1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * linux/cgroup-defs.h - basic definitions for cgroup
4 *
5 * This file provides basic type and interface. Include this file directly
6 * only if necessary to avoid cyclic dependencies.
7 */
8 #ifndef _LINUX_CGROUP_DEFS_H
9 #define _LINUX_CGROUP_DEFS_H
10
11 #include <linux/limits.h>
12 #include <linux/list.h>
13 #include <linux/idr.h>
14 #include <linux/wait.h>
15 #include <linux/mutex.h>
16 #include <linux/rcupdate.h>
17 #include <linux/refcount.h>
18 #include <linux/percpu-refcount.h>
19 #include <linux/percpu-rwsem.h>
20 #include <linux/u64_stats_sync.h>
21 #include <linux/workqueue.h>
22 #include <linux/bpf-cgroup.h>
23 #include <linux/psi_types.h>
24
25 #ifdef CONFIG_CGROUPS
26
27 struct cgroup;
28 struct cgroup_root;
29 struct cgroup_subsys;
30 struct cgroup_taskset;
31 struct kernfs_node;
32 struct kernfs_ops;
33 struct kernfs_open_file;
34 struct seq_file;
35 struct poll_table_struct;
36
37 #define MAX_CGROUP_TYPE_NAMELEN 32
38 #define MAX_CGROUP_ROOT_NAMELEN 64
39 #define MAX_CFTYPE_NAME 64
40
41 /* define the enumeration of all cgroup subsystems */
42 #define SUBSYS(_x) _x ## _cgrp_id,
43 enum cgroup_subsys_id {
44 #include <linux/cgroup_subsys.h>
45 CGROUP_SUBSYS_COUNT,
46 };
47 #undef SUBSYS
48
49 /* bits in struct cgroup_subsys_state flags field */
50 enum {
51 CSS_NO_REF = (1 << 0), /* no reference counting for this css */
52 CSS_ONLINE = (1 << 1), /* between ->css_online() and ->css_offline() */
53 CSS_RELEASED = (1 << 2), /* refcnt reached zero, released */
54 CSS_VISIBLE = (1 << 3), /* css is visible to userland */
55 CSS_DYING = (1 << 4), /* css is dying */
56 };
57
58 /* bits in struct cgroup flags field */
59 enum {
60 /* Control Group requires release notifications to userspace */
61 CGRP_NOTIFY_ON_RELEASE,
62 /*
63 * Clone the parent's configuration when creating a new child
64 * cpuset cgroup. For historical reasons, this option can be
65 * specified at mount time and thus is implemented here.
66 */
67 CGRP_CPUSET_CLONE_CHILDREN,
68
69 /* Control group has to be frozen. */
70 CGRP_FREEZE,
71
72 /* Cgroup is frozen. */
73 CGRP_FROZEN,
74 };
75
76 /* cgroup_root->flags */
77 enum {
78 CGRP_ROOT_NOPREFIX = (1 << 1), /* mounted subsystems have no named prefix */
79 CGRP_ROOT_XATTR = (1 << 2), /* supports extended attributes */
80
81 /*
82 * Consider namespaces as delegation boundaries. If this flag is
83 * set, controller specific interface files in a namespace root
84 * aren't writeable from inside the namespace.
85 */
86 CGRP_ROOT_NS_DELEGATE = (1 << 3),
87
88 /*
89 * Enable cpuset controller in v1 cgroup to use v2 behavior.
90 */
91 CGRP_ROOT_CPUSET_V2_MODE = (1 << 4),
92
93 /*
94 * Enable legacy local memory.events.
95 */
96 CGRP_ROOT_MEMORY_LOCAL_EVENTS = (1 << 5),
97
98 /*
99 * Enable recursive subtree protection
100 */
101 CGRP_ROOT_MEMORY_RECURSIVE_PROT = (1 << 6),
102 };
103
104 /* cftype->flags */
105 enum {
106 CFTYPE_ONLY_ON_ROOT = (1 << 0), /* only create on root cgrp */
107 CFTYPE_NOT_ON_ROOT = (1 << 1), /* don't create on root cgrp */
108 CFTYPE_NS_DELEGATABLE = (1 << 2), /* writeable beyond delegation boundaries */
109
110 CFTYPE_NO_PREFIX = (1 << 3), /* (DON'T USE FOR NEW FILES) no subsys prefix */
111 CFTYPE_WORLD_WRITABLE = (1 << 4), /* (DON'T USE FOR NEW FILES) S_IWUGO */
112 CFTYPE_DEBUG = (1 << 5), /* create when cgroup_debug */
113
114 /* internal flags, do not use outside cgroup core proper */
115 __CFTYPE_ONLY_ON_DFL = (1 << 16), /* only on default hierarchy */
116 __CFTYPE_NOT_ON_DFL = (1 << 17), /* not on default hierarchy */
117 };
118
119 /*
120 * cgroup_file is the handle for a file instance created in a cgroup which
121 * is used, for example, to generate file changed notifications. This can
122 * be obtained by setting cftype->file_offset.
123 */
124 struct cgroup_file {
125 /* do not access any fields from outside cgroup core */
126 struct kernfs_node *kn;
127 unsigned long notified_at;
128 struct timer_list notify_timer;
129 };
130
131 /*
132 * Per-subsystem/per-cgroup state maintained by the system. This is the
133 * fundamental structural building block that controllers deal with.
134 *
135 * Fields marked with "PI:" are public and immutable and may be accessed
136 * directly without synchronization.
137 */
138 struct cgroup_subsys_state {
139 /* PI: the cgroup that this css is attached to */
140 struct cgroup *cgroup;
141
142 /* PI: the cgroup subsystem that this css is attached to */
143 struct cgroup_subsys *ss;
144
145 /* reference count - access via css_[try]get() and css_put() */
146 struct percpu_ref refcnt;
147
148 /* siblings list anchored at the parent's ->children */
149 struct list_head sibling;
150 struct list_head children;
151
152 /* flush target list anchored at cgrp->rstat_css_list */
153 struct list_head rstat_css_node;
154
155 /*
156 * PI: Subsys-unique ID. 0 is unused and root is always 1. The
157 * matching css can be looked up using css_from_id().
158 */
159 int id;
160
161 unsigned int flags;
162
163 /*
164 * Monotonically increasing unique serial number which defines a
165 * uniform order among all csses. It's guaranteed that all
166 * ->children lists are in the ascending order of ->serial_nr and
167 * used to allow interrupting and resuming iterations.
168 */
169 u64 serial_nr;
170
171 /*
172 * Incremented by online self and children. Used to guarantee that
173 * parents are not offlined before their children.
174 */
175 atomic_t online_cnt;
176
177 /* percpu_ref killing and RCU release */
178 struct work_struct destroy_work;
179 struct rcu_work destroy_rwork;
180
181 /*
182 * PI: the parent css. Placed here for cache proximity to following
183 * fields of the containing structure.
184 */
185 struct cgroup_subsys_state *parent;
186 };
187
188 /*
189 * A css_set is a structure holding pointers to a set of
190 * cgroup_subsys_state objects. This saves space in the task struct
191 * object and speeds up fork()/exit(), since a single inc/dec and a
192 * list_add()/del() can bump the reference count on the entire cgroup
193 * set for a task.
194 */
195 struct css_set {
196 /*
197 * Set of subsystem states, one for each subsystem. This array is
198 * immutable after creation apart from the init_css_set during
199 * subsystem registration (at boot time).
200 */
201 struct cgroup_subsys_state *subsys[CGROUP_SUBSYS_COUNT];
202
203 /* reference count */
204 refcount_t refcount;
205
206 /*
207 * For a domain cgroup, the following points to self. If threaded,
208 * to the matching cset of the nearest domain ancestor. The
209 * dom_cset provides access to the domain cgroup and its csses to
210 * which domain level resource consumptions should be charged.
211 */
212 struct css_set *dom_cset;
213
214 /* the default cgroup associated with this css_set */
215 struct cgroup *dfl_cgrp;
216
217 /* internal task count, protected by css_set_lock */
218 int nr_tasks;
219
220 /*
221 * Lists running through all tasks using this cgroup group.
222 * mg_tasks lists tasks which belong to this cset but are in the
223 * process of being migrated out or in. Protected by
224 * css_set_rwsem, but, during migration, once tasks are moved to
225 * mg_tasks, it can be read safely while holding cgroup_mutex.
226 */
227 struct list_head tasks;
228 struct list_head mg_tasks;
229 struct list_head dying_tasks;
230
231 /* all css_task_iters currently walking this cset */
232 struct list_head task_iters;
233
234 /*
235 * On the default hierarhcy, ->subsys[ssid] may point to a css
236 * attached to an ancestor instead of the cgroup this css_set is
237 * associated with. The following node is anchored at
238 * ->subsys[ssid]->cgroup->e_csets[ssid] and provides a way to
239 * iterate through all css's attached to a given cgroup.
240 */
241 struct list_head e_cset_node[CGROUP_SUBSYS_COUNT];
242
243 /* all threaded csets whose ->dom_cset points to this cset */
244 struct list_head threaded_csets;
245 struct list_head threaded_csets_node;
246
247 /*
248 * List running through all cgroup groups in the same hash
249 * slot. Protected by css_set_lock
250 */
251 struct hlist_node hlist;
252
253 /*
254 * List of cgrp_cset_links pointing at cgroups referenced from this
255 * css_set. Protected by css_set_lock.
256 */
257 struct list_head cgrp_links;
258
259 /*
260 * List of csets participating in the on-going migration either as
261 * source or destination. Protected by cgroup_mutex.
262 */
263 struct list_head mg_preload_node;
264 struct list_head mg_node;
265
266 /*
267 * If this cset is acting as the source of migration the following
268 * two fields are set. mg_src_cgrp and mg_dst_cgrp are
269 * respectively the source and destination cgroups of the on-going
270 * migration. mg_dst_cset is the destination cset the target tasks
271 * on this cset should be migrated to. Protected by cgroup_mutex.
272 */
273 struct cgroup *mg_src_cgrp;
274 struct cgroup *mg_dst_cgrp;
275 struct css_set *mg_dst_cset;
276
277 /* dead and being drained, ignore for migration */
278 bool dead;
279
280 /* For RCU-protected deletion */
281 struct rcu_head rcu_head;
282 };
283
284 struct cgroup_base_stat {
285 struct task_cputime cputime;
286 };
287
288 /*
289 * rstat - cgroup scalable recursive statistics. Accounting is done
290 * per-cpu in cgroup_rstat_cpu which is then lazily propagated up the
291 * hierarchy on reads.
292 *
293 * When a stat gets updated, the cgroup_rstat_cpu and its ancestors are
294 * linked into the updated tree. On the following read, propagation only
295 * considers and consumes the updated tree. This makes reading O(the
296 * number of descendants which have been active since last read) instead of
297 * O(the total number of descendants).
298 *
299 * This is important because there can be a lot of (draining) cgroups which
300 * aren't active and stat may be read frequently. The combination can
301 * become very expensive. By propagating selectively, increasing reading
302 * frequency decreases the cost of each read.
303 *
304 * This struct hosts both the fields which implement the above -
305 * updated_children and updated_next - and the fields which track basic
306 * resource statistics on top of it - bsync, bstat and last_bstat.
307 */
308 struct cgroup_rstat_cpu {
309 /*
310 * ->bsync protects ->bstat. These are the only fields which get
311 * updated in the hot path.
312 */
313 struct u64_stats_sync bsync;
314 struct cgroup_base_stat bstat;
315
316 /*
317 * Snapshots at the last reading. These are used to calculate the
318 * deltas to propagate to the global counters.
319 */
320 struct cgroup_base_stat last_bstat;
321
322 /*
323 * Child cgroups with stat updates on this cpu since the last read
324 * are linked on the parent's ->updated_children through
325 * ->updated_next.
326 *
327 * In addition to being more compact, singly-linked list pointing
328 * to the cgroup makes it unnecessary for each per-cpu struct to
329 * point back to the associated cgroup.
330 *
331 * Protected by per-cpu cgroup_rstat_cpu_lock.
332 */
333 struct cgroup *updated_children; /* terminated by self cgroup */
334 struct cgroup *updated_next; /* NULL iff not on the list */
335 };
336
337 struct cgroup_freezer_state {
338 /* Should the cgroup and its descendants be frozen. */
339 bool freeze;
340
341 /* Should the cgroup actually be frozen? */
342 int e_freeze;
343
344 /* Fields below are protected by css_set_lock */
345
346 /* Number of frozen descendant cgroups */
347 int nr_frozen_descendants;
348
349 /*
350 * Number of tasks, which are counted as frozen:
351 * frozen, SIGSTOPped, and PTRACEd.
352 */
353 int nr_frozen_tasks;
354 };
355
356 struct cgroup {
357 /* self css with NULL ->ss, points back to this cgroup */
358 struct cgroup_subsys_state self;
359
360 unsigned long flags; /* "unsigned long" so bitops work */
361
362 /*
363 * The depth this cgroup is at. The root is at depth zero and each
364 * step down the hierarchy increments the level. This along with
365 * ancestor_ids[] can determine whether a given cgroup is a
366 * descendant of another without traversing the hierarchy.
367 */
368 int level;
369
370 /* Maximum allowed descent tree depth */
371 int max_depth;
372
373 /*
374 * Keep track of total numbers of visible and dying descent cgroups.
375 * Dying cgroups are cgroups which were deleted by a user,
376 * but are still existing because someone else is holding a reference.
377 * max_descendants is a maximum allowed number of descent cgroups.
378 *
379 * nr_descendants and nr_dying_descendants are protected
380 * by cgroup_mutex and css_set_lock. It's fine to read them holding
381 * any of cgroup_mutex and css_set_lock; for writing both locks
382 * should be held.
383 */
384 int nr_descendants;
385 int nr_dying_descendants;
386 int max_descendants;
387
388 /*
389 * Each non-empty css_set associated with this cgroup contributes
390 * one to nr_populated_csets. The counter is zero iff this cgroup
391 * doesn't have any tasks.
392 *
393 * All children which have non-zero nr_populated_csets and/or
394 * nr_populated_children of their own contribute one to either
395 * nr_populated_domain_children or nr_populated_threaded_children
396 * depending on their type. Each counter is zero iff all cgroups
397 * of the type in the subtree proper don't have any tasks.
398 */
399 int nr_populated_csets;
400 int nr_populated_domain_children;
401 int nr_populated_threaded_children;
402
403 int nr_threaded_children; /* # of live threaded child cgroups */
404
405 struct kernfs_node *kn; /* cgroup kernfs entry */
406 struct cgroup_file procs_file; /* handle for "cgroup.procs" */
407 struct cgroup_file events_file; /* handle for "cgroup.events" */
408
409 /*
410 * The bitmask of subsystems enabled on the child cgroups.
411 * ->subtree_control is the one configured through
412 * "cgroup.subtree_control" while ->child_ss_mask is the effective
413 * one which may have more subsystems enabled. Controller knobs
414 * are made available iff it's enabled in ->subtree_control.
415 */
416 u16 subtree_control;
417 u16 subtree_ss_mask;
418 u16 old_subtree_control;
419 u16 old_subtree_ss_mask;
420
421 /* Private pointers for each registered subsystem */
422 struct cgroup_subsys_state __rcu *subsys[CGROUP_SUBSYS_COUNT];
423
424 struct cgroup_root *root;
425
426 /*
427 * List of cgrp_cset_links pointing at css_sets with tasks in this
428 * cgroup. Protected by css_set_lock.
429 */
430 struct list_head cset_links;
431
432 /*
433 * On the default hierarchy, a css_set for a cgroup with some
434 * susbsys disabled will point to css's which are associated with
435 * the closest ancestor which has the subsys enabled. The
436 * following lists all css_sets which point to this cgroup's css
437 * for the given subsystem.
438 */
439 struct list_head e_csets[CGROUP_SUBSYS_COUNT];
440
441 /*
442 * If !threaded, self. If threaded, it points to the nearest
443 * domain ancestor. Inside a threaded subtree, cgroups are exempt
444 * from process granularity and no-internal-task constraint.
445 * Domain level resource consumptions which aren't tied to a
446 * specific task are charged to the dom_cgrp.
447 */
448 struct cgroup *dom_cgrp;
449 struct cgroup *old_dom_cgrp; /* used while enabling threaded */
450
451 /* per-cpu recursive resource statistics */
452 struct cgroup_rstat_cpu __percpu *rstat_cpu;
453 struct list_head rstat_css_list;
454
455 /* cgroup basic resource statistics */
456 struct cgroup_base_stat last_bstat;
457 struct cgroup_base_stat bstat;
458 struct prev_cputime prev_cputime; /* for printing out cputime */
459
460 /*
461 * list of pidlists, up to two for each namespace (one for procs, one
462 * for tasks); created on demand.
463 */
464 struct list_head pidlists;
465 struct mutex pidlist_mutex;
466
467 /* used to wait for offlining of csses */
468 wait_queue_head_t offline_waitq;
469
470 /* used to schedule release agent */
471 struct work_struct release_agent_work;
472
473 /* used to track pressure stalls */
474 struct psi_group psi;
475
476 /* used to store eBPF programs */
477 struct cgroup_bpf bpf;
478
479 /* If there is block congestion on this cgroup. */
480 atomic_t congestion_count;
481
482 /* Used to store internal freezer state */
483 struct cgroup_freezer_state freezer;
484
485 /* ids of the ancestors at each level including self */
486 u64 ancestor_ids[];
487 };
488
489 /*
490 * A cgroup_root represents the root of a cgroup hierarchy, and may be
491 * associated with a kernfs_root to form an active hierarchy. This is
492 * internal to cgroup core. Don't access directly from controllers.
493 */
494 struct cgroup_root {
495 struct kernfs_root *kf_root;
496
497 /* The bitmask of subsystems attached to this hierarchy */
498 unsigned int subsys_mask;
499
500 /* Unique id for this hierarchy. */
501 int hierarchy_id;
502
503 /* The root cgroup. Root is destroyed on its release. */
504 struct cgroup cgrp;
505
506 /* for cgrp->ancestor_ids[0] */
507 u64 cgrp_ancestor_id_storage;
508
509 /* Number of cgroups in the hierarchy, used only for /proc/cgroups */
510 atomic_t nr_cgrps;
511
512 /* A list running through the active hierarchies */
513 struct list_head root_list;
514
515 /* Hierarchy-specific flags */
516 unsigned int flags;
517
518 /* The path to use for release notifications. */
519 char release_agent_path[PATH_MAX];
520
521 /* The name for this hierarchy - may be empty */
522 char name[MAX_CGROUP_ROOT_NAMELEN];
523 };
524
525 /*
526 * struct cftype: handler definitions for cgroup control files
527 *
528 * When reading/writing to a file:
529 * - the cgroup to use is file->f_path.dentry->d_parent->d_fsdata
530 * - the 'cftype' of the file is file->f_path.dentry->d_fsdata
531 */
532 struct cftype {
533 /*
534 * By convention, the name should begin with the name of the
535 * subsystem, followed by a period. Zero length string indicates
536 * end of cftype array.
537 */
538 char name[MAX_CFTYPE_NAME];
539 unsigned long private;
540
541 /*
542 * The maximum length of string, excluding trailing nul, that can
543 * be passed to write. If < PAGE_SIZE-1, PAGE_SIZE-1 is assumed.
544 */
545 size_t max_write_len;
546
547 /* CFTYPE_* flags */
548 unsigned int flags;
549
550 /*
551 * If non-zero, should contain the offset from the start of css to
552 * a struct cgroup_file field. cgroup will record the handle of
553 * the created file into it. The recorded handle can be used as
554 * long as the containing css remains accessible.
555 */
556 unsigned int file_offset;
557
558 /*
559 * Fields used for internal bookkeeping. Initialized automatically
560 * during registration.
561 */
562 struct cgroup_subsys *ss; /* NULL for cgroup core files */
563 struct list_head node; /* anchored at ss->cfts */
564 struct kernfs_ops *kf_ops;
565
566 int (*open)(struct kernfs_open_file *of);
567 void (*release)(struct kernfs_open_file *of);
568
569 /*
570 * read_u64() is a shortcut for the common case of returning a
571 * single integer. Use it in place of read()
572 */
573 u64 (*read_u64)(struct cgroup_subsys_state *css, struct cftype *cft);
574 /*
575 * read_s64() is a signed version of read_u64()
576 */
577 s64 (*read_s64)(struct cgroup_subsys_state *css, struct cftype *cft);
578
579 /* generic seq_file read interface */
580 int (*seq_show)(struct seq_file *sf, void *v);
581
582 /* optional ops, implement all or none */
583 void *(*seq_start)(struct seq_file *sf, loff_t *ppos);
584 void *(*seq_next)(struct seq_file *sf, void *v, loff_t *ppos);
585 void (*seq_stop)(struct seq_file *sf, void *v);
586
587 /*
588 * write_u64() is a shortcut for the common case of accepting
589 * a single integer (as parsed by simple_strtoull) from
590 * userspace. Use in place of write(); return 0 or error.
591 */
592 int (*write_u64)(struct cgroup_subsys_state *css, struct cftype *cft,
593 u64 val);
594 /*
595 * write_s64() is a signed version of write_u64()
596 */
597 int (*write_s64)(struct cgroup_subsys_state *css, struct cftype *cft,
598 s64 val);
599
600 /*
601 * write() is the generic write callback which maps directly to
602 * kernfs write operation and overrides all other operations.
603 * Maximum write size is determined by ->max_write_len. Use
604 * of_css/cft() to access the associated css and cft.
605 */
606 ssize_t (*write)(struct kernfs_open_file *of,
607 char *buf, size_t nbytes, loff_t off);
608
609 __poll_t (*poll)(struct kernfs_open_file *of,
610 struct poll_table_struct *pt);
611
612 #ifdef CONFIG_DEBUG_LOCK_ALLOC
613 struct lock_class_key lockdep_key;
614 #endif
615 };
616
617 /*
618 * Control Group subsystem type.
619 * See Documentation/admin-guide/cgroup-v1/cgroups.rst for details
620 */
621 struct cgroup_subsys {
622 struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state *parent_css);
623 int (*css_online)(struct cgroup_subsys_state *css);
624 void (*css_offline)(struct cgroup_subsys_state *css);
625 void (*css_released)(struct cgroup_subsys_state *css);
626 void (*css_free)(struct cgroup_subsys_state *css);
627 void (*css_reset)(struct cgroup_subsys_state *css);
628 void (*css_rstat_flush)(struct cgroup_subsys_state *css, int cpu);
629 int (*css_extra_stat_show)(struct seq_file *seq,
630 struct cgroup_subsys_state *css);
631
632 int (*can_attach)(struct cgroup_taskset *tset);
633 void (*cancel_attach)(struct cgroup_taskset *tset);
634 void (*attach)(struct cgroup_taskset *tset);
635 void (*post_attach)(void);
636 int (*can_fork)(struct task_struct *task,
637 struct css_set *cset);
638 void (*cancel_fork)(struct task_struct *task, struct css_set *cset);
639 void (*fork)(struct task_struct *task);
640 void (*exit)(struct task_struct *task);
641 void (*release)(struct task_struct *task);
642 void (*bind)(struct cgroup_subsys_state *root_css);
643
644 bool early_init:1;
645
646 /*
647 * If %true, the controller, on the default hierarchy, doesn't show
648 * up in "cgroup.controllers" or "cgroup.subtree_control", is
649 * implicitly enabled on all cgroups on the default hierarchy, and
650 * bypasses the "no internal process" constraint. This is for
651 * utility type controllers which is transparent to userland.
652 *
653 * An implicit controller can be stolen from the default hierarchy
654 * anytime and thus must be okay with offline csses from previous
655 * hierarchies coexisting with csses for the current one.
656 */
657 bool implicit_on_dfl:1;
658
659 /*
660 * If %true, the controller, supports threaded mode on the default
661 * hierarchy. In a threaded subtree, both process granularity and
662 * no-internal-process constraint are ignored and a threaded
663 * controllers should be able to handle that.
664 *
665 * Note that as an implicit controller is automatically enabled on
666 * all cgroups on the default hierarchy, it should also be
667 * threaded. implicit && !threaded is not supported.
668 */
669 bool threaded:1;
670
671 /*
672 * If %false, this subsystem is properly hierarchical -
673 * configuration, resource accounting and restriction on a parent
674 * cgroup cover those of its children. If %true, hierarchy support
675 * is broken in some ways - some subsystems ignore hierarchy
676 * completely while others are only implemented half-way.
677 *
678 * It's now disallowed to create nested cgroups if the subsystem is
679 * broken and cgroup core will emit a warning message on such
680 * cases. Eventually, all subsystems will be made properly
681 * hierarchical and this will go away.
682 */
683 bool broken_hierarchy:1;
684 bool warned_broken_hierarchy:1;
685
686 /* the following two fields are initialized automtically during boot */
687 int id;
688 const char *name;
689
690 /* optional, initialized automatically during boot if not set */
691 const char *legacy_name;
692
693 /* link to parent, protected by cgroup_lock() */
694 struct cgroup_root *root;
695
696 /* idr for css->id */
697 struct idr css_idr;
698
699 /*
700 * List of cftypes. Each entry is the first entry of an array
701 * terminated by zero length name.
702 */
703 struct list_head cfts;
704
705 /*
706 * Base cftypes which are automatically registered. The two can
707 * point to the same array.
708 */
709 struct cftype *dfl_cftypes; /* for the default hierarchy */
710 struct cftype *legacy_cftypes; /* for the legacy hierarchies */
711
712 /*
713 * A subsystem may depend on other subsystems. When such subsystem
714 * is enabled on a cgroup, the depended-upon subsystems are enabled
715 * together if available. Subsystems enabled due to dependency are
716 * not visible to userland until explicitly enabled. The following
717 * specifies the mask of subsystems that this one depends on.
718 */
719 unsigned int depends_on;
720 };
721
722 extern struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
723
724 /**
725 * cgroup_threadgroup_change_begin - threadgroup exclusion for cgroups
726 * @tsk: target task
727 *
728 * Allows cgroup operations to synchronize against threadgroup changes
729 * using a percpu_rw_semaphore.
730 */
cgroup_threadgroup_change_begin(struct task_struct * tsk)731 static inline void cgroup_threadgroup_change_begin(struct task_struct *tsk)
732 {
733 percpu_down_read(&cgroup_threadgroup_rwsem);
734 }
735
736 /**
737 * cgroup_threadgroup_change_end - threadgroup exclusion for cgroups
738 * @tsk: target task
739 *
740 * Counterpart of cgroup_threadcgroup_change_begin().
741 */
cgroup_threadgroup_change_end(struct task_struct * tsk)742 static inline void cgroup_threadgroup_change_end(struct task_struct *tsk)
743 {
744 percpu_up_read(&cgroup_threadgroup_rwsem);
745 }
746
747 #else /* CONFIG_CGROUPS */
748
749 #define CGROUP_SUBSYS_COUNT 0
750
cgroup_threadgroup_change_begin(struct task_struct * tsk)751 static inline void cgroup_threadgroup_change_begin(struct task_struct *tsk)
752 {
753 might_sleep();
754 }
755
cgroup_threadgroup_change_end(struct task_struct * tsk)756 static inline void cgroup_threadgroup_change_end(struct task_struct *tsk) {}
757
758 #endif /* CONFIG_CGROUPS */
759
760 #ifdef CONFIG_SOCK_CGROUP_DATA
761
762 /*
763 * sock_cgroup_data is embedded at sock->sk_cgrp_data and contains
764 * per-socket cgroup information except for memcg association.
765 *
766 * On legacy hierarchies, net_prio and net_cls controllers directly set
767 * attributes on each sock which can then be tested by the network layer.
768 * On the default hierarchy, each sock is associated with the cgroup it was
769 * created in and the networking layer can match the cgroup directly.
770 *
771 * To avoid carrying all three cgroup related fields separately in sock,
772 * sock_cgroup_data overloads (prioidx, classid) and the cgroup pointer.
773 * On boot, sock_cgroup_data records the cgroup that the sock was created
774 * in so that cgroup2 matches can be made; however, once either net_prio or
775 * net_cls starts being used, the area is overriden to carry prioidx and/or
776 * classid. The two modes are distinguished by whether the lowest bit is
777 * set. Clear bit indicates cgroup pointer while set bit prioidx and
778 * classid.
779 *
780 * While userland may start using net_prio or net_cls at any time, once
781 * either is used, cgroup2 matching no longer works. There is no reason to
782 * mix the two and this is in line with how legacy and v2 compatibility is
783 * handled. On mode switch, cgroup references which are already being
784 * pointed to by socks may be leaked. While this can be remedied by adding
785 * synchronization around sock_cgroup_data, given that the number of leaked
786 * cgroups is bound and highly unlikely to be high, this seems to be the
787 * better trade-off.
788 */
789 struct sock_cgroup_data {
790 union {
791 #ifdef __LITTLE_ENDIAN
792 struct {
793 u8 is_data : 1;
794 u8 no_refcnt : 1;
795 u8 unused : 6;
796 u8 padding;
797 u16 prioidx;
798 u32 classid;
799 } __packed;
800 #else
801 struct {
802 u32 classid;
803 u16 prioidx;
804 u8 padding;
805 u8 unused : 6;
806 u8 no_refcnt : 1;
807 u8 is_data : 1;
808 } __packed;
809 #endif
810 u64 val;
811 };
812 };
813
814 /*
815 * There's a theoretical window where the following accessors race with
816 * updaters and return part of the previous pointer as the prioidx or
817 * classid. Such races are short-lived and the result isn't critical.
818 */
sock_cgroup_prioidx(const struct sock_cgroup_data * skcd)819 static inline u16 sock_cgroup_prioidx(const struct sock_cgroup_data *skcd)
820 {
821 /* fallback to 1 which is always the ID of the root cgroup */
822 return (skcd->is_data & 1) ? skcd->prioidx : 1;
823 }
824
sock_cgroup_classid(const struct sock_cgroup_data * skcd)825 static inline u32 sock_cgroup_classid(const struct sock_cgroup_data *skcd)
826 {
827 /* fallback to 0 which is the unconfigured default classid */
828 return (skcd->is_data & 1) ? skcd->classid : 0;
829 }
830
831 /*
832 * If invoked concurrently, the updaters may clobber each other. The
833 * caller is responsible for synchronization.
834 */
sock_cgroup_set_prioidx(struct sock_cgroup_data * skcd,u16 prioidx)835 static inline void sock_cgroup_set_prioidx(struct sock_cgroup_data *skcd,
836 u16 prioidx)
837 {
838 struct sock_cgroup_data skcd_buf = {{ .val = READ_ONCE(skcd->val) }};
839
840 if (sock_cgroup_prioidx(&skcd_buf) == prioidx)
841 return;
842
843 if (!(skcd_buf.is_data & 1)) {
844 skcd_buf.val = 0;
845 skcd_buf.is_data = 1;
846 }
847
848 skcd_buf.prioidx = prioidx;
849 WRITE_ONCE(skcd->val, skcd_buf.val); /* see sock_cgroup_ptr() */
850 }
851
sock_cgroup_set_classid(struct sock_cgroup_data * skcd,u32 classid)852 static inline void sock_cgroup_set_classid(struct sock_cgroup_data *skcd,
853 u32 classid)
854 {
855 struct sock_cgroup_data skcd_buf = {{ .val = READ_ONCE(skcd->val) }};
856
857 if (sock_cgroup_classid(&skcd_buf) == classid)
858 return;
859
860 if (!(skcd_buf.is_data & 1)) {
861 skcd_buf.val = 0;
862 skcd_buf.is_data = 1;
863 }
864
865 skcd_buf.classid = classid;
866 WRITE_ONCE(skcd->val, skcd_buf.val); /* see sock_cgroup_ptr() */
867 }
868
869 #else /* CONFIG_SOCK_CGROUP_DATA */
870
871 struct sock_cgroup_data {
872 };
873
874 #endif /* CONFIG_SOCK_CGROUP_DATA */
875
876 #endif /* _LINUX_CGROUP_DEFS_H */
877