1 /*
2 * Atheros CARL9170 driver
3 *
4 * 802.11 xmit & status routines
5 *
6 * Copyright 2008, Johannes Berg <johannes@sipsolutions.net>
7 * Copyright 2009, 2010, Christian Lamparter <chunkeey@googlemail.com>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; see the file COPYING. If not, see
21 * http://www.gnu.org/licenses/.
22 *
23 * This file incorporates work covered by the following copyright and
24 * permission notice:
25 * Copyright (c) 2007-2008 Atheros Communications, Inc.
26 *
27 * Permission to use, copy, modify, and/or distribute this software for any
28 * purpose with or without fee is hereby granted, provided that the above
29 * copyright notice and this permission notice appear in all copies.
30 *
31 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
32 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
33 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
34 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
35 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
36 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
37 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
38 */
39
40 #include <linux/slab.h>
41 #include <linux/module.h>
42 #include <linux/etherdevice.h>
43 #include <net/mac80211.h>
44 #include "carl9170.h"
45 #include "hw.h"
46 #include "cmd.h"
47
__carl9170_get_queue(struct ar9170 * ar,unsigned int queue)48 static inline unsigned int __carl9170_get_queue(struct ar9170 *ar,
49 unsigned int queue)
50 {
51 if (unlikely(modparam_noht)) {
52 return queue;
53 } else {
54 /*
55 * This is just another workaround, until
56 * someone figures out how to get QoS and
57 * AMPDU to play nicely together.
58 */
59
60 return 2; /* AC_BE */
61 }
62 }
63
carl9170_get_queue(struct ar9170 * ar,struct sk_buff * skb)64 static inline unsigned int carl9170_get_queue(struct ar9170 *ar,
65 struct sk_buff *skb)
66 {
67 return __carl9170_get_queue(ar, skb_get_queue_mapping(skb));
68 }
69
is_mem_full(struct ar9170 * ar)70 static bool is_mem_full(struct ar9170 *ar)
71 {
72 return (DIV_ROUND_UP(IEEE80211_MAX_FRAME_LEN, ar->fw.mem_block_size) >
73 atomic_read(&ar->mem_free_blocks));
74 }
75
carl9170_tx_accounting(struct ar9170 * ar,struct sk_buff * skb)76 static void carl9170_tx_accounting(struct ar9170 *ar, struct sk_buff *skb)
77 {
78 int queue, i;
79 bool mem_full;
80
81 atomic_inc(&ar->tx_total_queued);
82
83 queue = skb_get_queue_mapping(skb);
84 spin_lock_bh(&ar->tx_stats_lock);
85
86 /*
87 * The driver has to accept the frame, regardless if the queue is
88 * full to the brim, or not. We have to do the queuing internally,
89 * since mac80211 assumes that a driver which can operate with
90 * aggregated frames does not reject frames for this reason.
91 */
92 ar->tx_stats[queue].len++;
93 ar->tx_stats[queue].count++;
94
95 mem_full = is_mem_full(ar);
96 for (i = 0; i < ar->hw->queues; i++) {
97 if (mem_full || ar->tx_stats[i].len >= ar->tx_stats[i].limit) {
98 ieee80211_stop_queue(ar->hw, i);
99 ar->queue_stop_timeout[i] = jiffies;
100 }
101 }
102
103 spin_unlock_bh(&ar->tx_stats_lock);
104 }
105
106 /* needs rcu_read_lock */
__carl9170_get_tx_sta(struct ar9170 * ar,struct sk_buff * skb)107 static struct ieee80211_sta *__carl9170_get_tx_sta(struct ar9170 *ar,
108 struct sk_buff *skb)
109 {
110 struct _carl9170_tx_superframe *super = (void *) skb->data;
111 struct ieee80211_hdr *hdr = (void *) super->frame_data;
112 struct ieee80211_vif *vif;
113 unsigned int vif_id;
114
115 vif_id = (super->s.misc & CARL9170_TX_SUPER_MISC_VIF_ID) >>
116 CARL9170_TX_SUPER_MISC_VIF_ID_S;
117
118 if (WARN_ON_ONCE(vif_id >= AR9170_MAX_VIRTUAL_MAC))
119 return NULL;
120
121 vif = rcu_dereference(ar->vif_priv[vif_id].vif);
122 if (unlikely(!vif))
123 return NULL;
124
125 /*
126 * Normally we should use wrappers like ieee80211_get_DA to get
127 * the correct peer ieee80211_sta.
128 *
129 * But there is a problem with indirect traffic (broadcasts, or
130 * data which is designated for other stations) in station mode.
131 * The frame will be directed to the AP for distribution and not
132 * to the actual destination.
133 */
134
135 return ieee80211_find_sta(vif, hdr->addr1);
136 }
137
carl9170_tx_ps_unblock(struct ar9170 * ar,struct sk_buff * skb)138 static void carl9170_tx_ps_unblock(struct ar9170 *ar, struct sk_buff *skb)
139 {
140 struct ieee80211_sta *sta;
141 struct carl9170_sta_info *sta_info;
142
143 rcu_read_lock();
144 sta = __carl9170_get_tx_sta(ar, skb);
145 if (unlikely(!sta))
146 goto out_rcu;
147
148 sta_info = (struct carl9170_sta_info *) sta->drv_priv;
149 if (atomic_dec_return(&sta_info->pending_frames) == 0)
150 ieee80211_sta_block_awake(ar->hw, sta, false);
151
152 out_rcu:
153 rcu_read_unlock();
154 }
155
carl9170_tx_accounting_free(struct ar9170 * ar,struct sk_buff * skb)156 static void carl9170_tx_accounting_free(struct ar9170 *ar, struct sk_buff *skb)
157 {
158 int queue;
159
160 queue = skb_get_queue_mapping(skb);
161
162 spin_lock_bh(&ar->tx_stats_lock);
163
164 ar->tx_stats[queue].len--;
165
166 if (!is_mem_full(ar)) {
167 unsigned int i;
168 for (i = 0; i < ar->hw->queues; i++) {
169 if (ar->tx_stats[i].len >= CARL9170_NUM_TX_LIMIT_SOFT)
170 continue;
171
172 if (ieee80211_queue_stopped(ar->hw, i)) {
173 unsigned long tmp;
174
175 tmp = jiffies - ar->queue_stop_timeout[i];
176 if (tmp > ar->max_queue_stop_timeout[i])
177 ar->max_queue_stop_timeout[i] = tmp;
178 }
179
180 ieee80211_wake_queue(ar->hw, i);
181 }
182 }
183
184 spin_unlock_bh(&ar->tx_stats_lock);
185
186 if (atomic_dec_and_test(&ar->tx_total_queued))
187 complete(&ar->tx_flush);
188 }
189
carl9170_alloc_dev_space(struct ar9170 * ar,struct sk_buff * skb)190 static int carl9170_alloc_dev_space(struct ar9170 *ar, struct sk_buff *skb)
191 {
192 struct _carl9170_tx_superframe *super = (void *) skb->data;
193 unsigned int chunks;
194 int cookie = -1;
195
196 atomic_inc(&ar->mem_allocs);
197
198 chunks = DIV_ROUND_UP(skb->len, ar->fw.mem_block_size);
199 if (unlikely(atomic_sub_return(chunks, &ar->mem_free_blocks) < 0)) {
200 atomic_add(chunks, &ar->mem_free_blocks);
201 return -ENOSPC;
202 }
203
204 spin_lock_bh(&ar->mem_lock);
205 cookie = bitmap_find_free_region(ar->mem_bitmap, ar->fw.mem_blocks, 0);
206 spin_unlock_bh(&ar->mem_lock);
207
208 if (unlikely(cookie < 0)) {
209 atomic_add(chunks, &ar->mem_free_blocks);
210 return -ENOSPC;
211 }
212
213 super = (void *) skb->data;
214
215 /*
216 * Cookie #0 serves two special purposes:
217 * 1. The firmware might use it generate BlockACK frames
218 * in responds of an incoming BlockAckReqs.
219 *
220 * 2. Prevent double-free bugs.
221 */
222 super->s.cookie = (u8) cookie + 1;
223 return 0;
224 }
225
carl9170_release_dev_space(struct ar9170 * ar,struct sk_buff * skb)226 static void carl9170_release_dev_space(struct ar9170 *ar, struct sk_buff *skb)
227 {
228 struct _carl9170_tx_superframe *super = (void *) skb->data;
229 int cookie;
230
231 /* make a local copy of the cookie */
232 cookie = super->s.cookie;
233 /* invalidate cookie */
234 super->s.cookie = 0;
235
236 /*
237 * Do a out-of-bounds check on the cookie:
238 *
239 * * cookie "0" is reserved and won't be assigned to any
240 * out-going frame. Internally however, it is used to
241 * mark no longer/un-accounted frames and serves as a
242 * cheap way of preventing frames from being freed
243 * twice by _accident_. NB: There is a tiny race...
244 *
245 * * obviously, cookie number is limited by the amount
246 * of available memory blocks, so the number can
247 * never execeed the mem_blocks count.
248 */
249 if (WARN_ON_ONCE(cookie == 0) ||
250 WARN_ON_ONCE(cookie > ar->fw.mem_blocks))
251 return;
252
253 atomic_add(DIV_ROUND_UP(skb->len, ar->fw.mem_block_size),
254 &ar->mem_free_blocks);
255
256 spin_lock_bh(&ar->mem_lock);
257 bitmap_release_region(ar->mem_bitmap, cookie - 1, 0);
258 spin_unlock_bh(&ar->mem_lock);
259 }
260
261 /* Called from any context */
carl9170_tx_release(struct kref * ref)262 static void carl9170_tx_release(struct kref *ref)
263 {
264 struct ar9170 *ar;
265 struct carl9170_tx_info *arinfo;
266 struct ieee80211_tx_info *txinfo;
267 struct sk_buff *skb;
268
269 arinfo = container_of(ref, struct carl9170_tx_info, ref);
270 txinfo = container_of((void *) arinfo, struct ieee80211_tx_info,
271 rate_driver_data);
272 skb = container_of((void *) txinfo, struct sk_buff, cb);
273
274 ar = arinfo->ar;
275 if (WARN_ON_ONCE(!ar))
276 return;
277
278 /*
279 * This does not call ieee80211_tx_info_clear_status() because
280 * carl9170_tx_fill_rateinfo() has filled the rate information
281 * before we get to this point.
282 */
283 memset_after(&txinfo->status, 0, rates);
284
285 if (atomic_read(&ar->tx_total_queued))
286 ar->tx_schedule = true;
287
288 if (txinfo->flags & IEEE80211_TX_CTL_AMPDU) {
289 if (!atomic_read(&ar->tx_ampdu_upload))
290 ar->tx_ampdu_schedule = true;
291
292 if (txinfo->flags & IEEE80211_TX_STAT_AMPDU) {
293 struct _carl9170_tx_superframe *super;
294
295 super = (void *)skb->data;
296 txinfo->status.ampdu_len = super->s.rix;
297 txinfo->status.ampdu_ack_len = super->s.cnt;
298 } else if ((txinfo->flags & IEEE80211_TX_STAT_ACK) &&
299 !(txinfo->flags & IEEE80211_TX_CTL_REQ_TX_STATUS)) {
300 /*
301 * drop redundant tx_status reports:
302 *
303 * 1. ampdu_ack_len of the final tx_status does
304 * include the feedback of this particular frame.
305 *
306 * 2. tx_status_irqsafe only queues up to 128
307 * tx feedback reports and discards the rest.
308 *
309 * 3. minstrel_ht is picky, it only accepts
310 * reports of frames with the TX_STATUS_AMPDU flag.
311 *
312 * 4. mac80211 is not particularly interested in
313 * feedback either [CTL_REQ_TX_STATUS not set]
314 */
315
316 ieee80211_free_txskb(ar->hw, skb);
317 return;
318 } else {
319 /*
320 * Either the frame transmission has failed or
321 * mac80211 requested tx status.
322 */
323 }
324 }
325
326 skb_pull(skb, sizeof(struct _carl9170_tx_superframe));
327 ieee80211_tx_status_irqsafe(ar->hw, skb);
328 }
329
carl9170_tx_get_skb(struct sk_buff * skb)330 void carl9170_tx_get_skb(struct sk_buff *skb)
331 {
332 struct carl9170_tx_info *arinfo = (void *)
333 (IEEE80211_SKB_CB(skb))->rate_driver_data;
334 kref_get(&arinfo->ref);
335 }
336
carl9170_tx_put_skb(struct sk_buff * skb)337 int carl9170_tx_put_skb(struct sk_buff *skb)
338 {
339 struct carl9170_tx_info *arinfo = (void *)
340 (IEEE80211_SKB_CB(skb))->rate_driver_data;
341
342 return kref_put(&arinfo->ref, carl9170_tx_release);
343 }
344
345 /* Caller must hold the tid_info->lock & rcu_read_lock */
carl9170_tx_shift_bm(struct ar9170 * ar,struct carl9170_sta_tid * tid_info,u16 seq)346 static void carl9170_tx_shift_bm(struct ar9170 *ar,
347 struct carl9170_sta_tid *tid_info, u16 seq)
348 {
349 u16 off;
350
351 off = SEQ_DIFF(seq, tid_info->bsn);
352
353 if (WARN_ON_ONCE(off >= CARL9170_BAW_BITS))
354 return;
355
356 /*
357 * Sanity check. For each MPDU we set the bit in bitmap and
358 * clear it once we received the tx_status.
359 * But if the bit is already cleared then we've been bitten
360 * by a bug.
361 */
362 WARN_ON_ONCE(!test_and_clear_bit(off, tid_info->bitmap));
363
364 off = SEQ_DIFF(tid_info->snx, tid_info->bsn);
365 if (WARN_ON_ONCE(off >= CARL9170_BAW_BITS))
366 return;
367
368 if (!bitmap_empty(tid_info->bitmap, off))
369 off = find_first_bit(tid_info->bitmap, off);
370
371 tid_info->bsn += off;
372 tid_info->bsn &= 0x0fff;
373
374 bitmap_shift_right(tid_info->bitmap, tid_info->bitmap,
375 off, CARL9170_BAW_BITS);
376 }
377
carl9170_tx_status_process_ampdu(struct ar9170 * ar,struct sk_buff * skb,struct ieee80211_tx_info * txinfo)378 static void carl9170_tx_status_process_ampdu(struct ar9170 *ar,
379 struct sk_buff *skb, struct ieee80211_tx_info *txinfo)
380 {
381 struct _carl9170_tx_superframe *super = (void *) skb->data;
382 struct ieee80211_hdr *hdr = (void *) super->frame_data;
383 struct ieee80211_sta *sta;
384 struct carl9170_sta_info *sta_info;
385 struct carl9170_sta_tid *tid_info;
386 u8 tid;
387
388 if (!(txinfo->flags & IEEE80211_TX_CTL_AMPDU) ||
389 txinfo->flags & IEEE80211_TX_CTL_INJECTED)
390 return;
391
392 rcu_read_lock();
393 sta = __carl9170_get_tx_sta(ar, skb);
394 if (unlikely(!sta))
395 goto out_rcu;
396
397 tid = ieee80211_get_tid(hdr);
398
399 sta_info = (void *) sta->drv_priv;
400 tid_info = rcu_dereference(sta_info->agg[tid]);
401 if (!tid_info)
402 goto out_rcu;
403
404 spin_lock_bh(&tid_info->lock);
405 if (likely(tid_info->state >= CARL9170_TID_STATE_IDLE))
406 carl9170_tx_shift_bm(ar, tid_info, get_seq_h(hdr));
407
408 if (sta_info->stats[tid].clear) {
409 sta_info->stats[tid].clear = false;
410 sta_info->stats[tid].req = false;
411 sta_info->stats[tid].ampdu_len = 0;
412 sta_info->stats[tid].ampdu_ack_len = 0;
413 }
414
415 sta_info->stats[tid].ampdu_len++;
416 if (txinfo->status.rates[0].count == 1)
417 sta_info->stats[tid].ampdu_ack_len++;
418
419 if (!(txinfo->flags & IEEE80211_TX_STAT_ACK))
420 sta_info->stats[tid].req = true;
421
422 if (super->f.mac_control & cpu_to_le16(AR9170_TX_MAC_IMM_BA)) {
423 super->s.rix = sta_info->stats[tid].ampdu_len;
424 super->s.cnt = sta_info->stats[tid].ampdu_ack_len;
425 txinfo->flags |= IEEE80211_TX_STAT_AMPDU;
426 if (sta_info->stats[tid].req)
427 txinfo->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
428
429 sta_info->stats[tid].clear = true;
430 }
431 spin_unlock_bh(&tid_info->lock);
432
433 out_rcu:
434 rcu_read_unlock();
435 }
436
carl9170_tx_bar_status(struct ar9170 * ar,struct sk_buff * skb,struct ieee80211_tx_info * tx_info)437 static void carl9170_tx_bar_status(struct ar9170 *ar, struct sk_buff *skb,
438 struct ieee80211_tx_info *tx_info)
439 {
440 struct _carl9170_tx_superframe *super = (void *) skb->data;
441 struct ieee80211_bar *bar = (void *) super->frame_data;
442
443 /*
444 * Unlike all other frames, the status report for BARs does
445 * not directly come from the hardware as it is incapable of
446 * matching a BA to a previously send BAR.
447 * Instead the RX-path will scan for incoming BAs and set the
448 * IEEE80211_TX_STAT_ACK if it sees one that was likely
449 * caused by a BAR from us.
450 */
451
452 if (unlikely(ieee80211_is_back_req(bar->frame_control)) &&
453 !(tx_info->flags & IEEE80211_TX_STAT_ACK)) {
454 struct carl9170_bar_list_entry *entry;
455 int queue = skb_get_queue_mapping(skb);
456
457 rcu_read_lock();
458 list_for_each_entry_rcu(entry, &ar->bar_list[queue], list) {
459 if (entry->skb == skb) {
460 spin_lock_bh(&ar->bar_list_lock[queue]);
461 list_del_rcu(&entry->list);
462 spin_unlock_bh(&ar->bar_list_lock[queue]);
463 kfree_rcu(entry, head);
464 goto out;
465 }
466 }
467
468 WARN(1, "bar not found in %d - ra:%pM ta:%pM c:%x ssn:%x\n",
469 queue, bar->ra, bar->ta, bar->control,
470 bar->start_seq_num);
471 out:
472 rcu_read_unlock();
473 }
474 }
475
carl9170_tx_status(struct ar9170 * ar,struct sk_buff * skb,const bool success)476 void carl9170_tx_status(struct ar9170 *ar, struct sk_buff *skb,
477 const bool success)
478 {
479 struct ieee80211_tx_info *txinfo;
480
481 carl9170_tx_accounting_free(ar, skb);
482
483 txinfo = IEEE80211_SKB_CB(skb);
484
485 carl9170_tx_bar_status(ar, skb, txinfo);
486
487 if (success)
488 txinfo->flags |= IEEE80211_TX_STAT_ACK;
489 else
490 ar->tx_ack_failures++;
491
492 if (txinfo->flags & IEEE80211_TX_CTL_AMPDU)
493 carl9170_tx_status_process_ampdu(ar, skb, txinfo);
494
495 carl9170_tx_ps_unblock(ar, skb);
496 carl9170_tx_put_skb(skb);
497 }
498
499 /* This function may be called form any context */
carl9170_tx_callback(struct ar9170 * ar,struct sk_buff * skb)500 void carl9170_tx_callback(struct ar9170 *ar, struct sk_buff *skb)
501 {
502 struct ieee80211_tx_info *txinfo = IEEE80211_SKB_CB(skb);
503
504 atomic_dec(&ar->tx_total_pending);
505
506 if (txinfo->flags & IEEE80211_TX_CTL_AMPDU)
507 atomic_dec(&ar->tx_ampdu_upload);
508
509 if (carl9170_tx_put_skb(skb))
510 tasklet_hi_schedule(&ar->usb_tasklet);
511 }
512
carl9170_get_queued_skb(struct ar9170 * ar,u8 cookie,struct sk_buff_head * queue)513 static struct sk_buff *carl9170_get_queued_skb(struct ar9170 *ar, u8 cookie,
514 struct sk_buff_head *queue)
515 {
516 struct sk_buff *skb;
517
518 spin_lock_bh(&queue->lock);
519 skb_queue_walk(queue, skb) {
520 struct _carl9170_tx_superframe *txc = (void *) skb->data;
521
522 if (txc->s.cookie != cookie)
523 continue;
524
525 __skb_unlink(skb, queue);
526 spin_unlock_bh(&queue->lock);
527
528 carl9170_release_dev_space(ar, skb);
529 return skb;
530 }
531 spin_unlock_bh(&queue->lock);
532
533 return NULL;
534 }
535
carl9170_tx_fill_rateinfo(struct ar9170 * ar,unsigned int rix,unsigned int tries,struct ieee80211_tx_info * txinfo)536 static void carl9170_tx_fill_rateinfo(struct ar9170 *ar, unsigned int rix,
537 unsigned int tries, struct ieee80211_tx_info *txinfo)
538 {
539 unsigned int i;
540
541 for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) {
542 if (txinfo->status.rates[i].idx < 0)
543 break;
544
545 if (i == rix) {
546 txinfo->status.rates[i].count = tries;
547 i++;
548 break;
549 }
550 }
551
552 for (; i < IEEE80211_TX_MAX_RATES; i++) {
553 txinfo->status.rates[i].idx = -1;
554 txinfo->status.rates[i].count = 0;
555 }
556 }
557
carl9170_check_queue_stop_timeout(struct ar9170 * ar)558 static void carl9170_check_queue_stop_timeout(struct ar9170 *ar)
559 {
560 int i;
561 struct sk_buff *skb;
562 struct ieee80211_tx_info *txinfo;
563 struct carl9170_tx_info *arinfo;
564 bool restart = false;
565
566 for (i = 0; i < ar->hw->queues; i++) {
567 spin_lock_bh(&ar->tx_status[i].lock);
568
569 skb = skb_peek(&ar->tx_status[i]);
570
571 if (!skb)
572 goto next;
573
574 txinfo = IEEE80211_SKB_CB(skb);
575 arinfo = (void *) txinfo->rate_driver_data;
576
577 if (time_is_before_jiffies(arinfo->timeout +
578 msecs_to_jiffies(CARL9170_QUEUE_STUCK_TIMEOUT)) == true)
579 restart = true;
580
581 next:
582 spin_unlock_bh(&ar->tx_status[i].lock);
583 }
584
585 if (restart) {
586 /*
587 * At least one queue has been stuck for long enough.
588 * Give the device a kick and hope it gets back to
589 * work.
590 *
591 * possible reasons may include:
592 * - frames got lost/corrupted (bad connection to the device)
593 * - stalled rx processing/usb controller hiccups
594 * - firmware errors/bugs
595 * - every bug you can think of.
596 * - all bugs you can't...
597 * - ...
598 */
599 carl9170_restart(ar, CARL9170_RR_STUCK_TX);
600 }
601 }
602
carl9170_tx_ampdu_timeout(struct ar9170 * ar)603 static void carl9170_tx_ampdu_timeout(struct ar9170 *ar)
604 {
605 struct carl9170_sta_tid *iter;
606 struct sk_buff *skb;
607 struct ieee80211_tx_info *txinfo;
608 struct carl9170_tx_info *arinfo;
609 struct ieee80211_sta *sta;
610
611 rcu_read_lock();
612 list_for_each_entry_rcu(iter, &ar->tx_ampdu_list, list) {
613 if (iter->state < CARL9170_TID_STATE_IDLE)
614 continue;
615
616 spin_lock_bh(&iter->lock);
617 skb = skb_peek(&iter->queue);
618 if (!skb)
619 goto unlock;
620
621 txinfo = IEEE80211_SKB_CB(skb);
622 arinfo = (void *)txinfo->rate_driver_data;
623 if (time_is_after_jiffies(arinfo->timeout +
624 msecs_to_jiffies(CARL9170_QUEUE_TIMEOUT)))
625 goto unlock;
626
627 sta = iter->sta;
628 if (WARN_ON(!sta))
629 goto unlock;
630
631 ieee80211_stop_tx_ba_session(sta, iter->tid);
632 unlock:
633 spin_unlock_bh(&iter->lock);
634
635 }
636 rcu_read_unlock();
637 }
638
carl9170_tx_janitor(struct work_struct * work)639 void carl9170_tx_janitor(struct work_struct *work)
640 {
641 struct ar9170 *ar = container_of(work, struct ar9170,
642 tx_janitor.work);
643 if (!IS_STARTED(ar))
644 return;
645
646 ar->tx_janitor_last_run = jiffies;
647
648 carl9170_check_queue_stop_timeout(ar);
649 carl9170_tx_ampdu_timeout(ar);
650
651 if (!atomic_read(&ar->tx_total_queued))
652 return;
653
654 ieee80211_queue_delayed_work(ar->hw, &ar->tx_janitor,
655 msecs_to_jiffies(CARL9170_TX_TIMEOUT));
656 }
657
__carl9170_tx_process_status(struct ar9170 * ar,const uint8_t cookie,const uint8_t info)658 static void __carl9170_tx_process_status(struct ar9170 *ar,
659 const uint8_t cookie, const uint8_t info)
660 {
661 struct sk_buff *skb;
662 struct ieee80211_tx_info *txinfo;
663 unsigned int r, t, q;
664 bool success = true;
665
666 q = ar9170_qmap(info & CARL9170_TX_STATUS_QUEUE);
667
668 skb = carl9170_get_queued_skb(ar, cookie, &ar->tx_status[q]);
669 if (!skb) {
670 /*
671 * We have lost the race to another thread.
672 */
673
674 return ;
675 }
676
677 txinfo = IEEE80211_SKB_CB(skb);
678
679 if (!(info & CARL9170_TX_STATUS_SUCCESS))
680 success = false;
681
682 r = (info & CARL9170_TX_STATUS_RIX) >> CARL9170_TX_STATUS_RIX_S;
683 t = (info & CARL9170_TX_STATUS_TRIES) >> CARL9170_TX_STATUS_TRIES_S;
684
685 carl9170_tx_fill_rateinfo(ar, r, t, txinfo);
686 carl9170_tx_status(ar, skb, success);
687 }
688
carl9170_tx_process_status(struct ar9170 * ar,const struct carl9170_rsp * cmd)689 void carl9170_tx_process_status(struct ar9170 *ar,
690 const struct carl9170_rsp *cmd)
691 {
692 unsigned int i;
693
694 for (i = 0; i < cmd->hdr.ext; i++) {
695 if (WARN_ON(i > ((cmd->hdr.len / 2) + 1))) {
696 print_hex_dump_bytes("UU:", DUMP_PREFIX_NONE,
697 (void *) cmd, cmd->hdr.len + 4);
698 break;
699 }
700
701 __carl9170_tx_process_status(ar, cmd->_tx_status[i].cookie,
702 cmd->_tx_status[i].info);
703 }
704 }
705
carl9170_tx_rate_tpc_chains(struct ar9170 * ar,struct ieee80211_tx_info * info,struct ieee80211_tx_rate * txrate,unsigned int * phyrate,unsigned int * tpc,unsigned int * chains)706 static void carl9170_tx_rate_tpc_chains(struct ar9170 *ar,
707 struct ieee80211_tx_info *info, struct ieee80211_tx_rate *txrate,
708 unsigned int *phyrate, unsigned int *tpc, unsigned int *chains)
709 {
710 struct ieee80211_rate *rate = NULL;
711 u8 *txpower;
712 unsigned int idx;
713
714 idx = txrate->idx;
715 *tpc = 0;
716 *phyrate = 0;
717
718 if (txrate->flags & IEEE80211_TX_RC_MCS) {
719 if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) {
720 /* +1 dBm for HT40 */
721 *tpc += 2;
722
723 if (info->band == NL80211_BAND_2GHZ)
724 txpower = ar->power_2G_ht40;
725 else
726 txpower = ar->power_5G_ht40;
727 } else {
728 if (info->band == NL80211_BAND_2GHZ)
729 txpower = ar->power_2G_ht20;
730 else
731 txpower = ar->power_5G_ht20;
732 }
733
734 *phyrate = txrate->idx;
735 *tpc += txpower[idx & 7];
736 } else {
737 if (info->band == NL80211_BAND_2GHZ) {
738 if (idx < 4)
739 txpower = ar->power_2G_cck;
740 else
741 txpower = ar->power_2G_ofdm;
742 } else {
743 txpower = ar->power_5G_leg;
744 idx += 4;
745 }
746
747 rate = &__carl9170_ratetable[idx];
748 *tpc += txpower[(rate->hw_value & 0x30) >> 4];
749 *phyrate = rate->hw_value & 0xf;
750 }
751
752 if (ar->eeprom.tx_mask == 1) {
753 *chains = AR9170_TX_PHY_TXCHAIN_1;
754 } else {
755 if (!(txrate->flags & IEEE80211_TX_RC_MCS) &&
756 rate && rate->bitrate >= 360)
757 *chains = AR9170_TX_PHY_TXCHAIN_1;
758 else
759 *chains = AR9170_TX_PHY_TXCHAIN_2;
760 }
761
762 *tpc = min_t(unsigned int, *tpc, ar->hw->conf.power_level * 2);
763 }
764
carl9170_tx_physet(struct ar9170 * ar,struct ieee80211_tx_info * info,struct ieee80211_tx_rate * txrate)765 static __le32 carl9170_tx_physet(struct ar9170 *ar,
766 struct ieee80211_tx_info *info, struct ieee80211_tx_rate *txrate)
767 {
768 unsigned int power = 0, chains = 0, phyrate = 0;
769 __le32 tmp;
770
771 tmp = cpu_to_le32(0);
772
773 if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
774 tmp |= cpu_to_le32(AR9170_TX_PHY_BW_40MHZ <<
775 AR9170_TX_PHY_BW_S);
776 /* this works because 40 MHz is 2 and dup is 3 */
777 if (txrate->flags & IEEE80211_TX_RC_DUP_DATA)
778 tmp |= cpu_to_le32(AR9170_TX_PHY_BW_40MHZ_DUP <<
779 AR9170_TX_PHY_BW_S);
780
781 if (txrate->flags & IEEE80211_TX_RC_SHORT_GI)
782 tmp |= cpu_to_le32(AR9170_TX_PHY_SHORT_GI);
783
784 if (txrate->flags & IEEE80211_TX_RC_MCS) {
785 SET_VAL(AR9170_TX_PHY_MCS, phyrate, txrate->idx);
786
787 /* heavy clip control */
788 tmp |= cpu_to_le32((txrate->idx & 0x7) <<
789 AR9170_TX_PHY_TX_HEAVY_CLIP_S);
790
791 tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_HT);
792
793 /*
794 * green field preamble does not work.
795 *
796 * if (txrate->flags & IEEE80211_TX_RC_GREEN_FIELD)
797 * tmp |= cpu_to_le32(AR9170_TX_PHY_GREENFIELD);
798 */
799 } else {
800 if (info->band == NL80211_BAND_2GHZ) {
801 if (txrate->idx <= AR9170_TX_PHY_RATE_CCK_11M)
802 tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_CCK);
803 else
804 tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_OFDM);
805 } else {
806 tmp |= cpu_to_le32(AR9170_TX_PHY_MOD_OFDM);
807 }
808
809 /*
810 * short preamble seems to be broken too.
811 *
812 * if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
813 * tmp |= cpu_to_le32(AR9170_TX_PHY_SHORT_PREAMBLE);
814 */
815 }
816 carl9170_tx_rate_tpc_chains(ar, info, txrate,
817 &phyrate, &power, &chains);
818
819 tmp |= cpu_to_le32(SET_CONSTVAL(AR9170_TX_PHY_MCS, phyrate));
820 tmp |= cpu_to_le32(SET_CONSTVAL(AR9170_TX_PHY_TX_PWR, power));
821 tmp |= cpu_to_le32(SET_CONSTVAL(AR9170_TX_PHY_TXCHAIN, chains));
822 return tmp;
823 }
824
carl9170_tx_rts_check(struct ar9170 * ar,struct ieee80211_tx_rate * rate,bool ampdu,bool multi)825 static bool carl9170_tx_rts_check(struct ar9170 *ar,
826 struct ieee80211_tx_rate *rate,
827 bool ampdu, bool multi)
828 {
829 switch (ar->erp_mode) {
830 case CARL9170_ERP_AUTO:
831 if (ampdu)
832 break;
833 fallthrough;
834
835 case CARL9170_ERP_MAC80211:
836 if (!(rate->flags & IEEE80211_TX_RC_USE_RTS_CTS))
837 break;
838 fallthrough;
839
840 case CARL9170_ERP_RTS:
841 if (likely(!multi))
842 return true;
843 break;
844
845 default:
846 break;
847 }
848
849 return false;
850 }
851
carl9170_tx_cts_check(struct ar9170 * ar,struct ieee80211_tx_rate * rate)852 static bool carl9170_tx_cts_check(struct ar9170 *ar,
853 struct ieee80211_tx_rate *rate)
854 {
855 switch (ar->erp_mode) {
856 case CARL9170_ERP_AUTO:
857 case CARL9170_ERP_MAC80211:
858 if (!(rate->flags & IEEE80211_TX_RC_USE_CTS_PROTECT))
859 break;
860 fallthrough;
861
862 case CARL9170_ERP_CTS:
863 return true;
864
865 default:
866 break;
867 }
868
869 return false;
870 }
871
carl9170_tx_get_rates(struct ar9170 * ar,struct ieee80211_vif * vif,struct ieee80211_sta * sta,struct sk_buff * skb)872 static void carl9170_tx_get_rates(struct ar9170 *ar,
873 struct ieee80211_vif *vif,
874 struct ieee80211_sta *sta,
875 struct sk_buff *skb)
876 {
877 struct ieee80211_tx_info *info;
878
879 BUILD_BUG_ON(IEEE80211_TX_MAX_RATES < CARL9170_TX_MAX_RATES);
880 BUILD_BUG_ON(IEEE80211_TX_MAX_RATES > IEEE80211_TX_RATE_TABLE_SIZE);
881
882 info = IEEE80211_SKB_CB(skb);
883
884 ieee80211_get_tx_rates(vif, sta, skb,
885 info->control.rates,
886 IEEE80211_TX_MAX_RATES);
887 }
888
carl9170_tx_apply_rateset(struct ar9170 * ar,struct ieee80211_tx_info * sinfo,struct sk_buff * skb)889 static void carl9170_tx_apply_rateset(struct ar9170 *ar,
890 struct ieee80211_tx_info *sinfo,
891 struct sk_buff *skb)
892 {
893 struct ieee80211_tx_rate *txrate;
894 struct ieee80211_tx_info *info;
895 struct _carl9170_tx_superframe *txc = (void *) skb->data;
896 int i;
897 bool ampdu;
898 bool no_ack;
899
900 info = IEEE80211_SKB_CB(skb);
901 ampdu = !!(info->flags & IEEE80211_TX_CTL_AMPDU);
902 no_ack = !!(info->flags & IEEE80211_TX_CTL_NO_ACK);
903
904 /* Set the rate control probe flag for all (sub-) frames.
905 * This is because the TX_STATS_AMPDU flag is only set on
906 * the last frame, so it has to be inherited.
907 */
908 info->flags |= (sinfo->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
909
910 /* NOTE: For the first rate, the ERP & AMPDU flags are directly
911 * taken from mac_control. For all fallback rate, the firmware
912 * updates the mac_control flags from the rate info field.
913 */
914 for (i = 0; i < CARL9170_TX_MAX_RATES; i++) {
915 __le32 phy_set;
916
917 txrate = &sinfo->control.rates[i];
918 if (txrate->idx < 0)
919 break;
920
921 phy_set = carl9170_tx_physet(ar, info, txrate);
922 if (i == 0) {
923 __le16 mac_tmp = cpu_to_le16(0);
924
925 /* first rate - part of the hw's frame header */
926 txc->f.phy_control = phy_set;
927
928 if (ampdu && txrate->flags & IEEE80211_TX_RC_MCS)
929 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_AGGR);
930
931 if (carl9170_tx_rts_check(ar, txrate, ampdu, no_ack))
932 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_PROT_RTS);
933 else if (carl9170_tx_cts_check(ar, txrate))
934 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_PROT_CTS);
935
936 txc->f.mac_control |= mac_tmp;
937 } else {
938 /* fallback rates are stored in the firmware's
939 * retry rate set array.
940 */
941 txc->s.rr[i - 1] = phy_set;
942 }
943
944 SET_VAL(CARL9170_TX_SUPER_RI_TRIES, txc->s.ri[i],
945 txrate->count);
946
947 if (carl9170_tx_rts_check(ar, txrate, ampdu, no_ack))
948 txc->s.ri[i] |= (AR9170_TX_MAC_PROT_RTS <<
949 CARL9170_TX_SUPER_RI_ERP_PROT_S);
950 else if (carl9170_tx_cts_check(ar, txrate))
951 txc->s.ri[i] |= (AR9170_TX_MAC_PROT_CTS <<
952 CARL9170_TX_SUPER_RI_ERP_PROT_S);
953
954 if (ampdu && (txrate->flags & IEEE80211_TX_RC_MCS))
955 txc->s.ri[i] |= CARL9170_TX_SUPER_RI_AMPDU;
956 }
957 }
958
carl9170_tx_prepare(struct ar9170 * ar,struct ieee80211_sta * sta,struct sk_buff * skb)959 static int carl9170_tx_prepare(struct ar9170 *ar,
960 struct ieee80211_sta *sta,
961 struct sk_buff *skb)
962 {
963 struct ieee80211_hdr *hdr;
964 struct _carl9170_tx_superframe *txc;
965 struct carl9170_vif_info *cvif;
966 struct ieee80211_tx_info *info;
967 struct carl9170_tx_info *arinfo;
968 unsigned int hw_queue;
969 __le16 mac_tmp;
970 u16 len;
971
972 BUILD_BUG_ON(sizeof(*arinfo) > sizeof(info->rate_driver_data));
973 BUILD_BUG_ON(sizeof(struct _carl9170_tx_superdesc) !=
974 CARL9170_TX_SUPERDESC_LEN);
975
976 BUILD_BUG_ON(sizeof(struct _ar9170_tx_hwdesc) !=
977 AR9170_TX_HWDESC_LEN);
978
979 BUILD_BUG_ON(AR9170_MAX_VIRTUAL_MAC >
980 ((CARL9170_TX_SUPER_MISC_VIF_ID >>
981 CARL9170_TX_SUPER_MISC_VIF_ID_S) + 1));
982
983 hw_queue = ar9170_qmap(carl9170_get_queue(ar, skb));
984
985 hdr = (void *)skb->data;
986 info = IEEE80211_SKB_CB(skb);
987 len = skb->len;
988
989 /*
990 * Note: If the frame was sent through a monitor interface,
991 * the ieee80211_vif pointer can be NULL.
992 */
993 if (likely(info->control.vif))
994 cvif = (void *) info->control.vif->drv_priv;
995 else
996 cvif = NULL;
997
998 txc = skb_push(skb, sizeof(*txc));
999 memset(txc, 0, sizeof(*txc));
1000
1001 SET_VAL(CARL9170_TX_SUPER_MISC_QUEUE, txc->s.misc, hw_queue);
1002
1003 if (likely(cvif))
1004 SET_VAL(CARL9170_TX_SUPER_MISC_VIF_ID, txc->s.misc, cvif->id);
1005
1006 if (unlikely(info->flags & IEEE80211_TX_CTL_SEND_AFTER_DTIM))
1007 txc->s.misc |= CARL9170_TX_SUPER_MISC_CAB;
1008
1009 if (unlikely(info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ))
1010 txc->s.misc |= CARL9170_TX_SUPER_MISC_ASSIGN_SEQ;
1011
1012 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control)))
1013 txc->s.misc |= CARL9170_TX_SUPER_MISC_FILL_IN_TSF;
1014
1015 mac_tmp = cpu_to_le16(AR9170_TX_MAC_HW_DURATION |
1016 AR9170_TX_MAC_BACKOFF);
1017 mac_tmp |= cpu_to_le16((hw_queue << AR9170_TX_MAC_QOS_S) &
1018 AR9170_TX_MAC_QOS);
1019
1020 if (unlikely(info->flags & IEEE80211_TX_CTL_NO_ACK))
1021 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_NO_ACK);
1022
1023 if (info->control.hw_key) {
1024 len += info->control.hw_key->icv_len;
1025
1026 switch (info->control.hw_key->cipher) {
1027 case WLAN_CIPHER_SUITE_WEP40:
1028 case WLAN_CIPHER_SUITE_WEP104:
1029 case WLAN_CIPHER_SUITE_TKIP:
1030 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_ENCR_RC4);
1031 break;
1032 case WLAN_CIPHER_SUITE_CCMP:
1033 mac_tmp |= cpu_to_le16(AR9170_TX_MAC_ENCR_AES);
1034 break;
1035 default:
1036 WARN_ON(1);
1037 goto err_out;
1038 }
1039 }
1040
1041 if (info->flags & IEEE80211_TX_CTL_AMPDU) {
1042 unsigned int density, factor;
1043
1044 if (unlikely(!sta || !cvif))
1045 goto err_out;
1046
1047 factor = min_t(unsigned int, 1u,
1048 sta->deflink.ht_cap.ampdu_factor);
1049 density = sta->deflink.ht_cap.ampdu_density;
1050
1051 if (density) {
1052 /*
1053 * Watch out!
1054 *
1055 * Otus uses slightly different density values than
1056 * those from the 802.11n spec.
1057 */
1058
1059 density = max_t(unsigned int, density + 1, 7u);
1060 }
1061
1062 SET_VAL(CARL9170_TX_SUPER_AMPDU_DENSITY,
1063 txc->s.ampdu_settings, density);
1064
1065 SET_VAL(CARL9170_TX_SUPER_AMPDU_FACTOR,
1066 txc->s.ampdu_settings, factor);
1067 }
1068
1069 txc->s.len = cpu_to_le16(skb->len);
1070 txc->f.length = cpu_to_le16(len + FCS_LEN);
1071 txc->f.mac_control = mac_tmp;
1072
1073 arinfo = (void *)info->rate_driver_data;
1074 arinfo->timeout = jiffies;
1075 arinfo->ar = ar;
1076 kref_init(&arinfo->ref);
1077 return 0;
1078
1079 err_out:
1080 skb_pull(skb, sizeof(*txc));
1081 return -EINVAL;
1082 }
1083
carl9170_set_immba(struct ar9170 * ar,struct sk_buff * skb)1084 static void carl9170_set_immba(struct ar9170 *ar, struct sk_buff *skb)
1085 {
1086 struct _carl9170_tx_superframe *super;
1087
1088 super = (void *) skb->data;
1089 super->f.mac_control |= cpu_to_le16(AR9170_TX_MAC_IMM_BA);
1090 }
1091
carl9170_set_ampdu_params(struct ar9170 * ar,struct sk_buff * skb)1092 static void carl9170_set_ampdu_params(struct ar9170 *ar, struct sk_buff *skb)
1093 {
1094 struct _carl9170_tx_superframe *super;
1095 int tmp;
1096
1097 super = (void *) skb->data;
1098
1099 tmp = (super->s.ampdu_settings & CARL9170_TX_SUPER_AMPDU_DENSITY) <<
1100 CARL9170_TX_SUPER_AMPDU_DENSITY_S;
1101
1102 /*
1103 * If you haven't noticed carl9170_tx_prepare has already filled
1104 * in all ampdu spacing & factor parameters.
1105 * Now it's the time to check whenever the settings have to be
1106 * updated by the firmware, or if everything is still the same.
1107 *
1108 * There's no sane way to handle different density values with
1109 * this hardware, so we may as well just do the compare in the
1110 * driver.
1111 */
1112
1113 if (tmp != ar->current_density) {
1114 ar->current_density = tmp;
1115 super->s.ampdu_settings |=
1116 CARL9170_TX_SUPER_AMPDU_COMMIT_DENSITY;
1117 }
1118
1119 tmp = (super->s.ampdu_settings & CARL9170_TX_SUPER_AMPDU_FACTOR) <<
1120 CARL9170_TX_SUPER_AMPDU_FACTOR_S;
1121
1122 if (tmp != ar->current_factor) {
1123 ar->current_factor = tmp;
1124 super->s.ampdu_settings |=
1125 CARL9170_TX_SUPER_AMPDU_COMMIT_FACTOR;
1126 }
1127 }
1128
carl9170_tx_ampdu(struct ar9170 * ar)1129 static void carl9170_tx_ampdu(struct ar9170 *ar)
1130 {
1131 struct sk_buff_head agg;
1132 struct carl9170_sta_tid *tid_info;
1133 struct sk_buff *skb, *first;
1134 struct ieee80211_tx_info *tx_info_first;
1135 unsigned int i = 0, done_ampdus = 0;
1136 u16 seq, queue, tmpssn;
1137
1138 atomic_inc(&ar->tx_ampdu_scheduler);
1139 ar->tx_ampdu_schedule = false;
1140
1141 if (atomic_read(&ar->tx_ampdu_upload))
1142 return;
1143
1144 if (!ar->tx_ampdu_list_len)
1145 return;
1146
1147 __skb_queue_head_init(&agg);
1148
1149 rcu_read_lock();
1150 tid_info = rcu_dereference(ar->tx_ampdu_iter);
1151 if (WARN_ON_ONCE(!tid_info)) {
1152 rcu_read_unlock();
1153 return;
1154 }
1155
1156 retry:
1157 list_for_each_entry_continue_rcu(tid_info, &ar->tx_ampdu_list, list) {
1158 i++;
1159
1160 if (tid_info->state < CARL9170_TID_STATE_PROGRESS)
1161 continue;
1162
1163 queue = TID_TO_WME_AC(tid_info->tid);
1164
1165 spin_lock_bh(&tid_info->lock);
1166 if (tid_info->state != CARL9170_TID_STATE_XMIT)
1167 goto processed;
1168
1169 tid_info->counter++;
1170 first = skb_peek(&tid_info->queue);
1171 tmpssn = carl9170_get_seq(first);
1172 seq = tid_info->snx;
1173
1174 if (unlikely(tmpssn != seq)) {
1175 tid_info->state = CARL9170_TID_STATE_IDLE;
1176
1177 goto processed;
1178 }
1179
1180 tx_info_first = NULL;
1181 while ((skb = skb_peek(&tid_info->queue))) {
1182 /* strict 0, 1, ..., n - 1, n frame sequence order */
1183 if (unlikely(carl9170_get_seq(skb) != seq))
1184 break;
1185
1186 /* don't upload more than AMPDU FACTOR allows. */
1187 if (unlikely(SEQ_DIFF(tid_info->snx, tid_info->bsn) >=
1188 (tid_info->max - 1)))
1189 break;
1190
1191 if (!tx_info_first) {
1192 carl9170_tx_get_rates(ar, tid_info->vif,
1193 tid_info->sta, first);
1194 tx_info_first = IEEE80211_SKB_CB(first);
1195 }
1196
1197 carl9170_tx_apply_rateset(ar, tx_info_first, skb);
1198
1199 atomic_inc(&ar->tx_ampdu_upload);
1200 tid_info->snx = seq = SEQ_NEXT(seq);
1201 __skb_unlink(skb, &tid_info->queue);
1202
1203 __skb_queue_tail(&agg, skb);
1204
1205 if (skb_queue_len(&agg) >= CARL9170_NUM_TX_AGG_MAX)
1206 break;
1207 }
1208
1209 if (skb_queue_empty(&tid_info->queue) ||
1210 carl9170_get_seq(skb_peek(&tid_info->queue)) !=
1211 tid_info->snx) {
1212 /* stop TID, if A-MPDU frames are still missing,
1213 * or whenever the queue is empty.
1214 */
1215
1216 tid_info->state = CARL9170_TID_STATE_IDLE;
1217 }
1218 done_ampdus++;
1219
1220 processed:
1221 spin_unlock_bh(&tid_info->lock);
1222
1223 if (skb_queue_empty(&agg))
1224 continue;
1225
1226 /* apply ampdu spacing & factor settings */
1227 carl9170_set_ampdu_params(ar, skb_peek(&agg));
1228
1229 /* set aggregation push bit */
1230 carl9170_set_immba(ar, skb_peek_tail(&agg));
1231
1232 spin_lock_bh(&ar->tx_pending[queue].lock);
1233 skb_queue_splice_tail_init(&agg, &ar->tx_pending[queue]);
1234 spin_unlock_bh(&ar->tx_pending[queue].lock);
1235 ar->tx_schedule = true;
1236 }
1237 if ((done_ampdus++ == 0) && (i++ == 0))
1238 goto retry;
1239
1240 rcu_assign_pointer(ar->tx_ampdu_iter, tid_info);
1241 rcu_read_unlock();
1242 }
1243
carl9170_tx_pick_skb(struct ar9170 * ar,struct sk_buff_head * queue)1244 static struct sk_buff *carl9170_tx_pick_skb(struct ar9170 *ar,
1245 struct sk_buff_head *queue)
1246 {
1247 struct sk_buff *skb;
1248 struct ieee80211_tx_info *info;
1249 struct carl9170_tx_info *arinfo;
1250
1251 BUILD_BUG_ON(sizeof(*arinfo) > sizeof(info->rate_driver_data));
1252
1253 spin_lock_bh(&queue->lock);
1254 skb = skb_peek(queue);
1255 if (unlikely(!skb))
1256 goto err_unlock;
1257
1258 if (carl9170_alloc_dev_space(ar, skb))
1259 goto err_unlock;
1260
1261 __skb_unlink(skb, queue);
1262 spin_unlock_bh(&queue->lock);
1263
1264 info = IEEE80211_SKB_CB(skb);
1265 arinfo = (void *) info->rate_driver_data;
1266
1267 arinfo->timeout = jiffies;
1268 return skb;
1269
1270 err_unlock:
1271 spin_unlock_bh(&queue->lock);
1272 return NULL;
1273 }
1274
carl9170_tx_drop(struct ar9170 * ar,struct sk_buff * skb)1275 void carl9170_tx_drop(struct ar9170 *ar, struct sk_buff *skb)
1276 {
1277 struct _carl9170_tx_superframe *super;
1278 uint8_t q = 0;
1279
1280 ar->tx_dropped++;
1281
1282 super = (void *)skb->data;
1283 SET_VAL(CARL9170_TX_SUPER_MISC_QUEUE, q,
1284 ar9170_qmap(carl9170_get_queue(ar, skb)));
1285 __carl9170_tx_process_status(ar, super->s.cookie, q);
1286 }
1287
carl9170_tx_ps_drop(struct ar9170 * ar,struct sk_buff * skb)1288 static bool carl9170_tx_ps_drop(struct ar9170 *ar, struct sk_buff *skb)
1289 {
1290 struct ieee80211_sta *sta;
1291 struct carl9170_sta_info *sta_info;
1292 struct ieee80211_tx_info *tx_info;
1293
1294 rcu_read_lock();
1295 sta = __carl9170_get_tx_sta(ar, skb);
1296 if (!sta)
1297 goto out_rcu;
1298
1299 sta_info = (void *) sta->drv_priv;
1300 tx_info = IEEE80211_SKB_CB(skb);
1301
1302 if (unlikely(sta_info->sleeping) &&
1303 !(tx_info->flags & (IEEE80211_TX_CTL_NO_PS_BUFFER |
1304 IEEE80211_TX_CTL_CLEAR_PS_FILT))) {
1305 rcu_read_unlock();
1306
1307 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU)
1308 atomic_dec(&ar->tx_ampdu_upload);
1309
1310 tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
1311 carl9170_release_dev_space(ar, skb);
1312 carl9170_tx_status(ar, skb, false);
1313 return true;
1314 }
1315
1316 out_rcu:
1317 rcu_read_unlock();
1318 return false;
1319 }
1320
carl9170_bar_check(struct ar9170 * ar,struct sk_buff * skb)1321 static void carl9170_bar_check(struct ar9170 *ar, struct sk_buff *skb)
1322 {
1323 struct _carl9170_tx_superframe *super = (void *) skb->data;
1324 struct ieee80211_bar *bar = (void *) super->frame_data;
1325
1326 if (unlikely(ieee80211_is_back_req(bar->frame_control)) &&
1327 skb->len >= sizeof(struct ieee80211_bar)) {
1328 struct carl9170_bar_list_entry *entry;
1329 unsigned int queue = skb_get_queue_mapping(skb);
1330
1331 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
1332 if (!WARN_ON_ONCE(!entry)) {
1333 entry->skb = skb;
1334 spin_lock_bh(&ar->bar_list_lock[queue]);
1335 list_add_tail_rcu(&entry->list, &ar->bar_list[queue]);
1336 spin_unlock_bh(&ar->bar_list_lock[queue]);
1337 }
1338 }
1339 }
1340
carl9170_tx(struct ar9170 * ar)1341 static void carl9170_tx(struct ar9170 *ar)
1342 {
1343 struct sk_buff *skb;
1344 unsigned int i, q;
1345 bool schedule_garbagecollector = false;
1346
1347 ar->tx_schedule = false;
1348
1349 if (unlikely(!IS_STARTED(ar)))
1350 return;
1351
1352 carl9170_usb_handle_tx_err(ar);
1353
1354 for (i = 0; i < ar->hw->queues; i++) {
1355 while (!skb_queue_empty(&ar->tx_pending[i])) {
1356 skb = carl9170_tx_pick_skb(ar, &ar->tx_pending[i]);
1357 if (unlikely(!skb))
1358 break;
1359
1360 if (unlikely(carl9170_tx_ps_drop(ar, skb)))
1361 continue;
1362
1363 carl9170_bar_check(ar, skb);
1364
1365 atomic_inc(&ar->tx_total_pending);
1366
1367 q = __carl9170_get_queue(ar, i);
1368 /*
1369 * NB: tx_status[i] vs. tx_status[q],
1370 * TODO: Move into pick_skb or alloc_dev_space.
1371 */
1372 skb_queue_tail(&ar->tx_status[q], skb);
1373
1374 /*
1375 * increase ref count to "2".
1376 * Ref counting is the easiest way to solve the
1377 * race between the urb's completion routine:
1378 * carl9170_tx_callback
1379 * and wlan tx status functions:
1380 * carl9170_tx_status/janitor.
1381 */
1382 carl9170_tx_get_skb(skb);
1383
1384 carl9170_usb_tx(ar, skb);
1385 schedule_garbagecollector = true;
1386 }
1387 }
1388
1389 if (!schedule_garbagecollector)
1390 return;
1391
1392 ieee80211_queue_delayed_work(ar->hw, &ar->tx_janitor,
1393 msecs_to_jiffies(CARL9170_TX_TIMEOUT));
1394 }
1395
carl9170_tx_ampdu_queue(struct ar9170 * ar,struct ieee80211_sta * sta,struct sk_buff * skb,struct ieee80211_tx_info * txinfo)1396 static bool carl9170_tx_ampdu_queue(struct ar9170 *ar,
1397 struct ieee80211_sta *sta, struct sk_buff *skb,
1398 struct ieee80211_tx_info *txinfo)
1399 {
1400 struct carl9170_sta_info *sta_info;
1401 struct carl9170_sta_tid *agg;
1402 struct sk_buff *iter;
1403 u16 tid, seq, qseq, off;
1404 bool run = false;
1405
1406 tid = carl9170_get_tid(skb);
1407 seq = carl9170_get_seq(skb);
1408 sta_info = (void *) sta->drv_priv;
1409
1410 rcu_read_lock();
1411 agg = rcu_dereference(sta_info->agg[tid]);
1412
1413 if (!agg)
1414 goto err_unlock_rcu;
1415
1416 spin_lock_bh(&agg->lock);
1417 if (unlikely(agg->state < CARL9170_TID_STATE_IDLE))
1418 goto err_unlock;
1419
1420 /* check if sequence is within the BA window */
1421 if (unlikely(!BAW_WITHIN(agg->bsn, CARL9170_BAW_BITS, seq)))
1422 goto err_unlock;
1423
1424 if (WARN_ON_ONCE(!BAW_WITHIN(agg->snx, CARL9170_BAW_BITS, seq)))
1425 goto err_unlock;
1426
1427 off = SEQ_DIFF(seq, agg->bsn);
1428 if (WARN_ON_ONCE(test_and_set_bit(off, agg->bitmap)))
1429 goto err_unlock;
1430
1431 if (likely(BAW_WITHIN(agg->hsn, CARL9170_BAW_BITS, seq))) {
1432 __skb_queue_tail(&agg->queue, skb);
1433 agg->hsn = seq;
1434 goto queued;
1435 }
1436
1437 skb_queue_reverse_walk(&agg->queue, iter) {
1438 qseq = carl9170_get_seq(iter);
1439
1440 if (BAW_WITHIN(qseq, CARL9170_BAW_BITS, seq)) {
1441 __skb_queue_after(&agg->queue, iter, skb);
1442 goto queued;
1443 }
1444 }
1445
1446 __skb_queue_head(&agg->queue, skb);
1447 queued:
1448
1449 if (unlikely(agg->state != CARL9170_TID_STATE_XMIT)) {
1450 if (agg->snx == carl9170_get_seq(skb_peek(&agg->queue))) {
1451 agg->state = CARL9170_TID_STATE_XMIT;
1452 run = true;
1453 }
1454 }
1455
1456 spin_unlock_bh(&agg->lock);
1457 rcu_read_unlock();
1458
1459 return run;
1460
1461 err_unlock:
1462 spin_unlock_bh(&agg->lock);
1463
1464 err_unlock_rcu:
1465 rcu_read_unlock();
1466 txinfo->flags &= ~IEEE80211_TX_CTL_AMPDU;
1467 carl9170_tx_status(ar, skb, false);
1468 ar->tx_dropped++;
1469 return false;
1470 }
1471
carl9170_op_tx(struct ieee80211_hw * hw,struct ieee80211_tx_control * control,struct sk_buff * skb)1472 void carl9170_op_tx(struct ieee80211_hw *hw,
1473 struct ieee80211_tx_control *control,
1474 struct sk_buff *skb)
1475 {
1476 struct ar9170 *ar = hw->priv;
1477 struct ieee80211_tx_info *info;
1478 struct ieee80211_sta *sta = control->sta;
1479 struct ieee80211_vif *vif;
1480 bool run;
1481
1482 if (unlikely(!IS_STARTED(ar)))
1483 goto err_free;
1484
1485 info = IEEE80211_SKB_CB(skb);
1486 vif = info->control.vif;
1487
1488 if (unlikely(carl9170_tx_prepare(ar, sta, skb)))
1489 goto err_free;
1490
1491 carl9170_tx_accounting(ar, skb);
1492 /*
1493 * from now on, one has to use carl9170_tx_status to free
1494 * all ressouces which are associated with the frame.
1495 */
1496
1497 if (sta) {
1498 struct carl9170_sta_info *stai = (void *) sta->drv_priv;
1499 atomic_inc(&stai->pending_frames);
1500 }
1501
1502 if (info->flags & IEEE80211_TX_CTL_AMPDU) {
1503 /* to static code analyzers and reviewers:
1504 * mac80211 guarantees that a valid "sta"
1505 * reference is present, if a frame is to
1506 * be part of an ampdu. Hence any extra
1507 * sta == NULL checks are redundant in this
1508 * special case.
1509 */
1510 run = carl9170_tx_ampdu_queue(ar, sta, skb, info);
1511 if (run)
1512 carl9170_tx_ampdu(ar);
1513
1514 } else {
1515 unsigned int queue = skb_get_queue_mapping(skb);
1516
1517 carl9170_tx_get_rates(ar, vif, sta, skb);
1518 carl9170_tx_apply_rateset(ar, info, skb);
1519 skb_queue_tail(&ar->tx_pending[queue], skb);
1520 }
1521
1522 carl9170_tx(ar);
1523 return;
1524
1525 err_free:
1526 ar->tx_dropped++;
1527 ieee80211_free_txskb(ar->hw, skb);
1528 }
1529
carl9170_tx_scheduler(struct ar9170 * ar)1530 void carl9170_tx_scheduler(struct ar9170 *ar)
1531 {
1532
1533 if (ar->tx_ampdu_schedule)
1534 carl9170_tx_ampdu(ar);
1535
1536 if (ar->tx_schedule)
1537 carl9170_tx(ar);
1538 }
1539
1540 /* caller has to take rcu_read_lock */
carl9170_pick_beaconing_vif(struct ar9170 * ar)1541 static struct carl9170_vif_info *carl9170_pick_beaconing_vif(struct ar9170 *ar)
1542 {
1543 struct carl9170_vif_info *cvif;
1544 int i = 1;
1545
1546 /* The AR9170 hardware has no fancy beacon queue or some
1547 * other scheduling mechanism. So, the driver has to make
1548 * due by setting the two beacon timers (pretbtt and tbtt)
1549 * once and then swapping the beacon address in the HW's
1550 * register file each time the pretbtt fires.
1551 */
1552
1553 cvif = rcu_dereference(ar->beacon_iter);
1554 if (ar->vifs > 0 && cvif) {
1555 do {
1556 list_for_each_entry_continue_rcu(cvif, &ar->vif_list,
1557 list) {
1558 if (cvif->active && cvif->enable_beacon)
1559 goto out;
1560 }
1561 } while (ar->beacon_enabled && i--);
1562
1563 /* no entry found in list */
1564 return NULL;
1565 }
1566
1567 out:
1568 RCU_INIT_POINTER(ar->beacon_iter, cvif);
1569 return cvif;
1570 }
1571
carl9170_tx_beacon_physet(struct ar9170 * ar,struct sk_buff * skb,u32 * ht1,u32 * plcp)1572 static bool carl9170_tx_beacon_physet(struct ar9170 *ar, struct sk_buff *skb,
1573 u32 *ht1, u32 *plcp)
1574 {
1575 struct ieee80211_tx_info *txinfo;
1576 struct ieee80211_tx_rate *rate;
1577 unsigned int power, chains;
1578 bool ht_rate;
1579
1580 txinfo = IEEE80211_SKB_CB(skb);
1581 rate = &txinfo->control.rates[0];
1582 ht_rate = !!(txinfo->control.rates[0].flags & IEEE80211_TX_RC_MCS);
1583 carl9170_tx_rate_tpc_chains(ar, txinfo, rate, plcp, &power, &chains);
1584
1585 *ht1 = AR9170_MAC_BCN_HT1_TX_ANT0;
1586 if (chains == AR9170_TX_PHY_TXCHAIN_2)
1587 *ht1 |= AR9170_MAC_BCN_HT1_TX_ANT1;
1588 SET_VAL(AR9170_MAC_BCN_HT1_PWR_CTRL, *ht1, 7);
1589 SET_VAL(AR9170_MAC_BCN_HT1_TPC, *ht1, power);
1590 SET_VAL(AR9170_MAC_BCN_HT1_CHAIN_MASK, *ht1, chains);
1591
1592 if (ht_rate) {
1593 *ht1 |= AR9170_MAC_BCN_HT1_HT_EN;
1594 if (rate->flags & IEEE80211_TX_RC_SHORT_GI)
1595 *plcp |= AR9170_MAC_BCN_HT2_SGI;
1596
1597 if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) {
1598 *ht1 |= AR9170_MAC_BCN_HT1_BWC_40M_SHARED;
1599 *plcp |= AR9170_MAC_BCN_HT2_BW40;
1600 } else if (rate->flags & IEEE80211_TX_RC_DUP_DATA) {
1601 *ht1 |= AR9170_MAC_BCN_HT1_BWC_40M_DUP;
1602 *plcp |= AR9170_MAC_BCN_HT2_BW40;
1603 }
1604
1605 SET_VAL(AR9170_MAC_BCN_HT2_LEN, *plcp, skb->len + FCS_LEN);
1606 } else {
1607 if (*plcp <= AR9170_TX_PHY_RATE_CCK_11M)
1608 *plcp |= ((skb->len + FCS_LEN) << (3 + 16)) + 0x0400;
1609 else
1610 *plcp |= ((skb->len + FCS_LEN) << 16) + 0x0010;
1611 }
1612
1613 return ht_rate;
1614 }
1615
carl9170_update_beacon(struct ar9170 * ar,const bool submit)1616 int carl9170_update_beacon(struct ar9170 *ar, const bool submit)
1617 {
1618 struct sk_buff *skb = NULL;
1619 struct carl9170_vif_info *cvif;
1620 __le32 *data, *old = NULL;
1621 u32 word, ht1, plcp, off, addr, len;
1622 int i = 0, err = 0;
1623 bool ht_rate;
1624
1625 rcu_read_lock();
1626 cvif = carl9170_pick_beaconing_vif(ar);
1627 if (!cvif)
1628 goto out_unlock;
1629
1630 skb = ieee80211_beacon_get_tim(ar->hw, carl9170_get_vif(cvif),
1631 NULL, NULL, 0);
1632
1633 if (!skb) {
1634 err = -ENOMEM;
1635 goto err_free;
1636 }
1637
1638 spin_lock_bh(&ar->beacon_lock);
1639 data = (__le32 *)skb->data;
1640 if (cvif->beacon)
1641 old = (__le32 *)cvif->beacon->data;
1642
1643 off = cvif->id * AR9170_MAC_BCN_LENGTH_MAX;
1644 addr = ar->fw.beacon_addr + off;
1645 len = roundup(skb->len + FCS_LEN, 4);
1646
1647 if ((off + len) > ar->fw.beacon_max_len) {
1648 if (net_ratelimit()) {
1649 wiphy_err(ar->hw->wiphy, "beacon does not "
1650 "fit into device memory!\n");
1651 }
1652 err = -EINVAL;
1653 goto err_unlock;
1654 }
1655
1656 if (len > AR9170_MAC_BCN_LENGTH_MAX) {
1657 if (net_ratelimit()) {
1658 wiphy_err(ar->hw->wiphy, "no support for beacons "
1659 "bigger than %d (yours:%d).\n",
1660 AR9170_MAC_BCN_LENGTH_MAX, len);
1661 }
1662
1663 err = -EMSGSIZE;
1664 goto err_unlock;
1665 }
1666
1667 ht_rate = carl9170_tx_beacon_physet(ar, skb, &ht1, &plcp);
1668
1669 carl9170_async_regwrite_begin(ar);
1670 carl9170_async_regwrite(AR9170_MAC_REG_BCN_HT1, ht1);
1671 if (ht_rate)
1672 carl9170_async_regwrite(AR9170_MAC_REG_BCN_HT2, plcp);
1673 else
1674 carl9170_async_regwrite(AR9170_MAC_REG_BCN_PLCP, plcp);
1675
1676 for (i = 0; i < DIV_ROUND_UP(skb->len, 4); i++) {
1677 /*
1678 * XXX: This accesses beyond skb data for up
1679 * to the last 3 bytes!!
1680 */
1681
1682 if (old && (data[i] == old[i]))
1683 continue;
1684
1685 word = le32_to_cpu(data[i]);
1686 carl9170_async_regwrite(addr + 4 * i, word);
1687 }
1688 carl9170_async_regwrite_finish();
1689
1690 dev_kfree_skb_any(cvif->beacon);
1691 cvif->beacon = NULL;
1692
1693 err = carl9170_async_regwrite_result();
1694 if (!err)
1695 cvif->beacon = skb;
1696 spin_unlock_bh(&ar->beacon_lock);
1697 if (err)
1698 goto err_free;
1699
1700 if (submit) {
1701 err = carl9170_bcn_ctrl(ar, cvif->id,
1702 CARL9170_BCN_CTRL_CAB_TRIGGER,
1703 addr, skb->len + FCS_LEN);
1704
1705 if (err)
1706 goto err_free;
1707 }
1708 out_unlock:
1709 rcu_read_unlock();
1710 return 0;
1711
1712 err_unlock:
1713 spin_unlock_bh(&ar->beacon_lock);
1714
1715 err_free:
1716 rcu_read_unlock();
1717 dev_kfree_skb_any(skb);
1718 return err;
1719 }
1720