1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Header file for dma buffer sharing framework.
4  *
5  * Copyright(C) 2011 Linaro Limited. All rights reserved.
6  * Author: Sumit Semwal <sumit.semwal@ti.com>
7  *
8  * Many thanks to linaro-mm-sig list, and specially
9  * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and
10  * Daniel Vetter <daniel@ffwll.ch> for their support in creation and
11  * refining of this idea.
12  */
13 #ifndef __DMA_BUF_H__
14 #define __DMA_BUF_H__
15 
16 #include <linux/file.h>
17 #include <linux/err.h>
18 #include <linux/scatterlist.h>
19 #include <linux/list.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/fs.h>
22 #include <linux/dma-fence.h>
23 #include <linux/wait.h>
24 
25 struct device;
26 struct dma_buf;
27 struct dma_buf_attachment;
28 
29 /**
30  * struct dma_buf_ops - operations possible on struct dma_buf
31  * @vmap: [optional] creates a virtual mapping for the buffer into kernel
32  *	  address space. Same restrictions as for vmap and friends apply.
33  * @vunmap: [optional] unmaps a vmap from the buffer
34  */
35 struct dma_buf_ops {
36 	/**
37 	  * @cache_sgt_mapping:
38 	  *
39 	  * If true the framework will cache the first mapping made for each
40 	  * attachment. This avoids creating mappings for attachments multiple
41 	  * times.
42 	  */
43 	bool cache_sgt_mapping;
44 
45 	/**
46 	 * @attach:
47 	 *
48 	 * This is called from dma_buf_attach() to make sure that a given
49 	 * &dma_buf_attachment.dev can access the provided &dma_buf. Exporters
50 	 * which support buffer objects in special locations like VRAM or
51 	 * device-specific carveout areas should check whether the buffer could
52 	 * be move to system memory (or directly accessed by the provided
53 	 * device), and otherwise need to fail the attach operation.
54 	 *
55 	 * The exporter should also in general check whether the current
56 	 * allocation fullfills the DMA constraints of the new device. If this
57 	 * is not the case, and the allocation cannot be moved, it should also
58 	 * fail the attach operation.
59 	 *
60 	 * Any exporter-private housekeeping data can be stored in the
61 	 * &dma_buf_attachment.priv pointer.
62 	 *
63 	 * This callback is optional.
64 	 *
65 	 * Returns:
66 	 *
67 	 * 0 on success, negative error code on failure. It might return -EBUSY
68 	 * to signal that backing storage is already allocated and incompatible
69 	 * with the requirements of requesting device.
70 	 */
71 	int (*attach)(struct dma_buf *, struct dma_buf_attachment *);
72 
73 	/**
74 	 * @detach:
75 	 *
76 	 * This is called by dma_buf_detach() to release a &dma_buf_attachment.
77 	 * Provided so that exporters can clean up any housekeeping for an
78 	 * &dma_buf_attachment.
79 	 *
80 	 * This callback is optional.
81 	 */
82 	void (*detach)(struct dma_buf *, struct dma_buf_attachment *);
83 
84 	/**
85 	 * @pin:
86 	 *
87 	 * This is called by dma_buf_pin and lets the exporter know that the
88 	 * DMA-buf can't be moved any more.
89 	 *
90 	 * This is called with the dmabuf->resv object locked and is mutual
91 	 * exclusive with @cache_sgt_mapping.
92 	 *
93 	 * This callback is optional and should only be used in limited use
94 	 * cases like scanout and not for temporary pin operations.
95 	 *
96 	 * Returns:
97 	 *
98 	 * 0 on success, negative error code on failure.
99 	 */
100 	int (*pin)(struct dma_buf_attachment *attach);
101 
102 	/**
103 	 * @unpin:
104 	 *
105 	 * This is called by dma_buf_unpin and lets the exporter know that the
106 	 * DMA-buf can be moved again.
107 	 *
108 	 * This is called with the dmabuf->resv object locked and is mutual
109 	 * exclusive with @cache_sgt_mapping.
110 	 *
111 	 * This callback is optional.
112 	 */
113 	void (*unpin)(struct dma_buf_attachment *attach);
114 
115 	/**
116 	 * @map_dma_buf:
117 	 *
118 	 * This is called by dma_buf_map_attachment() and is used to map a
119 	 * shared &dma_buf into device address space, and it is mandatory. It
120 	 * can only be called if @attach has been called successfully.
121 	 *
122 	 * This call may sleep, e.g. when the backing storage first needs to be
123 	 * allocated, or moved to a location suitable for all currently attached
124 	 * devices.
125 	 *
126 	 * Note that any specific buffer attributes required for this function
127 	 * should get added to device_dma_parameters accessible via
128 	 * &device.dma_params from the &dma_buf_attachment. The @attach callback
129 	 * should also check these constraints.
130 	 *
131 	 * If this is being called for the first time, the exporter can now
132 	 * choose to scan through the list of attachments for this buffer,
133 	 * collate the requirements of the attached devices, and choose an
134 	 * appropriate backing storage for the buffer.
135 	 *
136 	 * Based on enum dma_data_direction, it might be possible to have
137 	 * multiple users accessing at the same time (for reading, maybe), or
138 	 * any other kind of sharing that the exporter might wish to make
139 	 * available to buffer-users.
140 	 *
141 	 * This is always called with the dmabuf->resv object locked when
142 	 * the dynamic_mapping flag is true.
143 	 *
144 	 * Returns:
145 	 *
146 	 * A &sg_table scatter list of or the backing storage of the DMA buffer,
147 	 * already mapped into the device address space of the &device attached
148 	 * with the provided &dma_buf_attachment.
149 	 *
150 	 * On failure, returns a negative error value wrapped into a pointer.
151 	 * May also return -EINTR when a signal was received while being
152 	 * blocked.
153 	 */
154 	struct sg_table * (*map_dma_buf)(struct dma_buf_attachment *,
155 					 enum dma_data_direction);
156 	/**
157 	 * @unmap_dma_buf:
158 	 *
159 	 * This is called by dma_buf_unmap_attachment() and should unmap and
160 	 * release the &sg_table allocated in @map_dma_buf, and it is mandatory.
161 	 * For static dma_buf handling this might also unpins the backing
162 	 * storage if this is the last mapping of the DMA buffer.
163 	 */
164 	void (*unmap_dma_buf)(struct dma_buf_attachment *,
165 			      struct sg_table *,
166 			      enum dma_data_direction);
167 
168 	/* TODO: Add try_map_dma_buf version, to return immed with -EBUSY
169 	 * if the call would block.
170 	 */
171 
172 	/**
173 	 * @release:
174 	 *
175 	 * Called after the last dma_buf_put to release the &dma_buf, and
176 	 * mandatory.
177 	 */
178 	void (*release)(struct dma_buf *);
179 
180 	/**
181 	 * @begin_cpu_access:
182 	 *
183 	 * This is called from dma_buf_begin_cpu_access() and allows the
184 	 * exporter to ensure that the memory is actually available for cpu
185 	 * access - the exporter might need to allocate or swap-in and pin the
186 	 * backing storage. The exporter also needs to ensure that cpu access is
187 	 * coherent for the access direction. The direction can be used by the
188 	 * exporter to optimize the cache flushing, i.e. access with a different
189 	 * direction (read instead of write) might return stale or even bogus
190 	 * data (e.g. when the exporter needs to copy the data to temporary
191 	 * storage).
192 	 *
193 	 * This callback is optional.
194 	 *
195 	 * FIXME: This is both called through the DMA_BUF_IOCTL_SYNC command
196 	 * from userspace (where storage shouldn't be pinned to avoid handing
197 	 * de-factor mlock rights to userspace) and for the kernel-internal
198 	 * users of the various kmap interfaces, where the backing storage must
199 	 * be pinned to guarantee that the atomic kmap calls can succeed. Since
200 	 * there's no in-kernel users of the kmap interfaces yet this isn't a
201 	 * real problem.
202 	 *
203 	 * Returns:
204 	 *
205 	 * 0 on success or a negative error code on failure. This can for
206 	 * example fail when the backing storage can't be allocated. Can also
207 	 * return -ERESTARTSYS or -EINTR when the call has been interrupted and
208 	 * needs to be restarted.
209 	 */
210 	int (*begin_cpu_access)(struct dma_buf *, enum dma_data_direction);
211 
212 	/**
213 	 * @end_cpu_access:
214 	 *
215 	 * This is called from dma_buf_end_cpu_access() when the importer is
216 	 * done accessing the CPU. The exporter can use this to flush caches and
217 	 * unpin any resources pinned in @begin_cpu_access.
218 	 * The result of any dma_buf kmap calls after end_cpu_access is
219 	 * undefined.
220 	 *
221 	 * This callback is optional.
222 	 *
223 	 * Returns:
224 	 *
225 	 * 0 on success or a negative error code on failure. Can return
226 	 * -ERESTARTSYS or -EINTR when the call has been interrupted and needs
227 	 * to be restarted.
228 	 */
229 	int (*end_cpu_access)(struct dma_buf *, enum dma_data_direction);
230 
231 	/**
232 	 * @mmap:
233 	 *
234 	 * This callback is used by the dma_buf_mmap() function
235 	 *
236 	 * Note that the mapping needs to be incoherent, userspace is expected
237 	 * to braket CPU access using the DMA_BUF_IOCTL_SYNC interface.
238 	 *
239 	 * Because dma-buf buffers have invariant size over their lifetime, the
240 	 * dma-buf core checks whether a vma is too large and rejects such
241 	 * mappings. The exporter hence does not need to duplicate this check.
242 	 * Drivers do not need to check this themselves.
243 	 *
244 	 * If an exporter needs to manually flush caches and hence needs to fake
245 	 * coherency for mmap support, it needs to be able to zap all the ptes
246 	 * pointing at the backing storage. Now linux mm needs a struct
247 	 * address_space associated with the struct file stored in vma->vm_file
248 	 * to do that with the function unmap_mapping_range. But the dma_buf
249 	 * framework only backs every dma_buf fd with the anon_file struct file,
250 	 * i.e. all dma_bufs share the same file.
251 	 *
252 	 * Hence exporters need to setup their own file (and address_space)
253 	 * association by setting vma->vm_file and adjusting vma->vm_pgoff in
254 	 * the dma_buf mmap callback. In the specific case of a gem driver the
255 	 * exporter could use the shmem file already provided by gem (and set
256 	 * vm_pgoff = 0). Exporters can then zap ptes by unmapping the
257 	 * corresponding range of the struct address_space associated with their
258 	 * own file.
259 	 *
260 	 * This callback is optional.
261 	 *
262 	 * Returns:
263 	 *
264 	 * 0 on success or a negative error code on failure.
265 	 */
266 	int (*mmap)(struct dma_buf *, struct vm_area_struct *vma);
267 
268 	void *(*vmap)(struct dma_buf *);
269 	void (*vunmap)(struct dma_buf *, void *vaddr);
270 };
271 
272 /**
273  * struct dma_buf - shared buffer object
274  * @size: size of the buffer
275  * @file: file pointer used for sharing buffers across, and for refcounting.
276  * @attachments: list of dma_buf_attachment that denotes all devices attached,
277  *               protected by dma_resv lock.
278  * @ops: dma_buf_ops associated with this buffer object.
279  * @lock: used internally to serialize list manipulation, attach/detach and
280  *        vmap/unmap
281  * @vmapping_counter: used internally to refcnt the vmaps
282  * @vmap_ptr: the current vmap ptr if vmapping_counter > 0
283  * @exp_name: name of the exporter; useful for debugging.
284  * @name: userspace-provided name; useful for accounting and debugging,
285  *        protected by @resv.
286  * @name_lock: spinlock to protect name access
287  * @owner: pointer to exporter module; used for refcounting when exporter is a
288  *         kernel module.
289  * @list_node: node for dma_buf accounting and debugging.
290  * @priv: exporter specific private data for this buffer object.
291  * @resv: reservation object linked to this dma-buf
292  * @poll: for userspace poll support
293  * @cb_excl: for userspace poll support
294  * @cb_shared: for userspace poll support
295  *
296  * This represents a shared buffer, created by calling dma_buf_export(). The
297  * userspace representation is a normal file descriptor, which can be created by
298  * calling dma_buf_fd().
299  *
300  * Shared dma buffers are reference counted using dma_buf_put() and
301  * get_dma_buf().
302  *
303  * Device DMA access is handled by the separate &struct dma_buf_attachment.
304  */
305 struct dma_buf {
306 	size_t size;
307 	struct file *file;
308 	struct list_head attachments;
309 	const struct dma_buf_ops *ops;
310 	struct mutex lock;
311 	unsigned vmapping_counter;
312 	void *vmap_ptr;
313 	const char *exp_name;
314 	const char *name;
315 	spinlock_t name_lock;
316 	struct module *owner;
317 	struct list_head list_node;
318 	void *priv;
319 	struct dma_resv *resv;
320 
321 	/* poll support */
322 	wait_queue_head_t poll;
323 
324 	struct dma_buf_poll_cb_t {
325 		struct dma_fence_cb cb;
326 		wait_queue_head_t *poll;
327 
328 		__poll_t active;
329 	} cb_excl, cb_shared;
330 };
331 
332 /**
333  * struct dma_buf_attach_ops - importer operations for an attachment
334  *
335  * Attachment operations implemented by the importer.
336  */
337 struct dma_buf_attach_ops {
338 	/**
339 	 * @allow_peer2peer:
340 	 *
341 	 * If this is set to true the importer must be able to handle peer
342 	 * resources without struct pages.
343 	 */
344 	bool allow_peer2peer;
345 
346 	/**
347 	 * @move_notify: [optional] notification that the DMA-buf is moving
348 	 *
349 	 * If this callback is provided the framework can avoid pinning the
350 	 * backing store while mappings exists.
351 	 *
352 	 * This callback is called with the lock of the reservation object
353 	 * associated with the dma_buf held and the mapping function must be
354 	 * called with this lock held as well. This makes sure that no mapping
355 	 * is created concurrently with an ongoing move operation.
356 	 *
357 	 * Mappings stay valid and are not directly affected by this callback.
358 	 * But the DMA-buf can now be in a different physical location, so all
359 	 * mappings should be destroyed and re-created as soon as possible.
360 	 *
361 	 * New mappings can be created after this callback returns, and will
362 	 * point to the new location of the DMA-buf.
363 	 */
364 	void (*move_notify)(struct dma_buf_attachment *attach);
365 };
366 
367 /**
368  * struct dma_buf_attachment - holds device-buffer attachment data
369  * @dmabuf: buffer for this attachment.
370  * @dev: device attached to the buffer.
371  * @node: list of dma_buf_attachment, protected by dma_resv lock of the dmabuf.
372  * @sgt: cached mapping.
373  * @dir: direction of cached mapping.
374  * @peer2peer: true if the importer can handle peer resources without pages.
375  * @priv: exporter specific attachment data.
376  * @importer_ops: importer operations for this attachment, if provided
377  * dma_buf_map/unmap_attachment() must be called with the dma_resv lock held.
378  * @importer_priv: importer specific attachment data.
379  *
380  * This structure holds the attachment information between the dma_buf buffer
381  * and its user device(s). The list contains one attachment struct per device
382  * attached to the buffer.
383  *
384  * An attachment is created by calling dma_buf_attach(), and released again by
385  * calling dma_buf_detach(). The DMA mapping itself needed to initiate a
386  * transfer is created by dma_buf_map_attachment() and freed again by calling
387  * dma_buf_unmap_attachment().
388  */
389 struct dma_buf_attachment {
390 	struct dma_buf *dmabuf;
391 	struct device *dev;
392 	struct list_head node;
393 	struct sg_table *sgt;
394 	enum dma_data_direction dir;
395 	bool peer2peer;
396 	const struct dma_buf_attach_ops *importer_ops;
397 	void *importer_priv;
398 	void *priv;
399 };
400 
401 /**
402  * struct dma_buf_export_info - holds information needed to export a dma_buf
403  * @exp_name:	name of the exporter - useful for debugging.
404  * @owner:	pointer to exporter module - used for refcounting kernel module
405  * @ops:	Attach allocator-defined dma buf ops to the new buffer
406  * @size:	Size of the buffer
407  * @flags:	mode flags for the file
408  * @resv:	reservation-object, NULL to allocate default one
409  * @priv:	Attach private data of allocator to this buffer
410  *
411  * This structure holds the information required to export the buffer. Used
412  * with dma_buf_export() only.
413  */
414 struct dma_buf_export_info {
415 	const char *exp_name;
416 	struct module *owner;
417 	const struct dma_buf_ops *ops;
418 	size_t size;
419 	int flags;
420 	struct dma_resv *resv;
421 	void *priv;
422 };
423 
424 /**
425  * DEFINE_DMA_BUF_EXPORT_INFO - helper macro for exporters
426  * @name: export-info name
427  *
428  * DEFINE_DMA_BUF_EXPORT_INFO macro defines the &struct dma_buf_export_info,
429  * zeroes it out and pre-populates exp_name in it.
430  */
431 #define DEFINE_DMA_BUF_EXPORT_INFO(name)	\
432 	struct dma_buf_export_info name = { .exp_name = KBUILD_MODNAME, \
433 					 .owner = THIS_MODULE }
434 
435 /**
436  * get_dma_buf - convenience wrapper for get_file.
437  * @dmabuf:	[in]	pointer to dma_buf
438  *
439  * Increments the reference count on the dma-buf, needed in case of drivers
440  * that either need to create additional references to the dmabuf on the
441  * kernel side.  For example, an exporter that needs to keep a dmabuf ptr
442  * so that subsequent exports don't create a new dmabuf.
443  */
get_dma_buf(struct dma_buf * dmabuf)444 static inline void get_dma_buf(struct dma_buf *dmabuf)
445 {
446 	get_file(dmabuf->file);
447 }
448 
449 /**
450  * dma_buf_is_dynamic - check if a DMA-buf uses dynamic mappings.
451  * @dmabuf: the DMA-buf to check
452  *
453  * Returns true if a DMA-buf exporter wants to be called with the dma_resv
454  * locked for the map/unmap callbacks, false if it doesn't wants to be called
455  * with the lock held.
456  */
dma_buf_is_dynamic(struct dma_buf * dmabuf)457 static inline bool dma_buf_is_dynamic(struct dma_buf *dmabuf)
458 {
459 	return !!dmabuf->ops->pin;
460 }
461 
462 /**
463  * dma_buf_attachment_is_dynamic - check if a DMA-buf attachment uses dynamic
464  * mappinsg
465  * @attach: the DMA-buf attachment to check
466  *
467  * Returns true if a DMA-buf importer wants to call the map/unmap functions with
468  * the dma_resv lock held.
469  */
470 static inline bool
dma_buf_attachment_is_dynamic(struct dma_buf_attachment * attach)471 dma_buf_attachment_is_dynamic(struct dma_buf_attachment *attach)
472 {
473 	return !!attach->importer_ops;
474 }
475 
476 struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf,
477 					  struct device *dev);
478 struct dma_buf_attachment *
479 dma_buf_dynamic_attach(struct dma_buf *dmabuf, struct device *dev,
480 		       const struct dma_buf_attach_ops *importer_ops,
481 		       void *importer_priv);
482 void dma_buf_detach(struct dma_buf *dmabuf,
483 		    struct dma_buf_attachment *attach);
484 int dma_buf_pin(struct dma_buf_attachment *attach);
485 void dma_buf_unpin(struct dma_buf_attachment *attach);
486 
487 struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info);
488 
489 int dma_buf_fd(struct dma_buf *dmabuf, int flags);
490 struct dma_buf *dma_buf_get(int fd);
491 void dma_buf_put(struct dma_buf *dmabuf);
492 
493 struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *,
494 					enum dma_data_direction);
495 void dma_buf_unmap_attachment(struct dma_buf_attachment *, struct sg_table *,
496 				enum dma_data_direction);
497 void dma_buf_move_notify(struct dma_buf *dma_buf);
498 int dma_buf_begin_cpu_access(struct dma_buf *dma_buf,
499 			     enum dma_data_direction dir);
500 int dma_buf_end_cpu_access(struct dma_buf *dma_buf,
501 			   enum dma_data_direction dir);
502 
503 int dma_buf_mmap(struct dma_buf *, struct vm_area_struct *,
504 		 unsigned long);
505 void *dma_buf_vmap(struct dma_buf *);
506 void dma_buf_vunmap(struct dma_buf *, void *vaddr);
507 #endif /* __DMA_BUF_H__ */
508