd->dd, "QSFP not responding, giving up\n");
9762 			return;
9763 		}
9764 		dd_dev_info(ppd->dd,
9765 			    "QSFP not responding, waiting and retrying %d\n",
9766 			    (int)ppd->qsfp_retry_count);
9767 		ppd->qsfp_retry_count++;
9768 		queue_delayed_work(ppd->link_wq, &ppd->start_link_work,
9769 				   msecs_to_jiffies(QSFP_RETRY_WAIT));
9770 		return;
9771 	}
9772 	ppd->qsfp_retry_count = 0;
9773 
9774 	start_link(ppd);
9775 }
9776 
9777 /*
9778  * Workqueue function to start the link after a delay.
9779  */
handle_start_link(struct work_struct * work)9780 void handle_start_link(struct work_struct *work)
9781 {
9782 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
9783 						  start_link_work.work);
9784 	try_start_link(ppd);
9785 }
9786 
bringup_serdes(struct hfi1_pportdata * ppd)9787 int bringup_serdes(struct hfi1_pportdata *ppd)
9788 {
9789 	struct hfi1_devdata *dd = ppd->dd;
9790 	u64 guid;
9791 	int ret;
9792 
9793 	if (HFI1_CAP_IS_KSET(EXTENDED_PSN))
9794 		add_rcvctrl(dd, RCV_CTRL_RCV_EXTENDED_PSN_ENABLE_SMASK);
9795 
9796 	guid = ppd->guids[HFI1_PORT_GUID_INDEX];
9797 	if (!guid) {
9798 		if (dd->base_guid)
9799 			guid = dd->base_guid + ppd->port - 1;
9800 		ppd->guids[HFI1_PORT_GUID_INDEX] = guid;
9801 	}
9802 
9803 	/* Set linkinit_reason on power up per OPA spec */
9804 	ppd->linkinit_reason = OPA_LINKINIT_REASON_LINKUP;
9805 
9806 	/* one-time init of the LCB */
9807 	init_lcb(dd);
9808 
9809 	if (loopback) {
9810 		ret = init_loopback(dd);
9811 		if (ret < 0)
9812 			return ret;
9813 	}
9814 
9815 	get_port_type(ppd);
9816 	if (ppd->port_type == PORT_TYPE_QSFP) {
9817 		set_qsfp_int_n(ppd, 0);
9818 		wait_for_qsfp_init(ppd);
9819 		set_qsfp_int_n(ppd, 1);
9820 	}
9821 
9822 	try_start_link(ppd);
9823 	return 0;
9824 }
9825 
hfi1_quiet_serdes(struct hfi1_pportdata * ppd)9826 void hfi1_quiet_serdes(struct hfi1_pportdata *ppd)
9827 {
9828 	struct hfi1_devdata *dd = ppd->dd;
9829 
9830 	/*
9831 	 * Shut down the link and keep it down.   First turn off that the
9832 	 * driver wants to allow the link to be up (driver_link_ready).
9833 	 * Then make sure the link is not automatically restarted
9834 	 * (link_enabled).  Cancel any pending restart.  And finally
9835 	 * go offline.
9836 	 */
9837 	ppd->driver_link_ready = 0;
9838 	ppd->link_enabled = 0;
9839 
9840 	ppd->qsfp_retry_count = MAX_QSFP_RETRIES; /* prevent more retries */
9841 	flush_delayed_work(&ppd->start_link_work);
9842 	cancel_delayed_work_sync(&ppd->start_link_work);
9843 
9844 	ppd->offline_disabled_reason =
9845 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_REBOOT);
9846 	set_link_down_reason(ppd, OPA_LINKDOWN_REASON_REBOOT, 0,
9847 			     OPA_LINKDOWN_REASON_REBOOT);
9848 	set_link_state(ppd, HLS_DN_OFFLINE);
9849 
9850 	/* disable the port */
9851 	clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
9852 }
9853 
init_cpu_counters(struct hfi1_devdata * dd)9854 static inline int init_cpu_counters(struct hfi1_devdata *dd)
9855 {
9856 	struct hfi1_pportdata *ppd;
9857 	int i;
9858 
9859 	ppd = (struct hfi1_pportdata *)(dd + 1);
9860 	for (i = 0; i < dd->num_pports; i++, ppd++) {
9861 		ppd->ibport_data.rvp.rc_acks = NULL;
9862 		ppd->ibport_data.rvp.rc_qacks = NULL;
9863 		ppd->ibport_data.rvp.rc_acks = alloc_percpu(u64);
9864 		ppd->ibport_data.rvp.rc_qacks = alloc_percpu(u64);
9865 		ppd->ibport_data.rvp.rc_delayed_comp = alloc_percpu(u64);
9866 		if (!ppd->ibport_data.rvp.rc_acks ||
9867 		    !ppd->ibport_data.rvp.rc_delayed_comp ||
9868 		    !ppd->ibport_data.rvp.rc_qacks)
9869 			return -ENOMEM;
9870 	}
9871 
9872 	return 0;
9873 }
9874 
9875 /*
9876  * index is the index into the receive array
9877  */
hfi1_put_tid(struct hfi1_devdata * dd,u32 index,u32 type,unsigned long pa,u16 order)9878 void hfi1_put_tid(struct hfi1_devdata *dd, u32 index,
9879 		  u32 type, unsigned long pa, u16 order)
9880 {
9881 	u64 reg;
9882 
9883 	if (!(dd->flags & HFI1_PRESENT))
9884 		goto done;
9885 
9886 	if (type == PT_INVALID || type == PT_INVALID_FLUSH) {
9887 		pa = 0;
9888 		order = 0;
9889 	} else if (type > PT_INVALID) {
9890 		dd_dev_err(dd,
9891 			   "unexpected receive array type %u for index %u, not handled\n",
9892 			   type, index);
9893 		goto done;
9894 	}
9895 	trace_hfi1_put_tid(dd, index, type, pa, order);
9896 
9897 #define RT_ADDR_SHIFT 12	/* 4KB kernel address boundary */
9898 	reg = RCV_ARRAY_RT_WRITE_ENABLE_SMASK
9899 		| (u64)order << RCV_ARRAY_RT_BUF_SIZE_SHIFT
9900 		| ((pa >> RT_ADDR_SHIFT) & RCV_ARRAY_RT_ADDR_MASK)
9901 					<< RCV_ARRAY_RT_ADDR_SHIFT;
9902 	trace_hfi1_write_rcvarray(dd->rcvarray_wc + (index * 8), reg);
9903 	writeq(reg, dd->rcvarray_wc + (index * 8));
9904 
9905 	if (type == PT_EAGER || type == PT_INVALID_FLUSH || (index & 3) == 3)
9906 		/*
9907 		 * Eager entries are written and flushed
9908 		 *
9909 		 * Expected entries are flushed every 4 writes
9910 		 */
9911 		flush_wc();
9912 done:
9913 	return;
9914 }
9915 
hfi1_clear_tids(struct hfi1_ctxtdata * rcd)9916 void hfi1_clear_tids(struct hfi1_ctxtdata *rcd)
9917 {
9918 	struct hfi1_devdata *dd = rcd->dd;
9919 	u32 i;
9920 
9921 	/* this could be optimized */
9922 	for (i = rcd->eager_base; i < rcd->eager_base +
9923 		     rcd->egrbufs.alloced; i++)
9924 		hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9925 
9926 	for (i = rcd->expected_base;
9927 			i < rcd->expected_base + rcd->expected_count; i++)
9928 		hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9929 }
9930 
9931 static const char * const ib_cfg_name_strings[] = {
9932 	"HFI1_IB_CFG_LIDLMC",
9933 	"HFI1_IB_CFG_LWID_DG_ENB",
9934 	"HFI1_IB_CFG_LWID_ENB",
9935 	"HFI1_IB_CFG_LWID",
9936 	"HFI1_IB_CFG_SPD_ENB",
9937 	"HFI1_IB_CFG_SPD",
9938 	"HFI1_IB_CFG_RXPOL_ENB",
9939 	"HFI1_IB_CFG_LREV_ENB",
9940 	"HFI1_IB_CFG_LINKLATENCY",
9941 	"HFI1_IB_CFG_HRTBT",
9942 	"HFI1_IB_CFG_OP_VLS",
9943 	"HFI1_IB_CFG_VL_HIGH_CAP",
9944 	"HFI1_IB_CFG_VL_LOW_CAP",
9945 	"HFI1_IB_CFG_OVERRUN_THRESH",
9946 	"HFI1_IB_CFG_PHYERR_THRESH",
9947 	"HFI1_IB_CFG_LINKDEFAULT",
9948 	"HFI1_IB_CFG_PKEYS",
9949 	"HFI1_IB_CFG_MTU",
9950 	"HFI1_IB_CFG_LSTATE",
9951 	"HFI1_IB_CFG_VL_HIGH_LIMIT",
9952 	"HFI1_IB_CFG_PMA_TICKS",
9953 	"HFI1_IB_CFG_PORT"
9954 };
9955 
ib_cfg_name(int which)9956 static const char *ib_cfg_name(int which)
9957 {
9958 	if (which < 0 || which >= ARRAY_SIZE(ib_cfg_name_strings))
9959 		return "invalid";
9960 	return ib_cfg_name_strings[which];
9961 }
9962 
hfi1_get_ib_cfg(struct hfi1_pportdata * ppd,int which)9963 int hfi1_get_ib_cfg(struct hfi1_pportdata *ppd, int which)
9964 {
9965 	struct hfi1_devdata *dd = ppd->dd;
9966 	int val = 0;
9967 
9968 	switch (which) {
9969 	case HFI1_IB_CFG_LWID_ENB: /* allowed Link-width */
9970 		val = ppd->link_width_enabled;
9971 		break;
9972 	case HFI1_IB_CFG_LWID: /* currently active Link-width */
9973 		val = ppd->link_width_active;
9974 		break;
9975 	case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
9976 		val = ppd->link_speed_enabled;
9977 		break;
9978 	case HFI1_IB_CFG_SPD: /* current Link speed */
9979 		val = ppd->link_speed_active;
9980 		break;
9981 
9982 	case HFI1_IB_CFG_RXPOL_ENB: /* Auto-RX-polarity enable */
9983 	case HFI1_IB_CFG_LREV_ENB: /* Auto-Lane-reversal enable */
9984 	case HFI1_IB_CFG_LINKLATENCY:
9985 		goto unimplemented;
9986 
9987 	case HFI1_IB_CFG_OP_VLS:
9988 		val = ppd->actual_vls_operational;
9989 		break;
9990 	case HFI1_IB_CFG_VL_HIGH_CAP: /* VL arb high priority table size */
9991 		val = VL_ARB_HIGH_PRIO_TABLE_SIZE;
9992 		break;
9993 	case HFI1_IB_CFG_VL_LOW_CAP: /* VL arb low priority table size */
9994 		val = VL_ARB_LOW_PRIO_TABLE_SIZE;
9995 		break;
9996 	case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
9997 		val = ppd->overrun_threshold;
9998 		break;
9999 	case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
10000 		val = ppd->phy_error_threshold;
10001 		break;
10002 	case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
10003 		val = HLS_DEFAULT;
10004 		break;
10005 
10006 	case HFI1_IB_CFG_HRTBT: /* Heartbeat off/enable/auto */
10007 	case HFI1_IB_CFG_PMA_TICKS:
10008 	default:
10009 unimplemented:
10010 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
10011 			dd_dev_info(
10012 				dd,
10013 				"%s: which %s: not implemented\n",
10014 				__func__,
10015 				ib_cfg_name(which));
10016 		break;
10017 	}
10018 
10019 	return val;
10020 }
10021 
10022 /*
10023  * The largest MAD packet size.
10024  */
10025 #define MAX_MAD_PACKET 2048
10026 
10027 /*
10028  * Return the maximum header bytes that can go on the _wire_
10029  * for this device. This count includes the ICRC which is
10030  * not part of the packet held in memory but it is appended
10031  * by the HW.
10032  * This is dependent on the device's receive header entry size.
10033  * HFI allows this to be set per-receive context, but the
10034  * driver presently enforces a global value.
10035  */
lrh_max_header_bytes(struct hfi1_devdata * dd)10036 u32 lrh_max_header_bytes(struct hfi1_devdata *dd)
10037 {
10038 	/*
10039 	 * The maximum non-payload (MTU) bytes in LRH.PktLen are
10040 	 * the Receive Header Entry Size minus the PBC (or RHF) size
10041 	 * plus one DW for the ICRC appended by HW.
10042 	 *
10043 	 * dd->rcd[0].rcvhdrqentsize is in DW.
10044 	 * We use rcd[0] as all context will have the same value. Also,
10045 	 * the first kernel context would have been allocated by now so
10046 	 * we are guaranteed a valid value.
10047 	 */
10048 	return (dd->rcd[0]->rcvhdrqentsize - 2/*PBC/RHF*/ + 1/*ICRC*/) << 2;
10049 }
10050 
10051 /*
10052  * Set Send Length
10053  * @ppd - per port data
10054  *
10055  * Set the MTU by limiting how many DWs may be sent.  The SendLenCheck*
10056  * registers compare against LRH.PktLen, so use the max bytes included
10057  * in the LRH.
10058  *
10059  * This routine changes all VL values except VL15, which it maintains at
10060  * the same value.
10061  */
set_send_length(struct hfi1_pportdata * ppd)10062 static void set_send_length(struct hfi1_pportdata *ppd)
10063 {
10064 	struct hfi1_devdata *dd = ppd->dd;
10065 	u32 max_hb = lrh_max_header_bytes(dd), dcmtu;
10066 	u32 maxvlmtu = dd->vld[15].mtu;
10067 	u64 len1 = 0, len2 = (((dd->vld[15].mtu + max_hb) >> 2)
10068 			      & SEND_LEN_CHECK1_LEN_VL15_MASK) <<
10069 		SEND_LEN_CHECK1_LEN_VL15_SHIFT;
10070 	int i, j;
10071 	u32 thres;
10072 
10073 	for (i = 0; i < ppd->vls_supported; i++) {
10074 		if (dd->vld[i].mtu > maxvlmtu)
10075 			maxvlmtu = dd->vld[i].mtu;
10076 		if (i <= 3)
10077 			len1 |= (((dd->vld[i].mtu + max_hb) >> 2)
10078 				 & SEND_LEN_CHECK0_LEN_VL0_MASK) <<
10079 				((i % 4) * SEND_LEN_CHECK0_LEN_VL1_SHIFT);
10080 		else
10081 			len2 |= (((dd->vld[i].mtu + max_hb) >> 2)
10082 				 & SEND_LEN_CHECK1_LEN_VL4_MASK) <<
10083 				((i % 4) * SEND_LEN_CHECK1_LEN_VL5_SHIFT);
10084 	}
10085 	write_csr(dd, SEND_LEN_CHECK0, len1);
10086 	write_csr(dd, SEND_LEN_CHECK1, len2);
10087 	/* adjust kernel credit return thresholds based on new MTUs */
10088 	/* all kernel receive contexts have the same hdrqentsize */
10089 	for (i = 0; i < ppd->vls_supported; i++) {
10090 		thres = min(sc_percent_to_threshold(dd->vld[i].sc, 50),
10091 			    sc_mtu_to_threshold(dd->vld[i].sc,
10092 						dd->vld[i].mtu,
10093 						dd->rcd[0]->rcvhdrqentsize));
10094 		for (j = 0; j < INIT_SC_PER_VL; j++)
10095 			sc_set_cr_threshold(
10096 					pio_select_send_context_vl(dd, j, i),
10097 					    thres);
10098 	}
10099 	thres = min(sc_percent_to_threshold(dd->vld[15].sc, 50),
10100 		    sc_mtu_to_threshold(dd->vld[15].sc,
10101 					dd->vld[15].mtu,
10102 					dd->rcd[0]->rcvhdrqentsize));
10103 	sc_set_cr_threshold(dd->vld[15].sc, thres);
10104 
10105 	/* Adjust maximum MTU for the port in DC */
10106 	dcmtu = maxvlmtu == 10240 ? DCC_CFG_PORT_MTU_CAP_10240 :
10107 		(ilog2(maxvlmtu >> 8) + 1);
10108 	len1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG);
10109 	len1 &= ~DCC_CFG_PORT_CONFIG_MTU_CAP_SMASK;
10110 	len1 |= ((u64)dcmtu & DCC_CFG_PORT_CONFIG_MTU_CAP_MASK) <<
10111 		DCC_CFG_PORT_CONFIG_MTU_CAP_SHIFT;
10112 	write_csr(ppd->dd, DCC_CFG_PORT_CONFIG, len1);
10113 }
10114 
set_lidlmc(struct hfi1_pportdata * ppd)10115 static void set_lidlmc(struct hfi1_pportdata *ppd)
10116 {
10117 	int i;
10118 	u64 sreg = 0;
10119 	struct hfi1_devdata *dd = ppd->dd;
10120 	u32 mask = ~((1U << ppd->lmc) - 1);
10121 	u64 c1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG1);
10122 	u32 lid;
10123 
10124 	/*
10125 	 * Program 0 in CSR if port lid is extended. This prevents
10126 	 * 9B packets being sent out for large lids.
10127 	 */
10128 	lid = (ppd->lid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) ? 0 : ppd->lid;
10129 	c1 &= ~(DCC_CFG_PORT_CONFIG1_TARGET_DLID_SMASK
10130 		| DCC_CFG_PORT_CONFIG1_DLID_MASK_SMASK);
10131 	c1 |= ((lid & DCC_CFG_PORT_CONFIG1_TARGET_DLID_MASK)
10132 			<< DCC_CFG_PORT_CONFIG1_TARGET_DLID_SHIFT) |
10133 	      ((mask & DCC_CFG_PORT_CONFIG1_DLID_MASK_MASK)
10134 			<< DCC_CFG_PORT_CONFIG1_DLID_MASK_SHIFT);
10135 	write_csr(ppd->dd, DCC_CFG_PORT_CONFIG1, c1);
10136 
10137 	/*
10138 	 * Iterate over all the send contexts and set their SLID check
10139 	 */
10140 	sreg = ((mask & SEND_CTXT_CHECK_SLID_MASK_MASK) <<
10141 			SEND_CTXT_CHECK_SLID_MASK_SHIFT) |
10142 	       (((lid & mask) & SEND_CTXT_CHECK_SLID_VALUE_MASK) <<
10143 			SEND_CTXT_CHECK_SLID_VALUE_SHIFT);
10144 
10145 	for (i = 0; i < chip_send_contexts(dd); i++) {
10146 		hfi1_cdbg(LINKVERB, "SendContext[%d].SLID_CHECK = 0x%x",
10147 			  i, (u32)sreg);
10148 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, sreg);
10149 	}
10150 
10151 	/* Now we have to do the same thing for the sdma engines */
10152 	sdma_update_lmc(dd, mask, lid);
10153 }
10154 
state_completed_string(u32 completed)10155 static const char *state_completed_string(u32 completed)
10156 {
10157 	static const char * const state_completed[] = {
10158 		"EstablishComm",
10159 		"OptimizeEQ",
10160 		"VerifyCap"
10161 	};
10162 
10163 	if (completed < ARRAY_SIZE(state_completed))
10164 		return state_completed[completed];
10165 
10166 	return "unknown";
10167 }
10168 
10169 static const char all_lanes_dead_timeout_expired[] =
10170 	"All lanes were inactive – was the interconnect media removed?";
10171 static const char tx_out_of_policy[] =
10172 	"Passing lanes on local port do not meet the local link width policy";
10173 static const char no_state_complete[] =
10174 	"State timeout occurred before link partner completed the state";
10175 static const char * const state_complete_reasons[] = {
10176 	[0x00] = "Reason unknown",
10177 	[0x01] = "Link was halted by driver, refer to LinkDownReason",
10178 	[0x02] = "Link partner reported failure",
10179 	[0x10] = "Unable to achieve frame sync on any lane",
10180 	[0x11] =
10181 	  "Unable to find a common bit rate with the link partner",
10182 	[0x12] =
10183 	  "Unable to achieve frame sync on sufficient lanes to meet the local link width policy",
10184 	[0x13] =
10185 	  "Unable to identify preset equalization on sufficient lanes to meet the local link width policy",
10186 	[0x14] = no_state_complete,
10187 	[0x15] =
10188 	  "State timeout occurred before link partner identified equalization presets",
10189 	[0x16] =
10190 	  "Link partner completed the EstablishComm state, but the passing lanes do not meet the local link width policy",
10191 	[0x17] = tx_out_of_policy,
10192 	[0x20] = all_lanes_dead_timeout_expired,
10193 	[0x21] =
10194 	  "Unable to achieve acceptable BER on sufficient lanes to meet the local link width policy",
10195 	[0x22] = no_state_complete,
10196 	[0x23] =
10197 	  "Link partner completed the OptimizeEq state, but the passing lanes do not meet the local link width policy",
10198 	[0x24] = tx_out_of_policy,
10199 	[0x30] = all_lanes_dead_timeout_expired,
10200 	[0x31] =
10201 	  "State timeout occurred waiting for host to process received frames",
10202 	[0x32] = no_state_complete,
10203 	[0x33] =
10204 	  "Link partner completed the VerifyCap state, but the passing lanes do not meet the local link width policy",
10205 	[0x34] = tx_out_of_policy,
10206 	[0x35] = "Negotiated link width is mutually exclusive",
10207 	[0x36] =
10208 	  "Timed out before receiving verifycap frames in VerifyCap.Exchange",
10209 	[0x37] = "Unable to resolve secure data exchange",
10210 };
10211 
state_complete_reason_code_string(struct hfi1_pportdata * ppd,u32 code)10212 static const char *state_complete_reason_code_string(struct hfi1_pportdata *ppd,
10213 						     u32 code)
10214 {
10215 	const char *str = NULL;
10216 
10217 	if (code < ARRAY_SIZE(state_complete_reasons))
10218 		str = state_complete_reasons[code];
10219 
10220 	if (str)
10221 		return str;
10222 	return "Reserved";
10223 }
10224 
10225 /* describe the given last state complete frame */
decode_state_complete(struct hfi1_pportdata * ppd,u32 frame,const char * prefix)10226 static void decode_state_complete(struct hfi1_pportdata *ppd, u32 frame,
10227 				  const char *prefix)
10228 {
10229 	struct hfi1_devdata *dd = ppd->dd;
10230 	u32 success;
10231 	u32 state;
10232 	u32 reason;
10233 	u32 lanes;
10234 
10235 	/*
10236 	 * Decode frame:
10237 	 *  [ 0: 0] - success
10238 	 *  [ 3: 1] - state
10239 	 *  [ 7: 4] - next state timeout
10240 	 *  [15: 8] - reason code
10241 	 *  [31:16] - lanes
10242 	 */
10243 	success = frame & 0x1;
10244 	state = (frame >> 1) & 0x7;
10245 	reason = (frame >> 8) & 0xff;
10246 	lanes = (frame >> 16) & 0xffff;
10247 
10248 	dd_dev_err(dd, "Last %s LNI state complete frame 0x%08x:\n",
10249 		   prefix, frame);
10250 	dd_dev_err(dd, "    last reported state state: %s (0x%x)\n",
10251 		   state_completed_string(state), state);
10252 	dd_dev_err(dd, "    state successfully completed: %s\n",
10253 		   success ? "yes" : "no");
10254 	dd_dev_err(dd, "    fail reason 0x%x: %s\n",
10255 		   reason, state_complete_reason_code_string(ppd, reason));
10256 	dd_dev_err(dd, "    passing lane mask: 0x%x", lanes);
10257 }
10258 
10259 /*
10260  * Read the last state complete frames and explain them.  This routine
10261  * expects to be called if the link went down during link negotiation
10262  * and initialization (LNI).  That is, anywhere between polling and link up.
10263  */
check_lni_states(struct hfi1_pportdata * ppd)10264 static void check_lni_states(struct hfi1_pportdata *ppd)
10265 {
10266 	u32 last_local_state;
10267 	u32 last_remote_state;
10268 
10269 	read_last_local_state(ppd->dd, &last_local_state);
10270 	read_last_remote_state(ppd->dd, &last_remote_state);
10271 
10272 	/*
10273 	 * Don't report anything if there is nothing to report.  A value of
10274 	 * 0 means the link was taken down while polling and there was no
10275 	 * training in-process.
10276 	 */
10277 	if (last_local_state == 0 && last_remote_state == 0)
10278 		return;
10279 
10280 	decode_state_complete(ppd, last_local_state, "transmitted");
10281 	decode_state_complete(ppd, last_remote_state, "received");
10282 }
10283 
10284 /* wait for wait_ms for LINK_TRANSFER_ACTIVE to go to 1 */
wait_link_transfer_active(struct hfi1_devdata * dd,int wait_ms)10285 static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms)
10286 {
10287 	u64 reg;
10288 	unsigned long timeout;
10289 
10290 	/* watch LCB_STS_LINK_TRANSFER_ACTIVE */
10291 	timeout = jiffies + msecs_to_jiffies(wait_ms);
10292 	while (1) {
10293 		reg = read_csr(dd, DC_LCB_STS_LINK_TRANSFER_ACTIVE);
10294 		if (reg)
10295 			break;
10296 		if (time_after(jiffies, timeout)) {
10297 			dd_dev_err(dd,
10298 				   "timeout waiting for LINK_TRANSFER_ACTIVE\n");
10299 			return -ETIMEDOUT;
10300 		}
10301 		udelay(2);
10302 	}
10303 	return 0;
10304 }
10305 
10306 /* called when the logical link state is not down as it should be */
force_logical_link_state_down(struct hfi1_pportdata * ppd)10307 static void force_logical_link_state_down(struct hfi1_pportdata *ppd)
10308 {
10309 	struct hfi1_devdata *dd = ppd->dd;
10310 
10311 	/*
10312 	 * Bring link up in LCB loopback
10313 	 */
10314 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10315 	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
10316 		  DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
10317 
10318 	write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
10319 	write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0);
10320 	write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
10321 	write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x2);
10322 
10323 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
10324 	(void)read_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET);
10325 	udelay(3);
10326 	write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 1);
10327 	write_csr(dd, DC_LCB_CFG_RUN, 1ull << DC_LCB_CFG_RUN_EN_SHIFT);
10328 
10329 	wait_link_transfer_active(dd, 100);
10330 
10331 	/*
10332 	 * Bring the link down again.
10333 	 */
10334 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10335 	write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 0);
10336 	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK, 0);
10337 
10338 	dd_dev_info(ppd->dd, "logical state forced to LINK_DOWN\n");
10339 }
10340 
10341 /*
10342  * Helper for set_link_state().  Do not call except from that routine.
10343  * Expects ppd->hls_mutex to be held.
10344  *
10345  * @rem_reason value to be sent to the neighbor
10346  *
10347  * LinkDownReasons only set if transition succeeds.
10348  */
goto_offline(struct hfi1_pportdata * ppd,u8 rem_reason)10349 static int goto_offline(struct hfi1_pportdata *ppd, u8 rem_reason)
10350 {
10351 	struct hfi1_devdata *dd = ppd->dd;
10352 	u32 previous_state;
10353 	int offline_state_ret;
10354 	int ret;
10355 
10356 	update_lcb_cache(dd);
10357 
10358 	previous_state = ppd->host_link_state;
10359 	ppd->host_link_state = HLS_GOING_OFFLINE;
10360 
10361 	/* start offline transition */
10362 	ret = set_physical_link_state(dd, (rem_reason << 8) | PLS_OFFLINE);
10363 
10364 	if (ret != HCMD_SUCCESS) {
10365 		dd_dev_err(dd,
10366 			   "Failed to transition to Offline link state, return %d\n",
10367 			   ret);
10368 		return -EINVAL;
10369 	}
10370 	if (ppd->offline_disabled_reason ==
10371 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE))
10372 		ppd->offline_disabled_reason =
10373 		HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
10374 
10375 	offline_state_ret = wait_phys_link_offline_substates(ppd, 10000);
10376 	if (offline_state_ret < 0)
10377 		return offline_state_ret;
10378 
10379 	/* Disabling AOC transmitters */
10380 	if (ppd->port_type == PORT_TYPE_QSFP &&
10381 	    ppd->qsfp_info.limiting_active &&
10382 	    qsfp_mod_present(ppd)) {
10383 		int ret;
10384 
10385 		ret = acquire_chip_resource(dd, qsfp_resource(dd), QSFP_WAIT);
10386 		if (ret == 0) {
10387 			set_qsfp_tx(ppd, 0);
10388 			release_chip_resource(dd, qsfp_resource(dd));
10389 		} else {
10390 			/* not fatal, but should warn */
10391 			dd_dev_err(dd,
10392 				   "Unable to acquire lock to turn off QSFP TX\n");
10393 		}
10394 	}
10395 
10396 	/*
10397 	 * Wait for the offline.Quiet transition if it hasn't happened yet. It
10398 	 * can take a while for the link to go down.
10399 	 */
10400 	if (offline_state_ret != PLS_OFFLINE_QUIET) {
10401 		ret = wait_physical_linkstate(ppd, PLS_OFFLINE, 30000);
10402 		if (ret < 0)
10403 			return ret;
10404 	}
10405 
10406 	/*
10407 	 * Now in charge of LCB - must be after the physical state is
10408 	 * offline.quiet and before host_link_state is changed.
10409 	 */
10410 	set_host_lcb_access(dd);
10411 	write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
10412 
10413 	/* make sure the logical state is also down */
10414 	ret = wait_logical_linkstate(ppd, IB_PORT_DOWN, 1000);
10415 	if (ret)
10416 		force_logical_link_state_down(ppd);
10417 
10418 	ppd->host_link_state = HLS_LINK_COOLDOWN; /* LCB access allowed */
10419 	update_statusp(ppd, IB_PORT_DOWN);
10420 
10421 	/*
10422 	 * The LNI has a mandatory wait time after the physical state
10423 	 * moves to Offline.Quiet.  The wait time may be different
10424 	 * depending on how the link went down.  The 8051 firmware
10425 	 * will observe the needed wait time and only move to ready
10426 	 * when that is completed.  The largest of the quiet timeouts
10427 	 * is 6s, so wait that long and then at least 0.5s more for
10428 	 * other transitions, and another 0.5s for a buffer.
10429 	 */
10430 	ret = wait_fm_ready(dd, 7000);
10431 	if (ret) {
10432 		dd_dev_err(dd,
10433 			   "After going offline, timed out waiting for the 8051 to become ready to accept host requests\n");
10434 		/* state is really offline, so make it so */
10435 		ppd->host_link_state = HLS_DN_OFFLINE;
10436 		return ret;
10437 	}
10438 
10439 	/*
10440 	 * The state is now offline and the 8051 is ready to accept host
10441 	 * requests.
10442 	 *	- change our state
10443 	 *	- notify others if we were previously in a linkup state
10444 	 */
10445 	ppd->host_link_state = HLS_DN_OFFLINE;
10446 	if (previous_state & HLS_UP) {
10447 		/* went down while link was up */
10448 		handle_linkup_change(dd, 0);
10449 	} else if (previous_state
10450 			& (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
10451 		/* went down while attempting link up */
10452 		check_lni_states(ppd);
10453 
10454 		/* The QSFP doesn't need to be reset on LNI failure */
10455 		ppd->qsfp_info.reset_needed = 0;
10456 	}
10457 
10458 	/* the active link width (downgrade) is 0 on link down */
10459 	ppd->link_width_active = 0;
10460 	ppd->link_width_downgrade_tx_active = 0;
10461 	ppd->link_width_downgrade_rx_active = 0;
10462 	ppd->current_egress_rate = 0;
10463 	return 0;
10464 }
10465 
10466 /* return the link state name */
link_state_name(u32 state)10467 static const char *link_state_name(u32 state)
10468 {
10469 	const char *name;
10470 	int n = ilog2(state);
10471 	static const char * const names[] = {
10472 		[__HLS_UP_INIT_BP]	 = "INIT",
10473 		[__HLS_UP_ARMED_BP]	 = "ARMED",
10474 		[__HLS_UP_ACTIVE_BP]	 = "ACTIVE",
10475 		[__HLS_DN_DOWNDEF_BP]	 = "DOWNDEF",
10476 		[__HLS_DN_POLL_BP]	 = "POLL",
10477 		[__HLS_DN_DISABLE_BP]	 = "DISABLE",
10478 		[__HLS_DN_OFFLINE_BP]	 = "OFFLINE",
10479 		[__HLS_VERIFY_CAP_BP]	 = "VERIFY_CAP",
10480 		[__HLS_GOING_UP_BP]	 = "GOING_UP",
10481 		[__HLS_GOING_OFFLINE_BP] = "GOING_OFFLINE",
10482 		[__HLS_LINK_COOLDOWN_BP] = "LINK_COOLDOWN"
10483 	};
10484 
10485 	name = n < ARRAY_SIZE(names) ? names[n] : NULL;
10486 	return name ? name : "unknown";
10487 }
10488 
10489 /* return the link state reason name */
link_state_reason_name(struct hfi1_pportdata * ppd,u32 state)10490 static const char *link_state_reason_name(struct hfi1_pportdata *ppd, u32 state)
10491 {
10492 	if (state == HLS_UP_INIT) {
10493 		switch (ppd->linkinit_reason) {
10494 		case OPA_LINKINIT_REASON_LINKUP:
10495 			return "(LINKUP)";
10496 		case OPA_LINKINIT_REASON_FLAPPING:
10497 			return "(FLAPPING)";
10498 		case OPA_LINKINIT_OUTSIDE_POLICY:
10499 			return "(OUTSIDE_POLICY)";
10500 		case OPA_LINKINIT_QUARANTINED:
10501 			return "(QUARANTINED)";
10502 		case OPA_LINKINIT_INSUFIC_CAPABILITY:
10503 			return "(INSUFIC_CAPABILITY)";
10504 		default:
10505 			break;
10506 		}
10507 	}
10508 	return "";
10509 }
10510 
10511 /*
10512  * driver_pstate - convert the driver's notion of a port's
10513  * state (an HLS_*) into a physical state (a {IB,OPA}_PORTPHYSSTATE_*).
10514  * Return -1 (converted to a u32) to indicate error.
10515  */
driver_pstate(struct hfi1_pportdata * ppd)10516 u32 driver_pstate(struct hfi1_pportdata *ppd)
10517 {
10518 	switch (ppd->host_link_state) {
10519 	case HLS_UP_INIT:
10520 	case HLS_UP_ARMED:
10521 	case HLS_UP_ACTIVE:
10522 		return IB_PORTPHYSSTATE_LINKUP;
10523 	case HLS_DN_POLL:
10524 		return IB_PORTPHYSSTATE_POLLING;
10525 	case HLS_DN_DISABLE:
10526 		return IB_PORTPHYSSTATE_DISABLED;
10527 	case HLS_DN_OFFLINE:
10528 		return OPA_PORTPHYSSTATE_OFFLINE;
10529 	case HLS_VERIFY_CAP:
10530 		return IB_PORTPHYSSTATE_TRAINING;
10531 	case HLS_GOING_UP:
10532 		return IB_PORTPHYSSTATE_TRAINING;
10533 	case HLS_GOING_OFFLINE:
10534 		return OPA_PORTPHYSSTATE_OFFLINE;
10535 	case HLS_LINK_COOLDOWN:
10536 		return OPA_PORTPHYSSTATE_OFFLINE;
10537 	case HLS_DN_DOWNDEF:
10538 	default:
10539 		dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10540 			   ppd->host_link_state);
10541 		return  -1;
10542 	}
10543 }
10544 
10545 /*
10546  * driver_lstate - convert the driver's notion of a port's
10547  * state (an HLS_*) into a logical state (a IB_PORT_*). Return -1
10548  * (converted to a u32) to indicate error.
10549  */
driver_lstate(struct hfi1_pportdata * ppd)10550 u32 driver_lstate(struct hfi1_pportdata *ppd)
10551 {
10552 	if (ppd->host_link_state && (ppd->host_link_state & HLS_DOWN))
10553 		return IB_PORT_DOWN;
10554 
10555 	switch (ppd->host_link_state & HLS_UP) {
10556 	case HLS_UP_INIT:
10557 		return IB_PORT_INIT;
10558 	case HLS_UP_ARMED:
10559 		return IB_PORT_ARMED;
10560 	case HLS_UP_ACTIVE:
10561 		return IB_PORT_ACTIVE;
10562 	default:
10563 		dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10564 			   ppd->host_link_state);
10565 	return -1;
10566 	}
10567 }
10568 
set_link_down_reason(struct hfi1_pportdata * ppd,u8 lcl_reason,u8 neigh_reason,u8 rem_reason)10569 void set_link_down_reason(struct hfi1_pportdata *ppd, u8 lcl_reason,
10570 			  u8 neigh_reason, u8 rem_reason)
10571 {
10572 	if (ppd->local_link_down_reason.latest == 0 &&
10573 	    ppd->neigh_link_down_reason.latest == 0) {
10574 		ppd->local_link_down_reason.latest = lcl_reason;
10575 		ppd->neigh_link_down_reason.latest = neigh_reason;
10576 		ppd->remote_link_down_reason = rem_reason;
10577 	}
10578 }
10579 
10580 /*
10581  * Verify if BCT for data VLs is non-zero.
10582  */
data_vls_operational(struct hfi1_pportdata * ppd)10583 static inline bool data_vls_operational(struct hfi1_pportdata *ppd)
10584 {
10585 	return !!ppd->actual_vls_operational;
10586 }
10587 
10588 /*
10589  * Change the physical and/or logical link state.
10590  *
10591  * Do not call this routine while inside an interrupt.  It contains
10592  * calls to routines that can take multiple seconds to finish.
10593  *
10594  * Returns 0 on success, -errno on failure.
10595  */
set_link_state(struct hfi1_pportdata * ppd,u32 state)10596 int set_link_state(struct hfi1_pportdata *ppd, u32 state)
10597 {
10598 	struct hfi1_devdata *dd = ppd->dd;
10599 	struct ib_event event = {.device = NULL};
10600 	int ret1, ret = 0;
10601 	int orig_new_state, poll_bounce;
10602 
10603 	mutex_lock(&ppd->hls_lock);
10604 
10605 	orig_new_state = state;
10606 	if (state == HLS_DN_DOWNDEF)
10607 		state = HLS_DEFAULT;
10608 
10609 	/* interpret poll -> poll as a link bounce */
10610 	poll_bounce = ppd->host_link_state == HLS_DN_POLL &&
10611 		      state == HLS_DN_POLL;
10612 
10613 	dd_dev_info(dd, "%s: current %s, new %s %s%s\n", __func__,
10614 		    link_state_name(ppd->host_link_state),
10615 		    link_state_name(orig_new_state),
10616 		    poll_bounce ? "(bounce) " : "",
10617 		    link_state_reason_name(ppd, state));
10618 
10619 	/*
10620 	 * If we're going to a (HLS_*) link state that implies the logical
10621 	 * link state is neither of (IB_PORT_ARMED, IB_PORT_ACTIVE), then
10622 	 * reset is_sm_config_started to 0.
10623 	 */
10624 	if (!(state & (HLS_UP_ARMED | HLS_UP_ACTIVE)))
10625 		ppd->is_sm_config_started = 0;
10626 
10627 	/*
10628 	 * Do nothing if the states match.  Let a poll to poll link bounce
10629 	 * go through.
10630 	 */
10631 	if (ppd->host_link_state == state && !poll_bounce)
10632 		goto done;
10633 
10634 	switch (state) {
10635 	case HLS_UP_INIT:
10636 		if (ppd->host_link_state == HLS_DN_POLL &&
10637 		    (quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR)) {
10638 			/*
10639 			 * Quick link up jumps from polling to here.
10640 			 *
10641 			 * Whether in normal or loopback mode, the
10642 			 * simulator jumps from polling to link up.
10643 			 * Accept that here.
10644 			 */
10645 			/* OK */
10646 		} else if (ppd->host_link_state != HLS_GOING_UP) {
10647 			goto unexpected;
10648 		}
10649 
10650 		/*
10651 		 * Wait for Link_Up physical state.
10652 		 * Physical and Logical states should already be
10653 		 * be transitioned to LinkUp and LinkInit respectively.
10654 		 */
10655 		ret = wait_physical_linkstate(ppd, PLS_LINKUP, 1000);
10656 		if (ret) {
10657 			dd_dev_err(dd,
10658 				   "%s: physical state did not change to LINK-UP\n",
10659 				   __func__);
10660 			break;
10661 		}
10662 
10663 		ret = wait_logical_linkstate(ppd, IB_PORT_INIT, 1000);
10664 		if (ret) {
10665 			dd_dev_err(dd,
10666 				   "%s: logical state did not change to INIT\n",
10667 				   __func__);
10668 			break;
10669 		}
10670 
10671 		/* clear old transient LINKINIT_REASON code */
10672 		if (ppd->linkinit_reason >= OPA_LINKINIT_REASON_CLEAR)
10673 			ppd->linkinit_reason =
10674 				OPA_LINKINIT_REASON_LINKUP;
10675 
10676 		/* enable the port */
10677 		add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
10678 
10679 		handle_linkup_change(dd, 1);
10680 		pio_kernel_linkup(dd);
10681 
10682 		/*
10683 		 * After link up, a new link width will have been set.
10684 		 * Update the xmit counters with regards to the new
10685 		 * link width.
10686 		 */
10687 		update_xmit_counters(ppd, ppd->link_width_active);
10688 
10689 		ppd->host_link_state = HLS_UP_INIT;
10690 		update_statusp(ppd, IB_PORT_INIT);
10691 		break;
10692 	case HLS_UP_ARMED:
10693 		if (ppd->host_link_state != HLS_UP_INIT)
10694 			goto unexpected;
10695 
10696 		if (!data_vls_operational(ppd)) {
10697 			dd_dev_err(dd,
10698 				   "%s: data VLs not operational\n", __func__);
10699 			ret = -EINVAL;
10700 			break;
10701 		}
10702 
10703 		set_logical_state(dd, LSTATE_ARMED);
10704 		ret = wait_logical_linkstate(ppd, IB_PORT_ARMED, 1000);
10705 		if (ret) {
10706 			dd_dev_err(dd,
10707 				   "%s: logical state did not change to ARMED\n",
10708 				   __func__);
10709 			break;
10710 		}
10711 		ppd->host_link_state = HLS_UP_ARMED;
10712 		update_statusp(ppd, IB_PORT_ARMED);
10713 		/*
10714 		 * The simulator does not currently implement SMA messages,
10715 		 * so neighbor_normal is not set.  Set it here when we first
10716 		 * move to Armed.
10717 		 */
10718 		if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
10719 			ppd->neighbor_normal = 1;
10720 		break;
10721 	case HLS_UP_ACTIVE:
10722 		if (ppd->host_link_state != HLS_UP_ARMED)
10723 			goto unexpected;
10724 
10725 		set_logical_state(dd, LSTATE_ACTIVE);
10726 		ret = wait_logical_linkstate(ppd, IB_PORT_ACTIVE, 1000);
10727 		if (ret) {
10728 			dd_dev_err(dd,
10729 				   "%s: logical state did not change to ACTIVE\n",
10730 				   __func__);
10731 		} else {
10732 			/* tell all engines to go running */
10733 			sdma_all_running(dd);
10734 			ppd->host_link_state = HLS_UP_ACTIVE;
10735 			update_statusp(ppd, IB_PORT_ACTIVE);
10736 
10737 			/* Signal the IB layer that the port has went active */
10738 			event.device = &dd->verbs_dev.rdi.ibdev;
10739 			event.element.port_num = ppd->port;
10740 			event.event = IB_EVENT_PORT_ACTIVE;
10741 		}
10742 		break;
10743 	case HLS_DN_POLL:
10744 		if ((ppd->host_link_state == HLS_DN_DISABLE ||
10745 		     ppd->host_link_state == HLS_DN_OFFLINE) &&
10746 		    dd->dc_shutdown)
10747 			dc_start(dd);
10748 		/* Hand LED control to the DC */
10749 		write_csr(dd, DCC_CFG_LED_CNTRL, 0);
10750 
10751 		if (ppd->host_link_state != HLS_DN_OFFLINE) {
10752 			u8 tmp = ppd->link_enabled;
10753 
10754 			ret = goto_offline(ppd, ppd->remote_link_down_reason);
10755 			if (ret) {
10756 				ppd->link_enabled = tmp;
10757 				break;
10758 			}
10759 			ppd->remote_link_down_reason = 0;
10760 
10761 			if (ppd->driver_link_ready)
10762 				ppd->link_enabled = 1;
10763 		}
10764 
10765 		set_all_slowpath(ppd->dd);
10766 		ret = set_local_link_attributes(ppd);
10767 		if (ret)
10768 			break;
10769 
10770 		ppd->port_error_action = 0;
10771 		ppd->host_link_state = HLS_DN_POLL;
10772 
10773 		if (quick_linkup) {
10774 			/* quick linkup does not go into polling */
10775 			ret = do_quick_linkup(dd);
10776 		} else {
10777 			ret1 = set_physical_link_state(dd, PLS_POLLING);
10778 			if (ret1 != HCMD_SUCCESS) {
10779 				dd_dev_err(dd,
10780 					   "Failed to transition to Polling link state, return 0x%x\n",
10781 					   ret1);
10782 				ret = -EINVAL;
10783 			}
10784 		}
10785 		ppd->offline_disabled_reason =
10786 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE);
10787 		/*
10788 		 * If an error occurred above, go back to offline.  The
10789 		 * caller may reschedule another attempt.
10790 		 */
10791 		if (ret)
10792 			goto_offline(ppd, 0);
10793 		else
10794 			log_physical_state(ppd, PLS_POLLING);
10795 		break;
10796 	case HLS_DN_DISABLE:
10797 		/* link is disabled */
10798 		ppd->link_enabled = 0;
10799 
10800 		/* allow any state to transition to disabled */
10801 
10802 		/* must transition to offline first */
10803 		if (ppd->host_link_state != HLS_DN_OFFLINE) {
10804 			ret = goto_offline(ppd, ppd->remote_link_down_reason);
10805 			if (ret)
10806 				break;
10807 			ppd->remote_link_down_reason = 0;
10808 		}
10809 
10810 		if (!dd->dc_shutdown) {
10811 			ret1 = set_physical_link_state(dd, PLS_DISABLED);
10812 			if (ret1 != HCMD_SUCCESS) {
10813 				dd_dev_err(dd,
10814 					   "Failed to transition to Disabled link state, return 0x%x\n",
10815 					   ret1);
10816 				ret = -EINVAL;
10817 				break;
10818 			}
10819 			ret = wait_physical_linkstate(ppd, PLS_DISABLED, 10000);
10820 			if (ret) {
10821 				dd_dev_err(dd,
10822 					   "%s: physical state did not change to DISABLED\n",
10823 					   __func__);
10824 				break;
10825 			}
10826 			dc_shutdown(dd);
10827 		}
10828 		ppd->host_link_state = HLS_DN_DISABLE;
10829 		break;
10830 	case HLS_DN_OFFLINE:
10831 		if (ppd->host_link_state == HLS_DN_DISABLE)
10832 			dc_start(dd);
10833 
10834 		/* allow any state to transition to offline */
10835 		ret = goto_offline(ppd, ppd->remote_link_down_reason);
10836 		if (!ret)
10837 			ppd->remote_link_down_reason = 0;
10838 		break;
10839 	case HLS_VERIFY_CAP:
10840 		if (ppd->host_link_state != HLS_DN_POLL)
10841 			goto unexpected;
10842 		ppd->host_link_state = HLS_VERIFY_CAP;
10843 		log_physical_state(ppd, PLS_CONFIGPHY_VERIFYCAP);
10844 		break;
10845 	case HLS_GOING_UP:
10846 		if (ppd->host_link_state != HLS_VERIFY_CAP)
10847 			goto unexpected;
10848 
10849 		ret1 = set_physical_link_state(dd, PLS_LINKUP);
10850 		if (ret1 != HCMD_SUCCESS) {
10851 			dd_dev_err(dd,
10852 				   "Failed to transition to link up state, return 0x%x\n",
10853 				   ret1);
10854 			ret = -EINVAL;
10855 			break;
10856 		}
10857 		ppd->host_link_state = HLS_GOING_UP;
10858 		break;
10859 
10860 	case HLS_GOING_OFFLINE:		/* transient within goto_offline() */
10861 	case HLS_LINK_COOLDOWN:		/* transient within goto_offline() */
10862 	default:
10863 		dd_dev_info(dd, "%s: state 0x%x: not supported\n",
10864 			    __func__, state);
10865 		ret = -EINVAL;
10866 		break;
10867 	}
10868 
10869 	goto done;
10870 
10871 unexpected:
10872 	dd_dev_err(dd, "%s: unexpected state transition from %s to %s\n",
10873 		   __func__, link_state_name(ppd->host_link_state),
10874 		   link_state_name(state));
10875 	ret = -EINVAL;
10876 
10877 done:
10878 	mutex_unlock(&ppd->hls_lock);
10879 
10880 	if (event.device)
10881 		ib_dispatch_event(&event);
10882 
10883 	return ret;
10884 }
10885 
hfi1_set_ib_cfg(struct hfi1_pportdata * ppd,int which,u32 val)10886 int hfi1_set_ib_cfg(struct hfi1_pportdata *ppd, int which, u32 val)
10887 {
10888 	u64 reg;
10889 	int ret = 0;
10890 
10891 	switch (which) {
10892 	case HFI1_IB_CFG_LIDLMC:
10893 		set_lidlmc(ppd);
10894 		break;
10895 	case HFI1_IB_CFG_VL_HIGH_LIMIT:
10896 		/*
10897 		 * The VL Arbitrator high limit is sent in units of 4k
10898 		 * bytes, while HFI stores it in units of 64 bytes.
10899 		 */
10900 		val *= 4096 / 64;
10901 		reg = ((u64)val & SEND_HIGH_PRIORITY_LIMIT_LIMIT_MASK)
10902 			<< SEND_HIGH_PRIORITY_LIMIT_LIMIT_SHIFT;
10903 		write_csr(ppd->dd, SEND_HIGH_PRIORITY_LIMIT, reg);
10904 		break;
10905 	case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
10906 		/* HFI only supports POLL as the default link down state */
10907 		if (val != HLS_DN_POLL)
10908 			ret = -EINVAL;
10909 		break;
10910 	case HFI1_IB_CFG_OP_VLS:
10911 		if (ppd->vls_operational != val) {
10912 			ppd->vls_operational = val;
10913 			if (!ppd->port)
10914 				ret = -EINVAL;
10915 		}
10916 		break;
10917 	/*
10918 	 * For link width, link width downgrade, and speed enable, always AND
10919 	 * the setting with what is actually supported.  This has two benefits.
10920 	 * First, enabled can't have unsupported values, no matter what the
10921 	 * SM or FM might want.  Second, the ALL_SUPPORTED wildcards that mean
10922 	 * "fill in with your supported value" have all the bits in the
10923 	 * field set, so simply ANDing with supported has the desired result.
10924 	 */
10925 	case HFI1_IB_CFG_LWID_ENB: /* set allowed Link-width */
10926 		ppd->link_width_enabled = val & ppd->link_width_supported;
10927 		break;
10928 	case HFI1_IB_CFG_LWID_DG_ENB: /* set allowed link width downgrade */
10929 		ppd->link_width_downgrade_enabled =
10930 				val & ppd->link_width_downgrade_supported;
10931 		break;
10932 	case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
10933 		ppd->link_speed_enabled = val & ppd->link_speed_supported;
10934 		break;
10935 	case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
10936 		/*
10937 		 * HFI does not follow IB specs, save this value
10938 		 * so we can report it, if asked.
10939 		 */
10940 		ppd->overrun_threshold = val;
10941 		break;
10942 	case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
10943 		/*
10944 		 * HFI does not follow IB specs, save this value
10945 		 * so we can report it, if asked.
10946 		 */
10947 		ppd->phy_error_threshold = val;
10948 		break;
10949 
10950 	case HFI1_IB_CFG_MTU:
10951 		set_send_length(ppd);
10952 		break;
10953 
10954 	case HFI1_IB_CFG_PKEYS:
10955 		if (HFI1_CAP_IS_KSET(PKEY_CHECK))
10956 			set_partition_keys(ppd);
10957 		break;
10958 
10959 	default:
10960 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
10961 			dd_dev_info(ppd->dd,
10962 				    "%s: which %s, val 0x%x: not implemented\n",
10963 				    __func__, ib_cfg_name(which), val);
10964 		break;
10965 	}
10966 	return ret;
10967 }
10968 
10969 /* begin functions related to vl arbitration table caching */
init_vl_arb_caches(struct hfi1_pportdata * ppd)10970 static void init_vl_arb_caches(struct hfi1_pportdata *ppd)
10971 {
10972 	int i;
10973 
10974 	BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
10975 			VL_ARB_LOW_PRIO_TABLE_SIZE);
10976 	BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
10977 			VL_ARB_HIGH_PRIO_TABLE_SIZE);
10978 
10979 	/*
10980 	 * Note that we always return values directly from the
10981 	 * 'vl_arb_cache' (and do no CSR reads) in response to a
10982 	 * 'Get(VLArbTable)'. This is obviously correct after a
10983 	 * 'Set(VLArbTable)', since the cache will then be up to
10984 	 * date. But it's also correct prior to any 'Set(VLArbTable)'
10985 	 * since then both the cache, and the relevant h/w registers
10986 	 * will be zeroed.
10987 	 */
10988 
10989 	for (i = 0; i < MAX_PRIO_TABLE; i++)
10990 		spin_lock_init(&ppd->vl_arb_cache[i].lock);
10991 }
10992 
10993 /*
10994  * vl_arb_lock_cache
10995  *
10996  * All other vl_arb_* functions should be called only after locking
10997  * the cache.
10998  */
10999 static inline struct vl_arb_cache *
vl_arb_lock_cache(struct hfi1_pportdata * ppd,int idx)11000 vl_arb_lock_cache(struct hfi1_pportdata *ppd, int idx)
11001 {
11002 	if (idx != LO_PRIO_TABLE && idx != HI_PRIO_TABLE)
11003 		return NULL;
11004 	spin_lock(&ppd->vl_arb_cache[idx].lock);
11005 	return &ppd->vl_arb_cache[idx];
11006 }
11007 
vl_arb_unlock_cache(struct hfi1_pportdata * ppd,int idx)11008 static inline void vl_arb_unlock_cache(struct hfi1_pportdata *ppd, int idx)
11009 {
11010 	spin_unlock(&ppd->vl_arb_cache[idx].lock);
11011 }
11012 
vl_arb_get_cache(struct vl_arb_cache * cache,struct ib_vl_weight_elem * vl)11013 static void vl_arb_get_cache(struct vl_arb_cache *cache,
11014 			     struct ib_vl_weight_elem *vl)
11015 {
11016 	memcpy(vl, cache->table, VL_ARB_TABLE_SIZE * sizeof(*vl));
11017 }
11018 
vl_arb_set_cache(struct vl_arb_cache * cache,struct ib_vl_weight_elem * vl)11019 static void vl_arb_set_cache(struct vl_arb_cache *cache,
11020 			     struct ib_vl_weight_elem *vl)
11021 {
11022 	memcpy(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
11023 }
11024 
vl_arb_match_cache(struct vl_arb_cache * cache,struct ib_vl_weight_elem * vl)11025 static int vl_arb_match_cache(struct vl_arb_cache *cache,
11026 			      struct ib_vl_weight_elem *vl)
11027 {
11028 	return !memcmp(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
11029 }
11030 
11031 /* end functions related to vl arbitration table caching */
11032 
set_vl_weights(struct hfi1_pportdata * ppd,u32 target,u32 size,struct ib_vl_weight_elem * vl)11033 static int set_vl_weights(struct hfi1_pportdata *ppd, u32 target,
11034 			  u32 size, struct ib_vl_weight_elem *vl)
11035 {
11036 	struct hfi1_devdata *dd = ppd->dd;
11037 	u64 reg;
11038 	unsigned int i, is_up = 0;
11039 	int drain, ret = 0;
11040 
11041 	mutex_lock(&ppd->hls_lock);
11042 
11043 	if (ppd->host_link_state & HLS_UP)
11044 		is_up = 1;
11045 
11046 	drain = !is_ax(dd) && is_up;
11047 
11048 	if (drain)
11049 		/*
11050 		 * Before adjusting VL arbitration weights, empty per-VL
11051 		 * FIFOs, otherwise a packet whose VL weight is being
11052 		 * set to 0 could get stuck in a FIFO with no chance to
11053 		 * egress.
11054 		 */
11055 		ret = stop_drain_data_vls(dd);
11056 
11057 	if (ret) {
11058 		dd_dev_err(
11059 			dd,
11060 			"%s: cannot stop/drain VLs - refusing to change VL arbitration weights\n",
11061 			__func__);
11062 		goto err;
11063 	}
11064 
11065 	for (i = 0; i < size; i++, vl++) {
11066 		/*
11067 		 * NOTE: The low priority shift and mask are used here, but
11068 		 * they are the same for both the low and high registers.
11069 		 */
11070 		reg = (((u64)vl->vl & SEND_LOW_PRIORITY_LIST_VL_MASK)
11071 				<< SEND_LOW_PRIORITY_LIST_VL_SHIFT)
11072 		      | (((u64)vl->weight
11073 				& SEND_LOW_PRIORITY_LIST_WEIGHT_MASK)
11074 				<< SEND_LOW_PRIORITY_LIST_WEIGHT_SHIFT);
11075 		write_csr(dd, target + (i * 8), reg);
11076 	}
11077 	pio_send_control(dd, PSC_GLOBAL_VLARB_ENABLE);
11078 
11079 	if (drain)
11080 		open_fill_data_vls(dd); /* reopen all VLs */
11081 
11082 err:
11083 	mutex_unlock(&ppd->hls_lock);
11084 
11085 	return ret;
11086 }
11087 
11088 /*
11089  * Read one credit merge VL register.
11090  */
read_one_cm_vl(struct hfi1_devdata * dd,u32 csr,struct vl_limit * vll)11091 static void read_one_cm_vl(struct hfi1_devdata *dd, u32 csr,
11092 			   struct vl_limit *vll)
11093 {
11094 	u64 reg = read_csr(dd, csr);
11095 
11096 	vll->dedicated = cpu_to_be16(
11097 		(reg >> SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT)
11098 		& SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_MASK);
11099 	vll->shared = cpu_to_be16(
11100 		(reg >> SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT)
11101 		& SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_MASK);
11102 }
11103 
11104 /*
11105  * Read the current credit merge limits.
11106  */
get_buffer_control(struct hfi1_devdata * dd,struct buffer_control * bc,u16 * overall_limit)11107 static int get_buffer_control(struct hfi1_devdata *dd,
11108 			      struct buffer_control *bc, u16 *overall_limit)
11109 {
11110 	u64 reg;
11111 	int i;
11112 
11113 	/* not all entries are filled in */
11114 	memset(bc, 0, sizeof(*bc));
11115 
11116 	/* OPA and HFI have a 1-1 mapping */
11117 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
11118 		read_one_cm_vl(dd, SEND_CM_CREDIT_VL + (8 * i), &bc->vl[i]);
11119 
11120 	/* NOTE: assumes that VL* and VL15 CSRs are bit-wise identical */
11121 	read_one_cm_vl(dd, SEND_CM_CREDIT_VL15, &bc->vl[15]);
11122 
11123 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11124 	bc->overall_shared_limit = cpu_to_be16(
11125 		(reg >> SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT)
11126 		& SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_MASK);
11127 	if (overall_limit)
11128 		*overall_limit = (reg
11129 			>> SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT)
11130 			& SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_MASK;
11131 	return sizeof(struct buffer_control);
11132 }
11133 
get_sc2vlnt(struct hfi1_devdata * dd,struct sc2vlnt * dp)11134 static int get_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
11135 {
11136 	u64 reg;
11137 	int i;
11138 
11139 	/* each register contains 16 SC->VLnt mappings, 4 bits each */
11140 	reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_15_0);
11141 	for (i = 0; i < sizeof(u64); i++) {
11142 		u8 byte = *(((u8 *)&reg) + i);
11143 
11144 		dp->vlnt[2 * i] = byte & 0xf;
11145 		dp->vlnt[(2 * i) + 1] = (byte & 0xf0) >> 4;
11146 	}
11147 
11148 	reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_31_16);
11149 	for (i = 0; i < sizeof(u64); i++) {
11150 		u8 byte = *(((u8 *)&reg) + i);
11151 
11152 		dp->vlnt[16 + (2 * i)] = byte & 0xf;
11153 		dp->vlnt[16 + (2 * i) + 1] = (byte & 0xf0) >> 4;
11154 	}
11155 	return sizeof(struct sc2vlnt);
11156 }
11157 
get_vlarb_preempt(struct hfi1_devdata * dd,u32 nelems,struct ib_vl_weight_elem * vl)11158 static void get_vlarb_preempt(struct hfi1_devdata *dd, u32 nelems,
11159 			      struct ib_vl_weight_elem *vl)
11160 {
11161 	unsigned int i;
11162 
11163 	for (i = 0; i < nelems; i++, vl++) {
11164 		vl->vl = 0xf;
11165 		vl->weight = 0;
11166 	}
11167 }
11168 
set_sc2vlnt(struct hfi1_devdata * dd,struct sc2vlnt * dp)11169 static void set_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
11170 {
11171 	write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0,
11172 		  DC_SC_VL_VAL(15_0,
11173 			       0, dp->vlnt[0] & 0xf,
11174 			       1, dp->vlnt[1] & 0xf,
11175 			       2, dp->vlnt[2] & 0xf,
11176 			       3, dp->vlnt[3] & 0xf,
11177 			       4, dp->vlnt[4] & 0xf,
11178 			       5, dp->vlnt[5] & 0xf,
11179 			       6, dp->vlnt[6] & 0xf,
11180 			       7, dp->vlnt[7] & 0xf,
11181 			       8, dp->vlnt[8] & 0xf,
11182 			       9, dp->vlnt[9] & 0xf,
11183 			       10, dp->vlnt[10] & 0xf,
11184 			       11, dp->vlnt[11] & 0xf,
11185 			       12, dp->vlnt[12] & 0xf,
11186 			       13, dp->vlnt[13] & 0xf,
11187 			       14, dp->vlnt[14] & 0xf,
11188 			       15, dp->vlnt[15] & 0xf));
11189 	write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16,
11190 		  DC_SC_VL_VAL(31_16,
11191 			       16, dp->vlnt[16] & 0xf,
11192 			       17, dp->vlnt[17] & 0xf,
11193 			       18, dp->vlnt[18] & 0xf,
11194 			       19, dp->vlnt[19] & 0xf,
11195 			       20, dp->vlnt[20] & 0xf,
11196 			       21, dp->vlnt[21] & 0xf,
11197 			       22, dp->vlnt[22] & 0xf,
11198 			       23, dp->vlnt[23] & 0xf,
11199 			       24, dp->vlnt[24] & 0xf,
11200 			       25, dp->vlnt[25] & 0xf,
11201 			       26, dp->vlnt[26] & 0xf,
11202 			       27, dp->vlnt[27] & 0xf,
11203 			       28, dp->vlnt[28] & 0xf,
11204 			       29, dp->vlnt[29] & 0xf,
11205 			       30, dp->vlnt[30] & 0xf,
11206 			       31, dp->vlnt[31] & 0xf));
11207 }
11208 
nonzero_msg(struct hfi1_devdata * dd,int idx,const char * what,u16 limit)11209 static void nonzero_msg(struct hfi1_devdata *dd, int idx, const char *what,
11210 			u16 limit)
11211 {
11212 	if (limit != 0)
11213 		dd_dev_info(dd, "Invalid %s limit %d on VL %d, ignoring\n",
11214 			    what, (int)limit, idx);
11215 }
11216 
11217 /* change only the shared limit portion of SendCmGLobalCredit */
set_global_shared(struct hfi1_devdata * dd,u16 limit)11218 static void set_global_shared(struct hfi1_devdata *dd, u16 limit)
11219 {
11220 	u64 reg;
11221 
11222 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11223 	reg &= ~SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK;
11224 	reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT;
11225 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11226 }
11227 
11228 /* change only the total credit limit portion of SendCmGLobalCredit */
set_global_limit(struct hfi1_devdata * dd,u16 limit)11229 static void set_global_limit(struct hfi1_devdata *dd, u16 limit)
11230 {
11231 	u64 reg;
11232 
11233 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11234 	reg &= ~SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK;
11235 	reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
11236 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11237 }
11238 
11239 /* set the given per-VL shared limit */
set_vl_shared(struct hfi1_devdata * dd,int vl,u16 limit)11240 static void set_vl_shared(struct hfi1_devdata *dd, int vl, u16 limit)
11241 {
11242 	u64 reg;
11243 	u32 addr;
11244 
11245 	if (vl < TXE_NUM_DATA_VL)
11246 		addr = SEND_CM_CREDIT_VL + (8 * vl);
11247 	else
11248 		addr = SEND_CM_CREDIT_VL15;
11249 
11250 	reg = read_csr(dd, addr);
11251 	reg &= ~SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SMASK;
11252 	reg |= (u64)limit << SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT;
11253 	write_csr(dd, addr, reg);
11254 }
11255 
11256 /* set the given per-VL dedicated limit */
set_vl_dedicated(struct hfi1_devdata * dd,int vl,u16 limit)11257 static void set_vl_dedicated(struct hfi1_devdata *dd, int vl, u16 limit)
11258 {
11259 	u64 reg;
11260 	u32 addr;
11261 
11262 	if (vl < TXE_NUM_DATA_VL)
11263 		addr = SEND_CM_CREDIT_VL + (8 * vl);
11264 	else
11265 		addr = SEND_CM_CREDIT_VL15;
11266 
11267 	reg = read_csr(dd, addr);
11268 	reg &= ~SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SMASK;
11269 	reg |= (u64)limit << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT;
11270 	write_csr(dd, addr, reg);
11271 }
11272 
11273 /* spin until the given per-VL status mask bits clear */
wait_for_vl_status_clear(struct hfi1_devdata * dd,u64 mask,const char * which)11274 static void wait_for_vl_status_clear(struct hfi1_devdata *dd, u64 mask,
11275 				     const char *which)
11276 {
11277 	unsigned long timeout;
11278 	u64 reg;
11279 
11280 	timeout = jiffies + msecs_to_jiffies(VL_STATUS_CLEAR_TIMEOUT);
11281 	while (1) {
11282 		reg = read_csr(dd, SEND_CM_CREDIT_USED_STATUS) & mask;
11283 
11284 		if (reg == 0)
11285 			return;	/* success */
11286 		if (time_after(jiffies, timeout))
11287 			break;		/* timed out */
11288 		udelay(1);
11289 	}
11290 
11291 	dd_dev_err(dd,
11292 		   "%s credit change status not clearing after %dms, mask 0x%llx, not clear 0x%llx\n",
11293 		   which, VL_STATUS_CLEAR_TIMEOUT, mask, reg);
11294 	/*
11295 	 * If this occurs, it is likely there was a credit loss on the link.
11296 	 * The only recovery from that is a link bounce.
11297 	 */
11298 	dd_dev_err(dd,
11299 		   "Continuing anyway.  A credit loss may occur.  Suggest a link bounce\n");
11300 }
11301 
11302 /*
11303  * The number of credits on the VLs may be changed while everything
11304  * is "live", but the following algorithm must be followed due to
11305  * how the hardware is actually implemented.  In particular,
11306  * Return_Credit_Status[] is the only correct status check.
11307  *
11308  * if (reducing Global_Shared_Credit_Limit or any shared limit changing)
11309  *     set Global_Shared_Credit_Limit = 0
11310  *     use_all_vl = 1
11311  * mask0 = all VLs that are changing either dedicated or shared limits
11312  * set Shared_Limit[mask0] = 0
11313  * spin until Return_Credit_Status[use_all_vl ? all VL : mask0] == 0
11314  * if (changing any dedicated limit)
11315  *     mask1 = all VLs that are lowering dedicated limits
11316  *     lower Dedicated_Limit[mask1]
11317  *     spin until Return_Credit_Status[mask1] == 0
11318  *     raise Dedicated_Limits
11319  * raise Shared_Limits
11320  * raise Global_Shared_Credit_Limit
11321  *
11322  * lower = if the new limit is lower, set the limit to the new value
11323  * raise = if the new limit is higher than the current value (may be changed
11324  *	earlier in the algorithm), set the new limit to the new value
11325  */
set_buffer_control(struct hfi1_pportdata * ppd,struct buffer_control * new_bc)11326 int set_buffer_control(struct hfi1_pportdata *ppd,
11327 		       struct buffer_control *new_bc)
11328 {
11329 	struct hfi1_devdata *dd = ppd->dd;
11330 	u64 changing_mask, ld_mask, stat_mask;
11331 	int change_count;
11332 	int i, use_all_mask;
11333 	int this_shared_changing;
11334 	int vl_count = 0, ret;
11335 	/*
11336 	 * A0: add the variable any_shared_limit_changing below and in the
11337 	 * algorithm above.  If removing A0 support, it can be removed.
11338 	 */
11339 	int any_shared_limit_changing;
11340 	struct buffer_control cur_bc;
11341 	u8 changing[OPA_MAX_VLS];
11342 	u8 lowering_dedicated[OPA_MAX_VLS];
11343 	u16 cur_total;
11344 	u32 new_total = 0;
11345 	const u64 all_mask =
11346 	SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK
11347 	 | SEND_CM_CREDIT_USED_STATUS_VL1_RETURN_CREDIT_STATUS_SMASK
11348 	 | SEND_CM_CREDIT_USED_STATUS_VL2_RETURN_CREDIT_STATUS_SMASK
11349 	 | SEND_CM_CREDIT_USED_STATUS_VL3_RETURN_CREDIT_STATUS_SMASK
11350 	 | SEND_CM_CREDIT_USED_STATUS_VL4_RETURN_CREDIT_STATUS_SMASK
11351 	 | SEND_CM_CREDIT_USED_STATUS_VL5_RETURN_CREDIT_STATUS_SMASK
11352 	 | SEND_CM_CREDIT_USED_STATUS_VL6_RETURN_CREDIT_STATUS_SMASK
11353 	 | SEND_CM_CREDIT_USED_STATUS_VL7_RETURN_CREDIT_STATUS_SMASK
11354 	 | SEND_CM_CREDIT_USED_STATUS_VL15_RETURN_CREDIT_STATUS_SMASK;
11355 
11356 #define valid_vl(idx) ((idx) < TXE_NUM_DATA_VL || (idx) == 15)
11357 #define NUM_USABLE_VLS 16	/* look at VL15 and less */
11358 
11359 	/* find the new total credits, do sanity check on unused VLs */
11360 	for (i = 0; i < OPA_MAX_VLS; i++) {
11361 		if (valid_vl(i)) {
11362 			new_total += be16_to_cpu(new_bc->vl[i].dedicated);
11363 			continue;
11364 		}
11365 		nonzero_msg(dd, i, "dedicated",
11366 			    be16_to_cpu(new_bc->vl[i].dedicated));
11367 		nonzero_msg(dd, i, "shared",
11368 			    be16_to_cpu(new_bc->vl[i].shared));
11369 		new_bc->vl[i].dedicated = 0;
11370 		new_bc->vl[i].shared = 0;
11371 	}
11372 	new_total += be16_to_cpu(new_bc->overall_shared_limit);
11373 
11374 	/* fetch the current values */
11375 	get_buffer_control(dd, &cur_bc, &cur_total);
11376 
11377 	/*
11378 	 * Create the masks we will use.
11379 	 */
11380 	memset(changing, 0, sizeof(changing));
11381 	memset(lowering_dedicated, 0, sizeof(lowering_dedicated));
11382 	/*
11383 	 * NOTE: Assumes that the individual VL bits are adjacent and in
11384 	 * increasing order
11385 	 */
11386 	stat_mask =
11387 		SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK;
11388 	changing_mask = 0;
11389 	ld_mask = 0;
11390 	change_count = 0;
11391 	any_shared_limit_changing = 0;
11392 	for (i = 0; i < NUM_USABLE_VLS; i++, stat_mask <<= 1) {
11393 		if (!valid_vl(i))
11394 			continue;
11395 		this_shared_changing = new_bc->vl[i].shared
11396 						!= cur_bc.vl[i].shared;
11397 		if (this_shared_changing)
11398 			any_shared_limit_changing = 1;
11399 		if (new_bc->vl[i].dedicated != cur_bc.vl[i].dedicated ||
11400 		    this_shared_changing) {
11401 			changing[i] = 1;
11402 			changing_mask |= stat_mask;
11403 			change_count++;
11404 		}
11405 		if (be16_to_cpu(new_bc->vl[i].dedicated) <
11406 					be16_to_cpu(cur_bc.vl[i].dedicated)) {
11407 			lowering_dedicated[i] = 1;
11408 			ld_mask |= stat_mask;
11409 		}
11410 	}
11411 
11412 	/* bracket the credit change with a total adjustment */
11413 	if (new_total > cur_total)
11414 		set_global_limit(dd, new_total);
11415 
11416 	/*
11417 	 * Start the credit change algorithm.
11418 	 */
11419 	use_all_mask = 0;
11420 	if ((be16_to_cpu(new_bc->overall_shared_limit) <
11421 	     be16_to_cpu(cur_bc.overall_shared_limit)) ||
11422 	    (is_ax(dd) && any_shared_limit_changing)) {
11423 		set_global_shared(dd, 0);
11424 		cur_bc.overall_shared_limit = 0;
11425 		use_all_mask = 1;
11426 	}
11427 
11428 	for (i = 0; i < NUM_USABLE_VLS; i++) {
11429 		if (!valid_vl(i))
11430 			continue;
11431 
11432 		if (changing[i]) {
11433 			set_vl_shared(dd, i, 0);
11434 			cur_bc.vl[i].shared = 0;
11435 		}
11436 	}
11437 
11438 	wait_for_vl_status_clear(dd, use_all_mask ? all_mask : changing_mask,
11439 				 "shared");
11440 
11441 	if (change_count > 0) {
11442 		for (i = 0; i < NUM_USABLE_VLS; i++) {
11443 			if (!valid_vl(i))
11444 				continue;
11445 
11446 			if (lowering_dedicated[i]) {
11447 				set_vl_dedicated(dd, i,
11448 						 be16_to_cpu(new_bc->
11449 							     vl[i].dedicated));
11450 				cur_bc.vl[i].dedicated =
11451 						new_bc->vl[i].dedicated;
11452 			}
11453 		}
11454 
11455 		wait_for_vl_status_clear(dd, ld_mask, "dedicated");
11456 
11457 		/* now raise all dedicated that are going up */
11458 		for (i = 0; i < NUM_USABLE_VLS; i++) {
11459 			if (!valid_vl(i))
11460 				continue;
11461 
11462 			if (be16_to_cpu(new_bc->vl[i].dedicated) >
11463 					be16_to_cpu(cur_bc.vl[i].dedicated))
11464 				set_vl_dedicated(dd, i,
11465 						 be16_to_cpu(new_bc->
11466 							     vl[i].dedicated));
11467 		}
11468 	}
11469 
11470 	/* next raise all shared that are going up */
11471 	for (i = 0; i < NUM_USABLE_VLS; i++) {
11472 		if (!valid_vl(i))
11473 			continue;
11474 
11475 		if (be16_to_cpu(new_bc->vl[i].shared) >
11476 				be16_to_cpu(cur_bc.vl[i].shared))
11477 			set_vl_shared(dd, i, be16_to_cpu(new_bc->vl[i].shared));
11478 	}
11479 
11480 	/* finally raise the global shared */
11481 	if (be16_to_cpu(new_bc->overall_shared_limit) >
11482 	    be16_to_cpu(cur_bc.overall_shared_limit))
11483 		set_global_shared(dd,
11484 				  be16_to_cpu(new_bc->overall_shared_limit));
11485 
11486 	/* bracket the credit change with a total adjustment */
11487 	if (new_total < cur_total)
11488 		set_global_limit(dd, new_total);
11489 
11490 	/*
11491 	 * Determine the actual number of operational VLS using the number of
11492 	 * dedicated and shared credits for each VL.
11493 	 */
11494 	if (change_count > 0) {
11495 		for (i = 0; i < TXE_NUM_DATA_VL; i++)
11496 			if (be16_to_cpu(new_bc->vl[i].dedicated) > 0 ||
11497 			    be16_to_cpu(new_bc->vl[i].shared) > 0)
11498 				vl_count++;
11499 		ppd->actual_vls_operational = vl_count;
11500 		ret = sdma_map_init(dd, ppd->port - 1, vl_count ?
11501 				    ppd->actual_vls_operational :
11502 				    ppd->vls_operational,
11503 				    NULL);
11504 		if (ret == 0)
11505 			ret = pio_map_init(dd, ppd->port - 1, vl_count ?
11506 					   ppd->actual_vls_operational :
11507 					   ppd->vls_operational, NULL);
11508 		if (ret)
11509 			return ret;
11510 	}
11511 	return 0;
11512 }
11513 
11514 /*
11515  * Read the given fabric manager table. Return the size of the
11516  * table (in bytes) on success, and a negative error code on
11517  * failure.
11518  */
fm_get_table(struct hfi1_pportdata * ppd,int which,void * t)11519 int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t)
11520 
11521 {
11522 	int size;
11523 	struct vl_arb_cache *vlc;
11524 
11525 	switch (which) {
11526 	case FM_TBL_VL_HIGH_ARB:
11527 		size = 256;
11528 		/*
11529 		 * OPA specifies 128 elements (of 2 bytes each), though
11530 		 * HFI supports only 16 elements in h/w.
11531 		 */
11532 		vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11533 		vl_arb_get_cache(vlc, t);
11534 		vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11535 		break;
11536 	case FM_TBL_VL_LOW_ARB:
11537 		size = 256;
11538 		/*
11539 		 * OPA specifies 128 elements (of 2 bytes each), though
11540 		 * HFI supports only 16 elements in h/w.
11541 		 */
11542 		vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11543 		vl_arb_get_cache(vlc, t);
11544 		vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11545 		break;
11546 	case FM_TBL_BUFFER_CONTROL:
11547 		size = get_buffer_control(ppd->dd, t, NULL);
11548 		break;
11549 	case FM_TBL_SC2VLNT:
11550 		size = get_sc2vlnt(ppd->dd, t);
11551 		break;
11552 	case FM_TBL_VL_PREEMPT_ELEMS:
11553 		size = 256;
11554 		/* OPA specifies 128 elements, of 2 bytes each */
11555 		get_vlarb_preempt(ppd->dd, OPA_MAX_VLS, t);
11556 		break;
11557 	case FM_TBL_VL_PREEMPT_MATRIX:
11558 		size = 256;
11559 		/*
11560 		 * OPA specifies that this is the same size as the VL
11561 		 * arbitration tables (i.e., 256 bytes).
11562 		 */
11563 		break;
11564 	default:
11565 		return -EINVAL;
11566 	}
11567 	return size;
11568 }
11569 
11570 /*
11571  * Write the given fabric manager table.
11572  */
fm_set_table(struct hfi1_pportdata * ppd,int which,void * t)11573 int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t)
11574 {
11575 	int ret = 0;
11576 	struct vl_arb_cache *vlc;
11577 
11578 	switch (which) {
11579 	case FM_TBL_VL_HIGH_ARB:
11580 		vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11581 		if (vl_arb_match_cache(vlc, t)) {
11582 			vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11583 			break;
11584 		}
11585 		vl_arb_set_cache(vlc, t);
11586 		vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11587 		ret = set_vl_weights(ppd, SEND_HIGH_PRIORITY_LIST,
11588 				     VL_ARB_HIGH_PRIO_TABLE_SIZE, t);
11589 		break;
11590 	case FM_TBL_VL_LOW_ARB:
11591 		vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11592 		if (vl_arb_match_cache(vlc, t)) {
11593 			vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11594 			break;
11595 		}
11596 		vl_arb_set_cache(vlc, t);
11597 		vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11598 		ret = set_vl_weights(ppd, SEND_LOW_PRIORITY_LIST,
11599 				     VL_ARB_LOW_PRIO_TABLE_SIZE, t);
11600 		break;
11601 	case FM_TBL_BUFFER_CONTROL:
11602 		ret = set_buffer_control(ppd, t);
11603 		break;
11604 	case FM_TBL_SC2VLNT:
11605 		set_sc2vlnt(ppd->dd, t);
11606 		break;
11607 	default:
11608 		ret = -EINVAL;
11609 	}
11610 	return ret;
11611 }
11612 
11613 /*
11614  * Disable all data VLs.
11615  *
11616  * Return 0 if disabled, non-zero if the VLs cannot be disabled.
11617  */
disable_data_vls(struct hfi1_devdata * dd)11618 static int disable_data_vls(struct hfi1_devdata *dd)
11619 {
11620 	if (is_ax(dd))
11621 		return 1;
11622 
11623 	pio_send_control(dd, PSC_DATA_VL_DISABLE);
11624 
11625 	return 0;
11626 }
11627 
11628 /*
11629  * open_fill_data_vls() - the counterpart to stop_drain_data_vls().
11630  * Just re-enables all data VLs (the "fill" part happens
11631  * automatically - the name was chosen for symmetry with
11632  * stop_drain_data_vls()).
11633  *
11634  * Return 0 if successful, non-zero if the VLs cannot be enabled.
11635  */
open_fill_data_vls(struct hfi1_devdata * dd)11636 int open_fill_data_vls(struct hfi1_devdata *dd)
11637 {
11638 	if (is_ax(dd))
11639 		return 1;
11640 
11641 	pio_send_control(dd, PSC_DATA_VL_ENABLE);
11642 
11643 	return 0;
11644 }
11645 
11646 /*
11647  * drain_data_vls() - assumes that disable_data_vls() has been called,
11648  * wait for occupancy (of per-VL FIFOs) for all contexts, and SDMA
11649  * engines to drop to 0.
11650  */
drain_data_vls(struct hfi1_devdata * dd)11651 static void drain_data_vls(struct hfi1_devdata *dd)
11652 {
11653 	sc_wait(dd);
11654 	sdma_wait(dd);
11655 	pause_for_credit_return(dd);
11656 }
11657 
11658 /*
11659  * stop_drain_data_vls() - disable, then drain all per-VL fifos.
11660  *
11661  * Use open_fill_data_vls() to resume using data VLs.  This pair is
11662  * meant to be used like this:
11663  *
11664  * stop_drain_data_vls(dd);
11665  * // do things with per-VL resources
11666  * open_fill_data_vls(dd);
11667  */
stop_drain_data_vls(struct hfi1_devdata * dd)11668 int stop_drain_data_vls(struct hfi1_devdata *dd)
11669 {
11670 	int ret;
11671 
11672 	ret = disable_data_vls(dd);
11673 	if (ret == 0)
11674 		drain_data_vls(dd);
11675 
11676 	return ret;
11677 }
11678 
11679 /*
11680  * Convert a nanosecond time to a cclock count.  No matter how slow
11681  * the cclock, a non-zero ns will always have a non-zero result.
11682  */
ns_to_cclock(struct hfi1_devdata * dd,u32 ns)11683 u32 ns_to_cclock(struct hfi1_devdata *dd, u32 ns)
11684 {
11685 	u32 cclocks;
11686 
11687 	if (dd->icode == ICODE_FPGA_EMULATION)
11688 		cclocks = (ns * 1000) / FPGA_CCLOCK_PS;
11689 	else  /* simulation pretends to be ASIC */
11690 		cclocks = (ns * 1000) / ASIC_CCLOCK_PS;
11691 	if (ns && !cclocks)	/* if ns nonzero, must be at least 1 */
11692 		cclocks = 1;
11693 	return cclocks;
11694 }
11695 
11696 /*
11697  * Convert a cclock count to nanoseconds. Not matter how slow
11698  * the cclock, a non-zero cclocks will always have a non-zero result.
11699  */
cclock_to_ns(struct hfi1_devdata * dd,u32 cclocks)11700 u32 cclock_to_ns(struct hfi1_devdata *dd, u32 cclocks)
11701 {
11702 	u32 ns;
11703 
11704 	if (dd->icode == ICODE_FPGA_EMULATION)
11705 		ns = (cclocks * FPGA_CCLOCK_PS) / 1000;
11706 	else  /* simulation pretends to be ASIC */
11707 		ns = (cclocks * ASIC_CCLOCK_PS) / 1000;
11708 	if (cclocks && !ns)
11709 		ns = 1;
11710 	return ns;
11711 }
11712 
11713 /*
11714  * Dynamically adjust the receive interrupt timeout for a context based on
11715  * incoming packet rate.
11716  *
11717  * NOTE: Dynamic adjustment does not allow rcv_intr_count to be zero.
11718  */
adjust_rcv_timeout(struct hfi1_ctxtdata * rcd,u32 npkts)11719 static void adjust_rcv_timeout(struct hfi1_ctxtdata *rcd, u32 npkts)
11720 {
11721 	struct hfi1_devdata *dd = rcd->dd;
11722 	u32 timeout = rcd->rcvavail_timeout;
11723 
11724 	/*
11725 	 * This algorithm doubles or halves the timeout depending on whether
11726 	 * the number of packets received in this interrupt were less than or
11727 	 * greater equal the interrupt count.
11728 	 *
11729 	 * The calculations below do not allow a steady state to be achieved.
11730 	 * Only at the endpoints it is possible to have an unchanging
11731 	 * timeout.
11732 	 */
11733 	if (npkts < rcv_intr_count) {
11734 		/*
11735 		 * Not enough packets arrived before the timeout, adjust
11736 		 * timeout downward.
11737 		 */
11738 		if (timeout < 2) /* already at minimum? */
11739 			return;
11740 		timeout >>= 1;
11741 	} else {
11742 		/*
11743 		 * More than enough packets arrived before the timeout, adjust
11744 		 * timeout upward.
11745 		 */
11746 		if (timeout >= dd->rcv_intr_timeout_csr) /* already at max? */
11747 			return;
11748 		timeout = min(timeout << 1, dd->rcv_intr_timeout_csr);
11749 	}
11750 
11751 	rcd->rcvavail_timeout = timeout;
11752 	/*
11753 	 * timeout cannot be larger than rcv_intr_timeout_csr which has already
11754 	 * been verified to be in range
11755 	 */
11756 	write_kctxt_csr(dd, rcd->ctxt, RCV_AVAIL_TIME_OUT,
11757 			(u64)timeout <<
11758 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11759 }
11760 
update_usrhead(struct hfi1_ctxtdata * rcd,u32 hd,u32 updegr,u32 egrhd,u32 intr_adjust,u32 npkts)11761 void update_usrhead(struct hfi1_ctxtdata *rcd, u32 hd, u32 updegr, u32 egrhd,
11762 		    u32 intr_adjust, u32 npkts)
11763 {
11764 	struct hfi1_devdata *dd = rcd->dd;
11765 	u64 reg;
11766 	u32 ctxt = rcd->ctxt;
11767 
11768 	/*
11769 	 * Need to write timeout register before updating RcvHdrHead to ensure
11770 	 * that a new value is used when the HW decides to restart counting.
11771 	 */
11772 	if (intr_adjust)
11773 		adjust_rcv_timeout(rcd, npkts);
11774 	if (updegr) {
11775 		reg = (egrhd & RCV_EGR_INDEX_HEAD_HEAD_MASK)
11776 			<< RCV_EGR_INDEX_HEAD_HEAD_SHIFT;
11777 		write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, reg);
11778 	}
11779 	mmiowb();
11780 	reg = ((u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT) |
11781 		(((u64)hd & RCV_HDR_HEAD_HEAD_MASK)
11782 			<< RCV_HDR_HEAD_HEAD_SHIFT);
11783 	write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11784 	mmiowb();
11785 }
11786 
hdrqempty(struct hfi1_ctxtdata * rcd)11787 u32 hdrqempty(struct hfi1_ctxtdata *rcd)
11788 {
11789 	u32 head, tail;
11790 
11791 	head = (read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD)
11792 		& RCV_HDR_HEAD_HEAD_SMASK) >> RCV_HDR_HEAD_HEAD_SHIFT;
11793 
11794 	if (rcd->rcvhdrtail_kvaddr)
11795 		tail = get_rcvhdrtail(rcd);
11796 	else
11797 		tail = read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
11798 
11799 	return head == tail;
11800 }
11801 
11802 /*
11803  * Context Control and Receive Array encoding for buffer size:
11804  *	0x0 invalid
11805  *	0x1   4 KB
11806  *	0x2   8 KB
11807  *	0x3  16 KB
11808  *	0x4  32 KB
11809  *	0x5  64 KB
11810  *	0x6 128 KB
11811  *	0x7 256 KB
11812  *	0x8 512 KB (Receive Array only)
11813  *	0x9   1 MB (Receive Array only)
11814  *	0xa   2 MB (Receive Array only)
11815  *
11816  *	0xB-0xF - reserved (Receive Array only)
11817  *
11818  *
11819  * This routine assumes that the value has already been sanity checked.
11820  */
encoded_size(u32 size)11821 static u32 encoded_size(u32 size)
11822 {
11823 	switch (size) {
11824 	case   4 * 1024: return 0x1;
11825 	case   8 * 1024: return 0x2;
11826 	case  16 * 1024: return 0x3;
11827 	case  32 * 1024: return 0x4;
11828 	case  64 * 1024: return 0x5;
11829 	case 128 * 1024: return 0x6;
11830 	case 256 * 1024: return 0x7;
11831 	case 512 * 1024: return 0x8;
11832 	case   1 * 1024 * 1024: return 0x9;
11833 	case   2 * 1024 * 1024: return 0xa;
11834 	}
11835 	return 0x1;	/* if invalid, go with the minimum size */
11836 }
11837 
hfi1_rcvctrl(struct hfi1_devdata * dd,unsigned int op,struct hfi1_ctxtdata * rcd)11838 void hfi1_rcvctrl(struct hfi1_devdata *dd, unsigned int op,
11839 		  struct hfi1_ctxtdata *rcd)
11840 {
11841 	u64 rcvctrl, reg;
11842 	int did_enable = 0;
11843 	u16 ctxt;
11844 
11845 	if (!rcd)
11846 		return;
11847 
11848 	ctxt = rcd->ctxt;
11849 
11850 	hfi1_cdbg(RCVCTRL, "ctxt %d op 0x%x", ctxt, op);
11851 
11852 	rcvctrl = read_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL);
11853 	/* if the context already enabled, don't do the extra steps */
11854 	if ((op & HFI1_RCVCTRL_CTXT_ENB) &&
11855 	    !(rcvctrl & RCV_CTXT_CTRL_ENABLE_SMASK)) {
11856 		/* reset the tail and hdr addresses, and sequence count */
11857 		write_kctxt_csr(dd, ctxt, RCV_HDR_ADDR,
11858 				rcd->rcvhdrq_dma);
11859 		if (rcd->rcvhdrtail_kvaddr)
11860 			write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11861 					rcd->rcvhdrqtailaddr_dma);
11862 		rcd->seq_cnt = 1;
11863 
11864 		/* reset the cached receive header queue head value */
11865 		rcd->head = 0;
11866 
11867 		/*
11868 		 * Zero the receive header queue so we don't get false
11869 		 * positives when checking the sequence number.  The
11870 		 * sequence numbers could land exactly on the same spot.
11871 		 * E.g. a rcd restart before the receive header wrapped.
11872 		 */
11873 		memset(rcd->rcvhdrq, 0, rcvhdrq_size(rcd));
11874 
11875 		/* starting timeout */
11876 		rcd->rcvavail_timeout = dd->rcv_intr_timeout_csr;
11877 
11878 		/* enable the context */
11879 		rcvctrl |= RCV_CTXT_CTRL_ENABLE_SMASK;
11880 
11881 		/* clean the egr buffer size first */
11882 		rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11883 		rcvctrl |= ((u64)encoded_size(rcd->egrbufs.rcvtid_size)
11884 				& RCV_CTXT_CTRL_EGR_BUF_SIZE_MASK)
11885 					<< RCV_CTXT_CTRL_EGR_BUF_SIZE_SHIFT;
11886 
11887 		/* zero RcvHdrHead - set RcvHdrHead.Counter after enable */
11888 		write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0);
11889 		did_enable = 1;
11890 
11891 		/* zero RcvEgrIndexHead */
11892 		write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, 0);
11893 
11894 		/* set eager count and base index */
11895 		reg = (((u64)(rcd->egrbufs.alloced >> RCV_SHIFT)
11896 			& RCV_EGR_CTRL_EGR_CNT_MASK)
11897 		       << RCV_EGR_CTRL_EGR_CNT_SHIFT) |
11898 			(((rcd->eager_base >> RCV_SHIFT)
11899 			  & RCV_EGR_CTRL_EGR_BASE_INDEX_MASK)
11900 			 << RCV_EGR_CTRL_EGR_BASE_INDEX_SHIFT);
11901 		write_kctxt_csr(dd, ctxt, RCV_EGR_CTRL, reg);
11902 
11903 		/*
11904 		 * Set TID (expected) count and base index.
11905 		 * rcd->expected_count is set to individual RcvArray entries,
11906 		 * not pairs, and the CSR takes a pair-count in groups of
11907 		 * four, so divide by 8.
11908 		 */
11909 		reg = (((rcd->expected_count >> RCV_SHIFT)
11910 					& RCV_TID_CTRL_TID_PAIR_CNT_MASK)
11911 				<< RCV_TID_CTRL_TID_PAIR_CNT_SHIFT) |
11912 		      (((rcd->expected_base >> RCV_SHIFT)
11913 					& RCV_TID_CTRL_TID_BASE_INDEX_MASK)
11914 				<< RCV_TID_CTRL_TID_BASE_INDEX_SHIFT);
11915 		write_kctxt_csr(dd, ctxt, RCV_TID_CTRL, reg);
11916 		if (ctxt == HFI1_CTRL_CTXT)
11917 			write_csr(dd, RCV_VL15, HFI1_CTRL_CTXT);
11918 	}
11919 	if (op & HFI1_RCVCTRL_CTXT_DIS) {
11920 		write_csr(dd, RCV_VL15, 0);
11921 		/*
11922 		 * When receive context is being disabled turn on tail
11923 		 * update with a dummy tail address and then disable
11924 		 * receive context.
11925 		 */
11926 		if (dd->rcvhdrtail_dummy_dma) {
11927 			write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11928 					dd->rcvhdrtail_dummy_dma);
11929 			/* Enabling RcvCtxtCtrl.TailUpd is intentional. */
11930 			rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11931 		}
11932 
11933 		rcvctrl &= ~RCV_CTXT_CTRL_ENABLE_SMASK;
11934 	}
11935 	if (op & HFI1_RCVCTRL_INTRAVAIL_ENB)
11936 		rcvctrl |= RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11937 	if (op & HFI1_RCVCTRL_INTRAVAIL_DIS)
11938 		rcvctrl &= ~RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11939 	if ((op & HFI1_RCVCTRL_TAILUPD_ENB) && rcd->rcvhdrtail_kvaddr)
11940 		rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11941 	if (op & HFI1_RCVCTRL_TAILUPD_DIS) {
11942 		/* See comment on RcvCtxtCtrl.TailUpd above */
11943 		if (!(op & HFI1_RCVCTRL_CTXT_DIS))
11944 			rcvctrl &= ~RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11945 	}
11946 	if (op & HFI1_RCVCTRL_TIDFLOW_ENB)
11947 		rcvctrl |= RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11948 	if (op & HFI1_RCVCTRL_TIDFLOW_DIS)
11949 		rcvctrl &= ~RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11950 	if (op & HFI1_RCVCTRL_ONE_PKT_EGR_ENB) {
11951 		/*
11952 		 * In one-packet-per-eager mode, the size comes from
11953 		 * the RcvArray entry.
11954 		 */
11955 		rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11956 		rcvctrl |= RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11957 	}
11958 	if (op & HFI1_RCVCTRL_ONE_PKT_EGR_DIS)
11959 		rcvctrl &= ~RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11960 	if (op & HFI1_RCVCTRL_NO_RHQ_DROP_ENB)
11961 		rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11962 	if (op & HFI1_RCVCTRL_NO_RHQ_DROP_DIS)
11963 		rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11964 	if (op & HFI1_RCVCTRL_NO_EGR_DROP_ENB)
11965 		rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
11966 	if (op & HFI1_RCVCTRL_NO_EGR_DROP_DIS)
11967 		rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
11968 	hfi1_cdbg(RCVCTRL, "ctxt %d rcvctrl 0x%llx\n", ctxt, rcvctrl);
11969 	write_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL, rcvctrl);
11970 
11971 	/* work around sticky RcvCtxtStatus.BlockedRHQFull */
11972 	if (did_enable &&
11973 	    (rcvctrl & RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK)) {
11974 		reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
11975 		if (reg != 0) {
11976 			dd_dev_info(dd, "ctxt %d status %lld (blocked)\n",
11977 				    ctxt, reg);
11978 			read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
11979 			write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x10);
11980 			write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x00);
11981 			read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
11982 			reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
11983 			dd_dev_info(dd, "ctxt %d status %lld (%s blocked)\n",
11984 				    ctxt, reg, reg == 0 ? "not" : "still");
11985 		}
11986 	}
11987 
11988 	if (did_enable) {
11989 		/*
11990 		 * The interrupt timeout and count must be set after
11991 		 * the context is enabled to take effect.
11992 		 */
11993 		/* set interrupt timeout */
11994 		write_kctxt_csr(dd, ctxt, RCV_AVAIL_TIME_OUT,
11995 				(u64)rcd->rcvavail_timeout <<
11996 				RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11997 
11998 		/* set RcvHdrHead.Counter, zero RcvHdrHead.Head (again) */
11999 		reg = (u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT;
12000 		write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
12001 	}
12002 
12003 	if (op & (HFI1_RCVCTRL_TAILUPD_DIS | HFI1_RCVCTRL_CTXT_DIS))
12004 		/*
12005 		 * If the context has been disabled and the Tail Update has
12006 		 * been cleared, set the RCV_HDR_TAIL_ADDR CSR to dummy address
12007 		 * so it doesn't contain an address that is invalid.
12008 		 */
12009 		write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
12010 				dd->rcvhdrtail_dummy_dma);
12011 }
12012 
hfi1_read_cntrs(struct hfi1_devdata * dd,char ** namep,u64 ** cntrp)12013 u32 hfi1_read_cntrs(struct hfi1_devdata *dd, char **namep, u64 **cntrp)
12014 {
12015 	int ret;
12016 	u64 val = 0;
12017 
12018 	if (namep) {
12019 		ret = dd->cntrnameslen;
12020 		*namep = dd->cntrnames;
12021 	} else {
12022 		const struct cntr_entry *entry;
12023 		int i, j;
12024 
12025 		ret = (dd->ndevcntrs) * sizeof(u64);
12026 
12027 		/* Get the start of the block of counters */
12028 		*cntrp = dd->cntrs;
12029 
12030 		/*
12031 		 * Now go and fill in each counter in the block.
12032 		 */
12033 		for (i = 0; i < DEV_CNTR_LAST; i++) {
12034 			entry = &dev_cntrs[i];
12035 			hfi1_cdbg(CNTR, "reading %s", entry->name);
12036 			if (entry->flags & CNTR_DISABLED) {
12037 				/* Nothing */
12038 				hfi1_cdbg(CNTR, "\tDisabled\n");
12039 			} else {
12040 				if (entry->flags & CNTR_VL) {
12041 					hfi1_cdbg(CNTR, "\tPer VL\n");
12042 					for (j = 0; j < C_VL_COUNT; j++) {
12043 						val = entry->rw_cntr(entry,
12044 								  dd, j,
12045 								  CNTR_MODE_R,
12046 								  0);
12047 						hfi1_cdbg(
12048 						   CNTR,
12049 						   "\t\tRead 0x%llx for %d\n",
12050 						   val, j);
12051 						dd->cntrs[entry->offset + j] =
12052 									    val;
12053 					}
12054 				} else if (entry->flags & CNTR_SDMA) {
12055 					hfi1_cdbg(CNTR,
12056 						  "\t Per SDMA Engine\n");
12057 					for (j = 0; j < chip_sdma_engines(dd);
12058 					     j++) {
12059 						val =
12060 						entry->rw_cntr(entry, dd, j,
12061 							       CNTR_MODE_R, 0);
12062 						hfi1_cdbg(CNTR,
12063 							  "\t\tRead 0x%llx for %d\n",
12064 							  val, j);
12065 						dd->cntrs[entry->offset + j] =
12066 									val;
12067 					}
12068 				} else {
12069 					val = entry->rw_cntr(entry, dd,
12070 							CNTR_INVALID_VL,
12071 							CNTR_MODE_R, 0);
12072 					dd->cntrs[entry->offset] = val;
12073 					hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
12074 				}
12075 			}
12076 		}
12077 	}
12078 	return ret;
12079 }
12080 
12081 /*
12082  * Used by sysfs to create files for hfi stats to read
12083  */
hfi1_read_portcntrs(struct hfi1_pportdata * ppd,char ** namep,u64 ** cntrp)12084 u32 hfi1_read_portcntrs(struct hfi1_pportdata *ppd, char **namep, u64 **cntrp)
12085 {
12086 	int ret;
12087 	u64 val = 0;
12088 
12089 	if (namep) {
12090 		ret = ppd->dd->portcntrnameslen;
12091 		*namep = ppd->dd->portcntrnames;
12092 	} else {
12093 		const struct cntr_entry *entry;
12094 		int i, j;
12095 
12096 		ret = ppd->dd->nportcntrs * sizeof(u64);
12097 		*cntrp = ppd->cntrs;
12098 
12099 		for (i = 0; i < PORT_CNTR_LAST; i++) {
12100 			entry = &port_cntrs[i];
12101 			hfi1_cdbg(CNTR, "reading %s", entry->name);
12102 			if (entry->flags & CNTR_DISABLED) {
12103 				/* Nothing */
12104 				hfi1_cdbg(CNTR, "\tDisabled\n");
12105 				continue;
12106 			}
12107 
12108 			if (entry->flags & CNTR_VL) {
12109 				hfi1_cdbg(CNTR, "\tPer VL");
12110 				for (j = 0; j < C_VL_COUNT; j++) {
12111 					val = entry->rw_cntr(entry, ppd, j,
12112 							       CNTR_MODE_R,
12113 							       0);
12114 					hfi1_cdbg(
12115 					   CNTR,
12116 					   "\t\tRead 0x%llx for %d",
12117 					   val, j);
12118 					ppd->cntrs[entry->offset + j] = val;
12119 				}
12120 			} else {
12121 				val = entry->rw_cntr(entry, ppd,
12122 						       CNTR_INVALID_VL,
12123 						       CNTR_MODE_R,
12124 						       0);
12125 				ppd->cntrs[entry->offset] = val;
12126 				hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
12127 			}
12128 		}
12129 	}
12130 	return ret;
12131 }
12132 
free_cntrs(struct hfi1_devdata * dd)12133 static void free_cntrs(struct hfi1_devdata *dd)
12134 {
12135 	struct hfi1_pportdata *ppd;
12136 	int i;
12137 
12138 	if (dd->synth_stats_timer.function)
12139 		del_timer_sync(&dd->synth_stats_timer);
12140 	ppd = (struct hfi1_pportdata *)(dd + 1);
12141 	for (i = 0; i < dd->num_pports; i++, ppd++) {
12142 		kfree(ppd->cntrs);
12143 		kfree(ppd->scntrs);
12144 		free_percpu(ppd->ibport_data.rvp.rc_acks);
12145 		free_percpu(ppd->ibport_data.rvp.rc_qacks);
12146 		free_percpu(ppd->ibport_data.rvp.rc_delayed_comp);
12147 		ppd->cntrs = NULL;
12148 		ppd->scntrs = NULL;
12149 		ppd->ibport_data.rvp.rc_acks = NULL;
12150 		ppd->ibport_data.rvp.rc_qacks = NULL;
12151 		ppd->ibport_data.rvp.rc_delayed_comp = NULL;
12152 	}
12153 	kfree(dd->portcntrnames);
12154 	dd->portcntrnames = NULL;
12155 	kfree(dd->cntrs);
12156 	dd->cntrs = NULL;
12157 	kfree(dd->scntrs);
12158 	dd->scntrs = NULL;
12159 	kfree(dd->cntrnames);
12160 	dd->cntrnames = NULL;
12161 	if (dd->update_cntr_wq) {
12162 		destroy_workqueue(dd->update_cntr_wq);
12163 		dd->update_cntr_wq = NULL;
12164 	}
12165 }
12166 
read_dev_port_cntr(struct hfi1_devdata * dd,struct cntr_entry * entry,u64 * psval,void * context,int vl)12167 static u64 read_dev_port_cntr(struct hfi1_devdata *dd, struct cntr_entry *entry,
12168 			      u64 *psval, void *context, int vl)
12169 {
12170 	u64 val;
12171 	u64 sval = *psval;
12172 
12173 	if (entry->flags & CNTR_DISABLED) {
12174 		dd_dev_err(dd, "Counter %s not enabled", entry->name);
12175 		return 0;
12176 	}
12177 
12178 	hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12179 
12180 	val = entry->rw_cntr(entry, context, vl, CNTR_MODE_R, 0);
12181 
12182 	/* If its a synthetic counter there is more work we need to do */
12183 	if (entry->flags & CNTR_SYNTH) {
12184 		if (sval == CNTR_MAX) {
12185 			/* No need to read already saturated */
12186 			return CNTR_MAX;
12187 		}
12188 
12189 		if (entry->flags & CNTR_32BIT) {
12190 			/* 32bit counters can wrap multiple times */
12191 			u64 upper = sval >> 32;
12192 			u64 lower = (sval << 32) >> 32;
12193 
12194 			if (lower > val) { /* hw wrapped */
12195 				if (upper == CNTR_32BIT_MAX)
12196 					val = CNTR_MAX;
12197 				else
12198 					upper++;
12199 			}
12200 
12201 			if (val != CNTR_MAX)
12202 				val = (upper << 32) | val;
12203 
12204 		} else {
12205 			/* If we rolled we are saturated */
12206 			if ((val < sval) || (val > CNTR_MAX))
12207 				val = CNTR_MAX;
12208 		}
12209 	}
12210 
12211 	*psval = val;
12212 
12213 	hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12214 
12215 	return val;
12216 }
12217 
write_dev_port_cntr(struct hfi1_devdata * dd,struct cntr_entry * entry,u64 * psval,void * context,int vl,u64 data)12218 static u64 write_dev_port_cntr(struct hfi1_devdata *dd,
12219 			       struct cntr_entry *entry,
12220 			       u64 *psval, void *context, int vl, u64 data)
12221 {
12222 	u64 val;
12223 
12224 	if (entry->flags & CNTR_DISABLED) {
12225 		dd_dev_err(dd, "Counter %s not enabled", entry->name);
12226 		return 0;
12227 	}
12228 
12229 	hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12230 
12231 	if (entry->flags & CNTR_SYNTH) {
12232 		*psval = data;
12233 		if (entry->flags & CNTR_32BIT) {
12234 			val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12235 					     (data << 32) >> 32);
12236 			val = data; /* return the full 64bit value */
12237 		} else {
12238 			val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12239 					     data);
12240 		}
12241 	} else {
12242 		val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, data);
12243 	}
12244 
12245 	*psval = val;
12246 
12247 	hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12248 
12249 	return val;
12250 }
12251 
read_dev_cntr(struct hfi1_devdata * dd,int index,int vl)12252 u64 read_dev_cntr(struct hfi1_devdata *dd, int index, int vl)
12253 {
12254 	struct cntr_entry *entry;
12255 	u64 *sval;
12256 
12257 	entry = &dev_cntrs[index];
12258 	sval = dd->scntrs + entry->offset;
12259 
12260 	if (vl != CNTR_INVALID_VL)
12261 		sval += vl;
12262 
12263 	return read_dev_port_cntr(dd, entry, sval, dd, vl);
12264 }
12265 
write_dev_cntr(struct hfi1_devdata * dd,int index,int vl,u64 data)12266 u64 write_dev_cntr(struct hfi1_devdata *dd, int index, int vl, u64 data)
12267 {
12268 	struct cntr_entry *entry;
12269 	u64 *sval;
12270 
12271 	entry = &dev_cntrs[index];
12272 	sval = dd->scntrs + entry->offset;
12273 
12274 	if (vl != CNTR_INVALID_VL)
12275 		sval += vl;
12276 
12277 	return write_dev_port_cntr(dd, entry, sval, dd, vl, data);
12278 }
12279 
read_port_cntr(struct hfi1_pportdata * ppd,int index,int vl)12280 u64 read_port_cntr(struct hfi1_pportdata *ppd, int index, int vl)
12281 {
12282 	struct cntr_entry *entry;
12283 	u64 *sval;
12284 
12285 	entry = &port_cntrs[index];
12286 	sval = ppd->scntrs + entry->offset;
12287 
12288 	if (vl != CNTR_INVALID_VL)
12289 		sval += vl;
12290 
12291 	if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12292 	    (index <= C_RCV_HDR_OVF_LAST)) {
12293 		/* We do not want to bother for disabled contexts */
12294 		return 0;
12295 	}
12296 
12297 	return read_dev_port_cntr(ppd->dd, entry, sval, ppd, vl);
12298 }
12299 
write_port_cntr(struct hfi1_pportdata * ppd,int index,int vl,u64 data)12300 u64 write_port_cntr(struct hfi1_pportdata *ppd, int index, int vl, u64 data)
12301 {
12302 	struct cntr_entry *entry;
12303 	u64 *sval;
12304 
12305 	entry = &port_cntrs[index];
12306 	sval = ppd->scntrs + entry->offset;
12307 
12308 	if (vl != CNTR_INVALID_VL)
12309 		sval += vl;
12310 
12311 	if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12312 	    (index <= C_RCV_HDR_OVF_LAST)) {
12313 		/* We do not want to bother for disabled contexts */
12314 		return 0;
12315 	}
12316 
12317 	return write_dev_port_cntr(ppd->dd, entry, sval, ppd, vl, data);
12318 }
12319 
do_update_synth_timer(struct work_struct * work)12320 static void do_update_synth_timer(struct work_struct *work)
12321 {
12322 	u64 cur_tx;
12323 	u64 cur_rx;
12324 	u64 total_flits;
12325 	u8 update = 0;
12326 	int i, j, vl;
12327 	struct hfi1_pportdata *ppd;
12328 	struct cntr_entry *entry;
12329 	struct hfi1_devdata *dd = container_of(work, struct hfi1_devdata,
12330 					       update_cntr_work);
12331 
12332 	/*
12333 	 * Rather than keep beating on the CSRs pick a minimal set that we can
12334 	 * check to watch for potential roll over. We can do this by looking at
12335 	 * the number of flits sent/recv. If the total flits exceeds 32bits then
12336 	 * we have to iterate all the counters and update.
12337 	 */
12338 	entry = &dev_cntrs[C_DC_RCV_FLITS];
12339 	cur_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12340 
12341 	entry = &dev_cntrs[C_DC_XMIT_FLITS];
12342 	cur_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12343 
12344 	hfi1_cdbg(
12345 	    CNTR,
12346 	    "[%d] curr tx=0x%llx rx=0x%llx :: last tx=0x%llx rx=0x%llx\n",
12347 	    dd->unit, cur_tx, cur_rx, dd->last_tx, dd->last_rx);
12348 
12349 	if ((cur_tx < dd->last_tx) || (cur_rx < dd->last_rx)) {
12350 		/*
12351 		 * May not be strictly necessary to update but it won't hurt and
12352 		 * simplifies the logic here.
12353 		 */
12354 		update = 1;
12355 		hfi1_cdbg(CNTR, "[%d] Tripwire counter rolled, updating",
12356 			  dd->unit);
12357 	} else {
12358 		total_flits = (cur_tx - dd->last_tx) + (cur_rx - dd->last_rx);
12359 		hfi1_cdbg(CNTR,
12360 			  "[%d] total flits 0x%llx limit 0x%llx\n", dd->unit,
12361 			  total_flits, (u64)CNTR_32BIT_MAX);
12362 		if (total_flits >= CNTR_32BIT_MAX) {
12363 			hfi1_cdbg(CNTR, "[%d] 32bit limit hit, updating",
12364 				  dd->unit);
12365 			update = 1;
12366 		}
12367 	}
12368 
12369 	if (update) {
12370 		hfi1_cdbg(CNTR, "[%d] Updating dd and ppd counters", dd->unit);
12371 		for (i = 0; i < DEV_CNTR_LAST; i++) {
12372 			entry = &dev_cntrs[i];
12373 			if (entry->flags & CNTR_VL) {
12374 				for (vl = 0; vl < C_VL_COUNT; vl++)
12375 					read_dev_cntr(dd, i, vl);
12376 			} else {
12377 				read_dev_cntr(dd, i, CNTR_INVALID_VL);
12378 			}
12379 		}
12380 		ppd = (struct hfi1_pportdata *)(dd + 1);
12381 		for (i = 0; i < dd->num_pports; i++, ppd++) {
12382 			for (j = 0; j < PORT_CNTR_LAST; j++) {
12383 				entry = &port_cntrs[j];
12384 				if (entry->flags & CNTR_VL) {
12385 					for (vl = 0; vl < C_VL_COUNT; vl++)
12386 						read_port_cntr(ppd, j, vl);
12387 				} else {
12388 					read_port_cntr(ppd, j, CNTR_INVALID_VL);
12389 				}
12390 			}
12391 		}
12392 
12393 		/*
12394 		 * We want the value in the register. The goal is to keep track
12395 		 * of the number of "ticks" not the counter value. In other
12396 		 * words if the register rolls we want to notice it and go ahead
12397 		 * and force an update.
12398 		 */
12399 		entry = &dev_cntrs[C_DC_XMIT_FLITS];
12400 		dd->last_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12401 						CNTR_MODE_R, 0);
12402 
12403 		entry = &dev_cntrs[C_DC_RCV_FLITS];
12404 		dd->last_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12405 						CNTR_MODE_R, 0);
12406 
12407 		hfi1_cdbg(CNTR, "[%d] setting last tx/rx to 0x%llx 0x%llx",
12408 			  dd->unit, dd->last_tx, dd->last_rx);
12409 
12410 	} else {
12411 		hfi1_cdbg(CNTR, "[%d] No update necessary", dd->unit);
12412 	}
12413 }
12414 
update_synth_timer(struct timer_list * t)12415 static void update_synth_timer(struct timer_list *t)
12416 {
12417 	struct hfi1_devdata *dd = from_timer(dd, t, synth_stats_timer);
12418 
12419 	queue_work(dd->update_cntr_wq, &dd->update_cntr_work);
12420 	mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12421 }
12422 
12423 #define C_MAX_NAME 16 /* 15 chars + one for /0 */
init_cntrs(struct hfi1_devdata * dd)12424 static int init_cntrs(struct hfi1_devdata *dd)
12425 {
12426 	int i, rcv_ctxts, j;
12427 	size_t sz;
12428 	char *p;
12429 	char name[C_MAX_NAME];
12430 	struct hfi1_pportdata *ppd;
12431 	const char *bit_type_32 = ",32";
12432 	const int bit_type_32_sz = strlen(bit_type_32);
12433 	u32 sdma_engines = chip_sdma_engines(dd);
12434 
12435 	/* set up the stats timer; the add_timer is done at the end */
12436 	timer_setup(&dd->synth_stats_timer, update_synth_timer, 0);
12437 
12438 	/***********************/
12439 	/* per device counters */
12440 	/***********************/
12441 
12442 	/* size names and determine how many we have*/
12443 	dd->ndevcntrs = 0;
12444 	sz = 0;
12445 
12446 	for (i = 0; i < DEV_CNTR_LAST; i++) {
12447 		if (dev_cntrs[i].flags & CNTR_DISABLED) {
12448 			hfi1_dbg_early("\tSkipping %s\n", dev_cntrs[i].name);
12449 			continue;
12450 		}
12451 
12452 		if (dev_cntrs[i].flags & CNTR_VL) {
12453 			dev_cntrs[i].offset = dd->ndevcntrs;
12454 			for (j = 0; j < C_VL_COUNT; j++) {
12455 				snprintf(name, C_MAX_NAME, "%s%d",
12456 					 dev_cntrs[i].name, vl_from_idx(j));
12457 				sz += strlen(name);
12458 				/* Add ",32" for 32-bit counters */
12459 				if (dev_cntrs[i].flags & CNTR_32BIT)
12460 					sz += bit_type_32_sz;
12461 				sz++;
12462 				dd->ndevcntrs++;
12463 			}
12464 		} else if (dev_cntrs[i].flags & CNTR_SDMA) {
12465 			dev_cntrs[i].offset = dd->ndevcntrs;
12466 			for (j = 0; j < sdma_engines; j++) {
12467 				snprintf(name, C_MAX_NAME, "%s%d",
12468 					 dev_cntrs[i].name, j);
12469 				sz += strlen(name);
12470 				/* Add ",32" for 32-bit counters */
12471 				if (dev_cntrs[i].flags & CNTR_32BIT)
12472 					sz += bit_type_32_sz;
12473 				sz++;
12474 				dd->ndevcntrs++;
12475 			}
12476 		} else {
12477 			/* +1 for newline. */
12478 			sz += strlen(dev_cntrs[i].name) + 1;
12479 			/* Add ",32" for 32-bit counters */
12480 			if (dev_cntrs[i].flags & CNTR_32BIT)
12481 				sz += bit_type_32_sz;
12482 			dev_cntrs[i].offset = dd->ndevcntrs;
12483 			dd->ndevcntrs++;
12484 		}
12485 	}
12486 
12487 	/* allocate space for the counter values */
12488 	dd->cntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
12489 	if (!dd->cntrs)
12490 		goto bail;
12491 
12492 	dd->scntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
12493 	if (!dd->scntrs)
12494 		goto bail;
12495 
12496 	/* allocate space for the counter names */
12497 	dd->cntrnameslen = sz;
12498 	dd->cntrnames = kmalloc(sz, GFP_KERNEL);
12499 	if (!dd->cntrnames)
12500 		goto bail;
12501 
12502 	/* fill in the names */
12503 	for (p = dd->cntrnames, i = 0; i < DEV_CNTR_LAST; i++) {
12504 		if (dev_cntrs[i].flags & CNTR_DISABLED) {
12505 			/* Nothing */
12506 		} else if (dev_cntrs[i].flags & CNTR_VL) {
12507 			for (j = 0; j < C_VL_COUNT; j++) {
12508 				snprintf(name, C_MAX_NAME, "%s%d",
12509 					 dev_cntrs[i].name,
12510 					 vl_from_idx(j));
12511 				memcpy(p, name, strlen(name));
12512 				p += strlen(name);
12513 
12514 				/* Counter is 32 bits */
12515 				if (dev_cntrs[i].flags & CNTR_32BIT) {
12516 					memcpy(p, bit_type_32, bit_type_32_sz);
12517 					p += bit_type_32_sz;
12518 				}
12519 
12520 				*p++ = '\n';
12521 			}
12522 		} else if (dev_cntrs[i].flags & CNTR_SDMA) {
12523 			for (j = 0; j < sdma_engines; j++) {
12524 				snprintf(name, C_MAX_NAME, "%s%d",
12525 					 dev_cntrs[i].name, j);
12526 				memcpy(p, name, strlen(name));
12527 				p += strlen(name);
12528 
12529 				/* Counter is 32 bits */
12530 				if (dev_cntrs[i].flags & CNTR_32BIT) {
12531 					memcpy(p, bit_type_32, bit_type_32_sz);
12532 					p += bit_type_32_sz;
12533 				}
12534 
12535 				*p++ = '\n';
12536 			}
12537 		} else {
12538 			memcpy(p, dev_cntrs[i].name, strlen(dev_cntrs[i].name));
12539 			p += strlen(dev_cntrs[i].name);
12540 
12541 			/* Counter is 32 bits */
12542 			if (dev_cntrs[i].flags & CNTR_32BIT) {
12543 				memcpy(p, bit_type_32, bit_type_32_sz);
12544 				p += bit_type_32_sz;
12545 			}
12546 
12547 			*p++ = '\n';
12548 		}
12549 	}
12550 
12551 	/*********************/
12552 	/* per port counters */
12553 	/*********************/
12554 
12555 	/*
12556 	 * Go through the counters for the overflows and disable the ones we
12557 	 * don't need. This varies based on platform so we need to do it
12558 	 * dynamically here.
12559 	 */
12560 	rcv_ctxts = dd->num_rcv_contexts;
12561 	for (i = C_RCV_HDR_OVF_FIRST + rcv_ctxts;
12562 	     i <= C_RCV_HDR_OVF_LAST; i++) {
12563 		port_cntrs[i].flags |= CNTR_DISABLED;
12564 	}
12565 
12566 	/* size port counter names and determine how many we have*/
12567 	sz = 0;
12568 	dd->nportcntrs = 0;
12569 	for (i = 0; i < PORT_CNTR_LAST; i++) {
12570 		if (port_cntrs[i].flags & CNTR_DISABLED) {
12571 			hfi1_dbg_early("\tSkipping %s\n", port_cntrs[i].name);
12572 			continue;
12573 		}
12574 
12575 		if (port_cntrs[i].flags & CNTR_VL) {
12576 			port_cntrs[i].offset = dd->nportcntrs;
12577 			for (j = 0; j < C_VL_COUNT; j++) {
12578 				snprintf(name, C_MAX_NAME, "%s%d",
12579 					 port_cntrs[i].name, vl_from_idx(j));
12580 				sz += strlen(name);
12581 				/* Add ",32" for 32-bit counters */
12582 				if (port_cntrs[i].flags & CNTR_32BIT)
12583 					sz += bit_type_32_sz;
12584 				sz++;
12585 				dd->nportcntrs++;
12586 			}
12587 		} else {
12588 			/* +1 for newline */
12589 			sz += strlen(port_cntrs[i].name) + 1;
12590 			/* Add ",32" for 32-bit counters */
12591 			if (port_cntrs[i].flags & CNTR_32BIT)
12592 				sz += bit_type_32_sz;
12593 			port_cntrs[i].offset = dd->nportcntrs;
12594 			dd->nportcntrs++;
12595 		}
12596 	}
12597 
12598 	/* allocate space for the counter names */
12599 	dd->portcntrnameslen = sz;
12600 	dd->portcntrnames = kmalloc(sz, GFP_KERNEL);
12601 	if (!dd->portcntrnames)
12602 		goto bail;
12603 
12604 	/* fill in port cntr names */
12605 	for (p = dd->portcntrnames, i = 0; i < PORT_CNTR_LAST; i++) {
12606 		if (port_cntrs[i].flags & CNTR_DISABLED)
12607 			continue;
12608 
12609 		if (port_cntrs[i].flags & CNTR_VL) {
12610 			for (j = 0; j < C_VL_COUNT; j++) {
12611 				snprintf(name, C_MAX_NAME, "%s%d",
12612 					 port_cntrs[i].name, vl_from_idx(j));
12613 				memcpy(p, name, strlen(name));
12614 				p += strlen(name);
12615 
12616 				/* Counter is 32 bits */
12617 				if (port_cntrs[i].flags & CNTR_32BIT) {
12618 					memcpy(p, bit_type_32, bit_type_32_sz);
12619 					p += bit_type_32_sz;
12620 				}
12621 
12622 				*p++ = '\n';
12623 			}
12624 		} else {
12625 			memcpy(p, port_cntrs[i].name,
12626 			       strlen(port_cntrs[i].name));
12627 			p += strlen(port_cntrs[i].name);
12628 
12629 			/* Counter is 32 bits */
12630 			if (port_cntrs[i].flags & CNTR_32BIT) {
12631 				memcpy(p, bit_type_32, bit_type_32_sz);
12632 				p += bit_type_32_sz;
12633 			}
12634 
12635 			*p++ = '\n';
12636 		}
12637 	}
12638 
12639 	/* allocate per port storage for counter values */
12640 	ppd = (struct hfi1_pportdata *)(dd + 1);
12641 	for (i = 0; i < dd->num_pports; i++, ppd++) {
12642 		ppd->cntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12643 		if (!ppd->cntrs)
12644 			goto bail;
12645 
12646 		ppd->scntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12647 		if (!ppd->scntrs)
12648 			goto bail;
12649 	}
12650 
12651 	/* CPU counters need to be allocated and zeroed */
12652 	if (init_cpu_counters(dd))
12653 		goto bail;
12654 
12655 	dd->update_cntr_wq = alloc_ordered_workqueue("hfi1_update_cntr_%d",
12656 						     WQ_MEM_RECLAIM, dd->unit);
12657 	if (!dd->update_cntr_wq)
12658 		goto bail;
12659 
12660 	INIT_WORK(&dd->update_cntr_work, do_update_synth_timer);
12661 
12662 	mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12663 	return 0;
12664 bail:
12665 	free_cntrs(dd);
12666 	return -ENOMEM;
12667 }
12668 
chip_to_opa_lstate(struct hfi1_devdata * dd,u32 chip_lstate)12669 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate)
12670 {
12671 	switch (chip_lstate) {
12672 	default:
12673 		dd_dev_err(dd,
12674 			   "Unknown logical state 0x%x, reporting IB_PORT_DOWN\n",
12675 			   chip_lstate);
12676 		/* fall through */
12677 	case LSTATE_DOWN:
12678 		return IB_PORT_DOWN;
12679 	case LSTATE_INIT:
12680 		return IB_PORT_INIT;
12681 	case LSTATE_ARMED:
12682 		return IB_PORT_ARMED;
12683 	case LSTATE_ACTIVE:
12684 		return IB_PORT_ACTIVE;
12685 	}
12686 }
12687 
chip_to_opa_pstate(struct hfi1_devdata * dd,u32 chip_pstate)12688 u32 chip_to_opa_pstate(struct hfi1_devdata *dd, u32 chip_pstate)
12689 {
12690 	/* look at the HFI meta-states only */
12691 	switch (chip_pstate & 0xf0) {
12692 	default:
12693 		dd_dev_err(dd, "Unexpected chip physical state of 0x%x\n",
12694 			   chip_pstate);
12695 		/* fall through */
12696 	case PLS_DISABLED:
12697 		return IB_PORTPHYSSTATE_DISABLED;
12698 	case PLS_OFFLINE:
12699 		return OPA_PORTPHYSSTATE_OFFLINE;
12700 	case PLS_POLLING:
12701 		return IB_PORTPHYSSTATE_POLLING;
12702 	case PLS_CONFIGPHY:
12703 		return IB_PORTPHYSSTATE_TRAINING;
12704 	case PLS_LINKUP:
12705 		return IB_PORTPHYSSTATE_LINKUP;
12706 	case PLS_PHYTEST:
12707 		return IB_PORTPHYSSTATE_PHY_TEST;
12708 	}
12709 }
12710 
12711 /* return the OPA port logical state name */
opa_lstate_name(u32 lstate)12712 const char *opa_lstate_name(u32 lstate)
12713 {
12714 	static const char * const port_logical_names[] = {
12715 		"PORT_NOP",
12716 		"PORT_DOWN",
12717 		"PORT_INIT",
12718 		"PORT_ARMED",
12719 		"PORT_ACTIVE",
12720 		"PORT_ACTIVE_DEFER",
12721 	};
12722 	if (lstate < ARRAY_SIZE(port_logical_names))
12723 		return port_logical_names[lstate];
12724 	return "unknown";
12725 }
12726 
12727 /* return the OPA port physical state name */
opa_pstate_name(u32 pstate)12728 const char *opa_pstate_name(u32 pstate)
12729 {
12730 	static const char * const port_physical_names[] = {
12731 		"PHYS_NOP",
12732 		"reserved1",
12733 		"PHYS_POLL",
12734 		"PHYS_DISABLED",
12735 		"PHYS_TRAINING",
12736 		"PHYS_LINKUP",
12737 		"PHYS_LINK_ERR_RECOVER",
12738 		"PHYS_PHY_TEST",
12739 		"reserved8",
12740 		"PHYS_OFFLINE",
12741 		"PHYS_GANGED",
12742 		"PHYS_TEST",
12743 	};
12744 	if (pstate < ARRAY_SIZE(port_physical_names))
12745 		return port_physical_names[pstate];
12746 	return "unknown";
12747 }
12748 
12749 /**
12750  * update_statusp - Update userspace status flag
12751  * @ppd: Port data structure
12752  * @state: port state information
12753  *
12754  * Actual port status is determined by the host_link_state value
12755  * in the ppd.
12756  *
12757  * host_link_state MUST be updated before updating the user space
12758  * statusp.
12759  */
update_statusp(struct hfi1_pportdata * ppd,u32 state)12760 static void update_statusp(struct hfi1_pportdata *ppd, u32 state)
12761 {
12762 	/*
12763 	 * Set port status flags in the page mapped into userspace
12764 	 * memory. Do it here to ensure a reliable state - this is
12765 	 * the only function called by all state handling code.
12766 	 * Always set the flags due to the fact that the cache value
12767 	 * might have been changed explicitly outside of this
12768 	 * function.
12769 	 */
12770 	if (ppd->statusp) {
12771 		switch (state) {
12772 		case IB_PORT_DOWN:
12773 		case IB_PORT_INIT:
12774 			*ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
12775 					   HFI1_STATUS_IB_READY);
12776 			break;
12777 		case IB_PORT_ARMED:
12778 			*ppd->statusp |= HFI1_STATUS_IB_CONF;
12779 			break;
12780 		case IB_PORT_ACTIVE:
12781 			*ppd->statusp |= HFI1_STATUS_IB_READY;
12782 			break;
12783 		}
12784 	}
12785 	dd_dev_info(ppd->dd, "logical state changed to %s (0x%x)\n",
12786 		    opa_lstate_name(state), state);
12787 }
12788 
12789 /**
12790  * wait_logical_linkstate - wait for an IB link state change to occur
12791  * @ppd: port device
12792  * @state: the state to wait for
12793  * @msecs: the number of milliseconds to wait
12794  *
12795  * Wait up to msecs milliseconds for IB link state change to occur.
12796  * For now, take the easy polling route.
12797  * Returns 0 if state reached, otherwise -ETIMEDOUT.
12798  */
wait_logical_linkstate(struct hfi1_pportdata * ppd,u32 state,int msecs)12799 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
12800 				  int msecs)
12801 {
12802 	unsigned long timeout;
12803 	u32 new_state;
12804 
12805 	timeout = jiffies + msecs_to_jiffies(msecs);
12806 	while (1) {
12807 		new_state = chip_to_opa_lstate(ppd->dd,
12808 					       read_logical_state(ppd->dd));
12809 		if (new_state == state)
12810 			break;
12811 		if (time_after(jiffies, timeout)) {
12812 			dd_dev_err(ppd->dd,
12813 				   "timeout waiting for link state 0x%x\n",
12814 				   state);
12815 			return -ETIMEDOUT;
12816 		}
12817 		msleep(20);
12818 	}
12819 
12820 	return 0;
12821 }
12822 
log_state_transition(struct hfi1_pportdata * ppd,u32 state)12823 static void log_state_transition(struct hfi1_pportdata *ppd, u32 state)
12824 {
12825 	u32 ib_pstate = chip_to_opa_pstate(ppd->dd, state);
12826 
12827 	dd_dev_info(ppd->dd,
12828 		    "physical state changed to %s (0x%x), phy 0x%x\n",
12829 		    opa_pstate_name(ib_pstate), ib_pstate, state);
12830 }
12831 
12832 /*
12833  * Read the physical hardware link state and check if it matches host
12834  * drivers anticipated state.
12835  */
log_physical_state(struct hfi1_pportdata * ppd,u32 state)12836 static void log_physical_state(struct hfi1_pportdata *ppd, u32 state)
12837 {
12838 	u32 read_state = read_physical_state(ppd->dd);
12839 
12840 	if (read_state == state) {
12841 		log_state_transition(ppd, state);
12842 	} else {
12843 		dd_dev_err(ppd->dd,
12844 			   "anticipated phy link state 0x%x, read 0x%x\n",
12845 			   state, read_state);
12846 	}
12847 }
12848 
12849 /*
12850  * wait_physical_linkstate - wait for an physical link state change to occur
12851  * @ppd: port device
12852  * @state: the state to wait for
12853  * @msecs: the number of milliseconds to wait
12854  *
12855  * Wait up to msecs milliseconds for physical link state change to occur.
12856  * Returns 0 if state reached, otherwise -ETIMEDOUT.
12857  */
wait_physical_linkstate(struct hfi1_pportdata * ppd,u32 state,int msecs)12858 static int wait_physical_linkstate(struct hfi1_pportdata *ppd, u32 state,
12859 				   int msecs)
12860 {
12861 	u32 read_state;
12862 	unsigned long timeout;
12863 
12864 	timeout = jiffies + msecs_to_jiffies(msecs);
12865 	while (1) {
12866 		read_state = read_physical_state(ppd->dd);
12867 		if (read_state == state)
12868 			break;
12869 		if (time_after(jiffies, timeout)) {
12870 			dd_dev_err(ppd->dd,
12871 				   "timeout waiting for phy link state 0x%x\n",
12872 				   state);
12873 			return -ETIMEDOUT;
12874 		}
12875 		usleep_range(1950, 2050); /* sleep 2ms-ish */
12876 	}
12877 
12878 	log_state_transition(ppd, state);
12879 	return 0;
12880 }
12881 
12882 /*
12883  * wait_phys_link_offline_quiet_substates - wait for any offline substate
12884  * @ppd: port device
12885  * @msecs: the number of milliseconds to wait
12886  *
12887  * Wait up to msecs milliseconds for any offline physical link
12888  * state change to occur.
12889  * Returns 0 if at least one state is reached, otherwise -ETIMEDOUT.
12890  */
wait_phys_link_offline_substates(struct hfi1_pportdata * ppd,int msecs)12891 static int wait_phys_link_offline_substates(struct hfi1_pportdata *ppd,
12892 					    int msecs)
12893 {
12894 	u32 read_state;
12895 	unsigned long timeout;
12896 
12897 	timeout = jiffies + msecs_to_jiffies(msecs);
12898 	while (1) {
12899 		read_state = read_physical_state(ppd->dd);
12900 		if ((read_state & 0xF0) == PLS_OFFLINE)
12901 			break;
12902 		if (time_after(jiffies, timeout)) {
12903 			dd_dev_err(ppd->dd,
12904 				   "timeout waiting for phy link offline.quiet substates. Read state 0x%x, %dms\n",
12905 				   read_state, msecs);
12906 			return -ETIMEDOUT;
12907 		}
12908 		usleep_range(1950, 2050); /* sleep 2ms-ish */
12909 	}
12910 
12911 	log_state_transition(ppd, read_state);
12912 	return read_state;
12913 }
12914 
12915 #define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \
12916 (r &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12917 
12918 #define SET_STATIC_RATE_CONTROL_SMASK(r) \
12919 (r |= SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12920 
hfi1_init_ctxt(struct send_context * sc)12921 void hfi1_init_ctxt(struct send_context *sc)
12922 {
12923 	if (sc) {
12924 		struct hfi1_devdata *dd = sc->dd;
12925 		u64 reg;
12926 		u8 set = (sc->type == SC_USER ?
12927 			  HFI1_CAP_IS_USET(STATIC_RATE_CTRL) :
12928 			  HFI1_CAP_IS_KSET(STATIC_RATE_CTRL));
12929 		reg = read_kctxt_csr(dd, sc->hw_context,
12930 				     SEND_CTXT_CHECK_ENABLE);
12931 		if (set)
12932 			CLEAR_STATIC_RATE_CONTROL_SMASK(reg);
12933 		else
12934 			SET_STATIC_RATE_CONTROL_SMASK(reg);
12935 		write_kctxt_csr(dd, sc->hw_context,
12936 				SEND_CTXT_CHECK_ENABLE, reg);
12937 	}
12938 }
12939 
hfi1_tempsense_rd(struct hfi1_devdata * dd,struct hfi1_temp * temp)12940 int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp)
12941 {
12942 	int ret = 0;
12943 	u64 reg;
12944 
12945 	if (dd->icode != ICODE_RTL_SILICON) {
12946 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
12947 			dd_dev_info(dd, "%s: tempsense not supported by HW\n",
12948 				    __func__);
12949 		return -EINVAL;
12950 	}
12951 	reg = read_csr(dd, ASIC_STS_THERM);
12952 	temp->curr = ((reg >> ASIC_STS_THERM_CURR_TEMP_SHIFT) &
12953 		      ASIC_STS_THERM_CURR_TEMP_MASK);
12954 	temp->lo_lim = ((reg >> ASIC_STS_THERM_LO_TEMP_SHIFT) &
12955 			ASIC_STS_THERM_LO_TEMP_MASK);
12956 	temp->hi_lim = ((reg >> ASIC_STS_THERM_HI_TEMP_SHIFT) &
12957 			ASIC_STS_THERM_HI_TEMP_MASK);
12958 	temp->crit_lim = ((reg >> ASIC_STS_THERM_CRIT_TEMP_SHIFT) &
12959 			  ASIC_STS_THERM_CRIT_TEMP_MASK);
12960 	/* triggers is a 3-bit value - 1 bit per trigger. */
12961 	temp->triggers = (u8)((reg >> ASIC_STS_THERM_LOW_SHIFT) & 0x7);
12962 
12963 	return ret;
12964 }
12965 
12966 /**
12967  * get_int_mask - get 64 bit int mask
12968  * @dd - the devdata
12969  * @i - the csr (relative to CCE_INT_MASK)
12970  *
12971  * Returns the mask with the urgent interrupt mask
12972  * bit clear for kernel receive contexts.
12973  */
get_int_mask(struct hfi1_devdata * dd,u32 i)12974 static u64 get_int_mask(struct hfi1_devdata *dd, u32 i)
12975 {
12976 	u64 mask = U64_MAX; /* default to no change */
12977 
12978 	if (i >= (IS_RCVURGENT_START / 64) && i < (IS_RCVURGENT_END / 64)) {
12979 		int j = (i - (IS_RCVURGENT_START / 64)) * 64;
12980 		int k = !j ? IS_RCVURGENT_START % 64 : 0;
12981 
12982 		if (j)
12983 			j -= IS_RCVURGENT_START % 64;
12984 		/* j = 0..dd->first_dyn_alloc_ctxt - 1,k = 0..63 */
12985 		for (; j < dd->first_dyn_alloc_ctxt && k < 64; j++, k++)
12986 			/* convert to bit in mask and clear */
12987 			mask &= ~BIT_ULL(k);
12988 	}
12989 	return mask;
12990 }
12991 
12992 /* ========================================================================= */
12993 
12994 /*
12995  * Enable/disable chip from delivering interrupts.
12996  */
set_intr_state(struct hfi1_devdata * dd,u32 enable)12997 void set_intr_state(struct hfi1_devdata *dd, u32 enable)
12998 {
12999 	int i;
13000 
13001 	/*
13002 	 * In HFI, the mask needs to be 1 to allow interrupts.
13003 	 */
13004 	if (enable) {
13005 		/* enable all interrupts but urgent on kernel contexts */
13006 		for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
13007 			u64 mask = get_int_mask(dd, i);
13008 
13009 			write_csr(dd, CCE_INT_MASK + (8 * i), mask);
13010 		}
13011 
13012 		init_qsfp_int(dd);
13013 	} else {
13014 		for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13015 			write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
13016 	}
13017 }
13018 
13019 /*
13020  * Clear all interrupt sources on the chip.
13021  */
clear_all_interrupts(struct hfi1_devdata * dd)13022 static void clear_all_interrupts(struct hfi1_devdata *dd)
13023 {
13024 	int i;
13025 
13026 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13027 		write_csr(dd, CCE_INT_CLEAR + (8 * i), ~(u64)0);
13028 
13029 	write_csr(dd, CCE_ERR_CLEAR, ~(u64)0);
13030 	write_csr(dd, MISC_ERR_CLEAR, ~(u64)0);
13031 	write_csr(dd, RCV_ERR_CLEAR, ~(u64)0);
13032 	write_csr(dd, SEND_ERR_CLEAR, ~(u64)0);
13033 	write_csr(dd, SEND_PIO_ERR_CLEAR, ~(u64)0);
13034 	write_csr(dd, SEND_DMA_ERR_CLEAR, ~(u64)0);
13035 	write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~(u64)0);
13036 	for (i = 0; i < chip_send_contexts(dd); i++)
13037 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~(u64)0);
13038 	for (i = 0; i < chip_sdma_engines(dd); i++)
13039 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~(u64)0);
13040 
13041 	write_csr(dd, DCC_ERR_FLG_CLR, ~(u64)0);
13042 	write_csr(dd, DC_LCB_ERR_CLR, ~(u64)0);
13043 	write_csr(dd, DC_DC8051_ERR_CLR, ~(u64)0);
13044 }
13045 
13046 /**
13047  * hfi1_clean_up_interrupts() - Free all IRQ resources
13048  * @dd: valid device data data structure
13049  *
13050  * Free the MSIx and assoicated PCI resources, if they have been allocated.
13051  */
hfi1_clean_up_interrupts(struct hfi1_devdata * dd)13052 void hfi1_clean_up_interrupts(struct hfi1_devdata *dd)
13053 {
13054 	int i;
13055 	struct hfi1_msix_entry *me = dd->msix_entries;
13056 
13057 	/* remove irqs - must happen before disabling/turning off */
13058 	for (i = 0; i < dd->num_msix_entries; i++, me++) {
13059 		if (!me->arg) /* => no irq, no affinity */
13060 			continue;
13061 		hfi1_put_irq_affinity(dd, me);
13062 		pci_free_irq(dd->pcidev, i, me->arg);
13063 	}
13064 
13065 	/* clean structures */
13066 	kfree(dd->msix_entries);
13067 	dd->msix_entries = NULL;
13068 	dd->num_msix_entries = 0;
13069 
13070 	pci_free_irq_vectors(dd->pcidev);
13071 }
13072 
13073 /*
13074  * Remap the interrupt source from the general handler to the given MSI-X
13075  * interrupt.
13076  */
remap_intr(struct hfi1_devdata * dd,int isrc,int msix_intr)13077 static void remap_intr(struct hfi1_devdata *dd, int isrc, int msix_intr)
13078 {
13079 	u64 reg;
13080 	int m, n;
13081 
13082 	/* clear from the handled mask of the general interrupt */
13083 	m = isrc / 64;
13084 	n = isrc % 64;
13085 	if (likely(m < CCE_NUM_INT_CSRS)) {
13086 		dd->gi_mask[m] &= ~((u64)1 << n);
13087 	} else {
13088 		dd_dev_err(dd, "remap interrupt err\n");
13089 		return;
13090 	}
13091 
13092 	/* direct the chip source to the given MSI-X interrupt */
13093 	m = isrc / 8;
13094 	n = isrc % 8;
13095 	reg = read_csr(dd, CCE_INT_MAP + (8 * m));
13096 	reg &= ~((u64)0xff << (8 * n));
13097 	reg |= ((u64)msix_intr & 0xff) << (8 * n);
13098 	write_csr(dd, CCE_INT_MAP + (8 * m), reg);
13099 }
13100 
remap_sdma_interrupts(struct hfi1_devdata * dd,int engine,int msix_intr)13101 static void remap_sdma_interrupts(struct hfi1_devdata *dd,
13102 				  int engine, int msix_intr)
13103 {
13104 	/*
13105 	 * SDMA engine interrupt sources grouped by type, rather than
13106 	 * engine.  Per-engine interrupts are as follows:
13107 	 *	SDMA
13108 	 *	SDMAProgress
13109 	 *	SDMAIdle
13110 	 */
13111 	remap_intr(dd, IS_SDMA_START + 0 * TXE_NUM_SDMA_ENGINES + engine,
13112 		   msix_intr);
13113 	remap_intr(dd, IS_SDMA_START + 1 * TXE_NUM_SDMA_ENGINES + engine,
13114 		   msix_intr);
13115 	remap_intr(dd, IS_SDMA_START + 2 * TXE_NUM_SDMA_ENGINES + engine,
13116 		   msix_intr);
13117 }
13118 
request_msix_irqs(struct hfi1_devdata * dd)13119 static int request_msix_irqs(struct hfi1_devdata *dd)
13120 {
13121 	int first_general, last_general;
13122 	int first_sdma, last_sdma;
13123 	int first_rx, last_rx;
13124 	int i, ret = 0;
13125 
13126 	/* calculate the ranges we are going to use */
13127 	first_general = 0;
13128 	last_general = first_general + 1;
13129 	first_sdma = last_general;
13130 	last_sdma = first_sdma + dd->num_sdma;
13131 	first_rx = last_sdma;
13132 	last_rx = first_rx + dd->n_krcv_queues + dd->num_vnic_contexts;
13133 
13134 	/* VNIC MSIx interrupts get mapped when VNIC contexts are created */
13135 	dd->first_dyn_msix_idx = first_rx + dd->n_krcv_queues;
13136 
13137 	/*
13138 	 * Sanity check - the code expects all SDMA chip source
13139 	 * interrupts to be in the same CSR, starting at bit 0.  Verify
13140 	 * that this is true by checking the bit location of the start.
13141 	 */
13142 	BUILD_BUG_ON(IS_SDMA_START % 64);
13143 
13144 	for (i = 0; i < dd->num_msix_entries; i++) {
13145 		struct hfi1_msix_entry *me = &dd->msix_entries[i];
13146 		const char *err_info;
13147 		irq_handler_t handler;
13148 		irq_handler_t thread = NULL;
13149 		void *arg = NULL;
13150 		int idx;
13151 		struct hfi1_ctxtdata *rcd = NULL;
13152 		struct sdma_engine *sde = NULL;
13153 		char name[MAX_NAME_SIZE];
13154 
13155 		/* obtain the arguments to pci_request_irq */
13156 		if (first_general <= i && i < last_general) {
13157 			idx = i - first_general;
13158 			handler = general_interrupt;
13159 			arg = dd;
13160 			snprintf(name, sizeof(name),
13161 				 DRIVER_NAME "_%d", dd->unit);
13162 			err_info = "general";
13163 			me->type = IRQ_GENERAL;
13164 		} else if (first_sdma <= i && i < last_sdma) {
13165 			idx = i - first_sdma;
13166 			sde = &dd->per_sdma[idx];
13167 			handler = sdma_interrupt;
13168 			arg = sde;
13169 			snprintf(name, sizeof(name),
13170 				 DRIVER_NAME "_%d sdma%d", dd->unit, idx);
13171 			err_info = "sdma";
13172 			remap_sdma_interrupts(dd, idx, i);
13173 			me->type = IRQ_SDMA;
13174 		} else if (first_rx <= i && i < last_rx) {
13175 			idx = i - first_rx;
13176 			rcd = hfi1_rcd_get_by_index_safe(dd, idx);
13177 			if (rcd) {
13178 				/*
13179 				 * Set the interrupt register and mask for this
13180 				 * context's interrupt.
13181 				 */
13182 				rcd->ireg = (IS_RCVAVAIL_START + idx) / 64;
13183 				rcd->imask = ((u64)1) <<
13184 					  ((IS_RCVAVAIL_START + idx) % 64);
13185 				handler = receive_context_interrupt;
13186 				thread = receive_context_thread;
13187 				arg = rcd;
13188 				snprintf(name, sizeof(name),
13189 					 DRIVER_NAME "_%d kctxt%d",
13190 					 dd->unit, idx);
13191 				err_info = "receive context";
13192 				remap_intr(dd, IS_RCVAVAIL_START + idx, i);
13193 				me->type = IRQ_RCVCTXT;
13194 				rcd->msix_intr = i;
13195 				hfi1_rcd_put(rcd);
13196 			}
13197 		} else {
13198 			/* not in our expected range - complain, then
13199 			 * ignore it
13200 			 */
13201 			dd_dev_err(dd,
13202 				   "Unexpected extra MSI-X interrupt %d\n", i);
13203 			continue;
13204 		}
13205 		/* no argument, no interrupt */
13206 		if (!arg)
13207 			continue;
13208 		/* make sure the name is terminated */
13209 		name[sizeof(name) - 1] = 0;
13210 		me->irq = pci_irq_vector(dd->pcidev, i);
13211 		ret = pci_request_irq(dd->pcidev, i, handler, thread, arg,
13212 				      name);
13213 		if (ret) {
13214 			dd_dev_err(dd,
13215 				   "unable to allocate %s interrupt, irq %d, index %d, err %d\n",
13216 				   err_info, me->irq, idx, ret);
13217 			return ret;
13218 		}
13219 		/*
13220 		 * assign arg after pci_request_irq call, so it will be
13221 		 * cleaned up
13222 		 */
13223 		me->arg = arg;
13224 
13225 		ret = hfi1_get_irq_affinity(dd, me);
13226 		if (ret)
13227 			dd_dev_err(dd, "unable to pin IRQ %d\n", ret);
13228 	}
13229 
13230 	return ret;
13231 }
13232 
hfi1_vnic_synchronize_irq(struct hfi1_devdata * dd)13233 void hfi1_vnic_synchronize_irq(struct hfi1_devdata *dd)
13234 {
13235 	int i;
13236 
13237 	for (i = 0; i < dd->vnic.num_ctxt; i++) {
13238 		struct hfi1_ctxtdata *rcd = dd->vnic.ctxt[i];
13239 		struct hfi1_msix_entry *me = &dd->msix_entries[rcd->msix_intr];
13240 
13241 		synchronize_irq(me->irq);
13242 	}
13243 }
13244 
hfi1_reset_vnic_msix_info(struct hfi1_ctxtdata * rcd)13245 void hfi1_reset_vnic_msix_info(struct hfi1_ctxtdata *rcd)
13246 {
13247 	struct hfi1_devdata *dd = rcd->dd;
13248 	struct hfi1_msix_entry *me = &dd->msix_entries[rcd->msix_intr];
13249 
13250 	if (!me->arg) /* => no irq, no affinity */
13251 		return;
13252 
13253 	hfi1_put_irq_affinity(dd, me);
13254 	pci_free_irq(dd->pcidev, rcd->msix_intr, me->arg);
13255 
13256 	me->arg = NULL;
13257 }
13258 
hfi1_set_vnic_msix_info(struct hfi1_ctxtdata * rcd)13259 void hfi1_set_vnic_msix_info(struct hfi1_ctxtdata *rcd)
13260 {
13261 	struct hfi1_devdata *dd = rcd->dd;
13262 	struct hfi1_msix_entry *me;
13263 	int idx = rcd->ctxt;
13264 	void *arg = rcd;
13265 	int ret;
13266 
13267 	rcd->msix_intr = dd->vnic.msix_idx++;
13268 	me = &dd->msix_entries[rcd->msix_intr];
13269 
13270 	/*
13271 	 * Set the interrupt register and mask for this
13272 	 * context's interrupt.
13273 	 */
13274 	rcd->ireg = (IS_RCVAVAIL_START + idx) / 64;
13275 	rcd->imask = ((u64)1) <<
13276 		  ((IS_RCVAVAIL_START + idx) % 64);
13277 	me->type = IRQ_RCVCTXT;
13278 	me->irq = pci_irq_vector(dd->pcidev, rcd->msix_intr);
13279 	remap_intr(dd, IS_RCVAVAIL_START + idx, rcd->msix_intr);
13280 
13281 	ret = pci_request_irq(dd->pcidev, rcd->msix_intr,
13282 			      receive_context_interrupt,
13283 			      receive_context_thread, arg,
13284 			      DRIVER_NAME "_%d kctxt%d", dd->unit, idx);
13285 	if (ret) {
13286 		dd_dev_err(dd, "vnic irq request (irq %d, idx %d) fail %d\n",
13287 			   me->irq, idx, ret);
13288 		return;
13289 	}
13290 	/*
13291 	 * assign arg after pci_request_irq call, so it will be
13292 	 * cleaned up
13293 	 */
13294 	me->arg = arg;
13295 
13296 	ret = hfi1_get_irq_affinity(dd, me);
13297 	if (ret) {
13298 		dd_dev_err(dd,
13299 			   "unable to pin IRQ %d\n", ret);
13300 		pci_free_irq(dd->pcidev, rcd->msix_intr, me->arg);
13301 	}
13302 }
13303 
13304 /*
13305  * Set the general handler to accept all interrupts, remap all
13306  * chip interrupts back to MSI-X 0.
13307  */
reset_interrupts(struct hfi1_devdata * dd)13308 static void reset_interrupts(struct hfi1_devdata *dd)
13309 {
13310 	int i;
13311 
13312 	/* all interrupts handled by the general handler */
13313 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13314 		dd->gi_mask[i] = ~(u64)0;
13315 
13316 	/* all chip interrupts map to MSI-X 0 */
13317 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13318 		write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13319 }
13320 
set_up_interrupts(struct hfi1_devdata * dd)13321 static int set_up_interrupts(struct hfi1_devdata *dd)
13322 {
13323 	u32 total;
13324 	int ret, request;
13325 
13326 	/*
13327 	 * Interrupt count:
13328 	 *	1 general, "slow path" interrupt (includes the SDMA engines
13329 	 *		slow source, SDMACleanupDone)
13330 	 *	N interrupts - one per used SDMA engine
13331 	 *	M interrupt - one per kernel receive context
13332 	 *	V interrupt - one for each VNIC context
13333 	 */
13334 	total = 1 + dd->num_sdma + dd->n_krcv_queues + dd->num_vnic_contexts;
13335 
13336 	/* ask for MSI-X interrupts */
13337 	request = request_msix(dd, total);
13338 	if (request < 0) {
13339 		ret = request;
13340 		goto fail;
13341 	} else {
13342 		dd->msix_entries = kcalloc(total, sizeof(*dd->msix_entries),
13343 					   GFP_KERNEL);
13344 		if (!dd->msix_entries) {
13345 			ret = -ENOMEM;
13346 			goto fail;
13347 		}
13348 		/* using MSI-X */
13349 		dd->num_msix_entries = total;
13350 		dd_dev_info(dd, "%u MSI-X interrupts allocated\n", total);
13351 	}
13352 
13353 	/* mask all interrupts */
13354 	set_intr_state(dd, 0);
13355 	/* clear all pending interrupts */
13356 	clear_all_interrupts(dd);
13357 
13358 	/* reset general handler mask, chip MSI-X mappings */
13359 	reset_interrupts(dd);
13360 
13361 	ret = request_msix_irqs(dd);
13362 	if (ret)
13363 		goto fail;
13364 
13365 	return 0;
13366 
13367 fail:
13368 	hfi1_clean_up_interrupts(dd);
13369 	return ret;
13370 }
13371 
13372 /*
13373  * Set up context values in dd.  Sets:
13374  *
13375  *	num_rcv_contexts - number of contexts being used
13376  *	n_krcv_queues - number of kernel contexts
13377  *	first_dyn_alloc_ctxt - first dynamically allocated context
13378  *                             in array of contexts
13379  *	freectxts  - number of free user contexts
13380  *	num_send_contexts - number of PIO send contexts being used
13381  *	num_vnic_contexts - number of contexts reserved for VNIC
13382  */
set_up_context_variables(struct hfi1_devdata * dd)13383 static int set_up_context_variables(struct hfi1_devdata *dd)
13384 {
13385 	unsigned long num_kernel_contexts;
13386 	u16 num_vnic_contexts = HFI1_NUM_VNIC_CTXT;
13387 	int total_contexts;
13388 	int ret;
13389 	unsigned ngroups;
13390 	int qos_rmt_count;
13391 	int user_rmt_reduced;
13392 	u32 n_usr_ctxts;
13393 	u32 send_contexts = chip_send_contexts(dd);
13394 	u32 rcv_contexts = chip_rcv_contexts(dd);
13395 
13396 	/*
13397 	 * Kernel receive contexts:
13398 	 * - Context 0 - control context (VL15/multicast/error)
13399 	 * - Context 1 - first kernel context
13400 	 * - Context 2 - second kernel context
13401 	 * ...
13402 	 */
13403 	if (n_krcvqs)
13404 		/*
13405 		 * n_krcvqs is the sum of module parameter kernel receive
13406 		 * contexts, krcvqs[].  It does not include the control
13407 		 * context, so add that.
13408 		 */
13409 		num_kernel_contexts = n_krcvqs + 1;
13410 	else
13411 		num_kernel_contexts = DEFAULT_KRCVQS + 1;
13412 	/*
13413 	 * Every kernel receive context needs an ACK send context.
13414 	 * one send context is allocated for each VL{0-7} and VL15
13415 	 */
13416 	if (num_kernel_contexts > (send_contexts - num_vls - 1)) {
13417 		dd_dev_err(dd,
13418 			   "Reducing # kernel rcv contexts to: %d, from %lu\n",
13419 			   send_contexts - num_vls - 1,
13420 			   num_kernel_contexts);
13421 		num_kernel_contexts = send_contexts - num_vls - 1;
13422 	}
13423 
13424 	/* Accommodate VNIC contexts if possible */
13425 	if ((num_kernel_contexts + num_vnic_contexts) > rcv_contexts) {
13426 		dd_dev_err(dd, "No receive contexts available for VNIC\n");
13427 		num_vnic_contexts = 0;
13428 	}
13429 	total_contexts = num_kernel_contexts + num_vnic_contexts;
13430 
13431 	/*
13432 	 * User contexts:
13433 	 *	- default to 1 user context per real (non-HT) CPU core if
13434 	 *	  num_user_contexts is negative
13435 	 */
13436 	if (num_user_contexts < 0)
13437 		n_usr_ctxts = cpumask_weight(&node_affinity.real_cpu_mask);
13438 	else
13439 		n_usr_ctxts = num_user_contexts;
13440 	/*
13441 	 * Adjust the counts given a global max.
13442 	 */
13443 	if (total_contexts + n_usr_ctxts > rcv_contexts) {
13444 		dd_dev_err(dd,
13445 			   "Reducing # user receive contexts to: %d, from %u\n",
13446 			   rcv_contexts - total_contexts,
13447 			   n_usr_ctxts);
13448 		/* recalculate */
13449 		n_usr_ctxts = rcv_contexts - total_contexts;
13450 	}
13451 
13452 	/* each user context requires an entry in the RMT */
13453 	qos_rmt_count = qos_rmt_entries(dd, NULL, NULL);
13454 	if (qos_rmt_count + n_usr_ctxts > NUM_MAP_ENTRIES) {
13455 		user_rmt_reduced = NUM_MAP_ENTRIES - qos_rmt_count;
13456 		dd_dev_err(dd,
13457 			   "RMT size is reducing the number of user receive contexts from %u to %d\n",
13458 			   n_usr_ctxts,
13459 			   user_rmt_reduced);
13460 		/* recalculate */
13461 		n_usr_ctxts = user_rmt_reduced;
13462 	}
13463 
13464 	total_contexts += n_usr_ctxts;
13465 
13466 	/* the first N are kernel contexts, the rest are user/vnic contexts */
13467 	dd->num_rcv_contexts = total_contexts;
13468 	dd->n_krcv_queues = num_kernel_contexts;
13469 	dd->first_dyn_alloc_ctxt = num_kernel_contexts;
13470 	dd->num_vnic_contexts = num_vnic_contexts;
13471 	dd->num_user_contexts = n_usr_ctxts;
13472 	dd->freectxts = n_usr_ctxts;
13473 	dd_dev_info(dd,
13474 		    "rcv contexts: chip %d, used %d (kernel %d, vnic %u, user %u)\n",
13475 		    rcv_contexts,
13476 		    (int)dd->num_rcv_contexts,
13477 		    (int)dd->n_krcv_queues,
13478 		    dd->num_vnic_contexts,
13479 		    dd->num_user_contexts);
13480 
13481 	/*
13482 	 * Receive array allocation:
13483 	 *   All RcvArray entries are divided into groups of 8. This
13484 	 *   is required by the hardware and will speed up writes to
13485 	 *   consecutive entries by using write-combining of the entire
13486 	 *   cacheline.
13487 	 *
13488 	 *   The number of groups are evenly divided among all contexts.
13489 	 *   any left over groups will be given to the first N user
13490 	 *   contexts.
13491 	 */
13492 	dd->rcv_entries.group_size = RCV_INCREMENT;
13493 	ngroups = chip_rcv_array_count(dd) / dd->rcv_entries.group_size;
13494 	dd->rcv_entries.ngroups = ngroups / dd->num_rcv_contexts;
13495 	dd->rcv_entries.nctxt_extra = ngroups -
13496 		(dd->num_rcv_contexts * dd->rcv_entries.ngroups);
13497 	dd_dev_info(dd, "RcvArray groups %u, ctxts extra %u\n",
13498 		    dd->rcv_entries.ngroups,
13499 		    dd->rcv_entries.nctxt_extra);
13500 	if (dd->rcv_entries.ngroups * dd->rcv_entries.group_size >
13501 	    MAX_EAGER_ENTRIES * 2) {
13502 		dd->rcv_entries.ngroups = (MAX_EAGER_ENTRIES * 2) /
13503 			dd->rcv_entries.group_size;
13504 		dd_dev_info(dd,
13505 			    "RcvArray group count too high, change to %u\n",
13506 			    dd->rcv_entries.ngroups);
13507 		dd->rcv_entries.nctxt_extra = 0;
13508 	}
13509 	/*
13510 	 * PIO send contexts
13511 	 */
13512 	ret = init_sc_pools_and_sizes(dd);
13513 	if (ret >= 0) {	/* success */
13514 		dd->num_send_contexts = ret;
13515 		dd_dev_info(
13516 			dd,
13517 			"send contexts: chip %d, used %d (kernel %d, ack %d, user %d, vl15 %d)\n",
13518 			send_contexts,
13519 			dd->num_send_contexts,
13520 			dd->sc_sizes[SC_KERNEL].count,
13521 			dd->sc_sizes[SC_ACK].count,
13522 			dd->sc_sizes[SC_USER].count,
13523 			dd->sc_sizes[SC_VL15].count);
13524 		ret = 0;	/* success */
13525 	}
13526 
13527 	return ret;
13528 }
13529 
13530 /*
13531  * Set the device/port partition key table. The MAD code
13532  * will ensure that, at least, the partial management
13533  * partition key is present in the table.
13534  */
set_partition_keys(struct hfi1_pportdata * ppd)13535 static void set_partition_keys(struct hfi1_pportdata *ppd)
13536 {
13537 	struct hfi1_devdata *dd = ppd->dd;
13538 	u64 reg = 0;
13539 	int i;
13540 
13541 	dd_dev_info(dd, "Setting partition keys\n");
13542 	for (i = 0; i < hfi1_get_npkeys(dd); i++) {
13543 		reg |= (ppd->pkeys[i] &
13544 			RCV_PARTITION_KEY_PARTITION_KEY_A_MASK) <<
13545 			((i % 4) *
13546 			 RCV_PARTITION_KEY_PARTITION_KEY_B_SHIFT);
13547 		/* Each register holds 4 PKey values. */
13548 		if ((i % 4) == 3) {
13549 			write_csr(dd, RCV_PARTITION_KEY +
13550 				  ((i - 3) * 2), reg);
13551 			reg = 0;
13552 		}
13553 	}
13554 
13555 	/* Always enable HW pkeys check when pkeys table is set */
13556 	add_rcvctrl(dd, RCV_CTRL_RCV_PARTITION_KEY_ENABLE_SMASK);
13557 }
13558 
13559 /*
13560  * These CSRs and memories are uninitialized on reset and must be
13561  * written before reading to set the ECC/parity bits.
13562  *
13563  * NOTE: All user context CSRs that are not mmaped write-only
13564  * (e.g. the TID flows) must be initialized even if the driver never
13565  * reads them.
13566  */
write_uninitialized_csrs_and_memories(struct hfi1_devdata * dd)13567 static void write_uninitialized_csrs_and_memories(struct hfi1_devdata *dd)
13568 {
13569 	int i, j;
13570 
13571 	/* CceIntMap */
13572 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13573 		write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13574 
13575 	/* SendCtxtCreditReturnAddr */
13576 	for (i = 0; i < chip_send_contexts(dd); i++)
13577 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13578 
13579 	/* PIO Send buffers */
13580 	/* SDMA Send buffers */
13581 	/*
13582 	 * These are not normally read, and (presently) have no method
13583 	 * to be read, so are not pre-initialized
13584 	 */
13585 
13586 	/* RcvHdrAddr */
13587 	/* RcvHdrTailAddr */
13588 	/* RcvTidFlowTable */
13589 	for (i = 0; i < chip_rcv_contexts(dd); i++) {
13590 		write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13591 		write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13592 		for (j = 0; j < RXE_NUM_TID_FLOWS; j++)
13593 			write_uctxt_csr(dd, i, RCV_TID_FLOW_TABLE + (8 * j), 0);
13594 	}
13595 
13596 	/* RcvArray */
13597 	for (i = 0; i < chip_rcv_array_count(dd); i++)
13598 		hfi1_put_tid(dd, i, PT_INVALID_FLUSH, 0, 0);
13599 
13600 	/* RcvQPMapTable */
13601 	for (i = 0; i < 32; i++)
13602 		write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13603 }
13604 
13605 /*
13606  * Use the ctrl_bits in CceCtrl to clear the status_bits in CceStatus.
13607  */
clear_cce_status(struct hfi1_devdata * dd,u64 status_bits,u64 ctrl_bits)13608 static void clear_cce_status(struct hfi1_devdata *dd, u64 status_bits,
13609 			     u64 ctrl_bits)
13610 {
13611 	unsigned long timeout;
13612 	u64 reg;
13613 
13614 	/* is the condition present? */
13615 	reg = read_csr(dd, CCE_STATUS);
13616 	if ((reg & status_bits) == 0)
13617 		return;
13618 
13619 	/* clear the condition */
13620 	write_csr(dd, CCE_CTRL, ctrl_bits);
13621 
13622 	/* wait for the condition to clear */
13623 	timeout = jiffies + msecs_to_jiffies(CCE_STATUS_TIMEOUT);
13624 	while (1) {
13625 		reg = read_csr(dd, CCE_STATUS);
13626 		if ((reg & status_bits) == 0)
13627 			return;
13628 		if (time_after(jiffies, timeout)) {
13629 			dd_dev_err(dd,
13630 				   "Timeout waiting for CceStatus to clear bits 0x%llx, remaining 0x%llx\n",
13631 				   status_bits, reg & status_bits);
13632 			return;
13633 		}
13634 		udelay(1);
13635 	}
13636 }
13637 
13638 /* set CCE CSRs to chip reset defaults */
reset_cce_csrs(struct hfi1_devdata * dd)13639 static void reset_cce_csrs(struct hfi1_devdata *dd)
13640 {
13641 	int i;
13642 
13643 	/* CCE_REVISION read-only */
13644 	/* CCE_REVISION2 read-only */
13645 	/* CCE_CTRL - bits clear automatically */
13646 	/* CCE_STATUS read-only, use CceCtrl to clear */
13647 	clear_cce_status(dd, ALL_FROZE, CCE_CTRL_SPC_UNFREEZE_SMASK);
13648 	clear_cce_status(dd, ALL_TXE_PAUSE, CCE_CTRL_TXE_RESUME_SMASK);
13649 	clear_cce_status(dd, ALL_RXE_PAUSE, CCE_CTRL_RXE_RESUME_SMASK);
13650 	for (i = 0; i < CCE_NUM_SCRATCH; i++)
13651 		write_csr(dd, CCE_SCRATCH + (8 * i), 0);
13652 	/* CCE_ERR_STATUS read-only */
13653 	write_csr(dd, CCE_ERR_MASK, 0);
13654 	write_csr(dd, CCE_ERR_CLEAR, ~0ull);
13655 	/* CCE_ERR_FORCE leave alone */
13656 	for (i = 0; i < CCE_NUM_32_BIT_COUNTERS; i++)
13657 		write_csr(dd, CCE_COUNTER_ARRAY32 + (8 * i), 0);
13658 	write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_RESETCSR);
13659 	/* CCE_PCIE_CTRL leave alone */
13660 	for (i = 0; i < CCE_NUM_MSIX_VECTORS; i++) {
13661 		write_csr(dd, CCE_MSIX_TABLE_LOWER + (8 * i), 0);
13662 		write_csr(dd, CCE_MSIX_TABLE_UPPER + (8 * i),
13663 			  CCE_MSIX_TABLE_UPPER_RESETCSR);
13664 	}
13665 	for (i = 0; i < CCE_NUM_MSIX_PBAS; i++) {
13666 		/* CCE_MSIX_PBA read-only */
13667 		write_csr(dd, CCE_MSIX_INT_GRANTED, ~0ull);
13668 		write_csr(dd, CCE_MSIX_VEC_CLR_WITHOUT_INT, ~0ull);
13669 	}
13670 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13671 		write_csr(dd, CCE_INT_MAP, 0);
13672 	for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
13673 		/* CCE_INT_STATUS read-only */
13674 		write_csr(dd, CCE_INT_MASK + (8 * i), 0);
13675 		write_csr(dd, CCE_INT_CLEAR + (8 * i), ~0ull);
13676 		/* CCE_INT_FORCE leave alone */
13677 		/* CCE_INT_BLOCKED read-only */
13678 	}
13679 	for (i = 0; i < CCE_NUM_32_BIT_INT_COUNTERS; i++)
13680 		write_csr(dd, CCE_INT_COUNTER_ARRAY32 + (8 * i), 0);
13681 }
13682 
13683 /* set MISC CSRs to chip reset defaults */
reset_misc_csrs(struct hfi1_devdata * dd)13684 static void reset_misc_csrs(struct hfi1_devdata *dd)
13685 {
13686 	int i;
13687 
13688 	for (i = 0; i < 32; i++) {
13689 		write_csr(dd, MISC_CFG_RSA_R2 + (8 * i), 0);
13690 		write_csr(dd, MISC_CFG_RSA_SIGNATURE + (8 * i), 0);
13691 		write_csr(dd, MISC_CFG_RSA_MODULUS + (8 * i), 0);
13692 	}
13693 	/*
13694 	 * MISC_CFG_SHA_PRELOAD leave alone - always reads 0 and can
13695 	 * only be written 128-byte chunks
13696 	 */
13697 	/* init RSA engine to clear lingering errors */
13698 	write_csr(dd, MISC_CFG_RSA_CMD, 1);
13699 	write_csr(dd, MISC_CFG_RSA_MU, 0);
13700 	write_csr(dd, MISC_CFG_FW_CTRL, 0);
13701 	/* MISC_STS_8051_DIGEST read-only */
13702 	/* MISC_STS_SBM_DIGEST read-only */
13703 	/* MISC_STS_PCIE_DIGEST read-only */
13704 	/* MISC_STS_FAB_DIGEST read-only */
13705 	/* MISC_ERR_STATUS read-only */
13706 	write_csr(dd, MISC_ERR_MASK, 0);
13707 	write_csr(dd, MISC_ERR_CLEAR, ~0ull);
13708 	/* MISC_ERR_FORCE leave alone */
13709 }
13710 
13711 /* set TXE CSRs to chip reset defaults */
reset_txe_csrs(struct hfi1_devdata * dd)13712 static void reset_txe_csrs(struct hfi1_devdata *dd)
13713 {
13714 	int i;
13715 
13716 	/*
13717 	 * TXE Kernel CSRs
13718 	 */
13719 	write_csr(dd, SEND_CTRL, 0);
13720 	__cm_reset(dd, 0);	/* reset CM internal state */
13721 	/* SEND_CONTEXTS read-only */
13722 	/* SEND_DMA_ENGINES read-only */
13723 	/* SEND_PIO_MEM_SIZE read-only */
13724 	/* SEND_DMA_MEM_SIZE read-only */
13725 	write_csr(dd, SEND_HIGH_PRIORITY_LIMIT, 0);
13726 	pio_reset_all(dd);	/* SEND_PIO_INIT_CTXT */
13727 	/* SEND_PIO_ERR_STATUS read-only */
13728 	write_csr(dd, SEND_PIO_ERR_MASK, 0);
13729 	write_csr(dd, SEND_PIO_ERR_CLEAR, ~0ull);
13730 	/* SEND_PIO_ERR_FORCE leave alone */
13731 	/* SEND_DMA_ERR_STATUS read-only */
13732 	write_csr(dd, SEND_DMA_ERR_MASK, 0);
13733 	write_csr(dd, SEND_DMA_ERR_CLEAR, ~0ull);
13734 	/* SEND_DMA_ERR_FORCE leave alone */
13735 	/* SEND_EGRESS_ERR_STATUS read-only */
13736 	write_csr(dd, SEND_EGRESS_ERR_MASK, 0);
13737 	write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~0ull);
13738 	/* SEND_EGRESS_ERR_FORCE leave alone */
13739 	write_csr(dd, SEND_BTH_QP, 0);
13740 	write_csr(dd, SEND_STATIC_RATE_CONTROL, 0);
13741 	write_csr(dd, SEND_SC2VLT0, 0);
13742 	write_csr(dd, SEND_SC2VLT1, 0);
13743 	write_csr(dd, SEND_SC2VLT2, 0);
13744 	write_csr(dd, SEND_SC2VLT3, 0);
13745 	write_csr(dd, SEND_LEN_CHECK0, 0);
13746 	write_csr(dd, SEND_LEN_CHECK1, 0);
13747 	/* SEND_ERR_STATUS read-only */
13748 	write_csr(dd, SEND_ERR_MASK, 0);
13749 	write_csr(dd, SEND_ERR_CLEAR, ~0ull);
13750 	/* SEND_ERR_FORCE read-only */
13751 	for (i = 0; i < VL_ARB_LOW_PRIO_TABLE_SIZE; i++)
13752 		write_csr(dd, SEND_LOW_PRIORITY_LIST + (8 * i), 0);
13753 	for (i = 0; i < VL_ARB_HIGH_PRIO_TABLE_SIZE; i++)
13754 		write_csr(dd, SEND_HIGH_PRIORITY_LIST + (8 * i), 0);
13755 	for (i = 0; i < chip_send_contexts(dd) / NUM_CONTEXTS_PER_SET; i++)
13756 		write_csr(dd, SEND_CONTEXT_SET_CTRL + (8 * i), 0);
13757 	for (i = 0; i < TXE_NUM_32_BIT_COUNTER; i++)
13758 		write_csr(dd, SEND_COUNTER_ARRAY32 + (8 * i), 0);
13759 	for (i = 0; i < TXE_NUM_64_BIT_COUNTER; i++)
13760 		write_csr(dd, SEND_COUNTER_ARRAY64 + (8 * i), 0);
13761 	write_csr(dd, SEND_CM_CTRL, SEND_CM_CTRL_RESETCSR);
13762 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, SEND_CM_GLOBAL_CREDIT_RESETCSR);
13763 	/* SEND_CM_CREDIT_USED_STATUS read-only */
13764 	write_csr(dd, SEND_CM_TIMER_CTRL, 0);
13765 	write_csr(dd, SEND_CM_LOCAL_AU_TABLE0_TO3, 0);
13766 	write_csr(dd, SEND_CM_LOCAL_AU_TABLE4_TO7, 0);
13767 	write_csr(dd, SEND_CM_REMOTE_AU_TABLE0_TO3, 0);
13768 	write_csr(dd, SEND_CM_REMOTE_AU_TABLE4_TO7, 0);
13769 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
13770 		write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
13771 	write_csr(dd, SEND_CM_CREDIT_VL15, 0);
13772 	/* SEND_CM_CREDIT_USED_VL read-only */
13773 	/* SEND_CM_CREDIT_USED_VL15 read-only */
13774 	/* SEND_EGRESS_CTXT_STATUS read-only */
13775 	/* SEND_EGRESS_SEND_DMA_STATUS read-only */
13776 	write_csr(dd, SEND_EGRESS_ERR_INFO, ~0ull);
13777 	/* SEND_EGRESS_ERR_INFO read-only */
13778 	/* SEND_EGRESS_ERR_SOURCE read-only */
13779 
13780 	/*
13781 	 * TXE Per-Context CSRs
13782 	 */
13783 	for (i = 0; i < chip_send_contexts(dd); i++) {
13784 		write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13785 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_CTRL, 0);
13786 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13787 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_FORCE, 0);
13788 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, 0);
13789 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~0ull);
13790 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_ENABLE, 0);
13791 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_VL, 0);
13792 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_JOB_KEY, 0);
13793 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_PARTITION_KEY, 0);
13794 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, 0);
13795 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_OPCODE, 0);
13796 	}
13797 
13798 	/*
13799 	 * TXE Per-SDMA CSRs
13800 	 */
13801 	for (i = 0; i < chip_sdma_engines(dd); i++) {
13802 		write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13803 		/* SEND_DMA_STATUS read-only */
13804 		write_kctxt_csr(dd, i, SEND_DMA_BASE_ADDR, 0);
13805 		write_kctxt_csr(dd, i, SEND_DMA_LEN_GEN, 0);
13806 		write_kctxt_csr(dd, i, SEND_DMA_TAIL, 0);
13807 		/* SEND_DMA_HEAD read-only */
13808 		write_kctxt_csr(dd, i, SEND_DMA_HEAD_ADDR, 0);
13809 		write_kctxt_csr(dd, i, SEND_DMA_PRIORITY_THLD, 0);
13810 		/* SEND_DMA_IDLE_CNT read-only */
13811 		write_kctxt_csr(dd, i, SEND_DMA_RELOAD_CNT, 0);
13812 		write_kctxt_csr(dd, i, SEND_DMA_DESC_CNT, 0);
13813 		/* SEND_DMA_DESC_FETCHED_CNT read-only */
13814 		/* SEND_DMA_ENG_ERR_STATUS read-only */
13815 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, 0);
13816 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~0ull);
13817 		/* SEND_DMA_ENG_ERR_FORCE leave alone */
13818 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_ENABLE, 0);
13819 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_VL, 0);
13820 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_JOB_KEY, 0);
13821 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_PARTITION_KEY, 0);
13822 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_SLID, 0);
13823 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_OPCODE, 0);
13824 		write_kctxt_csr(dd, i, SEND_DMA_MEMORY, 0);
13825 	}
13826 }
13827 
13828 /*
13829  * Expect on entry:
13830  * o Packet ingress is disabled, i.e. RcvCtrl.RcvPortEnable == 0
13831  */
init_rbufs(struct hfi1_devdata * dd)13832 static void init_rbufs(struct hfi1_devdata *dd)
13833 {
13834 	u64 reg;
13835 	int count;
13836 
13837 	/*
13838 	 * Wait for DMA to stop: RxRbufPktPending and RxPktInProgress are
13839 	 * clear.
13840 	 */
13841 	count = 0;
13842 	while (1) {
13843 		reg = read_csr(dd, RCV_STATUS);
13844 		if ((reg & (RCV_STATUS_RX_RBUF_PKT_PENDING_SMASK
13845 			    | RCV_STATUS_RX_PKT_IN_PROGRESS_SMASK)) == 0)
13846 			break;
13847 		/*
13848 		 * Give up after 1ms - maximum wait time.
13849 		 *
13850 		 * RBuf size is 136KiB.  Slowest possible is PCIe Gen1 x1 at
13851 		 * 250MB/s bandwidth.  Lower rate to 66% for overhead to get:
13852 		 *	136 KB / (66% * 250MB/s) = 844us
13853 		 */
13854 		if (count++ > 500) {
13855 			dd_dev_err(dd,
13856 				   "%s: in-progress DMA not clearing: RcvStatus 0x%llx, continuing\n",
13857 				   __func__, reg);
13858 			break;
13859 		}
13860 		udelay(2); /* do not busy-wait the CSR */
13861 	}
13862 
13863 	/* start the init - expect RcvCtrl to be 0 */
13864 	write_csr(dd, RCV_CTRL, RCV_CTRL_RX_RBUF_INIT_SMASK);
13865 
13866 	/*
13867 	 * Read to force the write of Rcvtrl.RxRbufInit.  There is a brief
13868 	 * period after the write before RcvStatus.RxRbufInitDone is valid.
13869 	 * The delay in the first run through the loop below is sufficient and
13870 	 * required before the first read of RcvStatus.RxRbufInintDone.
13871 	 */
13872 	read_csr(dd, RCV_CTRL);
13873 
13874 	/* wait for the init to finish */
13875 	count = 0;
13876 	while (1) {
13877 		/* delay is required first time through - see above */
13878 		udelay(2); /* do not busy-wait the CSR */
13879 		reg = read_csr(dd, RCV_STATUS);
13880 		if (reg & (RCV_STATUS_RX_RBUF_INIT_DONE_SMASK))
13881 			break;
13882 
13883 		/* give up after 100us - slowest possible at 33MHz is 73us */
13884 		if (count++ > 50) {
13885 			dd_dev_err(dd,
13886 				   "%s: RcvStatus.RxRbufInit not set, continuing\n",
13887 				   __func__);
13888 			break;
13889 		}
13890 	}
13891 }
13892 
13893 /* set RXE CSRs to chip reset defaults */
reset_rxe_csrs(struct hfi1_devdata * dd)13894 static void reset_rxe_csrs(struct hfi1_devdata *dd)
13895 {
13896 	int i, j;
13897 
13898 	/*
13899 	 * RXE Kernel CSRs
13900 	 */
13901 	write_csr(dd, RCV_CTRL, 0);
13902 	init_rbufs(dd);
13903 	/* RCV_STATUS read-only */
13904 	/* RCV_CONTEXTS read-only */
13905 	/* RCV_ARRAY_CNT read-only */
13906 	/* RCV_BUF_SIZE read-only */
13907 	write_csr(dd, RCV_BTH_QP, 0);
13908 	write_csr(dd, RCV_MULTICAST, 0);
13909 	write_csr(dd, RCV_BYPASS, 0);
13910 	write_csr(dd, RCV_VL15, 0);
13911 	/* this is a clear-down */
13912 	write_csr(dd, RCV_ERR_INFO,
13913 		  RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK);
13914 	/* RCV_ERR_STATUS read-only */
13915 	write_csr(dd, RCV_ERR_MASK, 0);
13916 	write_csr(dd, RCV_ERR_CLEAR, ~0ull);
13917 	/* RCV_ERR_FORCE leave alone */
13918 	for (i = 0; i < 32; i++)
13919 		write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13920 	for (i = 0; i < 4; i++)
13921 		write_csr(dd, RCV_PARTITION_KEY + (8 * i), 0);
13922 	for (i = 0; i < RXE_NUM_32_BIT_COUNTERS; i++)
13923 		write_csr(dd, RCV_COUNTER_ARRAY32 + (8 * i), 0);
13924 	for (i = 0; i < RXE_NUM_64_BIT_COUNTERS; i++)
13925 		write_csr(dd, RCV_COUNTER_ARRAY64 + (8 * i), 0);
13926 	for (i = 0; i < RXE_NUM_RSM_INSTANCES; i++)
13927 		clear_rsm_rule(dd, i);
13928 	for (i = 0; i < 32; i++)
13929 		write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), 0);
13930 
13931 	/*
13932 	 * RXE Kernel and User Per-Context CSRs
13933 	 */
13934 	for (i = 0; i < chip_rcv_contexts(dd); i++) {
13935 		/* kernel */
13936 		write_kctxt_csr(dd, i, RCV_CTXT_CTRL, 0);
13937 		/* RCV_CTXT_STATUS read-only */
13938 		write_kctxt_csr(dd, i, RCV_EGR_CTRL, 0);
13939 		write_kctxt_csr(dd, i, RCV_TID_CTRL, 0);
13940 		write_kctxt_csr(dd, i, RCV_KEY_CTRL, 0);
13941 		write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13942 		write_kctxt_csr(dd, i, RCV_HDR_CNT, 0);
13943 		write_kctxt_csr(dd, i, RCV_HDR_ENT_SIZE, 0);
13944 		write_kctxt_csr(dd, i, RCV_HDR_SIZE, 0);
13945 		write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13946 		write_kctxt_csr(dd, i, RCV_AVAIL_TIME_OUT, 0);
13947 		write_kctxt_csr(dd, i, RCV_HDR_OVFL_CNT, 0);
13948 
13949 		/* user */
13950 		/* RCV_HDR_TAIL read-only */
13951 		write_uctxt_csr(dd, i, RCV_HDR_HEAD, 0);
13952 		/* RCV_EGR_INDEX_TAIL read-only */
13953 		write_uctxt_csr(dd, i, RCV_EGR_INDEX_HEAD, 0);
13954 		/* RCV_EGR_OFFSET_TAIL read-only */
13955 		for (j = 0; j < RXE_NUM_TID_FLOWS; j++) {
13956 			write_uctxt_csr(dd, i,
13957 					RCV_TID_FLOW_TABLE + (8 * j), 0);
13958 		}
13959 	}
13960 }
13961 
13962 /*
13963  * Set sc2vl tables.
13964  *
13965  * They power on to zeros, so to avoid send context errors
13966  * they need to be set:
13967  *
13968  * SC 0-7 -> VL 0-7 (respectively)
13969  * SC 15  -> VL 15
13970  * otherwise
13971  *        -> VL 0
13972  */
init_sc2vl_tables(struct hfi1_devdata * dd)13973 static void init_sc2vl_tables(struct hfi1_devdata *dd)
13974 {
13975 	int i;
13976 	/* init per architecture spec, constrained by hardware capability */
13977 
13978 	/* HFI maps sent packets */
13979 	write_csr(dd, SEND_SC2VLT0, SC2VL_VAL(
13980 		0,
13981 		0, 0, 1, 1,
13982 		2, 2, 3, 3,
13983 		4, 4, 5, 5,
13984 		6, 6, 7, 7));
13985 	write_csr(dd, SEND_SC2VLT1, SC2VL_VAL(
13986 		1,
13987 		8, 0, 9, 0,
13988 		10, 0, 11, 0,
13989 		12, 0, 13, 0,
13990 		14, 0, 15, 15));
13991 	write_csr(dd, SEND_SC2VLT2, SC2VL_VAL(
13992 		2,
13993 		16, 0, 17, 0,
13994 		18, 0, 19, 0,
13995 		20, 0, 21, 0,
13996 		22, 0, 23, 0));
13997 	write_csr(dd, SEND_SC2VLT3, SC2VL_VAL(
13998 		3,
13999 		24, 0, 25, 0,
14000 		26, 0, 27, 0,
14001 		28, 0, 29, 0,
14002 		30, 0, 31, 0));
14003 
14004 	/* DC maps received packets */
14005 	write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0, DC_SC_VL_VAL(
14006 		15_0,
14007 		0, 0, 1, 1,  2, 2,  3, 3,  4, 4,  5, 5,  6, 6,  7,  7,
14008 		8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 15));
14009 	write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16, DC_SC_VL_VAL(
14010 		31_16,
14011 		16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0,
14012 		24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0));
14013 
14014 	/* initialize the cached sc2vl values consistently with h/w */
14015 	for (i = 0; i < 32; i++) {
14016 		if (i < 8 || i == 15)
14017 			*((u8 *)(dd->sc2vl) + i) = (u8)i;
14018 		else
14019 			*((u8 *)(dd->sc2vl) + i) = 0;
14020 	}
14021 }
14022 
14023 /*
14024  * Read chip sizes and then reset parts to sane, disabled, values.  We cannot
14025  * depend on the chip going through a power-on reset - a driver may be loaded
14026  * and unloaded many times.
14027  *
14028  * Do not write any CSR values to the chip in this routine - there may be
14029  * a reset following the (possible) FLR in this routine.
14030  *
14031  */
init_chip(struct hfi1_devdata * dd)14032 static int init_chip(struct hfi1_devdata *dd)
14033 {
14034 	int i;
14035 	int ret = 0;
14036 
14037 	/*
14038 	 * Put the HFI CSRs in a known state.
14039 	 * Combine this with a DC reset.
14040 	 *
14041 	 * Stop the device from doing anything while we do a
14042 	 * reset.  We know there are no other active users of
14043 	 * the device since we are now in charge.  Turn off
14044 	 * off all outbound and inbound traffic and make sure
14045 	 * the device does not generate any interrupts.
14046 	 */
14047 
14048 	/* disable send contexts and SDMA engines */
14049 	write_csr(dd, SEND_CTRL, 0);
14050 	for (i = 0; i < chip_send_contexts(dd); i++)
14051 		write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
14052 	for (i = 0; i < chip_sdma_engines(dd); i++)
14053 		write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
14054 	/* disable port (turn off RXE inbound traffic) and contexts */
14055 	write_csr(dd, RCV_CTRL, 0);
14056 	for (i = 0; i < chip_rcv_contexts(dd); i++)
14057 		write_csr(dd, RCV_CTXT_CTRL, 0);
14058 	/* mask all interrupt sources */
14059 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
14060 		write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
14061 
14062 	/*
14063 	 * DC Reset: do a full DC reset before the register clear.
14064 	 * A recommended length of time to hold is one CSR read,
14065 	 * so reread the CceDcCtrl.  Then, hold the DC in reset
14066 	 * across the clear.
14067 	 */
14068 	write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_DC_RESET_SMASK);
14069 	(void)read_csr(dd, CCE_DC_CTRL);
14070 
14071 	if (use_flr) {
14072 		/*
14073 		 * A FLR will reset the SPC core and part of the PCIe.
14074 		 * The parts that need to be restored have already been
14075 		 * saved.
14076 		 */
14077 		dd_dev_info(dd, "Resetting CSRs with FLR\n");
14078 
14079 		/* do the FLR, the DC reset will remain */
14080 		pcie_flr(dd->pcidev);
14081 
14082 		/* restore command and BARs */
14083 		ret = restore_pci_variables(dd);
14084 		if (ret) {
14085 			dd_dev_err(dd, "%s: Could not restore PCI variables\n",
14086 				   __func__);
14087 			return ret;
14088 		}
14089 
14090 		if (is_ax(dd)) {
14091 			dd_dev_info(dd, "Resetting CSRs with FLR\n");
14092 			pcie_flr(dd->pcidev);
14093 			ret = restore_pci_variables(dd);
14094 			if (ret) {
14095 				dd_dev_err(dd, "%s: Could not restore PCI variables\n",
14096 					   __func__);
14097 				return ret;
14098 			}
14099 		}
14100 	} else {
14101 		dd_dev_info(dd, "Resetting CSRs with writes\n");
14102 		reset_cce_csrs(dd);
14103 		reset_txe_csrs(dd);
14104 		reset_rxe_csrs(dd);
14105 		reset_misc_csrs(dd);
14106 	}
14107 	/* clear the DC reset */
14108 	write_csr(dd, CCE_DC_CTRL, 0);
14109 
14110 	/* Set the LED off */
14111 	setextled(dd, 0);
14112 
14113 	/*
14114 	 * Clear the QSFP reset.
14115 	 * An FLR enforces a 0 on all out pins. The driver does not touch
14116 	 * ASIC_QSFPn_OUT otherwise.  This leaves RESET_N low and
14117 	 * anything plugged constantly in reset, if it pays attention
14118 	 * to RESET_N.
14119 	 * Prime examples of this are optical cables. Set all pins high.
14120 	 * I2CCLK and I2CDAT will change per direction, and INT_N and
14121 	 * MODPRS_N are input only and their value is ignored.
14122 	 */
14123 	write_csr(dd, ASIC_QSFP1_OUT, 0x1f);
14124 	write_csr(dd, ASIC_QSFP2_OUT, 0x1f);
14125 	init_chip_resources(dd);
14126 	return ret;
14127 }
14128 
init_early_variables(struct hfi1_devdata * dd)14129 static void init_early_variables(struct hfi1_devdata *dd)
14130 {
14131 	int i;
14132 
14133 	/* assign link credit variables */
14134 	dd->vau = CM_VAU;
14135 	dd->link_credits = CM_GLOBAL_CREDITS;
14136 	if (is_ax(dd))
14137 		dd->link_credits--;
14138 	dd->vcu = cu_to_vcu(hfi1_cu);
14139 	/* enough room for 8 MAD packets plus header - 17K */
14140 	dd->vl15_init = (8 * (2048 + 128)) / vau_to_au(dd->vau);
14141 	if (dd->vl15_init > dd->link_credits)
14142 		dd->vl15_init = dd->link_credits;
14143 
14144 	write_uninitialized_csrs_and_memories(dd);
14145 
14146 	if (HFI1_CAP_IS_KSET(PKEY_CHECK))
14147 		for (i = 0; i < dd->num_pports; i++) {
14148 			struct hfi1_pportdata *ppd = &dd->pport[i];
14149 
14150 			set_partition_keys(ppd);
14151 		}
14152 	init_sc2vl_tables(dd);
14153 }
14154 
init_kdeth_qp(struct hfi1_devdata * dd)14155 static void init_kdeth_qp(struct hfi1_devdata *dd)
14156 {
14157 	/* user changed the KDETH_QP */
14158 	if (kdeth_qp != 0 && kdeth_qp >= 0xff) {
14159 		/* out of range or illegal value */
14160 		dd_dev_err(dd, "Invalid KDETH queue pair prefix, ignoring");
14161 		kdeth_qp = 0;
14162 	}
14163 	if (kdeth_qp == 0)	/* not set, or failed range check */
14164 		kdeth_qp = DEFAULT_KDETH_QP;
14165 
14166 	write_csr(dd, SEND_BTH_QP,
14167 		  (kdeth_qp & SEND_BTH_QP_KDETH_QP_MASK) <<
14168 		  SEND_BTH_QP_KDETH_QP_SHIFT);
14169 
14170 	write_csr(dd, RCV_BTH_QP,
14171 		  (kdeth_qp & RCV_BTH_QP_KDETH_QP_MASK) <<
14172 		  RCV_BTH_QP_KDETH_QP_SHIFT);
14173 }
14174 
14175 /**
14176  * init_qpmap_table
14177  * @dd - device data
14178  * @first_ctxt - first context
14179  * @last_ctxt - first context
14180  *
14181  * This return sets the qpn mapping table that
14182  * is indexed by qpn[8:1].
14183  *
14184  * The routine will round robin the 256 settings
14185  * from first_ctxt to last_ctxt.
14186  *
14187  * The first/last looks ahead to having specialized
14188  * receive contexts for mgmt and bypass.  Normal
14189  * verbs traffic will assumed to be on a range
14190  * of receive contexts.
14191  */
init_qpmap_table(struct hfi1_devdata * dd,u32 first_ctxt,u32 last_ctxt)14192 static void init_qpmap_table(struct hfi1_devdata *dd,
14193 			     u32 first_ctxt,
14194 			     u32 last_ctxt)
14195 {
14196 	u64 reg = 0;
14197 	u64 regno = RCV_QP_MAP_TABLE;
14198 	int i;
14199 	u64 ctxt = first_ctxt;
14200 
14201 	for (i = 0; i < 256; i++) {
14202 		reg |= ctxt << (8 * (i % 8));
14203 		ctxt++;
14204 		if (ctxt > last_ctxt)
14205 			ctxt = first_ctxt;
14206 		if (i % 8 == 7) {
14207 			write_csr(dd, regno, reg);
14208 			reg = 0;
14209 			regno += 8;
14210 		}
14211 	}
14212 
14213 	add_rcvctrl(dd, RCV_CTRL_RCV_QP_MAP_ENABLE_SMASK
14214 			| RCV_CTRL_RCV_BYPASS_ENABLE_SMASK);
14215 }
14216 
14217 struct rsm_map_table {
14218 	u64 map[NUM_MAP_REGS];
14219 	unsigned int used;
14220 };
14221 
14222 struct rsm_rule_data {
14223 	u8 offset;
14224 	u8 pkt_type;
14225 	u32 field1_off;
14226 	u32 field2_off;
14227 	u32 index1_off;
14228 	u32 index1_width;
14229 	u32 index2_off;
14230 	u32 index2_width;
14231 	u32 mask1;
14232 	u32 value1;
14233 	u32 mask2;
14234 	u32 value2;
14235 };
14236 
14237 /*
14238  * Return an initialized RMT map table for users to fill in.  OK if it
14239  * returns NULL, indicating no table.
14240  */
alloc_rsm_map_table(struct hfi1_devdata * dd)14241 static struct rsm_map_table *alloc_rsm_map_table(struct hfi1_devdata *dd)
14242 {
14243 	struct rsm_map_table *rmt;
14244 	u8 rxcontext = is_ax(dd) ? 0 : 0xff;  /* 0 is default if a0 ver. */
14245 
14246 	rmt = kmalloc(sizeof(*rmt), GFP_KERNEL);
14247 	if (rmt) {
14248 		memset(rmt->map, rxcontext, sizeof(rmt->map));
14249 		rmt->used = 0;
14250 	}
14251 
14252 	return rmt;
14253 }
14254 
14255 /*
14256  * Write the final RMT map table to the chip and free the table.  OK if
14257  * table is NULL.
14258  */
complete_rsm_map_table(struct hfi1_devdata * dd,struct rsm_map_table * rmt)14259 static void complete_rsm_map_table(struct hfi1_devdata *dd,
14260 				   struct rsm_map_table *rmt)
14261 {
14262 	int i;
14263 
14264 	if (rmt) {
14265 		/* write table to chip */
14266 		for (i = 0; i < NUM_MAP_REGS; i++)
14267 			write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), rmt->map[i]);
14268 
14269 		/* enable RSM */
14270 		add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14271 	}
14272 }
14273 
14274 /*
14275  * Add a receive side mapping rule.
14276  */
add_rsm_rule(struct hfi1_devdata * dd,u8 rule_index,struct rsm_rule_data * rrd)14277 static void add_rsm_rule(struct hfi1_devdata *dd, u8 rule_index,
14278 			 struct rsm_rule_data *rrd)
14279 {
14280 	write_csr(dd, RCV_RSM_CFG + (8 * rule_index),
14281 		  (u64)rrd->offset << RCV_RSM_CFG_OFFSET_SHIFT |
14282 		  1ull << rule_index | /* enable bit */
14283 		  (u64)rrd->pkt_type << RCV_RSM_CFG_PACKET_TYPE_SHIFT);
14284 	write_csr(dd, RCV_RSM_SELECT + (8 * rule_index),
14285 		  (u64)rrd->field1_off << RCV_RSM_SELECT_FIELD1_OFFSET_SHIFT |
14286 		  (u64)rrd->field2_off << RCV_RSM_SELECT_FIELD2_OFFSET_SHIFT |
14287 		  (u64)rrd->index1_off << RCV_RSM_SELECT_INDEX1_OFFSET_SHIFT |
14288 		  (u64)rrd->index1_width << RCV_RSM_SELECT_INDEX1_WIDTH_SHIFT |
14289 		  (u64)rrd->index2_off << RCV_RSM_SELECT_INDEX2_OFFSET_SHIFT |
14290 		  (u64)rrd->index2_width << RCV_RSM_SELECT_INDEX2_WIDTH_SHIFT);
14291 	write_csr(dd, RCV_RSM_MATCH + (8 * rule_index),
14292 		  (u64)rrd->mask1 << RCV_RSM_MATCH_MASK1_SHIFT |
14293 		  (u64)rrd->value1 << RCV_RSM_MATCH_VALUE1_SHIFT |
14294 		  (u64)rrd->mask2 << RCV_RSM_MATCH_MASK2_SHIFT |
14295 		  (u64)rrd->value2 << RCV_RSM_MATCH_VALUE2_SHIFT);
14296 }
14297 
14298 /*
14299  * Clear a receive side mapping rule.
14300  */
clear_rsm_rule(struct hfi1_devdata * dd,u8 rule_index)14301 static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index)
14302 {
14303 	write_csr(dd, RCV_RSM_CFG + (8 * rule_index), 0);
14304 	write_csr(dd, RCV_RSM_SELECT + (8 * rule_index), 0);
14305 	write_csr(dd, RCV_RSM_MATCH + (8 * rule_index), 0);
14306 }
14307 
14308 /* return the number of RSM map table entries that will be used for QOS */
qos_rmt_entries(struct hfi1_devdata * dd,unsigned int * mp,unsigned int * np)14309 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
14310 			   unsigned int *np)
14311 {
14312 	int i;
14313 	unsigned int m, n;
14314 	u8 max_by_vl = 0;
14315 
14316 	/* is QOS active at all? */
14317 	if (dd->n_krcv_queues <= MIN_KERNEL_KCTXTS ||
14318 	    num_vls == 1 ||
14319 	    krcvqsset <= 1)
14320 		goto no_qos;
14321 
14322 	/* determine bits for qpn */
14323 	for (i = 0; i < min_t(unsigned int, num_vls, krcvqsset); i++)
14324 		if (krcvqs[i] > max_by_vl)
14325 			max_by_vl = krcvqs[i];
14326 	if (max_by_vl > 32)
14327 		goto no_qos;
14328 	m = ilog2(__roundup_pow_of_two(max_by_vl));
14329 
14330 	/* determine bits for vl */
14331 	n = ilog2(__roundup_pow_of_two(num_vls));
14332 
14333 	/* reject if too much is used */
14334 	if ((m + n) > 7)
14335 		goto no_qos;
14336 
14337 	if (mp)
14338 		*mp = m;
14339 	if (np)
14340 		*np = n;
14341 
14342 	return 1 << (m + n);
14343 
14344 no_qos:
14345 	if (mp)
14346 		*mp = 0;
14347 	if (np)
14348 		*np = 0;
14349 	return 0;
14350 }
14351 
14352 /**
14353  * init_qos - init RX qos
14354  * @dd - device data
14355  * @rmt - RSM map table
14356  *
14357  * This routine initializes Rule 0 and the RSM map table to implement
14358  * quality of service (qos).
14359  *
14360  * If all of the limit tests succeed, qos is applied based on the array
14361  * interpretation of krcvqs where entry 0 is VL0.
14362  *
14363  * The number of vl bits (n) and the number of qpn bits (m) are computed to
14364  * feed both the RSM map table and the single rule.
14365  */
init_qos(struct hfi1_devdata * dd,struct rsm_map_table * rmt)14366 static void init_qos(struct hfi1_devdata *dd, struct rsm_map_table *rmt)
14367 {
14368 	struct rsm_rule_data rrd;
14369 	unsigned qpns_per_vl, ctxt, i, qpn, n = 1, m;
14370 	unsigned int rmt_entries;
14371 	u64 reg;
14372 
14373 	if (!rmt)
14374 		goto bail;
14375 	rmt_entries = qos_rmt_entries(dd, &m, &n);
14376 	if (rmt_entries == 0)
14377 		goto bail;
14378 	qpns_per_vl = 1 << m;
14379 
14380 	/* enough room in the map table? */
14381 	rmt_entries = 1 << (m + n);
14382 	if (rmt->used + rmt_entries >= NUM_MAP_ENTRIES)
14383 		goto bail;
14384 
14385 	/* add qos entries to the the RSM map table */
14386 	for (i = 0, ctxt = FIRST_KERNEL_KCTXT; i < num_vls; i++) {
14387 		unsigned tctxt;
14388 
14389 		for (qpn = 0, tctxt = ctxt;
14390 		     krcvqs[i] && qpn < qpns_per_vl; qpn++) {
14391 			unsigned idx, regoff, regidx;
14392 
14393 			/* generate the index the hardware will produce */
14394 			idx = rmt->used + ((qpn << n) ^ i);
14395 			regoff = (idx % 8) * 8;
14396 			regidx = idx / 8;
14397 			/* replace default with context number */
14398 			reg = rmt->map[regidx];
14399 			reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK
14400 				<< regoff);
14401 			reg |= (u64)(tctxt++) << regoff;
14402 			rmt->map[regidx] = reg;
14403 			if (tctxt == ctxt + krcvqs[i])
14404 				tctxt = ctxt;
14405 		}
14406 		ctxt += krcvqs[i];
14407 	}
14408 
14409 	rrd.offset = rmt->used;
14410 	rrd.pkt_type = 2;
14411 	rrd.field1_off = LRH_BTH_MATCH_OFFSET;
14412 	rrd.field2_off = LRH_SC_MATCH_OFFSET;
14413 	rrd.index1_off = LRH_SC_SELECT_OFFSET;
14414 	rrd.index1_width = n;
14415 	rrd.index2_off = QPN_SELECT_OFFSET;
14416 	rrd.index2_width = m + n;
14417 	rrd.mask1 = LRH_BTH_MASK;
14418 	rrd.value1 = LRH_BTH_VALUE;
14419 	rrd.mask2 = LRH_SC_MASK;
14420 	rrd.value2 = LRH_SC_VALUE;
14421 
14422 	/* add rule 0 */
14423 	add_rsm_rule(dd, RSM_INS_VERBS, &rrd);
14424 
14425 	/* mark RSM map entries as used */
14426 	rmt->used += rmt_entries;
14427 	/* map everything else to the mcast/err/vl15 context */
14428 	init_qpmap_table(dd, HFI1_CTRL_CTXT, HFI1_CTRL_CTXT);
14429 	dd->qos_shift = n + 1;
14430 	return;
14431 bail:
14432 	dd->qos_shift = 1;
14433 	init_qpmap_table(dd, FIRST_KERNEL_KCTXT, dd->n_krcv_queues - 1);
14434 }
14435 
init_user_fecn_handling(struct hfi1_devdata * dd,struct rsm_map_table * rmt)14436 static void init_user_fecn_handling(struct hfi1_devdata *dd,
14437 				    struct rsm_map_table *rmt)
14438 {
14439 	struct rsm_rule_data rrd;
14440 	u64 reg;
14441 	int i, idx, regoff, regidx;
14442 	u8 offset;
14443 
14444 	/* there needs to be enough room in the map table */
14445 	if (rmt->used + dd->num_user_contexts >= NUM_MAP_ENTRIES) {
14446 		dd_dev_err(dd, "User FECN handling disabled - too many user contexts allocated\n");
14447 		return;
14448 	}
14449 
14450 	/*
14451 	 * RSM will extract the destination context as an index into the
14452 	 * map table.  The destination contexts are a sequential block
14453 	 * in the range first_dyn_alloc_ctxt...num_rcv_contexts-1 (inclusive).
14454 	 * Map entries are accessed as offset + extracted value.  Adjust
14455 	 * the added offset so this sequence can be placed anywhere in
14456 	 * the table - as long as the entries themselves do not wrap.
14457 	 * There are only enough bits in offset for the table size, so
14458 	 * start with that to allow for a "negative" offset.
14459 	 */
14460 	offset = (u8)(NUM_MAP_ENTRIES + (int)rmt->used -
14461 						(int)dd->first_dyn_alloc_ctxt);
14462 
14463 	for (i = dd->first_dyn_alloc_ctxt, idx = rmt->used;
14464 				i < dd->num_rcv_contexts; i++, idx++) {
14465 		/* replace with identity mapping */
14466 		regoff = (idx % 8) * 8;
14467 		regidx = idx / 8;
14468 		reg = rmt->map[regidx];
14469 		reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK << regoff);
14470 		reg |= (u64)i << regoff;
14471 		rmt->map[regidx] = reg;
14472 	}
14473 
14474 	/*
14475 	 * For RSM intercept of Expected FECN packets:
14476 	 * o packet type 0 - expected
14477 	 * o match on F (bit 95), using select/match 1, and
14478 	 * o match on SH (bit 133), using select/match 2.
14479 	 *
14480 	 * Use index 1 to extract the 8-bit receive context from DestQP
14481 	 * (start at bit 64).  Use that as the RSM map table index.
14482 	 */
14483 	rrd.offset = offset;
14484 	rrd.pkt_type = 0;
14485 	rrd.field1_off = 95;
14486 	rrd.field2_off = 133;
14487 	rrd.index1_off = 64;
14488 	rrd.index1_width = 8;
14489 	rrd.index2_off = 0;
14490 	rrd.index2_width = 0;
14491 	rrd.mask1 = 1;
14492 	rrd.value1 = 1;
14493 	rrd.mask2 = 1;
14494 	rrd.value2 = 1;
14495 
14496 	/* add rule 1 */
14497 	add_rsm_rule(dd, RSM_INS_FECN, &rrd);
14498 
14499 	rmt->used += dd->num_user_contexts;
14500 }
14501 
14502 /* Initialize RSM for VNIC */
hfi1_init_vnic_rsm(struct hfi1_devdata * dd)14503 void hfi1_init_vnic_rsm(struct hfi1_devdata *dd)
14504 {
14505 	u8 i, j;
14506 	u8 ctx_id = 0;
14507 	u64 reg;
14508 	u32 regoff;
14509 	struct rsm_rule_data rrd;
14510 
14511 	if (hfi1_vnic_is_rsm_full(dd, NUM_VNIC_MAP_ENTRIES)) {
14512 		dd_dev_err(dd, "Vnic RSM disabled, rmt entries used = %d\n",
14513 			   dd->vnic.rmt_start);
14514 		return;
14515 	}
14516 
14517 	dev_dbg(&(dd)->pcidev->dev, "Vnic rsm start = %d, end %d\n",
14518 		dd->vnic.rmt_start,
14519 		dd->vnic.rmt_start + NUM_VNIC_MAP_ENTRIES);
14520 
14521 	/* Update RSM mapping table, 32 regs, 256 entries - 1 ctx per byte */
14522 	regoff = RCV_RSM_MAP_TABLE + (dd->vnic.rmt_start / 8) * 8;
14523 	reg = read_csr(dd, regoff);
14524 	for (i = 0; i < NUM_VNIC_MAP_ENTRIES; i++) {
14525 		/* Update map register with vnic context */
14526 		j = (dd->vnic.rmt_start + i) % 8;
14527 		reg &= ~(0xffllu << (j * 8));
14528 		reg |= (u64)dd->vnic.ctxt[ctx_id++]->ctxt << (j * 8);
14529 		/* Wrap up vnic ctx index */
14530 		ctx_id %= dd->vnic.num_ctxt;
14531 		/* Write back map register */
14532 		if (j == 7 || ((i + 1) == NUM_VNIC_MAP_ENTRIES)) {
14533 			dev_dbg(&(dd)->pcidev->dev,
14534 				"Vnic rsm map reg[%d] =0x%llx\n",
14535 				regoff - RCV_RSM_MAP_TABLE, reg);
14536 
14537 			write_csr(dd, regoff, reg);
14538 			regoff += 8;
14539 			if (i < (NUM_VNIC_MAP_ENTRIES - 1))
14540 				reg = read_csr(dd, regoff);
14541 		}
14542 	}
14543 
14544 	/* Add rule for vnic */
14545 	rrd.offset = dd->vnic.rmt_start;
14546 	rrd.pkt_type = 4;
14547 	/* Match 16B packets */
14548 	rrd.field1_off = L2_TYPE_MATCH_OFFSET;
14549 	rrd.mask1 = L2_TYPE_MASK;
14550 	rrd.value1 = L2_16B_VALUE;
14551 	/* Match ETH L4 packets */
14552 	rrd.field2_off = L4_TYPE_MATCH_OFFSET;
14553 	rrd.mask2 = L4_16B_TYPE_MASK;
14554 	rrd.value2 = L4_16B_ETH_VALUE;
14555 	/* Calc context from veswid and entropy */
14556 	rrd.index1_off = L4_16B_HDR_VESWID_OFFSET;
14557 	rrd.index1_width = ilog2(NUM_VNIC_MAP_ENTRIES);
14558 	rrd.index2_off = L2_16B_ENTROPY_OFFSET;
14559 	rrd.index2_width = ilog2(NUM_VNIC_MAP_ENTRIES);
14560 	add_rsm_rule(dd, RSM_INS_VNIC, &rrd);
14561 
14562 	/* Enable RSM if not already enabled */
14563 	add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14564 }
14565 
hfi1_deinit_vnic_rsm(struct hfi1_devdata * dd)14566 void hfi1_deinit_vnic_rsm(struct hfi1_devdata *dd)
14567 {
14568 	clear_rsm_rule(dd, RSM_INS_VNIC);
14569 
14570 	/* Disable RSM if used only by vnic */
14571 	if (dd->vnic.rmt_start == 0)
14572 		clear_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14573 }
14574 
init_rxe(struct hfi1_devdata * dd)14575 static void init_rxe(struct hfi1_devdata *dd)
14576 {
14577 	struct rsm_map_table *rmt;
14578 	u64 val;
14579 
14580 	/* enable all receive errors */
14581 	write_csr(dd, RCV_ERR_MASK, ~0ull);
14582 
14583 	rmt = alloc_rsm_map_table(dd);
14584 	/* set up QOS, including the QPN map table */
14585 	init_qos(dd, rmt);
14586 	init_user_fecn_handling(dd, rmt);
14587 	complete_rsm_map_table(dd, rmt);
14588 	/* record number of used rsm map entries for vnic */
14589 	dd->vnic.rmt_start = rmt->used;
14590 	kfree(rmt);
14591 
14592 	/*
14593 	 * make sure RcvCtrl.RcvWcb <= PCIe Device Control
14594 	 * Register Max_Payload_Size (PCI_EXP_DEVCTL in Linux PCIe config
14595 	 * space, PciCfgCap2.MaxPayloadSize in HFI).  There is only one
14596 	 * invalid configuration: RcvCtrl.RcvWcb set to its max of 256 and
14597 	 * Max_PayLoad_Size set to its minimum of 128.
14598 	 *
14599 	 * Presently, RcvCtrl.RcvWcb is not modified from its default of 0
14600 	 * (64 bytes).  Max_Payload_Size is possibly modified upward in
14601 	 * tune_pcie_caps() which is called after this routine.
14602 	 */
14603 
14604 	/* Have 16 bytes (4DW) of bypass header available in header queue */
14605 	val = read_csr(dd, RCV_BYPASS);
14606 	val &= ~RCV_BYPASS_HDR_SIZE_SMASK;
14607 	val |= ((4ull & RCV_BYPASS_HDR_SIZE_MASK) <<
14608 		RCV_BYPASS_HDR_SIZE_SHIFT);
14609 	write_csr(dd, RCV_BYPASS, val);
14610 }
14611 
init_other(struct hfi1_devdata * dd)14612 static void init_other(struct hfi1_devdata *dd)
14613 {
14614 	/* enable all CCE errors */
14615 	write_csr(dd, CCE_ERR_MASK, ~0ull);
14616 	/* enable *some* Misc errors */
14617 	write_csr(dd, MISC_ERR_MASK, DRIVER_MISC_MASK);
14618 	/* enable all DC errors, except LCB */
14619 	write_csr(dd, DCC_ERR_FLG_EN, ~0ull);
14620 	write_csr(dd, DC_DC8051_ERR_EN, ~0ull);
14621 }
14622 
14623 /*
14624  * Fill out the given AU table using the given CU.  A CU is defined in terms
14625  * AUs.  The table is a an encoding: given the index, how many AUs does that
14626  * represent?
14627  *
14628  * NOTE: Assumes that the register layout is the same for the
14629  * local and remote tables.
14630  */
assign_cm_au_table(struct hfi1_devdata * dd,u32 cu,u32 csr0to3,u32 csr4to7)14631 static void assign_cm_au_table(struct hfi1_devdata *dd, u32 cu,
14632 			       u32 csr0to3, u32 csr4to7)
14633 {
14634 	write_csr(dd, csr0to3,
14635 		  0ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE0_SHIFT |
14636 		  1ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE1_SHIFT |
14637 		  2ull * cu <<
14638 		  SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE2_SHIFT |
14639 		  4ull * cu <<
14640 		  SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE3_SHIFT);
14641 	write_csr(dd, csr4to7,
14642 		  8ull * cu <<
14643 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE4_SHIFT |
14644 		  16ull * cu <<
14645 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE5_SHIFT |
14646 		  32ull * cu <<
14647 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE6_SHIFT |
14648 		  64ull * cu <<
14649 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE7_SHIFT);
14650 }
14651 
assign_local_cm_au_table(struct hfi1_devdata * dd,u8 vcu)14652 static void assign_local_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14653 {
14654 	assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_LOCAL_AU_TABLE0_TO3,
14655 			   SEND_CM_LOCAL_AU_TABLE4_TO7);
14656 }
14657 
assign_remote_cm_au_table(struct hfi1_devdata * dd,u8 vcu)14658 void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14659 {
14660 	assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_REMOTE_AU_TABLE0_TO3,
14661 			   SEND_CM_REMOTE_AU_TABLE4_TO7);
14662 }
14663 
init_txe(struct hfi1_devdata * dd)14664 static void init_txe(struct hfi1_devdata *dd)
14665 {
14666 	int i;
14667 
14668 	/* enable all PIO, SDMA, general, and Egress errors */
14669 	write_csr(dd, SEND_PIO_ERR_MASK, ~0ull);
14670 	write_csr(dd, SEND_DMA_ERR_MASK, ~0ull);
14671 	write_csr(dd, SEND_ERR_MASK, ~0ull);
14672 	write_csr(dd, SEND_EGRESS_ERR_MASK, ~0ull);
14673 
14674 	/* enable all per-context and per-SDMA engine errors */
14675 	for (i = 0; i < chip_send_contexts(dd); i++)
14676 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, ~0ull);
14677 	for (i = 0; i < chip_sdma_engines(dd); i++)
14678 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, ~0ull);
14679 
14680 	/* set the local CU to AU mapping */
14681 	assign_local_cm_au_table(dd, dd->vcu);
14682 
14683 	/*
14684 	 * Set reasonable default for Credit Return Timer
14685 	 * Don't set on Simulator - causes it to choke.
14686 	 */
14687 	if (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
14688 		write_csr(dd, SEND_CM_TIMER_CTRL, HFI1_CREDIT_RETURN_RATE);
14689 }
14690 
hfi1_set_ctxt_jkey(struct hfi1_devdata * dd,struct hfi1_ctxtdata * rcd,u16 jkey)14691 int hfi1_set_ctxt_jkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd,
14692 		       u16 jkey)
14693 {
14694 	u8 hw_ctxt;
14695 	u64 reg;
14696 
14697 	if (!rcd || !rcd->sc)
14698 		return -EINVAL;
14699 
14700 	hw_ctxt = rcd->sc->hw_context;
14701 	reg = SEND_CTXT_CHECK_JOB_KEY_MASK_SMASK | /* mask is always 1's */
14702 		((jkey & SEND_CTXT_CHECK_JOB_KEY_VALUE_MASK) <<
14703 		 SEND_CTXT_CHECK_JOB_KEY_VALUE_SHIFT);
14704 	/* JOB_KEY_ALLOW_PERMISSIVE is not allowed by default */
14705 	if (HFI1_CAP_KGET_MASK(rcd->flags, ALLOW_PERM_JKEY))
14706 		reg |= SEND_CTXT_CHECK_JOB_KEY_ALLOW_PERMISSIVE_SMASK;
14707 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_JOB_KEY, reg);
14708 	/*
14709 	 * Enable send-side J_KEY integrity check, unless this is A0 h/w
14710 	 */
14711 	if (!is_ax(dd)) {
14712 		reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14713 		reg |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14714 		write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14715 	}
14716 
14717 	/* Enable J_KEY check on receive context. */
14718 	reg = RCV_KEY_CTRL_JOB_KEY_ENABLE_SMASK |
14719 		((jkey & RCV_KEY_CTRL_JOB_KEY_VALUE_MASK) <<
14720 		 RCV_KEY_CTRL_JOB_KEY_VALUE_SHIFT);
14721 	write_kctxt_csr(dd, rcd->ctxt, RCV_KEY_CTRL, reg);
14722 
14723 	return 0;
14724 }
14725 
hfi1_clear_ctxt_jkey(struct hfi1_devdata * dd,struct hfi1_ctxtdata * rcd)14726 int hfi1_clear_ctxt_jkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
14727 {
14728 	u8 hw_ctxt;
14729 	u64 reg;
14730 
14731 	if (!rcd || !rcd->sc)
14732 		return -EINVAL;
14733 
14734 	hw_ctxt = rcd->sc->hw_context;
14735 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_JOB_KEY, 0);
14736 	/*
14737 	 * Disable send-side J_KEY integrity check, unless this is A0 h/w.
14738 	 * This check would not have been enabled for A0 h/w, see
14739 	 * set_ctxt_jkey().
14740 	 */
14741 	if (!is_ax(dd)) {
14742 		reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14743 		reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14744 		write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14745 	}
14746 	/* Turn off the J_KEY on the receive side */
14747 	write_kctxt_csr(dd, rcd->ctxt, RCV_KEY_CTRL, 0);
14748 
14749 	return 0;
14750 }
14751 
hfi1_set_ctxt_pkey(struct hfi1_devdata * dd,struct hfi1_ctxtdata * rcd,u16 pkey)14752 int hfi1_set_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd,
14753 		       u16 pkey)
14754 {
14755 	u8 hw_ctxt;
14756 	u64 reg;
14757 
14758 	if (!rcd || !rcd->sc)
14759 		return -EINVAL;
14760 
14761 	hw_ctxt = rcd->sc->hw_context;
14762 	reg = ((u64)pkey & SEND_CTXT_CHECK_PARTITION_KEY_VALUE_MASK) <<
14763 		SEND_CTXT_CHECK_PARTITION_KEY_VALUE_SHIFT;
14764 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, reg);
14765 	reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14766 	reg |= SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14767 	reg &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK;
14768 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14769 
14770 	return 0;
14771 }
14772 
hfi1_clear_ctxt_pkey(struct hfi1_devdata * dd,struct hfi1_ctxtdata * ctxt)14773 int hfi1_clear_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *ctxt)
14774 {
14775 	u8 hw_ctxt;
14776 	u64 reg;
14777 
14778 	if (!ctxt || !ctxt->sc)
14779 		return -EINVAL;
14780 
14781 	hw_ctxt = ctxt->sc->hw_context;
14782 	reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14783 	reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14784 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14785 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, 0);
14786 
14787 	return 0;
14788 }
14789 
14790 /*
14791  * Start doing the clean up the the chip. Our clean up happens in multiple
14792  * stages and this is just the first.
14793  */
hfi1_start_cleanup(struct hfi1_devdata * dd)14794 void hfi1_start_cleanup(struct hfi1_devdata *dd)
14795 {
14796 	aspm_exit(dd);
14797 	free_cntrs(dd);
14798 	free_rcverr(dd);
14799 	finish_chip_resources(dd);
14800 }
14801 
14802 #define HFI_BASE_GUID(dev) \
14803 	((dev)->base_guid & ~(1ULL << GUID_HFI_INDEX_SHIFT))
14804 
14805 /*
14806  * Information can be shared between the two HFIs on the same ASIC
14807  * in the same OS.  This function finds the peer device and sets
14808  * up a shared structure.
14809  */
init_asic_data(struct hfi1_devdata * dd)14810 static int init_asic_data(struct hfi1_devdata *dd)
14811 {
14812 	unsigned long flags;
14813 	struct hfi1_devdata *tmp, *peer = NULL;
14814 	struct hfi1_asic_data *asic_data;
14815 	int ret = 0;
14816 
14817 	/* pre-allocate the asic structure in case we are the first device */
14818 	asic_data = kzalloc(sizeof(*dd->asic_data), GFP_KERNEL);
14819 	if (!asic_data)
14820 		return -ENOMEM;
14821 
14822 	spin_lock_irqsave(&hfi1_devs_lock, flags);
14823 	/* Find our peer device */
14824 	list_for_each_entry(tmp, &hfi1_dev_list, list) {
14825 		if ((HFI_BASE_GUID(dd) == HFI_BASE_GUID(tmp)) &&
14826 		    dd->unit != tmp->unit) {
14827 			peer = tmp;
14828 			break;
14829 		}
14830 	}
14831 
14832 	if (peer) {
14833 		/* use already allocated structure */
14834 		dd->asic_data = peer->asic_data;
14835 		kfree(asic_data);
14836 	} else {
14837 		dd->asic_data = asic_data;
14838 		mutex_init(&dd->asic_data->asic_resource_mutex);
14839 	}
14840 	dd->asic_data->dds[dd->hfi1_id] = dd; /* self back-pointer */
14841 	spin_unlock_irqrestore(&hfi1_devs_lock, flags);
14842 
14843 	/* first one through - set up i2c devices */
14844 	if (!peer)
14845 		ret = set_up_i2c(dd, dd->asic_data);
14846 
14847 	return ret;
14848 }
14849 
14850 /*
14851  * Set dd->boardname.  Use a generic name if a name is not returned from
14852  * EFI variable space.
14853  *
14854  * Return 0 on success, -ENOMEM if space could not be allocated.
14855  */
obtain_boardname(struct hfi1_devdata * dd)14856 static int obtain_boardname(struct hfi1_devdata *dd)
14857 {
14858 	/* generic board description */
14859 	const char generic[] =
14860 		"Intel Omni-Path Host Fabric Interface Adapter 100 Series";
14861 	unsigned long size;
14862 	int ret;
14863 
14864 	ret = read_hfi1_efi_var(dd, "description", &size,
14865 				(void **)&dd->boardname);
14866 	if (ret) {
14867 		dd_dev_info(dd, "Board description not found\n");
14868 		/* use generic description */
14869 		dd->boardname = kstrdup(generic, GFP_KERNEL);
14870 		if (!dd->boardname)
14871 			return -ENOMEM;
14872 	}
14873 	return 0;
14874 }
14875 
14876 /*
14877  * Check the interrupt registers to make sure that they are mapped correctly.
14878  * It is intended to help user identify any mismapping by VMM when the driver
14879  * is running in a VM. This function should only be called before interrupt
14880  * is set up properly.
14881  *
14882  * Return 0 on success, -EINVAL on failure.
14883  */
check_int_registers(struct hfi1_devdata * dd)14884 static int check_int_registers(struct hfi1_devdata *dd)
14885 {
14886 	u64 reg;
14887 	u64 all_bits = ~(u64)0;
14888 	u64 mask;
14889 
14890 	/* Clear CceIntMask[0] to avoid raising any interrupts */
14891 	mask = read_csr(dd, CCE_INT_MASK);
14892 	write_csr(dd, CCE_INT_MASK, 0ull);
14893 	reg = read_csr(dd, CCE_INT_MASK);
14894 	if (reg)
14895 		goto err_exit;
14896 
14897 	/* Clear all interrupt status bits */
14898 	write_csr(dd, CCE_INT_CLEAR, all_bits);
14899 	reg = read_csr(dd, CCE_INT_STATUS);
14900 	if (reg)
14901 		goto err_exit;
14902 
14903 	/* Set all interrupt status bits */
14904 	write_csr(dd, CCE_INT_FORCE, all_bits);
14905 	reg = read_csr(dd, CCE_INT_STATUS);
14906 	if (reg != all_bits)
14907 		goto err_exit;
14908 
14909 	/* Restore the interrupt mask */
14910 	write_csr(dd, CCE_INT_CLEAR, all_bits);
14911 	write_csr(dd, CCE_INT_MASK, mask);
14912 
14913 	return 0;
14914 err_exit:
14915 	write_csr(dd, CCE_INT_MASK, mask);
14916 	dd_dev_err(dd, "Interrupt registers not properly mapped by VMM\n");
14917 	return -EINVAL;
14918 }
14919 
14920 /**
14921  * Allocate and initialize the device structure for the hfi.
14922  * @dev: the pci_dev for hfi1_ib device
14923  * @ent: pci_device_id struct for this dev
14924  *
14925  * Also allocates, initializes, and returns the devdata struct for this
14926  * device instance
14927  *
14928  * This is global, and is called directly at init to set up the
14929  * chip-specific function pointers for later use.
14930  */
hfi1_init_dd(struct pci_dev * pdev,const struct pci_device_id * ent)14931 struct hfi1_devdata *hfi1_init_dd(struct pci_dev *pdev,
14932 				  const struct pci_device_id *ent)
14933 {
14934 	struct hfi1_devdata *dd;
14935 	struct hfi1_pportdata *ppd;
14936 	u64 reg;
14937 	int i, ret;
14938 	static const char * const inames[] = { /* implementation names */
14939 		"RTL silicon",
14940 		"RTL VCS simulation",
14941 		"RTL FPGA emulation",
14942 		"Functional simulator"
14943 	};
14944 	struct pci_dev *parent = pdev->bus->self;
14945 	u32 sdma_engines;
14946 
14947 	dd = hfi1_alloc_devdata(pdev, NUM_IB_PORTS *
14948 				sizeof(struct hfi1_pportdata));
14949 	if (IS_ERR(dd))
14950 		goto bail;
14951 	sdma_engines = chip_sdma_engines(dd);
14952 	ppd = dd->pport;
14953 	for (i = 0; i < dd->num_pports; i++, ppd++) {
14954 		int vl;
14955 		/* init common fields */
14956 		hfi1_init_pportdata(pdev, ppd, dd, 0, 1);
14957 		/* DC supports 4 link widths */
14958 		ppd->link_width_supported =
14959 			OPA_LINK_WIDTH_1X | OPA_LINK_WIDTH_2X |
14960 			OPA_LINK_WIDTH_3X | OPA_LINK_WIDTH_4X;
14961 		ppd->link_width_downgrade_supported =
14962 			ppd->link_width_supported;
14963 		/* start out enabling only 4X */
14964 		ppd->link_width_enabled = OPA_LINK_WIDTH_4X;
14965 		ppd->link_width_downgrade_enabled =
14966 					ppd->link_width_downgrade_supported;
14967 		/* link width active is 0 when link is down */
14968 		/* link width downgrade active is 0 when link is down */
14969 
14970 		if (num_vls < HFI1_MIN_VLS_SUPPORTED ||
14971 		    num_vls > HFI1_MAX_VLS_SUPPORTED) {
14972 			dd_dev_err(dd, "Invalid num_vls %u, using %u VLs\n",
14973 				   num_vls, HFI1_MAX_VLS_SUPPORTED);
14974 			num_vls = HFI1_MAX_VLS_SUPPORTED;
14975 		}
14976 		ppd->vls_supported = num_vls;
14977 		ppd->vls_operational = ppd->vls_supported;
14978 		/* Set the default MTU. */
14979 		for (vl = 0; vl < num_vls; vl++)
14980 			dd->vld[vl].mtu = hfi1_max_mtu;
14981 		dd->vld[15].mtu = MAX_MAD_PACKET;
14982 		/*
14983 		 * Set the initial values to reasonable default, will be set
14984 		 * for real when link is up.
14985 		 */
14986 		ppd->overrun_threshold = 0x4;
14987 		ppd->phy_error_threshold = 0xf;
14988 		ppd->port_crc_mode_enabled = link_crc_mask;
14989 		/* initialize supported LTP CRC mode */
14990 		ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
14991 		/* initialize enabled LTP CRC mode */
14992 		ppd->port_ltp_crc_mode |= cap_to_port_ltp(link_crc_mask) << 4;
14993 		/* start in offline */
14994 		ppd->host_link_state = HLS_DN_OFFLINE;
14995 		init_vl_arb_caches(ppd);
14996 	}
14997 
14998 	/*
14999 	 * Do remaining PCIe setup and save PCIe values in dd.
15000 	 * Any error printing is already done by the init code.
15001 	 * On return, we have the chip mapped.
15002 	 */
15003 	ret = hfi1_pcie_ddinit(dd, pdev);
15004 	if (ret < 0)
15005 		goto bail_free;
15006 
15007 	/* Save PCI space registers to rewrite after device reset */
15008 	ret = save_pci_variables(dd);
15009 	if (ret < 0)
15010 		goto bail_cleanup;
15011 
15012 	dd->majrev = (dd->revision >> CCE_REVISION_CHIP_REV_MAJOR_SHIFT)
15013 			& CCE_REVISION_CHIP_REV_MAJOR_MASK;
15014 	dd->minrev = (dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT)
15015 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
15016 
15017 	/*
15018 	 * Check interrupt registers mapping if the driver has no access to
15019 	 * the upstream component. In this case, it is likely that the driver
15020 	 * is running in a VM.
15021 	 */
15022 	if (!parent) {
15023 		ret = check_int_registers(dd);
15024 		if (ret)
15025 			goto bail_cleanup;
15026 	}
15027 
15028 	/*
15029 	 * obtain the hardware ID - NOT related to unit, which is a
15030 	 * software enumeration
15031 	 */
15032 	reg = read_csr(dd, CCE_REVISION2);
15033 	dd->hfi1_id = (reg >> CCE_REVISION2_HFI_ID_SHIFT)
15034 					& CCE_REVISION2_HFI_ID_MASK;
15035 	/* the variable size will remove unwanted bits */
15036 	dd->icode = reg >> CCE_REVISION2_IMPL_CODE_SHIFT;
15037 	dd->irev = reg >> CCE_REVISION2_IMPL_REVISION_SHIFT;
15038 	dd_dev_info(dd, "Implementation: %s, revision 0x%x\n",
15039 		    dd->icode < ARRAY_SIZE(inames) ?
15040 		    inames[dd->icode] : "unknown", (int)dd->irev);
15041 
15042 	/* speeds the hardware can support */
15043 	dd->pport->link_speed_supported = OPA_LINK_SPEED_25G;
15044 	/* speeds allowed to run at */
15045 	dd->pport->link_speed_enabled = dd->pport->link_speed_supported;
15046 	/* give a reasonable active value, will be set on link up */
15047 	dd->pport->link_speed_active = OPA_LINK_SPEED_25G;
15048 
15049 	/* fix up link widths for emulation _p */
15050 	ppd = dd->pport;
15051 	if (dd->icode == ICODE_FPGA_EMULATION && is_emulator_p(dd)) {
15052 		ppd->link_width_supported =
15053 			ppd->link_width_enabled =
15054 			ppd->link_width_downgrade_supported =
15055 			ppd->link_width_downgrade_enabled =
15056 				OPA_LINK_WIDTH_1X;
15057 	}
15058 	/* insure num_vls isn't larger than number of sdma engines */
15059 	if (HFI1_CAP_IS_KSET(SDMA) && num_vls > sdma_engines) {
15060 		dd_dev_err(dd, "num_vls %u too large, using %u VLs\n",
15061 			   num_vls, sdma_engines);
15062 		num_vls = sdma_engines;
15063 		ppd->vls_supported = sdma_engines;
15064 		ppd->vls_operational = ppd->vls_supported;
15065 	}
15066 
15067 	/*
15068 	 * Convert the ns parameter to the 64 * cclocks used in the CSR.
15069 	 * Limit the max if larger than the field holds.  If timeout is
15070 	 * non-zero, then the calculated field will be at least 1.
15071 	 *
15072 	 * Must be after icode is set up - the cclock rate depends
15073 	 * on knowing the hardware being used.
15074 	 */
15075 	dd->rcv_intr_timeout_csr = ns_to_cclock(dd, rcv_intr_timeout) / 64;
15076 	if (dd->rcv_intr_timeout_csr >
15077 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK)
15078 		dd->rcv_intr_timeout_csr =
15079 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK;
15080 	else if (dd->rcv_intr_timeout_csr == 0 && rcv_intr_timeout)
15081 		dd->rcv_intr_timeout_csr = 1;
15082 
15083 	/* needs to be done before we look for the peer device */
15084 	read_guid(dd);
15085 
15086 	/* set up shared ASIC data with peer device */
15087 	ret = init_asic_data(dd);
15088 	if (ret)
15089 		goto bail_cleanup;
15090 
15091 	/* obtain chip sizes, reset chip CSRs */
15092 	ret = init_chip(dd);
15093 	if (ret)
15094 		goto bail_cleanup;
15095 
15096 	/* read in the PCIe link speed information */
15097 	ret = pcie_speeds(dd);
15098 	if (ret)
15099 		goto bail_cleanup;
15100 
15101 	/* call before get_platform_config(), after init_chip_resources() */
15102 	ret = eprom_init(dd);
15103 	if (ret)
15104 		goto bail_free_rcverr;
15105 
15106 	/* Needs to be called before hfi1_firmware_init */
15107 	get_platform_config(dd);
15108 
15109 	/* read in firmware */
15110 	ret = hfi1_firmware_init(dd);
15111 	if (ret)
15112 		goto bail_cleanup;
15113 
15114 	/*
15115 	 * In general, the PCIe Gen3 transition must occur after the
15116 	 * chip has been idled (so it won't initiate any PCIe transactions
15117 	 * e.g. an interrupt) and before the driver changes any registers
15118 	 * (the transition will reset the registers).
15119 	 *
15120 	 * In particular, place this call after:
15121 	 * - init_chip()     - the chip will not initiate any PCIe transactions
15122 	 * - pcie_speeds()   - reads the current link speed
15123 	 * - hfi1_firmware_init() - the needed firmware is ready to be
15124 	 *			    downloaded
15125 	 */
15126 	ret = do_pcie_gen3_transition(dd);
15127 	if (ret)
15128 		goto bail_cleanup;
15129 
15130 	/* start setting dd values and adjusting CSRs */
15131 	init_early_variables(dd);
15132 
15133 	parse_platform_config(dd);
15134 
15135 	ret = obtain_boardname(dd);
15136 	if (ret)
15137 		goto bail_cleanup;
15138 
15139 	snprintf(dd->boardversion, BOARD_VERS_MAX,
15140 		 "ChipABI %u.%u, ChipRev %u.%u, SW Compat %llu\n",
15141 		 HFI1_CHIP_VERS_MAJ, HFI1_CHIP_VERS_MIN,
15142 		 (u32)dd->majrev,
15143 		 (u32)dd->minrev,
15144 		 (dd->revision >> CCE_REVISION_SW_SHIFT)
15145 		    & CCE_REVISION_SW_MASK);
15146 
15147 	ret = set_up_context_variables(dd);
15148 	if (ret)
15149 		goto bail_cleanup;
15150 
15151 	/* set initial RXE CSRs */
15152 	init_rxe(dd);
15153 	/* set initial TXE CSRs */
15154 	init_txe(dd);
15155 	/* set initial non-RXE, non-TXE CSRs */
15156 	init_other(dd);
15157 	/* set up KDETH QP prefix in both RX and TX CSRs */
15158 	init_kdeth_qp(dd);
15159 
15160 	ret = hfi1_dev_affinity_init(dd);
15161 	if (ret)
15162 		goto bail_cleanup;
15163 
15164 	/* send contexts must be set up before receive contexts */
15165 	ret = init_send_contexts(dd);
15166 	if (ret)
15167 		goto bail_cleanup;
15168 
15169 	ret = hfi1_create_kctxts(dd);
15170 	if (ret)
15171 		goto bail_cleanup;
15172 
15173 	/*
15174 	 * Initialize aspm, to be done after gen3 transition and setting up
15175 	 * contexts and before enabling interrupts
15176 	 */
15177 	aspm_init(dd);
15178 
15179 	ret = init_pervl_scs(dd);
15180 	if (ret)
15181 		goto bail_cleanup;
15182 
15183 	/* sdma init */
15184 	for (i = 0; i < dd->num_pports; ++i) {
15185 		ret = sdma_init(dd, i);
15186 		if (ret)
15187 			goto bail_cleanup;
15188 	}
15189 
15190 	/* use contexts created by hfi1_create_kctxts */
15191 	ret = set_up_interrupts(dd);
15192 	if (ret)
15193 		goto bail_cleanup;
15194 
15195 	ret = hfi1_comp_vectors_set_up(dd);
15196 	if (ret)
15197 		goto bail_clear_intr;
15198 
15199 	/* set up LCB access - must be after set_up_interrupts() */
15200 	init_lcb_access(dd);
15201 
15202 	/*
15203 	 * Serial number is created from the base guid:
15204 	 * [27:24] = base guid [38:35]
15205 	 * [23: 0] = base guid [23: 0]
15206 	 */
15207 	snprintf(dd->serial, SERIAL_MAX, "0x%08llx\n",
15208 		 (dd->base_guid & 0xFFFFFF) |
15209 		     ((dd->base_guid >> 11) & 0xF000000));
15210 
15211 	dd->oui1 = dd->base_guid >> 56 & 0xFF;
15212 	dd->oui2 = dd->base_guid >> 48 & 0xFF;
15213 	dd->oui3 = dd->base_guid >> 40 & 0xFF;
15214 
15215 	ret = load_firmware(dd); /* asymmetric with dispose_firmware() */
15216 	if (ret)
15217 		goto bail_clear_intr;
15218 
15219 	thermal_init(dd);
15220 
15221 	ret = init_cntrs(dd);
15222 	if (ret)
15223 		goto bail_clear_intr;
15224 
15225 	ret = init_rcverr(dd);
15226 	if (ret)
15227 		goto bail_free_cntrs;
15228 
15229 	init_completion(&dd->user_comp);
15230 
15231 	/* The user refcount starts with one to inidicate an active device */
15232 	atomic_set(&dd->user_refcount, 1);
15233 
15234 	goto bail;
15235 
15236 bail_free_rcverr:
15237 	free_rcverr(dd);
15238 bail_free_cntrs:
15239 	free_cntrs(dd);
15240 bail_clear_intr:
15241 	hfi1_comp_vectors_clean_up(dd);
15242 	hfi1_clean_up_interrupts(dd);
15243 bail_cleanup:
15244 	hfi1_pcie_ddcleanup(dd);
15245 bail_free:
15246 	hfi1_free_devdata(dd);
15247 	dd = ERR_PTR(ret);
15248 bail:
15249 	return dd;
15250 }
15251 
delay_cycles(struct hfi1_pportdata * ppd,u32 desired_egress_rate,u32 dw_len)15252 static u16 delay_cycles(struct hfi1_pportdata *ppd, u32 desired_egress_rate,
15253 			u32 dw_len)
15254 {
15255 	u32 delta_cycles;
15256 	u32 current_egress_rate = ppd->current_egress_rate;
15257 	/* rates here are in units of 10^6 bits/sec */
15258 
15259 	if (desired_egress_rate == -1)
15260 		return 0; /* shouldn't happen */
15261 
15262 	if (desired_egress_rate >= current_egress_rate)
15263 		return 0; /* we can't help go faster, only slower */
15264 
15265 	delta_cycles = egress_cycles(dw_len * 4, desired_egress_rate) -
15266 			egress_cycles(dw_len * 4, current_egress_rate);
15267 
15268 	return (u16)delta_cycles;
15269 }
15270 
15271 /**
15272  * create_pbc - build a pbc for transmission
15273  * @flags: special case flags or-ed in built pbc
15274  * @srate: static rate
15275  * @vl: vl
15276  * @dwlen: dword length (header words + data words + pbc words)
15277  *
15278  * Create a PBC with the given flags, rate, VL, and length.
15279  *
15280  * NOTE: The PBC created will not insert any HCRC - all callers but one are
15281  * for verbs, which does not use this PSM feature.  The lone other caller
15282  * is for the diagnostic interface which calls this if the user does not
15283  * supply their own PBC.
15284  */
create_pbc(struct hfi1_pportdata * ppd,u64 flags,int srate_mbs,u32 vl,u32 dw_len)15285 u64 create_pbc(struct hfi1_pportdata *ppd, u64 flags, int srate_mbs, u32 vl,
15286 	       u32 dw_len)
15287 {
15288 	u64 pbc, delay = 0;
15289 
15290 	if (unlikely(srate_mbs))
15291 		delay = delay_cycles(ppd, srate_mbs, dw_len);
15292 
15293 	pbc = flags
15294 		| (delay << PBC_STATIC_RATE_CONTROL_COUNT_SHIFT)
15295 		| ((u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT)
15296 		| (vl & PBC_VL_MASK) << PBC_VL_SHIFT
15297 		| (dw_len & PBC_LENGTH_DWS_MASK)
15298 			<< PBC_LENGTH_DWS_SHIFT;
15299 
15300 	return pbc;
15301 }
15302 
15303 #define SBUS_THERMAL    0x4f
15304 #define SBUS_THERM_MONITOR_MODE 0x1
15305 
15306 #define THERM_FAILURE(dev, ret, reason) \
15307 	dd_dev_err((dd),						\
15308 		   "Thermal sensor initialization failed: %s (%d)\n",	\
15309 		   (reason), (ret))
15310 
15311 /*
15312  * Initialize the thermal sensor.
15313  *
15314  * After initialization, enable polling of thermal sensor through
15315  * SBus interface. In order for this to work, the SBus Master
15316  * firmware has to be loaded due to the fact that the HW polling
15317  * logic uses SBus interrupts, which are not supported with
15318  * default firmware. Otherwise, no data will be returned through
15319  * the ASIC_STS_THERM CSR.
15320  */
thermal_init(struct hfi1_devdata * dd)15321 static int thermal_init(struct hfi1_devdata *dd)
15322 {
15323 	int ret = 0;
15324 
15325 	if (dd->icode != ICODE_RTL_SILICON ||
15326 	    check_chip_resource(dd, CR_THERM_INIT, NULL))
15327 		return ret;
15328 
15329 	ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
15330 	if (ret) {
15331 		THERM_FAILURE(dd, ret, "Acquire SBus");
15332 		return ret;
15333 	}
15334 
15335 	dd_dev_info(dd, "Initializing thermal sensor\n");
15336 	/* Disable polling of thermal readings */
15337 	write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x0);
15338 	msleep(100);
15339 	/* Thermal Sensor Initialization */
15340 	/*    Step 1: Reset the Thermal SBus Receiver */
15341 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15342 				RESET_SBUS_RECEIVER, 0);
15343 	if (ret) {
15344 		THERM_FAILURE(dd, ret, "Bus Reset");
15345 		goto done;
15346 	}
15347 	/*    Step 2: Set Reset bit in Thermal block */
15348 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15349 				WRITE_SBUS_RECEIVER, 0x1);
15350 	if (ret) {
15351 		THERM_FAILURE(dd, ret, "Therm Block Reset");
15352 		goto done;
15353 	}
15354 	/*    Step 3: Write clock divider value (100MHz -> 2MHz) */
15355 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x1,
15356 				WRITE_SBUS_RECEIVER, 0x32);
15357 	if (ret) {
15358 		THERM_FAILURE(dd, ret, "Write Clock Div");
15359 		goto done;
15360 	}
15361 	/*    Step 4: Select temperature mode */
15362 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x3,
15363 				WRITE_SBUS_RECEIVER,
15364 				SBUS_THERM_MONITOR_MODE);
15365 	if (ret) {
15366 		THERM_FAILURE(dd, ret, "Write Mode Sel");
15367 		goto done;
15368 	}
15369 	/*    Step 5: De-assert block reset and start conversion */
15370 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15371 				WRITE_SBUS_RECEIVER, 0x2);
15372 	if (ret) {
15373 		THERM_FAILURE(dd, ret, "Write Reset Deassert");
15374 		goto done;
15375 	}
15376 	/*    Step 5.1: Wait for first conversion (21.5ms per spec) */
15377 	msleep(22);
15378 
15379 	/* Enable polling of thermal readings */
15380 	write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x1);
15381 
15382 	/* Set initialized flag */
15383 	ret = acquire_chip_resource(dd, CR_THERM_INIT, 0);
15384 	if (ret)
15385 		THERM_FAILURE(dd, ret, "Unable to set thermal init flag");
15386 
15387 done:
15388 	release_chip_resource(dd, CR_SBUS);
15389 	return ret;
15390 }
15391 
handle_temp_err(struct hfi1_devdata * dd)15392 static void handle_temp_err(struct hfi1_devdata *dd)
15393 {
15394 	struct hfi1_pportdata *ppd = &dd->pport[0];
15395 	/*
15396 	 * Thermal Critical Interrupt
15397 	 * Put the device into forced freeze mode, take link down to
15398 	 * offline, and put DC into reset.
15399 	 */
15400 	dd_dev_emerg(dd,
15401 		     "Critical temperature reached! Forcing device into freeze mode!\n");
15402 	dd->flags |= HFI1_FORCED_FREEZE;
15403 	start_freeze_handling(ppd, FREEZE_SELF | FREEZE_ABORT);
15404 	/*
15405 	 * Shut DC down as much and as quickly as possible.
15406 	 *
15407 	 * Step 1: Take the link down to OFFLINE. This will cause the
15408 	 *         8051 to put the Serdes in reset. However, we don't want to
15409 	 *         go through the entire link state machine since we want to
15410 	 *         shutdown ASAP. Furthermore, this is not a graceful shutdown
15411 	 *         but rather an attempt to save the chip.
15412 	 *         Code below is almost the same as quiet_serdes() but avoids
15413 	 *         all the extra work and the sleeps.
15414 	 */
15415 	ppd->driver_link_ready = 0;
15416 	ppd->link_enabled = 0;
15417 	set_physical_link_state(dd, (OPA_LINKDOWN_REASON_SMA_DISABLED << 8) |
15418 				PLS_OFFLINE);
15419 	/*
15420 	 * Step 2: Shutdown LCB and 8051
15421 	 *         After shutdown, do not restore DC_CFG_RESET value.
15422 	 */
15423 	dc_shutdown(dd);
15424 }
15425